PRIME 1.4 FW Stack for Base Node o
c\ MICROCHIP

Introduction

This document is the user guide for the implementation of the PRIME 1.4 Stack for Base Node developed by
Microchip.

The mechanisms and functionalities of the PRIME specification are the basis for the entire PRIME FW stack
implementation. Therefore, it is highly recommended to use it as a reference. Basic concepts that are
introduced by the PRIME specification are assumed to be known within this document.

Features

+ Implementation of PRIME 1.4 stack for Base Node

+ Support of several microcontroller families including SAME70 and PIC32CXMTx
« Support of PLC modems including PL360 and PL460

« Support of RF modems including ATB6RF215

+ This document applies to PRIME FW stack version 1.4.4

Table of Contents

INEFOAUCTION. ¢ttt ettt ettt et Rt b et b et b et b e st s b e st s r et er e e en e e s ennenens 1
FRATUIES .ttt st b e bbb bbb SR b bbb e s R b e s bbb 1
T OVBIVIBW. ittt b bttt ettt e bt e b e bt s bt s b e b e b e b e e b e b e b e b et ettt e R e bt b e R e s R R n e 4
1.1, GENEIAl ATCNITECIUNE ..ottt ettt b e bbbttt e et et e be st ebe st sbe e eb et ebesaebessenens 4
1.2, EVENE-DIIVEN OPEIATION .. ittt s st b e sae e bt sat e s bt et she et e s seessesmeesseeanesreensesanensesns 5
2. Understanding the FiIrMWare PACKAZE.coeirueirieirieenieeriet ettt sttt sttt ettt sttt sttt be e sbe e ebene 6
2.1, PRIME Firmware Package CONTENTS.....cciviiiiirirerenesesiestestessestessessessessessessessesessessessessessessessessessensensensensenses 6
3. PRIME FW SEACK.c..eutitiuirieirieisietetet sttt ettt ettt sttt sttt st skttt et et e be st s be st e b e st e b et e b et e b et ebe b ebe b enebesesbenesbenesbenens 10
BUTe INEFOAUCTION. ettt b bbbt b et b et eb s b bt s b bt st e bt ebe b ese b ebenaenenbenenbenean 10
4, Managing the PRIME FW STACK.......cceiitrriririneninesesteste sttt ettt et et ettt e st e s be s b s b sbesbesbesbesbesensensensenseneas 13
4.1, Hardware RESOUICES USAEE......ccoeririiririerieienieietetestetestettsteueste st st st ste st te st sbe st sbesesbe e sbe e eb e e ebessebensebensesensesensas 13
A2, PRIME INTITACES. c.cotetiteirteisteiet ettt ettt sttt sttt et sttt et et e b et s b et e b et eb et eb e saebe st ese b esensenesbenesbenesbenens 14
4.3. PRIME INtegration REQUINEIMENTS.....cceitiiiiiiereeterieete ettt sttt st s saeste s esesaeesbesanesre e sesmnessesnnenee 18
4.4, MaIN FUNCLION SEIUCTUIE.....eiiiiieiteiesteit ettt ettt sttt ettt sae et s e sbe st e s bt e b e sbe e besabesbeensesseensesanenses 19
4.5, CONFIGUIAtioON ParamETerS.....coi sttt ettt ettt sttt sttt ettt s b et st e e s b et b et st et et et sbe st ebeneebenees 22
D DAta EXCNANGR. c..itiieiiieietceete ettt ettt ettt s h e bbb s b e b e b e b e b et et et et et e te e e e ereebeas 32
BT NUIESSCS. ettt b et b et b bbb bbbt e bt e bt et e bt s b eae b e st s b e stk e st et e st et et ebe st ebe e eb et ne 32
520 TEC 81334432 ettt sttt b s 32
5.3. Automatic Repeat ReQUEST (ARQ).....eiruerieriireeriiriereerte et stestesee st ete st et saeesbe et e sreesbesseessesaeessesnnesbesnsesas 32
6. PRIME ManagemENnt PIAnE........cocieuiririirieiiieiirieie ettt ettt sttt sttt sttt st ettt sbe st sbe st e be e eb et eb e s ebensesentesensenenes 36
7. BASE MANAZEMENT.....ciiiiitiiiieieeeeet ettt bbb a e e ettt et b s bbb R b r e b e ne e e nesnent 38
/28 T © V= VT PO 38
7.2, Firmware UPZrade ProtOCOL ...ttt sttt sttt ettt besbesbesbesbesbe s b e bensensensensennen 38
7.3. NEEWOIK EVENTS....ctiiitiieiirieteste ettt ettt ettt ettt b et bbbt b s bbb e b et e b et e b et bt st e st sbesesbenesbenees 44
7.4. APl for PRIME Profile in Management Plane.........occveirieinieinieenieirietrietsiee sttt sttt st sseees 44
7.5, WHhIteliSt MANAZEMENT......coiiiiieieieieietetete ettt st et ettt ettt et et et et e e et et eaesseebeebesbesbesbesbesbessesensan 45
8. TOOICNAIN ettt b bbbt b et b s h bbbt a bbb bt b Rt b et b e R ke e ket bbbt b et ebe e ebe e ene 46
8.1, GENEIAl Prer@QUISITES. ..ctiiririirieriertertestestest ettt ettt ettt s b s b e st e s b e s be st e st et et et e st et esaesasbessesbesbesbesbenbenee 46
8.2, BUIlAING the APPIICAtIONS...ccueuiieirieeieerte ettt b e bbbt be e beneenes 46
9. SUPPOITEA PlatfOrMS.....cveuirieiiieiiieirieerteestee sttt sttt este e sse st stesessesesbesesbesesbesesseseeseseeseneesesessenessensesensesensesersesens 47
9.1, SUPPOItEd MCU FamMUlIES.....cueiieirieiieieirieerietrtee ettt ettt ettt b et b et b s be st be e bbb b e bt st ebesaesesbenesbenens 47
0.2, SUPPOITEA DOVICES....eieuiieiiieiisieiesieeste ettt te sttt b ettt b et s b e st et et ebe b ebe b e b et e b et ebesbebesbenesbesesbesessenessenessens 47
0.3, SUPPOITEA BOGIUS..cuiiiiiiiitiriiiiieieietetetet ettt st es st sbestesbesbesbesbe b et et et et e st esaesessessessesbesbesbesbessessensensensan 47
TO. PICS ettt ettt b st h s bbbt b bbb bt a e s b ekt ke a ke Rk e b a e b At e b At bea e b e ek et e b et eb e b ebe b ebe b e b et eb et ebenaenes 48
10.1. Major Roles for Devices Compliant With PRIME.........cccoviriiriiniiiiiiiinirinencsesesesese sttt ssesesenees 48
T1. APLOT PHY QN PAL LAYEIS....iiuiieiiiiiiieiirieienteestet sttt sttt ettt sttt ettt s be st s b et ek et et e s ebe st ebe st ebantebensebessesesaenas 50
TT.T0 PLE PHY SAP .ttt ettt ettt st s h et s h et et b et b et s b et b et e b et e b et e b e e b e e ebe e ebeneebenes 50

@ MICROCHIP

1120 REPHY SAP ..o bbb e 50

11,30 PAL SAP ettt sttt sttt ettt e a e a e Rt bR b e e b e e b e e R e b e b e b et et et et et et e R e et e bt ebeebeebeeaeebenbeee 50
T14. PAL PriMITIVES. c..eiti ettt ettt ettt ettt s b s bt et s bt e besu e e be e st e sbe e besas et e ssbesbessbesstenbesstenbesasesbeensessaensens 51
12, API Of PRIME FW STACK....cctttiirtiriiniiriestesiestestestetet et e st s it st st stessesbesbesbesbessessensensensensensensesessessessessessessensensensensenes 53
T2, 7. IMAC PrimNitIVES . ceteetesieetest et stestt st sttt ste e te st s e tesatesbesaesbeestesae e bessb e beessesseessesseensesssesbesnsesbaensessnensesssensesssans 53
12.2. IEC 61334-4-32 PriMmltIVES. cc.eeuesterterierierterteietertetet et et stestestesbessestesbesbessesseste st esteseesesbesbesbesbesbesbesbessensensensensen 56
12.3. Base Management PrilmitiVES. ..ottt sttt sttt sb et e e st et e et e ssesssesbeesesaeesbesnsessesnsenee 57
12.4. PIB Objects SpPecifiCation @Nd ACCESS.... ..ottt sttt ettt e be b e be e b ees 60
13, EXGMIPIE APPHCALIONS. c..iitirtirtiriirtirteiertetete ettt ettt sttt s b st st st et e st et et et et e st esa e st e st esesbasbesbesbesbesbesbensensensensons 65
13.1. PRIME BASE MOGEM....uiiiiiiiiiiiiiiiitiitesteiestete sttt et saessessessesbesbesbesbessasbasbassassessassessassensesseseesessessessessessensenes 65
132, PHY APPICATIONS ...ttt ettt ettt ettt s b et st e s st e se st e s et esesbesesbenesbenesbenesbenesseneesan 65
14. Serialization With EMBDEAAEA USH.....ccuiiiiiiiiiirieninesesiesiesie ettt e e ssestes e steste st e stassassessessensessessssessessessessens 67
T4 7. USEFrAmeE FOIMIAT....ooieciiiieieeieiteeiesie ettt sttt st et sat e b e st e sb e s s e s bt e b sree b e s aeesbeessesaeessesseensesnnessesnsesseensenns 67
T4.2. US| PRIME PrOtOCOIS.c..iiirtistiriesieniesienietetetete e etestestestestestessessessessessessessensensessssessessessessessessessensensensensonsonsonses 68
14.3. Embedded USI CONfIGUIAtiON.....coiiriiiieteietentetentete ettt sttt sttt b et b st b s be st bbb s ebe b s sbenesbenens 70
15. PRIME Dir€Ct CONNECLIONS. .c..eiiieieetieierieesteeteste ettt sttt st e s bt st e sr et esaee b st e sbe e s esbeessesaee bt sanesseessesseensesneensesnnensenns 72
15,7, OVEIVIEW..uiiiuiiiiiiesieeie st et et e st estesteessesetesbesatesbeessesas e beessesssessasseensesssesbeesseseeenbesssebeensesseensesssenbesssesbeensessaensens
15.2. Characteristics
15.3. FUNCLIONAI DESCIIPLION...ititeteteieiteteee ettt st st sttt et et e e et e b s b e sbesbesbesbesbesbesbebensensensessessesassessessessens 72
ST A o] o 1=V =14 [0 o TR SRR OO 74
T 7. RETEIENCES. ... ettt st st b e st st st st e st e b et et et e s e e st e st eseese e s e e st e b e ebeeb e st e st e st et et et e tentenaennensenaas 76
18, REVISION HISTOMY ettt sttt sttt h e st e e st e b e et e b e s ae e s bt e st s h e e b e s aee bt eseesseeanesseensesneensesnnesreen 77
18.1. AtMEl 431710 REV A = 0372077ttt sttt ettt et b et b bbbt eb b e bt st bt st e st st esesbese s esesbenesaenes 77
18.2. Microchip DS-50002788 REV A - 08/20T8......ccueerieririeririeririeiesieiesiesesiesestesesiesessesessesessesessesessensssessssensesensesens 77
18.3. Microchip DS-50002788 RV B - 06/20719....c.cccuiiiiririririenienienieniesiesiessessessessessessessessesessessessessessessessessessenes 77
18.4. Microchip DS-50002788 ReV C - 07/2020......ccccceruerereerereerireeririeienieseniesessesessesessestssesessesessesessesessesessesessesesnens 78
18.5. Microchip DS-50002788 ReViSioN D - 02/2024.......cccoeerireirieieieneeieneeieneeiesieiessesestesessesessesessesesiesesienessenees 78
MICrOCRIP INTOIMIATION. e ittt ettt b e st st st s b e b et et et et e s e eaeebeebesbesbesbesbesbesbesbensensensens 80
THE MICrOCIP WEDSIT. ..ottt sttt ettt st b et bt ekt b et be st e be s ebe st ebetene 80
Product Change NOtIfiCatioN SEIVICE.......cviirieirieirieirierteetre ettt b e sse e b e b e e sbesesse s st essesensesansesenes 80
CUSTOMIEE SUPP O . ttiiteeteeierieete sttt stte st ete st et s et st e s bt et e s bt essesaee bt satesbeeabesaeenbesmbebesatesseeasesheensesatesbeeasesseensesnnenses 80
Microchip Devices COde ProteCtion FEATUIE........cciiirerieteiee ettt ettt ettt st st eaes 80
LEEAI NOTICE vttt sttt sttt sttt b ettt e bt e be st e b et e b et e b et ek et e ket ebe b e b et ebe b e bt st e bt sbe st s bene st eneee 80
TEAAEIMAIKS. .. ettt ettt sttt s b e s b st et e b et et et e e st e st e be s b e s b e e b e s b e s b e s b e b et et et et e st e st e st eseebesbesbesbenbenten 81
QUAITLY ManN@gEMENT SYSTEM..c..iviiriiriirierierieriertete ettt e ste st e st st st st et et et e s et esasbesbesbesbesbesbe st esbebensensensensensoseans 82
WOTrIAWIAE SAIES ANA SEIVICE....uiiiieiiieieieieese sttt ettt ettt e st st e st e s be st e st et e b e b essesseseeseebesbesbesbesbesbessensan 83

@ MICROCHIP

1. Overview

1.1 General Architecture

The PRIME FW stack general architecture follows the suggested separation of the network stack into
logical layers, as described in the PRIME specification. Besides the core stack containing the protocol
implementation, the PRIME general architecture contains additional layers implementing shared
services (for example, serial interfaces, vendor specific configurations), a Hardware Abstraction
Layer (HAL) and user application examples.

The general architecture of a user application including the PRIME FW stack is shown in the next
figure. As it can be seen, the PRIME FW stack is part of the Base Node architecture.

Figure 1-1. Block Diagram of a DCU General Architecture with the PRIME FW Stack

DCU User Application

~ Communication
___Interface

Communication
Link

Base Node

Embedded Communication
Interface]

User Application

PRIME API

PRIME FW Stack

tHAL API

HARDWARE

Microchip provides an example project of the PRIME FW stack with a user application in the

Base Node. Structure, requirements and features of the user application are described in chapter
Managing the PRIME FW Stack. The API of the PRIME FW stack is described in chapter API of
PRIME FW Stack. In addition, Microchip provides different user application examples to ease user
development (see chapter Example Applications).

1.1.1 User Application
The user application is the main application in the Base Node system and therefore it must not
be confused with the DCU user application. It is responsible for managing the hardware and the
external resources and for setting up and running the whole system. The PRIME FW stack provides
connectivity to the user application through the PRIME API (see chapter API of PRIME FW Stack),

@ MICROCHIP

whereas the user application communicates with the main DCU user application through a serial
link, Ethernet, etc.

The user application can configure the PRIME FW stack by means of configuration files and PIB
attributes.

Important: The HAL is also part of the user application in the Base Node.

The pointer to the HAL functions must be passed to the PRIME FW stack at
initialization. Users are also responsible for initializing, starting and running the
HAL.

1.1.2 PRIME FW Stack

The PRIME firmware stack described in this document constitutes Microchip's implementation of a
PRIME 1.4 Base Node.

This stack interacts with the user application through the PRIME API (see chapter APl of PRIME FW
Stack), with peripherals and specific software services through the Hardware Abstraction Layer (see
chapter HAL API), with the PL360 Host Controller component (used to communicate with the PLC
PHY layer implemented in the PL360 device of the PL360/PL460 platform) and with the RF host
controller component (used to communicate with the RF PHY layer implemented in the AT86RF215
device).

1.2 Event-Driven Operation

Microchip implementation of the PRIME FW stack is event-driven. Every time an API function is
called, an asynchronous notification message is received after the function task is completed. This
notification is delivered by means of the callback associated to the called function. Programmatically,
the user application provides the underlying layers with a function pointer, which the layers below
call after the request is serviced.

In such an event-driven system, user code related to PRIME functions executes in a callback that
must be registered with the PRIME FW stack by the user application. Thus, the user application
functions related to PRIME run entirely in stack-invoked callbacks. More information about callbacks
in the PRIME general architecture can be found in chapter PRIME API.

@ MICROCHIP

2. Understanding the Firmware Package

The following chapter describes the content of the PRIME firmware package, required common
modules and drivers, and explains some general guidelines about how the various software layers
are structured.

2.1 PRIME Firmware Package Contents

Microchip provides PRIME packages for every platform that supports PRIME. These packages include
PRIME applications that communicate using the PRIME network and applications that only make

use of the PRIME PHY layer, so that users can easily access all available user applications and their
related files. Provided example applications are described in chapter Example Applications.

Users are responsible for configuring and compiling the applications (see chapter Toolchain) and
assigning memory resources.

2.1.1 PRIME FW Stack Library

Microchip provides several PRIME FW stack libraries for the Base Node. All of them are fully
functional and the only difference resides in the number of supported nodes.

« Extra small library, that supports 25 nodes, is a limited library, provided for evaluation purposes
only, and shall not be implemented in a final commercial product.

+ Small library, that supports 150 nodes, is intended for a hardware design with internal memory.
+ Medium library, that supports 300 nodes.

+ Large library, that supports 1500 nodes, is intended for a hardware design with external memory
in the Xplained platform.

« Extra large library, that supports 2,000 nodes, is intended for a hardware design with external
memory.

Table 2-1. PRIME FW Stack Libraries and Platforms

PL360BN (external SAME70Q21 2000 libsamM7-prime14-bn_xI|
memory)

SAME70 Xplained SAME70Q21 1500 libsamM7-prime14-bn_|
PIC32CXMTSH-DB PIC32CX2051MTSH128 300 libsamM4-prime14-bn_m
PIC32CXMTG-EK PIC32CX2051MTG128 300 libsamM4-prime14-bn_m
PL360BN (internal SAME70Q21 150 libsamM7-prime14-bn_s
memory)

SAMGS55 Xplained! SAMG55J19 25 libsamM4-prime14-bn_xs
Note:

1. For evaluation purposes only.

2.1.2 Project Examples

Every project example contains the corresponding PRIME FW stack library, the PL360 Host
Controller, the RF host controller, the user application example and the configuration files described
in chapter Configuration Parameters.

Important: The corresponding PHY layers must only be enabled if they are
present in the hardware platform.

@ MICROCHIP

This project can be reused whenever a new PRIME library is available, however, it is necessary to
exchange the library file in the project and update the PRIME firmware version in the corresponding
configuration file. For additional information, refer to the Chapter Firmware Version Information.

Microchip provides a project example, called Modem, which shows how to manage the PRIME FW
stack from an external application by serializing the PRIME API. See chapter Example Applications for
detailed information about the operation of this example.

The Modem project can be found in the package following this path:

..\thirdparty\prime ng\apps\prime 1 4 base modem\same70g2l pl360bn\iar\apps p
rime 1 4 base modem.eww

The structure of this project in IAR Embedded Workbench” is shown in the following figure. Files
and folders required to develop a user application over the PRIME FW stack are marked with red
asterisks.

@ MICROCHIP

Figure 2-1. Folder Structure of the Modem Example Project

E @apps_prime_1_4_base_modem_{flash - Release
B common
Bl sam
&1 Wl thirdparty
M freeros
L3 & prime_ng
o M apps
B modem
L3 ol prime_1_4_hase_maodem
51 B same70g21_pl360kn
Ml iar
— [conf_app_example.h %
— [conf_atpl360h
— [l conf_board.h
— [l canf_clock.h
— [conf_halh e
— [conf_mach Y%
— [conf_mngp.h $
— [conf_oss.h
— [conf_palh %
— [conf_prime_stackh 9%
— [conf_sleepmgrh
— [al conf_uart_serial.h
— [conf_ush.h
— [conf_usih Y
' — [l FreeRTOSCaonfig h
— klapph
main.c
prime_task.c
user_task.c
B conv Y
B hal %
L) ol libs

Lo mlier

L— [libsamt?-prime1 4-bn-iar.a Je

B mac %
-:mngp*
-_pal *
H phy ofe
M prime_api
B Output

Important: Users must not modify any of the provided files except for the
configuration files, the HAL and the board definition (in folder \sam\boards\) in
order to adapt them to their hardware design. Users are free to use the example
applications as templates to create new user applications. Users can also develop
their own applications in the apps directory.

Additionally, Microchip also provides several PHY applications that show to manage the PRIME PHY
layer exclusively. See chapter Example Applications for more information.

@ MICROCHIP

2.1.3 PL360 Firmware

For the PL360/PL460 platform, Microchip provides a binary file to be loaded into the PL360 device,
where the PLC PHY layer of the PRIME FW stack runs. Details about loading the PL360 firmware can
be found in the "PL360 Host Controller User Guide".

2.1.4 USI Host Example

Microchip provides the required files to develop the host controller side of the serialization of the
PRIME FW stack. These files are included in the USI (Universal Serial Interface) Host. Details about
usage of serialization can be found in chapter Example Applications. For the USI Host, see the US/
Host User Guide.

@ MICROCHIP

PRIME FW Stack

Introduction

The PRIME Firmware Stack follows a layered approach based on the PRIME specification. The
following figure shows the stack architecture.

Figure 3-1. Block Diagram of the PRIME FW Stack Architecture

~’|' PRIME Stack

e PRIME API

USER
APPLICATION

| PRIME API

PRIME FW Stack

t HAL API

HAL

[HARDWARE) e .

