@ MICROCHIP

SMPS Control Library Help

Copyright (c) 2015 Microchip Technology Inc. All rights reserved.




SMPS Control Library Help

Table of Contents

Structs, Records, Enums
SMPS_2P2Z T Structure
SMPS 3P3Z T Structure
SMPS_PID T Structure

SMPS_Controller_Options_T Structure
Release Notes
SW License Agreement
Introduction

Library Interface

Controller Update Functions
SMPS_Controller2P2ZUpdate_ HW_Accel Function
SMPS_Controller3P3ZUpdate_ HW_Accel Function
SMPS_Controller4dP4ZUpdate_ HW_Accel Function
SMPS_ControllerPIDUpdate_ HW_Accel Function
SMPS_Controller2P2ZUpdate Function
SMPS_Controller3P3ZUpdate Function
SMPS_ControllerPIDUpdate Function

Controller Initialization Functions
SMPS_Controller2P2ZInitialize Function
SMPS_Controller3P3ZInitialize Function
SMPS_ControllerPIDInitialize Function

Performance
Library Usage Model

Library Overview

Library Sections

© © 0 0 o0

10
10
11
11

12
12
13
13

14

15

17

17



SMPS Control Library Help

Modifying the Library

SMPS Control Library

Hardware Accelerated Function Register Assignment

Using the Alternate Working Register Features

Register Usage
Using the 2P2Z Controller
Using the 3P3Z Controller
Using the 4P4Z Controller
Using the PID Controller

Symbol Reference

Macros
_SMPS_CONTROL_H Macro

Files

smps_control.h

Index

18

19

20
21

22

25

29

33

36

39

39
39

39
39



1.1 SMPS_2P2Z_T Structure SMPS Control Library Help

Structs, Records, Enums

The following table lists %CATEGORYL% in this documentation.

Structures
Name Description
SMPS_2P27 T Data type for the 2-pole 2-zero (2P2Z) controller
SMPS _3P3Z_T Data type for the 3-pole 3-zero (3P3Z) controller
SMPS_PID_T Data type for the PID controller
SMPS_Controller_Options_T Optional data type for the controllers using the hardware accelerated

functions.

SMPS 2P2Z T Structure

Data type for the 2-pole 2-zero (2P2Z) controller
File

smps_control.h

Members
Members Description
int16_t* aCoefficients; Pointer to A coefficients located in X-space
intl16_t* bCoefficients; Pointer to B coefficients located in X-space
intl6_t* controlHistory; Pointer to 2 delay-line samples located in Y-space with the
first sample being the most recent
intl6_t* errorHistory; Pointer to 3 delay-line samples located in Y-space with the
first sample being the most recent
uint1l6_t preShift; Normalization from ADC-resolution to Q15 (R/W)
intl6_t postShift; Normalization bit-shift from Q15 to PWM register resolution
(R/IW)
intl6_t postScaler; Controller output post-scaler (R/W)
uint16_t minOutput; Minimum output value used for clamping (R/W)
uintl6_t maxOutput; Maximum output value used for clamping (R/W)
Description

Data type for the 2-pole 2-zero (2P2Z) controller

The 2P2Z controller is the digital implementation of the analog type Il controller. This is a filter which generates a
compensator characteristic considering two poles and two zeros. This controller requires three feedback error multiplied by
their associated coefficients plus the two latest controller output values multiplied by their associated coefficients along the
delay line to provide proper compensation of the power converter. The coefficients are determined externally using
simulation tools.

The SMPS_2P2Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. User must declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_2P2Z_T data structure are derived from the coefficients BO-B2 plus A1-A2.
These will be declared in external arrays. The SMPS_2P2Z_T data structure and just holds pointers to these arrays.

The coefficients will be determined by simulation tools, which output is given as floating point numbers. These numbers will



1.3 SMPS_PID_T Structure SMPS Control Library Help

be copied into the declared arrays after they have been converted into 16-bit integer numbers.

SMPS 3P3Z T Structure

Data type for the 3-pole 3-zero (3P3Z) controller
File

smps_control.h

Members
Members Description
int16_t* aCoefficients; Pointer to A coefficients located in X-space
intl16_t* bCoefficients; Pointer to B coefficients located in X-space
int1l6_t* controlHistory; Pointer to 3 delay-line samples located in Y-space with the
first sample being the most recent
intl6_t* errorHistory; Pointer to 4 delay-line samples located in Y-space with the
first sample being the most recent
uint16_t preShift; Normalization from ADC-resolution to Q15 (R/W)
intl6_t postShift; Normalization bit-shift from Q15 to PWM register resolution
(R/IW)
intl6_t postScaler; Controller output post-scaler (R/W)
uint16_t minOutput; Minimum output value used for clamping (R/W)
uintl6é_t maxOutput; Maximum output value used for clamping (R/W)
Description

Data type for the 3-pole 3-zero (3P3Z) controller

The 3P3Z controller is the digital implementation of the analog type Ill controller. This is a filter which generates a
compensator characteristic considering three poles and three zeros. This controller requires four feedback errors multiplied
by their associated coefficients plus the three latest controller output values multiplied by their associated coefficients along
the delay line to provide proper compensation of the power converter. The coefficients are determined externally using
simulation tools.

The SMPS_3P3Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. User must declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_3P3Z_T data structure are derived from the coefficients BO-B3 plus A1-A3.
These will be declared in external arrays. The SMPS_3P3Z_T data structure just holds pointers to these arrays.

The coefficients will be determined by simulation tools, their outputs are given as floating point numbers. These numbers will
be copied into the declared arrays after they have been converted into 16-bit integer numbers.

SMPS PID T Structure

Data type for the PID controller
File

smps_control.h



1.4 SMPS_Controller_Options_T

Members

Members
intl6_t* abcCoefficients;

intl6_t* errorHistory;

int16_t controlHistory;
intl6_t postScaler;
intl6_t preShift;
intl6_t postShift;
uint16_t minOutput;
uintl6_t maxOutput;

Description

Data type for the PID controller

SMPS Control Library Help

Description

Pointer to A, B & C coefficients located in X-space These
coefficients are derived from the PID gain values - Kp, Ki and
Kd

Pointer to 3 delay-line samples located in Y-space with the
first sample being the most recent

Stores the most recent controller output (n-1)
PID basic Coefficient scaling Factor
Normalization from ADC-resolution to Q15 (R/W)
Normalization from DSP to PWM register
Minimum output value used for clamping
Maximum output value used for clamping

Data type for the Proportional Integral Derivative (PID) controller

This digital implementation of a PID controller is a filter which generates a compensator characteristic considering the values
of the coefficients KA, KB, KC these coefficients will determine the converter's frequency response. These coefficients are

determined externally using simulation tools.

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference

value, and to the pointer to the output register.

SMPS_Controller_Options_T Structure

Optional data type for the controllers using the hardware accelerated functions.

File
smps_control.h
Members

Members
uintl6_t triggerSelectFlag;

volatile unsigned int* trigger;
volatile unsigned int* period;

Description

Description

00 = No Trigger Enabled 01 = Trigger On-Time Enabled 10 =
Trigger Off-Time Enabled

Pointer to trigger source
Pointer to time base (i.e., PTPER) register

Optional data type that may be used with any of the controllers for changing the location of the trigger in real time. Additional
structure members may be added by the user for additional options and/or necessary features.



1.4 SMPS_Controller_Options_T SMPS Control Library Help

The hardware accelerated functions come with the option of configuring the trigger value (location) in real time. The options
that are included are:

1. No trigger option is selected.

2. 50 % On/Off time trigger plus some user defined delay to account for gate drive delay.

The following two equations show how these values are computed:

On-Time Trigger: TRIGx = PDCx/2 + Delay
Off-Time Trigger: TRIGx = PDCx + (PTPER - PDCXx)/2 + Delay

In order to make use of this trigger option, the trigger options structure must be initialized.

Please refer to the smps_control.h file for further details.



2 SMPS Control Library Help

Release Notes

SMPS Control Library Version : 1.0 Release Date: May 13th, 2015

New:

This new release includes the previously released software based archive files and the addition of four hardware accelerated
based functions which make use of the persistent alternate working register sets. These functions also include trigger
options whereby the trigger location can be updated in real time.

Software based libraries for dsPIC33 devices:
1. smps_2p2z_dspic.s

2. smps_3p3z_dspic.s

3. smps_pid_dspic.s

Hardware accelerated based libraries using persistent alternate working register sets:

1. smps_2p2z_dspic_v2.s
2. smps_3p3z_dspic_v2.s
3. smps_4p4z_dspic_v2.s
4. smps_pid_dspic_v2.s

The new Application Programming Interface (API) includes function prototypes for both library versions.

Changes:

New text has been added to reference the controller functions making use of the alternate working register set features.

