
 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 1

Introduction
This document is the user guide for the implementation of the PRIME 1.3 Stack for Base Node developed by
Microchip.

The mechanisms and functionalities of the PRIME specification are the basis for the entire PRIME FW stack
implementation. Therefore, it is highly recommended to use it as a reference. Basic concepts that are
introduced by the PRIME specification are assumed to be known within this document.

Features
• Implementation of PRIME 1.3 stack for Base Node
• Support of several microcontroller families including SAME70 and PIC32CXMTx
• Support of PLC modems including PL360 and PL460
• This document applies to PRIME FW stack version 1.3.10

 PRIME 1.3 FW Stack for Base Node
 SAME70, PIC32CXMTx, PL360, PL460

 SAME70, PIC32CXMTx, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 2

Table of Contents
Introduction...1

Features... 1

1. Overview...4

1.1. General Architecture..4
1.2. Event-Driven Operation...5

2. Understanding the Firmware Package... 6

2.1. PRIME Firmware Package Contents... 6

3. PRIME FW Stack... 10

3.1. Introduction..10

4. Managing the PRIME FW Stack.. 13

4.1. Hardware Resources Usage..13
4.2. PRIME Interfaces.. 14
4.3. PRIME Integration Requirements...18
4.4. Main Function Structure... 19
4.5. Configuration Parameters.. 22

5. Data Exchange... 29

5.1. Null SSCS... 29
5.2. IEC 61334-4-32... 29
5.3. Automatic Repeat Request (ARQ).. 29

6. PRIME Management Plane...33

7. Base Management.. 35

7.1. Overview... 35
7.2. Firmware Upgrade Protocol... 35
7.3. Network Events.. 41
7.4. API for PRIME Profile in Management Plane.. 41
7.5. Whitelist Management.. 41

8. Toolchain.. 43

8.1. General Prerequisites..43
8.2. Building the Applications.. 43

9. Supported Platforms.. 44

9.1. Supported MCU Families.. 44
9.2. Supported Devices...44
9.3. Supported Boards..44

10. PICS... 45

10.1. Major Roles for Devices Compliant with PRIME... 45

11. API of PHY and PAL Layers... 47

11.1. PLC PHY SAP... 47

 SAME70, PIC32CXMTx, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 3

11.2. Serial PHY SAP.. 47
11.3. PAL SAP... 47
11.4. PAL Primitives... 48

12. API of PRIME FW Stack.. 50

12.1. MAC Primitives... 50
12.2. IEC 61334-4-32 Primitives... 53
12.3. Base Management Primitives...54
12.4. PIB Objects Specification and Access.. 56

13. Example Applications..62

13.1. PRIME Base Modem.. 62
13.2. Base Slave Modem...62
13.3. PHY Applications.. 63

14. Serialization with Embedded USI.. 65

14.1. USI Frame Format.. 65
14.2. USI PRIME Protocols.. 66
14.3. Embedded USI Configuration...68

15. Auxiliary Nodes Connection in Multi-transformer Substations...71

16. Abbreviations...73

17. References..75

18. Microchip Revision History...76

18.1. Revision C - 03/2024.. 76
18.2. Revision B - 02/2024.. 76
18.3. Rev A - 07/2020...77
18.4. Old Revision History.. 78

Microchip Information... 80

The Microchip Website... 80
Product Change Notification Service.. 80
Customer Support...80
Microchip Devices Code Protection Feature.. 80
Legal Notice..80
Trademarks.. 81
Quality Management System...82
Worldwide Sales and Service... 83

 SAME70, PIC32CXMTx, PL360, PL460
Overview

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 4

1. Overview
1.1 General Architecture

The PRIME FW stack general architecture follows the suggested separation of the network stack into
logical layers, as described in the PRIME specification. Besides the core stack containing the protocol
implementation, the PRIME general architecture contains additional layers implementing shared
services (for example, serial interfaces, vendor specific configurations), a Hardware Abstraction
Layer (HAL) and user application examples.

The general architecture of a user application including the PRIME FW stack is shown in the next
figure. As it can be seen, the PRIME FW stack is part of the Base Node architecture.

Figure 1-1. Block Diagram of a DCU General Architecture with the PRIME FW Stack

HARDWARE

Communication
Link

Base Node

Embedded Communication
Interface

PRIME API

PRIME FW Stack

HAL

HAL API

Communication
Interface

DCU User Application

User Application

Microchip provides an example project of the PRIME FW stack with a user application in the
Base Node. Structure, requirements and features of the user application are described in chapter
Managing the PRIME FW Stack. The API of the PRIME FW stack is described in chapter API of
PRIME FW Stack. In addition, Microchip provides different user application examples to ease user
development (see chapter Example Applications).

1.1.1 User Application
The user application is the main application in the Base Node system and therefore it must not
be confused with the DCU user application. It is responsible for managing the hardware and the
external resources and for setting up and running the whole system. The PRIME FW stack provides
connectivity to the user application through the PRIME API (see chapter API of PRIME FW Stack),

 SAME70, PIC32CXMTx, PL360, PL460
Overview

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 5

whereas the user application communicates with the main DCU user application through a serial
link, Ethernet, etc.

The user application can configure the PRIME FW stack by means of configuration files and PIB
attributes.

Important: The HAL is also part of the user application in the Base Node.
The pointer to the HAL functions must be passed to the PRIME FW stack at
initialization. Users are also responsible for initializing, starting and running the
HAL.

1.1.2 PRIME FW Stack
The PRIME firmware stack described in this document constitutes Microchip's implementation of a
PRIME 1.3 Base Node.

This stack interacts with the user application through the PRIME API (see chapter API of PRIME FW
Stack), with peripherals and specific software services through the Hardware Abstraction Layer (see
chapter HAL API) and with the PL360 Host Controller component (used to communicate with the PLC
PHY layer implemented in the PL360 device of the PL360/PL460 platform).

1.2 Event-Driven Operation
Microchip implementation of the PRIME FW stack is event-driven. Every time an API function is
called, an asynchronous notification message is received after the function task is completed. This
notification is delivered by means of the callback associated to the called function. Programmatically,
the user application provides the underlying layers with a function pointer, which the layers below
call after the request is serviced.

In such an event-driven system, user code related to PRIME functions executes in a callback that
must be registered with the PRIME FW stack by the user application. Thus, the user application
functions related to PRIME run entirely in stack-invoked callbacks. More information about callbacks
in the PRIME general architecture can be found in chapter PRIME API.

 SAME70, PIC32CXMTx, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 6

2. Understanding the Firmware Package
The following chapter describes the content of the PRIME firmware package, required common
modules and drivers, and explains some general guidelines about how the various software layers
are structured.

2.1 PRIME Firmware Package Contents
Microchip provides PRIME packages for every platform that supports PRIME. These packages include
PRIME applications that communicate using the PRIME network and applications that only make
use of the PRIME PHY layer, so that users can easily access all available user applications and their
related files. Provided example applications are described in chapter Example Applications.

Users are responsible for configuring and compiling the applications (see chapter Toolchain) and
assigning memory resources.

2.1.1 PRIME FW Stack Library
Microchip provides several PRIME FW stack libraries for the Base Node. All of them are fully
functional and the only difference resides in the number of supported nodes and the included
PHY layers.

• Extra small library, that supports 25 nodes with a PLC PHY layer, is a limited library, provided for
evaluation purposes only, and shall not be implemented in a final commercial product.

• Small library, that supports 150 nodes with PLC PHY layer, is intended for a hardware design with
internal memory.

• Medium library, that supports 300 nodes with PLC PHY layer.
• Large library, that supports 1500 nodes with PLC PHY layer, is intended for a hardware design

with external memory in the Xplained platform.
• Extra large library, that supports 2,000 nodes, is intended for a hardware design with external

memory. This library includes the PLC PHY layer and the Serial PHY layer to support the
connection of auxiliary nodes. For additional information on functionality, refer to the Chapter
Auxiliary Nodes Connection in Multi-transformer Substations.

Additionally, the PRIME FW stack library for a Service Node can be used to support the connection of
auxiliary nodes by simply enabling the Serial PHY layer so that the node becomes a Base Slave Node.

Table 2-1. PRIME FW Stack Libraries and Platforms
Board Device Node Number Library

PL360BN (exernal
memory)

SAME70Q21 2000 libsamM7-prime13-bn_xl

SAME70 Xplained SAME70Q21 1500 libsamM7-prime14-bn_l

PIC32CXMTSH-DB PIC32CX2051MTSH128 300 libsamM4-prime14-bn_m

PIC32CXMTG-EK PIC32CX2051MTG128 300 libsamM4-prime14-bn_m

PL360BN (internal
memory)

SAME70Q21 150 libsamM7-prime13-bn_s

SAMG55 Xplained (Note
1)

SAMG55J19 25 libsamM4-prime13-bn_xs

PL360BN (Note 2) SAME70Q21 - libsamM4-prime13-sn-iar

Notes: 
1. For evaluation purposes only.
2. For the Base Slave Node only.

 SAME70, PIC32CXMTx, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 7

2.1.2 Project Examples
Every project example contains the corresponding PRIME FW stack library, the PL360 Host
Controller, the user application example, and the configuration files described in chapter
Configuration Parameters.

Important: The Serial PHY layer is only available in examples that use the full
library and in the Base Node Slave.

This project can be reused whenever a new PRIME library is available, however, it is necessary to
exchange the library file in the project and update the PRIME firmware version in the corresponding
configuration file. For additional information, refer to the Chapter Firmware Version Information.

Microchip provides a project example, called Modem, which shows how to manage the PRIME FW
stack from an external application by serializing the PRIME API. See chapter Example Applications for
detailed information about the operation of this example.

The Modem project can be found in the package following this path:

..\thirdparty\prime_ng\apps\prime_1_3_base_modem\same70q21_pl360bn\iar\apps_p
rime_1_3_base_modem.eww
The structure of this project in IAR Embedded Workbench® is shown in the following figure. Files
and folders required to develop a user application over the PRIME FW stack are marked with red
asterisks.

Figure 2-1. Folder Structure of the Modem Example Project

 SAME70, PIC32CXMTx, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 8

*

* **

*
*

**
***** *

Important: Users must not modify any of the provided files except for the
configuration files, the HAL and the board definition (in folder \sam\boards\) in
order to adapt them to their hardware design. Users are free to use the example
applications as templates to create new user applications. Users can also develop
their own applications in the apps directory.

Microchip also provides a Modem project for the Base Slave Node to connect auxiliary nodes (see
chapter Auxiliary Nodes Connection in Multi-transformer Substations. The Base Slave Node project
can be found in the package following this path:

..\thirdparty\prime_ng\apps\prime_1_3_base_slave_modem\same70q21_pl360bn\iar\
apps_prime_1_3_base_slave_modem.eww

 SAME70, PIC32CXMTx, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 9

Additionally, Microchip also provides several PHY applications that show to manage the PRIME PHY
layer exclusively. See chapter Example Applications for more information.

2.1.3 PL360 Firmware
For the PL360/PL460 platform, Microchip provides a binary file to be loaded into the PL360 device,
where the PLC PHY layer of the PRIME FW stack runs. Details about loading the PL360 firmware can
be found in the "PL360 Host Controller User Guide".

2.1.4 USI Host Example
Microchip provides the required files to develop the host controller side of the serialization of the
PRIME FW stack. These files are included in the USI (Universal Serial Interface) Host. Details about
usage of serialization can be found in chapter Example Applications. For the USI Host, see the USI
Host User Guide.

 SAME70, PIC32CXMTx, PL360, PL460
PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 10

3. PRIME FW Stack
3.1 Introduction

The PRIME Firmware Stack follows a layered approach based on the PRIME specification. The
following figure shows the stack architecture.

Figure 3-1. Block Diagram of the PRIME FW Stack Architecture

PRIME API

CL MNGP

PRIME Stack

MAC

PAL

PHY

HAL

USER
APPLICATION

PRIME API

PRIME FW Stack

HAL

HARDWARE

HAL API

BASE MNG

Microchip provides a library which contains the MAC layer, the Convergence Layer and the
Management Plane as described in the PRIME specification. It also includes a proprietary Base
Management module to handle the interface between the Base Node and the main DCU user
application and enhance it with additional functionalities. The PHY is not the PHY layer as such but
the host controller component.

Note that the PHY and PAL layer boxes in the above diagram can be split into more than one PHY
and PAL layers depending on the application. See chapter 3.1.2. Physical Abstraction Layer (PAL).

It is important to note that the only entry point to the PRIME FW stack from the user application
is through the PRIME API, which contains the interfaces defined in the PRIME specification as well
as stack control functions. The API of the PRIME FW stack is described in chapter PRIME API and
in chapter API of PRIME FW Stack. The PRIME FW stack accesses the hardware through the user
application with the HAL API described in chapter HAL API.

Additionally, Microchip provides the source code of the PL360 Host Controller that manages the
interface of the PLC PHY layer in the PL360 device, the Serial PHY layer and the PAL layer.

The PHY layer, the MAC layer and the Convergence Layer have all their own version numbers, which
can be accessed through the corresponding vendor specific PIB attributes PIB_PHY_SW_VERSION
(0x8080), PIB_MAC_INTERNAL_SW_VERSION (0x8126) and PIB_CL_INTERNAL_SW_VERSION (0x8201).
These PIB attributes are described in chapter PIB Objects Specification and Access.

The PRIME FW stack modules from the bottom up are briefly described in the following sections.
Basic concepts that are discussed in the PRIME specification are assumed to be known. The

 SAME70, PIC32CXMTx, PL360, PL460
PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 11

conformance statement about the current implementation of the PRIME protocol is found in chapter
Protocol Implementation Conformance Statement.

3.1.1 Physical Layer (PHY)
The Physical Layer (PHY) handles the transmission and reception of MPDUs at the physical level
between neighbor nodes.

On the transmission side, the PHY layer receives its inputs from the MAC layer through the PAL. At
the end of transmission, the data is passed to the physical medium via the HAL.

On the reception side, the PHY layer receives its inputs from the physical medium via the HAL. At the
end of reception path, the data flows to the MAC layer through the PAL.

By providing an interface through the PAL, the MAC layer is then independent from the underlying
modem. Besides that, the PHY interface can be used by basic applications without requiring the
MAC layer (see a PHY application example in chapter PHY Applications). The API of the PHY layer is
described in chapter API of PHY and PAL Layers.

The PHY layer can be used for PLC communications as well as for serial communications. An
example of the Serial PHY layer can be found in chapter Auxiliary Nodes Connection in Multi-
transformer Substations). The selection of the right PHY layer is performed by the PAL according to
the indications given by the MAC layer.

The PHY layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the PHY layer are stored in the PHY PIB storage and the PHY layer
provides an interface to access and update their values through the PHY Layer Management Entity
(PLME). The PRIME FW stack supports all mandatory PHY PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-10).

3.1.2 Physical Abstraction Layer (PAL)
The Physical Abstraction Layer (PAL) provides an interface between the PHY layer and the MAC layer,
so that the MAC layer is independent from the PHY layer and the underlying modem.

The PAL is based on the PHY primitives for data and control planes described in the PRIME
specification, although the current implementation offers enhanced versions of some of them
to take a full advantage of the features available in the PHY layer. These features improve the
operation of the MAC layer.

A description of the PHY data and management primitives available in the PAL as well as the
extended features can be found in chapter API of PHY and PAL Layers.

Taking into account that there could be several PHY layers, such as the PLC PHY and the Serial PHY,
the MPAL (MultiPhy Abstraction Layer) provides a link between the PAL interface and the selected
PHY layer. The MPAL selects the correct PHY layer by means of the channel indicated by the MAC
layer.

 SAME70, PIC32CXMTx, PL360, PL460
PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 12

Figure 3-2. Block Diagram of the PAL

PAL
MPAL

PLC PHY

PLC PAL Serial PAL

Serial PHY

3.1.3 Medium Access Control Layer (MAC)
The Medium Access Control (MAC) layer provides core MAC functionalities of system access,
bandwidth allocation, connection establishment/maintenance and topology resolution according to
the PRIME specification.

The MAC layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the MAC layer are stored in the MAC PIB storage and the MAC layer
provides an interface to access and update their values through the MAC Layer Management Entity
(MLME). The PRIME FW stack supports all mandatory MAC PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-11).

3.1.4 Convergence Layer (CL)
The Convergence Layer (CL) associates the data received from a user application to its proper MAC
connection. It is composed by a common part to segment and reassemble packets and one or more
service specific sublayers (e.g. IEC 61334-4-32). Information about data exchange using the CL can
be found in chapter Data Exchange.

3.1.5 Management Plane (MNGP)
The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade inside the stack. More information about this layer can be found in
chapter PRIME Node Management Plane.

The PRIME certification conformance tests require accessing the PIB attributes and this is achieved
via the Management Plane.

3.1.6 Base Management (Base MNG)
The Base Management module is a Microchip proprietary extension over the PRIME specification
to increase the functionalities of a Base Node. The PRIME specification does not always define
the interfaces between the Base Node and the DCU user application, so new interfaces must be
implemented as required.

The Base Management handles the Firmware Upgrade Protocol interface and access to the PRIME
Profile. It also notifies about network events, such as node registrations and unregistrations,
and manages the whitelist. More information about this module can be found in chapter Base
Management.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 13

4. Managing the PRIME FW Stack
The purpose of this section is to indicate requirements and provide recommendations for
integrating the PRIME FW stack into the user application.

The following issues must be taken into account:

• Hardware requirements
• Interfaces with the PRIME FW stack (PRIME API and HAL API)
• Integration requirements
• Main function structure

4.1 Hardware Resources Usage
MCU hardware resources include microcontroller peripherals, buses, timers, IRQ lines, I/O registers,
and so on. Since many of these interfaces have corresponding APIs in the HAL, users are
encouraged to use the high-level APIs instead of the low-level register interfaces to ensure that the
resource usage does not overlap with that of the PRIME FW stack. The hardware resources reserved
for internal use by the PRIME FW stack are the following:

• Mandatory timers: The 1µs service requires one timer TCx to have a common timer reference
between the PHY and the MAC layer.

• Exceptional timers: During certification, when a UART or USART is required (see Chapter Serial
Communication Profile of PRIME Management Plane), a timer TCx is used.

• SPI: The PLC PHY layer requires one SPI port.
• DMA: DMA0 is used.
• Interrupts: The PLC PHY layer uses a GPIO as PLC External Interrupt pin (EINT).
• External memory in SAME70 (for full library): PMC and SDRAM.

Important: Hardware resources reserved for use by the PRIME FW stack must
not be accessed by the user application.

4.1.1 Data Storage
The PRIME FW stack requires storage of data in a non-volatile storage area that must be provided by
users. Non-volatile data are given below:
• The MAC address (see chapter MAC Address)
• The BN parameters (see chapter Base Node Parameters)
• The PRIME mode (see chapter PRIME Mode)
• The PHY parameters (see chapter Communication Channel and other PHY Parameters)

In addition, the PRIME FW stack imposes memory requirements to the user application in the Base
Node regarding the memory. In order to upgrade a Service Node, the corresponding firmware image
must be stored in RAM or Flash memory.

Important: The location and the size of the reserved memory area for the SN
firmware image to upgrade must be set up by the users according to their system
and requirements.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 14

The figure below illustrates the memory allocation configured in the provided application project
examples. The memory addresses can be configured in the conf_app_example.h file.