Y A HAL

Microchip provides a library which contains the MAC layer, the Convergence Layer and the
Management Plane as described in the PRIME specification. It also includes a proprietary Base
Management module to handle the interface between the Base Node and the main DCU user
application and enhance it with additional functionalities. The PHY is not the PHY layer as such but
the host controller component.

Note that the PHY and PAL layer boxes in the above diagram can be split into more than one PHY
and PAL layers depending on the application. See chapter 3.1.2. Physical Abstraction Layer (PAL).

It is important to note that the only entry point to the PRIME FW stack from the user application
is through the PRIME API, which contains the interfaces defined in the PRIME specification as well
as stack control functions. The API of the PRIME FW stack is described in chapter PRIME APl and
in chapter API of PRIME FW Stack. The PRIME FW stack accesses the hardware through the user
application with the HAL APl described in chapter HAL API.

Additionally, Microchip provides the source code of the PL360 Host Controller that manages the
interface of the PLC PHY layer in the PL360 device, the RF host controller that manages the interface
of the RF PHY layer in the AT86RF215 device and the PAL layer.

The PHY layer, the MAC layer and the Convergence Layer have all their own version numbers, which
can be accessed through the corresponding vendor specific PIB attributes PIB_PHY_SW_VERSION
(0x8080), PIB_PHY_SW_RF_VERSION (0x9080), PIB_MAC_INTERNAL_SW_VERSION (0x8126) and
PIB_CL_INTERNAL_SW_VERSION (0x8201). These PIB attributes are described in chapter PIB Objects
Specification and Access.

@ MICROCHIP

3.1.1

3.1.2

The PRIME FW stack modules from the bottom up are briefly described in the following sections.
Basic concepts that are discussed in the PRIME specification are assumed to be known. The
conformance statement about the current implementation of the PRIME protocol is found in chapter
Protocol Implementation Conformance Statement.

Physical Layer (PHY)
The Physical Layer (PHY) handles the transmission and reception of MPDUs at the physical level
between neighbor nodes.

On the transmission side, the PHY layer receives its inputs from the MAC layer through the PAL. At
the end of transmission, the data is passed to the physical medium via the HAL.

On the reception side, the PHY layer receives its inputs from the physical medium via the HAL. At the
end of reception path, the data flows to the MAC layer through the PAL.

By providing an interface through the PAL, the MAC layer is then independent from the underlying
modem. Besides that, the PHY interface can be used by basic applications without requiring the
MAC layer (see a PHY application example in chapter PHY Applications). The API of the PHY layer is
described in chapter APl of PHY and PAL Layers.

The PHY layer can be used for PLC communications as well as for RF communications. The selection
of the right PHY layer is performed by the PAL according to the indications given by the MAC layer.

The PHY layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the PHY layer are stored in the PHY PIB storage and the PHY layer
provides an interface to access and update their values through the PHY Layer Management Entity
(PLME). The PRIME FW stack supports all mandatory PHY PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-10).

Physical Abstraction Layer (PAL)

The Physical Abstraction Layer (PAL) provides an interface between the PHY layer and the MAC layer,
so that the MAC layer is independent from the PHY layer and the underlying modem.

The PAL is based on the PHY primitives for data and control planes described in the PRIME
specification, although the current implementation offers enhanced versions of some of them
to take a full advantage of the features available in the PHY layer. These features improve the
operation of the MAC layer.

A description of the PHY data and management primitives available in the PAL as well as the
extended features can be found in chapter APl of PHY and PAL Layers.

Taking into account that there could be several PHY layers, such as the PLC PHY and the RF PHY, the
MPAL (MultiPhy Abstraction Layer) provides a link between the PAL interface and the selected PHY
layer. The MPAL selects the correct PHY layer by means of the channel indicated by the MAC layer.

@ MICROCHIP

3.1.3

3.14

3.15

3.1.6

Figure 3-2. Block Diagram of the PAL

Medium Access Control Layer (MAC)

The Medium Access Control (MAC) layer provides core MAC functionalities of system access,
bandwidth allocation, connection establishment/maintenance and topology resolution according to
the PRIME specification.

The MAC layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the MAC layer are stored in the MAC PIB storage and the MAC layer
provides an interface to access and update their values through the MAC Layer Management Entity
(MLME). The PRIME FW stack supports all mandatory MAC PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-11).

Convergence Layer (CL)

The Convergence Layer (CL) associates the data received from a user application to its proper MAC
connection. It is composed by a common part to segment and reassemble packets and one or more
service specific sublayers (e.g. IEC 61334-4-32). Information about data exchange using the CL can
be found in chapter Data Exchange.

Management Plane (MINGP)

The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade inside the stack. More information about this layer can be found in
chapter PRIME Node Management Plane.

The PRIME certification conformance tests require accessing the PIB attributes and this is achieved
via the Management Plane.

Base Management (Base MING)

The Base Management module is a Microchip proprietary extension over the PRIME specification
to increase the functionalities of a Base Node. The PRIME specification does not always define
the interfaces between the Base Node and the DCU user application, so new interfaces must be
implemented as required.

The Base Management handles the Firmware Upgrade Protocol interface and access to the PRIME
Profile. It also notifies about network events, such as node registrations and unregistrations,

and manages the whitelist. More information about this module can be found in chapter Base
Management.

@ MICROCHIP

4.1

4.1.1

Managing the PRIME FW Stack

The purpose of this section is to indicate requirements and provide recommendations for
integrating the PRIME FW stack into the user application.

The following issues must be taken into account:

+ Hardware requirements

« Interfaces with the PRIME FW stack (PRIME APl and HAL API)
+ Integration requirements

* Main function structure

Hardware Resources Usage

MCU hardware resources include microcontroller peripherals, buses, timers, IRQ lines, 1/0 registers,
and so on. Since many of these interfaces have corresponding APIs in the HAL, users are
encouraged to use the high-level APIs instead of the low-level register interfaces to ensure that the
resource usage does not overlap with that of the PRIME FW stack. The hardware resources reserved
for internal use by the PRIME FW stack are the following:

+ Mandatory timers: The 1us service requires one timer TCx to have a common timer reference
between the PHY and the MAC layer.

+ Exceptional timers: During certification, when a UART or USART is required (see Chapter Serial
Communication Profile of PRIME Management Plane), a timer TCx is used.

« SPI: The PLC and RF PHY layers might require one or two SPI ports depending on the platform.
+ DMA: DMAQO is used.

+ Interrupts: The PLC PHY layer uses a GPIO as PLC External Interrupt pin (EINT).

+ External memory in SAME7O (for full library): PMC and SDRAM.

Important: Hardware resources reserved for use by the PRIME FW stack must
not be accessed by the user application.

Data Storage

The PRIME FW stack requires storage of data in a non-volatile storage area that must be provided by
users. Non-volatile data are given below:

+ The MAC address (see chapter MAC Address)

+ The BN parameters (see chapter Base Node Parameters)

* The PRIME mode (see chapter PRIME Mode)

+ The PHY parameters (see chapter Communication Channel and other PHY Parameters)

In addition, the PRIME FW stack imposes memory requirements to the user application in the Base

Node regarding the memory. In order to upgrade a Service Node, the corresponding firmware image
must be stored in RAM or Flash memory.

Important: The location and the size of the reserved memory area for the SN
firmware image to upgrade must be set up by the users according to their system
and requirements.

@ MICROCHIP

The figure below illustrates the memory allocation configured in the provided application project
examples. The memory addresses can be configured in the conf app_example.h file.

/* Define PRIME size in flash. Could be movable */

#define PRIME MAX SIZE SN (0x00060000u)

#define PRIME MAX SIZE BN (0x00040000u)

#define PRIME FLASH LOCATION SN (I FLASH + I FLASH SIZE - PRIME MAX SIZE SN)

Figure 4-1. Flash Example for PRIME

|_FLASH
A -

MAX_SIZE_BN

User App

|_FLASH_SIZE

MAX_SIZE_SN

-y - - -

The usage of external memory implies a correct initialization of variables. This means that variables
used before the external memory is initialized must be initialized before. Since the projects provided
by Microchip initialize the external memory at program initialization and not at start-up, variables
like the heap are initialized in the linker script of each project.

4.2 PRIME Interfaces

As shown in Figure 1-1, the PRIME FW stack has two interfaces: one towards the user application and
another one towards the HAL.

4.2.1 PRIMEAPI

The PRIME API is the only interface that the user application must use to interact with the PRIME FW
stack.

The PRIME API is based on a request/confirm mechanism, which is a particular instance of an event-
driven programming model. A request is an asynchronous call to the underlying stack to perform
some action on behalf of the user application; a confirm is the callback that executes when that
action has been completed and the result of that action is available.

Apart from request/confirm pairs, there are cases when the application needs to be notified of an
external event that is not a reply to any specific request. For this, there are a number of user-defined
callbacks named indications that are invoked by the stack asynchronously. Note that during the
execution of an indication callback, it is not permitted to invoke any request as this could lead to the
generation of a callback chain.

@ MICROCHIP

14

Important: Callback functions must be registered in the PRIME FW stack by the
user application upon initialization (see chapter Main Function Structure).

Figure 4-2. API Calls in Event-Driven Programming

APP PRME APP PRME
T
I
|
I
|
I
I

mac_establish request

A
=
o
o
o
w
5]
o
7
=
=
a
=
1S
E‘.
5

mac_establish confim
d
-

i

|
|
I
The confirm callback can be divided in two types:

« Asynchronous: For most operations, request execution takes a considerable amount of time and
a confirm callback function can be called seconds after the request was issued. During this time,
the application must postpone other requests of the same type until the first request is completed.
(i.e.: previous confirm has been received). Furthermore, it is not recommended to execute any
other action after invoking the request. Considering that the PRIME FW stack always replies with a
confirm, the application must wait for the corresponding confirm before performing a new request
of the same type

* Immediate: For PLME and MLME operations, the confirm callback function is called right away
from the request during the same execution cycle, i.e. it acts as a normal function call and it
is thus possible to perform other actions after the request. Note that for any operation (not
only PLME or MLME), when the result is not successful, the confirm callback function is called
immediately instead of asynchronously

The complete PRIME API structure is located relatively to the address indicated by the prime api
pointer. It is defined as a set of macros in the header file prime_api.h. The function parameters
are defined in several defs header files depending on the layer the function is related to. The user
application can simply call these functions without modifying them. For more information, see
chapter API of PRIME FW Stack.

4.2.1.1 Request/Confirm Example

Consider the establishment of a MAC connection from a node. The user application needs to call the
following function:

prime cl null establish request(uint8 t *puc euid8, uint8 t uc_ type, uint8 t *puc data,
uintlé t us data len, uint8 t uc _arqg, uint8 t uc_ cfbytes);

Previously, it has registered the callback to the corresponding confirm (see chapter PRIME FW Stack
Initialization), which must be a function of the following type:

typedef void (*mac_establish cfm cb t) (uintl6é t us con handle, mac establish confirm result t
uc_result, uint8 t *puc euid8, uint8 t uc_type, uint8 t *puc_data, uintl6_t us_data len);

@ MICROCHIP

4.2.1.2

4.2.2

The example illustrates a particular instance of using a request/confirm mechanism but all other
uses follow the same approach.

Indication/Response Example

If the user application wants to be informed about the establishment of a MAC connection in
the node, it must register a callback to the corresponding indication (see chapter PRIME Callback
Functions), which must be a function of the following type:

typedef void (*mac_establish ind cb t) (uintl6_t us con _handle, uint8 t *puc_eui48, uint8 t
uc_type, uint8 t *puc data, uintlé t us data len, uint8 t uc cfbytes);

Indications might or might not need a response. In this example, the callback code for the indication
must include a call to the following function:

prime cl null establish response(uintl6 t us con handle, mac establish response answer t
uc_answer, uint8 t *puc data, uintl6é_t us data len);

The example illustrates a particular instance of using an indication mechanism but all other uses
follow the same approach.

HAL API

Apart from the PRIME FW stack, Microchip provides an open code of the Hardware Abstraction Layer
(HAL). The HAL functionalities are used both by the user application as well as by the PRIME FW
stack.

The HAL can be allocated at any address within the region of the user application, which must
keep a pointer to the HAL API functions. This pointer must be passed to the PRIME FW stack at
initialization.

The API of the HAL, defined in header file hal.h, must not be changed under any

/\ CAUTION .
circumstances.

Important: Note that the provided HAL source code is only an implementation
example. Users should modify the function code according to their hardware and
specifications.

The HAL contains all platform (i.e., MCU and board) specific functionality (required by the PRIME FW
stack) and provides interfaces to the upper modules. Therefore, all upper modules are independent
from the underlying platform.

The HAL provides interfaces to several components, such as the PLC access functionality through
SPI or access to persistent storage (for example, serial Flash) among others. These components are
implemented as software blocks which interact with the hardware.

The HAL also implements software components that may or may not interact with the hardware.
For example, the CRC component or the serial interface to handle the different serial interfaces
described in the PRIME specification through one or more UART ports. The Universal Serial Interface
(USI) is an example of implementation of this serial interface. For additional information about
services in the USI, refer to the Application Note "PLC Universal Serial Interface".

The following table shows all HAL functions used by the PRIME FW stack, the file where they are
implemented and a brief description of their usage. Note that there might be other functions not
described here but available in hal.h. Those functions are irrelevant in this context.

@ MICROCHIP

Table 4-1. HAL API

Funeion————————The— oeserpron]

hal_restart_system hal.c Restart the complete system.

hal_pcrc_calc hal_pcrc.c Calculate the CRC of the input buffer according to the PRIME specification.
hal_pcrc_config_sna hal_pcrc.c Configure the SNA for the CRC.

hal_fu_data_read hal_fu.c Read data from memory during FU.

hal_fu_data_write hal_fu.c Write data in memory during FU.

hal_fu_start hal_fu.c Initialize and unlock memory for a FU process.

hal_fu_crc_calculate hal_fu.c Calculate the CRC of the received file.

hal_fu_crc_set_callback hal_fu.c Specify the callback function to provide the calculated CRC.

hal_plc_init’ hal_plc.c Initialize the PLC interface.

hal_plc_reset’ hal_plc.c Reset the internal PLC modem.

hal_plc_set_handler’ hal_plc.c Specify the callback function for the PLC interrupt.

hal_plc_tx_signal hal_plc.c Indicate a transmission event.

hal_plc_rx_signal hal_plc.c Indicate a reception event.

hal_get_config_info? hal_cfg.c ‘Ijve:;jn (;oc:zi:ir:;i<:Eepjsrzrrn:itger:§t;rg-s function disables all interrupts
hal_set_config_info? hal_cfg.c VWV[r‘l‘t:l ;c;:‘f;if:i:lalgtiar]\e;Leasrzrs(nitg(;r:.tl:rl;i.s function disables all interrupts
hal_usi_set_callback hal_usi.c Specify the callback function for a given protocol.

hal_usi_send_cmd hal_usi.c Transmit data through the serial interface.

hal_trng_init hal_trng.c Initialize the true random number generator.

hal_trng_read hal_trng.c Read information from the true random number generator.
hal_debug_report hal.c Report a debug error.

hal_plc_send_boot_cmd? hal_plc.c Send a boot command. This function disables all interrupts.
hal_plc_send_wrrd_cmd3 hal_plc.c Send a write/read command. This function disables all interrupts.
hal_plc_enable_interrupt3 hal_plc.c Enable or disable the PLC interrupt.

hal_plc_delay3 hal_plc.c Delay execution.

hal_pib_get_request hal_pib.c Get user specific PIB value.

hal_pib_get_request_set_callback hal_pib.c Specify the callback function to get a user specific PIB value.
hal_pib_set_request hal_pib.c Set user specific PIB value.

hal_pib_set_request set_callback hal_pib.c _;IpBe\c/i‘;‘?/u?e callback function to return the result of setting a user specific
hal_aes_init hal_aes.c Initialize the AES module.

hal_aes_set_callback hal ges.c Zzirc)i/gtiot:.e callback function to return the results of encryption/
hal_aes_key hal_aes.c Provide the key for encryption/decryption.

hal_aes_crypt hal_aes.c Trigger encryption/decryption.

hal_plc_set_stby_mode3 hal_plc.c Set the stand-by mode.

hal_plc_get_thermal_warning3 hal_plc.c Check if there is a thermal warning active.

timer_1us_get timer_1us.c Get the current time in microseconds.

timer_1Tus_set_int timer_1us.c Set an interrupt for the specified time in microseconds.
timer_1us_cancel_int timer_1us.c Cancel a programmed time interrupt.

timer_1us_enable_interrupt timer_1us.c Enable/disable the TC interrupt.

prf_if_init* prf.if.c Initialize the PHY RF interface.

prf_if_reset* prf.if.c Reset the RF transceiver.

prf_if_enable_interrupt? prf_if.c Enable/disable the RF interrupt.

prf_if_set_handler® prf_if.c Set an interrupt handler for the specified interrupt source.
prf_if_send_spi_cmd* prf.if.c Launch an SPI transaction to the RF transceiver.

@ MICROCHIP

........... continued

prf_if_is_spi_busy* prf.if.c Check if the SPI is busy.
prf_if_led* prf.if.c Turn on/off the LED in the RF transceiver.
Notes:
1.
A\ CAUTION Microchip does not recommend changing these functions as they are related

to the PLC interrupt.

Important: The Microchip implementation of these functions uses the User
Signature in the MCU to store some configuration parameters. This is just an
example. Users can store such parameters in any non-volatile storage area of
their choice and then they must update these functions accordingly.

3. These functions are only available in the PL360/PL460 platform.
4. These functions are only available in the RF platform.

4.3 PRIME Integration Requirements

The goal of this section is to provide recommendations, requirements and limitations to be taken
into account in the application development with the PRIME FW stack. Users are strongly advised to
follow these guidelines.

Failure to comply with the requirements may result in an anomalous and/or

AT unexpected behavior of the PRIME node.

4.3.1 Task Manager, Priorities and Preemption

A major aspect of application development is managing the control flow and ensuring that different
parts of the application do not interfere with each other's execution. The PRIME FW stack can be
integrated in the user application like any other task.

Important: The PRIME task must have at least the same or a higher priority than
any other user task.

If several user tasks are defined, then it is highly recommended to configure the user tasks with a
lower priority than the PRIME task. The reason to do this is to ensure that the PRIME task is executed
as soon as the system tick arrives, in the defined timer rate. This synchronization is critical for the
PRIME FW stack.

Important: Call the PRIME FW stack process every 10ms as a maximum period,
ideally every 5ms.

4.3.2 Other Coding Requirements
The following requirements must be taken into account for a proper system performance:

@ MICROCHIP

+ Avoid invoking a request function inside a callback function. This increases the call stack size
and may provoke endless loops. For example, do not request to send data in the same callback
function that handles the confirm of a data request.

+ Avoid invoking a request to a node if the previous confirm has not been received yet, if the
connection is being closed or if there has been a reset.

+ Set to NULL all unused callback function pointers:
memset (&mac_cbs, NULL, sizeof (mac_cbs));

memset (&cl432 cbs, NULL, sizeof (cl432 cbs));
memset (&bmng cbs, NULL, sizeof (bmng cbs));

+ Provide the callback function pointers again after an MLME_RESET.confirm primitive.

+ Do not modify critical regions in the HAL. The PRIME process already disables any interrupts that
could affect its operation (all interrupts with priority 2 and higher). When the PRIME process has
finished, disabled interrupts are enabled again.

+ When security has been configured and the AES hardware module, when available, is used, the
priority of AES must be set to 1, so that the related interrupt is not disabled during the PRIME
process execution.

+ Do not modify the functions and parameters in the PRIME APl and the HAL API.
+ Modify the available user configuration files according to your needs.

+ Give a MAC address to the board. If the PRIME FW stack cannot find a MAC address, it enters into
MTP mode.

+ Initialize and refresh the watchdog to avoid hangings of any application during execution.
+ Use the supply monitor controller, if available in the board, to avoid malfunctions.
+ Do not use size optimization to avoid malfunctions.

4.4 Main Function Structure

Every user application contains a main function, which is, as usual, the starting point of the
application. A basic main function is presented below.

Example of main function

int main(void)

{
/* Function to setup clocking. */
sysclk_init();

/* Ensure all priority bits are assigned as preemption priority bits.*/
NVIC SetPriorityGrouping(__NVIC_PRIO_BITS) ;

/* Library function to setup for the evaluation kit being used.*/
board init();

/* Configure external 32khz clock if needed (depends on board) */
pmc_switch sclk to 32kxtal(0);

/* Enable Sleep manager */
sleepmgr init();

/* Initialize SDRAM controller */
_prv_setup sdram();

/* Configure supply monitor */
hal setup supply monitor (CONTINUOUS MONITORING, THRESHOLD 3V04);

/* Initialize flash: 6 wait states for flash writing. */
flash init (FLASH ACCESS MODE 128, CHIP FLASH WRITE WAIT STATE);

/* Set up watchdog */
hal watchdog setup (WATCHDOG TIME) ;

/* Configure console */
_configure dbg console();

@ MICROCHIP

puts (STRING HEADER) ;

/* Initialize PRIME stack */

prime_init((hal_api_t *)&hal_api);

/* Init HAL PLC signalling */

hal plc set tx signalling handler(blink plc tx activity led);
hal plc set rx signalling handler(blink plc rx activity led);

/* Init user application (callbacks to PRIME) */
app_init();

while (1) {
/* Restart watchdog */
wdt restart (WDT) ;

/* Process HAL layer */
hal process();

/* Process PRIME stack */
prime_process();

/* Process user application */
app_process () ;

}
A developer can add additional code into the body of the function, but the main function should
always follow the structure provided:
1. Invoke the prime init () function to initialize the PRIME FW stack
2. Invoke the prime process () function in the infinite loop to pass control to the task manager

The task manager begins invoking the task handlers of each layer in order of priority (from

highest to lowest), eventually invoking the application task handler. Following the initial call to the
application task handler, the control flow passes between the PRIME FW stack and the callbacks, as
shown in Figure 4-2.