Fixes:

Minor miscellaneous textual corrections where appropriate.

Known Issues:

None.

Development Tools:

This version of the library is tested to be compatible with the following compiler and IDE:
e XC16 v1.25 compiler and later revisions.

* MPLAB X IDE v2.35 and later revisions.

Performance and functional correctness of the library cannot be guaranteed if this version of the library is used with versions
of the development tools other than those listed above.



SMPS Control Library Help

SW License Agreement

© 2015 Microchip Technology Inc.

MICROCHIP SOFTWARE NOTICE AND DISCLAIMER: You may use this software, and any derivatives created by any
person or entity by or on your behalf, exclusively with Microchip?s products. Microchip and its licensors retain all ownership
and intellectual property rights in the accompanying software and in all derivatives here to. This software and any
accompanying information is for suggestion only. It does not modify Microchip?s standard warranty for its products. You
agree that you are solely responsible for testing the software and determining its suitability. Microchip has no obligation to
modify, test, certify, or support the software.

THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE, ITS INTERACTION
WITH MICROCHIP?S PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.

IN NO EVENT, WILL MICROCHIP BE LIABLE, WHETHER IN CONTRACT, WARRANTY, TORT (INCLUDING
NEGLIGENCE OR BREACH OF STATUTORY DUTY), STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR
OTHERWISE, FOR ANY INDIRECT, SPECIAL, PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS,
DAMAGE, FOR COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWSOEVER
CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE.
TO THE FULLEST EXTENT ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID
DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.

MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE TERMS.



4 SMPS Control Library Help

Introduction

SMPS Control Library for

Microchip Microcontrollers

The libraries are a collection of optimized controller functions commonly used in Switch Mode Power Supply (SMPS)
applications.

Description

The SMPS Control library contains function blocks that are optimized specifically for the dsPIC33F and dsPIC33E family of
Digital Signal Controllers (DSC). The library functions are designed to be used within an application framework for realizing
an efficient and flexible way of implementing the control of an SMPS application.

The block diagram in Figure-1 shows a typical usage scenario. The user-developed SMPS application interfaces to the DSC
peripherals while using function calls into this library to perform the majority of the time-critical operations.

SMPS
Application

SMPS Control Library

dsPIC® Digital Signal Controller

SMPS Control Hardware

Figure-1: Block diagram of a typical library usage scenario.



5.1 Controller Update Functions SMPS Control Library Help SMPS_Controller2P2ZUpdate_ HW_Accel

Library Interface

This section describes both the initialization functions and and the controller update functions provided by the SMPS Control
library.

Controller Update Functions

This sections lists and describes the controller update functions used in the SMPS Control Library.

Functions
Name Description

A SMPS_Controller2P2ZUpdate_HW_Accel This function calls the 2 pole 2 zero compensator using the
alternate working register sets

“ SMPS_Controller3P3ZUpdate_ HW_Accel This function calls the the 3 pole 3 zero compensator using the
alternate working register sets

A SMPS_Controller4P4zUpdate_ HW_Accel This function calls the 4 pole 4 zero compensator using the
alternate working register sets

e SMPS_ControllerPIDUpdate_ HW_Accel | This function calls the PID compensator using the alternate working
register sets

“ SMPS_Controller2P2ZUpdate This function calls the 2 pole 2 zero compensator

- SMPS_Controller3P3ZUpdate This function calls the 3 pole 3 zero compensator

“ SMPS_ControllerPIDUpdate This function calls the PID compensator

SMPS_Controller2P2ZUpdate_ HW_ Accel Function

This function calls the 2 pole 2 zero compensator using the alternate working register sets
File

smps_control.h

Parameters
Parameters Description
Return void
Description
Function:

voi d SMPS_Control | er2P2ZUpdat e_HW Accel (void);

This function call executes a 2 pole 2 zero compensator and updates the control output target register

Conditions

Before the controller can be used, all of the alternate working registers have to be pre-initialized with the appropriate shifts,
scalars, min/max clamps, input/output registers, and array pointers. Please refer to 'Register Usage' section for alternate
working register assignments.



5.1 Controller Update Functions SMPS Control Library Help SMPS_Controller4P4ZUpdate_ HW_Accel

Example

mov _control | er Control Ref erence, w0
call _SMPS_Control | er2P2ZUpdat e_HW Accel

SMPS_ Controller3P3ZUpdate. HW_ Accel Function

This function calls the the 3 pole 3 zero compensator using the alternate working register sets
File

smps_control.h

Parameters
Parameters Description
Return void
Description
Function:

void SMPS_Control | er 3P3ZUpdat e_HW Accel (void);

This function call executes a 3 pole 3 zero compensator and updates the control output target register

Conditions

Before the controller can be used, all of the alternate working registers have to be pre-initialized with the appropriate shifts,
scalars, min/max clamps, input/output registers, and array pointers. Please refer to 'Register Usage' section for alternate
working register assignments.

Example

mov _control | er Control Ref erence, w0
call _SMPS Control |l er3P3ZUpdat e_HW Accel

SMPS ControllerdP4ZUpdate_ HW_ Accel Function

This function calls the 4 pole 4 zero compensator using the alternate working register sets
File

smps_control.h

Parameters
Parameters Description
Return void
Description
Function:

void SMPS_Control | er4P4ZUpdat e_HW Accel (void);

This function call executes a 4 pole 4 zero compensator and updates the control output target register



5.1 Controller Update Functions SMPS Control Library Help SMPS_Controller2P2ZUpdate Function

Conditions

Before the controller can be used, all of the alternate working registers have to be pre-initialized with the appropriate shifts,
scalars, min/max clamps, input/output registers, and array pointers. Please refer to 'Register Usage' section for alternate
working register assignments.

Example

nmov _control | erControl Ref erence, w0
call _SMPS Control | er4P4ZUpdat e_HW Accel

SMPS_ControllerPIDUpdate HW_Accel Function

This function calls the PID compensator using the alternate working register sets
File

smps_control.h

Parameters
Parameters Description
Return void
Description
Function:

void SMPS_Control | er Pl DUpdat e_HW Accel (void);

This function call executes a PID compensator and updates the control output target register

Conditions

Before the controller can be used, all of the alternate working registers have to be pre-initialized with the appropriate shifts,
scalars, min/max clamps, input/output registers, and array pointers. Please refer to 'Register Usage' section for alternate
working register assignments.

Example

nmov _control | erControl Ref erence, w0
call _SMPS Control | er Pl DUpdat e_HW Accel

SMPS_Controller2P2ZUpdate Function

This function calls the 2 pole 2 zero compensator
File

smps_control.h

Parameters
Parameters Description
Return void
Description
Function:

voi d SMPS_Control | er 2P2ZUpdat e( SMPS_2P2Z_T* control | er Dat a,

10



5.1 Controller Update Functions SMPS Control Library Help SMPS_ControllerPIDUpdate Function

volatile uintl6_t* controllerlnput Regi ster,

int1l6_t reference,
volatile uint16_t* controllerQutput Regi ster);

This function call executes a 2 pole 2 zero compensator and updates the control output target register.

Conditions
Before the controller can be used, it has to be initialized. The data structure has to be filled by copying the pointers to the
coefficient, error and controller history arrays to the structure and the physical clamping limits of the output value. In the
function call pointers to the Input source register, reference value, and pointer to the output register need to be called.

Example

int1l6_t control Reference;

SMPS _2P2Z T control |l er2P2Z;
SMPS_Control | er 2P2ZUpdat e( &ontr ol | er 2P2Z, &ADCBUFO, cont r ol Ref er ence, &PDC1)

SMPS_Controller3P3ZUpdate Function

This function calls the 3 pole 3 zero compensator

File

smps_control.h

Parameters
Parameters Description
Return void
Description
Function:

voi d SMPS_Control | er 3P3ZUpdat e( SMPS_3P3Z_T* control | erDat a,
volatile uint1l6_t* controllerlnputRegister,

intl6 t reference,
volatile uintl16_t* controll erQutput Regi ster);

This function call executes a 3 pole 3 zero compensator and updates the control output target register

Conditions
Before the controller can be used, it has to be initialized. The data structure has to be filled by copying the pointers to the
coefficient, error and controller history arrays to the structure and the physical clamping limits of the output value. In the
function call pointers to the Input source register, reference value, and pointer to the output register need to be called.

