PRIME 1.4 FW Stack for Service Nodes .
c\ MICROCHIP

Introduction

This document is the user guide for the implementation of the PRIME 1.4 Stack for Service Nodes developed by
Microchip.

The mechanisms and functionalities of the PRIME specification are the basis for the entire PRIME FW stack
implementation. Therefore, it is highly recommended to use it as a reference. Basic concepts that are
introduced by the PRIME specification are assumed to be known within this document.

Features

+ Implementation of PRIME 1.4 stack for Service Nodes

+ Support of several microcontroller families including PIC32CXMTx, SAM4C, SAM4CMx, and SAMG55
« Support of PLC modems including PL360 and PL460

« Support of RF modems including ATB6RF215

+ This document applies to PRIME FW stack version 1.4.4

Table of Contents

INEFOAUCTION. ..ttt ettt et b s et s a et b et b et b et s b et s b e st e h et e b e e en e e enenenens 1
FRATUIES .ttt st b e bbb bbb SR b bbb e s R b e s bbb 1
T OVBIVIBW. ittt b bttt ettt e bt e b e bt s bt s b e b e b e b e e b e b e b e b et ettt e R e bt b e R e s R R n e 5
1.1, GENEIAl ATCNITECIUNE ..ottt ettt b e bbbttt e et et e be st ebe st sbe e eb et ebesaebessenens 5
1.2, EVENE-DIIVEN OPEIATION .. ittt s st b e sae e bt sat e s bt et she et e s seessesmeesseeanesreensesanensesns 6
2. Understanding the FiIrMWare PACKAZE.coeirueirieirieenieeriet ettt sttt sttt ettt sttt sttt be e sbe e ebene 7
2.1, PRIME Firmware Package CONTENTS.....cciviiiiirirerenesesiestestessestessessessessessessessesessessessessessessessessessensensensensenses 7
3. PRIME FW SEACK PrOJECE....cveuirieuirieuirieierieitsiet st sietete st ste e ste s be st sbe st st et eb e st ek e a e b e s e se s ese b ebe st eb et ebe st enesbenesbenebenensanersan 13
BUT INEFOAUCTION. ettt b et bbb bt e b et b e bbb bbbt b e bt ebe b ebe b ebenbe st sbenenbeneas 13
3.2. PRIME Stack User Configuration Parameters........ccoeveerieerieierieienieieneeiestetestetestenesieses e sessesessesessenesaenesienens 15
4. Integrating the PRIME FW STACK......cccotriirriiieieeeee ettt ettt n e nes 25
A1, MEMOIY AllOCATION. ...ttt ettt ettt b et eb et e b st et s b eae st e se st et st e st ebeneebe e sbenesbeneebenaesas 25
4.2, Hardware RESOUICES USAEE.....cccuviririerierieieieieieeiestestestestestestessessessesessestestesessessessessestessessensensensensensensensenes 28
4.3, PRIME INEEITACES. ..ottt ettt b et bbb b bt e bbb e se st ebe b st saenesnenean 29
4.4. PRIME INtegration REGUINEMENTS.....cc.iiiiiiieieieteeeeeiteteete sttt ettt st sbe bbb sa e enis 33
4.5, MaiN FUNCLON STFUCTUI .. .otiiiieiiieteeetet ettt ettt et sttt ettt et et e et e bt e b s bt e besbesbesbesbe st et esensenneneeneens 35
4.6. Application Configuration Parameters........ccceeiveireeriererieerieeseseeseessesessesessesessessssessssessesessesessesessesensens 38
D DAt EXCNANEE. ..ttt sttt b et bbbt b e bbb s ket e e b st b et b et bbb b et be st be b ebe e ebetes 39
5.0 INUIESSCS. ettt sttt b e bt s bbb e b e e b e e e bt be e e bt nn et sn st nrenea 39
5.2, TEC 871334432 ettt ettt ettt s b et bbbt b Rt b et bt h et b et b et bt b et benes 39
5.3. Automatic Repeat Request (ARQ)....cceoueruerirrirririnirieeiteieeiesieste sttt sttt e ettt et sbesbesbesbesbesbesbennenee 39
6. File Transfer Service for FIrMware UPErade......cuiivirerenenenieieieieteteeeeesessessessessessessessessessessessensensensensensossenes 43
6.7, INEFOAUCTION ..ttt bbbt s bbbttt b ettt a b st s bbbt e 43
6.2. CRC RESUIL CallDACK....c ittt ettt 46
6.3. Signature and IMage ReSUIL CallDACK.........ccirririeireirieine ettt 46
6.4, FU CONFIGUIatioN Data......cceeuerieuerieiinieiinieiisieiesteiesteiest ettt ettt st sttt et st ettt be e b et e b et e b e st ebe st bensenensenenes 47
6.5, STANTING FU. oottt sttt sttt ettt ettt et b e b e s bt e b e s b e s b e s b e s b e st et et et et et enteneeneene 47
6.6, Providing the BitmMap.....ccceceeiririririnienieniesiesiesteste ettt ettt st s b st st e s be st e st et e s e b et e s esaesasbesbesbesbesbesbesbenee 47
6.7, WIIING FU Data...cciiiiiiiiieieieieteeeteteeetest sttt ettt ettt ettt s b s bbb s b e s b e n e nenennes 48
6.8, CRC CalCUIATION . .cuetiietitetetet ettt ettt b et b et b et bbbt b et e bt e b et e b et eb et e bt sbenesbenesbenenee 48
6.9. SigNature and IMAGE ChECK......coviireirieirieisietreet ettt ettt sttt st ae st e et ese st esesbenesbenessenens 48
6.10. FINISNING FU.c.oceiiiiiieee ettt ettt st s r et s r et r e s e nesnenene 48
6.11. Managing the RECEIVEA File.....coo ettt sttt st 49
7. PRIME ManagemeEnt PIANe......coucvueiiieieieteiteeeieeeetcstesteste st st steste st et et et et et et e s st sbesbesbesbesbesbesbesbesensensensensenseneone 51
B TOOICNAIN .ttt ettt b et b et h e h b bbb bbb bbb Rt b et ke R b et ket b et b et be st b et b et ene 52
8.1, GENEIAl Prer@QUISITES....ceiiiiriiriirieriertertestest ettt ettt ettt s b st st st e st e st e st et e b e s et esaeseesaebessesbesbesbesbenbenee 52
8.2, BUIlAING the APPIICAtIONS...ccuciieirieeeerte ettt b e b e b e naebenaenis 52
9. SUPPOITEA PlatfOrMS.....ccveuiieiiieieieirieiertetertee ettt te e te e ste st ste st ssesesbesesbesestesessessesensesensesesessensssensesensesensesersesens 53
9.1, SUPPOITEd MCU FamMUlIES.....cueiieuirieiirieiirieerieeriee ettt ettt sttt b et be st be bbb b ebe st ebesaesesbenesbenens 53

@ MICROCHIP

9.2, SUPPOITEA DEVICES....cutiuieiieiieiiriiriiniesesie sttt sttt et et et et et et s st sbesbesbesbessessessessessensensensensensensenseseesessessessessens 53

9.3, SUPPOITEA BOAIAS.....ecuiieiiieiiieieieertcitnteit ettt ettt sttt s bbb et beb e b bt sb et re s r e ee 53
TO. PICS ettt e et bR b bR R b e bbbt a et saen s 54
10.1. Major Roles for Devices Compliant With PRIME.......c.cccoiriireiineiinenenceneeseeseeeieeei et 54
11, AP Of PHY @Nd PAL LAYEIS...ucuiitiiriiirieieieietetetetetesestesessesestesessessesessssessesassesessesessesessessssesessenessesessensssessssesessesessenens 56
TT.T0 PLE PHY SAP .ttt sttt ettt s b et b etk et b et b et e b et e b ea e e b et e b et e b e st eb et eb et ebe b ebentebenes 56
1120 REPHY SAP ..ottt ettt sttt a et a et sa et snene s 56
1030 PAL SAP .ttt R Rt R et R e st n st sr e nre s 56
T4, PAL PrIMITIVES. ... ettt sttt st e e s bt et s bt et sat e b e et e s bt et e sat et e eabesbesabesstenbesatenbeeabesbeensesaaensens 57
12. AP Of PRIME FW SEACK. .t euttririeteitririetet ettt sttt sttt sttt s b et s bbbt b et s bbb et se b b esenenns 59
T2.7. IMAC PrimNitIVES .. eieeteeteeieeit ettt sttt ettt et st e besat e st e st e sbeesbesae e beesbesbeesbesseeabesbeesbesasenbesasesbeenbesasensesssensasasans 59
12.2. TEC B61334-4-32 PriMITIVES...c.eeueirieirieisietetetstest ettt ettt et st b st et st et st be st ebe b ebe st e s et esestenesbesesbenesbesassanenes 63
12.3. PIB Objects SpecifiCation @Nd ACCESS.......ccveireireirieereeseesieseeteseesesessesesseses e sesse st esessessesessesansesensesensens 63
13, EXAMPIE APPIICATIONS. ...ttt et b et b et b e s b e bbb bt e bt e bt st eaesbene b et s b et ebeneeben
13.1. Usage of the Firmware
13.2. PRIME Service DLMS + Metrology APPlICation........ccveireiriernienineiniesseeeieteteeeiese et 68
13.3. PRIME Service DLMS APPHCAtION...cc.ciriiiriiirieirietrietrieeie ettt ettt sttt sttt st s b e 69
13.4. PRIME SEIVICE MOGEBM...ccuiiiiiiiriiriiriirieiesiete ettt ettt st be st s s sb e st et sb e st e s e b e b e e et et e e et e st e st ssesbesbesbessenes 70
13,5, PHY APPIICAtIONS. cuiitiitiriisiiieieiet ettt sttt st st e st et et et et et et e e et e seesaebasbesbesbesbe st esbasbebenbensensensensons 71
14. Serialization With EMBDEAAEA USH.....cviiiiiieieieeieeieeiesestesteste et ste et e e se e e s e stestesbasbasbessassessessessessesassaesessessens 73
TA. 7. USEFrAmeE FOIMIAT....oiieiieiieieeiesieeiesie ettt ettt e st et st et e sat et e s st e sbesabesbeesbesueenbesabesbeesbesaeenbasseensesasenbesnsesseensenns 73
T4.2. US| PRIME PrOtOCOIS....cctiitiitistestestestesteiteteteteeeteesestestestestessassessessassessessessessessesessessessessessessessessensensansensessases 74
14.3. Embedded USI CONFIGUIAtION.....ccviriiiieirieirietrtet ettt sttt be sttt sa b aesessesessesesaenessenessenens 76
T5. PRIME Dir@Ct CONNMECLIONS. ..ccutiitietertteitisitesteetesteete st este st estesatesbeetesteebesabessesstesseessesaeensesasesbesnsesasenbasssensasasenseensessenn 78
15,7, OVEIVIEW..uiiiiiiieiteiieete sttt ettt s sttt st s bt st s bt et s st e bt e b e s st e b e sbe e bt s ae e s bt e a s e s he e b e e mee b e emsesbeensesneebeeanesheensesnnensenn 78
15,2, CNAraCteIISTICS. eeuiiuiiieirisese sttt ettt ettt st st e st e st s b e st e s b e st e st e b e be st e st et esse st e st esseseeseesessessesbessesbessesses 78
15.3. FUNCHONAI DESCIIPLION ...ttt ettt ettt ettt sttt ettt a et b et b et b etk e e et e e e b s ebe e ebe e ebeneene 78
16, ADDIEVIGTIONS. ...ttt ettt ettt b s b bbb b et et et et e b et et e e e e e a e e s e e aeebesbeebesbenbenbens 80
T 7. RETEIENCES...uictietece ettt ettt ettt s b st e st e st e st et et e b e st e e essess e st eseeseeseeseeseabeebeesesbe st et e bentensansanaensaneeseas 82
T8, REVISION HISTOMY ..uiiiieiiiieeiesiteie sttt sttt st e s bt et s bt et s bt e b s st e s be s st e s bt eabe s bt et e sab e beeabesaeeabessbensesntenseensesbeensenaes 83
18.1. AtMEI 43104 REV A - 0372077 .cueuirieerieirieisietsietstetstest sttt sa ettt stese st ese e esastesessesestesessesessesessesesenessenessenes 83
18.2. Microchip 50002759 RV A - 05/207T8......ceirirererienienienienienientesteteteteessessessessessessessessessessessensenssensessesessesses 83
18.3. Microchip 50002759 RV B - 06/207T9.....coreirieerieirieinieieieesieesiesesieestesee e sesbe s se s seseebeseesessesesaesessesessenens 83
18.4. Microchip 50002759 RV C = 07/2020....cc.ccurueirreirieerieerieresiestsiesteeesteseteseesbetesestesessesessesessesesesensesensesesens 84
18.5. ReVISION D = 02/2024....c.oiiiieiieiiieieieteete ettt sttt sttt et s bbb e b et e st et et et et e st e st eseebesbesbesbesbesbesbesbensan 84
MICFOCNIP INFOIMATION ..ttt ettt st b etk et b e bt bt e bt e b et e b et et e nbebenbebensenens 87
THe MiICTOCHIP WEDSITO.....eouieiiiieeeiesr ettt sttt sttt b et et et et et et et e e eseesessesbessessessesses 87
Product Change NOtifiCatiOn SEIVICE......coiviiiiiiiiirireresesese sttt ettt be st s be st st s besbe b enbensensensensesees 87
CUSEOIMIEE SUPPOI .ttt b s bbbttt e b e e et et e st e st et e st e bt e b e e bt ebeeb e s b e sb e e b e b e b e b e b e s e s ennentenis 87
Microchip Devices COde ProteCtion FEATUIE........ccviireirieieietetetetet ettt sttt ettt se st sbe s be s tenaenen 87
LEEAI NOTICE. .. euteuteiteieeteetesteste sttt ettt ettt s bt s bt s b s b sbesbe s b e s be b e b et et et e st e st e st entese e st eseesesbesbesbesbesbesbesensensansen 87
TrAAEMIAIKS. .. eeteetirtiriertesest ettt ettt ettt s s e st e st e st e st et et et e st e st e st e st e b e ebe e b e e b e e b e s b e st et et e b e st e st e s s enseneeneeseebeebesbesbenbeben 88

@ MICROCHIP

QUAITLY ManN@gEMENT SYSTOM..c..iiuiriiriiriiriertete ettt ettt sttt s b st sttt et et et e st e bt e b e s b e sbesbe s b e sbesbe b e s entensensenaensens

Worldwide Sales and Service

@ MICROCHIP

1. Overview

1.1 General Architecture

The PRIME FW stack general architecture follows the suggested separation of the network stack into
logical layers, as described in the PRIME specification. Besides the core stack containing the protocol
implementation, the PRIME general architecture contains additional layers implementing shared
services (for example, serial interfaces, vendor specific configurations), a Hardware Abstraction
Layer (HAL) and user application examples.

The general architecture of a user application including the PRIME FW stack is shown in the next
figure.

Figure 1-1. Block Diagram of the PRIME General Architecture

USER
APPLICATION

PRIME API

PRIME FW Stack

t

The PRIME general architecture has been implemented with separated software modules as a

way to optimize hardware resources and provide flexibility and versatility to the final user system.
Following this concept, the user application and the PRIME FW stack have separated binary images.
Additionally, in the PL360/PL460 platform, there is a third binary image corresponding to the PL360
firmware to be loaded into the PL360 device.

Important: Device memory and HAL must be managed by the users in order to
allocate all binary images of the system and to handle the hardware resources
according to their needs (see chapter Integrating the PRIME FW Stack).

Microchip provides an example project of the PRIME FW stack. Structure and features of this project
are described in chapter PRIME FW Stack Project. The APl of the PRIME FW stack is described in
chapter API of PRIME FW Stack.

@ MICROCHIP

Structure, requirements and features of the user application are described in chapter Integrating the
PRIME FW Stack. Microchip provides different user application examples to ease user development
(see chapter Example Applications).

1.1.1 User Application

The user application is the main application in the system. It is responsible for managing the
hardware and the external resources and for setting up and running the whole system. The PRIME
FW stack provides connectivity to the user application through the PRIME API (see chapter API of
PRIME FW Stack).

The user application can configure the PRIME FW stack by means of configuration files and PIB
attributes.

Important: The HAL is also part of the user application and users can allocate
it at any address within their region. The pointer to the HAL functions must be
passed to the PRIME FW stack at initialization. Users are also responsible for
initializing, starting and running the HAL.

1.1.2 PRIME FW Stack

The PRIME firmware stack described in this document constitutes Microchip's implementation of a
PRIME 1.4 Service Node.

This stack interacts with the user application through the PRIME API (see chapter APl of PRIME FW
Stack), with peripherals and specific software services through the Hardware Abstraction Layer (see
chapter HAL API), with the PL360 Host Controller component (used to communicate with the PLC
PHY layer implemented in the PL360 device of the PL360/PL460 platform) and with the RF host
controller component (used to communicate with the RF PHY layer implemented in the AT86RF215
device).

1.2 Event-Driven Operation

Microchip implementation of the PRIME FW stack is event-driven. Every time an API function is
called, an asynchronous notification message is received after the function task is completed. This
notification is delivered by means of the callback associated to the called function. Programmatically,
the user application provides the underlying layers with a function pointer, which the layers below
call after the request is serviced.

In such an event-driven system, user code related to PRIME functions executes in a callback that
must be registered with the PRIME FW stack by the user application. Thus, the user application
functions related to PRIME run entirely in stack-invoked callbacks. More information about callbacks
in the PRIME general architecture can be found in chapter PRIME API.

@ MICROCHIP

2. Understanding the Firmware Package

The following chapter describes the content of the PRIME firmware package, required common
modules and drivers, and explains some general guidelines about how the various software layers
are structured.

One of the most important features of the PRIME implementation is its ability to manage the PRIME
FW stack and the user application as separate software modules. The corresponding binary images
(together with the PL360 firmware in the PL360/PL460 platform) can be allocated to any memory
addresses configured by the end user, thus providing a highly flexible and versatile implementation.

2.1 PRIME Firmware Package Contents

Microchip provides PRIME packages for every platform that supports PRIME. These packages include
PRIME applications that communicate using the PRIME network and applications that only make

use of the PRIME PHY layer, so that users can easily access all available user applications and their
related files. Provided example applications are described in chapter Example Applications.

Users are responsible for configuring and compiling the applications (see chapter Toolchain) and
assigning memory resources.

2.1.1 PRIME FW Stack Project Example

The following figure shows where the PRIME FW stack is located inside the complete general
architecture.

Figure 2-1. PRIME FW Stack in the PRIME General Architecture

()

The PRIME FW stack project example contains the PRIME library (with the PL360 Host Controller
and the RF host controller) and the configuration files described in chapter PRIME Stack User
Configuration Parameters. This project generates the mentioned binary image corresponding to
the PRIME FW stack.

The PRIME FW stack project can be found in the package following this path:

..\thirdparty\prime ng\bin service\prime service bin 1 4

@ MICROCHIP

The structure of this PRIME FW stack project in IAR Embedded Workbench” is shown in the following
figure.

Figure 2-2. Folder Structure of the PRIME FW Stack Project

B @ bin_service_prime_service_bin_1_4_flash - Release
£1 8 commaon
2 & components
| FaEplc
| | B atpl3E0
| Lo
| B at6215
o utils
M sam
£ W thirdpart,
=] B prime_ng
£ W hin_service
L3 & prime_senvice_kin_1_4
L3 W pic32ox_pl460_hin
M iar
— [&] conf_atd6r.h
— [conf_atpl360.h
— [&] conf_clock.h
—— [&] conf_halh
— [l conf_mac.h
— [conf_mngp.h
— [£] conf_palh
L — [conf_prime_stack h
M conv
M hal
L1l libs
L& siar
L— [lihsamt4-primeT 4-sn-iar.a
B mac
B mngp
£ 1 pal
M atpl360_prime
M include
B mpal
B rf215_prime
&1 W phy
L3 i atpl360
B coup_t<_config
M prime_api
B Output

Important: Itis recommended that users modify only the available configuration
files according to their application needs (see chapter PRIME Stack User
Configuration Parameters).

@ MICROCHIP

2.1.2 User Application Project Examples

The following figure shows where the user application is located inside the complete general
architecture.

Figure 2-3. User Application in the PRIME General Architecture

USER
APPLICATION

PRIME API

[HARDWARE]

Microchip provides several user application projects that show how to interact with the PRIME FW
stack:

+ DLMS (Device Language Message Specification) application: this application shows how to
interact with the PRIME FW stack to simulate the exchange of DLMS data in a PRIME network.

+ DLMS+Metrology application: this application shows how to interact with the PRIME FW stack to
exchange real DLMS data in a PRIME network (only available in the SAM4C platform).

+ Modem application: this application shows how to manage the PRIME FW stack from an external
application by serializing the PRIME API.

The user application projects can be found in the package following this path:
..\thirdparty\prime ng\apps\

All of these user application projects are provided in dual mode, i.e., they can be used in any Service
Node regardless of the PRIME FW stack version that is running.

Important: Dual mode applications are not provided in the SAMG55 platform
due to the lack of internal memory space. See Chapter Memory Allocation for
more information.

Additionally, Microchip also provides several PLC PHY applications that show how to manage the
PRIME PLC PHY layer exclusively:

+ PHY Tester: this PHY application example shows the capabilities of the PL360 device in a point-to-
point connection, using the USI to serialize the API of the PLC PHY layer.

@ MICROCHIP

« PHY TX Test Console: this PHY application example uses a terminal console to configure the PLC
PHY layer and perform several board tests.

« PHY Sniffer: this PHY application allows monitoring of data traffic on a PRIME network by
serializing PHY frames. Depending on the platform, this PHY sniffer might be located in the apps
folder instead of the phy apps folder.