 /* Define PRIME size in flash. Could be movable */
 #define PRIME_MAX_SIZE_SN (0x00060000u)
 #define PRIME_MAX_SIZE_BN (0x00040000u)
 #define PRIME_FLASH_LOCATION_SN (I_FLASH + I_FLASH_SIZE - PRIME_MAX_SIZE_SN)

Figure 4-1. Flash Example for PRIME

User App

I_FLASH

MAX_SIZE_BN PRIME FW Stack

SN FW imageMAX_SIZE_SN

I_
F

LA
S

H
_S

IZ
E

The usage of external memory implies a correct initialization of variables. This means that variables
used before the external memory is initialized must be initialized before. Since the projects provided
by Microchip initialize the external memory at program initialization and not at start-up, variables
like the heap are initialized in the linker script of each project.

4.2 PRIME Interfaces
As shown in Figure 1-1, the PRIME FW stack has two interfaces: one towards the user application and
another one towards the HAL.

4.2.1 PRIME API
The PRIME API is the only interface that the user application must use to interact with the PRIME FW
stack.

The PRIME API is based on a request/confirm mechanism, which is a particular instance of an event-
driven programming model. A request is an asynchronous call to the underlying stack to perform
some action on behalf of the user application; a confirm is the callback that executes when that
action has been completed and the result of that action is available.

Apart from request/confirm pairs, there are cases when the application needs to be notified of an
external event that is not a reply to any specific request. For this, there are a number of user-defined
callbacks named indications that are invoked by the stack asynchronously. Note that during the
execution of an indication callback, it is not permitted to invoke any request as this could lead to the
generation of a callback chain.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 15

Important: Callback functions must be registered in the PRIME FW stack by the
user application upon initialization (see chapter Main Function Structure).

Figure 4-2. API Calls in Event-Driven Programming

APP PRIME

mac_establish_request

mac_establish_confirm

APP PRIME

mac_establish_indication

mac_establish_response

The confirm callback can be divided in two types:

• Asynchronous: For most operations, request execution takes a considerable amount of time and
a confirm callback function can be called seconds after the request was issued. During this time,
the application must postpone other requests of the same type until the first request is completed.
(i.e.: previous confirm has been received). Furthermore, it is not recommended to execute any
other action after invoking the request. Considering that the PRIME FW stack always replies with a
confirm, the application must wait for the corresponding confirm before performing a new request
of the same type

• Immediate: For PLME and MLME operations, the confirm callback function is called right away
from the request during the same execution cycle, i.e. it acts as a normal function call and it
is thus possible to perform other actions after the request. Note that for any operation (not
only PLME or MLME), when the result is not successful, the confirm callback function is called
immediately instead of asynchronously

The complete PRIME API structure is located relatively to the address indicated by the prime_api
pointer. It is defined as a set of macros in the header file prime_api.h. The function parameters
are defined in several defs header files depending on the layer the function is related to. The user
application can simply call these functions without modifying them. For more information, see
chapter API of PRIME FW Stack.

4.2.1.1 Request/Confirm Example
Consider the establishment of a MAC connection from a node. The user application needs to call the
following function:

prime_cl_null_establish_request(uint8_t *puc_eui48, uint8_t uc_type, uint8_t *puc_data,
uint16_t us_data_len, uint8_t uc_arq, uint8_t uc_cfbytes);

Previously, it has registered the callback to the corresponding confirm (see chapter PRIME FW Stack
Initialization), which must be a function of the following type:

typedef void (*mac_establish_cfm_cb_t)(uint16_t us_con_handle, mac_establish_confirm_result_t
uc_result, uint8_t *puc_eui48, uint8_t uc_type, uint8_t *puc_data, uint16_t us_data_len);

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 16

The example illustrates a particular instance of using a request/confirm mechanism but all other
uses follow the same approach.

4.2.1.2 Indication/Response Example
If the user application wants to be informed about the establishment of a MAC connection in
the node, it must register a callback to the corresponding indication (see chapter PRIME Callback
Functions), which must be a function of the following type:

typedef void (*mac_establish_ind_cb_t)(uint16_t us_con_handle, uint8_t *puc_eui48, uint8_t
uc_type, uint8_t *puc_data, uint16_t us_data_len, uint8_t uc_cfbytes);

Indications might or might not need a response. In this example, the callback code for the indication
must include a call to the following function:

prime_cl_null_establish_response(uint16_t us_con_handle, mac_establish_response_answer_t
uc_answer, uint8_t *puc_data, uint16_t us_data_len);

The example illustrates a particular instance of using an indication mechanism but all other uses
follow the same approach.

4.2.2 HAL API
Apart from the PRIME FW stack, Microchip provides an open code of the Hardware Abstraction Layer
(HAL). The HAL functionalities are used both by the user application as well as by the PRIME FW
stack.

The HAL can be allocated at any address within the region of the user application, which must
keep a pointer to the HAL API functions. This pointer must be passed to the PRIME FW stack at
initialization.

The API of the HAL, defined in header file hal.h, must not be changed under any
circumstances.

Important: Note that the provided HAL source code is only an implementation
example. Users should modify the function code according to their hardware and
specifications.

The HAL contains all platform (i.e., MCU and board) specific functionality (required by the PRIME FW
stack) and provides interfaces to the upper modules. Therefore, all upper modules are independent
from the underlying platform.

The HAL provides interfaces to several components, such as the PLC access functionality through
SPI or access to persistent storage (for example, serial Flash) among others. These components are
implemented as software blocks which interact with the hardware.

The HAL also implements software components that may or may not interact with the hardware.
For example, the CRC component or the serial interface to handle the different serial interfaces
described in the PRIME specification through one or more UART ports. The Universal Serial Interface
(USI) is an example of implementation of this serial interface. For additional information about
services in the USI, refer to the Application Note "PLC Universal Serial Interface".

The following table shows all HAL functions used by the PRIME FW stack, the file where they are
implemented and a brief description of their usage. Note that there might be other functions not
described here but available in hal.h. Those functions are irrelevant in this context.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 17

Table 4-1. HAL API
Function File Description

hal_restart_system hal.c Restart the complete system.

hal_pcrc_calc hal_pcrc.c Calculate the CRC of the input buffer according to the PRIME specification.

hal_pcrc_config_sna hal_pcrc.c Configure the SNA for the CRC.

hal_fu_data_read hal_fu.c Read data from memory during FU.

hal_fu_data_write hal_fu.c Write data in memory during FU.

hal_fu_start hal_fu.c Initialize and unlock memory for a FU process.

hal_fu_crc_calculate hal_fu.c Calculate the CRC of the received file.

hal_fu_crc_set_callback hal_fu.c Specify the callback function to provide the calculated CRC.

hal_plc_init1 hal_plc.c Initialize the PLC interface.

hal_plc_reset1 hal_plc.c Reset the internal PLC modem.

hal_plc_set_handler1 hal_plc.c Specify the callback function for the PLC interrupt.

hal_plc_tx_signal hal_plc.c Indicate a transmission event.

hal_plc_rx_signal hal_plc.c Indicate a reception event.

hal_get_config_info2 hal_cfg.c Read configuration parameters. This function disables all interrupts
when accessing the User Signature.

hal_set_config_info2 hal_cfg.c Write configuration parameters. This function disables all interrupts
when accessing the User Signature.

hal_usi_set_callback hal_usi.c Specify the callback function for a given protocol.

hal_usi_send_cmd hal_usi.c Transmit data through the serial interface.

hal_trng_init hal_trng.c Initialize the true random number generator.

hal_trng_read hal_trng.c Read information from the true random number generator.

hal_debug_report hal.c Report a debug error.

hal_plc_send_boot_cmd3 hal_plc.c Send a boot command. This function disables all interrupts.
hal_plc_send_wrrd_cmd3 hal_plc.c Send a write/read command. This function disables all interrupts.
hal_plc_enable_interrupt3 hal_plc.c Enable or disable the PLC interrupt.

hal_plc_delay3 hal_plc.c Delay execution.

hal_pib_get_request hal_pib.c Get user specific PIB value.

hal_pib_get_request_set_callback hal_pib.c Specify the callback function to get a user specific PIB value.

hal_pib_set_request hal_pib.c Set user specific PIB value.

hal_pib_set_request_set_callback hal_pib.c Specify the callback function to return the result of setting a user specific
PIB value.

hal_plc_set_stby_mode3 hal_plc.c Set the stand-by mode.

hal_plc_get_thermal_warning3 hal_plc.c Check if there is a thermal warning active.

timer_1us_get timer_1us.c Get the current time in microseconds.

timer_1us_set_int timer_1us.c Set an interrupt for the specified time in microseconds.

timer_1us_cancel_int timer_1us.c Cancel a programmed time interrupt.

timer_1us_enable_interrupt timer_1us.c Enable/disable the TC interrupt.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 18

Notes: 
1.

Microchip does not recommend changing these functions as they are related
to the PLC interrupt.

2.

Important: The Microchip implementation of these functions uses the User
Signature in the MCU to store some configuration parameters. This is just an
example. Users can store such parameters in any non-volatile storage area of
their choice and then they must update these functions accordingly.

3. These functions are only available in the PL360/PL460 platform.

4.3 PRIME Integration Requirements
The goal of this section is to provide recommendations, requirements and limitations to be taken
into account in the application development with the PRIME FW stack. Users are strongly advised to
follow these guidelines.

Failure to comply with the requirements may result in an anomalous and/or
unexpected behavior of the PRIME node.

4.3.1 Task Manager, Priorities and Preemption
A major aspect of application development is managing the control flow and ensuring that different
parts of the application do not interfere with each other's execution. The PRIME FW stack can be
integrated in the user application like any other task.

Important: The PRIME task must have at least the same or a higher priority than
any other user task.

If several user tasks are defined, then it is highly recommended to configure the user tasks with a
lower priority than the PRIME task. The reason to do this is to ensure that the PRIME task is executed
as soon as the system tick arrives, in the defined timer rate. This synchronization is critical for the
PRIME FW stack.

Important: Call the PRIME FW stack process every 10ms as a maximum period,
ideally every 5ms.

4.3.2 Other Coding Requirements
The following requirements must be taken into account for a proper system performance:

• Avoid invoking a request function inside a callback function. This increases the call stack size
and may provoke endless loops. For example, do not request to send data in the same callback
function that handles the confirm of a data request.

• Avoid invoking a request to a node if the previous confirm has not been received yet, if the
connection is being closed or if there has been a reset.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 19

• Set to NULL all unused callback function pointers:
 memset(&mac_cbs, NULL, sizeof(mac_cbs));
 memset(&cl432_cbs, NULL, sizeof(cl432_cbs));
 memset(&bmng_cbs, NULL, sizeof(bmng_cbs));

• Provide the callback function pointers again after an MLME_RESET.confirm primitive.
• Do not modify critical regions in the HAL. The PRIME process already disables any interrupts that

could affect its operation (all interrupts with priority 2 and higher). When the PRIME process has
finished, disabled interrupts are enabled again.

• Do not modify the functions and parameters in the PRIME API and the HAL API.
• Modify the available user configuration files according to your needs.
• Give a MAC address to the board. If the PRIME FW stack cannot find a MAC address, it enters into

MTP mode.
• Initialize and refresh the watchdog to avoid hangings of any application during execution.
• Use the supply monitor controller, if available in the board, to avoid malfunctions.
• Do not use size optimization to avoid malfunctions.

4.4 Main Function Structure
Every user application contains a main function, which is, as usual, the starting point of the
application. A basic main function is presented below.

Example of main function
 int main(void)
 {
 /* Function to setup clocking. */
 sysclk_init();

 /* Ensure all priority bits are assigned as preemption priority bits.*/
 NVIC_SetPriorityGrouping(__NVIC_PRIO_BITS);

 /* Library function to setup for the evaluation kit being used.*/
 board_init();

 /* Configure external 32khz clock if needed (depends on board) */
 pmc_switch_sclk_to_32kxtal(0);

 /* Enable Sleep manager */
 sleepmgr_init();

 /* Initialize SDRAM controller */
 _prv_setup_sdram();

 /* Configure supply monitor */
 hal_setup_supply_monitor(CONTINUOUS_MONITORING, THRESHOLD_3V04);

 /* Initialize flash: 6 wait states for flash writing. */
 flash_init(FLASH_ACCESS_MODE_128, CHIP_FLASH_WRITE_WAIT_STATE);

 /* Set up watchdog */
 hal_watchdog_setup(WATCHDOG_TIME);

 /* Configure console */
 _configure_dbg_console();
 puts(STRING_HEADER);

 /* Initialize PRIME stack */
 prime_init((hal_api_t *)&hal_api);

 /* Init HAL PLC signalling */
 hal_plc_set_tx_signalling_handler(_blink_plc_tx_activity_led);
 hal_plc_set_rx_signalling_handler(_blink_plc_rx_activity_led);

 /* Init user application (callbacks to PRIME) */
 app_init();

 while (1) {

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 20

 /* Restart watchdog */
 wdt_restart(WDT);

 /* Process HAL layer */
 hal_process();

 /* Process PRIME stack */
 prime_process();

 /* Process user application */
 app_process();
 }
 }

A developer can add additional code into the body of the function, but the main function should
always follow the structure provided:

1. Invoke the prime_init() function to initialize the PRIME FW stack

2. Invoke the prime_process() function in the infinite loop to pass control to the task manager

The task manager begins invoking the task handlers of each layer in order of priority (from
highest to lowest), eventually invoking the application task handler. Following the initial call to the
application task handler, the control flow passes between the PRIME FW stack and the callbacks, as
shown in Figure 4-2.

Important: The pointer to the HAL functions must be passed to the PRIME
FW stack at initialization. Users are also responsible for initializing, starting and
running the HAL.

Important: In order to avoid hangings of any application during execution, it is
recommended to initialize and refresh the watchdog. This is a driver available in
any Microchip board.

In order to start using the PRIME FW stack, it is necessary to initialize different parameters and to
call the corresponding initialization functions. These actions must follow the order indicated in the
next sections.

4.4.1 PLC Signaling (optional)
If users want to be notified about PLC transmission and reception events, the corresponding
callback functions must be provided to the HAL.

4.4.1.1 Providing the Pointer to the Transmission Event Callback Function
To set up the callback for transmission events, the following function must be used:

void hal_plc_set_tx_signalling_handler(void (*p_handler)(void));

Parameters:

• p_handler: Pointer address to the callback function

4.4.1.2 Providing the Pointer to the Reception Event Callback Function
To set up the callback for reception events, the following function must be used:

void hal_plc_set_rx_signalling_handler(void (*p_handler)(void));

Parameters:

• p_handler: Pointer address to the callback function

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 21

4.4.2 PRIME FW Stack Initialization
After setting up pointers, the user application can call the initialization function of the PRIME FW
stack. Additionally, since the HAL is part of the application, the application must provide the HAL
pointer to the PRIME FW stack at this point. The function used for this purpose is the following:

prime_init(void *px_hal_api);

Parameters:

• px_hal_api: Pointer to the HAL API

Important: This function initializes the complete PRIME FW stack, from the PHY
layer to the CL shown in Block Diagram of the PRIME FW Stack Architecture.

4.4.3 PRIME Callback Functions
When the user application is initialized, it must set up required callback function pointers in order to
be informed about confirm and indication primitives from the MAC layer and the CL. This must be
performed after the PRIME FW stack has been initialized. The following functions are used:

void prime_cl_null_set_callbacks(mac_set_callbacks_t *mac_cbs);

Parameters:

• mac_cbs: Pointer to the callback structure of the MAC layer (see chapter Callback Functions in the
MAC Layer for details).

void prime_cl_432_set_callbacks(cl_432_set_callbacks_t *cl432_cbs);

Parameters:

• cl432_cbs: Pointer to the callback structure of the 4.32 SSCS (see chapter IEC 61334-4-32
Primitives for details).

void bmng_set_callbacks(bmng_callbacks_t *px_base_mng_cbs);

Parameters:

• px_base_mng_cbs: Pointer to the callback structure of the Base Management (see chapter Callback
Functions in the Base Management for details).

This is an example of callback function pointer set-up:

 mac_callbacks_t mac_cbs;
 cl_432_callbacks_t cl432_cbs;
 bmng_callbacks_t bmng_callbacks;

 /* Initialize all callback pointers to NULL */
 memset(&mac_cbs, NULL, sizeof(mac_cbs));
 memset(&cl432_cbs, NULL, sizeof(cl432_cbs));
 memset(&bmng_callbacks, NULL, sizeof(bmng_callbacks));

 /* Initialize callback pointers for MAC */
 mac_callbacks.mac_data_cfm_cb = _user_app_data_cfm_cb;
 mac_callbacks.mac_data_ind_cb = _user_app_data_ind_cb;
 mac_callbacks.mac_establish_cfm_cb = _user_app_establish_cfm_cb;
 mac_callbacks.mac_establish_ind_cb = _user_app_establish_ind_cb;
 mac_callbacks.mac_join_cfm_cb = _user_app_join_cfm_cb;

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 22

 mac_callbacks.mac_join_ind_cb = _user_app_join_ind_cb;
 mac_callbacks.mac_leave_cfm_cb = _user_app_leave_cfm_cb;
 mac_callbacks.mac_leave_ind_cb = _user_app_leave_ind_cb;
 mac_callbacks.mac_release_cfm_cb = _user_app_release_cfm_cb;
 mac_callbacks.mac_release_ind_cb = _user_app_release_ind_cb;
 mac_callbacks.mlme_get_cfm_cb = _user_app_mlme_get_cfm_cb;
 mac_callbacks.mlme_list_get_cfm_cb = _user_app_mlme_list_get_cfm_cb;
 mac_callbacks.mlme_promote_cfm_cb = _user_app_mlme_promote_cfm_cb;
 mac_callbacks.mlme_reset_cfm_cb = _user_app_mlme_reset_cfm_
 mac_callbacks.mlme_set_cfm_cb = _user_app_mlme_set_cfm_cb;

 prime_cl_null_set_callbacks(&mac_cbs);

 /* Initialize callback pointers for 4.32 */
 cl432_callbacks.cl_432_dl_data_cfm_cb = _user_app_cl_432_dl_data_cfm_cb;
 cl432_callbacks.cl_432_dl_data_ind_cb = _user_app_cl_432_dl_data_ind_cb;
 cl432_callbacks.cl_432_join_ind_cb = _user_app_cl_432_join_ind_cb;
 cl432_callbacks.cl_432_leave_ind_cb = _user_app_cl_432_leave_ind_cb;

 prime_cl_432_set_callbacks(&cl432_cbs);

 /* Initialize callback pointers for Base Management */
 bmng_callbacks.fup_ack_cb = _user_app_bmng_fup_ack_cb;
 bmng_callbacks.fup_error_ind_cb = _user_app_bmng_fup_error_ind_cb;
 bmng_callbacks.fup_kill_ind_cb = _user_app_bmng_fup_kill_ind_cb;
 bmng_callbacks.fup_status_ind_cb = _user_app_bmng_fup_status_ind_cb;
 bmng_callbacks.fup_version_ind_cb = _user_app_bmng_fup_version_ind_cb;
 bmng_callbacks.network_event_ind_cb = _user_app_bmng_net_event_ind_cb;
 bmng_callbacks.pprof_ack_cb = _user_app_bmng_pprof_ack_cb;
 bmng_callbacks.pprof_get_response_cb = _user_app_bmng_pprof_get_response_cb;
 bmng_callbacks.pprof_get_zc_response_cb = _user_app_bmng_pprof_get_zc_response_cb;
 bmng_callbacks.pprof_zc_diff_response_cb = _user_app_bmng_pprof_zc_diff_response_cb;
 bmng_callbacks.whitelist_ack_cb = _user_app_bmng_whitelist_ack_cb;

 prime_bmng_set_callbacks(&bmng_callbacks);

4.4.4 PRIME FW Stack Process
Every program cycle, the PRIME FW stack must perform several actions for its normal operation. This
is achieved by calling the following function:

prime_process(void);

This function processes events and invokes the corresponding callback functions.