Important: The pointer to the HAL functions must be passed to the PRIME
FW stack at initialization. Users are also responsible for initializing, starting and
running the HAL.

Important: In order to avoid hangings of any application during execution, it is
recommended to initialize and refresh the watchdog. This is a driver available in
any Microchip board.

In order to start using the PRIME FW stack, it is necessary to initialize different parameters and to
call the corresponding initialization functions. These actions must follow the order indicated in the
next sections.

4.4.1 PLC Signaling (optional)

If users want to be notified about PLC transmission and reception events, the corresponding
callback functions must be provided to the HAL.

4.4.1.1 Providing the Pointer to the Transmission Event Callback Function
To set up the callback for transmission events, the following function must be used:

void hal plc set tx signalling handler(void (*p_handler) (void));

Parameters:

* p_handler: Pointer address to the callback function

@ MICROCHIP

20

4.4.1.2 Providing the Pointer to the Reception Event Callback Function

4.4.2

4.4.3

To set up the callback for reception events, the following function must be used:
void hal plc set rx signalling handler(void (*p_handler) (void));

Parameters:

« p_handler: Pointer address to the callback function

PRIME FW Stack Initialization

After setting up pointers, the user application can call the initialization function of the PRIME FW
stack. Additionally, since the HAL is part of the application, the application must provide the HAL
pointer to the PRIME FW stack at this point. The function used for this purpose is the following:

prime init (void *px hal api);

Parameters:

* px_hal_api: Pointer to the HAL API

Important: This function initializes the complete PRIME FW stack, from the PHY
layer to the CL shown in Block Diagram of the PRIME FW Stack Architecture.

PRIME Callback Functions

When the user application is initialized, it must set up required callback function pointers in order to
be informed about confirm and indication primitives from the MAC layer and the CL. This must be
performed after the PRIME FW stack has been initialized. The following functions are used:

void prime cl null set callbacks (mac_set callbacks t *mac cbs);

Parameters:

* mac_cbs: Pointer to the callback structure of the MAC layer (see chapter Callback Functions in the
MAC Layer for details).

void prime cl 432 set callbacks(cl 432 set callbacks_t *cl432 cbs);

Parameters:

* ¢l432 cbs: Pointer to the callback structure of the 4.32 SSCS (see chapter IEC 61334-4-32
Primitives for details).

void bmng set callbacks (bmng callbacks t *px base mng cbs);

Parameters:

« px_base_mng_cbs: Pointer to the callback structure of the Base Management (see chapter Callback
Functions in the Base Management for details).

This is an example of callback function pointer set-up:

mac callbacks t mac cbs;
cl 432 callbacks t cl432 cbs;
bmng callbacks t bmng callbacks;

@ MICROCHIP

21

/* Initialize all callback pointers to NULL */

memset (&émac_cbs, NULL, sizeof (mac_cbs));

memset (&cl432_cbs, NULL, sizeof(cl432_cbs));

memset (¢ébmng_callbacks, NULL, sizeof (bmng_ callbacks)) ;

/* Initialize

callback pointers for MAC */

mac_callbacks.mac data cfm cb = user app data cfm cb;
mac_callbacks.mac data ind cb = user app data ind cb;

mac callbacks.mac establish cfm cb = user app establish cfm cb;
mac_callbacks.mac establish ind cb = user app establish ind cb;
mac_callbacks.mac join cfm cb = user app join cfm cb;
mac_callbacks.mac join ind cb = user app join ind cb;
mac_callbacks.mac leave cfm cb = user app leave cfm cb;
mac_callbacks.mac leave ind cb = user app leave ind cb;
mac_callbacks.mac release cfm cb = user app release cfm cb;
mac_callbacks.mac release ind cb = user app release ind cb;

mac callbacks.mlme get cfm cb = user app mlme get cfm cb;

mac callbacks.mlme list get cfm cb = user app mlme list get cfm cb;
mac_callbacks.mlme promote cfm cb = user app mlme promote cfm cb;
mac callbacks.mlme mp promote cfm cb = user app mlme mp promote cfm cb;
mac_callbacks.mlme reset cfm cb = user app mlme reset cfm
mac_callbacks.mlme set cfm cb = user app mlme set cfm cb;

prime cl null set callbacks (&mac_cbs) ;

/* Initialize callback pointers for 4.32 */

cl432 callbacks.cl 432 dl data cfm cb = user app cl 432 dl data cfm cb;
cl432 callbacks.cl 432 dl data ind cb = user app cl 432 dl data ind cb;
cl432 callbacks.cl 432 join ind cb = user app cl 432 join ind cb;

cl432 callbacks.cl 432 leave ind cb = user app cl 432 leave ind cb;

prime cl 432 set callbacks(&cl432 cbs);

/* Initialize callback pointers for Base Management */

bmng callbacks.fup ack cb = user app bmng fup ack cb;

bmng callbacks.fup error ind cb = user app bmng fup error ind cb;
bmng_callbacks.fup_kill ind cb = _user_ app bmng fup_ kill ind_cb;

bmng callbacks.fup status ind cb = user app bmng fup status ind cb;

bmng callbacks.fup version ind cb = user app bmng fup version ind cb;

bmng callbacks.network event ind cb = user app bmng net event ind cb;

bmng callbacks.pprof ack cb = user app bmng pprof ack cb;

bmng callbacks.pprof get response cb = user app bmng pprof get response cb;

bmng callbacks.pprof get enhanced response cb = user app bmng pprof get enhanced resp cb;
bmng callbacks.pprof get zc response cb = user app bmng pprof get zc response cb;
bmng callbacks.pprof zc diff response cb = user app bmng pprof zc diff response cb;
bmng callbacks.whitelist ack cb = user app bmng whitelist ack cb;

prime bmng set callbacks (&bmng callbacks);

PRIME FW Stack Process

Every program cycle, the PRIME FW stack must perform several actions for its normal operation. This
is achieved by calling the following function:

4.4.4

prime process (void) ;
This function processes events and invokes the corresponding callback functions.

4.5 Configuration Parameters

The PRIME FW stack can be configured to suit user requirements. This is achieved with several
configuration files, which allow:

+ The stack to configure the required stack resources according to the application needs based on
the required functionality, and

+ The application to configure its own resources

Note that some parameters must be configured during the Manufacturing Test Procedure (MTP)
using PIB attributes.

@ MICROCHIP

Some parameters are subject to change during execution and it could be needed to store them in
non-volatile memory so that they can be recovered after a system restart. See chapter 4.1.1. Data
Storage for more information.

4.5.1 PRIME Stack User Configuration Parameters

4.5.1.1 Enabling Base Node API
The file conf_prime_stack.h includes a definition to enhance the PRIME API with functions related to

the Base Node. In the provided examples, this line is not commented, so that the API of the Base
Node is included.

/* Enable API for base node */
#define PRIME API BN

4.5.1.2 Firmware Version Information

In the provided PRIME FW stack library, the first 20 bytes contain the Vendor, Model and Version
information corresponding to the PRIME FW stack library. These metadata are useful to identify and
control which library is being used. Users can edit this information in file conf prime_stack.h.

/* Firmware Information */

#define PRIME_FW_VENDOR “MCHP”

#define PRIME FW MODEL “PL360BN”

#define PRIME FW VERSION “B14.04.01\0\0\0\0\0\0\0”"

/* Prime PIB firmware information. FW Version is used as PIB version */

#define PRIME PIB VENDOR 0x0000
#define PRIME PIB MODEL 0x3D3F

The modifiable attributes are the following:

Table 4-2. PRIME FW Information Attributes

PRIME_FW_VENDOR Vendor name, e.g. “MCHP". ASCIIl. Maximum 16 bytes.

PRIME_FW_MODEL Product name, e.g. “PL360BN". ASCIl. Maximum 16 bytes.

PRIME_FW_VERSION Version identifier as defined in Numerical, ASCIl recommended. It must
PIB 0x0075 (PIB_MAC_APP_FW_VERSION), e.g. be 16 bytes long.
“B14.04.01\0\0\0\0\0\0\0".

PRIME_PIB_VENDOR Vendor name as defined in PIB 0x0076 Numerical, two bytes size. This value is
(PIB_MAC_APP_VENDOR_ID), e.g. 0x0000. assigned by the PRIME Alliance.

PRIME_PIB_MODEL Product name as defined in PIB 0x0077 Numerical or ASCII, two bytes size.

(PIB_MAC_APP_PRODUCT_ID), e.g. “70".

4.5.1.3 Communication Channel and other PHY Parameters

Microchip provides solutions that cover frequencies from 41 kHz up to 472 kHz and are compliant
with different applicable regulations in the PLC domain.

The table below shows the available frequency bands with their associated PLC coupling boards. To
configure the PLC coupling in PL360 and PL460, see the corresponding chapters.

Table 4-3. Frequency Bands

Frequency band (kHz) PLC coupling board (PL360) PLC coupling (PL460)

ATPLCOUP000
ATPLCOUPOO1
ATPLCOUPO03
1 41-89 ATPLCOUPOOA Main branch or auxiliary branch
ATPLCOUPOO7

ATPLCOUPO11

23

@ MICROCHIP

........... continued

Frequency band (kHz) PLC coupling board (PL360) PLC coupling (PL460)

96 - 143 Not supported Not supported
3 151-198 ATPLCOUPOO6 Main branch (FCC or FCC with high
ATPLCOUPO11 attenuation)
ATPLCOUP002
4 206 - 253 ATPLCOUPOOG Main branch (FCC o'r FCC with high
attenuation)
ATPLCOUPO11
ATPLCOUP002
5 260 - 308 ATPLCOUPOO6 Main branch (FCC or FCC with high
ATPLCOUPO09 attenuation)
ATPLCOUPO11
ATPLCOUP002
6 315-362 ATPLCOUPOOG Main branch (FCC or FCC with high
attenuation)
ATPLCOUPO11
ATPLCOUP002
7 370-417 ATPLCOUPOOG Main branch (FCC or FCC with high
attenuation)
ATPLCOUPO11
ATPLCOUPO006 Main branch (FCC or FCC with high
8 424-472 ATPLCOUPO11 attenuation)

The available frequency bands for RF are defined in the IEEE 802.15.4 standard. To configure the RF
band, see the corresponding chapter.

The PRIME FW stack needs PHY parameters to be kept safe in a non-volatile storage area in case the
system restarts for any reason.

These PHY parameters are the communication channels in PLC and RF as well as the PLC channel
lists.

The PRIME FW stack uses a configuration key to determine whether these parameters are available
in the non-volatile storage or not. The structure with the configuration key and the PHY parameters
that must be kept in the non-volatile storage area is defined in file hal.h as follows:

/** Configuration key to manage PHY params */
#define HAL PRIME PHY CONFIG KEY OxAA99

/** Type to manage PHY params */
typedef struct {

uintlé t us cfg key;

uintlé_t rfChannel;

uint8 t txrxChannel;

uint8 t txrxChannelList;

uint8 t txrxDoubleChannellList;
} x_phy cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key matches the value defined by HAL PRIME PHY CONFIG KEY,
then the PRIME FW stack considers that the stored values are valid and reads them from the
non-volatile storage area. However, if the stored key does not match HAL. PRIME PHY CONFIG KEY,
then the stored values are discarded and the PRIME FW stack reads and stores the default values
from the PHY layer.

The PHY parameters can be updated by users any time during operation. The RF

communication channel can be changed using the standard PIB attribute PIB_PHY_RF_CHANNEL
(0x1010), while the PLC channel and the PLC channel listst can be changed using vendor

specific PIB attributes PIB_PHY_TX_CHANNEL (0x8090), PIB_PHY_TXRX_CHANNEL_LIST (0x8092) and

@ MICROCHIP

24

PIB_PHY_TXRX_DOUBLE_CHANNEL_LIST (0x8093) described in Table 12-10. The changed values are
always stored in the non-volatile storage area. After a reset, since the configuration key matches the
defined value HAL PRIME PHY CONFIG KEY, the last values stored in the non-volatile storage area
will be the ones used by the stack.

Important: Do not change the value assigned to the configuration key
HAL PRIME PHY CONFIG KEY because this is a compilation constant in the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL PHYCFG OFFSET USER_SIGN in order to access the PHY parameters in the non-
volatile storage area.

4.5.1.4 PLC Coupling (PL360 Platform)

When using the PL360 platform, the hardware coupling implemented in the user board must only
be taken into account when using ATPLCOUPO11. In that case, the parameter PAL _ENABLE Cl1 CFG
must be defined in file conf _pal.h.

/* If coupling 11 is chosen */
#define PAL ENABLE Cl1l CFG

4.5.1.5 PLC Coupling (PL460 Platform)
When using the PL460 platform, the default configuration uses the main branch for FCC channels
and the auxiliary branch to transmit in channel 1.

/* PL460 + PLCOUP007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
/* #define PAL ENABLE PL460 CEN A CFG */

/* PL460 FCC-SB (Single Branch) / FCC-1.5B (1.5 Branch) configuration */
/* #define PAL ENABLE PL460 FCC 1 5B CFG */

To use the hardware variant in order to transmit in channel 1 using the main branch, the parameter
PAL ENABLE PL460 CEN A CFG must be defined in file conf pal.h.

/* PL460 + PLCOUPO007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
#define PAL ENABLE PL460 CEN A CFG

/* PL460 FCC-SB (Single Branch) / FCC-1.5B (1.5 Branch) configuration */
/* #define PAL ENABLE_PL460_FCC_1 5B_CFG */

To use the hardware high attenuation variant in order to transmit in FCC channels using the main
branch, the parameter PAL_ENABLE PL460 FCC 1 5B CFG must be defined in file conf pal.h.

/* PL460 + PLCOUP007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
/* #define PAL ENABLE PL460 CEN A CFG */

/* PL460 FCC-SB (Single Branch) / FCC-1.5B (1.5 Branch) configuration */
#define PAL_ENABLE PL460 FCC_1 5B CFG

4.5.1.6 Band Plan in PLC
When using a version of the PLC PHY layer that can handle several communications channels, as
shown in Table 4-3, the user can configure which set of channels the node is allowed to operate on
by setting USER_BAND PLAN in file conf palh. If USER_BAND PLAN is not defined, the node is allowed
to operate on each one of the channels supported by the PLC PHY layer.

/* Define the band plan */
#define USER BAND_ PLAN (CHANNEL3 | CHANNEL4 | CHANNEL7)

25

@ MICROCHIP

Additionally, it is also possible to configure a second band plan to use a double channel, i.e., two
concurrent channels. To do so, the user must first define PAL_ ENABLE MULTICHANNEL and then
USER BAND PLAN 2CH in file conf pal.h.

/* Enable Multichannel */
#define PAL ENABLE MULTICHANNEL

#ifdef PAL ENABLE MULTICHANNEL
/* Maximum number of channels supported */
#define PAL MAX NUM CHANNELS 2 /* Double channel */

/* Define the band plan */
/*#define USER_BAND PLAN 2CH (CHANNEL34) */

#endif /* PAL ENABLE MULTICHANNEL */

Attention: Microchip provides two different binary files of the PL360 firmware
depending on the support of the double channel functionality. Users must make
sure that they load the right one according to their band plan configuration.

Important: Although a Base Node can have a band plan which includes several
PLC channels (single and double), it will only use one of them (see chapter
Communication Channel and other PHY Parameters).

4.5.1.7 Band Planin RF
The channels used in the RF PHY layer depend on the operation mode: SUN FSK or OFDM. This is
configured by setting RE_ PHY OPERATION MODE n file conf pal.h.

/* RF Operation definition */
#define RF_PHY OPERATION MODE AT86RF_SUN_FSK BAND 863 OPMI1
/* #define RF PHY OPERATION MODE AT86RF SUN OFDM BAND 863 OPT4 */

4.5.1.8 Security Profile

The PRIME FW stack supports the three security profiles (0,1, 2) defined by the PRIME specification.
The security profile used in a PRIME network is set by the base node. This must be defined in file
conf_mac.h by setting the required security profile in MAC SECURITY PROFILE.

By default, the security profile is set to 0, i.e. no security.

/* Security profile */
#define MAC SECURITY PROFILE 0

4.5.1.9 Device Unique Key

When the configured security profile is 1 or 2 (see chapter Security Profile), the base node needs to
know the DUKs of the service nodes to accept their registration. While the base node does not know
a DUK, the registration of the corresponding service node will not be responded, i.e. this works like
a whitelist. In order to provide a list of service nodes with their DUKs to the base node, the PRIME
FW stack includes the vendor specific PIB 0x8140 (PIB_MAC_SEC_DUK_BN in Table 12-11). This PIB is
write-only and is composed of two fields, as shown in the following table.

Table 4-4. Data in PIB_MAC_SEC_DUK_BN

MAC 6 bytes MAC address of the service node
DUK 16 bytes Device unique key of the service node

@ MICROCHIP

26

Important: The base node stores the list of DUKs in volatile RAM. Therefore,
if it resets, the list should be restored through the vendor specific PIB 0x8140
(PIB_LMAC_SEC_DUK_BN).

4.5.1.10 MAC Address
A MAC address is mandatory for a normal operation of the PRIME FW stack. The MAC address
identifies the node in the network and therefore it must be kept safe in a non-volatile storage area in
case the system restarts for any reason.

Important: Note that whenever the system restarts and the PRIME FW stack
cannot find a valid MAC address, it enters into MTP mode.

The PRIME FW stack uses a configuration key to determine whether the MAC address is available in
the non-volatile storage or not. The structure with the configuration key and the MAC address that
must be kept in the non-volatile storage area is defined in file hal.h as follows:

/** Configuration key to manage MAC address */
#define HAL MAC CONFIG KEY 0xAA55

/** Type to manage MAC address */
typedef struct {

uintlé_t us_cfg key;

uint8 t uc mac([6];
} x mac cfg t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key does not match the value defined by HALL MAC CONFIG KEY,
the PRIME FW stack enters into MTP mode. Users can then set the MAC address using the vendor
specific PIB 0x8100 (PIB_MTP_MAC_EUI_48 in Table 12-11). The MAC address is then stored in the
non-volatile storage area. If the stored key matches HAL MAC CONFIG KEY, the MAC address is read
and the PRIME FW stack starts in normal operating mode.

Important: Do not change the value assigned to the configuration key
HAL MAC CONFIG KEY because this is a compilation constant in the PRIME FW
stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL MACCFG _OFFSET USER_SIGN in order to access the MAC address in the non-volatile
storage area.

4.5.1.11 Enabling PLC PHY Layer
The PLC PHY layer is enabled in file conf pal.h by defining PAL PLC.

/* Definition of available PHY layers */
#define PAL PLC

4.5.1.12 Enabling RF PHY Layer
The RF PHY layer is enabled in file conf pal.h by defining PAL REF.

/* Definition of available PHY layers */
#define PAL RF

@ MICROCHIP

4.5.1.13 Frequency Hopping

The RF PHY layer can configured to use only one RF channel from the selected band plan or to use
several RF channels for frequency hopping. The frequency hopping is enabled in file conf pal.h by
defining RF_ FREQUENCY HOPPING ENABLED.

/* RF_FREQUENCY HOPPING ENABLED */
#define RF FREQUENCY HOPPING ENABLED

When frequency hopping is enabled, users must set the ranges of channels included in and
excluded from the main sequence as well as the beacon sequence. This is also set in file conf pal.h.

#ifdef RF FREQUENCY HOPPING ENABLED

/* Channel initial and final for each range, and number of ranges */
#define NUM_ RANGES CHANNELS INCLUDED SEQUENCE 1

#define RANGES CHANNELS INCLUDED SEQUENCE {{ 1, 67}}

/* Excluded channels */

#define NUM_CHANNELS EXCLUDED 1

#define CHANNELS EXLUDED {34}

/* Number of channels MAC HOPPING SEQUENCE LENGTH */

#define MAC HOPPING SEQUENCE LENGTH 66

/* Channels for BCN_SEQUENCE, maximum 32 channels */

#define NUM CHANNELS BCN SEQUENCE 3

#define CHANNELS BCN SEQUENCE { 0, 34, 68}
/* Define MAC HOPPING BCN SEQUENCE LENGTH */

#define MAC HOPPING BCN SEQUENCE LENGTH 3

fendif

4.5.1.14 Sniffer Serialization

The different PHY layers include an embedded sniffer, which provides the traffic via serial interface
so that it can be analyzed if necessary.

To set the port number for the serialized sniffer in conf_pal.h, see chapter Linking of PRIME Sniffer.

To configure the sniffer for the PLC PHY layer, users must enable the code related to the embedded
sniffer in file conf atpl/360.h:

/* Enable ADDONS module */
#define ATPL3607ADDONS7ENABLE

To configure the sniffer for the RF PHY layer, users must enable the code related to the embedded
sniffer in file conf_at86rf.h:

/* Enable AT86RF215 addon for PRIME sniffer */
#define AT86RF ADDONS ENABLE

Important: When the embedded sniffer code is included, the sniffer serialization
can be enabled and disabled through the vendor specific PIB attribute 0x8106
(PIB_PHY_SNIFFER_ENABLED in Table 12-10).

The sniffer frame format can be found in chapter PRIME Sniffer Frame Format.