+ PHY PLC&Go: this PHY application shows the basic code required to work with the PLC PHY layer.
The PHY application projects can be found in the package following this path:
..\thirdparty\prime ng\phy\atpl360\apps

See Chapter Example Applications for detailed information about the operation of every example.

For example, a DLMS+Metrology application project can be found in the package following this path:

..\thirdparty\prime ng\apps\prime service dual dlms met\samd4cmslé6c atpl360mb_
bootloader\iar\apps prime service dual dlms met.eww

The structure of this project in IAR Embedded Workbench is shown in the following figure. Files
and folders required to develop a user application over the PRIME FW stack are marked with red
asterisks.

@ MICROCHIP

Figure 2-4. Folder Structure of the DLMS+Metrology Application Example Project

E @ apps_prime_service_dual_dlms_met_flash - Release
B cormman

B =am

=1 W thirdparty

B dims

=1 i metrology

| B meter_utils

L3 &l prirme_ng

& B apps

B modem

Lo E prime_service_dual_dlims_met
- B samdomsi Gc_atpl360mb_kbootioader
M iar

— [conf_app_exampleh 9
— [conf_board.h

— &l conf_c0216Ci2 h

— [conf_clock.h

— B conf_halh %

— [el conf_oss.h

— [conf_platform.h

— [conf_prime_stack h *
— [l conf_sleepmagr.h

— [& conf_uart_serialh

— [conf_usih %

E app_dch

App_emu

[app_emuh
app_event_manager.c
app_event_managerh
app_user_task.c
dims_app.c

& dims_app.h
dims_srv_data.c

] dims_srv_datah
main.c e
metering_task o

&) metering_task.h

B con

B hal

B mac

B mbed-s

W prime_api %

B Output

oo ol eoeleleles

Important: Users must not modify any of the provided files except for the
configuration files, the HAL and the board definition (in folder \sam\boards\) in
order to adapt them to their hardware design. Users are free to use the example
applications as templates to create new user applications. Users can also develop
their own applications in the apps directory.

@ MICROCHIP

2.1.3 PL360 Firmware
For the PL360/PL460 platform, Microchip provides a binary file to be loaded into the PL360 device,
where the PLC PHY layer of the PRIME FW stack runs. Details about loading the PL360 firmware can
be found in the "PL360 Host Controller User Guide".

2.1.4 USI Host Example

Microchip provides the required files to develop the host controller side of the serialization of the
PRIME FW stack. These files are included in the USI (Universal Serial Interface) Host. Details about
usage of serialization can be found in chapter Example Applications. For the USI Host, see the US/
Host User Guide.

2.1.5 Bootloader Example

Microchip provides a bootloader example in order to allow the upgrade not only of the PRIME FW
stack but also of the user application and of the PL360 firmware running in the PL360 device. Details
about the firmware upgrade can be found in chapter File Transfer Service for Firmware Upgrade.

Important: All provided user application project examples that interact with the
PRIME FW stack are configured to be used together with this bootloader example.

@ MICROCHIP

PRIME FW Stack Project

Introduction

The PRIME Firmware Stack follows a layered approach based on the PRIME specification. The
following figure shows the stack architecture.

Figure 3-1. Block Diagram of the PRIME FW Stack Architecture

~“ (" PRIME stack D

PRIME API

USER s
APPLICATION

| PRIME API

PRIME FW Stack

t HAL API

HAL

[HARDWARE]

Microchip provides a library which contains the MAC layer, the Convergence Layer and the
Management Plane as described in the PRIME specification. The binary file generated with the
PRIME FW stack project example contains the complete PRIME FW stack with all the layers shown in
the previous figure. The PHY is not the PHY layer as such but the host controller component.

Note that the PHY and PAL layer boxes in the above diagram can be split into more than one PHY
and PAL layers depending on the application. See chapter 3.1.2. Physical Abstraction Layer (PAL).

It is important to note that the only entry point to the PRIME FW stack from the user application
is through the PRIME API, which contains the interfaces defined in the PRIME specification as well
as stack control functions. The API of the PRIME FW stack is described in chapter PRIME APl and
in chapter API of PRIME FW Stack. The PRIME FW stack accesses the hardware through the user
application with the HAL API described in chapter HAL API.

Additionally, Microchip provides the source code of the PL360 Host Controller that manages the
interface of the PLC PHY layer in the PL360 device, the RF host controller that manages the interface
of the RF PHY layer in the AT86RF215 device and the PAL layer.

The PHY layer, the MAC layer and the Convergence Layer have all their own version numbers, which
can be accessed through the corresponding vendor specific PIB attributes PIB_PHY_SW_VERSION
(0x8080), PIB_PHY_SW_RF_VERSION (0x9080), PIB_MAC_INTERNAL_SW_VERSION (0x8126) and
PIB_CL_INTERNAL_SW_VERSION (0x8201). These PIB attributes are described in chapter PIB Objects
Specification and Access.

The PRIME FW stack modules from the bottom up are briefly described in the following sections.
Basic concepts that are discussed in the PRIME specification are assumed to be known. The
conformance statement about the current implementation of the PRIME protocol is found in chapter
Protocol Implementation Conformance Statement.

@ MICROCHIP

3.1.1

3.1.2

Physical Layer (PHY)

The Physical Layer (PHY) handles the transmission and reception of MPDUs at the physical level
between neighbor nodes.

On the transmission side, the PHY layer receives its inputs from the MAC layer through the PAL. At
the end of transmission, the data is passed to the physical medium via the HAL.

On the reception side, the PHY layer receives its inputs from the physical medium via the HAL. At the
end of reception path, the data flows to the MAC layer through the PAL.

By providing an interface through the PAL, the MAC layer is then independent from the underlying
modem. Besides that, the PHY interface can be used by basic applications without requiring the
MAC layer (see a PHY application example in chapter PHY Applications). The API of the PHY layer is
described in chapter APl of PHY and PAL Layers.

The PHY layer can be used for PLC communications as well as for RF communications. The selection
of the right PHY layer is performed by the PAL according to the indications given by the MAC layer.

The PHY layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the PHY layer are stored in the PHY PIB storage and the PHY layer
provides an interface to access and update their values through the PHY Layer Management Entity
(PLME). The PRIME FW stack supports all mandatory PHY PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-6).

Physical Abstraction Layer (PAL)

The Physical Abstraction Layer (PAL) provides an interface between the PHY layer and the MAC layer,
so that the MAC layer is independent from the PHY layer and the underlying modem.

The PAL is based on the PHY primitives for data and control planes described in the PRIME
specification, although the current implementation offers enhanced versions of some of them
to take a full advantage of the features available in the PHY layer. These features improve the
operation of the MAC layer.

A description of the PHY data and management primitives available in the PAL as well as the
extended features can be found in chapter APl of PHY and PAL Layers.

Taking into account that there could be several PHY layers, such as the PLC PHY and the RF PHY, the
MPAL (MultiPhy Abstraction Layer) provides a link between the PAL interface and the selected PHY
layer. The MPAL selects the correct PHY layer by means of the channel indicated by the MAC layer.

Figure 3-2. Block Diagram of the PAL

@ MICROCHIP

3.1.3 Medium Access Control Layer (MAC)

The Medium Access Control (MAC) layer provides core MAC functionalities of system access,
bandwidth allocation, connection establishment/maintenance and topology resolution according to
the PRIME specification.

The MAC layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the MAC layer are stored in the MAC PIB storage and the MAC layer
provides an interface to access and update their values through the MAC Layer Management Entity
(MLME). The PRIME FW stack supports all mandatory MAC PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-7).

3.1.4 Convergence Layer (CL)

The Convergence Layer (CL) associates the data received from a user application to its proper MAC
connection. It is composed by a common part to segment and reassemble packets and one or more
service specific sublayers (e.g. IEC 61334-4-32). Information about data exchange using the CL can
be found in chapter Data Exchange.

3.1.5 Management Plane (MNGP)

The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade inside the stack. More information about this layer can be found in
chapter PRIME Node Management Plane.

The PRIME certification conformance tests require accessing the PIB attributes and this is achieved
via the Management Plane.

3.2 PRIME Stack User Configuration Parameters

The PRIME FW stack can be configured to suit user requirements. This is achieved with several
configuration files, which allow:

+ The stack to configure the required stack resources according to the application needs based on
the required functionality, and

+ The application to configure its own resources
Note that some parameters must be configured during the Manufacturing Test Procedure (MTP).

Some parameters are subject to change during execution and it could be needed to store them in
non-volatile memory so that they can be recovered after a system restart. See Chapter Data Storage
for additinal information.

3.2.1 Firmware Version Information

In the provided PRIME FW stack binary project, the first 20 bytes contain the Vendor, Model and
Version information corresponding to the PRIME FW stack library. These metadata are useful to
identify and control which library is being used or upgraded. Users can edit this information in file
conf_prime_stack.h.

/* Firmware Information */

#define PRIME FW VENDOR “MCHP”
#define PRIME FW MODEL “PL360MB”
#define PRIME FW VERSION "S514.04.01\0\0\0\0O\ONONO”

/* Prime PIB firmware information. FW Version is used as PIB version */
#define PRIME PIB VENDOR 0x0000
#define PRIME PIB MODEL 0x3937

The modifiable attributes are the following:

@ MICROCHIP

Table 3-1. PRIME FW Information Attributes

PRIME_FW_VENDOR Vendor name, e.g. “"MCHP". ASCII. Maximum 16 bytes.

PRIME_FW_MODEL Product name, e.g. “PL360MB". ASCIl. Maximum 16 bytes.

PRIME_FW_VERSION Version identifier as defined in Numerical, ASCll recommended. It must
PIB 0x0075 (PIB_MAC_APP_FW_VERSION), e.g. be 16 bytes long.
“S14.04.01\0\0\0\0\0\0\0".

PRIME_PIB_VENDOR Vendor name as defined in PIB 0x0076 Numerical, two bytes size. This value is
(PIB_MAC_APP_VENDOR_ID), e.g. 0x0000. assigned by the PRIME Alliance.

PRIME_PIB_MODEL Product name as defined in PIB 0x0077 Numerical or ASCII, two bytes size.

(PIB_LMAC_APP_PRODUCT_ID), e.g. “97".

3.2.2 Communication Channel and other PHY Parameters

Microchip provides solutions that cover frequencies from 41 kHz up to 472 kHz and are compliant
with different applicable regulations in the PLC domain.

The table below shows the available frequency bands with their associated PLC coupling boards. To
configure the PLC coupling in PL360 and PL460, see the corresponding chapters.

Table 3-2. Frequency Bands

Frequency band (kHz) PLC coupling board (PL360) PLC coupling (PL460)

ATPLCOUPO000O
ATPLCOUPO001
ATPLCOUPO003) N i N
1 41 -89 ATPLCOUP004 Main branch or auxiliary branc
ATPLCOUPO07
ATPLCOUPO11
2 96 - 143 Not supported Not supported
3 151-198 ATPLCOUPO06 Main branch (FCC or FCC with high
ATPLCOUPO11 attenuation)
ATPLCOUP002
4 206 - 253 ATPLCOUPOO6 Main branch (FCC or FCC with high
attenuation)
ATPLCOUPO11
ATPLCOUP002
5 260 - 308 ATPLCOUPO06 Main branch (FCC or FCC with high
ATPLCOUPO09 attenuation)
ATPLCOUPO11
ATPLCOUP002
6 315 -362 ATPLCOUPOO6 Main branch (FCC or FCC with high
attenuation)
ATPLCOUPO11
ATPLCOUP002
7 370 - 417 ATPLCOUPOO6 Main branch (FCC or FCC with high
attenuation)
ATPLCOUPO11
ATPLCOUPO006 Main branch (FCC or FCC with high
8 424 - 472 ATPLCOUPO11 attenuation)

The available frequency bands for RF are defined in the IEEE 802.15.4 standard. To configure the RF
band, see the corresponding chapter.

The PRIME FW stack needs PHY parameters to be kept safe in a non-volatile storage area in case the
system restarts for any reason.

@ MICROCHIP

3.2.3

3.2.4

These PHY parameters are the communication channels in PLC and RF as well as the PLC channel
lists.

The PRIME FW stack uses a configuration key to determine whether these parameters are available
in the non-volatile storage or not. The structure with the configuration key and the PHY parameters
that must be kept in the non-volatile storage area is defined in file hal.h as follows:

/** Configuration key to manage PHY params */
#define HAL PRIME PHY CONFIG KEY 0xAA99

/** Type to manage PHY params */
typedef struct {

uintlé_t us_cfg key;

uintlé t rfChannel;

uint8 t txrxChannel;

uint8 t txrxChannellist;

uint8_t txrxDoubleChannellist;
} x_phy cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key matches the value defined by HAL. PRIME PHY CONFIG_ KEY,
then the PRIME FW stack considers that the stored values are valid and reads them from the
non-volatile storage area. However, if the stored key does not match HAL PRIME PHY CONFIG KEY,
then the stored values are discarded and the PRIME FW stack reads and stores the default values
from the PHY layer.

The PHY parameters can be updated by users any time during operation. The RF

communication channel can be changed using the standard PIB attribute PIB_PHY_RF_CHANNEL
(0x1010), while the PLC channel and the PLC channel listst can be changed using vendor

specific PIB attributes PIB_PHY_TX_CHANNEL (0x8090), PIB_PHY_TXRX_CHANNEL_LIST (0x8092) and
PIB_PHY_TXRX_DOUBLE_CHANNEL_LIST (0x8093) described in Table 12-6. The changed values are
always stored in the non-volatile storage area. After a reset, since the configuration key matches the
defined value HAL PRIME PHY CONFIG_KEY, the last values stored in the non-volatile storage area
will be the ones used by the stack.

Important: Do not change the value assigned to the configuration key
HAL PRIME PHY CONFIG KEY because thisis a compilation constantin the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL PHYCFG OFFSET USER_SIGN in order to access the PHY parameters in the non-
volatile storage area.

PLC Coupling (PL360 Platform)

When using the PL360 platform, the hardware coupling implemented in the user board must only
be taken into account when using ATPLCOUPO11. In that case, the parameter PAL_ENABLE C11 CFG
must be defined in file conf _pal.h.

/* If coupling 11 is chosen */
#define PAL ENABLE C11_CFG

PLC Coupling (PL460 Platform)

When using the PL460 platform, the default configuration uses the main branch for FCC channels
and the auxiliary branch to transmit in channel 1.

/* PL460 + PLCOUP007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
/* #define PAL ENABLE PL460 CEN A CFG */

@ MICROCHIP

/* PL460 FCC-SB (Single Branch) / FCC-1.5B (1.5 Branch) configuration */
/* #define PAL ENABLE PL460 FCC 1 5B CFG */

To use the hardware variant in order to transmit in channel 1 using the main branch, the parameter
PAL ENABLE PL460 CEN A CFG must be defined in file conf pal.h.

/* PL460 + PLCOUP007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
#define PAL ENABLE PL460 CEN A CFG

/* PL460 FCC-SB (Single Branch) / FCC-1.5B (1.5 Branch) configuration */
/* #define PAL ENABLE PL460 FCC 1 5B CFG */

To use the hardware high attenuation variant in order to transmit in FCC channels using the main
branch, the parameter PAL ENABLE PL460 FCC_1 5B CFG must be defined in file conf pal.h.

/* PL460 + PLCOUP007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
/* #define PAL ENABLE PL460 CEN A CFG */

/* PL460 FCC-SB (Single Branch) / FCC-1.5B (1.5 Branch) configuration */
#define PAL ENABLE PL460 FCC 1 5B CFG

3.2.5 Band Plan in PLC

When using a version of the PLC PHY layer that can handle several communications channels, as
shown in Table 3-2, the user can configure which set of channels the node is allowed to operate on
by setting USER_BAND_PLAN in file conf pal.h. If USER_BAND PLAN is not defined, the node is allowed
to operate on each one of the channels supported by the PLC PHY layer.

/* Define the band plan */
#define USER BAND PLAN (CHANNEL3 | CHANNEL4 | CHANNEL7)

Additionally, it is also possible to configure a second band plan to use a double channel, i.e., two
concurrent channels. To do so, the user must first define PALL. ENABLE MULTICHANNEL and then
USER_BAND PLAN 2CH in file conf pal.h.

/* Enable Multichannel */
#define PALiENABLEiMULTICHANNEL

#ifdef PAL ENABLE MULTICHANNEL
/* Maximum number of channels supported */
#define PAL MAX NUM CHANNELS 2 /* Double channel */

/* Define the band plan */
/*#define USER BAND PLAN 2CH (CHANNEL34) */

#endif /* PAL ENABLE MULTICHANNEL */

Attention: Microchip provides two different binary files of the PL360 firmware
depending on the support of the double channel functionality. Users must make
sure that they load the right one according to their band plan configuration.

Important: In the SAMG55 platform it is not possible to configure a second band
plan with double channel together with an RF PHY layer due to the lack of internal
memory space. See chapter Memory Allocation for more information.

@ MICROCHIP

Important: When a Service Node has a band plan which includes several PLC
channels, it will scan all of them until it finds traffic, starting with the last channel
used. This also applies when there is a second band plan for double channels

- all single and double channels in the band plans will be included in the band
scanning process. This process may slow down network formation. Therefore,

if users know the channel their network is going to use, it is recommended to
configure it in the band plan either beforehand or in a stack upgrade.

Attention: In a dual mode setting, channel 1 must always be part of the PLC
band plan of PRIME FW stack 1.4 because that is the only channel supported in
PRIME FW stack 1.3. If channel 1 is not included, it will not be possible to swap
between PRIME FW stack versions.

3.2.6 Band Plan in RF

The channels used in the RF PHY layer depend on the operation mode: SUN FSK or OFDM. This is
configured by setting RE_ PHY OPERATION MODE n file conf pal.h.
/* RF Operation definition */

#define RF PHY OPERATION MODE AT86RF SUN FSK BAND 863 OPM1
/* #define RF PHY OPERATION MODE AT86RF SUN OFDM BAND 863 OPT4 */

3.2.7 Security Profile

The PRIME FW stack supports the three security profiles (0,1, 2) defined by the PRIME specification.
The security profile used in a PRIME network is set by the base node but the service node indicates
upon registration the maximum security profile that it supports. This must be defined in file
conf_mac.h by setting the required security profile in MAC SECURITY PROFILE.

By default, the security profile is set to 0, i.e. no security.

/* Security profile */
#define MAC_ SECURITY PROFILE 0

3.2.8 Device Unique Key

A DUK is mandatory for a normal operation of the PRIME FW stack when the security profile is 1 or 2
(see chapter Security Profile). The DUK is unique to the service node and it is provided using the PIB
PIB_MAC_DUK (0x005B). The DUK must be kept safe in a non-volatile storage area in case the system
restarts for any reason.

Important: Note that whenever the system restarts when the security profile is 1
or 2 and the PRIME FW stack cannot find a DUK, it enters into MTP mode.

The PRIME FW stack uses a configuration key to determine whether the DUK is available in the
non-volatile storage or not. The structure with the configuration key and the DUK that must be kept
in the non-volatile storage area is defined in file hal.h as follows:

/** Configuration key to manage DUK */
#define HAL SEC CONFIG KEY 0x5AAS

/** Type to manage DUK */
typedef struct {
uintlé_t us_cfg key;

uint8 t duk[16];
} x sec cfg t;

@ MICROCHIP

3.2.9

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key does not match the value defined by HAL. SEC CONFIG KEY,
the PRIME FW stack enters into MTP mode. If the stored key matches HAL SEC CONFIG KEY, the
DUK is read and the PRIME FW stack starts in normal operating mode. Users can set the DUK using
PIB PIB_MAC_DUK (0x005B). The DUK is then stored in the non-volatile storage area.

Important: Do not change the value assigned to the configuration key
HAL SEC CONFIG KEY because this is a compilation constant in the PRIME FW
stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL SECURITY OFFSET USER SIGN in order to access the DUK in the non-volatile
storage area.

MAC Address

A MAC address is mandatory for a normal operation of the PRIME FW stack. The MAC address
identifies the node in the network and therefore it must be kept safe in a non-volatile storage area in
case the system restarts for any reason.

Important: Note that whenever the system restarts and the PRIME FW stack
cannot find a valid MAC address, it enters into MTP mode.

The PRIME FW stack uses a configuration key to determine whether the MAC address is available in
the non-volatile storage or not. The structure with the configuration key and the MAC address that
must be kept in the non-volatile storage area is defined in file hal.h as follows:

/** Configuration key to manage MAC address */
#define HAL MAC CONFIG KEY 0xAAS55

/** Type to manage MAC address */
typedef struct {

uintlé t us cfg key;

uint8 t uc mac([6];
} x_mac_cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key does not match the value defined by HAL. MAC CONFIG KEY,
the PRIME FW stack enters into MTP mode. Users can then set the MAC address using the vendor
specific PIB 0x8100 (PIB_MTP_MAC_EUI_48 in Table 12-7). The MAC address is then stored in the
non-volatile storage area. If the stored key matches HAL MAC CONFIG KEY, the MAC address is read
and the PRIME FW stack starts in normal operating mode.

Important: Do not change the value assigned to the configuration key
HAL MAC CONFIG KEY because thisis a compilation constant in the PRIME FW
stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL. MACCFG OFFSET USER_SIGN in order to access the MAC address in the non-volatile
storage area.

@ MICROCHIP

20

3.2.10

3.2.11

3.2.12

Enabling PLC PHY Layer
The PLC PHY layer is enabled in file conf pal.h by defining PAL PLC.

/* Definition of available PHY layers */
#define PAL PLC

Enabling RF PHY Layer
The RF PHY layer is enabled in file conf pal.h by defining PAL REF.