4.5 Configuration Parameters
The PRIME FW stack can be configured to suit user requirements. This is achieved with several
configuration files, which allow:

• The stack to configure the required stack resources according to the application needs based on
the required functionality, and

• The application to configure its own resources

Note that some parameters must be configured during the Manufacturing Test Procedure (MTP)
using PIB attributes.

Some parameters are subject to change during execution and it could be needed to store them in
non-volatile memory so that they can be recovered after a system restart. See chapter 4.1.1. Data
Storage for more information.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 23

4.5.1 PRIME Stack User Configuration Parameters
4.5.1.1 Enabling Base Node API

The file conf_prime_stack.h includes a definition to enhance the PRIME API with functions related to
the Base Node. In the provided examples, this line is not commented, so that the API of the Base
Node is included.

 /* Enable API for base node */
 #define PRIME_API_BN

4.5.1.2 Firmware Version Information
In the provided PRIME FW stack library, the first 20 bytes contain the Vendor, Model and Version
information corresponding to the PRIME FW stack library. These metadata are useful to identify and
control which library is being used. Users can edit this information in file conf_prime_stack.h.

 /* Firmware Information */
 #define PRIME_FW_VENDOR “MCHP”
 #define PRIME_FW_MODEL “PL360BN”
 #define PRIME_FW_VERSION “B13.10.04\0\0\0\0\0\0\0”

 /* Prime PIB firmware information. FW Version is used as PIB version */
 #define PRIME_PIB_VENDOR 0x0000
 #define PRIME_PIB_MODEL 0x3D3F

The modifiable attributes are the following:

Table 4-2. PRIME FW Information Attributes
Attribute Definition Format

PRIME_FW_VENDOR Vendor name, e.g. “MCHP”. ASCII. Maximum 16 bytes.

PRIME_FW_MODEL Product name, e.g. “PL360BN”. ASCII. Maximum 16 bytes.

PRIME_FW_VERSION Version identifier as defined in
PIB 0x0075 (PIB_MAC_APP_FW_VERSION), e.g.
“B13.10.04\0\0\0\0\0\0\0”.

Numerical, ASCII recommended. It must
be 16 bytes long.

PRIME_PIB_VENDOR Vendor name as defined in PIB 0x0076
(PIB_MAC_APP_VENDOR_ID), e.g. 0x0000.

Numerical, two bytes size. This value is
assigned by the PRIME Alliance.

PRIME_PIB_MODEL Product name as defined in PIB 0x0077
(PIB_MAC_APP_PRODUCT_ID), e.g. “70”.

Numerical or ASCII, two bytes size.

4.5.1.3 Communication Channel and other PHY Parameters
Microchip provides solutions that cover frequencies from 41 kHz up to 89 kHz and are compliant
with different applicable regulations in the PLC domain.

The table below shows the available frequency bands with their associated PLC coupling boards. To
configure the PLC coupling in PL360 and PL460, see the corresponding chapters.

Table 4-3. Frequency Bands
Channel Frequency band (kHz) PLC coupling board (PL360) PLC coupling (PL460)

1 41 - 89

ATPLCOUP000
ATPLCOUP001
ATPLCOUP003
ATPLCOUP004
ATPLCOUP007
ATPLCOUP011

Main branch or auxiliary branch

The PRIME FW stack needs PHY parameters to be kept safe in a non-volatile storage area in case the
system restarts for any reason.

These PHY parameters are the PLC communication channel.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 24

The PRIME FW stack uses a configuration key to determine whether these parameters are available
in the non-volatile storage or not. The structure with the configuration key and the PHY parameters
that must be kept in the non-volatile storage area is defined in file hal.h as follows:

 /** Configuration key to manage PHY params */
 #define HAL_PRIME_PHY_CONFIG_KEY 0xAA99

 /** Type to manage PHY params */
 typedef struct {
 uint16_t ul_cfg_key;
 uint8_t txrxChannel;
 } x_phy_cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key matches the value defined by HAL_PRIME_PHY_CONFIG_KEY,
then the PRIME FW stack considers that the stored values are valid and reads them from the
non-volatile storage area. However, if the stored key does not match HAL_PRIME_PHY_CONFIG_KEY,
then the stored values are discarded and the PRIME FW stack reads and stores the default values
from the PHY layer.

The PLC communication channel can be changed by users using vendor specific PIB attribute
PIB_PHY_TX_CHANNEL (0x8090) described in Table 12-10. This update is only permitted under
MTP mode and requires a reset to take effect. The changed value is always stored in the
non-volatile storage area. After a reset, since the configuration key matches the defined value
HAL_PRIME_PHY_CONFIG_KEY, the last value stored in the non-volatile storage area will be the one
used by the stack.

Important: Do not change the value assigned to the configuration key
HAL_PRIME_PHY_CONFIG_KEY because this is a compilation constant in the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL_PHYCFG_OFFSET_USER_SIGN in order to access the PHY parameters in the non-
volatile storage area.

4.5.1.4 PLC Coupling (PL360 Platform)
When using the PL360 platform, the hardware coupling implemented in the user board must only
be taken into account when using ATPLCOUP011. In that case, the parameter PAL_ENABLE_C11_CFG
must be defined in file conf_pal.h.

 /* If coupling 11 is chosen */
 #define PAL_ENABLE_C11_CFG

4.5.1.5 PLC Coupling (PL460 Platform)
When using the PL460 platform, the default configuration uses the auxiliary branch to transmit in
channel 1. To use the hardware variant in order to transmit in channel 1 using the main branch, the
parameter PAL_ENABLE_PL460_CEN_A_CFG must be defined in file conf_pal.h.
 /* PL460 + PLCOUP007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
 #define PAL_ENABLE_PL460_CEN_A_CFG

4.5.1.6 Band Plan in PLC
Although the PLC PHY layer can handle several communication channels, for this version of
the PRIME specification only channel 1 is supported, as shown in Table 4-3. This is set in
USER_BAND_PLAN in file conf_pal.h.
 /* Define the band plan */
 #define USER_BAND_PLAN (CHANNEL1)

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 25

4.5.1.7 MAC Address
A MAC address is mandatory for a normal operation of the PRIME FW stack. The MAC address
identifies the node in the network and therefore it must be kept safe in a non-volatile storage area in
case the system restarts for any reason.

Important: Note that whenever the system restarts and the PRIME FW stack
cannot find a valid MAC address, it enters into MTP mode.

The PRIME FW stack uses a configuration key to determine whether the MAC address is available in
the non-volatile storage or not. The structure with the configuration key and the MAC address that
must be kept in the non-volatile storage area is defined in file hal.h as follows:

 /** Configuration key to manage MAC address */
 #define HAL_MAC_CONFIG_KEY 0xAA55

 /** Type to manage MAC address */
 typedef struct {
 uint16_t us_cfg_key;
 uint8_t uc_mac[6];
 } x_mac_cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key does not match the value defined by HAL_MAC_CONFIG_KEY,
the PRIME FW stack enters into MTP mode. Users can then set the MAC address using the vendor
specific PIB 0x8100 (PIB_MTP_MAC_EUI_48 in Table 12-11). The MAC address is then stored in the
non-volatile storage area. If the stored key matches HAL_MAC_CONFIG_KEY, the MAC address is read
and the PRIME FW stack starts in normal operating mode.

Important: Do not change the value assigned to the configuration key
HAL_MAC_CONFIG_KEY because this is a compilation constant in the PRIME FW
stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL_MACCFG_OFFSET_USER_SIGN in order to access the MAC address in the non-volatile
storage area.

4.5.1.8 Enabling PLC PHY Layer
The PLC PHY layer is enabled in file conf_pal.h by defining PAL_PLC.
 /* Definition of available PHY layers */
 #define PAL_PLC

4.5.1.9 Enabling Serial PHY Layer
In a multi-transformer substation, when the Base Node must communicate with an auxiliary node
without using the PLC PHY layer, the Serial PHY layer comes into effect (see chapter Auxiliary Nodes
Connection in Multi-transformer Substations). The Serial PHY layer is enabled in file conf_pal.h by
defining PAL_SERIAL.
 /* Definition of available PHY layers */
 #define PAL_SERIAL

When using the serial PHY layer, users need to define the port number in file conf_phy_serial.h. See
chapter Linking of PRIME PHY Serial for details.

The Serial PHY frame format can be found in chapter PRIME PHY Serial Frame Format.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 26

4.5.1.10 Sniffer Serialization
The different PHY layers include an embedded sniffer, which provides the traffic via serial interface
so that it can be analyzed if necessary.

To set the port number for the serialized sniffer in conf_pal.h, see chapter Linking of PRIME Sniffer.

To configure the sniffer for the PLC PHY layer, users must enable the code related to the embedded
sniffer in file conf_atpl360.h:
 /* Enable ADDONS module */
 #define ATPL360_ADDONS_ENABLE

To configure the sniffer for the Serial PHY layer, users must enable the code related to the
embedded sniffer in file conf_phy_serial.h:
 /* Enable addons for sniffer */
 #define PHY_SERIAL_ADDONS_ENABLE

Important: When the embedded sniffer code is included, the sniffer serialization
can be enabled and disabled through the vendor specific PIB attribute 0x8106
(PIB_PHY_SNIFFER_ENABLED in Table 12-10).

The sniffer frame format can be found in chapter PRIME Sniffer Frame Format.

4.5.1.11 Serial Communication Profile of PRIME Management Plane
The Management Plane can be accessed through the Serial Communication Profile, as described
in the PRIME specification. If users want to use the Serial Communication Profile, they need to
define the port number for the serialization in file conf_mngp.h. See chapter Linking of Serial
Communication Profile of PRIME Management Plane for details.

Important: Note that the Serial Communication Profile of the Management Plane
is required for PRIME certification. The baud rate must be set to 57600 bauds. See
the PRIME Certification test book for more information.

4.5.1.12 Base Node Parameters
The PRIME FW stack is implemented in such a way that it does not start assigning LNIDs from the
beginning whenever it is restarted. What it does is setting an offset depending on the maximum
number of supported nodes and starting from that number at restart. Therefore it must be kept safe
in a non-volatile storage area.

The PRIME FW stack uses a configuration key to determine whether or not the BN parameters are
available in the non-volatile storage. The structure with the configuration key and the LNID offset
that must be kept in the non-volatile storage is defined in file hal.h as follows:

 /** Configuration key to manage BN parameters */
 #define HAL_PRIME_BN_INFO_CONFIG_KEY_13 0xAA55

 /** Type to manage BN parameters */
 typedef struct {
 uint16_t key;
 uint16_t mac_lnid_offset;
 } x_bn_info_cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored
in the non-volatile storage area. If the stored key does not match the value defined by
HAL_PRIME_BN_INFO_CONFIG_KEY_13, the LNID offset is set to 0 and then stored in the non-
volatile storage area. If the stored key matches HAL_PRIME_BN_INFO_CONFIG_KEY_13, the LNID
offset is read, the next offset is calculated and then stored in the non-volatile storage area.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 27

Important: Do not change the value assigned to the configuration key
HAL_PRIME_BN_INFO_CONFIG_KEY_13 because this is a compilation constant in
the PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL_BNINFO_OFFSET_USER_SIGN in order to access the MAC address in the non-volatile
storage area.

4.5.1.13 PRIME Mode
The PRIME FW stack library must be configured for the right type of node (board mode) and for
the correct version of the PRIME specification. This information must be kept safe in a non-volatile
storage area so that it can be recovered in case of restart.

The PRIME FW stack uses a configuration key to determine whether the PRIME mode information
is available in the non-volatile storage or not. The structure with the configuration key and the
PRIME mode information that must be kept in the non-volatile storage area is defined in file hal.h as
follows:

 /** Configuration key to manage PRIME mode */
 #define HAL_PRIME_MODE_CONFIG_KEY 0xA55A

 /** Type to manage PRIME mode configuration.
 * board_mode indicates board function (PRIME_BN or PRIME_SN)
 * prime_version indicates protocol version (PRIME_1_3, PRIME_1_4 or PRIME_BC)
 */
 typedef struct {
 uint16_t key;
 uint8_t prime_version;
 uint8_t board_mode;
 } x_prime_mode_info_cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored
in the non-volatile storage area. If the stored key does not match the value defined by
HAL_PRIME_MODE_CONFIG_KEY, the PRIME FW stack reads and stores the default values defined
in file conf_mac.h. If the stored key matches HAL_PRIME_MODE_CONFIG_KEY but any of the stored
values does not match the value in file conf_mac.h, the values defined in conf_mac.h are read and
stored.

Important: Do not change the value assigned to the configuration key
HAL_PRIME_MODE_CONFIG_KEY because this is a compilation constant in the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL_PRIME_MODE_OFFSET_USER_SIGN in order to access the MAC address in the non-
volatile storage area.

4.5.1.14 Zero Cross Detection in PLC
When using the PL360/PL460 platform, if there is a zero cross detection circuit in the user board, it
must be configured appropriately with the parameters available in the PL360 device. For additional
information, refer to the "PL360 Host Controller User Guide".

4.5.1.15 Network Behavior
The behavior of the PRIME FW stack can be altered by means of the PIB attributes described in the
PRIME specification.

The PRIME specification defines default values for some of these PIB attributes but the current
implementation is not always using the default ones. These modified values have been set to
achieve maximum performance on real networks.

 SAME70, PIC32CXMTx, PL360, PL460
Managing the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 28

The following table lists all read-write PIB attributes together with their default values according to
the PRIME specification and the values configured in the PRIME FW stack. Users are free to modify
any of these values through MLME or Management Plane primitives in order to customize the PRIME
FW stack according to their needs. These PIB attributes can be found in file mac_pib.h .

Table 4-4. Configured PIB Values in the PRIME FW Stack
Attribute ID PRIME default value Implementation

value

PIB_MAC_BEACONS_PER_FRAME 0x0013 5 1

PIB_MAC_SCP_MAX_TX_ATTEMPTS 0x0014 5 5

PIB_MAC_CTL_RE_TX_TIMER 0x0015 15 2

PIB_MAC_MAX_CTL_RE_TX 0x0018 3 5

PIB_MAC_EMA_SMOOTHING 0x0019 3 0

4.5.2 Application Configuration Parameters
4.5.2.1 Example Configuration – conf_app_example.h

In this file, users need to define anything related to their application. For example, the reserved
memory addresses, communication ports, etc.

4.5.2.2 HAL Configuration – conf_hal.h
Users need to define in this file the configurable hardware parameters according to their HAL code.
These can be timers, buffer sizes, interruptions, etc. (see chapter Hardware Resources Usage).

4.5.2.3 PRIME Stack Configuration – conf_prime_stack.h
This file enables parameter PRIME_API_SEPARATED_APPS to indicate that the PRIME FW stack is
separated from the user application. Currently, Microchip only provides support for non-separated
applications; that is, one project contains both the PRIME FW stack library as well as the user
application.

4.5.2.4 USI Configuration – conf_usi.h
This file configures the characteristics of the ports used for serializations. More information about
this file can be found in chapter Definition and Configuration of Serial Ports.

 SAME70, PIC32CXMTx, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 29

5. Data Exchange
Users are free to use the provided specific convergence sublayers or access directly the MAC layer to
establish a MAC connection to exchange data between application peers.

Please refer to PRIME specification for detailed information about the semantics of the primitives
available in the MAC service access point.

Please note that an Automatic Repeat Request (ARQ) mechanism is available in order to provide
guaranteed communications between peers.

Important: Remember that all requests to exchange data are followed by a
confirm and that the application must always wait for it before performing a new
request. The confirm can be immediate or be delayed for a considerable amount
of time. For communications with ARQ, the invocation of the confirm callback
could take up to several minutes. More information about the request/confirm
mechanism can be found in chapter PRIME API.

5.1 Null SSCS
Users can directly access the MAC layer through the Null SSCS.

Available signalling primitives can be found in Table 12-1.

Available data primitives can be found in Table 12-2.

5.2 IEC 61334-4-32
Users can make use of the provided IEC 61334-4-32 compliant SSCS.

Available IEC 61334-4-34 primitives can be found in Table 12-5.

5.3 Automatic Repeat Request (ARQ)
The PRIME specification defines two kinds of ARQ: windowed and “Stop and wait”. The current
implementation of the PRIME FW stack only supports windowed ARQ with a window size fixed to 4.

The following figure shows how ARQ works. If the application needs more than one second to send
the reply, the Service Node sends the ACK after that time. If the response is received within one
second, the PRIME FW stack piggybacks the ACK in the response.

 SAME70, PIC32CXMTx, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 30

Figure 5-1. ARQ with One Fragment and Piggyback

1
se

co
nd

BN SN

15
 s

ec
on

ds

METERDCU PLC

1
se

co
nd

1
se

co
nd

In certain situations, it might be possible that the ACK is sent as soon as the request is received, i.e. it
is never piggybacked. That is shown in the next figure.

Figure 5-2. ARQ with One Fragment
BN SN METERDCU PLC

For long fragmented responses, there is an ACK piggybacked to each fragment and the BN sends the
ACK after receiving the last fragment, as shown in the following figure.

 SAME70, PIC32CXMTx, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 31

Figure 5-3. ARQ with Four Fragments
BN SN METERDCU PLC

DATA_REQ

DATA_REQ +ACK (Frag 1 of 4)

DATA_IND

DATA_CONFIRM

DATA_REQ

DATA_REQ

1s
ec

on
d

ACK

DATA_REQ+ACK(Frag 2 of 4)

DATA_REQ+ACK (Frag 3 of 4)

DATA_REQ+ACK(Frag 4 of 4)

DATA_IND

DATA_CONFIRM

It is possible that a fragment with its corresponding ACK is lost. In that case, a NACK with the missing
fragment is sent, so that the Service Node can resend it. This is shown in the following figure.

Figure 5-4. ARQ with Four Fragments and Retransmission
BN SN METERDCU PLC

DATA_REQ

DATA_REQ +ACK (Frag 1 of 4)

DATA_IND

DATA_CONFIRM

DATA_REQ

DATA_REQ

1s
ec

on
d

ACK

DATA_REQ+ACK(Frag 2 of 4)

DATA_REQ+ACK (Frag 3 of 4)

DATA_REQ+ACK(Frag 4 of 4)

DATA_IND

NACK3

DATA_REQ +ACK (Frag 3 of 4)

DATA_CONFIRM

The worst case scenario occurs when the last fragment is lost because then the Service Node does
not receive any ACK or NACK from the Base Node. In this case, the Service Node waits for 3 seconds

 SAME70, PIC32CXMTx, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 32

before retransmitting the last fragment. If the ACK or NACK is still not received, the Service Node
makes up to 5 retransmissions. After all the retransmissions, the disconnection process starts.

Figure 5-5. ARQ with Four Fragments and Maximum Number of Retransmissions

BN SN METERDCU PLC

DATA_REQ

DATA_REQ+ACK(Frag 1 of 4)

DATA_IND

DATA_CONFIRM

DATA_REQ

DATA_REQ

1s
ec

on
d

ACK

DATA_REQ+ACK(Frag 2 of 4)

DATA_REQ+ACK(Frag 3 of 4)

3s
ec

s

DATA_REQ+ACK(Frag 4 of 4)

DATA_IND DATA_REQ+ACK(Frag 4 of 4)

DATA_CONFIRM

W
or

st
ca

se
=3

se
cs

*5
re

tri
es

*N
um

_f
ra

gm
en

ts
+1

se
c

W
or

st
ca

se
=3

se
cs

*5
re

tri
es

*N
um

_f
ra

gm
en

ts

 SAME70, PIC32CXMTx, PL360, PL460
PRIME Management Plane

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 33

6. PRIME Management Plane
The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade.

Node management in the PRIME FW stack is accomplished through a set of attributes. Attributes
are defined for both PHY and MAC layers. The set of these management attributes is called PLC
Information Base (PIB). Some attributes are read-only, while others are read-write. For details
about implementation of PIB attributes described in the PRIME specification, see chapter Major
Capabilities of the MAC Layer and chapter Major Capabilities of the Management Plane. The PRIME
FW stack also implements vendor specific PIB attributes, which are described in chapter PIB Objects
Specification and Access. Additionally, Microchip offers an interface through the HAL that enables
the implementation of user specific PIBs in the application. Those user specific PIBs can only be
defined with a size of 4 bytes in the ID range 0xF000 - 0xFCFF.

