
The Microchip dsPICDEM™ MCSM Development Board is targeted to control both unipolar and bipolar stepper motors in open-loop or closed-loop (current control) mode. The hardware is designed in such a way that no hardware changes are necessary for 8-, 6- or 4-wire stepper motors in either bipolar or unipolar configurations. Software to run motors in open-loop or closed-loop with full or
View MoreThank you for your request. We will reply back with quotation as soon as possible! If you have any questions in the meantime, feel free to contact us here .
Motor control interfaces:
Built-in power supplies:
Power supply connectors:
Motor control device socket:
User Interfaces:
Communication Ports:
The Microchip dsPICDEM™ MCSM Development Board is targeted to control both unipolar and bipolar stepper motors in open-loop or closed-loop (current control) mode. The hardware is designed in such a way that no hardware changes are necessary for 8-, 6- or 4-wire stepper motors in either bipolar or unipolar configurations. Software to run motors in open-loop or closed-loop with full or variable micro-stepping is provided. A GUI for controlling step commands, motor parameter input, and operation modes is included. This flexible and cost-effective board can be configured in different ways for use with Microchip’s specialized dsPIC33 Motor Control Digital Signal Controllers (DSCs). The dsPICDEM MCSM Development Board offers a mounting option to connect either a 28-pin SOIC device or a generic 100-pin Plug-In Module (PIM). A dsPIC33CK64MP105 External Op Amp MC PIM (MA330050-1) is included.
The dsPICDEM MCSM Development Board supports terminal voltages up to 80V and currents up to 3A. The dsPIC33C device uses the MOSFET driver to drive the two full-bridge inverters that power the motor windings. The board includes various circuits to perform the following functions:
The dsPIC33CK64MP105 devices feature an 4-channel, high-speed PWM with Complementary mode output, a programmable ADC trigger on the PWM reload cycle, digital dead time control, internal shoot-through protection and hardware fault shutdown. These features make the dsPIC DSC an ideal solution for high-performance stepper motor control applications where control of the full-bridge inverter is required.
dsPICDEM MCSM Development Board: DM330022-1