4.5.1.15 Serial Communication Profile of PRIME Management Plane
The Management Plane can be accessed through the Serial Communication Profile, as described
in the PRIME specification. If users want to use the Serial Communication Profile, they need to
define the port number for the serialization in file conf mngp.h. See chapter Linking of Serial
Communication Profile of PRIME Management Plane for details.

28

@ MICROCHIP

Important: Note that the Serial Communication Profile of the Management Plane
is required for PRIME certification. See the PRIME Certification test book for more
information.

4.5.1.16 Base Node Parameters
The PRIME FW stack is implemented in such a way that it does not start assigning LNIDs from the
beginning whenever it is restarted. What it does is setting an offset depending on the maximum
number of supported nodes and starting from that number at restart. Therefore it must be kept safe
in a non-volatile storage area.

The PRIME FW stack uses a configuration key to determine whether or not the BN parameters are
available in the non-volatile storage. The structure with the configuration key and the LNID offset
that must be kept in the non-volatile storage is defined in file hal.h as follows:

/** Configuration key to manage BN parameters */
#define HAL PRIME BN INFO CONFIG KEY 14 0xAA66

/** Type to manage BN parameters */
typedef struct {

uintlé_t us_cfg key;

uintl6é t mac 1lnid offset;

uint8_t conf_ sar;

uint8 t conf mod bcn_auto;

uint8 t conf rm forced;

uint8_ t conf bcn_switch_rate;
uint8 t conf sec prof;

} x_bn info cfg t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored

in the non-volatile storage area. If the stored key does not match the value defined by

HAL PRIME BN INFO CONFIG KEY 14,the LNID offsetis setto 0 and then stored in the non-
volatile storage area. If the stored key matches HAL PRIME BN INFO CONFIG KEY 14,the LNID
offset is read, the next offset is calculated and then stored in the non-volatile storage area.

For the other configuration parameters, if the stored key does not match the value defined by
HAL PRIME BN INFO CONFIG KEY 14,they are setto default values. If the stored key matches
HAL PRIME BN INFO CONFIG KEY 14,the lastvalues stored in the non-volatile storage area are
used.

These parameters can be changed by users using either standard PIB attributes

or vendor specific PIB attributes PIB_MAC_ACTION_CFG_BCN_SWITCH_RATE (0x8136) and
PIB_MAC_ACTION_CFG_SEC_PROF (0x8137) described in Table 12-11. This updated requires a reset
to take effect.

Important: Do not change the value assigned to the configuration key
HAL PRIME BN INFO CONFIG KEY 14 because thisis a compilation constantin
the PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL BNINFO OFFSET USER SIGN in order to access the MAC address in the non-volatile
storage area.

4.5.1.17 PRIME Mode

The PRIME FW stack library must be configured for the right type of node (board mode) and for
the correct version of the PRIME specification. This information must be kept safe in a non-volatile
storage area so that it can be recovered in case of restart.

@ MICROCHIP

The PRIME FW stack uses a configuration key to determine whether the PRIME mode information

is available in the non-volatile storage or not. The structure with the configuration key and the
PRIME mode information that must be kept in the non-volatile storage area is defined in file hal.h as
follows:

/** Configuration key to manage PRIME mode */
#define HAL PRIME MODE CONFIG KEY 0xA55A

/** Type to manage PRIME mode configuration.
* board mode indicates board function (PRIME BN or PRIME SN)
* prime version indicates protocol version (PRIME 1 3, PRIME 1 4 or PRIME BC)
=Y
typedef struct {
uintlé_t key;
uint8_t prime version;
uint8 t board mode;
} x_prime mode info cfg t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored

in the non-volatile storage area. If the stored key does not match the value defined by

HAL PRIME MODE CONFIG KEY, the PRIME FW stack reads and stores the default values defined
in file conf mac.h. If the stored key matches HAL PRIME MODE CONFIG KEY but any of the stored
values does not match the value in file conf mac.h, the values defined in conf mac.h are read and
stored.

Important: Do not change the value assigned to the configuration key
HAL PRIME MODE CONFIG KEY because this is a compilation constant in the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL. PRIME MODE OFFSET USER SIGN in order to access the MAC address in the non-
volatile storage area.

4.5.1.18 Zero Cross Detection in PLC
When using the PL360/PL460 platform, if there is a zero cross detection circuit in the user board, it
must be configured appropriately with the parameters available in the PL360 device. For additional
information, refer to the "PL360 Host Controller User Guide".

4.5.1.19 Network Behavior

The behavior of the PRIME FW stack can be altered by means of the PIB attributes described in the
PRIME specification.

The PRIME specification defines default values for some of these PIB attributes but the current
implementation is not always using the default ones. These modified values have been set to
achieve maximum performance on real networks.

The following table lists all read-write PIB attributes together with their default values according to
the PRIME specification and the values configured in the PRIME FW stack. Users are free to modify
any of these values through MLME or Management Plane primitives in order to customize the PRIME
FW stack according to their needs. These PIB attributes can be found in file mac_pib.h .

Table 4-5. Configured PIB Values in the PRIME FW Stack

Attribute PRIME default value| Implementation
value

PIB_MAC_SCP_MAX_TX_ATTEMPTS 0x0014
PIB_MAC_CTL_MSG_FAIL_TIME 0x0018 45 45
PIB_MAC_EMA_SMOOTHING 0x0019 3 0

@ MICROCHIP

........... continued

Attribute PRIME default value| Implementation
value

PIB_LMAC_SAR_SIZE 0x001D

PIB_MAC_ACTION_ROBUSTNESS_MGMT 0x004A 0 0
PIB_LMAC_UPDATED_RM_TIMEOUT 0x004B 240 60
PIB_LMAC_ALV_HOP_REPETITIONS 0x004C 5 5
PIB_MAC_MIN_BE 0x0098 3 3
PIB_LMAC_MAX_BE 0x0099 5 5
PIB_MAC_MAX_CSMA_BACKOFFS 0x009A 4 4

4.5.2 Application Configuration Parameters

4.5.2.1 Example Configuration — conf_app_example.h

In this file, users need to define anything related to their application. For example, the reserved
memory addresses, communication ports, etc.

4.5.2.2 HAL Configuration — conf_hal.h

Users need to define in this file the configurable hardware parameters according to their HAL code.
These can be timers, buffer sizes, interruptions, etc. (see chapter Hardware Resources Usage).

4.5.2.3 PRIME Stack Configuration — conf_prime_stack.h
This file enables parameter PRIME API SEPARATED APPS to indicate that the PRIME FW stack is
separated from the user application. Currently, Microchip only provides support for non-separated
applications; that is, one project contains both the PRIME FW stack library as well as the user
application.

4.5.2.4 USI Configuration — conf_usi.h

This file configures the characteristics of the ports used for serializations. More information about
this file can be found in chapter Definition and Configuration of Serial Ports.

@ MICROCHIP

5.1

5.2

5.3

Data Exchange
Users are free to use the provided specific convergence sublayers or access directly the MAC layer to
establish a MAC connection to exchange data between application peers.

Please refer to PRIME specification for detailed information about the semantics of the primitives
available in the MAC service access point.

Please note that an Automatic Repeat Request (ARQ) mechanism is available in order to provide
guaranteed communications between peers.

Important: Remember that all requests to exchange data are followed by a
confirm and that the application must always wait for it before performing a new
request. The confirm can be immediate or be delayed for a considerable amount
of time. For communications with ARQ, the invocation of the confirm callback
could take up to several minutes. More information about the request/confirm
mechanism can be found in chapter PRIME API.

Null SSCS
Users can directly access the MAC layer through the Null SSCS.

Available signalling primitives can be found in Table 12-1.
Available data primitives can be found in Table 12-2.

The data exchange with MAC primitives can be enhanced by using a time reference. Microchip
recommends obtaining the local time with primitive PHY_TIMER.get in the PAL (see chapter
Management Primitives in the PAL). Note that the time units returned by this PHY primitive are
microseconds, whereas the time units of the time reference must be tenths of microsecond.

IEC 61334-4-32
Users can make use of the provided IEC 61334-4-32 compliant SSCS.

Available IEC 61334-4-34 primitives can be found in Table 12-5.

Automatic Repeat Request (ARQ)

The PRIME specification defines two kinds of ARQ: windowed and “Stop and wait”. The current
implementation of the PRIME FW stack only supports windowed ARQ with a window size fixed to 4.

The following figure shows how ARQ works. If the application needs more than one second to send
the reply, the Service Node sends the ACK after that time. If the response is received within one
second, the PRIME FW stack piggybacks the ACK in the response.

@ MICROCHIP

32

Figure 5-1. ARQ with One Fragment and Piggyback

DCU BN PLC SN METER
- DATA Req
DATA_REQ
 4 DATA_|Np
0
o o
o o
g :
o @
« —
Te)
— ACK
DATA_CONFIRM 4//‘
«— |

DATA\R EQ

E— DATA Req

DATA INp

PN

DATP_CONF\RM

DATAJND

1 second

ACK
\%

In certain situations, it might be possible that the ACK is sent as soon as the request is received, i.e. it
is never piggybacked. That is shown in the next figure.

Figure 5-2. ARQ with One Fragment

DCU BN PLC SN METER

DATA_REQ
DATA_REQ

\ DATA_INp
ACK T
wt’/

DATA_REQ
e DATA_REq
 -%
ACK
REQ
DATA,CONF\RM DATA

DATA_REQ
‘_wt'/
ACK
\%

For long fragmented responses, there is an ACK piggybacked to each fragment and the BN sends the
ACK after receiving the last fragment, as shown in the following figure.

Q MICROCHIP

Figure 5-3. ARQ with Four Fragments

DCU BN PLC SN METER

DATA_R EQ
DATA‘R EQ

\M’
DATA_REQ

Frag 1 of)
REQ +ACK(

cEqrACK(Frag 2014

DATA_
REQ+ACK (Fra9 30f4)

DATA .
DATA REQ+ACK(Frag 4 of
‘,,,,,D,,A, T ,A’\ND 4’7/7/////////

A

1second

y ACK

ﬁ\>

DATA~CONFIRM

It is possible that a fragment with its corresponding ACK is lost. In that case, a NACK with the missing
fragment is sent, so that the Service Node can resend it. This is shown in the following figure.

Figure 5-4. ARQ with Four Fragments and Retransmission

DCU BN PLC SN METER
DATA_REQ
T DATA Rreq
\» DATA_IND
I

EQ
o +hOK (Frag of 4) DATA_R

ATA_RE
ONFIRM A_
% OATA_REQrACK(Fr 20t®)
e i

DATA_RE

4
DATA REQ+ACK(Frag 4 of 4)

NACK3
30
Q +ACK (Frag
A/D/’“ﬂ/ DATA_RE!

A

1second

y ACK

The worst case scenario occurs when the last fragment is lost because then the Service Node does
not receive any ACK or NACK from the Base Node. In this case, the Service Node waits for 3 seconds

@ MICROCHIP

before retransmitting the last fragment. If the ACK or NACK is still not received, the Service Node
makes up to 5 retransmissions. After all the retransmissions, the disconnection process starts.

Figure 5-5. ARQ with Four Fragments and Maximum Number of Retransmissions

DCU BN PLC SN METER
DATA Req
DATA_Req
\>M>
TA_REQ _
£ 4) DATA_! Y
CK(Frag 1°©
TA_CONFIRM pATA_REQHA 20f4)
@ DATA_ K(Frag 2©
5 o - | pATA_REQTACK! ”
£ Frag 30
g DATA,REQ‘”ACK(" 2
pal ag 4 of <
£ DATA,REQ*'AS’;(ELQ// i P
2 5
8 a 5
= @ £
o n)
o [Sp] S
9 2
) 4) 4 %
7] ag 4 of _v »
T DAT1'>~_REQ‘“P‘CK(Fr 9 2
3 DATA_IND > 3
s v 4« L) 0
- [%2]
o :
2 = 8
o b
(0] 2]
£
A S
N ACK =
OATA_conFiRy |

@ MICROCHIP

6. PRIME Management Plane

The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade.

Node management in the PRIME FW stack is accomplished through a set of attributes. Attributes
are defined for both PHY and MAC layers. The set of these management attributes is called PLC
Information Base (PIB). Some attributes are read-only, while others are read-write. For details
about implementation of PIB attributes described in the PRIME specification, see chapter Major
Capabilities of the MAC Layer and chapter Major Capabilities of the Management Plane. The PRIME
FW stack also implements vendor specific PIB attributes, which are described in chapter PIB Objects
Specification and Access. Additionally, Microchip offers an interface through the HAL that enables
the implementation of user specific PIBs in the application. Those user specific PIBs can only be
defined with a size of 4 bytes in the ID range 0xF00O0 - OxFCFF.

The Management Plane in the Base Node cannot only be used to control the Base Node, but also to
access the Management Planes in the Service Nodes and perform actions on them. In order to fulfill
both actions, the control entity can access the Management Plane by using the two communication
profiles defined in the PRIME specification:

« PRIME Profile. It is used by the local control entity to perform remote actions on a Service Node.
The Base Node receives the requests in the local Management Plane from the Base Management
(see chapter API for PRIME Profile in Management Plane) and passes them to the Null SSCS in the
CL (see chapter Null SSCS) so that they are sent by PLC to the specific Service Node

« Serial Communication Profile. It is implemented as a service in the US| of the HAL and is used by
the local control entity. For more information about the different services available in the US|, see
chapter Serialization with Embedded USI

Whenever the Management Plane receives a request from any of the specified profiles, it passes it to
the MAC layer using the functions of the Null SSCS in the CL (see chapter Null SSCS). This access is
depicted in the next figure.

Figure 6-1. Management Plane Access to the MAC Layer

EC 432 NULL M anagem ent
SSCS SSCS Plhne

(CPCS

MAC

PHY

36

@ MICROCHIP

Important: Please note that the PRIME Certification Tool needs to access the
Management Plane through the Serial Communication Profile and therefore it
must be configured appropriately (see Serial Communication Profile of PRIME
Management Plane).

@ MICROCHIP

37

7.2

Base Management

Overview

The Base Management Protocol is a Microchip proprietary extension over the PRIME specification
to increase the functionalities of a Base Node. The PRIME specification does not always define
the interfaces between the Base Node and the DCU user application, so new interfaces must be
implemented as required.

The Base Management API is defined in chapter Base Management Primitives.

Available functionalities are:
+ Firmware Upgrade Protocol interface. This interface lets the DCU user application configure the
firmware upgrade of the registered devices in the network

+ Network events. The Base Node notifies about events such as new registrations, unregistrations,
etc

* Access to the PRIME Profile in the Management Plane. This interface allows the DCU user
application to manage PIBs in a remote node

+ Whitelist management. If the whitelist mechanism is enabled, this interface allows the DCU user
application to add and remove nodes from the whitelist

Important: Note that the DCU user application is not in the Base Node with

the PRIME FW stack. For simplicity reasons, whenever DCU user application

is mentioned in the next sections, it means that the DCU user application is
commanding the actions to the user application in the Base Node. The user
application in the Base Node must use the Base Management API defined in
chapter Base Management Primitives. It is up to the users to define the interface
between the DCU user application and the user application in the Base Node in
order to handle the Base Management API.

Firmware Upgrade Protocol

The FUP defines the steps required to set up and initiate a firmware upgrade in a PRIME

PLC network and also monitor the upgrade process from the Base Node. The PRIME FW stack
implements the PRIME FU process in the Management Plane as described in the PRIME specification.
Please refer to the PRIME specification for details.

The FUP uses the following configuration parameters:
+ List of Service Nodes to upgrade
« Binary file configuration (Vendor, Model and Version)
+ PLC protocol options:
- ARQ: enables ARQ
- Multicast: enables multicasting to transfer the firmware image through the PLC
- Page size: size of the data chunks used during the PLC phase of the FU
- Restart delay: time that a Service Node waits before restarting with the new image

- Safety timer: time a Service Node must wait before reverting to a former firmware image
when the new image is not confirmed by the Base Node

The FUP has a list of message commands related to primitives and callbacks that are defined in FUP
Primitives in the Base Node.

@ MICROCHIP

38

7.2.1 FUP Stages
The FUP is divided into the following stages:

+ Setup: The DCU user application indicates to the PRIME FW Stack which Service Nodes must be
upgraded and configures the upgrade options

+ File transfer: The DCU user application sends the binary file to the PRIME FW Stack
« Firmware upgrade: The PRIME FW Stack proceeds with the firmware upgrade as defined in the
PRIME specification

7.2.1.1 Setup Stage

In the setup stage, the Service Nodes that will be upgraded and the options for the protocol are
defined. The DCU user application must execute the next sequence of actions:

Configure the PLC FUP options: ARQ, Multicast, Page Size, Delay Restart and Safety Timer
Clear the BN's target list

Add device targets from the list of registered devices in the BN. Devices are added one-by-one
Configure the upgrade rule: select which nodes will be upgraded based on their Vendor/Model

vk o=

Set the new firmware version information: Vendor, Model and Version
6. Setthe signature information: used algorithm and signature length

Unregistered Service Nodes that have been registered previously can also be added to the FU list.
When they register again, they will be automatically added to the FU process by the Base Node.

Setup Sequence Diagram shows the sequence of primitives exchanged between the DCU user
application and the Base Node in this stage. FUP Primitives in the Setup Stage describes those FUP
primitives, whose parameters are defined in FUP Primitives in the Base Node.

Table 7-1. FUP Primitives in the Setup Stage

FUP_CLEAR_TARGET_LIST.request This primitive clears the target list.
FUP_ADD_TARGET.request This primitive adds an SN to the target list.
FUP_SET_FW_DATA.request This primitive sets the new version information: Vendor,

Model and Version.
FUP_SET_UPG_OPTIONS.request This primitive configures the protocol options:
ARQ: to enable (1) or disable (0) the usage of ARQ in PLC
communications

Multicast: to enable (1) or disable (0) the usage of a
multicast group for the firmware upgrade

Page size: automatic (0), 32 bytes (1), 64 bytes (2), 128
bytes (3), 192 bytes (4)

Delay restart: time before restarting with the new
firmware (0 - 65536 seconds)

Safety timer: time to test the new firmware (0 - 65536
seconds)

FUP_SET_MATCH_RULE.request This primitive sets the Vendor and Model applicable for the
firmware upgrade. If a rule is given for Vendor and/or Model
(the corresponding bits of 0000 0MVO are set), only the SNs in
the target list matching the configured Vendor and/or Model
will be upgraded.

FUP_SET_SIGNATURE_DATA.request This primitive sets the algorithm used to sign the firmware
image and the length of the resulting signature.

FUP_ACK.indication This primitive acknowledges the last request made and
informs of any errors.

@ MICROCHIP

39

The possible return values in the FUP_ACK.indication are the following:

/** FUP ACK codes */

typedef enum {
FUP_ACK OK = 0,
FUP_ACK ERROR,
FUP_ACK ERROR MAC,
FUP_ACK_ERROR MODEL,
FUP_ACK ERROR CRC,
FUP ACK ERROR DATA,
FUP_ACK ERROR CRC_FILE,
FUP_ACK CRC_ONGOING,
FUP_ACK FU ONGOING

} fup_ack code t;

Figure 7-1. Setup Sequence Diagram
DCU User APP User APP PRIME Stack

SetUpgradeoprions

——
It PR FUP.

_Set»UPG}Options

FUP_Ack
Ack /

= _ _ClearTargetiist

e FUP—C'EELTarger_List
FUP_Ack
X S -/
—————
[AddTarget
—_—— _5%
FUP_Ack
AK __ e —/
-7
AddTarget
T e FUP_Add_Target
FUP_Ack
Y S—— |
-
L SetMatchRule
e FUP_SeLMatch_Ru(e
p_Ack
ack 1o mep ——
e

SetFirmwareData

““‘*%»

FUP_Ack

Ak _ e /

SetSignaturepata

_____~__>

FUP>Set—5i€nature_Da(a

FUP_Ack

PR

@ MICROCHIP

7.2.1.2 File Transfer Stage

The file transfer algorithm is based on the TFTP protocol (Trivial File Transfer Protocol). First, the DCU
user application sends an initialization message to the Base Node with the following information:

* Firmware size: Size of the firmware file.
« Frame size: Size of the data fragments to be sent.
* Firmware CRC: PRIME CRC-32 of the firmware file.

After the initialization request, the file is sent to the Base Node in fragments of fixed length, the
indicated frame size. Each fragment contains part of the file and must be acknowledged by the Base
Node before sending the next fragment. A fragment of smaller size than the frame size signals the
termination of the file transfer.

Important: If the last fragment has the same length as the fragment size, the
DCU user application must send a fragment of size zero, as indicated in the TFTP
protocol.

After the file transfer is completed, the Base Node computes the PRIME CRC-32 of the received

file. This CRC-32 is compared to the value received in the initialization message. The DCU user
application must ask the Base Node for the result. If it is not correct, the upgrade is cancelled by the
Base Node.

File Transfer Sequence Diagram shows the sequence of primitives exchanged between the DCU user
application and the Base Node in this stage. Note that the PRIME FW stack invokes several functions
of the HAL in order to store the file and calculate its CRC. FUP Primitives in the File Transfer Stage
describes those FUP primitives, whose parameters are defined in FUP Primitives in the Base Node.

Important: Users are responsible for reserving a memory area with enough
space to store the firmware file (see chapter Hardware Resources Usage).