The Management Plane in the Base Node cannot only be used to control the Base Node, but also to
access the Management Planes in the Service Nodes and perform actions on them. In order to fulfill
both actions, the control entity can access the Management Plane by using the two communication
profiles defined in the PRIME specification:

• PRIME Profile. It is used by the local control entity to perform remote actions on a Service Node.
The Base Node receives the requests in the local Management Plane from the Base Management
(see chapter API for PRIME Profile in Management Plane) and passes them to the Null SSCS in the
CL (see chapter Null SSCS) so that they are sent by PLC to the specific Service Node

• Serial Communication Profile. It is implemented as a service in the USI of the HAL and is used by
the local control entity. For more information about the different services available in the USI, see
chapter Serialization with Embedded USI

Whenever the Management Plane receives a request from any of the specified profiles, it passes it to
the MAC layer using the functions of the Null SSCS in the CL (see chapter Null SSCS). This access is
depicted in the next figure.

Figure 6-1. Management Plane Access to the MAC Layer

Management
Plane

IEC-432
SSCS

NULL
SSCS

CPCS

CL

MAC

PLME MLME

PHY

 SAME70, PIC32CXMTx, PL360, PL460
PRIME Management Plane

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 34

Important: Please note that the PRIME Certification Tool needs to access the
Management Plane through the Serial Communication Profile and therefore it
must be configured appropriately (see Serial Communication Profile of PRIME
Management Plane).

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 35

7. Base Management
7.1 Overview

The Base Management Protocol is a Microchip proprietary extension over the PRIME specification
to increase the functionalities of a Base Node. The PRIME specification does not always define
the interfaces between the Base Node and the DCU user application, so new interfaces must be
implemented as required.

The Base Management API is defined in chapter Base Management Primitives.

Available functionalities are:
• Firmware Upgrade Protocol interface. This interface lets the DCU user application configure the

firmware upgrade of the registered devices in the network
• Network events. The Base Node notifies about events such as new registrations, unregistrations,

etc
• Access to the PRIME Profile in the Management Plane. This interface allows the DCU user

application to manage PIBs in a remote node
• Whitelist management. If the whitelist mechanism is enabled, this interface allows the DCU user

application to add and remove nodes from the whitelist

Important: Note that the DCU user application is not in the Base Node with
the PRIME FW stack. For simplicity reasons, whenever DCU user application
is mentioned in the next sections, it means that the DCU user application is
commanding the actions to the user application in the Base Node. The user
application in the Base Node must use the Base Management API defined in
chapter Base Management Primitives. It is up to the users to define the interface
between the DCU user application and the user application in the Base Node in
order to handle the Base Management API.

7.2 Firmware Upgrade Protocol
The FUP defines the steps required to set up and initiate a firmware upgrade in a PRIME
PLC network and also monitor the upgrade process from the Base Node. The PRIME FW stack
implements the PRIME FU process in the Management Plane as described in the PRIME specification.
Please refer to the PRIME specification for details.

The FUP uses the following configuration parameters:
• List of Service Nodes to upgrade
• Binary file configuration (Vendor, Model and Version)
• PLC protocol options:

– ARQ: enables ARQ
– Multicast: enables multicasting to transfer the firmware image through the PLC
– Page size: size of the data chunks used during the PLC phase of the FU
– Restart delay: time that a Service Node waits before restarting with the new image
– Safety timer: time a Service Node must wait before reverting to a former firmware image

when the new image is not confirmed by the Base Node

The FUP has a list of message commands related to primitives and callbacks that are defined in FUP
Primitives in the Base Node.

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 36

7.2.1 FUP Stages
The FUP is divided into the following stages:

• Setup: The DCU user application indicates to the PRIME FW Stack which Service Nodes must be
upgraded and configures the upgrade options

• File transfer: The DCU user application sends the binary file to the PRIME FW Stack
• Firmware upgrade: The PRIME FW Stack proceeds with the firmware upgrade as defined in the

PRIME specification

7.2.1.1 Setup Stage
In the setup stage, the Service Nodes that will be upgraded and the options for the protocol are
defined. The DCU user application must execute the next sequence of actions:

1. Configure the PLC FUP options: ARQ, Multicast, Page Size, Delay Restart and Safety Timer
2. Clear the BN’s target list
3. Add device targets from the list of registered devices in the BN. Devices are added one-by-one
4. Configure the upgrade rule: select which nodes will be upgraded based on their Vendor/Model
5. Set the new firmware version information: Vendor, Model and Version

Unregistered Service Nodes that have been registered previously can also be added to the FU list.
When they register again, they will be automatically added to the FU process by the Base Node.

Setup Sequence Diagram shows the sequence of primitives exchanged between the DCU user
application and the Base Node in this stage. FUP Primitives in the Setup Stage describes those FUP
primitives, whose parameters are defined in FUP Primitives in the Base Node.

Table 7-1. FUP Primitives in the Setup Stage
FUP primitive Description

FUP_CLEAR_TARGET_LIST.request This primitive clears the target list.

FUP_ADD_TARGET.request This primitive adds an SN to the target list.

FUP_SET_FW_DATA.request This primitive sets the new version information: Vendor,
Model and Version.

FUP_SET_UPG_OPTIONS.request This primitive configures the protocol options:
• ARQ: to enable (1) or disable (0) the usage of ARQ in PLC

communications

• Multicast: to enable (1) or disable (0) the usage of a
multicast group for the firmware upgrade

• Page size: automatic (0), 32 bytes (1), 64 bytes (2), 128
bytes (3), 192 bytes (4)

• Delay restart: time before restarting with the new
firmware (0 - 65536 seconds)

• Safety timer: time to test the new firmware (0 - 65536
seconds)

FUP_SET_MATCH_RULE.request This primitive sets the Vendor and Model applicable for the
firmware upgrade. If a rule is given for Vendor and/or Model
(the corresponding bits of 0000 0MV0 are set), only the SNs in
the target list matching the configured Vendor and/or Model
will be upgraded.

FUP_ACK.indication This primitive acknowledges the last request made and
informs of any errors.

The possible return values in the FUP_ACK.indication are the following:

 /** FUP ACK codes */
 typedef enum {
 FUP_ACK_OK = 0,

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 37

 FUP_ACK_ERROR,
 FUP_ACK_ERROR_MAC,
 FUP_ACK_ERROR_MODEL,
 FUP_ACK_ERROR_CRC,
 FUP_ACK_ERROR_DATA,
 FUP_ACK_ERROR_CRC_FILE,
 FUP_ACK_CRC_ONGOING,
 FUP_ACK_FU_ONGOING
 } fup_ack_code_t;

Figure 7-1. Setup Sequence Diagram

PRIME StackUser APP

FUP_Ack

FUP_Clear_Target_List

FUP_Ack

FUP_Add_Target

FUP_Ack

FUP_Add_Target

.

.

.

FUP_Ack

FUP_Set_UPG_Options

FUP_Ack

FUP_Set_Match_Rule

FUP_Ack

FUP_Set_FW_Data

DCU User APP

Ack

ClearTargetList

Ack

AddTarget

Ack

AddTarget

.

.

.

Ack

SetUpgradeOptions

Ack

SetMatchRule

Ack

SetFirmwareData

7.2.1.2 File Transfer Stage
The file transfer algorithm is based on the TFTP protocol (Trivial File Transfer Protocol). First, the DCU
user application sends an initialization message to the Base Node with the following information:

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 38

• Firmware size: Size of the firmware file.
• Frame size: Size of the data fragments to be sent.
• Firmware CRC: PRIME CRC-32 of the firmware file.

After the initialization request, the file is sent to the Base Node in fragments of fixed length, the
indicated frame size. Each fragment contains part of the file and must be acknowledged by the Base
Node before sending the next fragment. A fragment of smaller size than the frame size signals the
termination of the file transfer.

Important: If the last fragment has the same length as the fragment size, the
DCU user application must send a fragment of size zero, as indicated in the TFTP
protocol.

After the file transfer is completed, the Base Node computes the PRIME CRC-32 of the received
file. This CRC-32 is compared to the value received in the initialization message. The DCU user
application must ask the Base Node for the result. If it is not correct, the upgrade is cancelled by the
Base Node.

File Transfer Sequence Diagram shows the sequence of primitives exchanged between the DCU user
application and the Base Node in this stage. Note that the PRIME FW stack invokes several functions
of the HAL in order to store the file and calculate its CRC. FUP Primitives in the File Transfer Stage
describes those FUP primitives, whose parameters are defined in FUP Primitives in the Base Node.

Important: Users are responsible for reserving a memory area with enough
space to store the firmware file (see chapter Hardware Resources Usage).

Table 7-2. FUP Primitives in the File Transfer Stage
FUP primitive Description

FUP_INIT_FILE_TX.request This primitive indicates the beginning of a file transfer and
configures the following parameters:
• The size of the firmware file

• The size of the data fragments

• The CRC-32 of the firmware file

FUP_DATA_FRAME.request This primitive forwards a fragment of the firmware file.

FUP_CHECK_CRC.request This primitive requests the result of the CRC calculation.

FUP_ACK.indication This primitive acknowledges the last request made and
informs of any errors. When acknowledging a data frame, it
also provides the number of data fragment.

The possible return values in the FUP_ACK.indication are described in the previous chapter.

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 39

Figure 7-2. File Transfer Sequence Diagram

PRIME StackUser APP

FUP_Ack

FUP_Init_File_Tx

FUP_Ack

FUP_Data_Frame

FUP_Ack

FUP_Data_Frame

.

.

.

FUP_Ack

FUP_Check_CRC

hal_fu_start()

hal_fu_data_write()

hal_fu_data_write()

hal_fu_crc_calculate()

CallCRCcallback

DCU User APP

Ack

InitFileTransfer

Ack

DataFrame

Ack

DataFrame

.

.

.

Ack

CheckCRC

Calculate CRC

CRC checked
successfully

As mentioned before, the PRIME FW stack invokes several functions of the HAL in order to store the
file and calculate its CRC. Users are responsible for implementing the following functions according
to their design.

CRC Result Callback

The HAL is responsible for calculating the CRC of the received file when requested by the PRIME
FW stack. The calculated result is provided invoking a callback function whose pointer is set at
initialization by the PRIME FW stack with the following function:
void hal_fu_crc_set_callback(void (*p_handler)(uint32_t ul_crc));

Parameters:

• p_handler: Pointer address to the callback function

Starting the File Transfer

The PRIME FW stack indicates it to the user application with the following function:
void hal_fu_start(hal_fu_info_t *x_fu_info);

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 40

Parameters:

• x_fu_info: Pointer to FU information:
 typedef struct {
 uint32_t image_size;
 uint8_t page_size;
 hal_fu_signature_algorithm_t sign_algorithm;
 uint16_t sign_length;
 } hal_fu_info_t;

The HAL stores the received information and erases the region where the file will be safely stored.
Note: In this version of the specification, the signature of the firmware file is not supported.

Writing Firmware Data

When the PRIME FW stack has received a frame of the file, it requests the HAL to write it with the
following function:
uint8_t hal_fu_data_write(uint32_t addr, uint8_t *puc_buf, uint16_t us_size);

Parameters:

• addr: Address of page to write
• puc_buf: Pointer to page to write
• us_size: Page size

Result: 1 if there is no error. Otherwise, 0.

CRC Calculation

When the file has been received, the PRIME FW stack needs to verify that the received file is correct
and thus it requests the HAL to calculate its CRC with the following function:
void hal_fu_crc_calculate(void);

The HAL can calculate the CRC over the complete file, but, as this can take some time for large files,
it is recommended to calculate it page-by-page in a process function. The result is returned through
the CRC callback function as defined previously.

7.2.1.3 Firmware Upgrade Stage
If the previous stages have been completed correctly, it is safe to trigger the PLC FU process with
primitive FUP_START_FU.request. During this stage, the Base Node follows the process defined by
the PRIME specification to upgrade the firmware in the Service Nodes.

Once the PLC FU stage has started, the DCU user application can cancel the FU process any
time with primitive FUP_ABORT_FU.request. The cancellation can apply to all Service Nodes or
just to a certain Service Node. New Service Nodes can also be added to the FU process any time
with the primitive FUP_ADD_TARGET.request described in the setup stage. All these requests are
acknowledged by the primitive FUP_ACK.indication.

Furthermore, the DCU user application can also request the version (FUP_GET_VERSION.request)
and FU state (FUP_GET_STATE.request) of any SN. The response to these primitives is received in the
corresponding indication primitive.

The indication primitives, which provide information about the status of the upgrade process
asynchronously, are issued with callback functions. If interested in receiving these notifications, the
user application must set up the corresponding callback function pointers at initialization. Table 7-3
describes the FUP indication primitives, whose parameters are defined in defined in FUP Primitives
in the Base Node. To set up the callback function pointers, see chapter Callback Functions in the
Base Management.

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 41

Table 7-3. FUP Indication Primitives in the Firmware Upgrade State
FUP primitive Description

FUP_STATUS.indication This primitive gives information about the progress of the
FU in an SN by providing the SN FU state as defined in
the PRIME specification. Additionally, the FUP has added the
status FUP_STATE_ENDED_NOTIFICATION that corresponds
to the Idle state once the new firmware has been confirmed.
When the node is in FUP_NODE_STATE_RECEIVING, this
primitive also returns the number of pages received by the
SN and confirmed by the BN (the real number of received
pages could be bigger).
To mark the end of the FU process, this primitive is
issued with state FUP_STATE_ENDED_NOTIFICATION for the
broadcast MAC address (FF:FF:FF:FF:FF:FF).

FUP_VERSION.indication This primitive provides information about Vendor, Model and
Version from an SN.

FUP_KILL.indication This primitive indicates that an SN has cancelled its firmware
upgrade.

FUP_ERROR.indication [DEPRECATED]

7.3 Network Events
The Base Node notifies about asynchronous events related to the Service Nodes whenever the
corresponding callback function (BMNG_NETWORK_EVENT.indication, defined in Table 12-7) has
been set up by the user application. The events indicated by the Base Node are the following:

• State changes in the Service Node:
– registration (BMNG_NET_EVENT_REGISTER)

– unregistration (BMNG_NET_EVENT_UNREGISTER)

– promotion (BMNG_NET_EVENT_PROMOTE)

– demotion (BMNG_NET_EVENT_DEMOTE)

• Alive events (BMNG_NET_EVENT_ALIVE): whenever the Base Node receives an alive message from
a Service Node

• Reboot events (BMNG_NET_EVENT_REBOOT): whenever the PRIME FW stack is started in the Base
Node

• Unknown Service Node (BMNG_NET_EVENT_UNKNOWN_NODE): whenever the Base Node receives a
registration message from a Service Node which is not included in the whitelist. This only applies
when the whitelist mechanism is enabled

7.4 API for PRIME Profile in Management Plane
The PRIME Profile is a communication protocol in the Management Plane that permits the DCU user
application to manage a remote Service Node through PRIME standard and Microchip-defined PIBs,
refer to the Chapter PRIME Management Plane. This communication profile is defined in the PRIME
specification, but the interface to the DCU user application is not. Therefore, Microchip has defined
a proprietary API to allow access to the PRIME Profile in the Management Plane. This API with its
corresponding primitives and callback functions is defined in Table 12-8.

This API has been enhanced with a request to calculate the difference between the zero cross times
in the Base Node and a Service Node, which is useful in a phase detection algorithm.

7.5 Whitelist Management
When the user application has enabled the use of the whitelist mechanism via the Microchip defined
PIB PIB_MAC_WHITELIST_ENABLED (0x8151), the whitelist management interface allows addition
and removal of Service Nodes to the whitelist. This API with its corresponding primitives and callback
functions is defined in Table 12-9.

 SAME70, PIC32CXMTx, PL360, PL460
Base Management

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 42

By default, the use of the whitelist is disabled. When it is enabled by the user application, all Service
Nodes that were already registered are automatically added to the whitelist.

When a Service Node is removed from the whitelist, it is also unregistered from the network.

 SAME70, PIC32CXMTx, PL360, PL460
Toolchain

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 43

8. Toolchain
The following sections describe the required tools and toolchain for the development and build
process and how the provided example applications can be built.

8.1 General Prerequisites
The following tools and toolchains are used for building the applications from this firmware
package: IAR Embedded Workbench for Arm® V9.20 (see http://www.iar.com/).

8.2 Building the Applications

8.2.1 Using IAR Embedded Workbench
All provided projects can be built and loaded into the board using the IAR Embedded Workbench
directly.

For each example application described in Chapter Example Applications, follow these steps:

1. Open the corresponding project.
2. Configure the project as required (see Chapter Configuration Parameters).
3. Build the project.
4. Program the board.

In the PL360/PL460 platform, the PL360 firmware is also required for a system to be operative in PLC
but it is directly provided as a binary file.

Important: Make sure that the Flash memory is erased before programming it.

http://www.iar.com/

 SAME70, PIC32CXMTx, PL360, PL460
Supported Platforms

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 44

9. Supported Platforms
This chapter describes which hardware platforms are currently supported with the PRIME firmware
package. A platform usually comprises of three major components:

• An MCU
• A modem chip (this may be integrated into the MCU for single chips)
• A specific hardware that contains the MCU and/or the modem chip

9.1 Supported MCU Families
The only supported generic MCU family are the SAME70 and PIC32CXMTx platforms. The SAMG55
platforms are intended for evaluation purposes only.

The dedicated code for each device of the family can be found in the corresponding subdirectories.

9.2 Supported Devices
Currently the only supported devices are SAME70Q21B with PL360, SAME70 Xplained with
PL460, PIC32CX2051MTSH128 with PL460, and PIC32CX2051MTG128 with PL460. The following are
intended for evaluation purposes only: SAMG55J19 with PL460.

9.3 Supported Boards
The currently supported boards and combinations are given below:

• Base Node reference design PL360BN, implementing SAME70Q21B host plus PL360 PLC device
• SAME70 Xplained with PL460-EK on Xplained port
• PIC32CXMTSH-DB with PL460-EK on Xplained port
• PIC32CXMTG-EK with PL460-EK on Xplained port
• SAMG55 Xplained with PL460-EK on Xplained port (BN for evaluation purposes only)

 SAME70, PIC32CXMTx, PL360, PL460
PICS

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 45

10. PICS
This chapter lists the conformance of the Microchip PRIME implementation with the requirements
and optional features as defined by the PRIME specification document.

A Protocol Implementation Conformance Statement (PICS) is a declaration listing the capabilities and
options supported by an implementation. The PICS is based on a list of options and values, defined
in the PRIME specification and in the test suites used by the certification process.

10.1 Major Roles for Devices Compliant with PRIME

10.1.1 Major Capabilities of the PHY Layer
The current PHY layer is the implementation of the PRIME PHY layer as specified in PRIME
specification versions 1.3.6 and 1.4.