Example

int1l6_t control Reference;

SMPS_3P3Z_T control |l er3P3Z;
SMPS_Control | er 3P3ZUpdat e( &ontrol | er 3P3Z, &ADCBUFO, cont r ol Ref er ence, &PDC1)

SMPS_ControllerPIDUpdate Function

This function calls the PID compensator
File

smps_control.h

11



5.2 Controller Initialization Functions SMPS Control Library Help SMPS_Controller2P2ZInitialize Function

Parameters
Parameters Description
Return void
Description
Function:

voi d SMPS _Control | er Pl DUpdat e(SMPS_PI D T* control |l erDat a,
volatile uint1l6_t* controllerlnputRegister,
intl6 t reference,
volatile uintl6_t* controllerQutputRegister);

This function call executes a PID compensator and updates the control output target register

Conditions

Before the controller can be used, it has to be initialized. The data structure has to be filled by copying the pointers to the
coefficient, error and controller history arrays to the structure and the physical clamping limits of the output value. In the
function call pointers to the Input source register, reference value, and pointer to the output register need to be called.

Example

intl16_t control Ref erence;
SWMPS PID T control | erPID;
SMPS_Control | er Pl DUpdat e( &ontrol | er Pl D, &ADCBUFO, cont r ol Ref er ence, &PDC1)

Controller Initialization Functions

The following are the functions that are used by the software based libraries to initialize the controllers by both clearing the
error and control histories and by initializing the controller coefficients.

Functions
Name Description
v SMPS_Controller2P2ZInitialize This function clears the SMPS_2P2Z T data structure arrays
@ SMPS_Controller3P3ZInitialize This function clears the SMPS_3P3Z_T data history structure arrays
v SMPS_ControllerPIDlInitialize This function clears the SMPS_PID_T data structure arrays

SMPS_Controller2P2ZInitialize Function

This function clears the SMPS_2P2Z_T data structure arrays
File

smps_control.h

Parameters
Parameters Description
Return void
Description

Function: void SMPS_2P2ZInitialize(void)

This function clears the SMPS_2P2Z T data history structure arrays. It's recommended to clear the error-history and
controller-history arrays before 2P2Z controller implementation.

12



5.2 Controller Initialization Functions SMPS Control Library Help SMPS_ControllerPIDInitialize Function

Conditions

None.

Example

SMPS 2P2Z T control |l er2P2Z;
SMPS_Control | er2P2ZUpdat el nitiali ze(&control | er2P22);

SMPS_Controller3P3ZInitialize Function

This function clears the SMPS_3P3Z_T data history structure arrays
File

smps_control.h

Parameters
Parameters Description
Return Void.
Description

Function: void SMPS_3P3ZlInitialize( SMPS_3P3Z_T *controller_data )

This function clears the SMPS_3P3Z_T data history structure arrays. It's recommended to clear the error-history and
controller-history arrays before 3P3Z controller implementation.

Conditions

None.

Example

SMPS_3P3Z_T control |l er3P3Z;
SMPS_3P3ZInitialize(&ontroller3P32);

SMPS_ControllerPIDInitialize Function

This function clears the SMPS_PID_T data structure arrays
File

smps_control.h

Parameters
Parameters Description
Return void
Description

Function: void SMPS_PIDInitialize( SMPS_PID_T *controller_data )

This function clears the SMPS_PID_T data history structure arrays. It's recommended to clear the error-history and
controller-history arrays before PID controller implementation.

Conditions
None.

Example

SMPS PID T controllerPl D,
SMPS_Control | er Pl DUpdatel nitialize(&ontrollerPlID);

13



6 SMPS Control Library Help

Performance

The following table tabulates the expected cycle count for both the initialization functions and the controller update functions.
The controller library file include the software based functions as well as the new hardware accelerated functions. The critical
paths have also been tabulated for comparison purposes.

The first column in Table 1 below lists the library functions.
The second column lists the approximate number of instruction cycles required to:

1. Save the arguments.
2. Call into the library function.
3. Return from the library function.

The third column:

4. Critical path time from the function call to the time that the control output target register is updated.

Function Name (Software Based Libraries) Total Instruction Cycle Critical Path Cycle Usage
Count Usage (Minimum)
(Minimum)
SMPS_Controller3P3ZInitialize 18 N/A
SMPS_Controller2P2ZInitialize 16 N/A
SMPS_ControllerPIDInitialize 15 N/A
SMPS_Controller3P3ZUpdate 63 52
SMPS_Controller2P2ZUpdate 58 46
SMPS_ControllerPIDUpdate 53 38

Function Name (Hardware Accelerated Based Libraries)1

SMPS_Controller2P2ZUpdate_ HW_Accel 53 25
SMPS_Controller3P3ZUpdate_ HW_Accel 59 25
SMPS_Controller4P4ZUpdate_ HW_Accel 66 25
SMPS_ControllerPIDUpdate_ HW_Accel 51 31

Table 1 - Library cycle usage tabulation.

Note:

The above performance numbers were measured on the SMPS Control Library.
Note 1:

The hardware accelerated based library functions can only be used by devices that have the alternate working register set
features. This is for the case where no trigger option has been selected.

Version

1.0 Release

14



7 SMPS Control Library Help

/ Library Usage Model

This topic describes the typical usage model for this library.
In order to use the library in the user application:

1. Include the library archive file into the application project. Add the library archive directory into the Project Properties ->
xcl16-ld -> (Option categories) Libraries field as shown below.

La ™
98 Project Properties - Digital Power Starter Kit 2P2Z PKCM =5
Categories: o for xC16 i7e
@ Genera ptions for xc16-gee (v1.25.)
50 Conf: [default] Option categories: | Lbraries ix)
- @ Starter Kit (PKOB) —
o Loading Libraries =
@ Libraries Library directories ib ]
@ Building — - - —
i Force linking of objects that may not be compatible
- @ XC16 (Global Options)

OO0l =

xclG-as Don't merge If0 library functions
clo-ger Exdude standard libraries
xc164d

xcl6-ar

Additional options:

Option Description | Generated Command Line

Manage Configurations...

[ 0K H Cancel ][ Apply ] Unlock

[ J

2. Ensure that the application project is configured to use ELF/DWARF type of output file format.



SMPS Control Library Help

-
“ Project Properties - Digital Power Starter Kit 2P27 PkCM

Categories: ions fo
. o General Options for xc16-goc (v1.25.)
B- < Conf: [default] Option categories: [Global options > ] Reset
; Starter Kit (PKOB)
Loading Output file format ELF/DWARF - -
Libraries Define comman macros |
Building .
Generic build (/a)
i @ xcl6-as Use legacy libc 0
- @ xcle-geo Fast floating-point math ] £
- xcle-dd - ]
______ o welbar Relaxed floating-point math ]
Don't delete intermediate files ]
Partition Single -
Commeon include dirs | | =
Additional options: | |
[ Option Description | Generated Cammand Line|
1
Manage Configurations...
[ OK ] [ Cancel ] [ Apply ] Unlock Help
3. Include the smps_control.h file in all C language source (.c) file that use the SMPS Control library.
#i ncl ude "snps_control . h"
4. Add the library path to the C include directory field in Project Properties -> xc16-gcc -> (Option categories) Preprocessing

' Project Properties - Digital Power Starter Kit 2P27 PkCM

and messages -> C include dirs.

E

Categories: o for xc16 o
- @ General B s )
= o Conf: [default] Option categories: [PFEWOCESQ”Q and messages hd ] Reset
e Starter Kit (PKOB) s
Loading C include dirs 2h ==
Libraries Define C macros
Building
ANSI-std C support
¥C16 (Global Options) pPa O L
@ xcl6-as lse CCI syntax ] 5
@ Use IAR syntax ]
@ xcledd
Errata
@ xclS-ar |
smart IO forwarding level 1 -
smart IO format string TEY] |
Make warns into errors [ -
Additional options: |
Option Description | Generated Command Line
Manage Configurations...
0K ] [ Cancel ] [ Apply ] Unlock Help

16



8.1 Library Sections SMPS Control Library Help

Library Overview

This topic describes the basic architecture of the SMPS Control Library and provides information and examples on how to
use it. The SMPS Control Library hosts functions as defined in the Interface Header File, also referred to as the Application
Programming Interface (API).

Interface Header File: smps_control.h

The interfaces to the SMPS control libraries are defined in the "smps_control.h" header file. Any C language source (.c) files
that use the SMPS Control library should include the "smps_control.h" file.

Library Files: libsmps_control_dspic33e-elf.a

This is the SMPS Control library archive (.a) file installed with the library release. The prototypes for the library functions
hosted by the archive file are described in the smps_control.h file. The archive file released with the library was built using
the ELF-type of Object Module Format (OMF).

Please refer to the respective assembly file for compensator type, implementation details and specific register usage.

Library Sections

The library interface routines for each of the controllers is divided into two sub-sections. Each sub-section addresses one of
the classes of operation in the SMPS Control library.

Library Interface Section Description
Controller Initialization This function clears the controller data structure arrays
Controller Implementation This function calls the Digital controller

17



Modifying the Library

At release, the library includes one archive file:

1. libsmps_control_dspic33e-elf.a - To be used with dsPIC33E family of devices.