Table 7-2. FUP Primitives in the File Transfer Stage

FUP_INIT_FILE_TX.request This primitive indicates the beginning of a file transfer and
configures the following parameters:

The size of the firmware file
The size of the data fragments
* The CRC-32 of the firmware file

FUP_DATA_FRAME.request This primitive forwards a fragment of the firmware file.
FUP_CHECK_CRC.request This primitive requests the result of the CRC calculation.
FUP_ACK.indication This primitive acknowledges the last request made and

informs of any errors. When acknowledging a data frame, it
also provides the number of data fragment.

The possible return values in the FUP_ACK.indication are described in the previous chapter.

@ MICROCHIP

Figure 7-2. File Transfer Sequence Diagram
DCU User APP User APP PRIME Stack

= ——— QitFNeTransfer
-

—_—
-~~~__> FUP_Init_File T4

FUP_Ack
Ack o

4_————”'—

F~—————_ ~DataFrame

—_———
—_———— E

%
halju_data_write()
FUP_Ack
Ack - ’/

~\\§\~\~ DataFrame
-

——— F

%
hal fu_data_write()

hal fu_crc»ca\culate{)

Calculate CRC

FUP_Ack
Ack —
l-——— CallCRCcallback

CRC checked
successfully

CheckCrc
e _ , FUP_Check_crc

P————_
FUP_Ack

-
——————
-

="

As mentioned before, the PRIME FW stack invokes several functions of the HAL in order to store the
file and calculate its CRC. Users are responsible for implementing the following functions according
to their design.

CRC Result Callback

The HAL is responsible for calculating the CRC of the received file when requested by the PRIME
FW stack. The calculated result is provided invoking a callback function whose pointer is set at
initialization by the PRIME FW stack with the following function:

void hal fu crc _set callback(void (*p_handler) (uint32 t ul crc));

Parameters:

« p_handler: Pointer address to the callback function

Starting the File Transfer

The PRIME FW stack indicates it to the user application with the following function:

void hal fu start(hal fu info t *x fu info);

@ MICROCHIP

42

7.2.13

Parameters:

* x_fu_info: Pointer to FU information:

typedef struct {
uint32 t image size;
uint8 t page size;
hal fu signature_algorithm t sign_algorithm;
uintlé t sign length;
} hal fu info t;

The HAL stores the received information and erases the region where the file will be safely stored.
Writing Firmware Data

When the PRIME FW stack has received a frame of the file, it requests the HAL to write it with the
following function:

uint8 t hal fu data write(uint32 t addr, uint8 t *puc buf, uintl6 t us size);

Parameters:

* addr: Address of page to write

* puc_buf: Pointer to page to write

* us_size: Page size

Result: 1 if there is no error. Otherwise, 0.
CRC Calculation

When the file has been received, the PRIME FW stack needs to verify that the received file is correct
and thus it requests the HAL to calculate its CRC with the following function:

void hal fu crc calculate(void);

The HAL can calculate the CRC over the complete file, but, as this can take some time for large files,
it is recommended to calculate it page-by-page in a process function. The result is returned through
the CRC callback function as defined previously.

Firmware Upgrade Stage

If the previous stages have been completed correctly, it is safe to trigger the PLC FU process with
primitive FUP_START_FU.request. During this stage, the Base Node follows the process defined by
the PRIME specification to upgrade the firmware in the Service Nodes.

Once the PLC FU stage has started, the DCU user application can cancel the FU process any
time with primitive FUP_ABORT_FU.request. The cancellation can apply to all Service Nodes or
just to a certain Service Node. New Service Nodes can also be added to the FU process any time
with the primitive FUP_ADD_TARGET.request described in the setup stage. All these requests are
acknowledged by the primitive FUP_ACK.indication.

Furthermore, the DCU user application can also request the version (FUP_GET_VERSION.request)
and FU state (FUP_GET_STATE.request) of any SN. The response to these primitives is received in the
corresponding indication primitive.

The indication primitives, which provide information about the status of the upgrade process
asynchronously, are issued with callback functions. If interested in receiving these notifications, the
user application must set up the corresponding callback function pointers at initialization. Table 7-3
describes the FUP indication primitives, whose parameters are defined in defined in FUP Primitives
in the Base Node. To set up the callback function pointers, see chapter Callback Functions in the
Base Management.

@ MICROCHIP

43

7.3

7.4

Table 7-3. FUP Indication Primitives in the Firmware Upgrade State

FUP_STATUS.indication This primitive gives information about the progress of the
FU in an SN by providing the SN FU state as defined in
the PRIME specification. Additionally, the FUP has added the
status FUP_STATE ENDED NOTIFICATION thatcorresponds
to the Idle state once the new firmware has been confirmed.

When the node is in FUP_NODE_STATE RECEIVING, this
primitive also returns the number of pages received by the
SN and confirmed by the BN (the real number of received
pages could be bigger).

To mark the end of the FU process, this primitive is
issued with state FUP_STATE_ENDED NOTIFICATION for the
broadcast MAC address (FF:FF:FF:FF:FF:FF).

FUP_VERSION.indication This primitive provides information about Vendor, Model and
Version from an SN.

FUP_KILL.indication This primitive indicates that an SN has cancelled its firmware
upgrade.

FUP_ERROR.indication [DEPRECATED]

Network Events

The Base Node notifies about asynchronous events related to the Service Nodes whenever the
corresponding callback function (BMNG_NETWORK_EVENT.indication, defined in Table 12-7) has
been set up by the user application. The events indicated by the Base Node are the following:

+ State changes in the Service Node:
- registration (BMNG NET EVENT REGISTER)

- unregistration (BMNG NET EVENT UNREGISTER)
- promotion (BMNG NET EVENT PROMOTE)
- demotion (BMNG NET EVENT DEMOTE)

+ Alive events (BMNG_NET EVENT ALIVE): whenever the Base Node receives an alive message from
a Service Node

* Reboot events (BMNG NET EVENT REBOOT): whenever the PRIME FW stack is started in the Base
Node

* No DUK events (BMNG NET EVENT NO DUK): whenever the Base Node receives a registration
message from a Service Node of which it does not have its corresponding DUK. This only applies
when the security profile is 1 or 2

+ Unknown Service Node (BMNG_NET EVENT UNKNOWN NODE): whenever the Base Node receives a
registration message from a Service Node which is not included in the whitelist. This only applies
when the whitelist mechanism is enabled

API for PRIME Profile in Management Plane

The PRIME Profile is a communication protocol in the Management Plane that permits the DCU user
application to manage a remote Service Node through PRIME standard and Microchip-defined PIBs,
refer to the Chapter PRIME Management Plane. This communication profile is defined in the PRIME
specification, but the interface to the DCU user application is not. Therefore, Microchip has defined
a proprietary API to allow access to the PRIME Profile in the Management Plane. This API with its
corresponding primitives and callback functions is defined in Table 12-8.

This APl has been enhanced with a request to calculate the difference between the zero cross times
in the Base Node and a Service Node, which is useful in a phase detection algorithm.

@ MICROCHIP

44

7.5

Whitelist Management

When the user application has enabled the use of the whitelist mechanism via the Microchip defined
PIB PIB_MAC_WHITELIST_ENABLED (0x8151), the whitelist management interface allows addition

and removal of Service Nodes to the whitelist. This APl with its corresponding primitives and callback
functions is defined in Table 12-9.

By default, the use of the whitelist is disabled. When it is enabled by the user application, all Service
Nodes that were already registered are automatically added to the whitelist.

When a Service Node is removed from the whitelist, it is also unregistered from the network.

Note that when the security profile is 1 or 2, apart from the whitelist, the Base Node also needs to
have the DUK of the Service Node that wants to register. If the Service Node has been added to

the whitelist but it has not been assigned a DUK, it will not register. When a DUK is added via the
Microchip defined PIB PIB_MAC_SEC_DUK_BN (0x8140), the MAC address corresponding to that DUK
is automatically added to the whitelist. When a Service Node is removed from the whitelist, its DUK
is automatically removed, too.

@ MICROCHIP

45

8.1

8.2

8.2.1

Toolchain

The following sections describe the required tools and toolchain for the development and build
process and how the provided example applications can be built.

General Prerequisites

The following tools and toolchains are used for building the applications from this firmware
package: IAR Embedded Workbench for Arm® V9.20 (see http://www.iar.com/).

Building the Applications

Using IAR Embedded Workbench

All provided projects can be built and loaded into the board using the IAR Embedded Workbench
directly.

For each example application described in Chapter Example Applications, follow these steps:
Open the corresponding project.

Configure the project as required (see Chapter Configuration Parameters).
Build the project.

wnN =

4. Program the board.

In the PL360/PL460 platform, the PL360 firmware is also required for a system to be operative in PLC
but it is directly provided as a binary file.

Important: Make sure that the Flash memory is erased before programming it.

@ MICROCHIP

46

http://www.iar.com/

9.1

9.2

9.3

Supported Platforms

This chapter describes which hardware platforms are currently supported with the PRIME firmware
package. A platform usually comprises of three major components:

+ AnMCU
+ A modem chip (this may be integrated into the MCU for single chips)
+ A specific hardware that contains the MCU and/or the modem chip

Supported MCU Families

The only supported generic MCU family are the SAME70 and PIC32CXMTx platforms. The SAMG55
platforms are intended for evaluation purposes only.

The dedicated code for each device of the family can be found in the corresponding subdirectories.

Supported Devices

Currently the only supported devices are SAME70Q21B with PL360, SAME70 Xplained with PL460,
PIC32CX2051MTSH128 with PL460 and AT86RF215IQ, and PIC32CX2051MTG128 with PL460 and
AT86RF215IQ. The following are intended for evaluation purposes only: SAMG55J19 with PL460 and
AT86RF215IQ.

Supported Boards

The currently supported boards and combinations are given below:

+ Base Node reference design PL360BN, implementing SAME70Q21B host plus PL360 PLC device
+ SAME70 Xplained with PL460-EK on Xplained port

+ PIC32CXMTSH-DB with PL460-EK on Xplained port and ATREB215-EK on mikroBUS port

+ PIC32CXMTG-EK with PL460-EK on Xplained port and ATREB215-EK on mikroBUS port

* SAMGS55 Xplained with PL460-EK on Xplained port and ATREB215-EK on mikroBUS port (BN for
evaluation purposes only)

@ MICROCHIP

47

10. PICS

This chapter lists the conformance of the Microchip PRIME implementation with the requirements
and optional features as defined by the PRIME specification document.

A Protocol Implementation Conformance Statement (PICS) is a declaration listing the capabilities and
options supported by an implementation. The PICS is based on a list of options and values, defined
in the PRIME specification and in the test suites used by the certification process.

10.1 Major Roles for Devices Compliant with PRIME

10.1.1 Major Capabilities of the PHY Layer

The current PHY layer is the implementation of the PRIME PHY layer as specified in PRIME
specification version 1.4.

10.1.1.1 PHY Frames
The current PHY layer supports frame types A, B and BC specified in PRIME specification version 1.4.

10.1.1.2 PLME Primitives

The current implementation of the PHY layer does not support the following optional
functionalities of the PRIME specification: suspend and resume (primitives PLME_SLEEP.request and
PLME_RESUME.request) and test mode (primitive PLME_TESTMODE.request).

10.1.2 Major Capabilities of the MAC Layer
The current MAC layer is compliant with PRIME specification version 1.4 and is valid for a Base Node.

The following table shows which optional features of the PRIME specification are currently
implemented in the MAC layer provided by Microchip.

Table 10-1. Implementation of Optional Features in the MAC Layer

Direct Connection Available
ARQ Available
Packet Aggregation Not available
Multicasting Available
Contention-Free Service Not available
Security Profile 1 Available
Security Profile 2 Available
Roaming Not available
Backwards compatibility Not available

10.1.2.1 PLC Information Base

All mandatory PHY and MAC PIB attributes defined in PRIME specification version 1.4 for a Base
Node are available in the current MAC layer through PLME and MLME.

Optional PIB attributes from PRIME specification version 1.4 currently implemented in PLME and
MLME can be found in file mac_pib.h.

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.

10.1.3 Major Capabilities of the Convergence Layer

The current Convergence layer is compliant with PRIME specification version 1.4 and is valid for a
Base Node.

@ MICROCHIP

48

The following table shows which Service-Specific Convergence Sublayers are currently implemented
in the CL provided by Microchip.

Table 10-2. Implementation of SSCS

Null Available
IPv4 Not available
IEC 61334-4-32 Available
IPv6 Not available

10.1.4 Major Capabilities of the Management Plane

10.1.4.1 PLC Information Base

All mandatory PIB attributes defined in PRIME specification version 1.4 for a Base Node are available
in the current Management Plane of the PRIME FW stack.

Optional PIB attributes from PRIME specification version 1.4 currently implemented in the
Management Plane can be found in file mac_pib.h .

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.

10.1.4.2 Communications Profiles

The Management Plane implements both the interface over the Null SSCS (PRIME Profile) and the

interface over the local serial link (Serial Communication Profile) according to PRIME specification
version 1.4.

@ MICROCHIP

49

11.

11.1

11.2

11.3

11.3.1

11.3.2

1133

1134

API of PHY and PAL Layers
The following API is to be used by applications which do not integrate the MAC layer, i.e. that only

require transmission and reception of messages through the PHY layer.

PLC PHY SAP

The PLC PHY SAP corresponds to the PHY APl described in header files atp/360.h and
atpl360_comm.h. More information about management, communication and configuration functions
of the PHY API can be found in User Guide PL360 Host Controller.

RF PHY SAP

The RF PHY SAP corresponds to the PHY API described in header file at86rf defs.h.

PAL SAP
The PAL SAP corresponds to the PAL API described in the header file pal.h.

Initialization Function

The PAL layer must always be initialized when the system starts the execution. The following
function is used for that purpose:

void pal init(void);

Depending on the PAL configuration, this function initializes the transmission handlers according to
the available PHY layers.

Process Function

Every program cycle the PAL layer must check transmission and reception events. This is achieved by
calling the following function:

void pal process(void);
This function is also responsible for invoking the corresponding callback functions.

Callback Functions

When a previously requested transmission finishes (data confirm) and when a frame is received
(data indication), the PAL layer informs about it by calling the corresponding callback function. To set
up the callback function pointers, the following function is required:

void pal set callbacks(pal callbacks t *pal cbs);

Parameters:

* pal_cbs: Pointer to the callback structure:

typedef struct TPalCallbacks {

pal data confirm cb t data confirm;

pal data indication cb_t data indication;
pal switch rf ch cb t switch rf ch;

} pal callbacks t;

Noise Capture Function (PL360/PL460 Platform)

The PL360 device offers a functionality to capture noise in the channel. The PAL layer can access this
service with the following function:

uintl6é t pal get noise capture (uint8 t *puc dst, uint8 t uc mode, uint32 t ul time start,
uint32 t ul duration);

@ MICROCHIP

50

11.4

114.1

11.4.2

Parameters:

* puc_dst: Pointer to destination buffer to store data

* uc_mode: Capture mode

+ ul_time_start: Start time in ps based on PL360 timer reference
* ul_duration: Duration time in ys

Return value: Size in bytes of noise capture.

Important: During the noise capture, any ongoing transmission or reception is
cancelled.

PAL Primitives
The PAL primitives are described in header file pal.h.

Data Primitives

The PAL implements the data interface to the PHY layer based on the PHY primitives from the PRIME
specification.

Table 11-1. PHY Data Plane Primitives

PHY_DATA.request uint8 t pal data request(x pal msg tx t *px msg);
PHY_DATA.confirm typedef void (*pal_data confirm cb t) (x_pal data cfm t *px data cfm);
PHY_DATA.indication typedef void (*pal data_indication cb_t) (x pal data_ind t *px_data_ind);

Management Primitives

The PAL implements the control interface to the PHY layer based on the PHY primitives from the
PRIME specification.

Table 11-2. PHY Control Plane Primitives

uint8 t pal agc set(uint8 t uc _mode, uint8 t Only in PLC PHY

1
PHY_AGC.set uc_gain, uintlé t us_pch);
uint8 t pal agc get(uintlé _t us_id, void *p val, Only in PLC PHY
PHY_AGC get uintlé t uc len, uintlé t us_pch);
PHY_AGC.confirm Referenced parameters of pal_agc_get. Only in PLC PHY
. . . N . .
PHY TIMER get uint8 t pal timer get(uint32 t *pul timer, uintlée t All
us_pch) ;
PHY_TIMER.confirm Referenced parameters of pal_timer_get. All
uint8 t pal cd get(uint8 t *puc_cd, uint8 t Only in PLC PHY
PHY_CD.get *puc_rssi, uint32 t *pul time, uint8 t *puc header,
uintlé t us pch);
PHY_CD.confirm Referenced parameters of pal_cd_get. Only in PLC PHY
. . N . .
PHY NLget uint8_t pal nl get(uint8_ t *puc_noise, uintlé6_t All
us_pch);
PHY_NL.confirm Referenced parameters of pal_nl_get. All
uint8 t pal snr get(uint8 t *puc snr, uint8 t All
PHY_SNR.get uc_gt, uintlé t us_pch);
PHY_SNR.confirm Referenced parameters of pal_snr_get. All
. . N . .
PHY ZCT.get E;n;iﬂ;:'palizctiget (uint32 t *pul zct, uintlé6 t Only in PLC PHY

@ MICROCHIP

51

........... continued

PHY_ZCT.confirm Referenced parameters of pal_zct_get. Only in PLC PHY
PHY_CCA.get uint8 t pal cca get(uint8 t *puc_channel state); Only in RF PHY
PHY_CH.get uint8_t pal ch get(uintl6_t *pus_pch); All
PHY_CH.confirm Referenced parameters of pal_ch_get. All

PHY_CH.set uint8 t pal ch set(uintl6_t us_pch); All

Note:

1. Manual management of AGC is not supported in the current implementation.

@ MICROCHIP

12. APl of PRIME FW Stack

The API of the PRIME FW stack defines the functions as macros in the header file prime_api.h.

Note that there might be other functions not described in this document, but available in the
prime_api.h file. Those functions are irrelevant in this document.

12.1 MAC Primitives

Refer to the PRIME specification for more information about MAC primitives and their
functionalities.

12.1.1 Signalling Primitives

Table 12-1. Signalling Primitives
MAC_ESTABLISH.request prime cl null establish request (mac_establish request t)

typedef void (*mac_establish request t) (uint8 t *puc_euid8, uint8 t
uc_type, uint8 t *puc data, uintl6é t us data len, uint8 t uc arqg, uint8 t
uc_cfbytes, uint8 t uc_ae);

MAC_ESTABLISH.indication typedef void (*mac_establish ind cb t) (uintl6_t us con handle, uint8 t
*puc_euid8, uint8 t uc_type, uint8 t *puc _data, uintl6 t us data len,
uint8 t uc_cfbytes, uint8 t uc_ae);

MAC_ESTABLISH.response prime_cl null establish response (mac_establish_response_t)

typedef void (*mac_establish response t) (uintl6 t us con handle,
mac_establish response answer t uc_answer, uint8 t *puc data, uintlé6_t
us data len, uint8 t uc_ae);

MAC_ESTABLISH.confirm typedef void (*mac_establish cfm cb_t) (uintl6_t us_con_handle,
mac_establish confirm result t uc result, uint8 t *puc euid8, uint8 t
uc_type, uint8 t *puc _data, uintlé_ t us data len, uint8 t uc ae);

MAC_RELEASE.request prime cl null release request(mac_release request t)

typedef void (*mac_release request t) (uintl6_t us_con_handle);

MAC_RELEASE.indication typedef void (*mac_release_ind cb_t) (uintl6_t us_con_handle,
mac_release_indication reason_ t uc_reason);

MAC_RELEASE.response prime_cl null release response (mac_release response_t)

typedef void (*mac_release response t) (uintl6_t us con handle,
mac_release_response_answer_t uc_answer);

MAC_RELEASE.confirm typedef void (*mac_release cfm cb_t) (uintl6é_t us_con handle,
mac_release confirm result t uc result);

MAC_JOIN.request prime cl null join request(mac_ join request t)

typedef void (*mac_join request t) (mac_join mode t us broadcast, uintl6 t
us_con_handle, uint8 t *puc_euid8, connection type t uc_con type, uint8 t
*puc_data, uintlé_t us data len, uint8 t uc_ae);

MAC_JOIN.indication typedef void (*mac_join_ind cb_t) (uintl6_t us_con_handle, uint8_ t
*puc_euid8, uint8_ t uc_con_type, uint8 t *puc_data, uintl6_t us_data len,
uint8 t uc ae);

MAC_JOIN.response prime cl null join response (mac_join response t)
typedef void (*mac_join response t) (uintl6_t us_con_handle, uint8 t
*puc_eui48, mac join response answer t uc_answer, uint8 t uc_ae);

MAC_JOIN.confirm typedef void (*mac_join_cfm cb_t) (uintl6_t us_con_handle,
mac_join confirm result t uc result, uint8 t uc ae);

MAC_LEAVE.request prime_cl null leave_request (mac_leave_request_t)

typedef void (*mac_leave request t) (uintl6_t us con handle, uint8 t
*puc_euids8);

53

@ MICROCHIP

veeeeeeeeecCONtinued

MAC_LEAVE.indication typedef void (*mac_leave ind cb t) (uintl6_t us_con_handle, uint8 t
*puc_euids8);

MAC_LEAVE.confirm typedef void (*mac_leave cfm cb t) (uintl6é_t us_con_handle,
mac_leave confirm result t uc result);

12.1.2 Data Primitives

Table 12-2. Data Primitives
MAC_DATA.request prime cl null data request (mac_data request t)

typedef void (*mac_data request t) (uintl6_t us con_handle, uint8 t
*puc_data, uintl6 t us data len, uint8 t uc prio, uint32 t
ul time refl);

MAC_DATA.confirm typedef void (*mac_data cfm cb t) (uintl6 t us con handle, uint8 t
*puc_data, mac_data result t drt result);

MAC_DATA.indication typedef void (*mac data ind cb_t) (uintl6 t us_ con _handle, uint8 t
*puc_data, uintl6_t us_data len, uint32 t ul time refl);

Note:
1. Intenths of microsecond.