10.1.1.1 PHY Frames
The current PHY layer supports frame types A, B and BC specified in PRIME specification version 1.4.

10.1.1.2 PLME Primitives
The current implementation of the PHY layer does not support the following optional
functionalities of the PRIME specification: suspend and resume (primitives PLME_SLEEP.request and
PLME_RESUME.request) and test mode (primitive PLME_TESTMODE.request).

10.1.2 Major Capabilities of the MAC Layer
The current MAC layer is compliant with PRIME specification version 1.3.6 and is valid for a Base
Node.

The following table shows which optional features of the PRIME specification are currently
implemented in the MAC layer provided by Microchip.

Table 10-1. Implementation of Optional Features in the MAC Layer
Feature Implementation

Direct Connection Not available

ARQ Available

Packet Aggregation Not available

Multicasting Available1

Contention-Free Service Not available

Security Profile 1 Not available

Roaming Not available

Note: 
1. Switch Nodes handle multicast packets as broadcast packets since the tracking of nodes in a

Switch Node is not performed.

10.1.2.1 PLC Information Base
All mandatory PHY and MAC PIB attributes defined in PRIME specification version 1.3.6 for a Base
Node are available in the current MAC layer through PLME and MLME.

Optional PIB attributes from PRIME specification version 1.3.6 currently implemented in PLME and
MLME can be found in file mac_pib.h.

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.

 SAME70, PIC32CXMTx, PL360, PL460
PICS

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 46

10.1.3 Major Capabilities of the Convergence Layer
The current Convergence layer is compliant with PRIME specification version 1.3.6 and is valid for a
Base Node.

The following table shows which Service-Specific Convergence Sublayers are currently implemented
in the CL provided by Microchip.

Table 10-2. Implementation of SSCS
SSCS Implementation

Null Available

IPv4 Not available

IEC 61334-4-32 Available

IPv6 Not available

10.1.4 Major Capabilities of the Management Plane
10.1.4.1 PLC Information Base

All mandatory PIB attributes defined in PRIME specification version 1.3.6 for a Base Node are
available in the current Management Plane of the PRIME FW stack.

Optional PIB attributes from PRIME specification version 1.3.6 currently implemented in the
Management Plane can be found in file mac_pib.h .

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.

10.1.4.2 Communications Profiles
The Management Plane implements both the interface over the Null SSCS (PRIME Profile) and the
interface over the local serial link (Serial Communication Profile) according to PRIME specification
version 1.3.6.

 SAME70, PIC32CXMTx, PL360, PL460
API of PHY and PAL Layers

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 47

11. API of PHY and PAL Layers
The following API is to be used by applications which do not integrate the MAC layer, i.e. that only
require transmission and reception of messages through the PHY layer.

11.1 PLC PHY SAP
The PLC PHY SAP corresponds to the PHY API described in header files atpl360.h and
atpl360_comm.h. More information about management, communication and configuration functions
of the PHY API can be found in User Guide PL360 Host Controller.

11.2 Serial PHY SAP
The Serial PHY SAP corresponds to the PHY API described in the header file phy_serial.h. It is the
same as the PLC PHY SAP, although some parameters are not used in the Serial PHY layer.

11.3 PAL SAP
The PAL SAP corresponds to the PAL API described in the header file pal.h.

11.3.1 Initialization Function
The PAL layer must always be initialized when the system starts the execution. The following
function is used for that purpose:

void pal_init(void);

Depending on the PAL configuration, this function initializes the transmission handlers according to
the available PHY layers.

11.3.2 Process Function
Every program cycle the PAL layer must check transmission and reception events. This is achieved by
calling the following function:

void pal_process(void);

This function is also responsible for invoking the corresponding callback functions.

11.3.3 Callback Functions
When a previously requested transmission finishes (data confirm) and when a frame is received
(data indication), the PAL layer informs about it by calling the corresponding callback function. To set
up the callback function pointers, the following function is required:

void pal_set_callbacks(pal_callbacks_t *pal_cbs);

Parameters:

• pal_cbs: Pointer to the callback structure:
 typedef struct TPalCallbacks {
 pal_data_confirm_cb_t data_confirm;
 pal_data_indication_cb_t data_indication;
 } pal_callbacks_t;

11.3.4 Noise Capture Function (PL360/PL460 Platform)
The PL360 device offers a functionality to capture noise in the channel. The PAL layer can access this
service with the following function:

uint16_t pal_get_noise_capture(uint8_t *puc_dst, uint8_t uc_mode, uint32_t ul_time_start,
uint32_t ul_duration);

 SAME70, PIC32CXMTx, PL360, PL460
API of PHY and PAL Layers

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 48

Parameters:

• puc_dst: Pointer to destination buffer to store data
• uc_mode: Capture mode
• ul_time_start: Start time in µs based on PL360 timer reference
• ul_duration: Duration time in µs

Return value: Size in bytes of noise capture.

Important: During the noise capture, any ongoing transmission or reception is
cancelled.

11.4 PAL Primitives
The PAL primitives are described in header file pal.h.

11.4.1 Data Primitives
The PAL implements the data interface to the PHY layer based on the PHY primitives from the PRIME
specification.

Table 11-1. PHY Data Plane Primitives
PHY primitive Function

PHY_DATA.request uint8_t pal_data_request(x_pal_msg_tx_t *px_msg);
PHY_DATA.confirm typedef void (*pal_data_confirm_cb_t)(x_pal_data_cfm_t *px_data_cfm);
PHY_DATA.indication typedef void (*pal_data_indication_cb_t)(x_pal_data_ind_t *px_data_ind);

11.4.2 Management Primitives
The PAL implements the control interface to the PHY layer based on the PHY primitives from the
PRIME specification.

Table 11-2. PHY Control Plane Primitives
PHY primitive Function PHY layer

PHY_AGC.set1 uint8_t pal_agc_set(uint8_t uc_mode, uint8_t
uc_gain, uint16_t us_pch);

Only in PLC PHY

PHY_AGC.get
uint8_t pal_agc_get(uint16_t us_id, void *p_val,
uint16_t uc_len, uint16_t us_pch);

Only in PLC PHY

PHY_AGC.confirm Referenced parameters of pal_agc_get. Only in PLC PHY

PHY_TIMER.get
uint8_t pal_timer_get(uint32_t *pul_timer, uint16_t
us_pch);

All

PHY_TIMER.confirm Referenced parameters of pal_timer_get. All

PHY_CD.get
uint8_t pal_cd_get(uint8_t *puc_cd, uint8_t
*puc_rssi, uint32_t *pul_time, uint8_t *puc_header,
uint16_t us_pch);

Only in PLC PHY

PHY_CD.confirm Referenced parameters of pal_cd_get. Only in PLC PHY

PHY_NL.get
uint8_t pal_nl_get(uint8_t *puc_noise, uint16_t
us_pch);

All except Serial PHY

PHY_NL.confirm Referenced parameters of pal_nl_get. All except Serial PHY

PHY_SNR.get
uint8_t pal_snr_get(uint8_t *puc_snr, uint8_t
uc_qt, uint16_t us_pch);

All except Serial PHY

PHY_SNR.confirm Referenced parameters of pal_snr_get. All except Serial PHY

PHY_ZCT.get
uint8_t pal_zct_get(uint32_t *pul_zct, uint16_t
us_pch);

Only in PLC PHY

 SAME70, PIC32CXMTx, PL360, PL460
API of PHY and PAL Layers

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 49

...........continued
PHY primitive Function PHY layer

PHY_ZCT.confirm Referenced parameters of pal_zct_get. Only in PLC PHY

Note: 
1. Manual management of AGC is not supported in the current implementation.

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 50

12. API of PRIME FW Stack
The API of the PRIME FW stack defines the functions as macros in the header file prime_api.h.

Note that there might be other functions not described in this document, but available in the
prime_api.h file. Those functions are irrelevant in this document.

Likewise, there might be other parameters belonging to a different specification. Such parameters
must be set to 0 when invoking the function.

12.1 MAC Primitives
Refer to the PRIME specification for more information about MAC primitives and their
functionalities.

12.1.1 Signalling Primitives

Table 12-1. Signalling Primitives
Signalling primitive Function

MAC_ESTABLISH.request prime_cl_null_establish_request(mac_establish_request_t)
typedef void (*mac_establish_request_t)(uint8_t *puc_eui48, uint8_t
uc_type, uint8_t *puc_data, uint16_t us_data_len, uint8_t uc_arq, uint8_t
uc_cfbytes);

MAC_ESTABLISH.indication typedef void (*mac_establish_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_eui48, uint8_t uc_type, uint8_t *puc_data, uint16_t us_data_len,
uint8_t uc_cfbytes);

MAC_ESTABLISH.response prime_cl_null_establish_response(mac_establish_response_t)
typedef void (*mac_establish_response_t)(uint16_t us_con_handle,
mac_establish_response_answer_t uc_answer, uint8_t *puc_data, uint16_t
us_data_len);

MAC_ESTABLISH.confirm typedef void (*mac_establish_cfm_cb_t)(uint16_t us_con_handle,
mac_establish_confirm_result_t uc_result, uint8_t *puc_eui48, uint8_t
uc_type, uint8_t *puc_data, uint16_t us_data_len);

MAC_RELEASE.request prime_cl_null_release_request(mac_release_request_t)
typedef void (*mac_release_request_t)(uint16_t us_con_handle);

MAC_RELEASE.indication typedef void (*mac_release_ind_cb_t)(uint16_t us_con_handle,
mac_release_indication_reason_t uc_reason);

MAC_RELEASE.response prime_cl_null_release_response(mac_release_response_t)
typedef void (*mac_release_response_t)(uint16_t us_con_handle,
mac_release_response_answer_t uc_answer);

MAC_RELEASE.confirm typedef void (*mac_release_cfm_cb_t)(uint16_t us_con_handle,
mac_release_confirm_result_t uc_result);

MAC_JOIN.request prime_cl_null_join_request(mac_join_request_t)
typedef void (*mac_join_request_t)(mac_join_mode_t us_broadcast, uint16_t
us_con_handle, uint8_t *puc_eui48, connection_type_t uc_con_type, uint8_t
*puc_data, uint16_t us_data_len);

MAC_JOIN.indication typedef void (*mac_join_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_eui48, uint8_t uc_con_type, uint8_t *puc_data, uint16_t us_data_len);

MAC_JOIN.response prime_cl_null_join_response(mac_join_response_t)
typedef void (*mac_join_response_t)(uint16_t us_con_handle, uint8_t
*puc_eui48, mac_join_response_answer_t uc_answer);

MAC_JOIN.confirm typedef void (*mac_join_cfm_cb_t)(uint16_t us_con_handle,
mac_join_confirm_result_t uc_result);

MAC_LEAVE.request prime_cl_null_leave_request(mac_leave_request_t)
typedef void (*mac_leave_request_t)(uint16_t us_con_handle, uint8_t
*puc_eui48);

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 51

...........continued
Signalling primitive Function

MAC_LEAVE.indication typedef void (*mac_leave_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_eui48);

MAC_LEAVE.confirm typedef void (*mac_leave_cfm_cb_t)(uint16_t us_con_handle,
mac_leave_confirm_result_t uc_result);

12.1.2 Data Primitives

Table 12-2. Data Primitives
Data primitive Function

MAC_DATA.request prime_cl_null_data_request(mac_data_request_t)
typedef void (*mac_data_request_t)(uint16_t us_con_handle, uint8_t
*puc_data, uint16_t us_data_len, uint8_t uc_prio);

MAC_DATA.confirm typedef void (*mac_data_cfm_cb_t)(uint16_t us_con_handle, uint8_t
*puc_data, mac_data_result_t drt_result);

MAC_DATA.indication typedef void (*mac_data_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_data, uint16_t us_data_len);

12.1.3 PLME Primitives

Table 12-3. PLME Primitives
PLME primitive Function

PLME_RESET.request prime_cl_null_plme_reset_request(plme_reset_request_t)
typedef void (*plme_reset_request_t)(void);

PLME_RESET.confirm typedef void (*plme_reset_cfm_cb_t)(plme_result_t x_result);
PLME_SLEEP.request1 prime_cl_null_plme_sleep_request(plme_sleep_request_t)

typedef void (*plme_sleep_request_t)(void);
PLME_SLEEP.confirm typedef void (*plme_sleep_cfm_cb_t)(plme_result_t x_result);
PLME_RESUME.request1 prime_cl_null_plme_resume_request(plme_resume_request_t)

typedef void (*plme_resume_request_t)(void);
PLME_RESUME.confirm typedef void (*plme_resume_cfm_cb_t)(plme_result_t x_result);
PLME_TESTMODE.request1 prime_cl_null_plme_testmode_request(plme_testmode_request_t)

typedef void (*plme_testmode_request_t)(uint8_t uc_enable, uint8_t uc_mode,
uint8_t uc_modulation, uint8_t uc_pwr_level);

PLME_TESTMODE.confirm typedef void (*plme_testmode_cfm_cb_t)(plme_result_t x_result);
PLME_GET.request prime_cl_null_plme_get_request(plme_get_request_t)

typedef void (*plme_get_request_t)(uint16_t us_pib_attrib);
PLME_GET.confirm typedef void (*plme_get_cfm_cb_t)(plme_result_t x_status, uint16_t

us_pib_attrib, void *pv_pib_value, uint8_t uc_pib_size);
PLME_SET.request prime_cl_null_plme_set_request(plme_set_request_t)

typedef void (*plme_set_request_t)(uint16_t us_pib_attrib, void
*pv_pib_value, uint8_t uc_pib_size);

PLME_SET.confirm typedef void (*plme_set_cfm_cb_t)(plme_result_t x_result);

Note: 
1. The marked primitives invoke optional functionality that is currently not available.

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 52

12.1.4 MLME Primitives

Table 12-4. MLME Primitives in the Base Node
MLME primitive Function

MLME_PROMOTE.request prime_cl_null_mlme_promote_request(mlme_promote_request_t)
typedef void (*mlme_promote_request_t)(uint8_t *puc_eui48);

MLME_PROMOTE.confirm typedef void (*mlme_promote_cfm_cb_t)(mlme_result_t x_result);
MLME_RESET.request prime_cl_null_mlme_reset_request(mlme_reset_request_t)

typedef void (*mlme_reset_request_t)(void);
MLME_RESET.confirm typedef void (*mlme_reset_cfm_cb_t)(mlme_result_t x_result);
MLME_GET.request prime_cl_null_mlme_get_request(mlme_get_request_t)

typedef void (*mlme_get_request_t)(uint16_t us_pib_attrib);
MLME_GET.confirm typedef void (*mlme_get_cfm_cb_t)(mlme_result_t x_status, uint16_t

us_pib_attrib, void *pv_pib_value, uint8_t uc_pib_size);
MLME_LIST_GET.request prime_cl_null_mlme_list_get_request(mlme_list_get_request_t)

typedef void (*mlme_list_get_request_t)(uint16_t us_pib_attrib);
MLME_LIST_GET.confirm typedef void (*mlme_list_get_cfm_cb_t)(mlme_result_t x_status,

uint16_t us_pib_attrib, uint8_t *puc_pib_buff, uint16_t us_pib_len);
MLME_SET.request prime_cl_null_mlme_set_request(mlme_set_request_t)

typedef void (*mlme_set_request_t)(uint16_t us_pib_attrib, uint32_t
ul_pib_value);

MLME_SET.confirm typedef void (*mlme_set_cfm_cb_t)(mlme_result_t x_result);

12.1.5 Retrieval of Lists
The MLME_LIST_GET.confirm primitive returns a buffer puc_pib_buff where the requested list
us_pib_attrib is contained. Valid records are found one after the other, with their fields ordered
as described in the PRIME specification. From the provided buffer length us_pib_len and the
record size, users can calculate the number of records contained in the returned buffer and extract
them.

Since the lists in the Base Node can contain a lot of records and the returned buffer size is limited
to 1024 bytes, the confirm primitive might be invoked several times until all records have been
returned. Records are not split between two confirm primitives. The last confirm invocation is
marked with a buffer length of zero to indicate that there are no more valid records.

12.1.6 Callback Functions
The result of confirm and indication primitives is returned by the MAC layer invoking the
corresponding callback function. To set up the callback function pointers, the following function
is required:

typedef void (*mac_set_callbacks_t)(mac_callbacks_t *px_prime_cbs);

Parameters:

• px_prime_cbs: Pointer to the callback structure:
 typedef struct {
 mac_establish_ind_cb_t mac_establish_ind_cb;
 mac_establish_cfm_cb_t mac_establish_cfm_cb;
 mac_release_ind_cb_t mac_release_ind_cb;
 mac_release_cfm_cb_t mac_release_cfm_cb;
 mac_join_ind_cb_t mac_join_ind_cb;
 mac_join_cfm_cb_t mac_join_cfm_cb;
 mac_leave_ind_cb_t mac_leave_ind_cb;
 mac_leave_cfm_cb_t mac_leave_cfm_cb;
 mac_data_ind_cb_t mac_data_ind_cb;
 mac_data_cfm_cb_t mac_data_cfm_cb;
 plme_reset_cfm_cb_t plme_reset_cfm_cb;

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 53

 plme_sleep_cfm_cb_t plme_sleep_cfm_cb;
 plme_resume_cfm_cb_t plme_resume_cfm_cb;
 plme_testmode_cfm_cb_t plme_testmode_cfm_cb;
 plme_get_cfm_cb_t plme_get_cfm_cb;
 plme_set_cfm_cb_t plme_set_cfm_cb;
 mlme_register_ind_cb_t mlme_register_ind_cb1;
 mlme_register_cfm_cb_t mlme_register_cfm_cb1;
 mlme_unregister_ind_cb_t mlme_unregister_ind_cb1;
 mlme_unregister_cfm_cb_t mlme_unregister_cfm_cb1;
 mlme_promote_ind_cb_t mlme_promote_ind_cb1;
 mlme_promote_cfm_cb_t mlme_promote_cfm_cb;
 mlme_demote_ind_cb_t mlme_demote_ind_cb1;
 mlme_demote_cfm_cb_t mlme_demote_cfm_cb1;
 mlme_reset_cfm_cb_t mlme_reset_cfm_cb;
 mlme_get_cfm_cb_t mlme_get_cfm_cb;
 mlme_list_get_cfm_cb_t mlme_list_get_cfm_cb;
 mlme_set_cfm_cb_t mlme_set_cfm_cb;
 } mac_callbacks_t;

Note: 
a. This function is not applicable in a Base Node.

Important: Unused callback functions must be set to NULL.

12.2 IEC 61334-4-32 Primitives
Refer to the PRIME specification for more information about IEC 61334-4-32 primitives and their
functionalities.