The archive file released with the library is built using the ELF type Object Module Format (OMF). The source (.s) files that
are used to build these archive files are also provided with the library, in the /src folder. These source files are provided for
reference and need not be used directly in a typical library usage scenario.

Users may also utilize the flexibility provided by the library to modify the source files and re-build their own archive files. In
order to help users to get started, a library project is included in the /mplabx folder of the library:

2. libsmps_control_dspic33e-elf.X - To be used with dsPIC33E and dsPIC33F family of devices.

These library projects assemble the source files from the /src folder using an assembly API file, and then archive the
assembled output object files into a binary archive. The binary archive is by default, saved in the
/mplabx/libsmps_control_dspic33e-elf. X/dist/default/production folder. If the user wishes to use this library with the dsPIC33F
family of devices, the user must select the appropriate device under 'Device' in the "Project Properties' pull down menu and
recompile to generate the new library archive file.

18



10

SMPS Control Library Help
Files
Name Description
smps_control.h This header file lists the interfaces used by the switch mode power supply

compensator library.

Library Function Requirements

The controller was designed to work with Q15 numbers only. Therefore, the coefficients have to be normalized to be
between -1 and +1 before implementation. The library function makes use of MAC instructions and therefore pointers must
be declared to point to both X-space and Y-space. The MAC instruction and other associated instructions can concurrently
fetch two data operands from memory while multiplying two working registers. Please refer to the 16-Bit MCU and DSC
Programmer's Reference Manual (DS70157) for further details. Because the library SW makes use of MAC instructions,
two arrays need to be created to process the required operands.

19



11.1 Using the Alternate Working SMPS Control Library Help

Hardware Accelerated Function
Register Assignment

When using the hardware accelerated based controller functions, the following register assignments must be followed.

When using the 2P2Z, 3P3Z, and 4P4Z hardware accelerated functions:

Alternate
Working
Registers

w0

wil

w2

w3, w4, wb
w6

w7

w8

w9

w10

will

wil2

w13, wl4

Assignment

Control Reference value

Address of the Source Register (Input) - ADCBUFx
Address of the Target Register (Output) - PDCx/CMPxDAC
ACCAX ... and misc operands

postScalar

postShift

Library options structure pointer
ACoefficients/BCoefficients array base address
ErrorHistory/ControlHistory array base address
minClamp

maxClamp

user defined, misc use

When using the PID hardware accelerated function:

Alternate
Working
Registers

w0
wil
w2
w3, wl4, w5
w6
w7
w8
w9
wi10
will
wil2
wi3

w4

Assignment

Control Reference value

Address of the Source Register (Input) - ADCBUFx
Address of the Target Register (Output) - PDCx/CMPxDAC
ACCAX ... and misc operands

postScalar

postShift

Library options structure pointer
AcCoefficients/BCoefficients array base address
ErrorHistory/ControlHistory array base address
minClamp

maxClamp

preShift

user defined, misc use

20



11.1 Using the Alternate Working SMPS Control Library Help

Using the Alternate Working Register
Features

Alternate Working Register (Context) Set Overview

Specific dsPIC33 devices have alternate working register sets which are a subset of the default working registers (w0-w15).
Please see device datasheet in question to verify if these features are implemented. These registers however only include
registers w0 through wl4. They are persistent registers meaning that they keep their contents when switching to another
context. This is useful when wanting to keep the contents of the registers for later processing by not having to reload the
previous register values. Unlike the default context O working registers, which are memory mapped, these registers are
mapped to special function register (SFR) addresses. These special features are invaluable in time critical applications. In
summary:

- Mapped to SFR memories in contrast to being memory mapped as is done with the default register arrays
- Persistent: Register contents do not change whenever the CPU switches to another register set thereby saving time by
reducing the amount of clock cycles needed for restoring register contents; useful for time critical applications

- Can be associated with a user defined Interrupt Priority Level (IPL)

Context Switching
There are two types of context switching. They are as follows:

1. Manual Context Switching

Manual context switching requires the use of the CTXTSWP instruction. The CTXTSWP instruction is referenced in the
Instruction Set Overview of the device datasheet. Manual context switching consists of manually inserting code including the
CTXTSWP instruction to initiate a context switch. These instructions should be included just prior to the manual swap and
post manual swap. In the following example, just prior to making the compensator function call, a manual swap is performed
to switch over to the alternate working register set #2. After the function call, a manual swap is performed to switch back to
the default context #O0.

void __attribute__ ((__interrupt__, no_auto_psv, context)) _ADCAN3Interrupt()
{

asm("CTXTSWP #0x2"); // Switch to context #2

asm("mov controllerControlReference, w0");

SMPS_Controller2P2ZUpdate_ HW_Accel(); // Call 2P2Z controller function
asm("CTXTSWP #0x0"); // Switch back to #0 (default context)

2. Automatic (Hardware) Context Switching

Hardware context switching is the method by which both an interrupt and an alternate working register set are tied to the
same IPL. When an interrupt occurs, the CPU checks both the IPL of the ISR and the alternate working register set. The
context whose IPL matches that of the ISR is the context that is ‘switched on’ for the ISR call. Note that the IPL of all
alternate working register sets must be unique. The IPL for each context is specified by the CTXTn<2:0> bits in the
FALTREG configuration register, where ‘n’ is the alternate working register set's number. Each can be assigned an Interrupt

21



11.2 Register Usage SMPS Control Library Help

Priority Level between 1 and 7.

If using automatic context switching, both the ISR and the context have to be assigned to the same IPL. This informs the
compiler that the ISR has been assigned a particular IPL and that it has been assigned to a particular alternate working
register set. For example, to assign an interrupt priority level of 7 to both the alternate working register context #1 and to the
ADC AN1 analog input, the following two lines of code need to be included:

_FALTREG(CTXTL1_IPL7) // Assign a context of #1 an interrupt priority level (IPL) of 7 - usually in main.c or one of its .h file
IPC27bits. ADCANLIP = 7; // Set ADC interrupt priority level (IPL) to 7 - normally included in initialization code

void __attribute__ ((__interrupt__, no_auto_psv, context)) _ADCAN3Interrupt()

Any time that there is an interrupt service request for the ADC AN1 input, an automatic swap is made from the current
context to the context that matches the IPL of the AN1 channel input.

Note that for extremely time critical applications, it is recommended to perform context swaps by way of the automatic
context switching method where both an interrupt and an alternative working register set are tied to the same IPL. This
method removes the overhead of having to manually perform the context swaps in software. The preferred sequence is to
have the compensator function using the alternate working register set called within an ISR written in assembly. If using C,
then using inline asm instructions would be the secondary preferred method. This way the compiler does not destroy any
data that should be persistent in the alternate working registers.

Register Usage

The register usage described below apply when using the hardware accelerated based library functions.

Alternate Working Register (Context) Set Overview

Specific dsPIC33 devices have alternate working register sets which are a subset of the default working registers (w0-w15).
Please see device datasheet in question to verify if these features are implemented. These registers however only include
registers w0 through wl4. They are persistent registers meaning that they keep their contents when switching to another
context. This is useful when wanting to keep the contents of the registers for later processing by not having to reload the
previous register values. Unlike the default context 0 working registers, which are memory mapped, these registers are
mapped to special function register (SFR) addresses. These special features are invaluable in time critical applications. In
summary:

- Mapped to SFR memories in contrast to being memory mapped as is done with the default register arrays
- Persistent: Register contents do not change whenever the CPU switches to another register set thereby saving time by
reducing the amount of clock cycles needed for restoring register contents; useful for time critical applications

- Can be associated with a user defined Interrupt Priority Level (IPL)

Context Switching

There are two types of context switching. They are as follows:

1. Manual Context Switching

22



11.2 Register Usage SMPS Control Library Help

Manual context switching requires the use of the CTXTSWP instruction. The CTXTSWP instruction is referenced in the
Instruction Set Overview of the device datasheet. Manual context switching consists of manually inserting code including the
CTXTSWP instruction to initiate a context switch. These instructions should be included just prior to the manual swap and
post manual swap. In the following example, just prior to making the compensator function call, a manual swap is performed
to switch over to the alternate working register set #2. After the function call, a manual swap is performed to switch back to
the default context #0.

void __attribute__ ((__interrupt__, no_auto_psv)) _ADCANS3Interrupt()

{

asm("CTXTSWP #0x2"); // Switch to context #2

asm("mov controllerControlReference, w0");
SMPS_Controller2P2ZUpdate_HW_Accel(); // Call 2P2Z controller function
asm("CTXTSWP #0x0"); // Switch back to #0 (default context)

}

2. Automatic (Hardware) Context Switching

Hardware context switching is the method by which both an interrupt and an alternate working register set are tied to the
same IPL. When an interrupt occurs, the CPU checks both the IPL of the ISR and the alternate working register set. The
context whose IPL matches that of the ISR is the context that is ‘switched on’ for the ISR call. Note that the IPL of all
alternate working register sets must be unique. The IPL for each context is specified by the CTXTn<2:0> bits in the
FALTREG configuration register, where ‘n’ is the alternate working register set's number. Each can be assigned an Interrupt
Priority Level between 1 and 7.