/* Definition of available PHY layers */
#define PAL_RF

Frequency Hopping

The RF PHY layer can configured to use only one RF channel from the selected band plan or to use
several RF channels for frequency hopping. The frequency hopping is enabled in file conf_pal.h by
defining RE_ FREQUENCY HOPPING ENABLED.

/* RF_FREQUENCY HOPPING ENABLED */
#define RF_FREQUENCY HOPPING ENABLED

When frequency hopping is enabled, users must set the ranges of channels included in and

excluded from the main sequence as well as the beacon sequence. This is also set in file conf pal.h.

#ifdef RF_FREQUENCY HOPPING ENABLED

/* Channel initial and final for each range, and number of ranges */
#define NUM RANGES CHANNELS INCLUDED SEQUENCE 1

#define RANGES CHANNELS INCLUDED SEQUENCE {{ 1, 67}}

/* Excluded channels */

#define NUM CHANNELS EXCLUDED 1

#define CHANNELS EXLUDED {34}

/* Number of channels MAC HOPPING SEQUENCE LENGTH */

#define MAC_ HOPPING_ SEQUENCE_ LENGTH 66

/* Channels for BCN SEQUENCE, maximum 32 channels */

#define NUM CHANNELS_ BCN_SEQUENCE 3

#define CHANNELS BCN_SEQUENCE { 0, 34, 68}
/* Define MAC HOPPING BCN SEQUENCE LENGTH */

#define MAC HOPPING BCN SEQUENCE LENGTH 3

fendif

3.2.13 PL360 Firmware Information (PL360/PL460 Platform)

Users must configure information related to the PL360 firmware that is loaded into the

PL360 device. This information includes the address where the binary image is stored

(ATPL360 BINARY ADDRESS)as wellasits size (ATPL360 BINARY LEN). These values must be
taken into account when assigning memory resources. See chapter Memory Allocation for more
information.

/* Component ATPL360 Binary Information */
#define ATPL360 BINARY ADDRESS 0x010B8000
#define ATPL360 BINARY LEN 0x18000

Important: The allocated size of the PL360 firmware might vary depending on
the support of the double channel functionality.

@ MICROCHIP

21

3.2.14

3.2.15

3.2.16

Sniffer Serialization

The different PHY layers include an embedded sniffer, which provides the traffic via serial interface
so that it can be analyzed if necessary.

To set the port number for the serialized sniffer in conf pal.h, see chapter Linking of PRIME Sniffer.

To configure the sniffer for the PLC PHY layer, users must enable the code related to the embedded
sniffer in file conf_atpl360.h:

/* Enable ADDONS module */
#define ATPL3607ADDON87ENABLE

To configure the sniffer for the RF PHY layer, users must enable the code related to the embedded
sniffer in file conf_at86rf.h:

/* Enable AT86RF215 addon for PRIME sniffer */
#define AT86RF ADDONS ENABLE

Important: When the embedded sniffer code is included, the sniffer serialization
can be enabled and disabled through the vendor specific PIB attribute 0x8106
(PIB_PHY_SNIFFER_ENABLED in Table 12-6).

The sniffer frame format can be found in chapter PRIME Sniffer Frame Format.

Serial Communication Profile of PRIME Management Plane

The Management Plane can be accessed through the Serial Communication Profile, as described
in the PRIME specification. If users want to use the Serial Communication Profile, they need to
define the port number for the serialization in file conf mngp.h. See chapter Linking of Serial
Communication Profile of PRIME Management Plane for details.

Important: Note that the Serial Communication Profile of the Management Plane
is required for PRIME certification. See the PRIME Certification test book for more
information.

PRIME Mode

The PRIME FW stack library must be configured for the right type of node (board mode) and for
the correct version of the PRIME specification. This information must be kept safe in a non-volatile
storage area so that it can be recovered in case of restart.

The PRIME FW stack uses a configuration key to determine whether the PRIME mode information

is available in the non-volatile storage or not. The structure with the configuration key and the
PRIME mode information that must be kept in the non-volatile storage area is defined in file hal.h as
follows:

/** Configuration key to manage PRIME mode */
#define HAL PRIME MODE CONFIG KEY 0xA55A

/** Type to manage PRIME mode configuration.
* board mode indicates board function (PRIME BN or PRIME SN)
* prime:version indicates protocol version (?RIME7173, PﬁIME7174 or PRIME BC)
=/
typedef struct {
uintleé t key;
uint8 t prime version;
uint8 t board mode;
} x_prime mode_info_cfg t;

@ MICROCHIP

22

Whenever the system restarts, the PRIME FW stack checks the configuration key stored

in the non-volatile storage area. If the stored key does not match the value defined by

HAL PRIME MODE CONFIG KEY, the PRIME FW stack reads and stores the default values defined
in file conf mac.h. If the stored key matches HAL PRIME _MODE_CONFIG_KEY but any of the stored
values does not match the value in file conf_mac h, the values defined in conf_mac.h are read and
stored.

Important: Do not change the value assigned to the configuration key
HAL PRIME MODE CONFIG KEY because this is a compilation constant in the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL. PRIME MODE OFFSET USER SIGN in order to access the MAC address in the non-
volatile storage area.

3.2.17 Zero Cross Detection in PLC

When using the PL360/PL460 platform, if there is a zero cross detection circuit in the user board, it
must be configured appropriately with the parameters available in the PL360 device. For additional
information, refer to the "PL360 Host Controller User Guide".

3.2.18 Network Behavior

The behavior of the PRIME FW stack can be altered by means of the PIB attributes described in the
PRIME specification.

The PRIME specification defines default values for some of these PIB attributes but the current
implementation is not always using the default ones. These modified values have been set to
achieve maximum performance on real networks.

The following table lists all read-write PIB attributes together with their default values according to
the PRIME specification and the values configured in the PRIME FW stack. Users are free to modify
any of these values through MLME or Management Plane primitives in order to customize the PRIME
FW stack according to their needs. These PIB attributes can be found in file mac_pib.h .

Table 3-3. Configured PIB Values in the PRIME FW Stack

Attribute “ PRIME default value| Implementation
value

PIB_MAC_MIN_SWITCH_SEARCH_TIME 0x0010

PIB_MAC_MAX_PROMOTION_PDU 0x0011
PIB_MAC_PROMOTION_PDU_TX_PERIOD 0x0012

PIB_MAC_SCP_MAX_TX_ATTEMPTS 0x0014 5 5
PIB_MAC_TRAFFIC_BAND_TIMEOUT 0x0016 60 60
PIB_MAC_CTL_MSG_FAIL_TIME 0x0018 45 45
PIB_LMAC_EMA_SMOOTHING 0x0019 3 0
PIB_MAC_MIN_BAND_SEARCH_TIME 0x001A 10 10
PIB_MAC_PROMOTION_MAX_TX_PERIOD 0x001B 32 32
PIB_MAC_PROMOTION_MIN_TX_PERIOD 0x001C 2 5
PIB_MAC_SAR_SIZE 0x001D 0 0
PIB_MAC_MAX_BAND_SEARCH_TIME 0x001E 1800 1800
PIB_MAC_UPDATED_RM_TIMEOUT 0x004B 240 60
PIB_MAC_ALV_HOP_REPETITIONS 0x004C 5

PIB_MAC_MIN_BE 0x0098 3

@ MICROCHIP

........... continued

Attribute PRIME default value| Implementation
value

PIB_LMAC_MAX_BE
PIB_MAC_MAX_CSMA_BACKOFFS
PIB_LMAC_HOPPING_PROMOTION_MAX_TX_PERIOD
PIB_LMAC_HOPPING_PROMOTION_MIN_TX_PERIOD

@ MICROCHIP

0x0099
0x009A
0x009B
0x009C

32

32

24

4.1

Integrating the PRIME FW Stack

The purpose of this section is to indicate requirements and provide recommendations in order to
integrate the PRIME FW stack into the user application.

The following issues must be taken into account:

+ Memory allocation

+ Hardware requirements

* Interfaces with the PRIME FW stack (PRIME APl and HAL API)
+ Integration requirements

+ Main function structure

Memory Allocation

One of the most important features of the PRIME implementation is its ability to manage the PRIME
FW stack and the user application as separate software modules. The corresponding binary images
can be allocated to any memory addresses configured by the end user, thus providing a highly

flexible and versatile implementation. The PL360 firmware also requires a separate memory section.

There is no need to allocate space for the RF firmware as it is already stored in the ATB6RF215
modem.

Important: The PRIME FW stack requires a minimum size of 136kB for its
memory sector in ROM and a minimum size of 44kB of RAM. Additionally, the
PL360 firmware with single channels requires a minimum size of 64kB for its
memory sector in ROM, while the PL360 firmware with double channels requires a
minimum size of 96kB for its memory sector in ROM.

The allocation address of the PRIME FW stack module is defined and managed by the user
application. All the PRIME functions in the PRIME API are referenced relatively to this address. The
pointer to the HAL APl is also needed, so that the PRIME FW stack can invoke the HAL API functions
as shown in the figure below.

@ MICROCHIP

25

Figure 4-1. Pointers in the User Application

PRIME_PHY_SIZE

PRIME_MAC_SIZE

Important: Users can reserve and manage as many memory regions as they
wish provided they keep at least one area for a copy of the last upgraded binary
file. The PRIME specification requires this in case the firmware upgrade process

must revert to a previous version.

4.1.1 Default Memory Allocation Example

The figures below depict the memory allocation configured in the provided application project
examples with bootloader. As it can be seen, there are several regions reserved for all the binaries
as well as for the firmware upgrade management, whose region must be at least as big as the
biggest binary region (according to the example provided by Microchip).

This memory distribution has been chosen to ease the firmware upgrade process. The memory
addresses can be configured in file conf app_example.h. For example, for a Flash memory of 1TMB in a

dual mode application:

/* Define PRIME location in flash */

#define PRIME APP_SIZE 0x00040000
#define PRIME MAC13 SIZE 0x00020000
#define PRIME MAC14 SIZE 0x00022000
#define PRIME PHY STZE 0x00018000
#define PRIME IMAGE_ SIZE 0x00040000
#define PRIME APP FLASH LOCATION 0x01010000
#define PRIME IMAGE FLASH LOCATION 0x01050000
#define PRIME MAC14 FLASH LOCATION 0x01090000
#define PRIME PHY FLASH LOCATION 0x010B8000
#define PRIME MAC13 FLASH LOCATION 0x010D0000
Important: The address of the PLC PHY layer configured in file
conf app_example.h must have the same value of the address of the PL360

firmware that is configured in file conf pal.h (see chapter PL360 Firmware
Information (PL360/PL460 Platform).

@ MICROCHIP

26

Figure 4-2. Flash Example for PRIME with Bootloader (Compilation with 1 MB Flash Memory in Dual Mode

Application)
0x01000000 Bootloader: 16 kB reserved
0x0100FFFF
~asicisie " ik
User App: 256 kB reserved
_0x0104FFFE _ _
0x01050000
FU image: 256 kB reserved
0x0108FFEF _ _
0x01090000
PRIME FW Stack 1.4: 136 kB reserved
_.Ox010B7FFF _.
0x010B8000
PL360 Firmware: 96 kB reserved
_.Ox010CFFFF _.
0x010D0000
PRIME FW Stack 1.3: 128 kB reserved
_Ox010FFFFF

And this is an example for the SAMG55 platform, which does not support dual mode:

/* Define PRIME location in flash */

#define PRIME APP SIZE 0x0001C000
#define PRIME MACI3 SIZE 0x00020000
#define PRIME MAC14 SIZE 0x00022000
#define PRIME PHY SIZE 0x00018000
#define PRIME_IMAGE SIZE 0x00022000
#define PRIME APP FLASH LOCATION 0x00408000
#define PRIME IMAGE FLASH LOCATION 0x00424000
#define PRIME PHY FLASH LOCATION 0x00446000
#define PRIME MAC14 FLASH LOCATION 0x0045E000
#define PRIME MAC13 FLASH LOCATION 0x0045E000
Important: The address of the PLC PHY layer configured in file
conf app_example.h must have the same value of the address of the PL360

firmware that is configured in file conf pal.h (see chapter PL360 Firmware
Information (PL360/PL460 Platform).

@ MICROCHIP

27

Figure 4-3. Flash Example for PRIME with Bootloader (Compilation for SAMG55)

0x00404000
0x00407FFF

0x00408000

0x00423FFF

ISP Bootloader: 16 kB reserved

Bootloader: 16 kB reserved

User App: 112 kB reserved

FU image: 136 kB reserved

PL360 Firmware: 96 kB reserved

PRIME FW Stack: 136 kB reserved

Additionally, the PRIME FW stack imposes memory requirements to the user application regarding
the RAM. This is shown in the next figure. The memory addresses and sizes are defined in the linker

scripts that go with the application examples.

Figure 4-4. 128 kB SRAM Memory Map

User App

PRIME FW Stack

4.2 Hardware Resources Usage

84 kB

44 kB

MCU hardware resources include microcontroller peripherals, buses, timers, IRQ lines, I/0 registers,
and so on. Since many of these interfaces have corresponding APIs in the HAL, users are
encouraged to use the high-level APIs instead of the low-level register interfaces to ensure that the
resource usage does not overlap with that of the PRIME FW stack. The hardware resources reserved

for internal use by the PRIME FW stack are the following:

+ Mandatory timers: The 1ps service requires one timer TCx to have a common timer reference

between the PHY and the MAC layer.

+ Exceptional timers: During certification, when a UART or USART is required (see Chapter Serial
Communication Profile of PRIME Management Plane), a timer TCx is used.

@ MICROCHIP

28

4.2.1

4.3

43.1

« SPIl: The PLC and RF PHY layers might require one or two SPI ports depending on the platform.
« DMA: DMAQO is used.
+ Interrupts: The PLC PHY layer uses a GPIO as PLC External Interrupt pin (EINT).

Important: Hardware resources reserved for use by the PRIME FW stack must
not be accessed by the user application.

Data Storage

The PRIME FW stack requires to store data in a non-volatile storage area that must be provided by
users. Non-volatile data are:

« the MAC address (see chapter MAC Address)

+ the DUK (see chapter Device Unique Key)

+ the PRIME mode (see chapter PRIME Mode)

+ the PHY parameters (see chapter Communication Channel and other PHY Parameters)

PRIME Interfaces

As shown in Figure 1-1, the PRIME FW stack has two interfaces: one towards the user application and
another one towards the HAL.

PRIME API

The PRIME APl is the only interface that the user application must use to interact with the PRIME FW
stack.

The PRIME APl is based on a request/confirm mechanism, which is a particular instance of an event-
driven programming model. A request is an asynchronous call to the underlying stack to perform
some action on behalf of the user application; a confirm is the callback that executes when that
action has been completed and the result of that action is available.

Apart from request/confirm pairs, there are cases when the application needs to be notified of an
external event that is not a reply to any specific request. For this, there are a number of user-defined
callbacks named indications that are invoked by the stack asynchronously. Note that during the
execution of an indication callback, it is not permitted to invoke any request as this could lead to the
generation of a callback chain.

Important: Callback functions must be registered in the PRIME FW stack by the
user application upon initialization (see chapter Main Function Structure).

@ MICROCHIP

29

Figure 4-5. API Calls in Event-Driven Programming

APP PRME APP PRME
T
I
|
I
I
|
I

mac_establish request

A
=
o
o
o
w
5]
o
7
=
=
a
"
1S
g.
=]

|
|
|
|
|
mac_establish confim |
< |
l |
|
|
|
|
|

i

|
|
|
The confirm callback can be divided in two types:

+ Asynchronous: For most operations, request execution takes a considerable amount of time and
a confirm callback function can be called seconds after the request was issued. During this time,
the application must postpone other requests of the same type until the first request is completed.
(i.e.: previous confirm has been received). Furthermore, it is not recommended to execute any
other action after invoking the request. Considering that the PRIME FW stack always replies with a
confirm, the application must wait for the corresponding confirm before performing a new request
of the same type

+ Immediate: For PLME and MLME operations, the confirm callback function is called right away
from the request during the same execution cycle, i.e. it acts as a normal function call and it
is thus possible to perform other actions after the request. Note that for any operation (not
only PLME or MLME), when the result is not successful, the confirm callback function is called
immediately instead of asynchronously

The complete PRIME API structure is located relatively to the address indicated by the prime api
pointer. It is defined as a set of macros in the header file prime_api.h. The function parameters
are defined in several defs header files depending on the layer the function is related to. The user
application can simply call these functions without modifying them. For more information, see
chapter API of PRIME FW Stack.

4.3.1.1 Request/Confirm Example

Consider the establishment of a MAC connection from a node. The user application needs to call the
following function:

prime cl null establish request (uint8 t *puc euid48, uint8 t uc type, uint8 t *puc data,
uintlé_t us_data len, uint8 t uc_arq, uint8 t uc_ cfbytes);

Previously, it has registered the callback to the corresponding confirm (see chapter PRIME FW Stack
Initialization), which must be a function of the following type:

typedef void (*mac_establish cfm cb t) (uintl6é t us con handle, mac establish confirm result t
uc_result, uint8 t *puc euid8, uint8 t uc type, uint8 t *puc data, uintlé t us data len);

The example illustrates a particular instance of using a request/confirm mechanism but all other
uses follow the same approach.

30

@ MICROCHIP

4.3.1.2 Indication/Response Example

If the user application wants to be informed about the establishment of a MAC connection in
the node, it must register a callback to the corresponding indication (see chapter PRIME Callback
Functions), which must be a function of the following type:

typedef void (*mac_establish ind cb_t) (uintl6_t us con_handle, uint8 t *puc_euid8, uint8 t
uc_type, uint8 t *puc data, uintlé t us data len, uint8 t uc cfbytes);

Indications may or may not need a response. In this example, the callback code for the indication
must include a call to the following function:

prime cl null establish response (uintl6 t us con handle, mac_establish response answer t
uc_answer, uint8 t *puc data, uintl6é_t us data_ len);

The example illustrates a particular instance of using an indication mechanism but all other uses
follow the same approach.

4.3.2 HALAPI

Apart from the PRIME FW stack, Microchip provides an open code of the Hardware Abstraction Layer
(HAL). The HAL functionalities are used both by the user application as well as by the PRIME FW
stack.

The HAL can be allocated at any address within the region of the user application, which must
keep a pointer to the HAL API functions. This pointer must be passed to the PRIME FW stack at
initialization.

The API of the HAL, defined in header file hal.h, must not be changed under any

/\ CAUTION .
circumstances.

Important: Note that the provided HAL source code is only an implementation
example. Users should modify the function code according to their hardware and
specifications.

The HAL contains all platform (i.e., MCU and board) specific functionality (required by the PRIME FW
stack) and provides interfaces to the upper modules. Therefore, all upper modules are independent
from the underlying platform.

The HAL provides interfaces to several components, such as the PLC access functionality through
SPI or access to persistent storage (for example, serial Flash) among others. These components are
implemented as software blocks which interact with the hardware.

The HAL also implements software components that may or may not interact with the hardware.
For example, the CRC component or the serial interface to handle the different serial interfaces
described in the PRIME specification through one or more UART ports. The Universal Serial Interface
(USI) is an example of implementation of this serial interface. For additional information about
services in the USI, refer to the Application Note "PLC Universal Serial Interface".

The following table shows all HAL functions used by the PRIME FW stack, the file where they are
implemented and a brief description of their usage. Note that there might be other functions not
described here but available in hal.h. Those functions are irrelevant in this context.

Table 4-1. HAL API

hal_restart_system hal.c Restart the complete system.

hal_pcrc_calc hal_pcrc.c Calculate the CRC of the input buffer according to the PRIME specification.

31

@ MICROCHIP

........... continued

hal_pcrc_config_sna
hal_fu_data_write
hal_fu_data_cfg_read
hal_fu_data_cfg_write
hal_fu_start

hal_fu_end

hal_fu_revert
hal_fu_crc_calculate
hal_fu_crc_set_callback
hal_fu_signature_image_check

hal_fu_signature_image_check_set_callb
ack

hal_fu_get_bitmap
hal_plc_init’
hal_plc_reset’
hal_plc_set_handler?
hal_plc_tx_signal
hal_plc_rx_signal

hal_get_config_info?

hal_set_config_info?

hal_usi_set_callback
hal_usi_send_cmd
hal_trng_init
hal_trng_read
hal_debug_report
hal_plc_send_boot_cmd3
hal_plc_send_wrrd_cmd3
hal_plc_enable_interrupt3
hal_plc_delay3
hal_pib_get_request
hal_pib_get_request_set_callback
hal_pib_set_request

hal_pib_set_request_set_callback
hal_aes_init
hal_aes_set_callback

hal_aes_key

hal_aes_crypt

hal_swap_stack
hal_plc_set_stby_mode3
hal_plc_get_thermal_warning3
timer_1us_get
timer_1us_set_int
timer_1us_cancel_int

@ MICROCHIP

hal_pcrc.c
hal_fu.c
hal_fu.c
hal_fu.c
hal_fu.c
hal_fu.c
hal_fu.c
hal_fu.c
hal_fu.c
hal_fu.c

hal_fu.c

hal_fu.c

hal_plc.c
hal_plc.c
hal_plc.c
hal_plc.c
hal_plc.c

hal_cfg.c

hal_cfg.c

hal_usi.c
hal_usi.c
hal_trng.c
hal_trng.c
hal.c
hal_plc.c
hal_plc.c
hal_plc.c
hal_plc.c
hal_pib.c
hal_pib.c
hal_pib.c

hal_pib.c
hal_aes.c
hal_aes.c

hal_aes.c
hal_aes.c
hal.c
hal_plc.c
hal_plc.c
timer_1us.c
timer_1us.c
timer_1us.c

Configure the SNA for the CRC.

Write data in memory during FU.

Read FU configuration data.

Write FU configuration data.