Table 12-5. IEC 61334-4-32 Primitives in the Base Node
IEC 61334-4-32 primitive Function

CL_432_RELEASE.request prime_cl_432_release_request(cl_432_release_request_t)
typedef void (*cl_432_release_request_t)(uint16_t us_dst_address);

CL_432_JOIN.indication typedef void (*cl_432_join_ind_cb_t)(uint8_t *puc_device_id, uint8_t
uc_device_id_len, uint16_t us_dst_address, uint8_t *puc_mac);

CL_432_LEAVE.indication typedef void (*cl_432_leave_ind_cb_t)(uint16_t us_dst_address);
DL_DATA.request prime_cl_432_dl_data_request(cl_432_dl_data_request_t)

typedef void (*cl_432_dl_data_request_t)(uint8_t uc_dst_lsap, uint8_t
uc_src_lsap, uint16_t us_dst_address, dl_432_buffer_t *px_buff,
uint16_t uc_lsdu_len, uint8_t uc_link_class);

DL_DATA.confirm typedef void (*cl_432_dl_data_cfm_cb_t)(uint8_t uc_dst_lsap,
uint8_t uc_src_lsap, uint16_t us_dst_address, dl_432_tx_status_t
uc_tx_status);

DL_DATA.indication typedef void (*cl_432_dl_data_ind_cb_t)(uint8_t uc_dst_lsap, uint8_t
uc_src_lsap, uint16_t us_dst_address, uint16_t us_src_address, uint8_t
*puc_data, uint16_t uc_lsdu_len, uint8_t uc_link_class);

The result of confirm and indication primitives is returned by the SSCS invoking the corresponding
callback function. To set up the callback function pointers, the following function is required:

typedef void (*cl_432_set_callbacks_t)(cl_432_callbacks_t *px_cl_432_cbs);

Parameters:

• px_cl_432_cbs: Pointer to the callback structure:
typedef struct {
 cl_432_dl_data_ind_cb_t cl_432_dl_data_ind_cb;
 cl_432_dl_data_cfm_cb_t cl_432_dl_data_cfm_cb;
 cl_432_join_ind_cb_t cl_432_join_ind_cb;

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 54

 cl_432_leave_ind_cb_t cl_432_leave_ind_cb;
} cl_432_callbacks_t;

Important: Unused callback functions must be set to NULL.

12.3 Base Management Primitives

12.3.1 Firmware Upgrade Protocol Primitives

Table 12-6. FUP Primitives in the Base Node
FUP primitive Function

BMNG_FUP_CLEAR_TARGET_LIST.request void bmng_fup_clear_target_list_request(uint8_t
uc_cmd);

BMNG_FUP_ADD_TARGET.request void bmng_fup_add_target_request(uint8_t uc_cmd,
uint8_t *puc_eui48);

BMNG_FUP_SET_FW_DATA.request void bmng_fup_set_fw_data_request(uint8_t uc_cmd,
uint8_t uc_vendor_len, char *pch_vendor,
uint8_t uc_model_len, char *pch_model, uint8_t
uc_version_len, char *pch_version);

BMNG_FUP_SET_UPG_OPTIONS.request void bmng_fup_set_upg_options_request(uint8_t
uc_cmd, uint8_t uc_arq_en, fup_page_size_t
x_page_size, uint8_t uc_multicast_en, uint32_t
ul_delay_restart, uint32_t ul_safety_timer);

BMNG_FUP_INIT_FILE_TX.request void bmng_fup_init_file_tx_request(uint8_t uc_cmd,
uint16_t us_frame_number, uint32_t ul_file_size,
uint16_t us_frame_size, uint32_t ul_crc);

BMNG_FUP_DATA_FRAME.request void bmng_fup_data_frame_request(uint8_t uc_cmd,
uint16_t us_frame_number, uint16_t us_data_len,
uint8_t *puc_data);

BMNG_FUP_CHECK_CRC.request void bmng_fup_check_crc_request(uint8_t uc_cmd);
BMNG_FUP_ABORT_FU.request void bmng_fup_abort_fu_request(uint8_t uc_cmd,

uint8_t *puc_eui48);
BMNG_FUP_START_FU.request void bmng_fup_start_fu_request(uint8_t uc_cmd,

uint8_t uc_enable);
BMNG_FUP_SET_MATCH_RULE.request void bmng_fup_set_match_rule_request(uint8_t uc_cmd,

uint8_t uc_rules);
BMNG_FUP_GET_VERSION.request void bmng_fup_get_version_request(uint8_t uc_cmd,

uint8_t *puc_eui48);
BMNG_FUP_GET_STATE.request void bmng_fup_get_state_request(uint8_t uc_cmd,

uint8_t *puc_eui48);
BMNG_FUP_SET_SIGNATURE_DATA.request Not applicable in 1.3

BMNG_FUP_ACK.indication typedef void (*bmng_fup_ack_cb_t)(uint8_t uc_cmd,
fup_ack_code_t x_ack_code, uint16_t us_extra_info);

BMNG_FUP_STATUS.indication typedef void (*bmng_fup_status_ind_cb_t)
(fup_node_state_t x_state, uint16_t ul_pages,
uint8_t *puc_eui48);

BMNG_FUP_ERROR.indication typedef void (*bmng_fup_error_ind_cb_t)
(fup_error_code_t x_error_code, uint8_t *puc_eui48);

BMNG_FUP_VERSION.indication typedef void (*bmng_fup_version_ind_cb_t)(uint8_t
*puc_eui48, uint8_t uc_vendor_len, char *pch_vendor,
uint8_t uc_model_len, char *pch_model, uint8_t
uc_version_len, char *pch_version);

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 55

...........continued
FUP primitive Function

BMNG_FUP_KILL.indication typedef void (*bmng_fup_kill_ind_cb_t)(uint8_t
*puc_eui48);

12.3.2 Network Event Primitives

Table 12-7. Network Event Primitives
Network Event primitive Function

BMNG_NETWORK_EVENT.indication typedef void (*bmng_network_event_ind_cb_t)
(bmng_net_event_t *px_net_event);

12.3.3 PRIME Profile Primitives

Table 12-8. PRIME Profile Primitives
PRIME Profile primitive Function

BMNG_PPROF_GET.request void bmng_pprof_get_request(uint8_t uc_cmd,
uint8_t *puc_eui48, uint16_t us_data_len,
uint8_t *puc_data);

BMNG_PPROF_SET.request void bmng_pprof_set_request(uint8_t uc_cmd,
uint8_t *puc_eui48, uint16_t us_data_len,
uint8_t *puc_data);

BMNG_PPROF_RESET.request void bmng_pprof_reset_request(uint8_t uc_cmd,
uint8_t *puc_eui48);

BMNG_PPROF_REBOOT.request void bmng_pprof_reboot_request(uint8_t uc_cmd,
uint8_t *puc_eui48);

BMNG_PPROF_GET_ENHANCED.request Not applicable in 1.3

BMNG_PPROF_ZC_DIFF.request1 void bmng_pprof_zc_diff_request(uint8_t uc_cmd,
uint8_t *puc_eui48);

BMNG_PPROF_ACK.indication typedef void (*bmng_pprof_ack_cb_t)(uint8_t
uc_cmd, pprof_ack_code_t x_ack_code);

BMNG_PPROF_GET_RESPONSE.indication typedef void (*bmng_pprof_get_response_cb_t)
(uint8_t *puc_eui48, uint16_t us_data_len,
uint8_t *puc_data);

BMNG_PPROF_GET_ENHANCED_RESPONSE. indication Not applicable in 1.3

BMNG_PPROF_GET_ZC_RESPONSE.indication2 typedef void (*bmng_pprof_get_zc_response_cb_t)
(uint8_t *puc_eui48, uint8_t uc_zc_status,
uint32_t ul_zc_time2);

BMNG_PPROF_ZC_DIFF_RESPONSE.indication typedef void
(*bmng_pprof_zc_diff_response_cb_t)(uint8_t
*puc_eui48, uint32_t ul_time_freq, uint32_t
ul_time_diff3);

Notes: 
1. The response to ZC_DIFF is ZC_DIFF_RESPONSE followed by GET_ZC_RESPONSE, if its callback has

been set up.
2. The standard PIB 0x0078 (PIB_MAC_APP_LIST_ZC_STATUS) is special as it returns only one

element of the list together with the zero crossing time. Therefore, even if the PIB is requested
using a GET request or a GET_ENHANCED request, the invoked callback function with the
response is GET_ZC_RESPONSE instead of GET_RESPONSE or GET_ENHANCED_RESPONSE.

3. In tenths of microsecond.

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 56

12.3.4 Whitelist Management Primitives

Table 12-9. Whitelist Management Primitives
Whitelist Management primitive Function

BMNG_WHITELIST_ADD.request void bmng_whitelist_add_request(uint8_t uc_cmd,
uint8_t *puc_eui48);

BMNG_WHITELIST_REMOVE.request void bmng_whitelist_remove_request(uint8_t
uc_cmd, uint8_t *puc_eui48);

BMNG_WHITELIST_ACK.indication typedef void (*bmng_whitelist_ack_cb_t)(uint8_t
uc_cmd, whitelist_ack_code_t x_ack_code);

12.3.5 Callback Functions
The result of indication primitives is returned by the Base Management layer invoking the
corresponding callback function. To set up the callback function pointers, the following function
is required:

void prime_bmng_set_callbacks(bmng_callbacks_t *px_base_mng_cbs);

Parameters:

• px_base_mng_cbs: Pointer to the callback structure:
 typedef struct {
 bmng_fup_ack_cb_t fup_ack_cb;
 bmng_fup_status_ind_cb_t fup_status_ind_cb;
 bmng_fup_error_ind_cb_t fup_error_ind_cb;
 bmng_fup_version_ind_cb_t fup_version_ind_cb;
 bmng_fup_kill_ind_cb_t fup_kill_ind_cb;
 bmng_network_event_ind_cb_t network_event_ind_cb;
 bmng_pprof_ack_cb_t pprof_ack_cb;
 bmng_pprof_get_response_cb_t pprof_get_response_cb;
 bmng_pprof_get_enhanced_response_cb_t pprof_get_enhanced_response_cb;
 bmng_pprof_get_zc_response_cb_t pprof_get_zc_response_cb;
 bmng_pprof_zc_diff_response_cb_t pprof_zc_diff_response_cb;
 bmng_whitelist_ack_cb_t whitelist_ack_cb;
 } bmng_callbacks_t;

Important: Unused callback functions must be set to NULL.

12.4 PIB Objects Specification and Access
The PRIME FW stack supports all the mandatory attributes of the PLC Information Base (PIB) defined
in the PRIME specification. In addition, Microchip has added several proprietary PIB attributes to
support extra functionalities. These attributes are described in the next sections. The list of all
available PIB attributes can be found in file mac_pib.h .

12.4.1 Proprietary PIB Attributes in the PHY Layer

Table 12-10. Proprietary PIB Attributes in the PHY Layer
Attribute ID Size Range Description

PIB_PHY_SW_VERSION 0x8080 4 bytes - PLC PHY layer software version.

PIB_PHY_ZCT 0x8081 4 bytes - Time in microseconds between the
zero cross of the mains and the end
of the last transmission or reception.
Only applicable in PLC.

PIB_PHY_HOST_VERSION 0x8082 4 bytes - PL360 Host Controller version.

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 57

...........continued
Attribute ID Size Range Description

PIB_MTP_PHY_TX_TIME 0x8085 4 bytes - Transmission time of the last frame
transmitted in PLC in tenths of µs.

PIB_MTP_PHY_RMS_CALC_CORRECTED 0x8086 4 bytes - RMS value of the last PLC signal.

PIB_MTP_PHY_EXECUTE_CALIBRATION 0x8087 2 bytes - Executes calibration process [0: stop
process, 1: start process]. It returns
threshold level to configure board for
PLC.

PIB_MTP_PHY_RX_PARAMS 0x8088 22 bytes - RX PLC PHY structure1:
• RxParam[0]. Modulation scheme:

DBPSK = 0
DQPSK = 1
D8PSK = 2
DBPSK_CC = 4
DQPSK_CC = 5
D8PSK_CC = 6
DBPSK_RB = 12
DQPSK_RB = 13

• RxParam[1]. RSSI.

• RxParam[2-3]. Reception data
length in bytes.

• RxParam[4-5]. EvmHeader.

• RxParam[6-7]. EvmPayload.

• RxParam[8-11].
EvmHeaderAcum.

• RxParam[12-15].
EvmPayloadAcum.

• RxParam[16-19]. Reception time
in microseconds.

• RxParam[20]. Noise.

• RxParam[21]. SNR in dB (0 - 21).

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 58

...........continued
Attribute ID Size Range Description

PIB_MTP_PHY_TX_PARAMS 0x8089 7 bytes - TX PLC PHY structure1:
• TxParam[0]. Modulation scheme:

DBPSK = 0
DQPSK = 1
D8PSK = 2
DBPSK_CC = 4
DQPSK_CC = 5
D8PSK_CC = 6
DBPSK_RB = 12
DQPSK_RB = 13

• TxParam[1]. Attenuation level (0
- 21 dB). When set to 255,
attenuation and gain are set to 0.

• TxParam[2-3]. Transmission data
length in bytes.

• TxParam[4]. Inter-frame time in
tenths of ms (0 - 2550 ms).

• TxParam[5]. Random seed data
generation. (0: send the same
constant payload in each
message, 1 - 255 seed used
to generate different ranges
of random values in the data
payload).

• TxParam[6]. Number of
messages (1 - 0xFF).

PIB_MTP_PHY_CONTINUOUS_TX 0x808A 1 byte 0 - 1 Set the PLC PHY layer to
transmit continuously [0: disabled, 1:
enabled].

PIB_MTP_PHY_ENABLE 0x808E 1 byte 0 - 1 Manufacturing test procedure for
PLC [0: disabled, 1: enabled]. Only
when the MTP is enabled, related
PIBs can be set.

PIB_PHY_TX_CHANNEL 0x8090 1 byte 1 - 8 Transmission/Reception PLC channel,
only when hardware permits
multichannel. The channel depends
on the selected PLC coupling.
It can only be set when MTP is
enabled.

PIB_PHY_SNIFFER_ENABLED 0x8106 1 byte 0 - 1 Enable/disable the sniffer [0:
disabled, 1: enabled].
Bit 0 corresponds to the PLC sniffer.
Bit 3 corresponds to the Serial
sniffer.

PIB_PHY_DRV_AUTO 0x8301 1 byte 0 - 1 Enable/disable automatic selection of
PLC transmission mode [0: disabled,
1: enabled].

PIB_PHY_DRV_IMPEDANCE 0x8302 1 byte 0 - 2 Enable/disable the PLC high
impedance branch [0: high, 1: low, 2:
very low].

PIB_PHY_DRV_ATTENUATION 0x8303 1 byte 0 - 255 Additional attenuation with which a
PLC message must be transmitted.

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 59

Note: 
1. See Application Note Guidelines for PLC performance verification.

12.4.2 Proprietary PIB Attributes in the MAC Layer

Table 12-11. Proprietary PIB Attributes in the MAC Layer
Attribute ID Size Range Description

PIB_MTP_MAC_EUI_48 0x8100 6 bytes - MAC address.

PIB_MAC_PLC_STATE 0x8101 1 byte - PRIME PLC state:
• 0: SN disconnected

• 1: SN detection

• 2: SN registering

• 3: SN operative

• 4: BN

PIB_MAC_ACTION_CFP_LENGTH 0x810D 2 bytes 0 - 128 Set CFP length in symbols in MAC
certification mode.

PIB_MAC_ACTION_BCN_SLOT_COUNT 0x810E 1 byte 1 - 4 Change the number of beacon slots
per frame in MAC certification mode.

PIB_CERTIFICATION_MODE 0x8120 1 byte 0 - 3 Certification mode:
• 0: no certification mode

• 1: PHY certification for 1.3

• 2: MAC certification

• 3: PHY certification for 1.4

PIB_CERTIFICATION_SEND_MSG 0x8121 Array - Send message in PHY certification
mode.
See Table 12-12.

PIB_MTP_MAC_WRITE_SNA 0x8123 6 bytes - Write SNA in MTP mode.

PIB_MAC_ACTION_ARQ_WIN_SIZE 0x8124 1 byte 1 - 32 Change the ARQ window size in MAC
certification mode.

PIB_MAC_INTERNAL_SW_VERSION 0x8126 4 bytes - MAC internal software version.

PIB_BCN_SLOTS_BUSY 0x8131 1 byte 0 - 128 Number of used beacon slots.

PIB_MAC_WHITELIST 0x8150 - - List of MAC addresses of nodes which
are allowed to register.

PIB_MAC_WHITELIST_ENABLED 0x8151 1 byte 0 - 1 Whitelist status [0: disabled, 1:
enabled].

Table 12-12. Data in PIB_CERTIFICATION_SEND_MSG
Element Size Range Description

MsgCount 2 bytes 1 - 2000 Number of messages to transmit

Modulation 1 byte 0 - 7 Modulation scheme (as in PIB_MTP_PHY_TX_PARAMS)

SignalAtt 1 byte 0 - 21 Signal attenuation (in dB)

DutyCycle 1 byte 1 - 100 Duty cycle

PrimeFrame 1 byte 0 - 3 PRIME frame:
• 1.3 frame

• 1.4 type A frame

• 1.4 type B frame

• 1.4 type BC frame

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 60

Important: Only when the certification mode is set to MAC certification, the
following standard PIB attributes are enabled and operative:
• 0x0067 (PIB_MAC_ACTION_REJECT)
• 0x0068 (PIB_MAC_ACTION_ALIVE_TIME)
• 0x006A (PIB_MAC_ACTION_BROADCAST_DATA_BURST)
• 0x006B (PIB_MAC_ACTION_MGMT_CON)
• 0x006C (PIB_MAC_ACTION_MGMT_MUL)
• 0x006F (PIB_MAC_ACTION_SEGMENTED_432)
• 0x0080 (PIB_MAC_ACTION_APPEMU_DATA_BURST)

12.4.3 Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

Table 12-13. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer
Attribute ID Size Range Description

PIB_CL_INTERNAL_SW_VERSION 0x8201 4 bytes - Internal software version of the
SSCS layer.

PIB_432_LIST_NODES 0x8250 - - List of nodes registered in IEC
61334-4-32 layer. See Data in
PIB_432_LIST_NODES.

Table 12-14. Data in PIB_432_LIST_NODES
Element Size Range Description

Address 2 bytes 0 - 0xFFFF IEC 61334-4-32 address

SerialNumber 16 bytes - Serial number assigned in IEC
61334-4-32

LenSerial 1 byte 0 - 16 Length of serial number

MAC 6 bytes - MAC address of the node

12.4.4 Proprietary PIB Attributes in the Management Plane

Table 12-15. Proprietary PIB Attributes in the Management Plane
Attribute ID Size Range Description

PIB_FU_LIST 0x8350 - - List of nodes in the FU target list.
See Data in PIB_FU_LIST.

Table 12-16. Data in PIB_FU_LIST
Element Size Range Description

FUNodeState 1 byte 0 - 0x7F FU node state:
• 0: idle

• 1: receiving

• 2: complete

• 3: countdown

• 4: upgrade

• 5: exception

• 0x7F: unknown

PagesCompleted 4 bytes - Array that indicates which
pages are completed

 SAME70, PIC32CXMTx, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 61

...........continued
Element Size Range Description

MAC 6 bytes - MAC address of the node

 SAME70, PIC32CXMTx, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 62

13. Example Applications
13.1 PRIME Base Modem

The Base Modem is an application example that shows how to serialize the PRIME API when the
user application and the PRIME FW stack are running in different devices. This example serializes the
PRIME API through the USI using the UART. The overall architecture of this functionality is shown in
the next figure.

Figure 13-1. Layer Diagram for a Serialized PRIME FW Stack

HARDWARE

External device

UART

Microcontroller

Embedded USI

PRIME API

PRIME FW Stack

HAL

HAL API

PLC Modem

USI Host

User Application

In this architecture, files modem.h and modem_base.c in the embedded user application are in charge
of coding and decoding the PRIME API primitives, whereas the Embedded USI (included in the HAL)
is responsible for the transmission and reception of serial messages. Similarly, the USI Host in the
external application is responsible for coding and decoding the PRIME API primitives and also for
transmission and reception of serial messages.

The configuration required to support this serialization and the format of the serial messages in the
USI is described in chapter Serialization with Embedded USI. The integration of the USI Host in the
external application is explained in the Application Note PLC Universal Serial Interface.

13.2 Base Slave Modem
The Base Slave Modem is an application example that, together with the PRIME Base Modem
example running in a Base Node, allows the connection of auxiliary nodes in a multi-transformer
substation. The overall architecture of this functionality is shown in the figure below.