12.1.3 PLME Primitives

Table 12-3. PLME Primitives

PLME_RESET.request prime_cl null plme reset request (plme_reset request_t)

typedef void (*plme reset request t) (uintl6 t us pch);
PLME_RESET.confirm typedef void (*plme_reset cfm cb_t) (plme_result t x result, uintl6_t us_pch);

PLME_SLEEP.request’ prime cl null plme sleep request (plme sleep request t)
typedef void (*plme sleep request t) (uintl6_t us_pch);

PLME_SLEEP.confirm typedef void (*plme _sleep cfm cb t) (plme result t x result, uintlé_t us_pch);

PLME_RESUME.request’ prime cl null plme resume request (plme resume request t)
typedef void (*plme resume request t) (uintl6 t us pch);

PLME_RESUME.confirm typedef void (*plme_resume cfm cb t) (plme_result t x result, uintlé_t
us_pch);
PLME_TESTMODE.request’ prime cl null plme testmode request(plme testmode request t)

typedef void (*plme testmode request t) (uint8 t uc enable, uint8 t uc mode,
uint8 t uc modulation, uint8 t uc _pwr level, uintl6 t us pch);

PLME_TESTMODE.confirm typedef void (*plme_testmode_cfm cb_t) (plme_result t x_result, uintlée_t
us_pch);
PLME_GET.request prime cl null plme get request (plme get request t)

typedef void (*plme get request t) (uintl6 t us pib attrib, uintl6 t us pch);

PLME_GET.confirm typedef void (*plme get cfm cb_t) (plme_result t x status, uintlé_t
us pib attrib, void *pv _pib value, uint8 t uc pib size, uintl6 t us pch);

PLME_SET.request prime cl null plme set request (plme set request t)

typedef void (*plme set request t) (uintl6 t us pib attrib, void
*pv_pib value, uint8 t uc pib size, uintl6_t us pch);

PLME_SET.confirm typedef void (*plme_set cfm cb_t) (plme_result_ t x_result, uintl6_t us_pch);

54

@ MICROCHIP

Note:
1. The marked primitives invoke optional functionality that is currently not available.

12.1.4 MLME Primitives

Table 12-4. MLME Primitives in the Base Node

MLME_PROMOTE.request prime cl null mlme promote request (mlme promote request t)

typedef void (*mlme promote request t) (uint8 t *puc eui48, uint8 t
uc_bcn _mode) ;

MLME_PROMOTE.confirm typedef void (*mlme promote cfm cb t) (mlme result t x result);
MLME_MP_PROMOTE.request prime cl null mlme mp promote request (mlme mp promote request t)
typedef void (*mlme mp promote request t) (uint8 t *puc euid8, uint8_t
uc_bcn mode, uintl6é t us pch);
MLME_MP_PROMOTE.confirm typedef void (*mlme mp promote cfm cb t) (mlme result t x result);
MLME_RESET.request prime cl null mlme reset request (mlme reset request t)
typedef void (*mlme reset request t) (void);
MLME_RESET.confirm typedef void (*mlme reset cfm cb t) (mlme result t x result);
MLME_GET.request prime cl null mlme get request (mlme get request t)
typedef void (*mlme get request t) (uintl6 t us pib attrib);
MLME_GET.confirm typedef void (*mlme_get cfm cb_t) (mlme result t x status, uintlé_t
us pib attrib, void *pv pib value, uint8 t uc pib size);
MLME_LIST_GET.request prime_cl null mlme_ list get request(mlme list get request_t)
typedef void (*mlme list get request t) (uintl6_t us pib attrib);

MLME_LIST_GET.confirm typedef void (*mlme list get cfm cb t) (mlme result t x status,
uintlé t us pib attrib, uint8 t *puc pib buff, uintl6 t us pib len);

MLME_SET.request prime cl null mlme set request (mlme set request t)

typedef void (*mlme set request t) (uintl6 t us pib attrib, uint32 t
ul pib value);

MLME_SET.confirm typedef void (*mlme set cfm cb t) (mlme result t x result);

12.1.5 Retrieval of Lists
The MLME_LIST_GET.confirm primitive returns a buffer puc_pib buff where the requested list
us_pib_attrib is contained. Valid records are found one after the other, with their fields ordered
as described in the PRIME specification. From the provided buffer length us pib len and the
record size, users can calculate the number of records contained in the returned buffer and extract
them.

Since the lists in the Base Node can contain a lot of records and the returned buffer size is limited
to 1024 bytes, the confirm primitive might be invoked several times until all records have been
returned. Records are not split between two confirm primitives. The last confirm invocation is
marked with a buffer length of zero to indicate that there are no more valid records.

12.1.6 Callback Functions

The result of confirm and indication primitives is returned by the MAC layer invoking the
corresponding callback function. To set up the callback function pointers, the following function
is required:

typedef void (*mac_set callbacks_t) (mac_callbacks t *px prime cbs);

Parameters:

* px_prime_cbs: Pointer to the callback structure:

55

@ MICROCHIP

typedef struct {
mac_establish ind cb t mac establish ind cb;
mac_establish cfm cb t mac establish cfm cb;
mac_release ind cb t mac release ind cb;
mac_ " release cfm cb t mac_ " release cfm cb;
mac_join ind cb t mac ~join ind cb;
mac_join cfm cb t mac _Jjoin_ cfm cb;
mac_leave ind cb t mac_ leave ind cb;
mac_leave cfm cb t mac leave cfm cb;
mac data ind cb t mac data ind cb;
mac_data cfm cb t mac data cfm cb;
plmeireseticfmicbit plmeireseticfmicb;
plme _sleep cfm cb t plme sleep cfm cb;
plme resume cfm cb t plme resume cfm cb;
plme testmode cfm cb t plme testmode cfm cb;
plme get cfm cb t plme _get_cfm cb;
plme set cfm cb t plme set cfm cb;
mlme register ind cb t mlme register ind cb!;
mlme register cfm cb t mlme _register cfm cb!;
mlme unregister ind cb t mlme unregister “ind cbl;
mlme unregister cfm cb t mlme unregister cfm cb!;
mlme promote ind cb t mlme promote ind cb?;
mlme promote cfm cb t mlme _promote cfm cb
mlme demote ind cb t mlme demote ind cb!
mlme demote cfm cb t mlme demote cfm cb1
mlme reset cfm cb t mlme reset cfm cb;
mlme get cfm cb t mlme get cfm cb;
mlme list get cfm cb t mlme list _get_cfm cb;
mlme set cfm cb t mlme set cfm cb;
mlme ~mp promote “ind cb t mlme ~mp_promote ind cb;
mlme mp promote cfm cb t mlme _mp_promote cfm cb
mlme mp demote ind cb t mlme _mp_demote ind cb?t
mlme mp demote cfm cb t mlme mp demote cfm cb1

} mac_callbacks_t;

Note:
1. This function is not applicable in a Base Node.

Important: Unused callback functions must be set to NULL.

12.2 IEC 61334-4-32 Primitives

Refer to the PRIME specification for more information about IEC 61334-4-32 primitives and their
functionalities.

Table 12-5. |IEC 61334-4-32 Primitives in the Base Node

CL_432_RELEASE.request prime cl 432 release request(cl 432 release request t)
typedef void (*cl 432 release request t) (uintl6_t us_dst address);
CL_432_JOIN.indication typedef void (*cl 432 join ind cb t) (uint8 t *puc device id, uint8 t
uc _device id len, uintlé t us dst address, uint8 t *puc mac, uint8 t
uc_ae);
CL_432_LEAVE.indication typedef void (*cl 432 leave ind cb_t) (uintl6_t us_dst_address);
DL_DATA.request prime cl 432 dl_data_request(cl 432 dl data request_t)

typedef void (*cl 432 dl data request t) (uint8 t uc dst lsap, uint8 t
uc_src_lsap, uintl6_t us_dst address, dl 432 buffer t *px buff,
uintl6é_t uc_lsdu_len, uint8_ t uc_link class);

DL_DATA.confirm typedef void (*cl 432 dl data cfm cb_t) (uint8_t uc_dst_lsap,
uint8 t uc_src lsap, uintlé6_t us_dst address, dl_432 tx status_t
uc_tx_status);

56

@ MICROCHIP

veeeeeeeeecCONtinued

DL_DATA.indication typedef void (*cl_ 432 dl data ind cb_t) (uint8_ t uc_dst_lsap, uint8_t
uc_src_lsap, uintl6_t us dst address, uintl6é_t us_src address, uint8 t
*puc_data, uintl6 t uc lsdu len, uint8 t uc link class);

The result of confirm and indication primitives is returned by the SSCS invoking the corresponding
callback function. To set up the callback function pointers, the following function is required:

typedef void (*cl 432 set callbacks t) (cl 432 callbacks t *px cl 432 cbs);

Parameters:

« px_cl_432 cbs: Pointer to the callback structure:
typedef struct {
cl 432 dl data ind cb t cl 432 dl data_ind cb;
cl 432 dl data cfm cb t cl 432 dl data cfm cb;
cl 432 join_ind cb_t cl_432 join_ind_cb;
cl 432 leave _ind cb t cl 432 leave ind cb;
} cl 432 callbacks_t;

Important: Unused callback functions must be set to NULL.

12.3 Base Management Primitives

12.3.1 Firmware Upgrade Protocol Primitives

Table 12-6. FUP Primitives in the Base Node

BMNG_FUP_CLEAR_TARGET_LIST.request void bmng fup_clear target list request (uint8_t
uc_cmd) ;
BMNG_FUP_ADD_TARGET.request void bmng fup add target request (uint8 t uc cmd,

uint8 t *puc euid8);

BMNG_FUP_SET_FW_DATA.request void bmng fup_set fw_data_ request (uint8_ t uc_cmd,
uint8 t uc vendor len, char *pch vendor,
uint8 t uc model len, char *pch model, uint8 t
uc_version len, char *pch version);

BMNG_FUP_SET_UPG_OPTIONS.request void bmng fup set upg options request (uint8 t
uc_cmd, uint8 t uc_arg en, fup page size t
X page size, uint8 t uc multicast en, uint32 t
ul delay restart, uint32 t ul safety timer);
BMNG_FUP_INIT_FILE_TX.request void bmng fup init file tx request (uint8 t uc_cmd,
uintl6é t us frame number, uint32 t ul file size,
uintlé t us_ frame size, uint32 t ul crc);
BMNG_FUP_DATA_FRAME.request void bmng fup data frame request (uint8 t uc cmd,

uintlé t us_frame number, uintlé t us_data len,
uint8 t *puc data);

BMNG_FUP_CHECK_CRC.request void bmng fup check crc request (uint8 t uc cmd);

BMNG_FUP_ABORT_FU.request void bmng fup abort fu request (uint8_t uc_cmd,
uint8 t *puc euid8);

BMNG_FUP_START_FU.request void bmng fup start fu request (uint8 t uc_cmd,
uint8 t uc_enable);

BMNG_FUP_SET_MATCH_RULE.request void bmng fup set match rule request (uint8 t uc_cmd,

uint8 t uc_rules);

57

@ MICROCHIP

veeeeeeeeecCONtinued

BMNG_FUP_GET_VERSION.request
BMNG_FUP_GET_STATE.request
BMNG_FUP_SET_SIGNATURE_DATA.request
BMNG_FUP_ACK.indication

BMNG_FUP_STATUS.indication

BMNG_FUP_ERROR.indication

BMNG_FUP_VERSION.indication

BMNG_FUP_KILL.indication

12.3.2 Network Event Primitives

Table 12-7. Network Event Primitives

void bmng fup get version request (uint8 t uc cmd,
uint8 t *puc euid8);

void bmng fup get state request (uint8 t uc_cmd,
uint8 t *puc euids);

void bmng fup set signature data request (uint8 t
uc_cmd, uint8 t uc_algorithm, uintl6é t us_length);

typedef void (*bmng fup ack cb t) (uint8 t uc_cmd,
fup ack code t x ack code, uintl6é t us extra info);

typedef void (*bmng fup status _ind cb t)
(fup_node state t x state, uintl6_t ul pages,
uint8 t *puc euid8);

typedef void (*bmng fup error ind cb t)
(fup error code t x error code, uint8 t *puc eui48);

typedef void (*bmng fup version ind cb t) (uint8_t
*puc_euid8, uint8 t uc vendor len, char *pch vendor,
uint8 t uc model len, char *pch model, uint8 t
uc_version len, char *pch version);

typedef void (*bmng fup kill ind cb t) (uint8 t
*puc_euids);

BMNG_NETWORK_EVENT.indication

12.3.3 PRIME Profile Primitives

Table 12-8. PRIME Profile Primitives

typedef void (*bmng network event ind cb t)
(bmng net event t *px net event);

BMNG_PPROF_GET.request
BMNG_PPROF_SET.request

BMNG_PPROF_RESET.request
BMNG_PPROF_REBOOT.request

BMNG_PPROF_GET_ENHANCED.request

BMNG_PPROF_ZC_DIFF.request’
BMNG_PPROF_ACK.indication

BMNG_PPROF_GET_RESPONSE.indication

@ MICROCHIP

void bmng pprof get request(uint8 t uc cmd,
uint8 t *puc eui48, uintlé6 t us data len,
uint8 t *puc data);

void bmng pprof set request(uint8 t uc cmd,
uint8 t *puc euid8, uintl6 t us data len,
uint8 t *puc data);

void bmng pprof reset request (uint8 t uc cmd,
uint8 t *puc_euids);

void bmng pprof reboot request (uint8 t uc_cmd,
uint8 t *puc_euid8);

void bmng pprof get enhanced request (uint8 t
uc_cmd, uint8 t *puc euid8, uintlé t

us_data_ len, uint8 t *puc_data);

void bmng pprof zc diff request(uint8 t uc_cmd,
uint8 t *puc eui48);

typedef void (*bmng pprof ack cb t) (uint8_t

uc cmd, pprof ack code t x ack code);

typedef void (*bmng pprof get response cb t)
(uint8 t *puc eui48, uintl6 t us data len,
uint8 t *puc data);

58

1234

1235

........... continued

BMNG_PPROF_GET_ENHANCED_RESPONSE. indication typedef
void (*bmng pprof get enhanced response cb t)
(uint8 t *puc_eui48, uintl6 t us data len,
uint8 t *puc_data);

BMNG_PPROF_GET_ZC_RESPONSE.indication? typedef void (*bmng pprof get zc response cb t)
(uint8_t *puc_eui48, uint8 t uc_ zc status,
uint32_t ul zc_time?);

BMNG_PPROF_ZC_DIFF_RESPONSE.indication typedef void
(*bmng_pprof zc diff response cb t) (uint8 t
*puc_euid8, uint32 t ul time freq, uint32 t
ul time diffd);

Notes:
1. The response to ZC_DIFF is ZC_DIFF_RESPONSE followed by GET_ZC_RESPONSE, if its callback has
been set up.

2. The standard PIB 0x0078 (PIB_MAC_APP_LIST_ZC_STATUS) is special as it returns only one
element of the list together with the zero crossing time. Therefore, even if the PIB is requested
using a GET request or a GET_ENHANCED request, the invoked callback function with the
response is GET_ZC_RESPONSE instead of GET_RESPONSE or GET_ENHANCED_RESPONSE.

3. Intenths of microsecond.

Whitelist Management Primitives

Table 12-9. Whitelist Management Primitives

BMNG_WHITELIST_ADD.request void bmng whitelist add request (uint8_t uc_cmd,
uint8 t *puc eui48);

BMNG_WHITELIST_REMOVE.request void bmng whitelist remove request (uint8_t
uc_cmd, uint8 t *puc euid8);
BMNG_WHITELIST_ACK.indication typedef void (*bmng whitelist ack cb_t) (uint8_t

uc_cmd, whitelist ack code t x ack code);

Callback Functions

The result of indication primitives is returned by the Base Management layer invoking the
corresponding callback function. To set up the callback function pointers, the following function
is required:

void prime bmng set callbacks (bmng callbacks_t *px base mng_ cbs);

Parameters:

* px_base_mng_chs: Pointer to the callback structure:

typedef struct {
bmng fup ack cb t fup ack cb;
bmng fup status ind cb t fup status_ind cb;
bmng fup error ind cb t fup error ind cb;
bmng fup version_ind cb t fup version_ind_cb;
bmng fup kill ind cb t fup kill ind cb;
bmng network event ind cb t network event ind cb;
bmng pprof ack cb t pprof ack cb;
bmng pprof get response cb_t pprof get response cb;
bmng pprof get enhanced response cb t pprof get enhanced response cb;
bmng pprof get zc response cb t pprof get zc response cb;
bmng pprof zc diff response cb t pprof zc diff response cb;
bmng whitelist ack cb t whitelist ack cb;
} bmng callbacks t;

@ MICROCHIP

59

Important: Unused callback functions must be set to NULL.

12.4 PIB Objects Specification and Access

The PRIME FW stack supports all the mandatory attributes of the PLC Information Base (PIB) defined
in the PRIME specification. In addition, Microchip has added several proprietary PIB attributes to
support extra functionalities. These attributes are described in the next sections. The list of all
available PIB attributes can be found in file mac_pib.h .

12.4.1 Proprietary PIB Attributes in the PHY Layer

Table 12-10. Proprietary PIB Attributes in the PHY Layer

PIB_PHY_SW_VERSION 0x8080 4 bytes PLC PHY layer software version.

PIB_PHY_ZCT 0x8081 4 bytes - Time in microseconds between the
zero cross of the mains and the end
of the last transmission or reception.
Only applicable in PLC.

PIB_PHY_HOST_VERSION 0x8082 4 bytes - PL360 Host Controller version.
PIB_MTP_PHY_TX_TIME 0x8085 4 bytes - Transmission time of the last frame
transmitted in PLC in tenths of ps.
PIB_MTP_PHY_RMS_CALC_CORRECTED 0x8086 4 bytes - RMS value of the last PLC signal.
PIB_MTP_PHY_EXECUTE_CALIBRATION 0x8087 2 bytes - Executes calibration process [0: stop

process, 1: start process]. It returns
threshold level to configure board for
PLC.
PIB_MTP_PHY_RX_PARAMS 0x8088 22 bytes - RX PLC PHY structure:
* RxParam[0]. Modulation scheme:
DBPSK =0
DQPSK =1
D8PSK =2
DBPSK_CC=4
DQPSK_CC=5
D8PSK_CC=6
DBPSK_RB =12
DQPSK_RB =13
* RxParam[1]. RSSI.

+ RxParam[2-3]. Reception data
length in bytes.

* RxParam[4-5]. EvmHeader.
* RxParam[6-7]. EvmPayload.

*+ RxParam[8-11].
EvmHeaderAcum.

* RxParam[12-15].
EvmPayloadAcum.

* RxParam[16-19]. Reception time
in microseconds.

* RxParam[20]. Noise.
* RxParam[21]. SNRin dB (0 - 21).

60

@ MICROCHIP

........... continued

PIB_MTP_PHY_TX_PARAMS 0x8089 7 bytes TX PLC PHY structure”:

+ TxParam[0]. Modulation scheme:
DBPSK =0
DQPSK =1
D8PSK =2
DBPSK_CC=4
DQPSK_CC=5
D8PSK_CC=6
DBPSK_RB =12
DQPSK_RB =13

+ TxParam[1]. Attenuation level (0

- 21 dB). When set to 255,
attenuation and gain are set to 0.

+ TxParam[2-3]. Transmission data
length in bytes.

+ TxParam[4]. Inter-frame time in
tenths of ms (0 - 2550 ms).

+ TxParam[5]. Random seed data
generation. (0: send the same
constant payload in each
message, 1 - 255 seed used
to generate different ranges
of random values in the data
payload).

+ TxParam[6]. Number of
messages (1 - OxFF).

PIB_MTP_PHY_CONTINUOUS_TX 0x808A 1 byte 0-1 Set the PLC PHY layer to
transmit continuously [0: disabled, 1:
enabled].

PIB_MTP_PHY_ENABLE 0x808E 1 byte 0-1 Manufacturing test procedure for

PLC [0: disabled, 1: enabled]. Only
when the MTP is enabled, related
PIBs can be set.

PIB_PHY_TX_CHANNEL 0x8090 1 byte 1-8 Transmission/Reception PLC channel,
only when hardware permits
multichannel. The channel depends
on the selected PLC coupling.

PIB_PHY_TXRX_CHANNEL_LIST 0x8092 1 byte 0-255 List of available PLC channels. It has
the same structure as the band plan.
PIB_PHY_TXRX_DOUBLE_CHANNEL_LIST 0x8093 1 byte 0-255 List of available PLC double channels.

It has the same structure as the band
plan for double channel.

PIB_PHY_SNIFFER_ENABLED 0x8106 1 byte 0-1 Enable/disable the sniffer [O:
disabled, 1: enabled].
Bit 0 corresponds to the PLC sniffer.

Bit 1 corresponds to the RF sniffer.

PIB_PHY_DRV_AUTO 0x8301 1 byte 0-1 Enable/disable automatic selection of
PLC transmission mode [0: disabled,
1: enabled].