Initialize and unlock memory for a FU process.

Finish the FU process.

Revert to the old firmware.

Calculate the CRC of the received file.

Specify the callback function to provide the calculated CRC.
Check the signature of the received file and verify its validity.

Specify the callback function to indicate if signature and image are correct
or not.

Get bitmap with the status of each page.

Initialize the PLC interface.

Reset the internal PLC modem.

Specify the callback function for the PLC interrupt.
Indicate a transmission event.

Indicate a reception event.

Read configuration parameters. This function disables all interrupts
when accessing the User Signature.

Write configuration parameters. This function disables all interrupts
when accessing the User Signature.

Specify the callback function for a given protocol.

Transmit data through the serial interface.

Initialize the true random number generator.

Read information from the true random number generator.
Report a debug error.

Send a boot command. This function disables all interrupts.
Send a write/read command. This function disables all interrupts.
Enable or disable the PLC interrupt.

Delay execution.

Get user specific PIB value.

Specify the callback function to get a user specific PIB value.
Set user specific PIB value.

Specify the callback function to return the result of setting a user specific
PIB value.

Initialize the AES module.

Specify the callback function to return the results of encryption/
decryption.

Provide the key for encryption/decryption.

Trigger encryption/decryption.

Request to swap the PRIME FW stack.

Set the stand-by mode.

Check if there is a thermal warning active.

Get the current time in microseconds.

Set an interrupt for the specified time in microseconds.
Cancel a programmed time interrupt.

32

........... continued

timer_1us_enable_interrupt timer_1us.c Enable/disable the TC interrupt.

prf_if_init* prf.if.c Initialize the PHY RF interface.

prf_if_reset* prf_if.c Reset the RF transceiver.

prf_if_enable_interrupt? prfif.c Enable/disable the RF interrupt.

prf_if_set_handlert prf.if.c Set an interrupt handler for the specified interrupt source.
prf_if_send_spi_cmd* prf.if.c Launch an SPI transaction to the RF transceiver.
prf_if_is_spi_busy* prf_if.c Check if the SPI is busy.

prf_if_led* prfif.c Turn on/off the LED in the RF transceiver.

Notes:

1.

Microchip does not recommend changing these functions as they are related

A cAuTIoN to the PLC interrupt.

Important: The Microchip implementation of these functions uses the User
Signature in the MCU to store some configuration parameters. This is just an
example. Users can store such parameters in any non-volatile storage area of
their choice and then they must update these functions accordingly.

3. These functions are only available in the PL360/PL460 platform.
4. These functions are only available in the RF platform.

4.4 PRIME Integration Requirements

The goal of this section is to provide recommendations, requirements and limitations to be taken
into account in the application development with the PRIME FW stack. Users are strongly advised to
follow these guidelines.

Failure to comply with the requirements may result in an anomalous and/or

ATTITE unexpected behavior of the PRIME node.

4.4.1 Task Manager, Priorities and Preemption

A major aspect of application development is managing the control flow and ensuring that different
parts of the application do not interfere with each other's execution. The PRIME FW stack can be
integrated in the user application like any other task.

Important: The PRIME task must have at least the same or a higher priority than
any other user task.

If several user tasks are defined, then it is highly recommended to configure the user tasks with a
lower priority than the PRIME task. The reason to do this is to ensure that the PRIME task is executed
as soon as the system tick arrives, in the defined timer rate. This synchronization is critical for the
PRIME FW stack.

33

@ MICROCHIP

4.4.2

443

Important: Call the PRIME FW stack process every 10ms as a maximum period,
ideally every 5ms.

Note that the maximum execution time of the PRIME FW stack process is less than 1ms.

Stack Size

Users must take into account their own user tasks. User tasks need to have an appropriate stack
size to guarantee that no heap task overflow occurs. The optimal number of tasks and memory task
stack sizes need to be configured by users to avoid unexpected behaviors. This also applies to the
PRIME task stack size because it depends on the callback functions implemented by users.

Important: Users must calculate the stack size considering the PRIME FW stack
functions, the HAL functions and the application functions in order to obtain the
worst case. Then, they should add a safety margin.

Other Coding Requirements
The following requirements must be taken into account for a proper system performance:

+ Avoid invoking a request function inside a callback function. This increases the call stack size
and may provoke endless loops. For example, do not request to send data in the same callback
function that handles the confirm of a data request.

« Set to NULL all unused callback function pointers:

memset (&émac cbs, NULL, sizeof (mac cbs));
memset (&cl1432 cbs, NULL, sizeof(cl432 cbs));

+ Provide the callback function pointers again after an MLME_RESET.confirm primitive.

+ Do not modify critical regions in the HAL. The PRIME process already disables any interrupts that
could affect its operation (all interrupts with priority 2 and higher). When the PRIME process has
finished, disabled interrupts are enabled again.

* When security has been configured and the AES hardware module, when available, is used, the
priority of AES must be set to 1, so that the related interrupt is not disabled during the PRIME
process execution.

+ Do not modify the functions and parameters in the PRIME APl and the HAL API.
+ Modify the available user configuration files according to your needs.

+ Give a MAC address to the board. If the PRIME FW stack cannot find a MAC address, it enters into
MTP mode.

+ Give a DUK to the board when security has been configured. If the PRIME FW stack cannot find a
DUK, it enters into MTP mode.

+ Do not reset the software in the function that receives the result of the FU process. The reset
must take place in a user task.

+ Do not reset the software or change the PRIME API pointer in the function that requests a swap
of the PRIME FW stack versions. The reset or pointer change must take place in a user task.

+ Define an exclusive serial port number for the Serial Communication Profile of the Management
Plane (only required for PRIME certification).

+ Initialize and refresh the watchdog to avoid hangings of any application during execution.
+ Use the supply monitor controller, if available in the board, to avoid malfunctions.

@ MICROCHIP

34

4.4.4 CPU Usage
The CPU usage due to the PRIME FW stacks varies depending on the task that is being executed.

4.5 Main Function Structure

Every user application contains a main function, which is, as usual, the starting point of the
application. A basic main function is presented below.

Example of main function

int main (void)

{
/* Function to setup clocking. */
sysclk init();

/* Ensure all priority bits are assigned as preemption priority bits.*/
NVIC SetPriorityGrouping(_ NVIC PRIO BITS);

/* Library function to setup for the evaluation kit being used.*/
board init();

/* Configure supply monitor */
hal setup supply monitor (CONTINUOUS MONITORING, THRESHOLD 3V04);

/* Initialize flash: 6 wait states for flash writing. */
flash init (FLASH ACCESS MODE 128, CHIP FLASH WRITE WAIT STATE);

/* Set up watchdog */
hal watchdog setup (WATCHDOG TIME) ;

/* Configure console */
_configure dbg console();
puts (STRING HEADER) ;

/* Initialize hal layer */
hal init();

/* Init HAL callback for stack swap request */
hal swap stack set callback(prime swap stack request);

/* Read PRIME ptr address */
prime_api = PRIME MAC FLASH LOCATION;

/* Initialize PRIME stack */

prime_init((hal_api_t *)é&hal_api);

/* Init HAL PLC signalling */

hal plc set tx signalling handler(blink plc tx activity led);
hal plc_set rx signalling handler(_blink plc rx activity led);

/* Init user application (callbacks to PRIME) */
app_init();
while (1) {

/* Restart watchdog */

wdt restart (WDT) ;

/* Process HAL layer */
hal process();

/* Process PRIME stack */
pPrime_process();

/* Process user application */
app_process () ;

A developer can add additional code into the body of the function, but the main function should
always follow the structure provided:

1. Setthe prime api pointer
2. Invoke the prime init () function to initialize the PRIME FW stack

35

@ MICROCHIP

3. Invoke the prime process () function in the infinite loop to pass control to the task manager

The task manager begins invoking the task handlers of each layer in order of priority (from

highest to lowest), eventually invoking the application task handler. Following the initial call to the
application task handler, the control flow passes between the PRIME FW stack and the callbacks, as
shown in Figure 4-5.

Important: The pointer to the HAL functions must be passed to the PRIME
FW stack at initialization. Users are also responsible for initializing, starting and
running the HAL.

Important: In order to avoid hangings of any application during execution, it is
recommended to initialize and refresh the watchdog. This is a driver available in
any Microchip board.

In order to start using the PRIME FW stack, it is necessary to initialize different parameters and to
call the corresponding initialization functions. These actions must follow the order indicated in the
next sections.

4.5.1 Pointer to the PRIME FW Stack

In order to call the functions of the PRIME API, the prime api pointer must be available. The user is
responsible for setting this pointer according to the required memory allocation.

4.5.2 PRIME FW Stack Swap

When a node detects traffic from a different stack version, it notifies it to the HAL with function

hal swap_ stack (see HAL API) indicating the type of the detected traffic. If users want to be
notified about this in their application, the corresponding callback function must be provided to the
HAL with the following function:

void hal swap stack set callback(void (*p_handler) (uint8 t uc_ traffic));

Parameters:

* p_handler: Pointer address to the callback function

4.5.3 PLC Signaling (optional)

If users want to be notified about PLC transmission and reception events, the corresponding
callback functions must be provided to the HAL.

4.5.3.1 Providing the Pointer to the Transmission Event Callback Function
To set up the callback for transmission events, the following function must be used:

void hal plc set tx signalling handler (void (*p_handler) (void)) ;

Parameters:

* p_handler: Pointer address to the callback function

4.5.3.2 Providing the Pointer to the Reception Event Callback Function
To set up the callback for reception events, the following function must be used:

void hal plc set rx signalling handler(void (*p_handler) (void));

Parameters:

36

@ MICROCHIP

4.5.4

4.5.5

* p_handler: Pointer address to the callback function

PRIME FW Stack Initialization

After setting up pointers, the user application can call the initialization function of the PRIME FW
stack. Additionally, since the HAL is part of the application, the application must provide the HAL
pointer to the PRIME FW stack at this point. The function used for this purpose is the following:

prime init (void *px hal api);

Parameters:

* px_hal_api: Pointer to the HAL API

Important: This function initializes the complete PRIME FW stack, from the PHY
layer to the CL shown in Block Diagram of the PRIME FW Stack Architecture.

PRIME Callback Functions

In order to be informed about confirm and indication primitives from the MAC layer and the CL,
when the user application is initialized, it must set up required callback function pointers. This must
be performed after the PRIME FW stack has been initialized. The following functions are used:

void prime cl null set callbacks(mac_set callbacks t *mac cbs);

Parameters:

* mac_cbs: Pointer to the callback structure of the MAC layer (see chapter Callback Functions in the
MAC Layer for details)

void prime cl 432 set callbacks(cl 432 set callbacks t *cl432 cbs);

Parameters:

« (l432_cbs: Pointer to the callback structure of the 4.32 SSCS (see chapter IEC 61334-4-32
Primitives for details)

This is an example of callback function pointer setup:

mac callbacks t mac cbs;
cl 432 callbacks_t cl432 cbs;

/* Initialize all callback pointers to NULL */
memset (&émac_cbs, NULL, sizeof (mac_cbs));
memset (&cl432_cbs, NULL, sizeof(cl432 cbs));

/* Initialize callback pointers for MAC */

mac_cbs.mlme register ind cb = user app mlme register ind cb;
mac_cbs.mlme unregister ind cb = user app mlme unregister ind cb;
mac_cbs.mac_establish cfm cb = user app establish confirm cb;
mac_cbs.mac release ind cb = user app release ind cb;
mac_cbs.mac data ind cb = user app data indication cb;

prime cl null set callbacks (&mac_cbs);

/* Initialize callback pointers for 4.32 */

cl432 cbs.cl 432 establish cfm cb = user app cl 432 establish cfm cb;
cl432 cbs.cl 432 release cfm cb = user app cl 432 release cfm cb;
cl432 cbs.cl 432 dl data ind cb = user app cl 432 dl data ind cb;
cl432 cbs.cl 432 dl data cfm cb _user _app_cl 432 dl data cfm cb;

prime cl 432 set callbacks(&cl432 cbs);

@ MICROCHIP

37

4.5.6

4.6

4.6.1

4.6.2

4.6.3

4.6.4

PRIME FW Stack Process

Every program cycle, the PRIME FW stack must perform several actions for its normal operation. This
is achieved by calling the following function:

prime process (void) ;
This function processes events and invokes the corresponding callback functions.

Application Configuration Parameters

Example Configuration — conf_app_example.h

In this file, users need to define anything related to their application. For example, the reserved
memory addresses, communication ports, etc.

HAL Configuration — conf_hal.h

Users need to define in this file the configurable hardware parameters according to their HAL code.
These can be timers, buffer sizes, interruptions, etc. (see chapter Hardware Resources Usage).

PRIME Stack Configuration — conf_prime_stack.h

This file enables parameter PRIME API SEPARATED APPS to indicate that the PRIME FW stack is
separated from the user application.

Important: Currently, Microchip only provides support for separated
applications.

By commenting this parameter, users could also implement a monolithic architecture, that is, one
project contains both the PRIME FW stack library as well as the user application and only one binary
file is generated (including the PL360 firmware if necessary). However, a firmware upgrade of this
kind of architecture is not supported by the provided example applications. The main purpose of
this action would be to debug.

USI Configuration — conf_usi.h

This file configures the characteristics of the ports used for serializations. More information about
this file can be found in chapter Definition and Configuration of Serial Ports.

@ MICROCHIP

38

5. Data Exchange

Users are free to use the provided specific convergence sublayers or access the MAC layer directly
to establish a MAC connection to exchange data between application peers. Such connections can
be made between a Base Node and a Service Node or between two Service Nodes (i.e. a direct
connection).

Please refer to PRIME specification for detailed information about the semantics of the primitives
available in the MAC service access point.

Please note that an Automatic Repeat Request (ARQ) mechanism is available in order to provide
guaranteed communications between peers.

Important: Remember that all requests to exchange data are followed by a
confirm and that the application must always wait for it before performing a new
request. The confirm can be immediate or be delayed for a considerable amount
of time. For communications with ARQ, the invocation of the confirm callback
could take up to several minutes. More information about the request/confirm
mechanism can be found in chapter PRIME API.

5.1 Null SSCS
Users can directly access the MAC layer through the Null SSCS.

Available signalling primitives can be found in Table 12-1.
Available data primitives can be found in Table 12-2.

The data exchange with MAC primitives can be enhanced by using a time reference. Microchip
recommends obtaining the local time with primitive PHY_TIMER.get in the PAL (see chapter
Management Primitives in the PAL). Note that the time units returned by this PHY primitive are
microseconds, whereas the time units of the time reference must be tenths of microsecond.

5.2 IEC 61334-4-32
Users can make use of the provided IEC 61334-4-32 compliant SSCS.

Available IEC 61334-4-34 primitives can be found in Table 12-5.

5.3 Automatic Repeat Request (ARQ)
The PRIME specification defines two kinds of ARQ: windowed and “Stop and wait”. The current
implementation of the PRIME FW stack only supports windowed ARQ with a window size fixed to 4.

The following figure shows how ARQ works. If the application needs more than one second to send
the reply, the Service Node sends the ACK after that time. If the response is received within one
second, the PRIME FW stack piggybacks the ACK in the response.

39

@ MICROCHIP

Figure 5-1. ARQ with One Fragment and Piggyback

DCU BN PLC SN METER
- DATA Req
DATA_REQ
 4 DATA_|Np
0
o o
o o
g :
o @
« —
Te)
— ACK
DATA_CONFIRM 4//‘
«— |

DATA\R EQ

E— DATA Req

DATA INp

PN

DATP_CONF\RM

DATAJND

1 second

ACK
\%

In certain situations, it might be possible that the ACK is sent as soon as the request is received, i.e. it
is never piggybacked. That is shown in the next figure.

Figure 5-2. ARQ with One Fragment

DCU BN PLC SN METER

DATA_REQ
DATA_REQ

\ DATA_INp
ACK T
wt’/

DATA_REQ
e DATA_REq
 -%
ACK
REQ
DATA,CONF\RM DATA

DATA_REQ
‘_wt'/
ACK
\%

For long fragmented responses, there is an ACK piggybacked to each fragment and the BN sends the
ACK after receiving the last fragment, as shown in the following figure.

Q MICROCHIP

Figure 5-3. ARQ with Four Fragments

DCU BN PLC SN METER

DATA_R EQ
DATA‘R EQ

\M’
DATA_REQ

Frag 1 of)
REQ +ACK(

cEqrACK(Frag 2014

DATA_
REQ+ACK (Fra9 30f4)

DATA .
DATA REQ+ACK(Frag 4 of
‘,,,,,D,,A, T ,A’\ND 4’7/7/////////

A

1second

y ACK

ﬁ\>

DATA~CONFIRM

It is possible that a fragment with its corresponding ACK is lost. In that case, a NACK with the missing
fragment is sent, so that the Service Node can resend it. This is shown in the following figure.

Figure 5-4. ARQ with Four Fragments and Retransmission

DCU BN PLC SN METER
DATA_REQ
T DATA Rreq
\» DATA_IND
I

EQ
o +hOK (Frag of 4) DATA_R

ATA_RE
ONFIRM A_
% OATA_REQrACK(Fr 20t®)
e i

DATA_RE

4
DATA REQ+ACK(Frag 4 of 4)

NACK3
30
Q +ACK (Frag
A/D/’“ﬂ/ DATA_RE!

A

1second

y ACK

The worst case scenario occurs when the last fragment is lost because then the Service Node does
not receive any ACK or NACK from the Base Node. In this case, the Service Node waits for 3 seconds

@ MICROCHIP

before retransmitting the last fragment. If the ACK or NACK is still not received, the Service Node
makes up to 5 retransmissions. After all the retransmissions, the disconnection process starts.

Figure 5-5. ARQ with Four Fragments and Maximum Number of Retransmissions

DCU BN PLC SN METER
DATA Req
DATA_Req
\>M>
TA_REQ _
£ 4) DATA_! Y
CK(Frag 1°©
TA_CONFIRM pATA_REQHA 20f4)
@ DATA_ K(Frag 2©
5 o - | pATA_REQTACK! ”
£ Frag 30
g DATA,REQ‘”ACK(" 2
pal ag 4 of <
£ DATA,REQ*'AS’;(ELQ// i P
2 5
8 a 5
= @ £
o n)
o [Sp] S
9 2
) 4) 4 %
7] ag 4 of _v »
T DAT1'>~_REQ‘“P‘CK(Fr 9 2
3 DATA_IND > 3
s v 4« L) 0
- [%2]
o :
2 = 8
o b
(0] 2]
£
A S
N ACK =
OATA_conFiRy |

@ MICROCHIP

6. File Transfer Service for Firmware Upgrade

6.1 Introduction

The PRIME FW stack implements the PRIME FU process as described in the PRIME specification.
Please refer to the PRIME specification for details.

In order to upgrade any binary, Microchip provides an example where it is only needed to reserve
one memory region, which will first store the new image and, after the restart, the previous

binary (see chapter Memory Allocation). The PRIME FW stack is only responsible for managing the
FU process as described in the PRIME specification, whereas the user application is responsible

for handling the pointers to these regions and managing the indications received in the HAL.
Additionally, a complete system restart is required when the FU process finishes so that the
bootloader application moves the received binary to its right location and keeps the previous binary
for a possible revert.

Important: The bootloader application as well as the FU handling in the user
application and in the HAL are only an example provided by Microchip. Users can
develop any other strategy that fits their system requirements and resources in a
more optimal way.

Moreover, since the PRIME FW stack does not control what kind of file is being received, the user
application can also use the PRIME FU process to transfer files. In this case, users need to define
a memory area to store the received file. Later, when the FU process finishes, the user application
decides what to do with this file.

According to the PRIME specification, where it is assumed that the FU process is only used to
upgrade the PRIME stack, the FU process does not end until the sent file is confirmed (result

HAL FU FW_CONFIRM in the state diagram in Figure 6-2), i.e. regardless of the type of received file,
the PRIME FW stack must always be restarted so that the FU process finishes properly.

The user should note that the PRIME FW stack is not able to access the hardware by itself, i.e.

it is not directly reading from or writing to the memory, and it is not even changing the running
PRIME FW stack. The user application manages and controls the HAL, which defines and handles the
hardware accesses, including memories, and decides what to do with the received file.

At the beginning of an FU process, the PRIME FW stack starts the HAL FU module so that the HAL
prepares the memory area to use when the stack requests to access the memory. The received file
will be stored in that location.

At the end of the FU process, the PRIME FW stack indicates the result of the FU process to the HAL
and then the user application manages the received file accordingly. This file can be a new image of
the PRIME FW stack, a new image of the PL360 firmware, a new image of the user application or any
other user file.

@ MICROCHIP

Important: Note that the FU process in the PRIME FW stack only checks the
integrity and authentication of the received file using the file CRC and signature.
It does not perform any check on the validity of this file for a potential upgrade.
It is recommended that the application performs its own validation by means of
checking any metadata contents in the received file. It is up to the users to define
how to check them.

For instance, in the PRIME FW stack binary file, the first 20 bytes contain the
Vendor, Model and Version information. It is recommended to only accept
binary files with matching Vendor and Model (as set in PRIME FW_VENDOR and
PRIME FW MODEL). The HAL is performing such check in file hal_fu.c.

Furthermore, in the provided examples, the last 16 bytes of any binary file
(before the signature) are expected to include an identifier of the file being
upgraded or transferred (the expected identifiers in file hal_fu.c are defined in
file conf app_example.h).

Figure 6-1 shows a flow diagram for a successful FU process with associated states and actions.
Figure 6-2 shows the FU state diagram of the PRIME specification with the results provided by the
HAL during a FU process. Both diagrams apply to any kind of file transfer.