 SAME70, PIC32CXMTx, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 63

Figure 13-2. Layer diagram for a multi-transformer system

GATEWAY 1 (TRAFO 1)

APP
PLC MODEM

EXAMPLE

CL

MAC

PHY PLC PHY serial

USI

UART

Sn
if

fe
r

M
N

G
P

P
R

IM
E

A
P

I

APP

UART

USI

Ethernet

IPv4

UDP

PRIME BASE NODE MASTER

UDP-Serial
Network Adapter 1

PLC TRAFO 1

ETHERNET

SPI

U
SE

R
D

EF
IN

ED
B

A
SE

M
N

G

GATEWAY 2 (TRAFO 2)

APP

UART

USI

Ethernet

IPv4

UDP

PRIME BASE NODE SLAVE

UDP-Serial
Network Adapter 2

PLC TRAFO 2

APP
PLC MODEM

EXAMPLE

CL

MAC

PHY PLCPHY serial

USI

UART

Sn
if

fe
r

M
N

G
P

P
R

IM
E

A
P

I

SPI

U
SE

R
D

EF
IN

ED

The Base Slave Node is a customized Service Node with its own library running over the PLC Modem
application. The communication between the Base Node and the Base Slave Node takes place using
the serial PHY layer, which is serialized through the USI and then transmitted over UDP by external
devices. The Base Slave Node is promoted to switch by the Base Node as soon as it registers so that
it can forward PRIME messages using the PLC PHY layer. In this situation, the MAC sniffer provides
information about all the traffic in the network being it from the PLC PHY layer or the serial PHY
layer.

Important: Microchip does not provide the Network Adapters or the UDP
encapsulation.

The configuration required to support this functionality and the format of the serial messages in the
USI is described in chapter Serialization with Embedded USI.

For more information about this functionality, see chapter Auxiliary Nodes Connection in Multi-
transformer Substations).

13.3 PHY Applications
Microchip also provides several applications that demonstrate the complete performance of the
PRIME PHY layer. Except for the PHY sniffer, such applications only offer the ability to send and
receive PLC data through the PLC PHY layer without any MAC layer as shown in Figure 13-3. The API
of the PHY is described in chapter API of PHY and PAL Layers.

The available PLC PHY applications are the following:

• PHY Tester: This PHY application example shows the capabilities of the PL360 device in a point-to-
point connection, using the USI to serialize the API of the PLC PHY layer.

 SAME70, PIC32CXMTx, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 64

• PHY TX Test Console: This PHY application example uses a terminal console to configure the PLC
PHY layer and perform several board tests. Parameters that are configured include transmission
parameters such as modulation, frame data length and time interval between frames.

• PHY PLC&Go: This PHY application example shows the basic code required to work with the PLC
PHY layer.

There is also the PHY Sniffer application, which allows monitoring of data traffic on a PRIME network
by serializing PHY frames (see the User Manual of the Hybrid Sniffer). The PHY Sniffer can detect
traffic coming from any PHY layer.

Figure 13-3. Layer Diagram of a PHY-only Application

PAL

PHY

USER
APPLICATION

PAL API

HAL

HARDWARE

HAL API

PHY API

 SAME70, PIC32CXMTx, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 65

14. Serialization with Embedded USI
The Embedded USI is a wrapper part of the HAL that provides the interface between the PRIME FW
stack and the serial communications channel.

For serial transmissions from the PRIME stack, the Embedded USI provides a function that packs
and sends each message via the serial link to the external application. For serial receptions from the
serial link, the Embedded USI provides a function that unpacks the received message and passes it
to the PRIME FW stack.

The equivalent wrapper in the external application is the provided USI Host, which is also in charge
of coding and decoding the messages. If users want to develop their own USI Host application, they
will have to take into account the following operation of the Embedded USI to make it compatible:

• USI frame format
• USI PRIME protocols
• Embedded USI Configuration

For more information about available services and the provided USI Host, see Application Note PLC
Universal Serial Interface and the USI Host User Guide.

14.1 USI Frame Format
The USI frame format is based on the Serial Communications Profile of the Management Plane
defined in the PRIME specification, and is shown in the following figure.

Figure 14-1. USI Frame Format

7E
(1 byte)

MSG LENGTH
(10 bits)

PROTOCOL ID
(6 bits)

MESSAGE
DATA

CRC
(variable)

7E
(1 byte)

The frame starts and ends with 0x7E. The following is the description of each field:

• MSG LENGTH: Command length in bytes (protocol command byte plus message data bytes).
• PROTOCOL ID: Protocol in the frame (see Table 14-1).
• MESSAGE DATA: Variable field with the data of the exchanged message.
• CRC: Error correction code for the message. The CRC field can have a different length depending

on the protocol (see Table 14-1).

Table 14-1. USI Protocols and Associated CRC Size
Protocol Protocol ID CRC size (bits)

PROTOCOLS_MNGP_PRIME1 0x00 - 0x07 32

PROTOCOL_SNIF_PRIME 0x13 16

PROTOCOL_PHY_SERIAL 0x1F 16

PROTOCOL_PHY_TESTER2 0x22 16

PROTOCOL_PRIME_API 0x30 8

PROTOCOL_INTERNAL 0x3F 16

PROTOCOL_USER_DEFINED3 0xFE Defined by the user. By default, 16.

 SAME70, PIC32CXMTx, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 66

Notes: 
1. These protocols are described in the Serial Communications Profile of the Management Plane

defined in the PRIME specification.
2. This protocol is only used by the PLC PHY Tester PC tool that Microchip provides with the

evaluation kit in order to serialize the API of the PLC PHY layer.
3. Defined by the user for their own proprietary protocol, if necessary.

14.2 USI PRIME Protocols
The USI is able to serialize the following PRIME interfaces and services:

• PRIME Management Plane
• PRIME Sniffer
• PRIME API
• PRIME PHY Serial
• User Application

14.2.1 PRIME Management Plane Frame Format
This service refers to the different protocols defined in the Serial Communication Profile of the
Management Plane described in the PRIME specification.

The frame format is shown in the following figure.

Figure 14-2. MNGP PRIME USI Frame Format

7E
(1 byte)

MSG LENGTH
(10 bits)

PROTOCOL ID
(6 bits)

MESSAGE
DATA

CRC
(4 bytes)

7E
(1 byte)

The available management functions are described in the PRIME specification and shown in the
following table.

Table 14-2. USI MNGP PRIME Protocols
Protocols MNGP PRIME Protocol ID Description

PROTOCOL_MNGP_PRIME_GETQRY 0x00 This protocol is used to get a PIB with information
from the node.

PROTOCOL_MNGP_PRIME_GETRSP 0x01 This protocol is the response to
PROTOCOL_MNGP_PRIME_GETQRY.

PROTOCOL_MNGP_PRIME_SET 0x02 This protocol is used to set a PIB and thus modify
the behavior of the node.

PROTOCOL_MNGP_PRIME_RESET 0x03 This protocol is used to reset statistics.

PROTOCOL_MNGP_PRIME_REBOOT 0x04 This protocol is used to reboot the node.

PROTOCOL_MNGP_PRIME_FU 0x05 This protocol is used to exchange FU protocol
frames. In this way, it is possible to perform a FU
process through the serial port.

PROTOCOL_MNGP_PRIME_GETQRY_EN 0x06 This protocol is used to get a PIB with information
from the node in an enhanced way.

PROTOCOL_MNGP_PRIME_GETRSP_EN 0x07 This protocol is the response to
PROTOCOL_MNGP_PRIME_GETQRY_EN.

14.2.2 PRIME Sniffer Frame Format
The PRIME Sniffer is a service of the PRIME FW stack that uses the PHY layer to provide received
PLC traffic from the PRIME network. The USI is able to serialize and treat this service independently.
This serialization can be directly passed to Microchip PLC PC Tools to be analyzed or saved for later

 SAME70, PIC32CXMTx, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 67

use. The embedded sniffer is only available when it has been enabled and properly configured (see
chapter PRIME Stack User Configuration Parameters).

Figure 14-3 and Figure 14-4 show the USI frame format of the frames generated in the node. In this
case, the field MESSAGE DATA that appears in the USI frame format (see Figure 14-1) is divided into
two different fields: header and PDU sniffer message.

Figure 14-3. PRIME Sniffer USI Frame Format

7E
(1 byte)

MSG LENGTH
(10 bits)

PROTOCOL ID
0x13 (6 bits)

MESSAGE DATA CRC
(2 bytes)

7E
(1 byte)HEADER

(32 bytes) PDU SNIFFER MSG

Figure 14-4. PRIME Sniffer USI Header Field

FRA T
1 byte

SNIF F
1 byte

SNIF T
1 byte

MODUL
1 byte

SYM PDU
1 byte

SNR
1 byte

EX SNR
1 byte

CHN
1 byte

CINR
1 byte

BERSOFT
1 byte

BERS MAX
1 byte

0x00...0x00
8 bytes

Time Start
4 bytes

Time End
4 bytes

RSSI
2 bytes

0x00
1 byte

PDU LEN
2 bytes

As indicated before, sniffer frames contain the received PDU (MAC encapsulation following the
PRIME specification) and some additional information related to the PHY layer, which is included in
the header part.

• FRA T: PDU type of the received frame (A, B, BC) (see values in file sniffer_if.h.h)
• SNIF F: Sniffer frame version: 0x14 for current version
• SNIF T: Sniffer type version: 0x11 for PL360
• MODUL: Modulation scheme of the received frame (see modulation values in file

atpl360_comm.h). Note that the modulation scheme of frames received in the serial PHY layer
is set to 0x0F

• SYM PDU: Length of the PDU in PHY symbols
• SNR: PRIME defined measurement of the SNR (from 0 to 7)
• EX SNR: High precision SNR
• CHN: Channel in which the frame has been received
• CINR: Minimum Carrier to Interference Noise Ratio
• BERSOFT: Viterbi soft bit error rate value
• BERS MAX: Viterbi soft bit error rate maximum value
• Time Start/Time End: High precision internal counter to measure length (time) of the PDUs in

microseconds
• RSSI: Average RSSI in dBuV
• PDU LEN: Length of the PDU in bytes

For details about the PHY information, see the datasheets for PL360 and PL460.

14.2.3 PRIME API Frame Format
This protocol consists of the serialization of the PRIME API primitives. The PRIME FW stack can
provide the PRIME API through a serial interface as an independent protocol of USI. It is only
available when the user application contains the modem example.

The frame format is shown in the following figure.

 SAME70, PIC32CXMTx, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 68

Figure 14-5. PRIME API USI Frame Format

7E MSG LENGTH
(10 bits)

PROTOCOL ID
0x30 (6 bits)

MESSAGE DATA
CRC

(1 byte) 7ELENGTH Extended
(1 bit)

PRIME API
COMMAND

(7 bits)

Primitive function
parameters

There are three fields in this frame inside the general MESSAGE DATA field:

• LENGTH Extended: Since the information contained in the message data can exceed the size
reserved for MSG length (10 bits), a bit has been added to increase the total message length size.
In this field the most significant bit of the message length is codified

• PRIME API COMMAND: This field refers directly to the primitive included in the message, using
the same primitives described in the PRIME API interface description (see chapter API of PRIME
FW Stack). The values for those primitives are defined in enumerator prime_api_cmd_t in file
modem.h

• Primitive function parameters: The serialization of each primitive directly concatenates the
different parameters included in the primitive function, with the most significant byte of a
variable always on the left. The only exception is that the length of buffers is always placed
before the buffer itself so that the data can be inserted and extracted more easily. This is
applicable to all primitives in the PRIME API. Figure 14-6 shows how a serialized primitive looks. It
is based on the MAC_ESTABLISH.request, which is mapped into the following type:
typedef void (*mac_establish_request_t)(uint8_t *puc_eui48, uint8_t uc_type, uint8_t
*puc_data, uint16_t us_data_len, uint8_t uc_arq, uint8_t uc_cfbytes);

Figure 14-6. Message Data for MAC_ESTABLISH.request Primitive

MAC_ADDR
(6 bytes)

CON_TYPE
(1 byte)

DATA_LEN
(2 bytes)

DATA
(variable)

ARQ
(1 byte)

CFP_BYTES
(1 byte)

Important: Note that the Base Management primitives already include the
PRIME API command as the first function parameter, so exceptionally sending
it twice is not needed.

14.2.4 PRIME PHY Serial Frame Format
This protocol consists of the serialization of the PHY layer. The serial PHY layer is used in
applications where a Base Node communicates with an auxiliary node without using the PLC
channel. The serialized PRIME PDU is passed to an external device which will transfer it to the USI in
the other node. The serial PHY layer is only available when the PRIME FW stack is configured to use
the serial PHY layer (see chapter Enabling Serial PHY Layer).

The frame format is shown in the following figure.

Figure 14-7. PRIME PHY layer USI frame format

14.3 Embedded USI Configuration
The Embedded USI must be configured according to the user requirements. This configuration
consists of indicating the protocols to be serialized and which port will be used by each protocol.

 SAME70, PIC32CXMTx, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 69

14.3.1 Definition and Configuration of USI Ports
Users can define the ports to be used and their configurations in the conf_usi.h file.

/* Port Communications configuration */
#define NUM_PORTS 2
#define PORT_0 CONF_PORT(UART_TYPE, 0, 115200, HAL_TX_UART_BUF0_SIZE, HAL_RX_UART_BUF0_SIZE)
#define PORT_1 CONF_PORT(USART_TYPE, 4, 57600, HAL_TX_USART_BUF1_SIZE, HAL_RX_USART_BUF1_SIZE)
#define PORT_2 CONF_PORT(USB_TYPE, 0, 115200, 1024, 1024)

NUM_PORTS defines the number of ports to be used. After that, every PORT_x must be configured
following a sequential order (PORT_0, PORT_1, etc.). The input parameters of the port configuration
are shown in the following table.

Table 14-3. USI Port Configuration Parameters
Parameter Description Valid Values

Type Type of link1 UART_TYPE for UART
USART_TYPE for USART
USB_TYPE for USB

Channel Instance 0: UART0/USART0/USB
1: UART1/USART1
2: UART2/USART2
4: USART4

Speed Baudrate 9600, 19200, 38400, 57600, 115200, 230400, 256000,
921600

TX_size Size of transmission buffer Size of buffer must be (at least) twice the size of the bigger
message payload linked to this port.2

RX_size Size of reception buffer Size of buffer must be (at least) twice the size of the bigger
message payload linked to this port.2

Notes: 
1. Only UART, USART and USB are currently supported.
2. In case of IEC61334-4-32 messages, please note that protocol headers are part of the USI

message payload.

Important: Both Embedded USI and the external application must use the same
baud rate and protocols. Messages from protocols not serialized in both sides of
the serial communications channel are discarded.

14.3.2 Linking of Serial Communication Profile of PRIME Management Plane
To link the Serial Communication Profile of the PRIME Management Plane to a USI port defined in
the Embedded USI, users must use file conf_mngp.h.

By default, the link is set to PORT_0.

 /* Select PORT for Serial Profile */
 #define MNGP_SPROF_USI_PORT 0

14.3.3 Linking of PRIME Sniffer
To link the embedded PRIME sniffer to a USI port defined in the Embedded USI, users must use file
conf_pal.h.

 SAME70, PIC32CXMTx, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 70

By default, the link is set to PORT_0.

 /* Select PORT to serialize PHY sniffer */
 #define PHY_SNIFFER_USI_PORT 0

14.3.4 Linking of PRIME API
To link the PRIME API to a USI port defined in the Embedded USI, users must use file
conf_app_example.h (assuming they are using the modem example). By default, the link is set to
PORT_0.

 /** USI PORT */
 #define MODEM_USI_PORT 0

14.3.5 Linking of PRIME PHY Serial
To link the PRIME PHY Serial to a USI port defined in the Embedded USI, users must use file
conf_phy_serial.h.

By default, the link is set to PORT_0.

 /** Select PORT to serialize PHY */
 #define PHY_SERIAL_USI_PORT 0

 SAME70, PIC32CXMTx, PL360, PL460
Auxiliary Nodes Connection in Multi-transformer Substations

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 71

15. Auxiliary Nodes Connection in Multi-transformer Substations
In a secondary substation with multiple transformers whose respective panels are independent
from each other, the PRIME PLC signal does not have enough power transfer between the two
panels. Therefore, the Base Node is not able to communicate appropriately with Service Nodes
connected to a different panel. To solve this, an Auxiliary Node is required in each panel. The
function of this Auxiliary Node is to repeat Base Node messages (as a plain PRIME switch) addressed
to any meter in its panel.

Figure 15-1. Substation with Auxiliary Node

Considering the elements in the figure above, the interface between the Base Node and the
Auxiliary Node becomes important, as PRIME communications need to be transferred over it with as
fewer losses as possible. The PRIME group proposes to use an Ethernet link where PRIME PDUs are
encapsulated in UDP packets.

More information about this problem can be found in the Ticket #65 of the MAC Task Force in the
PRIME Alliance.

Microchip provides a solution consisting of a Base Node and a Base Slave Node which both have two
PHY layers: the PLC PHY layer and a serial PHY layer (for configuration, see chapter Enabling Serial
PHY Layer). The traffic from the serial PHY layer is serialized through the USI of the HAL (see chapter
Serialization with Embedded USI). Users are responsible for converting the serial frames into UDP
frames (and vice versa) and exchange them between the Base Node and the Base Slave Node.

The figure below shows the block architecture of this system and how the PRIME PDU is exchanged
between them. In the Base Node, the PRIME PDU is generated in the MAC layer, which determines
if it must be sent via PLC or serial link. If the PDU must be sent via serial link, it is passed to the

 SAME70, PIC32CXMTx, PL360, PL460
Auxiliary Nodes Connection in Multi-transformer Substations

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 72

serial PHY layer, which then passes it to the Embedded USI. The USI Host in the external application
extracts the PRIME PDU and sends it via UDP to the Auxiliary Node. The USI Host in the Auxiliary
Node extracts the PDU and serializes it so that it is received in the Embedded USI, which passes
it to the serial PHY layer and from there to the MAC layer. The MAC layer in the Base Slave Node
forwards messages from the serial PHY layer to the PLC PHY layer. Messages received in the PLC
PHY layer of the Base Slave Node are forwarded to the serial PHY layer, which passes them to the
Embedded USI. They are received in the MAC layer of the Base Node following the inverse way.

This solution is only available in the SAME70Q21 device, in the mini and the full PRIME libraries of
the Base Node. The Base Slave Node has its own library.