PIB_PHY_DRV_IMPEDANCE 0x8302 1 byte 0-2 Enable/disable the PLC high
impedance branch [0: high, 1: low, 2:
very low].

PIB_PHY_DRV_ATTENUATION 0x8303 1 byte 0-255 Additional attenuation with which a

PLC message must be transmitted.

61

@ MICROCHIP

........... continued

PIB_PHY_SW_RF_VERSION 0x9080 4 bytes RF PHY layer software version.

Note:
1. See Application Note Guidelines for PLC performance verification.

12.4.2 Proprietary PIB Attributes in the MAC Layer

Table 12-11. Proprietary PIB Attributes in the MAC Layer
e L e ke Do
PIB_MTP_MAC_EUI_48 0x8100 6 bytes MAC address.
PIB_MAC_PLC_STATE 0x8101 1 byte - PRIME PLC state:
+ 0:SN disconnected

* 1:SN detection
* 2:SN registering
* 3:SN operative

« 4:BN
PIB_MAC_ACTION_CFP_LENGTH 0x810D 2 bytes 0-128 Set CFP length in symbols in MAC

certification mode.
PIB_MAC_ALV_MIN_LEVEL 0x810F 1 byte 1-64 Set the minimum level of the node

to add independent records to the
alive response message (64 = default
handling).

PIB_MAC_ACTION_FRAME_LENGTH 0x8110 1 byte 0-3 Frame length in the present
superframe:

+ 0:276 symbols
+ 1:552 symbols
+ 2:828 symbols
+ 3:1104 symbols

PIB_CERTIFICATION_MODE 0x8120 1 byte 0-3 Certification mode:
* 0: no certification mode

* 1: PHY certification for 1.3

+ 2: MAC certification

* 3:PHY certification for 1.4
PIB_CERTIFICATION_SEND_MSG 0x8121 Array - Send message in PHY certification

mode.
See Table 12-12.

PIB_LMTP_MAC_WRITE_SNA 0x8123 6 bytes - Write SNA in MTP mode.
PIB_MAC_ACTION_ARQ_WIN_SIZE 0x8124 1 byte 1-32 Change the ARQ window size in MAC
certification mode.
PIB_MAC_INTERNAL_SW_VERSION 0x8126 4 bytes - MAC internal software version.
PIB_MAC_ACTION_MGMT_MUL_SEND_DATA 0x8132 3 bytes - Send multicast data through the

Management connection using the
given length (first 2 bytes) and priority
(third byte).

62

@ MICROCHIP

........... continued

PIB_MAC_ACTION_BCN_TX_SCHEME 0x8133 1 byte 0-2 Change the beacon modulation in
MAC certification mode:

* 0:DBPSK_CC

*+ 1:R_DQPSK
* 2:R_DBPSK
PIB_MAC_ACTION_ALV_TYPE 0x8134 1 byte 0-1 Change the ALV mode:

+ 0:1.4 ALV mode
+ 1:1.3 ALV mode

PIB_MAC_ACTION_CFG_BCN_SWITCH_RATE 0x8136 1 byte 0-5 Transmission frequency of the beacon
in switches (PRO.FRQ).

PIB_MAC_ACTION_CFG_SEC_PROF 0x8137 1 byte 0-2 Security profile to be used in the
network.

PIB_MAC_SEC_DUK_BN 0x8140 22 bytes - DUK for the indicated service node.

The first six bytes correspond to the
MAC address of a service node. The
following bytes are its DUK.

PIB_MAC_SEC_OLD_SWK_TIME 0x8142 2 bytes 0-10800 Validity time (in seconds) of the old
SWK during a key update process.

PIB_MAC_WHITELIST 0x8150 - - List of MAC addresses of nodes which
are allowed to register.

PIB_MAC_WHITELIST_ENABLED 0x8151 1 byte 0-1 Whitelist status [0: disabled, 1:
enabled].

Table 12-12. Data in PIB_CERTIFICATION_SEND_MSG

MsgCount 2 bytes 1-2000 Number of messages to transmit

Modulation 1 byte 0-7 Modulation scheme (as in PIB_MTP_PHY_TX_PARAMS)
SignalAtt 1 byte 0-21 Signal attenuation (in dB)

DutyCycle 1 byte 1-100 Duty cycle

PrimeFrame 1 byte 0-3 PRIME frame:

+ 1.3frame

+ 1.4 type Aframe

+ 1.4 typeBframe

+ 1.4 type BCframe

Important: Only when the certification mode is set to MAC certification, the
following standard PIB attributes are enabled and operative:

+ 0x0067 (PIB_MAC_ACTION_REJECT)

+ 0x0068 (PIB_MAC_ACTION_ALIVE_TIME)

+ 0x006A (PIB_MAC_ACTION_BROADCAST_DATA_BURST)
* 0x006B (PIB_MAC_ACTION_MGMT_CON)

+ 0x006C (PIB_MAC_ACTION_MGMT_MUL)

+ 0x006F (PIB_MAC_ACTION_SEGMENTED_432)

+ 0x0080 (PIB_LMAC_ACTION_APPEMU_DATA_BURST)

+ 0x0081 (PIB_MAC_ACTION_MGMT_DATA_BURST)

@ MICROCHIP

Important: The following PIB attributes change the conditions used to to build
the network. They can be updated any time but the change will only take place
after rebooting so that the network is forced to be rebuilt.

0x001D (PIB_MAC_SAR_SIZE)

0x004A (PIB_MAC_ACTION_ROBUSTNESS_MGMT)
0x8133 (PIB_MAC_ACTION_CFG_BCN_TX_SCHEME)
0x8136 (PIB_MAC_ACTION_CFG_BCN_SWITCH_RATE)
0x8137 (PIB_MAC_ACTION_CFG_SEC_PROF)

12.4.3 Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

Table 12-13. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

L T 7

PIB_CL_INTERNAL_SW_VERSION 0x8201 4 bytes Internal software version of the
SSCS layer.
PIB_432_LIST_NODES 0x8250 - - List of nodes registered in IEC

61334-4-32 layer. See Data in
PIB_432_LIST_NODES.

Table 12-14. Data in PIB_432_LIST_NODES

Address
SerialNumber

LenSerial
MAC

2 bytes 0 - OxXFFFF |IEC 61334-4-32 address
16 bytes - Serial number assigned in IEC
61334-4-32
1 byte 0-16 Length of serial number
6 bytes - MAC address of the node

12.4.4 Proprietary PIB Attributes in the Management Plane

Table 12-15. Proprietary PIB Attributes in the Management Plane

S S

PIB_FU_LIST

0x8350 List of nodes in the FU target list.
See Data in PIB_FU_LIST.

Table 12-16. Data in PIB_FU_LIST

FUNodeState

PagesCompleted

MAC

@ MICROCHIP

1 byte 0 - OX7F FU node state:
0:idle

1: receiving
2: complete
3: countdown
4: upgrade

5: exception

0x7F: unknown

4 bytes - Array that indicates which
pages are completed
6 bytes - MAC address of the node

64

13.
13.1

13.2

Example Applications

PRIME Base Modem

The Base Modem is an application example that shows how to serialize the PRIME APl when the
user application and the PRIME FW stack are running in different devices. This example serializes the
PRIME API through the USI using the UART. The overall architecture of this functionality is shown in
the next figure.

Figure 13-1. Layer Diagram for a Serialized PRIME FW Stack

External device

User Application

USI Host

Microcontroller

PLC Modem

Embedded USI

PRIME API

PRIME FW Stack

tHAL API

HARDWARE

In this architecture, files modem.h and modem_base.c in the embedded user application are in charge
of coding and decoding the PRIME API primitives, whereas the Embedded USI (included in the HAL)
is responsible for the transmission and reception of serial messages. Similarly, the USI Host in the
external application is responsible for coding and decoding the PRIME API primitives and also for
transmission and reception of serial messages.

The configuration required to support this serialization and the format of the serial messages in the
USl is described in chapter Serialization with Embedded USI. The integration of the USI Host in the
external application is explained in the Application Note PLC Universal Serial Interface.

PHY Applications

Microchip also provides several applications that demonstrate the complete performance of the
PRIME PHY layer. Except for the PHY sniffer, such applications only offer the ability to send and
receive PLC data through the PLC PHY layer without any MAC layer as shown in Figure 13-2. The API
of the PHY is described in chapter API of PHY and PAL Layers.

@ MICROCHIP

65

The available PLC PHY applications are the following:

« PHY Tester: This PHY application example shows the capabilities of the PL360 device in a point-to-
point connection, using the USI to serialize the API of the PLC PHY layer.

* PHY TX Test Console: This PHY application example uses a terminal console to configure the PLC
PHY layer and perform several board tests. Parameters that are configured include transmission
parameters such as modulation, frame data length and time interval between frames.

+ PHY PLC&Go: This PHY application example shows the basic code required to work with the PLC
PHY layer.

There is also the PHY Sniffer application, which allows monitoring of data traffic on a PRIME network
by serializing PHY frames (see the User Manual of the Hybrid Sniffer). The PHY Sniffer can detect
traffic coming from any PHY layer.

Figure 13-2. Layer Diagram of a PHY-only Application

USER
APPLICATION

PAL API

I HAL API

HAL

HARDWARE

@ MICROCHIP

66

14,

14.1

Serialization with Embedded USI

The Embedded USl is a wrapper part of the HAL that provides the interface between the PRIME FW
stack and the serial communications channel.

For serial transmissions from the PRIME stack, the Embedded USI provides a function that packs
and sends each message via the serial link to the external application. For serial receptions from the
serial link, the Embedded USI provides a function that unpacks the received message and passes it
to the PRIME FW stack.

The equivalent wrapper in the external application is the provided USI Host, which is also in charge
of coding and decoding the messages. If users want to develop their own USI Host application, they
will have to take into account the following operation of the Embedded USI to make it compatible:

+ USI frame format

+ USI PRIME protocols

« Embedded USI Configuration

For more information about available services and the provided US| Host, see Application Note PLC
Universal Serial Interface and the US/ Host User Guide.

US| Frame Format

The USI frame format is based on the Serial Communications Profile of the Management Plane
defined in the PRIME specification, and is shown in the following figure.

Figure 14-1. US| Frame Format

7E | MSGLENGTH | PROTOCOL ID MESSAGE CRC 7E
(1 byte) (10 bits) (6 bits) DATA (variable) | (1 byte)

The frame starts and ends with Ox7E. The following is the description of each field:

+ MSG LENGTH: Command length in bytes (protocol command byte plus message data bytes).

+ PROTOCOL ID: Protocol in the frame (see Table 14-1).

« MESSAGE DATA: Variable field with the data of the exchanged message.

+ CRC: Error correction code for the message. The CRC field can have a different length depending
on the protocol (see Table 14-1).

Table 14-1. USI Protocols and Associated CRC Size

PROTOCOLS_MNGP_PRIME! 0x00 - 0x07 32
PROTOCOL_SNIF_PRIME 0x13 16
PROTOCOL_PHY_TESTER? 0x22 16
PROTOCOL_PRIME_API 0x30 8
PROTOCOL_INTERNAL Ox3F 16
PROTOCOL_USER_DEFINED3 OxFE Defined by the user. By default, 16.
Notes:

1. These protocols are described in the Serial Communications Profile of the Management Plane
defined in the PRIME specification.

2. This protocol is only used by the PLC PHY Tester PC tool that Microchip provides with the
evaluation kit in order to serialize the API of the PLC PHY layer.

3. Defined by the user for their own proprietary protocol, if necessary.

@ MICROCHIP

67

14.2 USI PRIME Protocols
The USl is able to serialize the following PRIME interfaces and services:

* PRIME Management Plane
* PRIME Sniffer

* PRIME API

+ User Application

14.2.1 PRIME Management Plane Frame Format

This service refers to the different protocols defined in the Serial Communication Profile of the
Management Plane described in the PRIME specification.

The frame format is shown in the following figure.

Figure 14-2. MNGP PRIME USI Frame Format

7E | MSGLENGTH | PROTOCOL ID MESSAGE CRC 7E
(1 byte) (10 bits) (6 bits) DATA (4 bytes) | (1 byte)

The available management functions are described in the PRIME specification and shown in the
following table.

Table 14-2. USI MNGP PRIME Protocols

PROTOCOL_MNGP_PRIME_GETQRY 0x00 This protocol is used to get a PIB with information
from the node.
PROTOCOL_MNGP_PRIME_GETRSP 0x01 This protocol is the response to
PROTOCOL_MNGP_PRIME_GETQRY.
PROTOCOL_MNGP_PRIME_SET 0x02 This protocol is used to set a PIB and thus modify
the behavior of the node.
PROTOCOL_MNGP_PRIME_RESET 0x03 This protocol is used to reset statistics.
PROTOCOL_MNGP_PRIME_REBOOT 0x04 This protocol is used to reboot the node.
PROTOCOL_MNGP_PRIME_FU 0x05 This protocol is used to exchange FU protocol

frames. In this way, it is possible to perform a FU
process through the serial port.

PROTOCOL_MNGP_PRIME_GETQRY_EN 0x06 This protocol is used to get a PIB with information
from the node in an enhanced way.
PROTOCOL_MNGP_PRIME_GETRSP_EN 0x07 This protocol is the response to

PROTOCOL_MNGP_PRIME_GETQRY_EN.

14.2.2 PRIME Sniffer Frame Format

The PRIME Sniffer is a service of the PRIME FW stack that uses the PHY layer to provide received
PLC traffic from the PRIME network. The USI is able to serialize and treat this service independently.
This serialization can be directly passed to Microchip PLC PC Tools to be analyzed or saved for later
use. The embedded sniffer is only available when it has been enabled and properly configured (see
chapter PRIME Stack User Configuration Parameters).

Figure 14-3 and Figure 14-4 show the USI frame format of the frames generated in the node. In this
case, the field MESSAGE DATA that appears in the USI frame format (see Figure 14-1) is divided into
two different fields: header and PDU sniffer message.

@ MICROCHIP

Figure 14-3. PRIME Sniffer USI Frame Format

7E | MSG LENGTH | PROTOCOL ID e MESSAGE DATA CRC 7E
(1 byte) (10 bits) 0x13 (6 bits) (32 bytes) PDU SNIFFER MSG (2 bytes) (1 byte)

Figure 14-4. PRIME Sniffer USI Header Field

FRAT [SNIFF [SNIFT | MODUL | SYMPDU | SNR | EXSNR | CHN | CINR | BERSOFT | BERS MAX 0x00...0x00
1byte | 1byte | 1byte 1 byte 1 byte 1 byte 1 byte 1 byte | 1byte 1 byte 1 byte 8 bytes
Time Start Time End RSSI 0x00 PDU LEN
4 bytes 4 bytes 2 bytes 1 byte 2 bytes

As indicated before, sniffer frames contain the received PDU (MAC encapsulation following the
PRIME specification) and some additional information related to the PHY layer, which is included in
the header part.

+ FRAT: PDU type of the received frame (A, B, BC) (see values in file sniffer_if.h.h and
rf215_sniffer_if prime.c)

* SNIF F: Sniffer frame version: 0x14 for current version
« SNIF T: Sniffer type version: 0x11 for PL360, 0x13 for RF

+ MODUL: Modulation scheme of the received frame (see modulation values in file atp/360_comm.h
and rf215_sniffer_if prime.c)

+ SYM PDU: Length of the PDU in PHY symbols

« SNR'": PRIME defined measurement of the SNR (from 0 to 7)
« EXSNR': High precision SNR

+ CHNZ: Channel in which the frame has been received

+ CINR'™: Minimum Carrier to Interference Noise Ratio

« BERSOFT': Viterbi soft bit error rate value

+ BERS MAX': Viterbi soft bit error rate maximum value

+ Time Start/Time End: High precision internal counter to measure length (time) of the PDUs in
microseconds

+ RSSI: Average RSSI in dBuV

* PDU LEN: Length of the PDU in bytes

Notes:

1. Not available in RF. The padding field changes accordingly.
2. The CHN in RF has two bytes.

For details about the PHY information, see the datasheets for PL360, PL460 and AT86RF215.

14.2.3 PRIME API Frame Format

This protocol consists of the serialization of the PRIME API primitives. The PRIME FW stack can
provide the PRIME API through a serial interface as an independent protocol of USI. It is only
available when the user application contains the modem example.

The frame format is shown in the following figure.

69

@ MICROCHIP

Figure 14-5. PRIME API US| Frame Format

MESSAGE DATA

MSG LENGTH | PROTOCOL ID PRIME API N . CRC
7E (10 bits) 0x30 (6 bits) LENGTH Extended COMMAND Primitive function (1 byte) 7E
(1 bit) (7 bits) parameters

There are three fields in this frame inside the general MESSAGE DATA field:

+ LENGTH Extended: Since the information contained in the message data can exceed the size
reserved for MSG length (10 bits), a bit has been added to increase the total message length size.
In this field the most significant bit of the message length is codified

* PRIME APl COMMAND: This field refers directly to the primitive included in the message, using
the same primitives described in the PRIME API interface description (see chapter API of PRIME
FW Stack). The values for those primitives are defined in enumerator prime api cmd_t infile
modem.h

« Primitive function parameters: The serialization of each primitive directly concatenates the
different parameters included in the primitive function, with the most significant byte of a
variable always on the left. The only exception is that the length of buffers is always placed
before the buffer itself so that the data can be inserted and extracted more easily. This is
applicable to all primitives in the PRIME API. Figure 14-6 shows how a serialized primitive looks. It
is based on the MAC_ESTABLISH.request, which is mapped into the following type:

typedef void (*mac_establish request t) (uint8 t *puc euid48, uint8 t uc type, uint8 t
*puc_data, uintl6é_t us data len, uint8 t uc_arqg, uint8 t uc_cfbytes);

Figure 14-6. Message Data for MAC_ESTABLISH.request Primitive

MAC_ADDR CON_TYPE DATA_LEN DATA ARQ CFP_BYTES
(6 bytes) (1 byte) (2 bytes) (variable) (1 byte) (1 byte)

Important: Note that the Base Management primitives already include the
PRIME APl command as the first function parameter, so exceptionally sending
it twice is not needed.

14.3 Embedded USI Configuration

The Embedded USI must be configured according to the user requirements. This configuration
consists of indicating the protocols to be serialized and which port will be used by each protocol.

14.3.1 Definition and Configuration of USI Ports
Users can define the ports to be used and their configurations in the conf usi.h file.

/* Port Communications configuration */

#define NUM PORTS 2

#define PORT 0 CONF_PORT (UART TYPE, 0, 115200, HAL TX UART BUFO SIZE, HAL RX UART BUFO_ SIZE)
#define PORT 1 CONF_ PORT (USART TYPE, 4, 57600, HAL TX USART BUF1l SIZE, HAL RX USART BUFl SIZE)
#define PORT 2 CONF_ PORT (USB TYPE, 0, 115200, 1024, 1024)

NUM_PORTS defines the number of ports to be used. After that, every PORT x must be configured
following a sequential order (PORT_ 0, PORT 1, etc.). The input parameters of the port configuration
are shown in the following table.

@ MICROCHIP

Table 14-3. USI Port Configuration Parameters

Type Type of link’ UART_TYPE for UART
USART_TYPE for USART
USB_TYPE for USB

Channel Instance 0: UARTO/USARTO0/USB
1: UART1/USART1
2: UART2/USART2

4: USART4

Speed Baudrate 9600, 19200, 38400, 57600, 115200, 230400, 256000
921600

TX_size Size of transmission buffer Size of buffer must be (at least) twice the size of the bigger

message payload linked to this port.2

RX_size Size of reception buffer Size of buffer must be (at least) twice the size of the bigger
message payload linked to this port.2

Notes:
1. Only UART, USART and USB are currently supported.

2. In case of IEC61334-4-32 messages, please note that protocol headers are part of the USI
message payload.

Important: Both Embedded USI and the external application must use the same
baud rate and protocols. Messages from protocols not serialized in both sides of
the serial communications channel are discarded.

14.3.2 Linking of Serial Communication Profile of PRIME Management Plane
To link the Serial Communication Profile of the PRIME Management Plane to a USI port defined in
the Embedded USI, users must use file conf mngp.h.

By default, the link is set to PORT 0.

/* Select PORT for Serial Profile */
#define MNGP_SPROF_USI_ PORT 0

14.3.3 Linking of PRIME Sniffer
To link the embedded PRIME sniffer to a USI port defined in the Embedded US|, users must use file
conf_pal.h.

By default, the link is set to PORT 0.

/* Select PORT to serialize PHY sniffer */
#define PHY SNIFFER UST PORT 0

14.3.4 Linking of PRIME API

To link the PRIME API to a USI port defined in the Embedded USI, users must use file
conf_app_example.h (assuming they are using the modem example). By default, the link is set to
PORT 0.

/** USI PORT */
#define MODEM USI PORT 0

@ MICROCHIP

71

15. PRIME Direct Connections

15.1 Overview

The PRIME Direct Connections (DC) feature allows direct data communication between two Service
Nodes. Since the Base Node is the only element with information of the entire network, DC
establishment and release processes must be managed by it. DC data transfer can coexist with
other network applications that use normal data transfer between BN and SN.

Important: Direct connections generate asynchronous messages not controlled
by the BN, thus increasing the number of collisions. For that reason, they are not
intended for constant traffic.