@ MICROCHIP

Figure 6-1. FU Flow Diagram with States and Actions

@ MICROCHIP

PRIME Stack
hal fu_crc_set_callback()
hal_fu s'lgnature_check_set_ca\lback()
_cfg_read()

User APP

hal_fu_data

ha_fu_data_cfg_w rite()
' <>

hal fu_get_bitmap() lt -~
Erase the reserved hal_fu_start()
memory region and save

image and page size

hal_fu_data_cfg_write()

hal_fu_data_write()

Save

Feges hal fu_data'_write()

‘ hal fu_uc_calcu\ate

Calculate CRC
Call CRC callback
\ CRC checked

successfully

hal fu_signature_ima e checkl

Checksignature

signature callback

Signature
checked
successfully

hal_fu_data_cfg_write

----------- (Complete)
rTimer 1=0)
FU_EXEC_REQUEST (Restalt JT= —— = — -~
—_ _ _FU_STATE
2 ATE_RESPONSE (Countdown)
Wait T
RestartTimer
hal—fu—data_cfg_writeo
pal_fu_end) UPGRADE
Manage the received fle @ HAL—FU—SUCCESS
according to user needs i
and reset PRIME stack Prime_init()
Reset
ha_fu_data_cfg_read() ________ REG_REQ
"""""""""" >
REG_CONFRM ____ _————1
PR
FU_STATE_REQUEST ______ -
-
_____ FU_STATE R
—————— = _E‘EPPL\“EE_“_JEgIade)
hal_fu_end() ONFIRM_REQUEST _____—+
= FIRM FUCORTE ===
FU process fii shed HAL_FU_FW, CON -

successfully

hal_fu_data_cfg_write()
G

hal_fu_data_write() PP

(Last Page) |

pLC @
Channel

6.2

6.3

Figure 6-2. FU State Diagram with HAL FU Results

)

o)
o
SE 2
gy 3
% =) 8’
£ S
i
UPGRADE < RECEIVING

COUNTDOWN

[Fw1]

CRC Result Callback

The HAL is responsible for calculating the CRC of the received file when requested by the PRIME
FW stack. The calculated result is provided invoking a callback function whose pointer is set at
initialization by the PRIME FW stack with the following function:

void hal fu crc_set callback(void (*p_handler) (uint32 t ul crc));

Parameters:
* p_handler: Pointer address to the callback function

Signature and Image Result Callback

The HAL is responsible for verifying the signature of the received file, as well as its validity, when
requested by the PRIME FW stack. The result is provided invoking a callback function whose pointer
is set at initialization by the PRIME FW stack with the following function:

void hal fu signature image check set callback(void (*p_handler) (hal fu verif result t
uc_result));

Parameters:

* p_handler: Pointer address to the callback function

@ MICROCHIP

46

The following results are possible:

typedef enum {

HAL FU_VERIF_ SUCCESS, /* Image verified successfully */
HAL FU SIGNATURE FAIL, /* Signature verification failed */
HAL FU_IMAGE_FAIL /* Image verification failed */

} hal fu verif result t;

6.4 FU Configuration Data

The PRIME FW stack needs to save some configuration data that cannot be lost during the FU
process. The provided HAL stores this data in four 32-bit General Purpose Backup Registers (GPBRO
to GPBR3) but users can determine to use a non-volatile storage area.

The PRIME FW stack requests to read the FU configuration data with the following function:
void hal fu data cfg read(void *pv dst, uintl6é t us size);

Parameters:

+ pv_dst: Pointer where the read data must be stored
+ us_size: Length of data to be read

The PRIME FW stack requests to save the FU configuration data with the following function:
uint8 t hal fu data cfg write(void *pv_src, uintlé_t us_size);

Parameters:

+ pv_src: Pointer to the data to be saved
+ us_size: Length of data to be saved

Result: 1 if there is no error. Otherwise, 0.

6.5 Starting FU

When a FU process starts, the PRIME FW stack indicates it to the user application with the following
function:

void hal fu start(hal fu info t *x fu info);

Parameters:
* x_fu_info: Pointer to FU information:
typedef struct {
uint32 t image size; /* in bytes */

uint8 t page size; /* in bytes */
} hal fu info t;

The HAL stores the received information and erases the region where the file will be safely stored.

6.6 Providing the Bitmap

The bitmap is used to keep track of received pages during a FU process. The PRIME FW stack does
that internally, but the user application can do the same if desired. Then, when a new FU process
starts or if there is a reset and the FU process restarts, the PRIME FW stack requests this information
to use it if available. The function to request this from the HAL is the following:

uintlé t hal fu get bitmap(uint8 t *puc bitmap, uint32 t *pus num rcv pages)

Parameters:

* puc_bitmap: Pointer to the bitmap

47

@ MICROCHIP

* pus_num_rcv_pages: Pointer to the number of received pages
Result: Bitmap size.

6.7 Writing FU Data

When the PRIME FW stack has received a page of the file, it requests the HAL to write it with the
following function:

uint8 t hal fu data write(uint32 t ul addr, uint8 t *puc buf, uintl6é t us size);

Parameters:

« ul_addr: Address of page to write

* puc_buf: Pointer to page to write

* us_size: Page size

Result: 1 if there is no error. Otherwise, 0.

6.8 CRC Calculation

When all the pages have been successfully received, the PRIME FW stack needs to verify that the
received file is correct and thus it requests the HAL to calculate its CRC with the following function:

void hal fu crc calculate(void);

The HAL can calculate the CRC over the complete file but, as this can take some time for large files,
it is recommended to calculate it page by page in a process function. The result is returned through
the CRC callback function as defined in chapter CRC Result Callback.

6.9 Signature and Image Check

When the CRC has been calculated and matches the received CRC, the PRIME FW stack needs to
authenticate the received file by verifying its signature and also to verify that the received image is a
valid one according to the user requirements (for example, checking metadata). Thus it requests the
HAL to verify signature and image with the following function:

void hal fu signature image check(void);

The HAL verifies the received signature and image requirements and then returns the result through
the signature result callback function as defined in chapter Signature and Image Result Callback.

6.10 Finishing FU

The PRIME FW stack can finish the FU process at any time, as shown in Figure 6-2. This is indicated to
the HAL with the following function:

void hal fu end(hal fu result t uc_hal res);

Parameters:

« uc_hal_res: Result of the FU process

The user application is responsible for storing this result at this point and later, during its process
time, deciding what to do. The following results are possible:

typedef enum {

HAL FU_SUCCESS, /* Request to restart with new image */
HAL FU CANCEL, /* The FU has been killed */

HAL FU CRC_ERROR, /* CRC error */

HAL FU FW_ERROR, /* (Deprecated) */

HAL FU_FW_REVERT, /* Request to restart with old image */
HAL FU FW CONFIRM, /* The FU has been confirmed */

HAL FU ERROR, /* Error during FU */

48

@ MICROCHIP

HAL FU_SIGNATURE_ERROR, /* Signature error */
HAL FU IMAGE ERROR /* Image verification (model/vendor) failed */
} hal fu result t;

Important: Both results HAL FU SUCCESS and HAL FU FW REVERT require a
restart of the PRIME FW stack so that the PRIME FU process finishes properly. The
rest of the results do not have any specific action associated.

6.11 Managing the Received File

Once the file has been successfully received, the user application can check what type of file it is.
But in all cases the PRIME FW stack must always be restarted so that the FU process continues with
confirmation and goes to idle again, as shown in Figure 6-1 and Figure 6-2.

In case of receiving a new image, the decision to swap regions in order to execute the new version
(or to revert to the old one) is made in the user application. This triggers a software reset that
restarts the whole system by executing the bootloader. The specific actions to complete a PRIME
firmware upgrade are shown in the next figure.

Figure 6-3. Finishing a PRIME FU Process

D

Wait
RestartTimer

hal fu_data_cfg_write()
l UPGRADE

hal_fu_end()
_)HAL_FU_SUCCESS

Identify the received file as a
binary image, swap regions .
Prime_init()

and restart the system =
Reset

d
hal_fu_data_cfe_readl) ~———— _ _REG RE

‘f_ -—— =
FU_STATE_RES\-ESI_ SE—

= —FE‘iTiTE_—'ES_PO_NSE(Upgrade)
e

hal_fu_end() iy FU CONFlRM;RE_Q.\.J.E.?.T— -
) NFIR ===

0 «—--—"
FU process finished HAL FU_FW_C

successfully
hal_fu_data_cfg_write()
@D

= = — — ZUSTATE ReSPONsE(ide)
Dl =

@ MICROCHIP

49

Important: The system must not be restarted in the HAL function that receives
the result of the FU process. The restart must take place in a user task.

@ MICROCHIP

50

7. PRIME Management Plane

The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade.

Node management in the PRIME FW stack is accomplished through a set of attributes. Attributes
are defined for both PHY and MAC layers. The set of these management attributes is called PLC
Information Base (PIB). Some attributes are read-only, while others are read-write. For details
about implementation of PIB attributes described in the PRIME specification, see chapter Major
Capabilities of the MAC Layer and chapter Major Capabilities of the Management Plane. The PRIME
FW stack also implements vendor specific PIB attributes, which are described in chapter PIB Objects
Specification and Access. Additionally, Microchip offers an interface through the HAL that enables
the implementation of user specific PIBs in the application. Those user specific PIBs can only be
defined with a size of 4 bytes in the ID range 0xF00O0 - OxFCFF.

The control entity can access the Management Plane by using the two communication profiles
defined in the PRIME specification:

« PRIME Profile. A remote control entity, usually the Base Node, uses the PLC to send requests to
the node. These requests are received in the Management Plane from the Null SSCS in the CL
(see chapter Null SSCS)

+ Serial Communication Profile. It is implemented as a service in the US| of the HAL and is used by
the local control entity. For more information about the different services available in the US|, see
chapter Serialization with Embedded USI

Whenever the Management Plane receives a request from any of the specified profiles, it passes it to
the MAC layer using the functions of the Null SSCS in the CL (see chapter Null SSCS). This access is
depicted in the next figure.

Figure 7-1. Management Plane Access to the MAC Layer

EC+432 NULL M anagem ent
$9C S SIS Plane

(CPCS

MAC

PHY

Important: Please note that the PRIME Certification Tool needs to access the
Management Plane through the Serial Communication Profile and therefore it
must be configured appropriately (see Serial Communication Profile of PRIME
Management Plane).

51

@ MICROCHIP

8. Toolchain
The following sections describe the required tools and toolchain for the development and build
process and how the provided example applications can be built.

8.1 General Prerequisites
The following tools and toolchains are used for building the applications from this firmware
package: IAR Embedded Workbench for Arm® V9.20 (see http://www.iar.com/).

8.2 Building the Applications

8.2.1 Using IAR Embedded Workbench

As explained in chapter General Architecture, for a system to be operative with the user application
and the PRIME FW stack, two different projects must be built and loaded into the board as well as
the bootloader. All provided projects can be built using the IAR Embedded Workbench directly.

For the project generating the binary file with the bootloader, follow the procedure as described:
1. Open the project addons/bootloader

2. Build the project

3. Program the board

For the project generating the binary file with the PRIME FW stack, follow the procedure as
described:

Open the project prime_service_bin
Configure the library as required (see chapter PRIME Stack User Configuration Parameters)
Build the project

AW

Program the board so that the binary file is stored at the selected memory location (see chapter
Memory Allocation)

For each example application described in chapter Example Applications, follow the procedure as

described:

1. Open the corresponding project

2. Configure the project as required (see chapter Application Configuration Parameters)

3. Build the project

4. Program the board so that the binary file is stored at the selected memory location (see chapter

Memory Allocation)

In the PL360/PL460 platform, the PL360 firmware is also required for a system to be operative but it
is directly provided as a binary file. Therefore, it is only needed to store it in the board at the selected
memory location (see chapter Memory Allocation).

Important: Make sure that the Flash memory is erased before programming it.

52

@ MICROCHIP

http://www.iar.com/

9.1

9.2

9.3

Supported Platforms

This chapter describes which hardware platforms are currently supported with the PRIME firmware
package. A platform usually comprises of three major components:

+ AnMCU
+ A modem chip (this may be integrated into the MCU for single chips)
+ A specific hardware that contains the MCU and/or the modem chip

Supported MCU Families
The only supported generic MCU families are PIC32CXMTx, SAM4C and SAMG55 platforms.

The dedicated code for each device of the family can be found in the corresponding subdirectories.

Supported Devices

Currently the only supported devices are:
« With PL360: SAM4CMS16C, SAMG55J19

+ With PL460 and AT86RF215IQ: PIC32CX2051MTSH128, PIC32CX2051MTG128, SAMG5519
Supported Boards

The currently supported boards and combinations are given below:

« ATPL360-EK

+ PIC32CXMTSH-DB with PL460-EK on Xplained port and ATREB215-EK on mikroBUS port
+ PIC32CXMTG-EK with PL460-EK on Xplained port and ATREB215-EK on mikroBUS port

« PL360G55CF-EK with ATREB215-EK on mikroBUS port

+ SAMGS55 Xplained with PL460-EK on Xplained port and ATREB215-EK on mikroBUS port

@ MICROCHIP

53

10. PICS

This chapter lists the conformance of the Microchip PRIME implementation with the requirements
and optional features as defined by the PRIME specification document.

A Protocol Implementation Conformance Statement (PICS) is a declaration listing the capabilities and
options supported by an implementation. The PICS is based on a list of options and values, defined
in the PRIME specification and in the test suites used by the certification process.

10.1 Major Roles for Devices Compliant with PRIME

10.1.1 Major Capabilities of the PHY Layer
The current PHY layer is the implementation of the PRIME PHY layer as specified in PRIME
specification version 1.4.

10.1.1.1 PHY Frames
The current PHY layer supports frame types A, B and BC specified in PRIME specification version 1.4.

10.1.1.2 PLME Primitives

The current implementation of the PHY layer does not support the following optional
functionalities of the PRIME specification: suspend and resume (primitives PLME_SLEEP.request and
PLME_RESUME.request) and test mode (primitive PLME_TESTMODE.request).

10.1.2 Major Capabilities of the MAC Layer

The current MAC layer is compliant with PRIME specification version 1.4 and is valid for a Service
Node.

The following table shows which optional features of the PRIME specification are currently
implemented in the MAC layer provided by Microchip.

Table 10-1. Implementation of Optional Features in the MAC Layer

Direct Connection Available
ARQ Available
Packet Aggregation Not available
Multicasting Available
Contention-Free Service Not available
Security Profile 1 Available
Security Profile 2 Available
Roaming Not available
Backwards compatibility Not available

10.1.2.1 PLC Information Base

All mandatory PHY and MAC PIB attributes defined in PRIME specification version 1.4 for a Service
Node are available in the current MAC layer through PLME and MLME.

Optional PIB attributes from PRIME specification version 1.4 currently implemented in PLME and
MLME can be found in file mac_pib.h.

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.

10.1.3 Major Capabilities of the Convergence Layer

The current Convergence layer is compliant with PRIME specification version 1.4 and is valid for a
Service Node.

@ MICROCHIP

54

The following table shows which Service-Specific Convergence Sublayers are currently implemented
in the CL provided by Microchip.

Table 10-2. Implementation of SSCS

Null Available
IPv4 Not available
IEC 61334-4-32 Available
IPv6 Not available

10.1.4 Major Capabilities of the Management Plane

10.1.4.1 PLC Information Base

All mandatory PIB attributes defined in PRIME specification version 1.4 for a Service Node are
available in the current Management Plane of the PRIME FW stack.

Optional PIB attributes from PRIME specification version 1.4 currently implemented in the
Management Plane can be found in file mac_pib.h .

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.
10.1.4.2 Communications Profiles

The Management Plane implements both the interface over the Null SSCS (PRIME Profile) and the

interface over the local serial link (Serial Communication Profile) according to PRIME specification
version 1.4.

10.1.4.3 Firmware Upgrade

According to the PRIME specification, when the Base Node requests information about the missing
pages during a FU process with packet FU_MISS_REQ, the Service Node can decide to reply with
either FU_MISS_BITMAP or FU_MISS_LIST. The current implementation of PRIME specification version

1.4 usually replies with packet FU_MISS_BITMAP and in some cases with FU_MISS_LIST. This cannot
be changed by users.

@ MICROCHIP

55

11.

11.1

11.2

11.3

11.3.1

11.3.2

1133

1134

API of PHY and PAL Layers
The following API is to be used by applications which do not integrate the MAC layer, i.e. that only

require transmission and reception of messages through the PHY layer.

PLC PHY SAP

The PLC PHY SAP corresponds to the PHY APl described in header files atp/360.h and
atpl360_comm.h. More information about management, communication and configuration functions
of the PHY API can be found in User Guide PL360 Host Controller.

RF PHY SAP

The RF PHY SAP corresponds to the PHY API described in header file at86rf defs.h.

PAL SAP
The PAL SAP corresponds to the PAL API described in the header file pal.h.

Initialization Function

The PAL layer must always be initialized when the system starts the execution. The following
function is used for that purpose:

void pal init(void);

Depending on the PAL configuration, this function initializes the transmission handlers according to
the available PHY layers.

Process Function

Every program cycle the PAL layer must check transmission and reception events. This is achieved by
calling the following function:

void pal process(void);
This function is also responsible for invoking the corresponding callback functions.

Callback Functions

When a previously requested transmission finishes (data confirm) and when a frame is received
(data indication), the PAL layer informs about it by calling the corresponding callback function. To set
up the callback function pointers, the following function is required:

void pal set callbacks(pal callbacks t *pal cbs);

Parameters:

* pal_cbs: Pointer to the callback structure:

typedef struct TPalCallbacks {

pal data confirm cb t data confirm;

pal data indication cb_t data indication;
pal switch rf ch cb t switch rf ch;

} pal callbacks t;

Noise Capture Function (PL360/PL460 Platform)

The PL360 device offers a functionality to capture noise in the channel. The PAL layer can access this
service with the following function:

uintl6é t pal get noise capture (uint8 t *puc dst, uint8 t uc mode, uint32 t ul time start,
uint32 t ul duration);

@ MICROCHIP

56

11.4

114.1

11.4.2

Parameters:

* puc_dst: Pointer to destination buffer to store data

* uc_mode: Capture mode

+ ul_time_start: Start time in ps based on PL360 timer reference
* ul_duration: Duration time in ys

Return value: Size in bytes of noise capture.

Important: During the noise capture, any ongoing transmission or reception is
cancelled.

PAL Primitives
The PAL primitives are described in header file pal.h.

Data Primitives

The PAL implements the data interface to the PHY layer based on the PHY primitives from the PRIME
specification.

Table 11-1. PHY Data Plane Primitives

PHY_DATA.request uint8 t pal data request(x pal msg tx t *px msg);
PHY_DATA.confirm typedef void (*pal_data confirm cb t) (x_pal data cfm t *px data cfm);
PHY_DATA.indication typedef void (*pal data_indication cb_t) (x pal data_ind t *px_data_ind);

Management Primitives

The PAL implements the control interface to the PHY layer based on the PHY primitives from the
PRIME specification.

Table 11-2. PHY Control Plane Primitives

uint8 t pal agc set(uint8 t uc _mode, uint8 t Only in PLC PHY

1
PHY_AGC.set uc_gain, uintlé t us_pch);
uint8 t pal agc get(uintlé _t us_id, void *p val, Only in PLC PHY
PHY_AGC get uintlé t uc len, uintlé t us_pch);
PHY_AGC.confirm Referenced parameters of pal_agc_get. Only in PLC PHY
. . . N . .
PHY TIMER get uint8 t pal timer get(uint32 t *pul timer, uintlée t All
us_pch) ;
PHY_TIMER.confirm Referenced parameters of pal_timer_get. All
uint8 t pal cd get(uint8 t *puc_cd, uint8 t Only in PLC PHY
PHY_CD.get *puc_rssi, uint32 t *pul time, uint8 t *puc header,
uintlé t us pch);
PHY_CD.confirm Referenced parameters of pal_cd_get. Only in PLC PHY
. . N . .
PHY NLget uint8_t pal nl get(uint8_ t *puc_noise, uintlé6_t All
us_pch);
PHY_NL.confirm Referenced parameters of pal_nl_get. All
uint8 t pal snr get(uint8 t *puc snr, uint8 t All
PHY_SNR.get uc_gt, uintlé t us_pch);
PHY_SNR.confirm Referenced parameters of pal_snr_get. All
. . N . .
PHY ZCT.get E;n;iﬂ;:'palizctiget (uint32 t *pul zct, uintlé6 t Only in PLC PHY

@ MICROCHIP

57

........... continued

PHY_ZCT.confirm Referenced parameters of pal_zct_get. Only in PLC PHY
PHY_CCA.get uint8 t pal cca get(uint8 t *puc_channel state); Only in RF PHY
PHY_CH.get uint8_t pal ch get(uintl6_t *pus_pch); All
PHY_CH.confirm Referenced parameters of pal_ch_get. All

PHY_CH.set uint8 t pal ch set(uintl6_t us_pch); All

Note:

1. Manual management of AGC is not supported in the current implementation.

@ MICROCHIP

12. APl of PRIME FW Stack

The API of the PRIME FW stack defines the functions as macros in the header file prime_api.h.

Note that there might be other functions not described in this document, but available in the
prime_api.h file. Those functions are irrelevant in this document.

12.1 MAC Primitives

Refer to the PRIME specification for more information about MAC primitives and their
functionalities.