If using automatic context switching, both the ISR and the context have to be assigned to the same IPL. This informs the
compiler that the ISR has been assigned a particular IPL and that it has been assigned to a particular alternate working
register set. For example, to assign an interrupt priority level of 7 to both the alternate working register context #1 and to the
ADC AN1 analog input, the following two lines of code need to be included:

_FALTREG(CTXTL1_IPL7) // Assign a context of #1 an interrupt priority level (IPL) of 7 - usually in main.c or one of its .h file
IPC27bits. ADCANLIP = 7; // Set ADC interrupt priority level (IPL) to 7 - normally included in initialization code

Note that when using the automatic context switching, the 'context' label has to be added to the ISR attribute. The context
attribute may be used to associate the current routine with an alternate register set. Typically this is used with interrupt
service routines to reduce the amount of context that must be preserved, which will improve interrupt latency.

void __attribute__ ((__interrupt__, no_auto_psv, context)) _ADCAN3Interrupt()

Any time that there is an interrupt service request for the ADC AN1 input, an automatic swap is made from the current
context to the context that matches the IPL of the AN1 channel input.

Note that for extremely time critical applications, it is recommended to perform context swaps by way of the automatic
context switching method where both an interrupt and an alternative working register set are tied to the same IPL. This
method removes the overhead of having to manually perform the context swaps in software. The preferred sequence is to
have the compensator function using the alternate working register set called within an ISR written in assembly. If using C,
then using inline asm instructions would be the secondary preferred method. This way the compiler does not destroy any
data that should be persistent in the alternate working registers.

23



11.2 Register Usage SMPS Control Library Help

The register usage descriptions described below apply when using the software based libraries.

1. Assembly implementation: Register w0 - w7 are caller saved. The calling function must preserve these values before the
library function call if their value is required subsequently from the library function call. The stack is a good place to
preserve these values.

2. Assembly implementation: Register w8 - w14 are saved by the library function if they are used within the library function.
3. Register w0 - w7 may be used for argument transmission.

4. Accumulator (A and B) registers are not saved by any of the library functions. If the calling function requires the
accumulator registers to be unchanged after the library function call, the calling function will have to save the accumulator
registers before the library function call.

5. CPU Core Control Register (CORCON): certain library functions require the CORCON register to be setup in a certain
state in order to operate correctly. Due to this requirement, these library functions save the CORCON register on the
stack at the beginning of the function and restore it before the function return (exit). After saving the CORCON register,
the library function writes to all bits of the CORCON register. Thus, for the brief duration when these library functions are
executing, the state of the CORCON register may be different from its state as set by the function caller. This may
temporarily change the CPU core behavior with respect to exception processing latency, DO loop termination, CPU
interrupt priority level and DSP-engine behavior.

24



12

SMPS Control Library Help

Using the 2P2Z Controller

The 2P2Z controller is the digital implementation of the analog type Il controller. This is a filter which generates a
compensator characteristic considering two poles and two zeros. This controller requires three feedback error multiplied by
their associated coefficients plus the two latest controller output values multiplied by their associated coefficients along the
delay line to provide proper compensation of the power converter. The coefficients are determined externally using
simulation tools.

CONTROL LOOP DEFINITIONS
Transfer Function for a Digital 2P2Z Controller

| e(z) - A2 z7(-2) - Al z7(-1) + 1 |

The Linear Difference Equation becones:

There are two types of controllers. A software based controller and an hardware accelerated based controller.

1. Software based library controller.

This controller was designed with a good trade-off between speed and accuracy

Filename Description:

SMPS_Controller2P2Z stand for Switch Mode Power Supply 2-pole 2-zero controller. The coefficients can cover a wide
range of numbers depending on the performance requirements for the system or plant. This controller was programmed to
work with Q15 numbers only, therefore the coefficients have to be normalized to the range between -1 and +1 before
implementation.

File Usage:

a) Variable Declarations

To use this controller in an application, one or more controller(s) can be defined as following:
- Include stdint.h for declaration in the 16-bit integer format

#include <stdint.h>

- Declare a 2P2Z Data Structure (e.g. controller2P27)

SMPS_2P2Z T controller2P2z;

The controller2P2Z data structure contains a pointer to derived coefficients in X-space and pointer to controller and error
history in Y-space. So declare variables for the derived coefficients and the controller history samples, this can be done in
main.h

int16_t controller2P2ZACoefficient[2] __attribute__ ((section (".xbss")));
int16_t controller2P2ZControlHistory[2] __ attribute__ ((section (".ybss")));
int16_t controller2P2ZBCoefficient[3] __attribute__ ((section (".xbss")));

intl6_t controller2P2ZErrorHistory[3] __attribute__ ((section (".ybss")));

25



12

SMPS Control Library Help

b) Controller Initialization

Before the controller can be used, it has to be initialized. First, the data structure has to be filled by copying the pointers to
the coefficients, error and controller history arrays into the structure, in addition the physical clamping limits of the output
value need to be defined, for example:

controller2P2Z.aCoefficients = &controller2P2ZACoefficient[0]; // Set up pointer to derived coefficients
controller2P2Z.bCoefficients = &controller2P2ZBCoefficient[0]; // Set up pointer to derived coefficients
controller2P2Z.controlHistory = &controller2P2ZControlHistory[0O]; // Set up pointer to controller history
controller2P2Z .errorHistory = &controller2P2ZErrorHistory[0]; // Set up pointer to error history
controller2P2Z.preShift = (e.g. 5); // Normalization shift for error amplifier into Q15 format
controller2P2Z.postShift = (e.g. 1); // Normalization shift for control loop results to peripheral
controller2P2Z.postScaler = (e.g. 2); // Normalization shift for control loop results to peripheral
controller2P2Z.minOutput = (e.g. min duty cycle); // Clamp value for minimum duty ratio

controller2P2Z.maxOutput = (e.g. max duty cycle); // Clamp value for maximum duty ratio

It's recommended to clean up the error-history and controller-history arrays before start-up using the following instruction:

SMPS_Controller2P2ZlInitialize(&controller2P2Z); // Clear history

¢) Calling the Controller
As soon as the coefficients have been loaded into their arrays, the controller can be called using the following instruction:
SMPS_Controller2P2ZUpdate(&controller2P2Z,& ADCBUFO0,controlReference,&PDC1)

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference
value, and to the pointer to the output register.

The SMPS_2P2Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. So declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_2P2Z_T data structure are derived from the coefficients BO-B2 plus A1-A2.
These will be declared in external arrays. The SMPS_2P2Z_T data structure just holds pointers to these arrays.

The coefficients will be determined by simulation tools, which output is given as floating point numbers. These numbers will
be copied into the declared arrays after they have been converted into 16-bit integer numbers.

2. Hardware accelerated based library controller

Filename Description

smps_2p2z_dspic_v2.s stands for Switch Mode Power Supply 2-pole 2-zero controller. The 'v2' suffix is added to
differentiate it from the software based controller function mentioned above. The hardware accelerated controller based
function can only be used with devices having the alternate working register set special features. The alternate working
registers are persistent, meaning they keep their values between function calls. Because the registers are persistent, the
registers do not have to be reloaded during each library function call. Currently, the devices with these features are the
dsPIC33E devices. Please refer to the device datasheet for further details and to verify whether or not these features are
supported with the device(s) in question. The new 2P2Z library is a derivative of the original software based library controller.
It has been re-designed to minimize control output target register update latency by taking advantage of the alternate

26



12

SMPS Control Library Help

working register set features. By comparing the two functions, it is shown that the control output register update latency for
the new hardware accelerated based function has been reduced by more than 50 % relative to the software based library.
Please see table in the performance section.

a) Variable Declarations

Two arrays are created. One contains the values of the coefficients in X-space and the other the error and control history
values in Y-space.

volatile int16_t controllerErrorControlHistory[4]__attribute__ ((space (ymemory), far));

volatile int16_t controllerABCoefficients[5]__attribute__ ((section (".xbss")));

b) Controller Initialization

Before the controller can be used, it has to be initialized. First, the coefficients array has to be initialized, second the error
and control history array needs to be cleared, and third the alternate working registers have to be initialized, in no particular
order.

The following instructions initialize the coefficients array (note that the coefficients are obtained via simulation tools) and are
performed in a c application file:

controllerABCoefficients[0] = CONVERTER_COMP_2P2Z COEFF_BO;
controllerABCoefficients[1] = CONVERTER_COMP_2P27Z_ COEFF_B1,;
controllerABCoefficients[2] = CONVERTER_COMP_2P2Z COEFF_BZ2;

controllerABCoefficients[3] = CONVERTER_COMP_2P2Z_COEFF_A1,;
controllerABCoefficients[4] = CONVERTER_COMP_2P2Z_COEFF_A2;

Second, the error and control history array needs to be cleared. This can be done by creating a macro and making a function
call to it in the application SW.