The PRIME Direct Connections implementation is fully compliant with the direct connection feature
described in the PRIME specification version 1.4,

15.2 Characteristics

The current implementation of DC presents the following characteristics, which are not configurable
by users:

+ Direct switching capability is available in BN and SN

* The number of direct connections supported by the BN is the maximum node number divided by
two

+ The BN supports up to 6 direct connections per SN
+ The BN reserves handler BN DIRECT CON HANDLER to manage direct connections

15.3 Functional Description

15.3.1 Direct Connection Establishment
+ Direct connections are always opened by an SN (for example, node A)
+ Depending on the user application, node A can open a direct connection in two different ways:
- Providing a EUI-48 MAC address for a destination node (for example, for node B):

+ The BN looks for node B in its list of registered devices. If node B is registered, it will
continue with the DC establishment process. Otherwise, it will deny the connection
request to node A

Important: If a destination EUI-48 address is provided, the direct
connection will be directly established without notifying the BN application.
A new entry will be automatically added to the direct connection list in the
BN (PIB_MAC_LIST_DIRECT_CONN, 0x0054).

- Providing the SNA as EUI-48 address:
+ The BN notifies the user application in the callback for establish indication

+ If the user application knows which node is the destination node, it will forward the
connection request with a redirect response

+ If the user application cannot find a destination node, it will reject the connection with an
establish response

+ If node B is registered, the BN forwards the DC request to it

72

@ MICROCHIP

If node B accepts the connection, the BN will finish the DC process by sending the response to
node A

Important: The retransmission process is always performed by SNs. The BN
does not perform any retransmissions during DC establishment.

15.3.2 Direct Connection Release

A direct connection can be released both by source or destination SN. In both cases the process is
the same.

Node A requests connection close to the BN
The BN forwards connection close to node B

The retransmission process starts until the BN receives a response from node B or the maximum
number of retransmissions is reached

Important: The retransmission process is only performed by the BN when one
of the SNs unregisters while the direct connection is already established.

The BN always confirms a connection close to node A and removes the corresponding entry from
the direct connection list

During this process, the direct switch automatically removes the corresponding direct connection
entry from the direct switch table (PIB_MAC_LIST_DIRECT_TABLE, 0x0055)

@ MICROCHIP

73

Abbreviations

AES
AGC
AP
ARQ
BER
BN
cc
CFP
CINR
cL
CPCS
CRC
D8PSK
DBPSK
DC
DCU
DLMS
DMA
DQPSK
DUK
FCC
FSK
FU
FUP
FW
GPIO
HAL
IEC

IP
LNID
MAC
MCU
MLME
MNGP
MPAL
MPDU
MTP
OFDM
PAL
PDU
PHY
PIB
PICS
PLC
PLME
PMC

@ MICROCHIP

Advanced Encryption Standard
Automatic Gain Mode

Application Programming Interface
Automatic Repeat Request

Bit Error Rate

Base Node

Convolutional Code

Contention Free Period

Carrier to Interference Noise Ratio
Convergence Layer

Common Part Convergence Sublayer
Cyclic Redundancy Check

Differential Eight-Phase Shift Keying
Differential Binary Phase Shift Keying
Direct Connection

Data Concentrator Unit

Device Language Message Specification
Direct Memory Access

Differential Quaternary Phase Shift Keying
Device Unique Key

Federal Communications Commission
Frequency Shift Keying

Firmware Upgrade

Firmware Upgrade Protocol

Firmware

General Purpose Input/Output
Hardware Abstraction Layer
International Electrotechnical Committee
Internet Protocol

Local Node Identifier

Medium Access Control
Microcontroller Unit

MAC Layer Management Entity
Management Plane

MultiPhy Abstraction Layer

MAC Protocol Data Unit
Manufacturing Test Procedure
Orthogonal Frequency Division Multiplexing
Physical Abstraction Layer

Protocol Data Unit

Physical

PLC Information Base

Protocol Implementation Conformance Statement

Power Line Communications
PHY Layer Management Entity
Power Management Controller

PRIME
RB

RF
RMS
RSS!
SAP
SDRAM
SN
SNA
SNR
SPI
SSCS
SUN
TC
TFTP
TRNG
UART
USART
usl

@ MICROCHIP

Powerline Intelligent Metering Evolution

Robust

Radiofrequency

Root Mean Square

Received Signal Strength Indicator

Service Access Point

Synchronous Dynamic Random-Access Memory
Service Node

Sub-Network Address

Signal-to-Noise Ratio

Serial Peripheral Interface

Service Specific Convergence Sublayer

Smart Utility Network

Timer/Counter

Trivial File Transfer Protocol

True Random Number Generator

Universal Asynchronous Receiver/Transmitter
Universal Synchronous/Asynchronous Receiver/Transmitter
Universal Serial Interface

75

17.

References
Microchip Smart Energy

Microchip Power Line Communications

Microchip Design Support

PRIME Alliance
standards.ieee.org/content/ieee-standards/en/standard/802_15_4-2015.html
standards.ieee.org/content/ieee-standards/en/standard/802_15_4v-2017.html
Base Node Evaluation Kit

PL460 Evaluation Kit

PIC32CXMTSH Demo Board

PIC32CXMTG Evaluation Kit
www.microchip.com/en-us/development-tool/ATSAME70-XPLD

SAMGS55 Xplained PRO Evaluation Kit

ATREB215-XPRO Extension Board

Documents for supported families and boards

@ MICROCHIP

76

https://www.microchip.com/en-us/products/smart-energy-metering
https://www.microchip.com/en-us/products/smart-energy-metering/power-line-communications
https://microchip.my.site.com/s/
http://www.prime-alliance.org/
https://standards.ieee.org/content/ieee-standards/en/standard/802_15_4-2015.html
https://standards.ieee.org/content/ieee-standards/en/standard/802_15_4v-2017.html
https://ww1.microchip.com/downloads/aemDocuments/documents/SE/ProductDocuments/BoardDesignFiles/PL360BN_v1.pdf
https://www.microchip.com/en-us/development-tool/EV13L63A
https://www.microchip.com/en-us/development-tool/EV84M21A
https://www.microchip.com/en-us/development-tool/EV11K09A
https://www.microchip.com/en-us/development-tool/ATSAME70-XPLD
https://www.microchip.com/en-us/development-tool/atsamg55-xpro
https://www.microchip.com/en-us/development-tool/ATREB215-XPRO
https://www.microchip.com/en-us/document-listing

18.
18.1

18.2

18.3

Revision History
Atmel 43110 Rev A - 03/2017

Document

Microchip DS-50002788 Rev A - 08/2018

Document

HAL API

Other Coding Requirements and Main Function Structure
Firmware Version Information

MAC Primitives and IEC 61334-4-32 Primitives

PRIME Direct Connections

General Prerequisites

Brief about ASF and Understanding the Firmware Packages
Automatic Repeat Request (ARQ)

Network Behavior

HAL APl and PRIME Profile Primitives, Zero Cross Detection
Whitelist Management and Whitelist Management Primitives

Firmware Upgrade Protocol

PRIME FW Stack Library
Propietary PIB Attributes in the MAC Layer

Communication Channel and other PHY Parameters, Band
Plan (ATPL230A Platform) and Band Plan (PL360 Platform)

Example Configuration - conf_app_example.h and Linking of
PRIME API

Microchip DS-50002788 Rev B - 06/2019

HAL API

HAL APl and PRIME Management Plane
Main Function Structure

Other Coding Requirements

Data Storage
Signalling Primitives and IEC 61334-4-32 Primitives
Proprietary PIB Attributes in the PHY Layer

Null SSCS, Data Primitives, Proprietary PIB Attributes in the
PHY Layer, PRIME Profile Primitives and PRIME Sniffer Frame
Format

@ MICROCHIP

Initial document release of Atmel document number 43110.

Added security.

Added PL360 platform.

Changed to Microchip document format, DS50002788 rev A.
Added HAL functions.

Added warning about interruptions.

Added supply monitor control.

Improved Firmware Version Information chapter.
Corrected MAC and 4.32 primitives.

Added direct connections.

Updated version of Atmel Studio.

Swapped chapters.

Improved and moved to Data Exchange chapter.
Added missing PIBs.

Added zero crossing difference.

Added support of whitelist.

Corrected macro names for FUP states.

Added error codes for FUP ACK.

Reduced number of supported nodes for lite version.
Added proprietary PIB for macFrameLen.

Added proprietary PIB to send multicast data.

Added proprietary PIB to change beacon modulation.
Added proprietary PIB to change ALV mode.

Improved usage descriptions of communication channel and
band plan.

Updated configuration of modem port.

Added HAL functions for network recovery.

Changed structure for notes.

Added user specific PIBs.

Improved hardware initialization.

Added effect on increased call stack size.

Removed optimizations in Atmel Studio projects.
Removed allocation of PHY layer in the PL360 platform.
Added security parameter to primitives.

Added new proprietary PIBs and updated MTP PIB.
Added clarifications about time units.

77

Features, PRIME FW Stack Library, Supported MCU Families,
Supported Devices and Supported Boards

Get Function and Set Function
PRIME FW Stack Library

PRIME Profile Primitives

Firmware Version Information

Communication Channel and other PHY Parameters
Hardware Resources Usage

Automatic Repeat Request (ARQ)

General Prerequisites

Definition and Configuration of USI Ports

Device Unique Key

PLC Coupling (PL360 Platform)

Definition and Configuration of USI Ports, Linking of

Serial Communications Profile of PRIME Management Plane,
Linking of PRIME Sniffer (PL360 Platform) and Linking of
PRIME Sniffer (ATPL230A Platform)

PHY Applications

18.4 Microchip DS-50002788 Rev C - 07/2020

Document

PRIME Sniffer Frame Format

Other Coding Requirements

PRIME Management Plane Frame Format
USI Host Example

Communication Channel and other PHY Parameters

Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

Proprietary PIB Attributes in the Management Plane
References
PRIME FW Stack Libraryand Supported Devices

Added new devices and boards.

Aligned function parameters with code.

Decreased supported number of nodes for some Atmel
Studio libraries.

Added note to request of ZC difference.

Updated vendor and version.

Added ATPLCOUPO11.

Added remark about platform for mandatory timers.
Replaced frame by fragment.

Updated IAR version.

Added USB type as USI port.

Added warning about restoring the list of DUKs after a reset.
Added coupling configuration in PL360 platform.

Clarified usage of USI ports.

Added another PHY example.

Editorials.

Added sniffer type version for PL360.

Added clarifications about interrupt handling.
Corrected name of MNG protocol.

Added meaning of abbreviation.

Added ATPLCOUPO11.

Corrected configuration key.

Removed PIB that belonged to SN only.
Corrected size of serial number.

Removed LNID from PIB_FU_LIST.
Updated links.

Added new device.

Microchip DS-50002788 Revision D - 02/2024

Document

Features

PRIME FW Stack, Event-Driven Operation
PRIME FW Stack Library

Project Examples

Introduction

Physical Layer (PHY), PRIME Sniffer Frame Format

@ MICROCHIP

Removed all references to ATPL230, ASF, Atmel Studio and
Doxygen.

Added and removed PLC where necessary to make it general
for all available PHY layers.

Added PL460 whenever there was a reference to PL360
platform.

Other editorials.

Updated platforms and modems.

Updated description.

Updated libraries according to the new devices and boards.
Updated paths and image.

Removed references to old platforms. Corrected PIB name.
Added references to RF.

Added references to RF.

78

Physical Abstraction Layer (PAL)
Hardware Resources Usage
HAL API

4.3.1. Task Manager, Priorities and Preemption
Other Coding Requirements

PRIME Callback Functions

Firmware Version Information

Communication Channel and other PHY Parameters

PLC Coupling (PL460 platform), Band Plan in RF, Enabling RF
PHY Layer, Frequency Hopping, RF PHY SAP

Band Plan in PLC
Enabling PLC PHY Layer
Sniffer Serialization

Base Node Parameters
Network Behaviour
General Prerequisites

Supported MCU Families, Supported Devices and Supported
boards

PHY Frames, Major Capabilities of the MAC Layer
PLC PHY SAP, Linking of PRIME Sniffer

Callback Functions

Data Primitives

Management Primitives

PLME Primitives
MLME Primitives, Callback Functions
Proprietary PIB Attributes in the PHY Layer

Propietary PIB Attributes in the MAC Layer

Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer
PLC PHY Applications

USI Frame Format

Definition and Configuration of USI Ports

Abbreviations

References

Q MICROCHIP

Added MPAL.

Updated mandatory timers and SPI.
Updated HAL functions.

Updated timing.

Removed priority setting for TCO.

Added new MLME functions for MultiPHY.
Updated model and version.

Added PLC couplings for PL460. Corrected configuration
key. Removed thresholds. Added PLC channels lists and RF
channel.

New chapters.

Renamed chapter. Added double channels.
Renamed chapter. Updated setting.

Renamed chapter. Updated setting and added setting for RF
sniffer.

Added configuration parameters.

Added new parameters.

Updated IAR version. Removed Atmel Studio.
Updated devices and boards.

Removed date of specification.

Renamed chapters.

Updated callback functions.

Updated request function input and output parameters.

Added column to indicate in which PHY platforms the
primitives are available. Added PCH to primitives. Added new
primitives for RF.

Added PCH to primitives.
Added functions for MultiPhy.

Removed obsolete PIBs. Updated MTP PIBs. Added new PIBs.
Added specific enabling/disabling of sniffer for different PHY
layers.

Added certification PIB for security and PIBs for network
configuration.

Corrected PIB name.

Renamed chapter. Updated name of last application.
Corrected name of protocol and added missing one.
Removed note about SAM4C.

Updated abbreviations.

Updated links.

79

Microchip Information
The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to
make files and information easily available to customers. Some of the content available includes:

+ Product Support - Data sheets and errata, application notes and sample programs, design
resources, user’'s guides and hardware support documents, latest software releases and archived
software

+ General Technical Support - Frequently Asked Questions (FAQs), technical support requests,
online discussion groups, Microchip design partner program member listing

+ Business of Microchip - Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip
products. Subscribers will receive email notification whenever there are changes, updates, revisions
or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:
+ Distributor or Representative

+ Local Sales Office

+ Embedded Solutions Engineer (ESE)

+ Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are
also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

* Microchip products meet the specifications contained in their particular Microchip Data Sheet.

+ Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

+ Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip product is strictly prohibited and may violate the Digital
Millennium Copyright Act.

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided

only for your convenience and may be superseded by updates. It is your responsibility to ensure

@ MICROCHIP

80

https://www.microchip.com/
https://www.microchip.com/pcn
https://www.microchip.com/support

that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer,
LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper
Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium,
TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut,
Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic
Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge,

IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi,
MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad 1/0, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-LS., storClad, SQI, SuperSwitcher, SuperSwitcher II,
Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered
trademarks of Microchip Technology Inc. in other countries.

GestlC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary
of Microchip Technology Inc., in other countries.

@ MICROCHIP

81

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

All other trademarks mentioned herein are property of their respective companies.
© 2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-6683-3996-1

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit
www.microchip.com/quality.

@ MICROCHIP

82

https://www.microchip.com/quality

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongging
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910

Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

83

https://www.microchip.com/support
https://www.microchip.com

	Introduction
	Features
	Table of Contents
	1. Overview
	1.1. General Architecture
	1.1.1. User Application
	1.1.2. PRIME FW Stack

	1.2. Event-Driven Operation

	2. Understanding the Firmware Package
	2.1. PRIME Firmware Package Contents
	2.1.1. PRIME FW Stack Library
	2.1.2. Project Examples
	2.1.3. PL360 Firmware
	2.1.4. USI Host Example

	3. PRIME FW Stack
	3.1. Introduction
	3.1.1. Physical Layer (PHY)
	3.1.2. Physical Abstraction Layer (PAL)
	3.1.3. Medium Access Control Layer (MAC)
	3.1.4. Convergence Layer (CL)
	3.1.5. Management Plane (MNGP)
	3.1.6. Base Management (Base MNG)

	4. Managing the PRIME FW Stack
	4.1. Hardware Resources Usage
	4.1.1. Data Storage

	4.2. PRIME Interfaces
	4.2.1. PRIME API
	4.2.1.1. Request/Confirm Example
	4.2.1.2. Indication/Response Example

	4.2.2. HAL API

	4.3. PRIME Integration Requirements
	4.3.1. Task Manager, Priorities and Preemption
	4.3.2. Other Coding Requirements

	4.4. Main Function Structure
	4.4.1. PLC Signaling (optional)
	4.4.1.1. Providing the Pointer to the Transmission Event Callback Function
	4.4.1.2. Providing the Pointer to the Reception Event Callback Function

	4.4.2. PRIME FW Stack Initialization
	4.4.3. PRIME Callback Functions
	4.4.4. PRIME FW Stack Process

	4.5. Configuration Parameters
	4.5.1. PRIME Stack User Configuration Parameters
	4.5.1.1. Enabling Base Node API
	4.5.1.2. Firmware Version Information
	4.5.1.3. Communication Channel and other PHY Parameters
	4.5.1.4. PLC Coupling (PL360 Platform)
	4.5.1.5. PLC Coupling (PL460 Platform)
	4.5.1.6. Band Plan in PLC
	4.5.1.7. Band Plan in RF
	4.5.1.8. Security Profile
	4.5.1.9. Device Unique Key
	4.5.1.10. MAC Address
	4.5.1.11. Enabling PLC PHY Layer
	4.5.1.12. Enabling RF PHY Layer
	4.5.1.13. Frequency Hopping
	4.5.1.14. Sniffer Serialization
	4.5.1.15. Serial Communication Profile of PRIME Management Plane
	4.5.1.16. Base Node Parameters
	4.5.1.17. PRIME Mode
	4.5.1.18. Zero Cross Detection in PLC
	4.5.1.19. Network Behavior

	4.5.2. Application Configuration Parameters
	4.5.2.1. Example Configuration – conf_app_example.h
	4.5.2.2. HAL Configuration – conf_hal.h
	4.5.2.3. PRIME Stack Configuration – conf_prime_stack.h
	4.5.2.4. USI Configuration – conf_usi.h

	5. Data Exchange
	5.1. Null SSCS
	5.2. IEC 61334-4-32
	5.3. Automatic Repeat Request (ARQ)

	6. PRIME Management Plane
	7. Base Management
	7.1. Overview
	7.2. Firmware Upgrade Protocol
	7.2.1. FUP Stages
	7.2.1.1. Setup Stage
	7.2.1.2. File Transfer Stage
	7.2.1.3. Firmware Upgrade Stage

	7.3. Network Events
	7.4. API for PRIME Profile in Management Plane
	7.5. Whitelist Management

	8. Toolchain
	8.1. General Prerequisites
	8.2. Building the Applications
	8.2.1. Using IAR Embedded Workbench

	9. Supported Platforms
	9.1. Supported MCU Families
	9.2. Supported Devices
	9.3. Supported Boards

	10. PICS
	10.1. Major Roles for Devices Compliant with PRIME
	10.1.1. Major Capabilities of the PHY Layer
	10.1.1.1. PHY Frames
	10.1.1.2. PLME Primitives

	10.1.2. Major Capabilities of the MAC Layer
	10.1.2.1. PLC Information Base

	10.1.3. Major Capabilities of the Convergence Layer
	10.1.4. Major Capabilities of the Management Plane
	10.1.4.1. PLC Information Base
	10.1.4.2. Communications Profiles

	11. API of PHY and PAL Layers
	11.1. PLC PHY SAP
	11.2. RF PHY SAP
	11.3. PAL SAP
	11.3.1. Initialization Function
	11.3.2. Process Function
	11.3.3. Callback Functions
	11.3.4. Noise Capture Function (PL360/PL460 Platform)

	11.4. PAL Primitives
	11.4.1. Data Primitives
	11.4.2. Management Primitives

	12. API of PRIME FW Stack
	12.1. MAC Primitives
	12.1.1. Signalling Primitives
	12.1.2. Data Primitives
	12.1.3. PLME Primitives
	12.1.4. MLME Primitives
	12.1.5. Retrieval of Lists
	12.1.6. Callback Functions

	12.2. IEC 61334-4-32 Primitives
	12.3. Base Management Primitives
	12.3.1. Firmware Upgrade Protocol Primitives
	12.3.2. Network Event Primitives
	12.3.3. PRIME Profile Primitives
	12.3.4. Whitelist Management Primitives
	12.3.5. Callback Functions

	12.4. PIB Objects Specification and Access
	12.4.1. Proprietary PIB Attributes in the PHY Layer
	12.4.2. Proprietary PIB Attributes in the MAC Layer
	12.4.3. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer
	12.4.4. Proprietary PIB Attributes in the Management Plane

	13. Example Applications
	13.1. PRIME Base Modem
	13.2. PHY Applications

	14. Serialization with Embedded USI
	14.1. USI Frame Format
	14.2. USI PRIME Protocols
	14.2.1. PRIME Management Plane Frame Format
	14.2.2. PRIME Sniffer Frame Format
	14.2.3. PRIME API Frame Format

	14.3. Embedded USI Configuration
	14.3.1. Definition and Configuration of USI Ports
	14.3.2. Linking of Serial Communication Profile of PRIME Management Plane
	14.3.3. Linking of PRIME Sniffer
	14.3.4. Linking of PRIME API

	15. PRIME Direct Connections
	15.1. Overview
	15.2. Characteristics
	15.3. Functional Description
	15.3.1. Direct Connection Establishment
	15.3.2. Direct Connection Release

	16. Abbreviations
	17. References
	18. Revision History
	18.1. Atmel 43110 Rev A - 03/2017
	18.2. Microchip DS-50002788 Rev A - 08/2018
	18.3. Microchip DS-50002788 Rev B - 06/2019
	18.4. Microchip DS-50002788 Rev C - 07/2020
	18.5. Microchip DS-50002788 Revision D - 02/2024

	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