12.1.1 Signalling Primitives

Table 12-1. Signalling Primitives
MAC_ESTABLISH.request prime cl null establish request (mac_establish request t)

typedef void (*mac_establish request t) (uint8 t *puc_euid8, uint8 t
uc_type, uint8 t *puc data, uintl6é t us data len, uint8 t uc arqg, uint8 t
uc_cfbytes, uint8 t uc_ae);

MAC_ESTABLISH.indication typedef void (*mac_establish ind cb t) (uintl6_t us con handle, uint8 t
*puc_euid8, uint8 t uc_type, uint8 t *puc _data, uintl6 t us data len,
uint8 t uc_cfbytes, uint8 t uc_ae);

MAC_ESTABLISH.response prime_cl null establish response (mac_establish_response_t)

typedef void (*mac_establish response t) (uintl6 t us con handle,
mac_establish response answer t uc_answer, uint8 t *puc data, uintlé6_t
us data len, uint8 t uc_ae);

MAC_ESTABLISH.confirm typedef void (*mac_establish cfm cb_t) (uintl6_t us_con_handle,
mac_establish confirm result t uc result, uint8 t *puc euid8, uint8 t
uc_type, uint8 t *puc _data, uintlé_ t us data len, uint8 t uc ae);

MAC_RELEASE.request prime cl null release request(mac_release request t)

typedef void (*mac_release request t) (uintl6_t us_con_handle);

MAC_RELEASE.indication typedef void (*mac_release_ind cb_t) (uintl6_t us_con_handle,
mac_release_indication reason_ t uc_reason);

MAC_RELEASE.response prime_cl null release response (mac_release response_t)

typedef void (*mac_release response t) (uintl6_t us con handle,
mac_release_response_answer_t uc_answer);

MAC_RELEASE.confirm typedef void (*mac_release cfm cb_t) (uintl6é_t us_con handle,
mac_release confirm result t uc result);

MAC_JOIN.request prime cl null join request(mac_ join request t)

typedef void (*mac_join request t) (mac_join mode t us broadcast, uintl6 t
us_con_handle, uint8 t *puc_euid8, connection type t uc_con type, uint8 t
*puc_data, uintlé_t us data len, uint8 t uc_ae);

MAC_JOIN.indication typedef void (*mac_join_ind cb_t) (uintl6_t us_con_handle, uint8_ t
*puc_euid8, uint8_ t uc_con_type, uint8 t *puc_data, uintl6_t us_data len,
uint8 t uc ae);

MAC_JOIN.response prime cl null join response (mac_join response t)
typedef void (*mac_join response t) (uintl6_t us_con_handle, uint8 t
*puc_eui48, mac join response answer t uc_answer, uint8 t uc_ae);

MAC_JOIN.confirm typedef void (*mac_join_cfm cb_t) (uintl6_t us_con_handle,
mac_join confirm result t uc result, uint8 t uc ae);

MAC_LEAVE.request prime_cl null leave_request (mac_leave_request_t)

typedef void (*mac_leave request t) (uintl6_t us con handle, uint8 t
*puc_euids8);

59

@ MICROCHIP

veeeeeeeeecCONtinued

MAC_LEAVE.indication typedef void (*mac_leave ind cb t) (uintl6_t us_con_handle, uint8 t
*puc_euids8);

MAC_LEAVE.confirm typedef void (*mac_leave cfm cb t) (uintl6é_t us_con_handle,
mac_leave confirm result t uc result);

12.1.2 Data Primitives

Table 12-2. Data Primitives
MAC_DATA.request prime cl null data request (mac_data request t)

typedef void (*mac_data request t) (uintl6_t us con_handle, uint8 t
*puc_data, uintl6 t us data len, uint8 t uc prio, uint32 t
ul time refl);

MAC_DATA.confirm typedef void (*mac_data cfm cb t) (uintl6 t us con handle, uint8 t
*puc_data, mac_data result t drt result);

MAC_DATA.indication typedef void (*mac data ind cb_t) (uintl6 t us_ con _handle, uint8 t
*puc_data, uintl6_t us_data len, uint32 t ul time refl);

Note:
1. Intenths of microsecond.

12.1.3 PLME Primitives

Table 12-3. PLME Primitives

PLME_RESET.request prime_cl null plme reset request (plme_reset request_t)

typedef void (*plme reset request t) (uintl6 t us pch);
PLME_RESET.confirm typedef void (*plme_reset cfm cb_t) (plme_result t x result, uintl6_t us_pch);

PLME_SLEEP.request’ prime cl null plme sleep request (plme sleep request t)
typedef void (*plme sleep request t) (uintl6_t us_pch);

PLME_SLEEP.confirm typedef void (*plme _sleep cfm cb t) (plme result t x result, uintlé_t us_pch);

PLME_RESUME.request’ prime cl null plme resume request (plme resume request t)
typedef void (*plme resume request t) (uintl6 t us pch);

PLME_RESUME.confirm typedef void (*plme_resume cfm cb t) (plme_result t x result, uintlé_t
us_pch);
PLME_TESTMODE.request’ prime cl null plme testmode request(plme testmode request t)

typedef void (*plme testmode request t) (uint8 t uc enable, uint8 t uc mode,
uint8 t uc modulation, uint8 t uc _pwr level, uintl6 t us pch);

PLME_TESTMODE.confirm typedef void (*plme_testmode_cfm cb_t) (plme_result t x_result, uintlée_t
us_pch);
PLME_GET.request prime cl null plme get request (plme get request t)

typedef void (*plme get request t) (uintl6 t us pib attrib, uintl6 t us pch);

PLME_GET.confirm typedef void (*plme get cfm cb_t) (plme_result t x status, uintlé_t
us pib attrib, void *pv _pib value, uint8 t uc pib size, uintl6 t us pch);

PLME_SET.request prime cl null plme set request (plme set request t)

typedef void (*plme set request t) (uintl6 t us pib attrib, void
*pv_pib value, uint8 t uc pib size, uintl6_t us pch);

PLME_SET.confirm typedef void (*plme_set cfm cb_t) (plme_result_ t x_result, uintl6_t us_pch);

60

@ MICROCHIP

Note:

1. The marked primitives invoke optional functionality that is currently not available.

12.1.4 MLME Primitives

Table 12-4. MLME Primitives in the Service Node

MLME_REGISTER.request

MLME_REGISTER.confirm

MLME_REGISTER.indication

MLME_UNREGISTER.request

MLME_UNREGISTER.confirm
MLME_UNREGISTER.indication
MLME_PROMOTE.request

MLME_PROMOTE.confirm
MLME_PROMOTE.indication
MLME_MP_PROMOTE.request

MLME_MP_PROMOTE.confirm
MLME_MP_PROMOTE.indication
MLME_DEMOTE.request

MLME_DEMOQOTE.confirm
MLME_DEMOQOTE.indication
MLME_MP_DEMOTE.request

MLME_MP_DEMOTE.confirm
MLME_MP_DEMOTE.indication
MLME_RESET.request

MLME_RESET.confirm
MLME_GET.request

MLME_GET.confirm

MLME_LIST_GET.request

MLME_LIST_GET.confirm

MLME_SET.request

@ MICROCHIP

prime cl null mlme register request (mlme register request t)

typedef void (*mlme register request t) (uint8 t *puc sna, uint8 t
uc sid);

typedef void (*mlme register cfm cb t) (mlme result t x result, uint8 t
*puc_sna, uint8 t uc_sid);

typedef void (*mlme register ind cb t) (uint8 t *puc_sna, uint8 t
uc_sid);

prime cl null mlme unregister request (mlme unregister request t)
typedef void (*mlme unregister request t) (void);

typedef void (*mlme unregister cfm cb t) (mlme result t x result);
typedef void (*mlme unregister ind cb t) (void);

prime _cl null mlme promote request (mlme promote request t)

typedef void (*mlme promote request t) (uint8 t *puc eui48, uint8 t
uc_bcn_mode) ;

typedef void (*mlme promote cfm cb t) (mlme result t x result);
typedef void (*mlme promote ind cb t) (void);
prime cl null mlme mp promote request (mlme mp promote request t)

typedef void (*mlme mp promote request t) (uint8 t *puc_eui48, uint8 t
uc_bcn mode, uintlé t us pch);

typedef void (*mlme mp promote cfm cb t) (mlme result t x result);
typedef void (*mlme mp promote ind cb t) (uintl6 t us pch);

prime _cl null mlme demote request (mlme demote request t)

typedef void (*mlme demote request t) (void);

typedef void (*mlme demote cfm cb t) (mlme result t x result);
typedef void (*mlme demote ind cb t) (void);

prime cl null mlme mp demote request (mlme mp demote request t)
typedef void (*mlme mp demote request t) (uint8 t uc_lsid);
typedef void (*mlme mp demote cfm cb t) (mlme result t x result);
typedef void (*mlme mp demote ind cb_ t) (uint8 t uc_lsid);

prime cl null mlme reset request (mlme reset request t)

typedef void (*mlme reset request t) (void);

typedef void (*mlme reset cfm cb t) (mlme result t x result);
prime cl null mlme get request (mlme get request t)

typedef void (*mlme get request t) (uintl6_t us pib attrib);

typedef void (*mlme get cfm cb t) (mlme result t x status, uintlé6 t
us pib attrib, void *pv_pib value, uint8 t uc pib size);

prime cl null mlme list get request (mlme_ list get request t)
typedef void (*mlme list get request t) (uintl6 t us pib attrib);

typedef void (*mlme list get cfm cb t) (mlme result t x status,
uintl6é t us pib attrib, uint8 t *puc pib buff, uintl6é t us pib len);

prime cl null mlme set request (mlme set request t)

typedef void (*mlme set request t) (uintl6 t us pib attrib, uint32 t
ul pib value);

61

veeeeeeeeecCONtinued

MLME_SET.confirm typedef void (*mlme_set cfm cb_t) (mlme result t x result);

12.1.5 Retrieval of Lists

The MLME_LIST_GET.confirm primitive returns a buffer puc_pib buff where the requested list
us_pib_attrib is contained. Valid records are found one after the other, with their fields ordered
as described in the PRIME specification. From the provided buffer length us _pib len andthe
record size, users can calculate the number of records contained in the returned buffer and extract
them.

If there are valid records in the list, the confirm primitive is invoked twice: the first time with a buffer
containing the records and the second with a buffer length of zero to indicate that there are no
more valid records.

If there are no valid records in the list, the confirm primitive is invoked with a buffer length of zero.

12.1.6 Callback Functions

The result of confirm and indication primitives is returned by the MAC layer invoking the
corresponding callback function. To set up the callback function pointers, the following function
is required:

typedef void (*mac_set callbacks_ t) (mac_callbacks t *px prime cbs);

Parameters:

* px_prime_cbs: Pointer to the callback structure:

typedef struct {
mac establish ind cb t mac establish ind cb;
mac_ “establish cfm . cb t mac_establish cfm cb;
mac release ind cb t mac release ind cb;
mac “release cfm cb t mac_ “release cfm cb;
mac_join ind cb t mac ~join_ind cb;
mac_join cfm cb t mac _join cfm cb;
mac_leave ind cb t mac_leave ind cb;
mac leave cfm cb t mac leave cfm cb;
mac_data ind cb_t mac_data ind cb;
mac data cfm cb t mac data cfm cb;
plme reset cfm cb t plme reset cfm cb;
plme sleep cfm cb t plme sleep cfm cb;
plme resume cfm cb t plme resume cfm cb;
plme testmode cfm cb t plme testmode cfm cb;
plme get cfm cb t plme _get _cfm cb;
plme set cfm cb t plme set cfm cb;
mlme reglster ind cb t mlme _register ind cb;
mlme register cfm cb t mlme register cfm cb;
mlme unregister ind cb t mlme unregister ind cb;
mlme unregister cfm cb t mlme _unregister cfm clog
mlme promote ind cb t mlme _promote ind cb;
mlme promote | cfm cb t mlme _promote cfm cb;
mlme demote ind cb t mlme demote ind cb;
mlme demote cfm cb t mlme demote cfm cb;
mlme reset cfm cb t mlme reset cfm cb;
mlme get cfm cb t mlme get cfm cb;
mlme list get cfm cb t mlme list get cfm cb;
mlme set cfm cb t mlme set cfm cb;
mlme ; - mp_ promote “ind cb t mlme _mp_promote ind cb;
mlme mp promote cfm cb t mlme ~mp_promote cfm cb;
mlme mp demote ind cb t mlme _mp_demote ind cb;
mlme mp demote cfm cb t mlme mp demote cfm cb;

} mac_callbacks t;

62

@ MICROCHIP

Important: Unused callback functions must be set to NULL.

12.2 |EC 61334-4-32 Primitives

Refer to the PRIME specification for more information about IEC 61334-4-32 primitives and their
functionalities.

Table 12-5. |IEC 61334-4-32 Primitives in the Service Node

CL_432_ESTABLISH.request prime_cl 432 establish request(cl_ 432 establish request_t)
typedef void (*cl 432 establish request t) (uint8 t *puc device id,
uint8 t uc_device_id len, uint8 t uc_ae);

CL_432_ESTABLISH.confirm typedef void (*cl 432 establish cfm cb t) (uint8 t *puc device id,
uint8 t uc_device id len, uintl6_t us_dst_address, uintlé6_t
us_base address, uint8 t uc_ae);

CL_432_RELEASE.request prime cl 432 release request(cl 432 release request t)
typedef void (*cl 432 release request t) (uintl6_t us_dst address);

CL_432_RELEASE.confirm typedef void (*cl 432 release cfm cb t) (uintl6 t us_dst address,
dl 432 result t uc_result);

DL_DATA.request prime cl 432 dl _data_request(cl 432 _dl data request_t)

typedef void (*cl 432 dl data request t) (uint8 t uc dst lsap, uint8 t
uc_src_lsap, uintl6_t us _dst address, dl 432 buffer t *px buff,
uintlé_t uc_lsdu_len, uint8_ t uc_link class);

DL_DATA.confirm typedef void (*cl 432 dl data cfm cb_t) (uint8_t uc_dst_lsap,
uint8 t uc_src lsap, uintl6_t us_dst address, dl_432 tx status_t
uc_tx_status);

DL_DATA.indication typedef void (*cl 432 dl data ind cb t) (uint8 t uc dst lsap, uint8 t
uc_src lsap, uintl6 t us dst address, uintl6 t us src address, uint8 t
*puc_data, uintl6_t uc lsdu len, uint8 t uc link class);

The result of confirm and indication primitives is returned by the SSCS invoking the corresponding
callback function. To set up the callback function pointers, the following function is required:

typedef void (*cl 432 set callbacks t) (cl 432 callbacks t *px cl 432 cbs);

Parameters:

* px_cl_432 _cbs: Pointer to the callback structure:

typedef struct {
cl 432 dl data ind cb t cl 432 dl data ind cb;
cl 432 dl data cfm cb t cl 432 dl data cfm cb;
cl 432 establish cfm cb t cl 432 establish cfm cb;
cl 432 release_cfm cb t cl 432 release_cfm cb;
} cl_432 callbacks t;

Important: Unused callback functions must be set to NULL.

12.3 PIB Objects Specification and Access

The PRIME FW stack supports all the mandatory attributes of the PLC Information Base (PIB) defined
in the PRIME specification. In addition, Microchip has added several proprietary PIB attributes to
support extra functionalities. These attributes are described in the next sections. The list of all
available PIB attributes can be found in file mac_pib.h .

63

@ MICROCHIP

12.3.1 Proprietary PIB Attributes in the PHY Layer

Table 12-6. Proprietary PIB Attributes in the PHY Layer

PIB_PHY_SW_VERSION 0x8080 4 bytes PLC PHY layer software version.

PIB_PHY_ZCT 0x8081 4 bytes - Time in microseconds between the
zero cross of the mains and the end
of the last transmission or reception.
Only applicable in PLC.

PIB_PHY_HOST_VERSION 0x8082 4 bytes - PL360 Host Controller version.
PIB_MTP_PHY_TX_TIME 0x8085 4 bytes - Transmission time of the last frame
transmitted in PLC in tenths of ps.
PIB_MTP_PHY_RMS_CALC_CORRECTED 0x8086 4 bytes - RMS value of the last PLC signal.
PIB_MTP_PHY_EXECUTE_CALIBRATION 0x8087 2 bytes - Executes calibration process [0: stop

process, 1: start process]. It returns
threshold level to configure board for
PLC.
PIB_MTP_PHY_RX_PARAMS 0x8088 22 bytes - RX PLC PHY structure:
» RxParam[0]. Modulation scheme:
DBPSK =0
DQPSK =1
D8PSK =2
DBPSK_CC=4
DQPSK_CC=5
D8PSK_CC=6
DBPSK_RB =12
DQPSK_RB =13
* RxParam[1]. RSSI.

+ RxParam[2-3]. Reception data
length in bytes.

* RxParam[4-5]. EvmHeader.
* RxParam[6-7]. EvmPayload.

* RxParam[8-11].
EvmHeaderAcum.

* RxParam[12-15].
EvmPayloadAcum.

* RxParam[16-19]. Reception time
in microseconds.

+ RxParam[20]. Noise.
* RxParam[21]. SNRin dB (0 - 21).

64

@ MICROCHIP

........... continued

PIB_MTP_PHY_TX_PARAMS 0x8089 7 bytes TX PLC PHY structure”:

+ TxParam[0]. Modulation scheme:
DBPSK =0
DQPSK =1
D8PSK =2
DBPSK_CC=4
DQPSK_CC=5
D8PSK_CC=6
DBPSK_RB =12
DQPSK_RB =13

+ TxParam[1]. Attenuation level (0

- 21 dB). When set to 255,
attenuation and gain are set to 0.

+ TxParam[2-3]. Transmission data
length in bytes.

+ TxParam[4]. Inter-frame time in
tenths of ms (0 - 2550 ms).

+ TxParam[5]. Random seed data
generation. (0: send the same
constant payload in each
message, 1 - 255 seed used
to generate different ranges
of random values in the data
payload).

+ TxParam[6]. Number of
messages (1 - OxFF).

PIB_MTP_PHY_CONTINUOUS_TX 0x808A 1 byte 0-1 Set the PLC PHY layer to
transmit continuously [0: disabled, 1:
enabled].

PIB_MTP_PHY_ENABLE 0x808E 1 byte 0-1 Manufacturing test procedure for

PLC [0: disabled, 1: enabled]. Only
when the MTP is enabled, related
PIBs can be set.

PIB_PHY_TX_CHANNEL 0x8090 1 byte 1-8 Transmission/Reception PLC channel,
only when hardware permits
multichannel. The channel depends
on the selected PLC coupling.

PIB_PHY_TXRX_CHANNEL_LIST 0x8092 1 byte 0-255 List of available PLC channels. It has
the same structure as the band plan.
Setting the value to O restores the
configured band plan.

PIB_PHY_TXRX_DOUBLE_CHANNEL_LIST 0x8093 1 byte 0-255 List of available PLC double channels.
It has the same structure as the band
plan for double channel.

Setting the value to O restores the
configured band plan.

PIB_PHY_SNIFFER_ENABLED 0x8106 1 byte 0-1 Enable/disable the sniffer [O:
disabled, 1: enabled].
Bit O corresponds to the PLC sniffer.

Bit 1 corresponds to the RF sniffer.
PIB_PHY_DRV_AUTO 0x8301 1 byte 0-1 Enable/disable automatic selection of

PLC transmission mode [0: disabled,
1: enabled].

65

@ MICROCHIP

........... continued

PIB_PHY_DRV_IMPEDANCE 0x8302 1 byte 0-2 Enable/disable the PLC high
impedance branch [0: high, 1: low, 2:
very low].

PIB_PHY_DRV_ATTENUATION 0x8303 1 byte 0-255 Additional attenuation with which a
PLC message must be transmitted.

PIB_PHY_SW_RF_VERSION 0x9080 4 bytes - RF PHY layer software version.

Note:

1. See Application Note Guidelines for PLC performance verification.

12.3.2 Proprietary PIB Attributes in the MAC Layer

Table 12-7. Proprietary PIB Attributes in the MAC Layer
S O S T
PIB_LMTP_MAC_EUI_48 0x8100 6 bytes MAC address.
PIB_MAC_PLC_STATE 0x8101 1 byte - PRIME PLC state:
+ 0:SN disconnected
+ 1:SN detection
* 2:SN registering
» 3:SN operative
« 4:BN
PIB_MAC_SERVICE_STATE 0x8102 1 byte - Service Node state:
+ 0:SN disconnected
. : SN registering

: SN terminal

: SN unregistering

1
2
3

* 4:SN promoting
5: SN switch
6: SN demoting
7

: SN roaming

PIB_CERTIFICATION_MODE 0x8120 1 byte 0-3 Certification mode:

+ 0:no certification mode

* 1:PHY certification for 1.3

+ 2: MAC certification

* 3: PHY certification for 1.4
PIB_CERTIFICATION_SEND_MSG 0x8121 Array - Send message in PHY certification

mode.
See Table 12-8.

PIB_MAC_INTERNAL_SW_VERSION 0x8126 4 bytes - MAC internal software version.
PIB_CERT_MIN_LEVEL_TO_REG 0x8130 1 byte 0-63 Minimum level where the SN can
register.

66

@ MICROCHIP

........... continued

PIB_MAC_CHN_SCANNING_MODE 0x8135 1 byte 0-3 Change the channel scanning mode:
* 0:start with random channel and
scan in ascending order

+ 1:start with random channel and
scan in descending order

+ 2:start with next registered
channel and scan in ascending
order

+ 3:start with previous registered
channel and scan in descending
order

PIB_MAC_SEC_PROFILE_USED 0x8141 1 byte 0-2 Security profile used in the network
where the Service Node is registered.