#define MACRO_CLR_CONVERTERHISTORY() \
controllerErrorControlHistory[0] = 0; \
controllerErrorControlHistory[1] = 0; \
controllerErrorControlHistory[2] = 0; \

controllerErrorControlHistory[3] = 0;

Third, the alternate working register set has to be initialized. Please see the Hardware Accelerated Function Register
Assignment section for further details. The CTXTSWP instruction is used to swap between the different register banks. To
load a particular alternative working register context, this instruction must be called.

Included in this new library is the option by the user to modify the trigger location. A structure as been created for this
purpose. The three options

that are included are:

27



12 SMPS Control Library Help

1. No change in trigger location.
2. 50 % On-Time trigger plus a delay if applicable to account for gate drive switching.
3. 50 % Off-Time trigger plus a delay if applicable to account for gate drive switching.

The user makes this selection in the application SW. Please refer to the library for the trigger option descriptions.

The user makes this selection in the application SW. Please refer to the library for the trigger option descriptions.

¢) Calling the Controller

After the requirements from steps one and two have been met, the controller can be called using the following instructions:
mov _controllerControlReference, w0 ; The control reference has to be pre-loaded prior to each function call

call _SMPS_Controller2P2ZUpdate_ HW_Accel ; Make library function call

28



13

SMPS Control Library Help

Using the 3P3Z Controller

The 3P3Z controller is the digital implementation of the analog type Ill controller. This is a filter which generates a
compensator characteristic considering three poles and three zeros. This controller requires four feedback errors multiplied
by their associated coefficients plus the three latest controller output values multiplied by their associated coefficients along
the delay line to provide proper compensation of the power converter. The coefficients are determined externally using
simulation tools.

CONTROL LOOP DEFINITIONS

Transfer function for the digital 3P3Z controller:

| e(z) -A3 z™(-3) - A2 z~(-2) - Al z°(-1) + 1 |

The Linear Difference Equati on becones:

| u(n) = BO e(n) + Bl e(n-1) + B2 e(n-2) + B3 e(n-3) + |
| Al u(n-1) + A2 u(n-2) + A3 u(n-3) |

There are two types of controllers. A software based controller and an hardware accelerated based controller.

1. Software based library controller.

This controller was designed with a good trade-off between speed and accuracy.

Filename Description:

smps_3p3z_dspic.s stands for Switch Mode Power Supply 3-pole 3-zero compensator. The coefficients can cover a wide
range of numbers depending on the performance requirements for the system or plant. This controller was created to work
with Q15 numbers only. Therefore the coefficients have to be normalized between -1 and +1 before implementation.

File Usage:

a) Variable Declarations
To use this controller in an application, one or more controller(s) can be defined as following:
- Include stdint.h for declaration in the 16-bit integer format

#include <stdint.h>

- Declare a 3P3Z Data Structure (e.g. controller3P32)
SMPS_3P3Z_T controller3P3z;

The controller3P3Z data structure contains a pointer to derived coefficients in X-space and pointer to controller and error
history in Y-space. So declare variables for the derived coefficients and the controller history samples, this can be done in
main.h

29



SMPS Control Library Help

int16_t controller3P3ZACoefficient[3] __ attribute__ ((section (".xbss")));
int16_t controller3P3ZControlHistory[3] __attribute__ ((section (".ybss")));
int16_t controller3P3ZBCoefficient[4] __ attribute__ ((section (".xbss")));

intl6_t controller3P3ZErrorHistory[4] __ attribute__ ((section (".ybss")));

b) Controller Initialization

Before the controller can be used, it has to be initialized. First, the data structure has to be filled by copying the pointers to
the coefficients, error and controller history arrays into the structure, in addition the physical clamping limits of the output
value need to be defined, for example:

controller3P3Z.aCoefficients = &controller3P3ZACoefficient[0]; // Set up pointer to derived coefficients
controller3P3Z.bCoefficients = &controller3P3ZBCoefficient[0]; // Set up pointer to derived coefficients
controller3P3Z.controlHistory = &controller3P3ZControlHistory[0]; // Set up pointer to controller history
controller3P3Z.errorHistory = &controller3P3ZErrorHistory[Q]; // Set up pointer to error history

controller3P3Z.preShift = (e.g. 5); // Normalization shift for error amplifier into Q15 format

controller3P3Z.postShift = (e.g. 1); // Normalization shift for control loop results to peripheral

controller3P3Z.postScaler = (e.g. 2); // Normalization shift for control loop results to peripheral

controller3P3Z.minOutput = (e.g. min duty cycle); // Clamp value for minimum duty ratio

controller3P3Z.maxOutput = (e.g. max duty cycle); // Clamp value for maximum duty ratio

It's recommended to clean up the error-history and controller-history arrays before start-up using the following instruction:

SMPS_Controller3P3ZlInitialize(&controller3P3Z); // Clear history

¢) Calling the Controller
As soon as the coefficients have been loaded into their arrays, the controller can be called using the following instruction:
SMPS_Controller3P3ZUpdate(&controller3P3Z,&ADCBUFO,controlReference,&PDC1)

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference
value, and to the pointer to the output register.

The SMPS_3P3Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. So declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_3P3Z_T data structure are derived from the coefficients BO-B3 plus A1-A3.
These will be declared in external arrays. The SMPS_3P3Z_T data structure just holds pointers to these arrays.

The coefficients will be determined by simulation tools, which output is given as floating point numbers. These numbers will
be copied into the declared arrays after they have been converted into 16-bit integer numbers.

2. Hardware accelerated based library controller

Filename Description

smps_3p3z_dspic_v2.s stands for Switch Mode Power Supply 3-pole 3-zero controller. The 'v2' suffix is added to
differentiate it from the software based controller function mentioned above. The hardware accelerated based controller
function can only be used with devices having the alternate working register set special features. The alternate working

30



13

SMPS Control Library Help

registers are persistent, meaning they keep their values between function calls. Because the registers are persistent, the
registers do not have to be reloaded during each library function call. Currently, the devices with these features are the
dsPIC33E devices. Please refer to the device datasheet for further details and to verify whether or not these features are
supported with the device(s) in question. The new 3P3Z library is a derivative of the original software based function
controller. It has been re-designed to minimize control output target register update latency by taking advantage of the
alternate working register set features. By comparing the two functions, it is shown that the control output the register update
latency for the new hardware accelerated based function has been reduced by more than 50 % relative to the software
based function. Please see table in the performance section.

a) Variable Declarations

Two arrays are created. One contains the values of the coefficients in X-space and the other the error and control history
values in Y-space.

volatile int16_t controllerErrorControlHistory[6]__attribute__ ((space (ymemory), far));

volatile int16_t controllerABCoefficients[7]__attribute___ ((section (".xbss")));

b) Controller Initialization

Before the controller can be used, it has to be initialized. First, the coefficients array has to be initialized, second the error
and control history array needs to be cleared, and third the alternate working registers have to be initialized, in no particular
order.

The following instructions initialize the coefficients array (note that the coefficients are obtained via simulation tools) and are
performed in a c application file:

controllerABCoefficients[0] = CONVERTER_COMP_3P3Z_COEFF_BO;
controllerABCoefficients[1] = CONVERTER_COMP_3P3Z_COEFF_B1;
controllerABCoefficients[2] = CONVERTER_COMP_3P3Z_COEFF_BZ2;
controllerABCoefficients[3] = CONVERTER_COMP_3P3Z_COEFF_B3;

controllerABCoefficients[4] = CONVERTER_COMP_3P3Z_COEFF_A1;
controllerABCoefficients[5] = CONVERTER_COMP_3P3Z_COEFF_A2;
controllerABCoefficients[6] = CONVERTER_COMP_3P3Z_COEFF_A3;

Second, the error and control history array needs to be cleared. This can be done by creating a macro and making a function
call to it in the application SW.

#define MACRO_CLR_CONVERTERHISTORY() \
controllerErrorControlHistory[0] = 0; \
controllerErrorControlHistory[1] = 0; \
controllerErrorControlHistory[2] = 0; \

controllerErrorControlHistory[3] = 0; \

31



13

SMPS Control Library Help

controllerErrorControlHistory[4] = 0; \

controllerErrorControlHistory[5] = 0;

Third, the alternate working register set has to be initialized. Please see the Hardware Accelerated Function Register
Assignment section for further details. The CTXTSWP instruction is used to swap between the different register banks. To
load a particular alternative working register context, this instruction must be called.