Figure 15-2. Block diagram of connected PRIME nodes

PRIME Concentrator

PRIME Base Node

Embedded USI

PRIME PDUUSI USI

USER HOST APPLICATION

USI Host

UDP Module

Downlink
(Panel 1)

Uplink
(Panel 1)

PLC

PHY SerialPHY PLC

PHY Layer

PRIME PDUUSI USI

PRIME PDU
MAC Layer

PRIME PDUUDP UDP

PRIME Auxiliary Node

PRIME Base Slave Node

Embedded USI

PRIME PDUUSI USI

USER HOST APPLICATION

USI Host

UDP Module

Downlink
(Panel 2)

Uplink
(Panel 2)

PLC

PHY SerialPHY PLC

PHY Layer

PRIME PDUUSI USI

PRIME PDU
MAC Layer

PRIME PDUUDP UDP

Network
Link

(Panel 1) (Panel 2) (Panel 2) (Panel 2)

 SAME70, PIC32CXMTx, PL360, PL460
Abbreviations

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 73

16. Abbreviations
AES Advanced Encryption Standard

AGC Automatic Gain Mode

API Application Programming Interface

ARQ Automatic Repeat Request

BER Bit Error Rate

BN Base Node

CC Convolutional Code

CFP Contention Free Period

CINR Carrier to Interference Noise Ratio

CL Convergence Layer

CPCS Common Part Convergence Sublayer

CRC Cyclic Redundancy Check

D8PSK Differential Eight-Phase Shift Keying

DBPSK Differential Binary Phase Shift Keying

DCU Data Concentrator Unit

DLMS Device Language Message Specification

DMA Direct Memory Access

DQPSK Differential Quaternary Phase Shift Keying

FU Firmware Upgrade

FUP Firmware Upgrade Protocol

FW Firmware

GPIO General Purpose Input/Output

HAL Hardware Abstraction Layer

IEC International Electrotechnical Committee

IP Internet Protocol

LNID Local Node Identifier

MAC Medium Access Control

MCU Microcontroller Unit

MLME MAC Layer Management Entity

MNGP Management Plane

MPAL MultiPhy Abstraction Layer

MPDU MAC Protocol Data Unit

MTP Manufacturing Test Procedure

PAL Physical Abstraction Layer

PDU Protocol Data Unit

PHY Physical

PIB PLC Information Base

PICS Protocol Implementation Conformance Statement

PLC Power Line Communications

PLME PHY Layer Management Entity

PMC Power Management Controller

PRIME Powerline Intelligent Metering Evolution

RB Robust

RMS Root Mean Square

RSSI Received Signal Strength Indicator

SAP Service Access Point

 SAME70, PIC32CXMTx, PL360, PL460
Abbreviations

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 74

SDRAM Synchronous Dynamic Random-Access Memory

SN Service Node

SNA Sub-Network Address

SNR Signal-to-Noise Ratio

SPI Serial Peripheral Interface

SSCS Service Specific Convergence Sublayer

TC Timer/Counter

TFTP Trivial File Transfer Protocol

TRNG True Random Number Generator

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

USART Universal Synchronous/Asynchronous Receiver/Transmitter

USI Universal Serial Interface

 SAME70, PIC32CXMTx, PL360, PL460
References

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 75

17. References
Microchip Smart Energy

Microchip Power Line Communications

Microchip Design Support

PRIME Alliance

Base Node Evaluation Kit

PL460 Evaluation Kit

PIC32CXMTSH Demo Board

PIC32CXMTG Evaluation Kit

www.microchip.com/en-us/development-tool/ATSAME70-XPLD

SAMG55 Xplained PRO Evaluation Kit

Documents for supported families and boards

https://www.microchip.com/en-us/products/smart-energy-metering
https://www.microchip.com/en-us/products/smart-energy-metering/power-line-communications
https://microchip.my.site.com/s/
http://www.prime-alliance.org/
https://ww1.microchip.com/downloads/aemDocuments/documents/SE/ProductDocuments/BoardDesignFiles/PL360BN_v1.pdf
https://www.microchip.com/en-us/development-tool/EV13L63A
https://www.microchip.com/en-us/development-tool/EV84M21A
https://www.microchip.com/en-us/development-tool/EV11K09A
https://www.microchip.com/en-us/development-tool/ATSAME70-XPLD
https://www.microchip.com/en-us/development-tool/atsamg55-xpro
https://www.microchip.com/en-us/document-listing

 SAME70, PIC32CXMTx, PL360, PL460
Microchip Revision History

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 76

18. Microchip Revision History
18.1 Revision C - 03/2024

No content changes compared with the previous revision, cleared DS# related issues.

18.2 Revision B - 02/2024
The following changes were incorporated in this revision:

Document Removed all references to ATPL230, ASF, Atmel Studio and
Doxygen.
Added and removed PLC where necessary to make it general
for all available PHY layers.
Added PL460 whenever there was a reference to PL360
platform.
Other editorials.

Features Updated platforms and modems.

PRIME FW Stack, Event-Driven Operation Updated description.

PRIME FW Stack Library Updated libraries according to the new devices and boards.

Project Examples Updated paths and image.

Introduction Removed references to old platforms. Corrected PIB name.

Physical Abstraction Layer (PAL) Added MPAL.

Hardware Resources Usage Updated mandatory timers.

HAL API Updated HAL functions.

4.3.1. Task Manager, Priorities and Preemption Updated timing.

Other Coding Requirements Removed priority setting for TC0.

PRIME Callback Functions Added zero cross functions.

Firmware Version Information Updated model and version.

Communication Channel and other PHY Parameters Added PLC couplings for PL460. Corrected configuration key.
Removed thresholds.

PLC Coupling (PL460 platform), Zero Cross Detection in PLC,
Serial PHY SAP

New chapters.

Band Plan in PLC Renamed chapter. Forced channel 1 in band plan.

Enabling PLC PHY Layer, Enabling Serial PHY Layer, Sniffer
Serialization

Renamed chapter. Updated setting.

Base Node Parameters Corrected configuration key.

File Transfer Stage Added note to indicate that signature is not supported.

API for PRIME Profile in Management Plane Added comment about enhanced API for phase detection.

General Prerequisites Updated IAR version. Removed Atmel Studio.

Supported MCU Families, Supported Devices and Supported
boards

Updated devices and boards.

PHY Frames Removed date of specification.

PLC PHY SAP, Linking of PRIME Sniffer Renamed chapters.

Callback Functions Updated callback functions.

Data Primitives Updated request function input and output parameters.

Management Primitives Added column to indicate in which PHY platforms the
primitives are available. Added PCH to primitives.

API of PRIME FW Stack Added comment about parameters from other specification
versions.

PRIME Profile Primitives Added zero cross functions.

 SAME70, PIC32CXMTx, PL360, PL460
Microchip Revision History

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 77

Proprietary PIB Attributes in the PHY Layer Removed obsolete PIBs. Updated MTP PIBs. Added new PIBs.
Added specific enabling/disabling of sniffer for different PHY
layers.

Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer Corrected PIB name.

PLC PHY Applications Renamed chapter. Updated name of last application.

USI Frame Format Corrected name of protocol and added missing one.

Definition and Configuration of USI Ports Removed note about SAM4C.

Linking of PRIME PHY Serial Corrected setting.

Abbreviations Updated abbreviations.

References Updated links.

18.3 Rev A - 07/2020
The following changes were incorporated in this revision:

Document Editorials.

Example Configuration - conf_app_example.h and Linking of
PRIME API

Updated configuration of modem port.

HAL API Added HAL functions for network recovery.
Changed structure for notes.

HAL API and PRIME Management Plane Added user specific PIBs.

Main Function Structure Improved hardware initialization.

Other Coding Requirements Added effect on increased call stack size.
Removed optimizations in Atmel Studio projects.
Added clarifications about interrupt handling.

Data Storage Removed allocation of PHY layer in the PL360 platform.

Proprietary PIB Attributes in the PHY Layer Added new proprietary PIBs and updated MTP PIB.

Get Function and Set Function Aligned function parameters with code.

Proprietary PIB Attributes in the PHY Layer and PRIME Sniffer
Frame Format

Added clarifications about time units.

Firmware Version Information Updated vendor and version.

Communication Channel and other PHY Parameters Added ATPLCOUP011.
Corrected configuration key.

Hardware Resources Usage Added remark about platform for mandatory timers.

Automatic Repeat Request (ARQ) Replaced frame by fragment.

General Prerequisites Updated IAR version.

Definition and Configuration of USI Ports Added USB type as USI port.

Features Added missing modem PL360B.

PLC Coupling (PL360 Platform) Added coupling configuration in PL360 platform.

Definition and Configuration of USI Ports, Linking of
Serial Communications Profile of PRIME Management Plane,
Linking of PRIME Sniffer (PL360 Platform), Linking of PRIME
PHY Serial, 14.3.3. Linking of PRIME Sniffer

Clarified usage of USI ports.

PHY Applications Added another PHY example.

PRIME Sniffer Frame Format Added sniffer type version for PL360.

PRIME FW Stack Library, Supported MCU Families, Supported
Devices and Supported boards

Added new devices and boards.

PRIME Management Plane Frame Format Corrected name of MNG protocol.

USI Host Example Added meaning of abbreviation.

Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer Removed PIB that belonged to SN only.
Corrected size of serial number.

 SAME70, PIC32CXMTx, PL360, PL460
Microchip Revision History

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 78

Proprietary PIB Attributes in the Management Plane Removed LNID from PIB_FU_LIST.

References Updated links.

18.4 Old Revision History
The following revision histories correspond to the document updates prior moving to MCU32.

18.4.1 Rev A - 06/2016
Document Initial document release.

18.4.2 Rev B - 07/2016
Document Minor corrections and editorials.

Propietary PIB Attributes in the MAC Layer Added proprietary PIB.

References Corrected references.

Understanding the Firmware Package, Base Slave Modem,
Auxiliary Nodes Connection in Multi-transfomer Substations

Added updates related to ticket 65 (auxiliary nodes in multi-
transformer substations).

18.4.3 Rev C - 09/2016
Other Coding Requirements Added more details about confirm requirements.

Retrieval of Lists Added information about list retrieval.

Serialization with Embedded USI Added embedded USI.

Base Slave Modem, Auxiliary Nodes Connection in Multi-
transfomer Substations

Improved ticket 65.

18.4.4 Rev D - 12/2016
PRIME API Frame Format Added note to BMNG commands in USI.

HAL API Modified HAL API function.

Propietary PIB Attributes in the MAC Layer Added PIB for ticket 65.

PLC Firmware Upgrade Stage Corrected confirmed state of FUP.

General Prerequisites Updated tool versions.

Other Coding Requirements Added warning about code optimizations.

18.4.5 Rev E - 05/2017
Other coding requirements and Main Function Structure Added supply monitor control.

HAL API Added HAL functions.

Whitelist Management and Whitelist Management Primitives Added support of whitelist.

Firmware Version Information Improved Firmware Version Information chapter.

MAC primitives and IEC 61334-4-32 Primitives Corrected MAC and 4.32 primitives.

18.4.6 Rev F - 05/2017
Whitelist Management Added comment about removing node from whitelist.

Firmware Upgrade Protocol Corrected macro names for FUP states.
Added error codes for FUP ACK.

Enabling Serial PHY Layer Corrected configuration of Serial PHY layer.

General Prerequisites Updated version of Atmel Studio.

18.4.7 Rev G - 10/2017
Document Editorials.

 SAME70, PIC32CXMTx, PL360, PL460
Microchip Revision History

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 79

HAL API Added warning about interruptions in hal_cfg.

 SAME70, PIC32CXMTx, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 80

Microchip Information
The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to
make files and information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests,
online discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip
products. Subscribers will receive email notification whenever there are changes, updates, revisions
or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are
also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip product is strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure

https://www.microchip.com/
https://www.microchip.com/pcn
https://www.microchip.com/support

 SAME70, PIC32CXMTx, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 81

that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer,
LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper
Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium,
TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic
Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge,
IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi,
MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II,
Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary
of Microchip Technology Inc., in other countries.

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

 SAME70, PIC32CXMTx, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 82

All other trademarks mentioned herein are property of their respective companies.
© 2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-4114-8

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit
www.microchip.com/quality.

https://www.microchip.com/quality

Worldwide Sales and Service

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50003018C - 83

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

www.microchip.com/support

Web Address:

www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA

Tel: 774-760-0087

Fax: 774-760-0088

Chicago

Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN

Tel: 317-773-8323

Fax: 317-773-5453

Tel: 317-536-2380

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980

Fax: 905-695-2078

Australia - Sydney

Tel: 61-2-9868-6733

China - Beijing

Tel: 86-10-8569-7000

China - Chengdu

Tel: 86-28-8665-5511

China - Chongqing

Tel: 86-23-8980-9588

China - Dongguan

Tel: 86-769-8702-9880

China - Guangzhou

Tel: 86-20-8755-8029

China - Hangzhou

Tel: 86-571-8792-8115

China - Hong Kong SAR

Tel: 852-2943-5100

China - Nanjing

Tel: 86-25-8473-2460

China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai

Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252

China - Xiamen

Tel: 86-592-2388138

China - Zhuhai

Tel: 86-756-3210040

India - Bangalore

Tel: 91-80-3090-4444

India - New Delhi

Tel: 91-11-4160-8631

India - Pune

Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur

Tel: 60-3-7651-7906

Malaysia - Penang

Tel: 60-4-227-8870

Philippines - Manila

Tel: 63-2-634-9065

Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh

Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4485-5910

Fax: 45-4485-2829

Finland - Espoo

Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-8931-9700

Germany - Haan

Tel: 49-2129-3766400

Germany - Heilbronn

Tel: 49-7131-72400

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra’anana

Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Padova

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Norway - Trondheim

Tel: 47-72884388

Poland - Warsaw

Tel: 48-22-3325737

Romania - Bucharest

Tel: 40-21-407-87-50

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Gothenberg

Tel: 46-31-704-60-40

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham

Tel: 44-118-921-5800

Fax: 44-118-921-5820

https://www.microchip.com/support
https://www.microchip.com

	Introduction
	Features
	Table of Contents
	1. Overview
	1.1. General Architecture
	1.1.1. User Application
	1.1.2. PRIME FW Stack

	1.2. Event-Driven Operation

	2. Understanding the Firmware Package
	2.1. PRIME Firmware Package Contents
	2.1.1. PRIME FW Stack Library
	2.1.2. Project Examples
	2.1.3. PL360 Firmware
	2.1.4. USI Host Example

	3. PRIME FW Stack
	3.1. Introduction
	3.1.1. Physical Layer (PHY)
	3.1.2. Physical Abstraction Layer (PAL)
	3.1.3. Medium Access Control Layer (MAC)
	3.1.4. Convergence Layer (CL)
	3.1.5. Management Plane (MNGP)
	3.1.6. Base Management (Base MNG)

	4. Managing the PRIME FW Stack
	4.1. Hardware Resources Usage
	4.1.1. Data Storage

	4.2. PRIME Interfaces
	4.2.1. PRIME API
	4.2.1.1. Request/Confirm Example
	4.2.1.2. Indication/Response Example

	4.2.2. HAL API

	4.3. PRIME Integration Requirements
	4.3.1. Task Manager, Priorities and Preemption
	4.3.2. Other Coding Requirements

	4.4. Main Function Structure
	4.4.1. PLC Signaling (optional)
	4.4.1.1. Providing the Pointer to the Transmission Event Callback Function
	4.4.1.2. Providing the Pointer to the Reception Event Callback Function

	4.4.2. PRIME FW Stack Initialization
	4.4.3. PRIME Callback Functions
	4.4.4. PRIME FW Stack Process

	4.5. Configuration Parameters
	4.5.1. PRIME Stack User Configuration Parameters
	4.5.1.1. Enabling Base Node API
	4.5.1.2. Firmware Version Information
	4.5.1.3. Communication Channel and other PHY Parameters
	4.5.1.4. PLC Coupling (PL360 Platform)
	4.5.1.5. PLC Coupling (PL460 Platform)
	4.5.1.6. Band Plan in PLC
	4.5.1.7. MAC Address
	4.5.1.8. Enabling PLC PHY Layer
	4.5.1.9. Enabling Serial PHY Layer
	4.5.1.10. Sniffer Serialization
	4.5.1.11. Serial Communication Profile of PRIME Management Plane
	4.5.1.12. Base Node Parameters
	4.5.1.13. PRIME Mode
	4.5.1.14. Zero Cross Detection in PLC
	4.5.1.15. Network Behavior

	4.5.2. Application Configuration Parameters
	4.5.2.1. Example Configuration – conf_app_example.h
	4.5.2.2. HAL Configuration – conf_hal.h
	4.5.2.3. PRIME Stack Configuration – conf_prime_stack.h
	4.5.2.4. USI Configuration – conf_usi.h

	5. Data Exchange
	5.1. Null SSCS
	5.2. IEC 61334-4-32
	5.3. Automatic Repeat Request (ARQ)

	6. PRIME Management Plane
	7. Base Management
	7.1. Overview
	7.2. Firmware Upgrade Protocol
	7.2.1. FUP Stages
	7.2.1.1. Setup Stage
	7.2.1.2. File Transfer Stage
	7.2.1.3. Firmware Upgrade Stage

	7.3. Network Events
	7.4. API for PRIME Profile in Management Plane
	7.5. Whitelist Management

	8. Toolchain
	8.1. General Prerequisites
	8.2. Building the Applications
	8.2.1. Using IAR Embedded Workbench

	9. Supported Platforms
	9.1. Supported MCU Families
	9.2. Supported Devices
	9.3. Supported Boards

	10. PICS
	10.1. Major Roles for Devices Compliant with PRIME
	10.1.1. Major Capabilities of the PHY Layer
	10.1.1.1. PHY Frames
	10.1.1.2. PLME Primitives

	10.1.2. Major Capabilities of the MAC Layer
	10.1.2.1. PLC Information Base

	10.1.3. Major Capabilities of the Convergence Layer
	10.1.4. Major Capabilities of the Management Plane
	10.1.4.1. PLC Information Base
	10.1.4.2. Communications Profiles

	11. API of PHY and PAL Layers
	11.1. PLC PHY SAP
	11.2. Serial PHY SAP
	11.3. PAL SAP
	11.3.1. Initialization Function
	11.3.2. Process Function
	11.3.3. Callback Functions
	11.3.4. Noise Capture Function (PL360/PL460 Platform)

	11.4. PAL Primitives
	11.4.1. Data Primitives
	11.4.2. Management Primitives

	12. API of PRIME FW Stack
	12.1. MAC Primitives
	12.1.1. Signalling Primitives
	12.1.2. Data Primitives
	12.1.3. PLME Primitives
	12.1.4. MLME Primitives
	12.1.5. Retrieval of Lists
	12.1.6. Callback Functions

	12.2. IEC 61334-4-32 Primitives
	12.3. Base Management Primitives
	12.3.1. Firmware Upgrade Protocol Primitives
	12.3.2. Network Event Primitives
	12.3.3. PRIME Profile Primitives
	12.3.4. Whitelist Management Primitives
	12.3.5. Callback Functions

	12.4. PIB Objects Specification and Access
	12.4.1. Proprietary PIB Attributes in the PHY Layer
	12.4.2. Proprietary PIB Attributes in the MAC Layer
	12.4.3. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer
	12.4.4. Proprietary PIB Attributes in the Management Plane

	13. Example Applications
	13.1. PRIME Base Modem
	13.2. Base Slave Modem
	13.3. PHY Applications

	14. Serialization with Embedded USI
	14.1. USI Frame Format
	14.2. USI PRIME Protocols
	14.2.1. PRIME Management Plane Frame Format
	14.2.2. PRIME Sniffer Frame Format
	14.2.3. PRIME API Frame Format
	14.2.4. PRIME PHY Serial Frame Format

	14.3. Embedded USI Configuration
	14.3.1. Definition and Configuration of USI Ports
	14.3.2. Linking of Serial Communication Profile of PRIME Management Plane
	14.3.3. Linking of PRIME Sniffer
	14.3.4. Linking of PRIME API
	14.3.5. Linking of PRIME PHY Serial

	15. Auxiliary Nodes Connection in Multi-transformer Substations
	16. Abbreviations
	17. References
	18. Microchip Revision History
	18.1. Revision C - 03/2024
	18.2. Revision B - 02/2024
	18.3. Rev A - 07/2020
	18.4. Old Revision History
	18.4.1. Rev A - 06/2016
	18.4.2. Rev B - 07/2016
	18.4.3. Rev C - 09/2016
	18.4.4. Rev D - 12/2016
	18.4.5. Rev E - 05/2017
	18.4.6. Rev F - 05/2017
	18.4.7. Rev G - 10/2017

	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