Table 12-8. Data in PIB_CERTIFICATION_SEND_MSG

MsgCount 2 bytes 1-2000 Number of messages to transmit

Modulation 1 byte 0-7 Modulation scheme (as in PIB_MTP_PHY_TX_PARAMS)
SignalAtt 1 byte 0-21 Signal attenuation (in dB)

DutyCycle 1 byte 1-100 Duty cycle

PrimeFrame 1 byte 0-3 PRIME frame:

+ 1.3 frame

* 1.4typeAframe

+ 1.4 typeBframe
+ 1.4 type BCframe

Important: Only when the certification mode is set to MAC certification, the
following standard PIB attributes are enabled and operative:

+ 0x0081 (PIB_LMAC_ACTION_MGMT_DATA_BURST)

12.3.3 Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

Table 12-9. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

PIB_432_CON_STATE 0x8200 1 byte 0-3 State of IEC 61334-4-32 SSCS layer:
* 0:closed

* 1:connecting
« 2:disconnecting
+ 3:open

PIB_CL_INTERNAL_SW_VERSION 0x8201 4 bytes - Internal software version of the
SSCS layer.

@ MICROCHIP

67

13.
13.1

13.2

Example Applications

Usage of the Firmware

The user application can use the complete PRIME FW stack for any PRIME related functionality even
if network capabilities offered by any specific protocol of the CL are not required. In that case, the
primitives to use are those of the Null SSCS (see chapter Null SSCS), which transparently match the
MAC primitives.

When the user application is using the complete PRIME FW stack in the same device, the system
structure is the same as depicted in Figure 1-1.

The user application may also be running in a different device from the PRIME FW stack. In this
case, the PRIME APl is serialized using a UART or a USB port. The Modem example in chapter PRIME
Service Modem shows an application with the serialized PRIME API.

The user application can also be dual, i.e., it can allocate different versions of the PRIME FW stack
and then swap to any of them. The example applications provided by Microchip are dual, allocating
PRIME FW stack versions 1.3 and 1.4., if such allocation is possible in the selected platform. For more
information, see chapter Memory Allocation.

It is also possible that an application only requires the ability of sending and receiving data through
the PLC PHY layer without any MAC layer. Then, it is possible to remove the MAC layer and access
the PLC PHY layer directly from the PAL. Microchip provides several examples of applications that
only require the PRIME PLC PHY layer (see chapter 13.5. PHY Applications).

PRIME Service DLMS + Metrology Application

The Service DLMS+Metrology Application is an application example that shows how the PRIME API
should be used by integrating an application with a DLMS server. This application configures the
board as a Service Node with DLMS capabilities and exchanges real data between the PRIME Base
Node and the Service Node. DLMS is linked to the IEC 61334-4-32 SSCS and answers a minimum

set of objects requested from a commercial PRIME Data Concentrator. Therefore, for this example, a
PRIME Data Concentrator is required.

Important: Microchip does not provide a PRIME Data Concentrator. Note that
the Microchip Gateway example can be connected to a PRIME Data Concentrator
by means of TCP (DLMS over TCP). Note also that the Microchip PRIME Manager
tool can act as a gateway placed between any Microchip BN and a PRIME Data
Concentrator (see the User Manual of the PRIME Manager).

The following list provides the set of example OBIS implemented:

@ MICROCHIP

68

1-0:0.2.0.255 Class id 1 1-0:1.8.25.255 Class id 3
0-0:96.1.0.255 Class id 1 1-0:1.8.26.255 Class id 3
0-0:96.1.1.255 Class id 1 1-0:1.8.30.255 Class id 3
0-0:96.1.2.255 Class id 1 1-0:1.8.31.255 Class id 3
1-0:1.8.0.255 Class id 3 1-0:1.8.32.255 Class id 3
1-0:1.8.10.255 Class id 3 1-0:1.8.33.255 Class id 3
1-0:1.8.11.255 Class id 3 1-0:1.8.34.255 Class id 3
1-0:1.8.12.255 Class id 3 1-0:1.8.35.255 Class id 3
1-0:1.8.13.255 Class id 3 1-0:1.8.36.255 Class id 3
1-0:1.8.14.255 Class id 3 1-0:1.8.255.255 Class id 3
1-0:1.8.15.255 Class id 3 1-0:99.1.0.255 Class id 7
1-0:1.8.16.255 Class id 3 0-0:21.0.5.255 Class id 7
1-0:1.8.20.255 Class id 3 0-0:21.0.6.255 Class id 7
1-0:1.8.21.255 Class id 3 0-0:1.0.0.255 Class id 8
1-0:1.8.22.255 Class id 3 0-0:28.7.0.255 Class id 86
1-0:1.8.23.255 Class id 3 0-0:40.0.0.255 Class id 15
1

-0:1.8.24.255 Class id 3

Important: Note that this project example is configured to be used with a
bootloader, thus allowing its upgrade using the file transfer over PRIME. It is also a
dual mode application, but only supported in the SAM4C platform.

13.3 PRIME Service DLMS Application

The Service DLMS Application is an application example that shows how the PRIME API should be
used by integrating an application with a DLMS server. This application configures the board as

a Service Node with DLMS capabilities and simulates the data exchange between the PRIME Base
Node and the Service Node. DLMS is linked to the IEC 61334-4-32 SSCS and answers a minimum

set of objects requested from a commercial PRIME Data Concentrator. Therefore, for this example, a
PRIME Data Concentrator is required.

Important: Microchip does not provide a PRIME Data Concentrator. Note that
the Microchip Gateway example can be connected to a PRIME Data Concentrator
by means of TCP (DLMS over TCP). Note also that the Microchip PRIME Manager
tool can act as a gateway placed between any Microchip BN and a PRIME Data
Concentrator (see the User Manual of the PRIME Manager).

The following list provides the set of example OBIS implemented:

@ MICROCHIP

69

1-0:0.2.0.255 Class id 1

0-0:96.1.0.255 Class id 1
0-0:96.1.1.255 Class id 1
0-0:96.1.2.255 Class id 1
1-0:1.8.0.255 Class id 3

1-0:1.8.10.255 Class id 3
1-0:1.8.11.255 Class id 3
1-0:1.8.12.255 Class id 3
1-0:1.8.13.255 Class id 3
1-0:1.8.14.255 Class id 3
1-0:1.8.15.255 Class id 3
1-0:1.8.16.255 Class id 3
1-0:1.8.20.255 Class id 3
1-0:1.8.21.255 Class id 3
1-0:1.8.22.255 Class id 3
1-0:1.8.23.255 Class id 3
1-0:1.8.24.255 Class id 3

1-0:1.8.25.255 Class id 3
1-0:1.8.26.255 Class id 3
1-0:1.8.30.255 Class id 3
1-0:1.8.31.255 Class id 3
1-0:1.8.32.255 Class id 3
1-0:1.8.33.255 Class id 3
1-0:1.8.34.255 Class id 3
1-0:1.8.35.255 Class id 3
1-0:1.8.36.255 Class id 3
1-0:1.8.255.255 Class id 3
1-0:99.1.0.255 Class id 7
0-0:21.0.5.255 Class id 7
0-0:21.0.6.255 Class id 7
0-0:1.0.0.255 Class id 8
0-0:28.7.0.255 Class id 86
0-0:40.0.0.255 Class id 15

Important: Note that this project example is configured to be used with a
bootloader, thus allowing its upgrade using the file transfer over PRIME. It is also a
dual mode application, except in the SAMG55 platform.

13.4 PRIME Service Modem

The Service Modem is an application example that shows how to serialize the PRIME APl when the
user application and the PRIME FW stack are running in different devices. This example serializes the
PRIME API through the USI using the UART. The overall architecture of this functionality is shown in

the next figure.

@ MICROCHIP

70

Figure 13-1. Layer Diagram for a Serialized PRIME FW Stack

External device

User Application

Microcontroller

PLC Modem

PRIME API

PRIME FW Stack

HAL API

1

HARDWARE

In this architecture, files modem.h and modem_service.c in the embedded user application are in
charge of coding and decoding the PRIME API primitives, whereas the Embedded USI (included in
the HAL) is responsible for the transmission and reception of serial messages. Similarly, the USI Host
in the external application is responsible for coding and decoding the PRIME API primitives and also
for transmission and reception of serial messages.

The configuration required to support this serialization and the format of the serial messages in the
USl is described in chapter Serialization with Embedded USI. The integration of the USI Host in the
external application is explained Application Note PLC Universal Serial Interface.

Important: Note that this project example is configured to be used with a
bootloader, thus allowing its upgrade using the file transfer over PRIME. It is also a
dual mode application, except in the SAMG55 platform.

13.5 PHY Applications

Microchip also provides several applications that demonstrate the complete performance of the
PRIME PHY layer. Except for the PHY sniffer, such applications only offer the ability to send and

71

@ MICROCHIP

receive PLC data through the PLC PHY layer without any MAC layer as shown in Figure 13-2. The API
of the PHY is described in chapter APl of PHY and PAL Layers.

The available PLC PHY applications are the following:

« PHY Tester: This PHY application example shows the capabilities of the PL360 device in a point-to-
point connection, using the USI to serialize the API of the PLC PHY layer.

+ PHY TX Test Console: This PHY application example uses a terminal console to configure the PLC
PHY layer and perform several board tests. Parameters that are configured include transmission
parameters such as modulation, frame data length and time interval between frames.

+ PHY PLC&Go: This PHY application example shows the basic code required to work with the PLC
PHY layer.

There is also the PHY Sniffer application, which allows monitoring of data traffic on a PRIME network
by serializing PHY frames (see the User Manual of the Hybrid Sniffer). The PHY Sniffer can detect
traffic coming from any PHY layer.

Figure 13-2. Layer Diagram of a PHY-only Application

USER
APPLICATION

PAL API

I HAL API

HAL

HARDWARE

@ MICROCHIP

72

14,

14.1

Serialization with Embedded USI

The Embedded USl is a wrapper part of the HAL that provides the interface between the PRIME FW
stack and the serial communications channel.

For serial transmissions from the PRIME stack, the Embedded USI provides a function that packs
and sends each message via the serial link to the external application. For serial receptions from the
serial link, the Embedded USI provides a function that unpacks the received message and passes it
to the PRIME FW stack.

The equivalent wrapper in the external application is the provided USI Host, which is also in charge
of coding and decoding the messages. If users want to develop their own USI Host application, they
will have to take into account the following operation of the Embedded USI to make it compatible:

+ USI frame format

+ USI PRIME protocols

« Embedded USI Configuration

For more information about available services and the provided US| Host, see Application Note PLC
Universal Serial Interface and the US/ Host User Guide.

US| Frame Format

The USI frame format is based on the Serial Communications Profile of the Management Plane
defined in the PRIME specification, and is shown in the following figure.

Figure 14-1. US| Frame Format

7E | MSGLENGTH | PROTOCOL ID MESSAGE CRC 7E
(1 byte) (10 bits) (6 bits) DATA (variable) | (1 byte)

The frame starts and ends with Ox7E. The following is the description of each field:

+ MSG LENGTH: Command length in bytes (protocol command byte plus message data bytes).

+ PROTOCOL ID: Protocol in the frame (see Table 14-1).

« MESSAGE DATA: Variable field with the data of the exchanged message.

+ CRC: Error correction code for the message. The CRC field can have a different length depending
on the protocol (see Table 14-1).

Table 14-1. USI Protocols and Associated CRC Size

PROTOCOLS_MNGP_PRIME! 0x00 - 0x07 32
PROTOCOL_SNIF_PRIME 0x13 16
PROTOCOL_PHY_TESTER? 0x22 16
PROTOCOL_PRIME_API 0x30 8
PROTOCOL_INTERNAL Ox3F 16
PROTOCOL_USER_DEFINED3 OxFE Defined by the user. By default, 16.
Notes:

1. These protocols are described in the Serial Communications Profile of the Management Plane
defined in the PRIME specification.

2. This protocol is only used by the PLC PHY Tester PC tool that Microchip provides with the
evaluation kit in order to serialize the API of the PLC PHY layer.

3. Defined by the user for their own proprietary protocol, if necessary.

@ MICROCHIP

73

14.2 USI PRIME Protocols
The USl is able to serialize the following PRIME interfaces and services:

* PRIME Management Plane
* PRIME Sniffer

* PRIME API

+ User Application

14.2.1 PRIME Management Plane Frame Format

This service refers to the different protocols defined in the Serial Communication Profile of the
Management Plane described in the PRIME specification.

The frame format is shown in the following figure.

Figure 14-2. MNGP PRIME USI Frame Format

7E | MSGLENGTH | PROTOCOL ID MESSAGE CRC 7E
(1 byte) (10 bits) (6 bits) DATA (4 bytes) | (1 byte)

The available management functions are described in the PRIME specification and shown in the
following table.

Table 14-2. USI MNGP PRIME Protocols

PROTOCOL_MNGP_PRIME_GETQRY 0x00 This protocol is used to get a PIB with information
from the node.
PROTOCOL_MNGP_PRIME_GETRSP 0x01 This protocol is the response to
PROTOCOL_MNGP_PRIME_GETQRY.
PROTOCOL_MNGP_PRIME_SET 0x02 This protocol is used to set a PIB and thus modify
the behavior of the node.
PROTOCOL_MNGP_PRIME_RESET 0x03 This protocol is used to reset statistics.
PROTOCOL_MNGP_PRIME_REBOOT 0x04 This protocol is used to reboot the node.
PROTOCOL_MNGP_PRIME_FU 0x05 This protocol is used to exchange FU protocol

frames. In this way, it is possible to perform a FU
process through the serial port.

PROTOCOL_MNGP_PRIME_GETQRY_EN 0x06 This protocol is used to get a PIB with information
from the node in an enhanced way.
PROTOCOL_MNGP_PRIME_GETRSP_EN 0x07 This protocol is the response to

PROTOCOL_MNGP_PRIME_GETQRY_EN.

14.2.2 PRIME Sniffer Frame Format

The PRIME Sniffer is a service of the PRIME FW stack that uses the PHY layer to provide received
PLC traffic from the PRIME network. The USI is able to serialize and treat this service independently.
This serialization can be directly passed to Microchip PLC PC Tools to be analyzed or saved for later
use. The embedded sniffer is only available when it has been enabled and properly configured (see
chapter PRIME Stack User Configuration Parameters).

Figure 14-3 and Figure 14-4 show the USI frame format of the frames generated in the node. In this
case, the field MESSAGE DATA that appears in the USI frame format (see Figure 14-1) is divided into
two different fields: header and PDU sniffer message.

@ MICROCHIP

Figure 14-3. PRIME Sniffer USI Frame Format

7E | MSG LENGTH | PROTOCOL ID e MESSAGE DATA CRC 7E
(1 byte) (10 bits) 0x13 (6 bits) (32 bytes) PDU SNIFFER MSG (2 bytes) (1 byte)

Figure 14-4. PRIME Sniffer USI Header Field

FRAT [SNIFF [SNIFT | MODUL | SYMPDU | SNR | EXSNR | CHN | CINR | BERSOFT | BERS MAX 0x00...0x00
1byte | 1byte | 1byte 1 byte 1 byte 1 byte 1 byte 1 byte | 1byte 1 byte 1 byte 8 bytes
Time Start Time End RSSI 0x00 PDU LEN
4 bytes 4 bytes 2 bytes 1 byte 2 bytes

As indicated before, sniffer frames contain the received PDU (MAC encapsulation following the
PRIME specification) and some additional information related to the PHY layer, which is included in
the header part.

+ FRAT: PDU type of the received frame (A, B, BC) (see values in file sniffer_if.h.h and
rf215_sniffer_if prime.c)

* SNIF F: Sniffer frame version: 0x14 for current version
« SNIF T: Sniffer type version: 0x11 for PL360, 0x13 for RF

+ MODUL: Modulation scheme of the received frame (see modulation values in file atp/360_comm.h
and rf215_sniffer_if prime.c)

+ SYM PDU: Length of the PDU in PHY symbols

« SNR'": PRIME defined measurement of the SNR (from 0 to 7)
« EXSNR': High precision SNR

+ CHNZ: Channel in which the frame has been received

+ CINR'™: Minimum Carrier to Interference Noise Ratio

« BERSOFT': Viterbi soft bit error rate value

+ BERS MAX': Viterbi soft bit error rate maximum value

+ Time Start/Time End: High precision internal counter to measure length (time) of the PDUs in
microseconds

+ RSSI: Average RSSI in dBuV

* PDU LEN: Length of the PDU in bytes

Notes:

1. Not available in RF. The padding field changes accordingly.
2. The CHN in RF has two bytes.

For details about the PHY information, see the datasheets for PL360, PL460 and AT86RF215.

14.2.3 PRIME API Frame Format

This protocol consists of the serialization of the PRIME API primitives. The PRIME FW stack can
provide the PRIME API through a serial interface as an independent protocol of USI. It is only
available when the user application contains the modem example.

The frame format is shown in the following figure.

75

@ MICROCHIP

Figure 14-5. PRIME API US| Frame Format

MESSAGE DATA
MSG LENGTH | PROTOCOL ID PRIME API CRC

(10 bits) 0x30 (6 bits) LENGTH Extended COMMAND Primitive function (1 byte)
(1 bit) (7 bits) parameters

7E 7E

There are three fields in this frame inside the general MESSAGE DATA field:

+ LENGTH Extended: Since the information contained in the message data can exceed the size
reserved for MSG length (10 bits), a bit has been added to increase the total message length size.
In this field the most significant bit of the message length is codified

* PRIME APl COMMAND: This field refers directly to the primitive included in the message, using
the same primitives described in the PRIME API interface description (see chapter API of PRIME
FW Stack). The values for those primitives are defined in enumerator prime api cmd_t infile
modem.h

« Primitive function parameters: The serialization of each primitive directly concatenates the
different parameters included in the primitive function, with the most significant byte of a
variable always on the left. The only exception is that the length of buffers is always placed
before the buffer itself so that the data can be inserted and extracted more easily. This is
applicable to all primitives in the PRIME API. Figure 14-6 shows how a serialized primitive looks. It
is based on the MAC_ESTABLISH.request, which is mapped into the following type:

typedef void (*mac_establish request t) (uint8 t *puc euid48, uint8 t uc type, uint8 t
*puc_data, uintl6é_t us data len, uint8 t uc_arqg, uint8 t uc_cfbytes);

Figure 14-6. Message Data for MAC_ESTABLISH.request Primitive

MAC_ADDR CON_TYPE DATA_LEN DATA ARQ CFP_BYTES
(6 bytes) (1 byte) (2 bytes) (variable) (1 byte) (1 byte)

14.3 Embedded USI Configuration

The Embedded USI must be configured according to the user requirements. This configuration
consists of indicating the protocols to be serialized and which port will be used by each protocol.

14.3.1 Definition and Configuration of USI Ports
Users can define the ports to be used and their configurations in the conf_usi.h file.

/* Port Communications configuration */

#define NUM_PORTS 2

#define PORT 0 CONF PORT (UART TYPE, 0, 115200, HAL TX UART BUFO SIZE, HAL RX UART BUF0 SIZE)
#define PORT 1 CONF PORT (USART TYPE, 4, 57600, HAL TX USART BUF1 SIZE, HAL RX USART BUFl SIZE)
#define PORT 2 CONF_PORT (USB TYPE, 0, 115200, 1024, 1024)

NUM_PORTS defines the number of ports to be used. After that, every PORT x must be configured
following a sequential order (PORT_ 0, PORT 1, etc.). The input parameters of the port configuration
are shown in the following table.

Table 14-3. USI Port Configuration Parameters
Type Type of link’ UART_TYPE for UART
USART_TYPE for USART
USB_TYPE for USB

76

@ MICROCHIP

14.3.2

14.3.3

1434

........... continued

Channel Instance 0: UARTO/USARTO/USB
1: UART1/USART1
2: UART2/USART2

4: USART4

Speed Baudrate 9600, 19200, 38400, 57600, 115200, 230400, 256000
921600

TX_size Size of transmission buffer Size of buffer must be (at least) twice the size of the bigger

message payload linked to this port.2

RX_size Size of reception buffer Size of buffer must be (at least) twice the size of the bigger
message payload linked to this port.2

Notes:
1. Only UART, USART and USB are currently supported.

2. In case of IEC61334-4-32 messages, please note that protocol headers are part of the US|
message payload.

Important: Both Embedded USI and the external application must use the same
baud rate and protocols. Messages from protocols not serialized in both sides of
the serial communications channel are discarded.

Important: In the SAM4C microcontroller family, the UART1 has no access to the
DMA so it cannot be chosen for the USI operation.

Linking of Serial Communication Profile of PRIME Management Plane
To link the Serial Communication Profile of the PRIME Management Plane to a USI port defined in
the Embedded USI, users must use file conf mngp.h.

By default, the link is set to PORT 0.

/* Select PORT for Serial Profile */
#define MNGP_SPROF USI_ PORT 0

Linking of PRIME Sniffer
To link the embedded PRIME sniffer to a USI port defined in the Embedded US|, users must use file
conf_pal.h.

By default, the link is set to PORT 0.

/* Select PORT to serialize PHY sniffer */
#define PHY SNIFFER UST PORT 0

Linking of PRIME API

To link the PRIME API to a USI port defined in the Embedded USI, users must use file
conf_app_example.h (assuming they are using the modem example). By default, the link is set to
PORT 0.

/** USI PORT */
#define MODEM USI PORT 0

@ MICROCHIP

77

15. PRIME Direct Connections

15.1 Overview

The PRIME Direct Connections (DC) feature allows direct data communication between two Service
Nodes. Since the Base Node is the only element with information of the entire network, DC
establishment and release processes must be managed by it. DC data transfer can coexist with
other network applications that use normal data transfer between BN and SN.

Important: Direct connections generate asynchronous messages not controlled
by the BN, thus increasing the number of collisions. For that reason, they are not
intended for constant traffic.