Included in this new library is the option by the user to modify the trigger location. A structure as been created for this
purpose. The three options

that are included are:

1. No change in trigger location.

2. 50 % On-Time trigger plus a delay if applicable to account for gate drive switching.
3. 50 % Off-Time trigger plus a delay if applicable to account for gate drive switching.

The user makes this selection in the application SW. Please refer to the library for the trigger option descriptions.

c¢) Calling the Controller
After the requirements from steps one and two have been met, the controller can be called using the following instructions:
mov _controllerControlReference, w0 ; The control reference has to be pre-loaded prior to each function call

call _SMPS_Controller3P3ZUpdate_HW_Accel ; Make library function call

32



14

SMPS Control Library Help

Using the 4P4Z Controller

The 4P4Z controller is a filter which generates a compensator characteristic considering four poles and four zeros. This
controller requires five feedback errors multiplied by their associated coefficients plus the four latest controller output values
multiplied by their associated coefficients along the delay line to provide proper compensation of the power converter. The
coefficients are determined externally using simulation tools.

CONTROL LOOP DEFINITIONS

Transfer function for the digital 4P4Z controller:

| e(z) -A4 zM(-4) -A3 z™N(-3) - A2 z"(-2) - Al z~(-1) + 1 I

The Linear Difference Equati on becones:

| u(n) = BO e(n) + Bl e(n-1) + B2 e(n-2) + B3 e(n-3) + B4 e(n-4) |
| + Al u(n-1) + A2 u(n-2) + A3 u(n-3) + Ad u(n-4) |

There are two types of controllers. A software based controller and an hardware accelerated based controller.

1. Software based library controller.

This controller was designed with a good trade-off between speed and accuracy.

Filename Description:

smps_4p4z_dspic.s stands for Switch Mode Power Supply 4-pole 4-zero compensator. The coefficients can cover a wide
range of numbers depending on the performance requirements for the system or plant. This controller was created to work
with Q15 numbers only. Therefore the coefficients have to be normalized between -1 and +1 before implementation.

2. Hardware accelerated based library controller

Filename Description

smps_4p4z_dspic_v2.s stands for Switch Mode Power Supply 4-pole 4-zero controller. The 'v2' suffix is added to
differentiate it from the software based controller function mentioned above. The hardware accelerated controller based
function can only be used with devices having the alternate working register set special features. The alternate working
registers are persistent, meaning they keep their values between function calls. Because the registers are persistent, the
registers do not have to be reloaded during each function call. Currently, the devices with these features are the dsPIC33E
devices. Please refer to the device datasheet for further details and to verify whether or not these features are supported
with the device(s) in question. The new 4P4Z library is a derivative of the 3P3Z controller function. It has been re-designed to
minimize the control output target register update latency by taking advantage of the alternate working register set features.

a) Variable Declarations

Two arrays are created. One contains the values of the coefficients in X-space and the other the error and control history

33



14 SMPS Control Library Help

values in Y-space.

volatile int16_t controllerErrorControlHistory[8]__attribute__ ((space (ymemory), far));

volatile int16_t controllerABCoefficients[9]__attribute__ ((section (".xbss")));

b) Controller Initialization

Before the controller can be used, it has to be initialized. First, the coefficients array has to be initialized, second the error
and control history array needs to be cleared, and third the alternate working registers have to be initialized, in no particular
order.

The following instructions initialize the coefficients array (note that the coefficients are obtained via simulation tools) and are
performed in a c application file:

controllerABCoefficients[0] = CONVERTER_COMP_3P3Z_COEFF_BO;
controllerABCoefficients[1] = CONVERTER_COMP_3P3Z_COEFF_B1;
controllerABCoefficients[2] = CONVERTER_COMP_3P3Z_COEFF_B2;
controllerABCoefficients[3] = CONVERTER_COMP_3P3Z_COEFF_B3;
controllerABCoefficients[4] = CONVERTER_COMP_3P3Z_COEFF_B4;

controllerABCoefficients[5] = CONVERTER_COMP_3P3Z_COEFF_A1;
controllerABCoefficients[6] = CONVERTER_COMP_3P3Z_COEFF_A2;
controllerABCoefficients[7] = CONVERTER_COMP_3P3Z_COEFF_A3;
controllerABCoefficients[8] = CONVERTER_COMP_3P3Z_COEFF_A4;

Second, the error and control history array needs to be cleared. This can be done by creating a macro and making a function
call to it in the application SW.

#define MACRO_CLR_CONVERTERHISTORY() \
controllerErrorControlHistory[0] = 0; \
controllerErrorControlHistory[1] = 0; \
controllerErrorControlHistory[2] = 0; \
controllerErrorControlHistory[3] = 0; \
controllerErrorControlHistory[4] = 0; \
controllerErrorControlHistory[5] = 0; \
controllerErrorControlHistory[6] = 0; \

controllerErrorControlHistory[7] = O;

Third, the alternate working register set has to be initialized. Please see the Hardware Accelerated Function Register
Assignment section for further details. The CTXTSWP instruction is used to swap between the different register banks. To

34



14

SMPS Control Library Help

load a particular alternative working register context, this instruction must be called.

Included in this new library is the option by the user to modify the trigger location. A structure as been created for this
purpose. The three options

that are included are:

1. No change in trigger location.

2. 50 % On-Time trigger plus a delay if applicable to account for gate drive switching.
3. 50 % Off-Time trigger plus a delay if applicable to account for gate drive switching.

The user makes this selection in the application SW. Please refer to the library for the trigger option descriptions.

c¢) Calling the Controller
After the requirements from steps one and two have been met, the controller can be called using the following instructions:
mov _controllerControlReference, w0 ; The control reference has to be pre-loaded prior to each function call

call _SMPS_Controller4dP4ZUpdate_HW_Accel ; Make library function call

35



15

SMPS Control Library Help

Using the PID Controller

The digital implementation of a PID controller is a filter which generates a compensator characteristic considering the values
of the coefficients KA, KB, KC these coefficients will determine the converter's frequency response. These coefficients are
determined externally using simulation tools.

Filename Description:

SMPS_ControllerPID stands for Proportional Integral Derivative controller for switch mode power supply. This controller was
programmed to operate using Q15 numbers only. Therefore the coefficients have to be normalized to the range between -1
and +1 before implementation.

CONTROL LOOP DEFINITIONS

Transfer Function for a Digital PID Controller

The Linear Difference Equati on becones:

There are two types of controllers. A software based controller and an hardware accelerated based controller.

1. Software based library controller.

File Usage:

a) Variable Declarations

To use this controller in an application, one or more controller(s) can be defined as following:
- Include stdint.h for declaration in the 16-bit integer format (int16_t)

#include <stdint.h>

- Declare a PID Data Structure (e.g. controllerPID)

SMPS_PID_T controllerPID;

The SMPS_PID_T data structure contains a pointer to derived coefficients in X-space and pointer to controller and error
history in Y-space. So declare variables for the derived coefficients and the controller history samples, this can be done in
main.h

int16_t controllerPIDCoefficientABC[3] __attribute__ ((section (".xbss")));
int16_t controllerPIDControlHistory[1] __attribute__ ((section (".ybss")));

int16_t controllerPIDErrorHistory[3] __attribute__ ((section (".ybss")));

b) Controller Initialization

Before the controller can be used, it has to be initialized. First, the data structure has to be filled by copying the pointers to

36



15

SMPS Control Library Help
the coefficients, error and controller history arrays into the structure, in addition the physical clamping limits of the output
value need to be defined, for example:
controllerPID.abcCoefficients = &controllerPIDCoefficientABC[O]; // Set up pointer to derived coefficients
controllerPID.controlHistory = &controllerPIDControlHistory[0]; / Set up pointer to controller history
controllerPID.errorHistory = &controllerPIDErrorHistory[Q]; // Set up pointer to error history
controllerPID.preShift = (e.g. 5); // Normalization shift for error amplifier results in Q15 format
controllerPID.postShift = (e.g. 1); // Normalization shift for control loop results to peripheral
controllerPID.postScaler = (e.g. 2); // Normalization shift for control loop results to peripheral
controllerPID.minOutput = (e.g. min duty cycle); // Clamp value for minimum duty ratio
controllerPID.maxOutput = (e.g. max duty cycle); // Clamp value for maximum duty ratio
It's recommended to clean up the error-history and controller-history arrays before start-up using the following instruction:

SMPS_ControllerPIDInitialize(&controllerPID);

¢) Calling the Controller
As soon as the coefficients have been loaded into their arrays, the controller can be called using the following instruction:
SMPS_ControllerPIDUpdate(&controllerPID,&ADCBUFO0,controlReference,&PDC1)

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference
value, and to the pointer to the output register.