The PRIME Direct Connections implementation is fully compliant with the direct connection feature
described in the PRIME specification version 1.4,

15.2 Characteristics
The current implementation of DC presents the following characteristics, which are not configurable
by users:
+ Direct switching capability is available in BN and SN

* The SN supports from 4 up to 8 direct connections depending on the use of the following
features:

- If the management connection is used, available direct connections are reduced by 2
- Ifthe IEC 4-32 connection is used, available direct connections are also reduced by 2

+ SN direct connection handlers always have the direct connection bit set to 1, while
standard connection handlers have this bit set to 0. The mask for this bit is defined in
SN _DIRECT CON HANDLER MSK in file mac_defs.h. This mask must not be changed

15.3 Functional Description

15.3.1 Direct Connection Establishment
« Direct connections are always opened by an SN (for example, node A)
+ Depending on the user application, node A can open a direct connection in two different ways:
- Providing a EUI-48 MAC address for a destination node (for example, for node B):

« The BN looks for node B in its list of registered devices. If node B is registered, it will
continue with the DC establishment process. Otherwise, it will deny the connection
request to node A

Important: If a destination EUI-48 address is provided, the direct
connection will be directly established without notifying the BN application.
A new entry will be automatically added to the direct connection list in the
BN (PIB_MAC_LIST_DIRECT_CONN, 0x0054).

- Providing the SNA as EUI-48 address:
+ The BN notifies the user application in the callback for establish indication

+ If the user application knows which node is the destination node, it will forward the
connection request with a redirect response

78

@ MICROCHIP

+ If the user application cannot find a destination node, it will reject the connection with an
establish response

If node B is registered, the BN forwards the DC request to it

If node B accepts the connection, the BN will finish the DC process by sending the response to
node A

Important: The retransmission process is always performed by SNs. The BN
does not perform any retransmissions during DC establishment.

15.3.2 Direct Connection Release

A direct connection can be released both by source or destination SN. In both cases the process is
the same.

Node A requests connection close to the BN
The BN forwards connection close to node B

The retransmission process starts until the BN receives a response from node B or the maximum
number of retransmissions is reached

Important: The retransmission process is only performed by the BN when one
of the SNs unregisters while the direct connection is already established.

The BN always confirms a connection close to node A and removes the corresponding entry from
the direct connection list

During this process, the direct switch automatically removes the corresponding direct connection
entry from the direct switch table (PIB_MAC_LIST_DIRECT_TABLE, 0x0055)

@ MICROCHIP

79

Abbreviations

AES
AGC
AP
ARQ
BER
BN
cc
CFP
CINR
cL
CPCS
CRC
D8PSK
DBPSK
DC
DCU
DLMS
DMA
DQPSK
DUK
FCC
FSK
FU
FW
GPIO
HAL
IEC

IP
MAC
MCU
MLME
MNGP
MPAL
MPDU
MTP
OBIS
OFDM
PAL
PDU
PHY
PIB
PICS
PLC
PLME
PRIME
RB

@ MICROCHIP

Advanced Encryption Standard
Automatic Gain Mode

Application Programming Interface
Automatic Repeat Request

Bit Error Rate

Base Node

Convolutional Code

Contention Free Period

Carrier to Interference Noise Ratio
Convergence Layer

Common Part Convergence Sublayer
Cyclic Redundancy Check

Differential Eight-Phase Shift Keying
Differential Binary Phase Shift Keying
Direct Connection

Data Concentrator Unit

Device Language Message Specification
Direct Memory Access

Differential Quaternary Phase Shift Keying
Device Unique Key

Federal Communications Commission
Frequency Shift Keying

Firmware Upgrade

Firmware

General Purpose Input/Output
Hardware Abstraction Layer
International Electrotechnical Committee
Internet Protocol

Medium Access Control
Microcontroller Unit

MAC Layer Management Entity
Management Plane

MultiPhy Abstraction Layer

MAC Protocol Data Unit
Manufacturing Test Procedure

Object Identification System
Orthogonal Frequency Division Multiplexing
Physical Abstraction Layer

Protocol Data Unit

Physical

PLC Information Base

Protocol Implementation Conformance Statement

Power Line Communications

PHY Layer Management Entity
Powerline Intelligent Metering Evolution
Robust

RF
RMS
RSSI
SAP
SN
SNA
SNR
SPI
SSCS
SUN
TC
TRNG
UART
USART
usl

@ MICROCHIP

Radiofrequency

Root Mean Square

Received Signal Strength Indicator

Service Access Point

Service Node

Sub-Network Address

Signal-to-Noise Ratio

Serial Peripheral Interface

Service Specific Convergence Sublayer

Smart Utility Network

Timer/Counter

True Random Number Generator

Universal Asynchronous Receiver/Transmitter
Universal Synchronous/Asynchronous Receiver/Transmitter
Universal Serial Interface

81

17. References
Microchip Smart Energy

Microchip Power Line Communications

Microchip Design Support

PRIME Alliance
standards.ieee.org/content/ieee-standards/en/standard/802_15_4-2015.html
standards.ieee.org/content/ieee-standards/en/standard/802_15_4v-2017.html
PL360 Evaluation Kit

PL460 Evaluation Kit

PIC32CXMTSH Demo Board

PIC32CXMTG Evaluation Kit

SAMGS55 Xplained PRO Evaluation Kit
ATREB215-XPRO Extension Board

Documents for supported families and boards

@ MICROCHIP

82

https://www.microchip.com/en-us/products/smart-energy-metering
https://www.microchip.com/en-us/products/smart-energy-metering/power-line-communications
https://microchip.my.site.com/s/
http://www.prime-alliance.org/
https://standards.ieee.org/content/ieee-standards/en/standard/802_15_4-2015.html
https://standards.ieee.org/content/ieee-standards/en/standard/802_15_4v-2017.html
https://www.microchip.com/en-us/development-tool/ATPL360-EK
https://www.microchip.com/en-us/development-tool/EV13L63A
https://www.microchip.com/en-us/development-tool/EV84M21A
https://www.microchip.com/en-us/development-tool/EV11K09A
https://www.microchip.com/en-us/development-tool/atsamg55-xpro
https://www.microchip.com/en-us/development-tool/ATREB215-XPRO
https://www.microchip.com/en-us/document-listing

Revision History
Atmel 43104 Rev A - 03/2017

Document

Microchip 50002759 Rev A - 05/2018

Document

HAL API

Other Coding Requirements and Main Function Structure
Firmware Version Information

MAC Primitives and IEC 61334-4-32 Primitives

PRIME Direct Connections

General Prerequisites

User Application Project Examples and PRIME Service DLMS
Application

Brief about ASF and Understanding the Firmware Package
Automatic Repeat Request (ARQ)

Network Behavior

Band Plan

PRIME Firmware Package Contents, Memory Allocation,
Hardware Resources Usage, PRIME API, Other Coding
Requirements, Main Function Structure, File Transfer Service
for Firmware Upgrade , Building the Applications and
Example Applications

Microchip 50002759 Rev B - 06/2019

General Architecture
User Application Project Examples

Communication Channel and other PHY Parameters, Band
Plan (PL360 Platform) and Band Plan (ATPL230A Platform)

Example Configuration - conf_app_example.h and Linking of
PRIME API

HAL APl and PRIME Management Plane
Main Function Structure

Default Memory Allocation Example

Signalling Primitives and IEC 61334-4-32 Primitives
HAL API

Proprietary PIB Attributes in the MAC Layer
Proprietary PIB Attributes in the PHY Layer

Null SSCS, Data Primitives, Proprietary PIB Attributes in the
PHY Layer and PRIME Sniffer Frame Format

@ MICROCHIP

Initial document release.

Updated to Microchip document number DS50002759.
Added security.

Added PL360 platform.

Editorials.

Added HAL functions.

Added warning about interruptions.

Added supply monitor control.

Improved Firmware Version Information chapter.
Corrected MAC and 4.32 primitives.

Added direct connections.

Updated version of Atmel Studio.

Replaced DLMS Emulator example by DLMS Application
example.

Swapped chapters.

Improved and moved to Data Exchange chapter.
Added missing PIBs.

Added band plan configuration.

Added bootloader.

Improved paragraph about separated modules.
Corrected folder structure.

Improved usage descriptions of communication channel and
band plan.

Updated configuration of modem port.

Added user specific PIBs.

Improved hardware initialization.

Updated default memory allocation for 512K in PL360
platform.

Added warning about default values in Atmel Studio.
Added security parameter to primitives.

Removed non-applicable function.

Changed structure for notes.

Added new proprietary PIB for security.

Added new proprietary PIBs and updated MTP PIB.

Added clarifications about time units.

Supported Devices and Supported Boards
Get Function and Set Function
Other Coding Requirements

Brief about ASF, Using Atmel Studio, Usage of the Firmware,
PRIME Service DLMS + Metrology Application (PL360
Platform), PRIME Service DLMS Application and PRIME Service
Modem

Firmware Version Information

Communication Channel and other PHY Parameters
Device Unique Key

Hardware Resources Usage

Automatic Repeat Request (ARQ)

General Prerequisites

Definition and Configuration of USI Ports

PLC Coupling (PL360 Platform)

FU Configuration Data

Definition and Configuration of USI Ports, Linking of

Serial Communications Profile of PRIME Management Plane,
Linking of PRIME Sniffer (PL360 Platform) and Linking of
PRIME Sniffer (ATPL230A Platform)

Band Plan (PL360 Platform) and Band Plan (ATPL230A
Platform)

PHY Applications

18.4 Microchip 50002759 Rev C - 07/2020

Document

PRIME Sniffer Frame Format

Other Coding Requirements

PRIME Management Plane Frame Format
Device Unique Key

USI Host Example

Communication Channel and other PHY Parameters

References
Usage of the Firmware

Features and Supported Devices

Revision D - 02/2024

Document

Features
PRIME FW Stack, Event-Driven Operation
PRIME FW Stack Project Example

@ MICROCHIP

Added new devices and boards.
Aligned function parameters with code.
Added effect on increased call stack size.

Removed optimizations in Atmel Studio projects.

Added that Atmel Studio projects are only for evaluation
purposes and cannot be upgraded.

Updated vendor and version.

Added ATPLCOUPO11.

Added remark about security profiles.

Added remark about platform for mandatory timers.
Replaced frame by fragment.

Updated IAR version.

Added USB type as USI port.

Added coupling configuration in PL360 platform.

Added more information about the usage of GPBR during FU.

Clarified usage of USI ports.

Added more information about channel scanning.

Added another PHY example.

Editorials.

Added sniffer type version for PL360.

Added clarifications about interrupt handling.
Corrected name of MNG protocol.

Removed parameter from the DUK structure.
Added meaning of abbreviation.

Added ATPLCOUPO11.

Corrected configuration key.

Updated links.

Added USB as possible port for serialization.

Added new device.

Removed all references to ATPL230, ASF, Atmel Studio and
Doxygen.

Added and removed PLC where necessary to make it general
for all available PHY layers.

Added PL460 whenever there was a reference to PL360
platform.

Other editorials.

Updated platforms and modems.
Updated description.

Updated paths and images.

84

User Application Project Examples

Bootloader Example
Introduction

Physical Layer (PHY), PRIME Sniffer Frame Format
Physical Abstraction Layer (PAL)
Firmware Version Information

Communication Channel and other PHY Parameters

PLC Coupling (PL460 platform), Band Plan in RF, Enabling RF
PHY Layer, Frequency Hopping, PRIME FW Stack Swap, RF
PHY SAP

Band Plan in PLC

Enabling PLC PHY Layer
Sniffer Serialization

PL360 Firmware Information (PL360/PL460 Platform)
Network Behaviour

Memory Allocation

Default Memory Allocation Example

Hardware Resources Usage

HAL API

4.4.1. Task Manager, Priorities and Preemption

Other Coding Requirements

Main Function Structure
General Prerequisites

Supported MCU Families, Supported Devices and Supported
boards

PHY Frames, Major Capabilities of the MAC Layer
PLC PHY SAP, Linking of PRIME Sniffer

Callback Functions

Data Primitives

Management Primitives

PLME Primitives
MLME Primitives, Callback Functions
Proprietary PIB Attributes in the PHY Layer

Proprietary PIB Attributes in the MAC Layer

Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

Usage of the Firmware, PRIME Service DLMS + Metrology
Application, PRIME Service DLMS Application, PRIME Service
Modem

PLC PHY Applications

Q MICROCHIP

Updated paths and images. Added information about dual
mode applications.

Added that PL360 firmware can also be upgraded.

Removed references to old platforms. Corrected PIB name.
Added references to RF.

Added references to RF.
Added MPAL.
Updated model and version.

Added PLC couplings for PL460. Corrected configuration
key. Removed thresholds. Added PLC channels lists and RF
channel.

New chapters.

Renamed chapter. Added double channels. Added comment
about channel 1 in dual mode.

Renamed chapter. Updated setting.

Renamed chapter. Updated setting and added setting for RF
sniffer.

Renamed chapter. Added link to memory allocation.
Added new parameters.

Updated image.

Updates sizes, locations and images due to dual mode.
Updated mandatory timers and SPI.

Updated HAL functions.

Updated timing.

Removed priority setting for TCO.
Added requirement when swapping stacks.

Added swap function.
Updated IAR version. Removed Atmel Studio.
Updated devices and boards.

Removed date of specification.

Renamed chapters.

Updated callback functions.

Updated request function input and output parameters.

Added column to indicate in which PHY platforms the
primitives are available. Added PCH to primitives. Added new
primitives for RF.

Added PCH to primitives.
Added functions for MultiPhy.

Removed obsolete PIBs. Updated MTP PIBs. Added new PIBs.
Added specific enabling/disabling of sniffer for different PHY
layers.

Added new PIB to change the channel scanning mode.
Removed PIB to write SNA.

Corrected PIB name.
Added comment about dual mode applications.

Renamed chapter. Updated name of last application.

USI Frame Format
Abbreviations

References

Corrected name of protocol and added missing one.
Updated abbreviations.
Updated links.

@ MICROCHIP

86

Microchip Information
The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to
make files and information easily available to customers. Some of the content available includes:

+ Product Support - Data sheets and errata, application notes and sample programs, design
resources, user’'s guides and hardware support documents, latest software releases and archived
software

+ General Technical Support - Frequently Asked Questions (FAQs), technical support requests,
online discussion groups, Microchip design partner program member listing

+ Business of Microchip - Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip
products. Subscribers will receive email notification whenever there are changes, updates, revisions
or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:
+ Distributor or Representative

+ Local Sales Office

+ Embedded Solutions Engineer (ESE)

+ Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are
also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

* Microchip products meet the specifications contained in their particular Microchip Data Sheet.

+ Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

+ Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip product is strictly prohibited and may violate the Digital
Millennium Copyright Act.

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided

only for your convenience and may be superseded by updates. It is your responsibility to ensure

@ MICROCHIP

87

https://www.microchip.com/
https://www.microchip.com/pcn
https://www.microchip.com/support

that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer,
LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper
Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium,
TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut,
Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic
Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge,

IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi,
MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad 1/0, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-LS., storClad, SQI, SuperSwitcher, SuperSwitcher II,
Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered
trademarks of Microchip Technology Inc. in other countries.

GestlC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary
of Microchip Technology Inc., in other countries.

@ MICROCHIP

88

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

All other trademarks mentioned herein are property of their respective companies.
© 2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-6683-3999-2

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit
www.microchip.com/quality.

@ MICROCHIP

89

https://www.microchip.com/quality

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongging
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910

Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

90

https://www.microchip.com/support
https://www.microchip.com

	Introduction
	Features
	Table of Contents
	1. Overview
	1.1. General Architecture
	1.1.1. User Application
	1.1.2. PRIME FW Stack

	1.2. Event-Driven Operation

	2. Understanding the Firmware Package
	2.1. PRIME Firmware Package Contents
	2.1.1. PRIME FW Stack Project Example
	2.1.2. User Application Project Examples
	2.1.3. PL360 Firmware
	2.1.4. USI Host Example
	2.1.5. Bootloader Example

	3. PRIME FW Stack Project
	3.1. Introduction
	3.1.1. Physical Layer (PHY)
	3.1.2. Physical Abstraction Layer (PAL)
	3.1.3. Medium Access Control Layer (MAC)
	3.1.4. Convergence Layer (CL)
	3.1.5. Management Plane (MNGP)

	3.2. PRIME Stack User Configuration Parameters
	3.2.1. Firmware Version Information
	3.2.2. Communication Channel and other PHY Parameters
	3.2.3. PLC Coupling (PL360 Platform)
	3.2.4. PLC Coupling (PL460 Platform)
	3.2.5. Band Plan in PLC
	3.2.6. Band Plan in RF
	3.2.7. Security Profile
	3.2.8. Device Unique Key
	3.2.9. MAC Address
	3.2.10. Enabling PLC PHY Layer
	3.2.11. Enabling RF PHY Layer
	3.2.12. Frequency Hopping
	3.2.13. PL360 Firmware Information (PL360/PL460 Platform)
	3.2.14. Sniffer Serialization
	3.2.15. Serial Communication Profile of PRIME Management Plane
	3.2.16. PRIME Mode
	3.2.17. Zero Cross Detection in PLC
	3.2.18. Network Behavior

	4. Integrating the PRIME FW Stack
	4.1. Memory Allocation
	4.1.1. Default Memory Allocation Example

	4.2. Hardware Resources Usage
	4.2.1. Data Storage

	4.3. PRIME Interfaces
	4.3.1. PRIME API
	4.3.1.1. Request/Confirm Example
	4.3.1.2. Indication/Response Example

	4.3.2. HAL API

	4.4. PRIME Integration Requirements
	4.4.1. Task Manager, Priorities and Preemption
	4.4.2. Stack Size
	4.4.3. Other Coding Requirements
	4.4.4. CPU Usage

	4.5. Main Function Structure
	4.5.1. Pointer to the PRIME FW Stack
	4.5.2. PRIME FW Stack Swap
	4.5.3. PLC Signaling (optional)
	4.5.3.1. Providing the Pointer to the Transmission Event Callback Function
	4.5.3.2. Providing the Pointer to the Reception Event Callback Function

	4.5.4. PRIME FW Stack Initialization
	4.5.5. PRIME Callback Functions
	4.5.6. PRIME FW Stack Process

	4.6. Application Configuration Parameters
	4.6.1. Example Configuration – conf_app_example.h
	4.6.2. HAL Configuration – conf_hal.h
	4.6.3. PRIME Stack Configuration – conf_prime_stack.h
	4.6.4. USI Configuration – conf_usi.h

	5. Data Exchange
	5.1. Null SSCS
	5.2. IEC 61334-4-32
	5.3. Automatic Repeat Request (ARQ)

	6. File Transfer Service for Firmware Upgrade
	6.1. Introduction
	6.2. CRC Result Callback
	6.3. Signature and Image Result Callback
	6.4. FU Configuration Data
	6.5. Starting FU
	6.6. Providing the Bitmap
	6.7. Writing FU Data
	6.8. CRC Calculation
	6.9. Signature and Image Check
	6.10. Finishing FU
	6.11. Managing the Received File

	7. PRIME Management Plane
	8. Toolchain
	8.1. General Prerequisites
	8.2. Building the Applications
	8.2.1. Using IAR Embedded Workbench

	9. Supported Platforms
	9.1. Supported MCU Families
	9.2. Supported Devices
	9.3. Supported Boards

	10. PICS
	10.1. Major Roles for Devices Compliant with PRIME
	10.1.1. Major Capabilities of the PHY Layer
	10.1.1.1. PHY Frames
	10.1.1.2. PLME Primitives

	10.1.2. Major Capabilities of the MAC Layer
	10.1.2.1. PLC Information Base

	10.1.3. Major Capabilities of the Convergence Layer
	10.1.4. Major Capabilities of the Management Plane
	10.1.4.1. PLC Information Base
	10.1.4.2. Communications Profiles
	10.1.4.3. Firmware Upgrade

	11. API of PHY and PAL Layers
	11.1. PLC PHY SAP
	11.2. RF PHY SAP
	11.3. PAL SAP
	11.3.1. Initialization Function
	11.3.2. Process Function
	11.3.3. Callback Functions
	11.3.4. Noise Capture Function (PL360/PL460 Platform)

	11.4. PAL Primitives
	11.4.1. Data Primitives
	11.4.2. Management Primitives

	12. API of PRIME FW Stack
	12.1. MAC Primitives
	12.1.1. Signalling Primitives
	12.1.2. Data Primitives
	12.1.3. PLME Primitives
	12.1.4. MLME Primitives
	12.1.5. Retrieval of Lists
	12.1.6. Callback Functions

	12.2. IEC 61334-4-32 Primitives
	12.3. PIB Objects Specification and Access
	12.3.1. Proprietary PIB Attributes in the PHY Layer
	12.3.2. Proprietary PIB Attributes in the MAC Layer
	12.3.3. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

	13. Example Applications
	13.1. Usage of the Firmware
	13.2. PRIME Service DLMS + Metrology Application
	13.3. PRIME Service DLMS Application
	13.4. PRIME Service Modem
	13.5. PHY Applications

	14. Serialization with Embedded USI
	14.1. USI Frame Format
	14.2. USI PRIME Protocols
	14.2.1. PRIME Management Plane Frame Format
	14.2.2. PRIME Sniffer Frame Format
	14.2.3. PRIME API Frame Format

	14.3. Embedded USI Configuration
	14.3.1. Definition and Configuration of USI Ports
	14.3.2. Linking of Serial Communication Profile of PRIME Management Plane
	14.3.3. Linking of PRIME Sniffer
	14.3.4. Linking of PRIME API

	15. PRIME Direct Connections
	15.1. Overview
	15.2. Characteristics
	15.3. Functional Description
	15.3.1. Direct Connection Establishment
	15.3.2. Direct Connection Release

	16. Abbreviations
	17. References
	18. Revision History
	18.1. Atmel 43104 Rev A - 03/2017
	18.2. Microchip 50002759 Rev A - 05/2018
	18.3. Microchip 50002759 Rev B - 06/2019
	18.4. Microchip 50002759 Rev C - 07/2020
	18.5. Revision D - 02/2024

	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