2. Hardware accelerated based library controller

Filename Description

smps_pid_dspic_v2.s stands for Switch Mode Power Supply PID controller. The 'v2' suffix is added to differentiate it from
the software based function above. The software based function can only be used with devices having the alternate working
register set special features. The alternate working registers are persistent, meaning they keep their values between function
calls. Because the registers are persistent, the registers do not have to be reloaded during each library function call.
Currently, the devices with these features are the dsPIC33E devices. Please refer to the device datasheet for further details
and to verify whether or not the device in question has these features implemented. The new PID library is a derivative of the
original PID software based function. It has been re-designed to minimize the control output target register update latency.
By comparing the two functions, it is shown that the the control output register update latency for the new function has been
reduced by approximately 24 % relative to the software based library.

a) Variable Declarations

Two arrays are created. One contains the values of the coefficients in X-space and the other the error and control history
values in Y-space.

volatile int16_t controllerPIDCoefficients[3]__attribute__ ((section (".xbss")));

volatile int16_t controllerPIDErrorHistory[3]__attribute__ ((space (ymemory), far));

b) Controller Initialization

Before the controller can be used, it has to be initialized. First, the coefficients array has to be initialized, second the error

37



15

SMPS Control Library Help

and control history array needs to be cleared, and third the alternate working registers have to be initialized, in no particular
order.

The following instructions initialize the coefficients array (note that the coefficients are obtained via simulation tools) and are
performed in a c application file:

controllerPIDCoefficients[0] = CONVERTER_COMP_PID_COEFF_Ka;
controllerPIDCoefficients[1] = CONVERTER_COMP_PID_COEFF_Kb;
controllerPIDCoefficients[2] = CONVERTER_COMP_PID_COEFF_Kc;

Second, the error and control history array needs to be cleared. This can be done by creating a macro and making a function
call to it in the application SW.

#define MACRO_CLR_BUCKHISTORY() \
controllerPIDErrorHistory[0] = 0; \
controllerPIDErrorHistory[1] = 0; \

controllerPIDErrorHistory[2] = O;

Third, the alternate working register set has to be initialized. Please see the Hardware Accelerated Function Register
Assignment section for further details. The CTXTSWP instruction is used to swap between the different register banks. To
load a particular alternative working register context, this instruction must be called.

Included in this new library is the option by the user to modify the trigger location. A structure as been created for this
purpose. The three options

that are included are:

1. No change in trigger location.

2. 50 % On-Time trigger plus a delay if applicable to account for gate drive switching.
3. 50 % Off-Time trigger plus a delay if applicable to account for gate drive switching.

The user makes this selection in the application SW. Please refer to the library for the trigger option descriptions.

c) Calling the Controller
After the requirements from steps one and two have been met, the controller can be called using the following instructions:
mov _controllerControlReference, w0 ; The control reference has to be pre-loaded prior to each function call

call _SMPS_ControllerPIDUpdate_ HW_Accel ; Make library function call

38



16.2 Files SMPS Control Library Help

Symbol Reference

Macros

The following table lists macros in this documentation.

Macros
Name Description
_SMPS_CONTROL_H Guards against multiple inclusion
_SMPS_CONTROL_H Macro
File

smps_control.h

Description

Guards against multiple inclusion

Files

The following table lists files in this documentation.

smps_control.h

Files
Name Description
smps_control.h This header file lists the interfaces used by the Switch Mode Power

Supply compensator library.

smps_control.h

This header file lists the interfaces used by the Switch Mode Power Supply compensator library.

Description

Company: Microchip Technology Inc. File Name: smps_control.h

SMPS Control (Compensator) library interface header file

This header file lists the type defines for structures used by the SMPS library. Library function definitions are also listed

along with information regarding the arguments of each library function.

39



16.2 Files SMPS Control Library Help smps_control.h
Functions
Name Description
@ SMPS_Controller2P2ZInitialize This function clears the SMPS_2P2Z T data structure arrays
“ SMPS_Controller2P2ZUpdate This function calls the 2 pole 2 zero compensator
@ SMPS_Controller2P2ZUpdate_ HW_Accel This function calls the 2 pole 2 zero compensator using the
alternate working register sets
@ SMPS_Controller3P3ZInitialize This function clears the SMPS_3P3Z_T data history structure arrays
A SMPS_Controller3P3ZUpdate This function calls the 3 pole 3 zero compensator
@ SMPS_Controller3P3ZUpdate_ HW_Accel This function calls the the 3 pole 3 zero compensator using the
alternate working register sets
@ SMPS_Controller4P4ZUpdate_HW_Accel This function calls the 4 pole 4 zero compensator using the
alternate working register sets
A SMPS_ControllerPIDInitialize This function clears the SMPS_PID_T data structure arrays
e SMPS_ControllerPIDUpdate This function calls the PID compensator
v SMPS_ControllerPIDUpdate_ HW_Accel |This function calls the PID compensator using the alternate working
register sets
Macros
Name Description
_SMPS_CONTROL_H Guards against multiple inclusion
Structures
Name Description
SMPS_2P27_ T Data type for the 2-pole 2-zero (2P2Z) controller
SMPS_3P3Z_T Data type for the 3-pole 3-zero (3P3Z) controller
SMPS_Controller_Options_T Optional data type for the controllers using the hardware accelerated
functions.
SMPS_PID_T Data type for the PID controller

40



17 SMPS Control Library Help

Index

_SMPS_CONTROL_H 39
_SMPS_CONTROL_H macro 39

Controller Initialization Functions 12

Controller Update Functions 8

Files 39

Hardware Accelerated Function Register Assignment 20

Introduction 7

Library Interface 8
Library Overview 17
Library Sections 17
Library Usage Model 15

Macros 39
Modifying the Library 18

Performance 14

Register Usage 22

Release Notes 5

SMPS Control Library 19
SMPS_2P2Z_T1

SMPS_2P2Z T structure 1

SMPS_3P3Z_T 2

SMPS_3P3Z_T structure 2

smps_control.h 39

SMPS_Controller_Options_T 3
SMPS_Controller_Options_T structure 3
SMPS_Controller2P2ZInitialize 12
SMPS_Controller2P2ZInitialize function 12
SMPS_Controller2P2ZUpdate 10
SMPS_Controller2P2ZUpdate function 10
SMPS_Controller2P2ZUpdate_ HW_Accel 8
SMPS_Controller2P2ZUpdate_ HW_Accel function 8
SMPS_Controller3P3ZlInitialize 13
SMPS_Controller3P3ZInitialize function 13
SMPS_Controller3P3ZUpdate 11
SMPS_Controller3P3ZUpdate function 11
SMPS_Controller3P3ZUpdate_ HW_Accel 9
SMPS_Controller3P3ZUpdate_ HW_Accel function 9
SMPS_Controller4P4ZUpdate_ HW_Accel 9
SMPS_Controller4P4zZUpdate_HW_Accel function 9
SMPS_ControllerPIDInitialize 13
SMPS_ControllerPIDInitialize function 13
SMPS_ControllerPIDUpdate 11
SMPS_ControllerPIDUpdate function 11
SMPS_ControllerPIDUpdate_ HW_Accel 10
SMPS_ControllerPIDUpdate_ HW_Accel function 10
SMPS_PID_ T2

SMPS_PID_T structure 2

Structs, Records, Enums 1

SW License Agreement 6

Using the 2P2Z Controller 25

Using the 3P3Z Controller 29

Using the 4P4Z Controller 33

Using the Alternate Working Register Features 21
Using the PID Controller 36



	SMPS Control Library Help
	Table of Contents
	Structs, Records, Enums
	SMPS_2P2Z_T Structure
	SMPS_3P3Z_T Structure
	SMPS_PID_T Structure
	SMPS_Controller_Options_T Structure

	Release Notes
	SW License Agreement
	Introduction
	Library Interface
	Controller Update Functions
	SMPS_Controller2P2ZUpdate_HW_Accel Function
	SMPS_Controller3P3ZUpdate_HW_Accel Function
	SMPS_Controller4P4ZUpdate_HW_Accel Function
	SMPS_ControllerPIDUpdate_HW_Accel Function
	SMPS_Controller2P2ZUpdate Function
	SMPS_Controller3P3ZUpdate Function
	SMPS_ControllerPIDUpdate Function

	Controller Initialization Functions
	SMPS_Controller2P2ZInitialize Function
	SMPS_Controller3P3ZInitialize Function
	SMPS_ControllerPIDInitialize Function


	Performance
	Library Usage Model
	Library Overview
	Library Sections

	Modifying the Library
	SMPS Control Library
	Hardware Accelerated Function Register Assignment
	Using the Alternate Working Register Features
	Register Usage

	Using the 2P2Z Controller
	Using the 3P3Z Controller
	Using the 4P4Z Controller
	Using the PID Controller
	Symbol Reference
	Macros
	_SMPS_CONTROL_H Macro

	Files
	smps_control.h


	Index




