USB2230 Software Release Notes
Page-1 -

SUCCESS BY DESIGN

Austin Design Center

11000 North Mopac Expressway
Stonelake Bldg. 6 Suite 500
Austin, Texas 78759

USB2230 Software Release Notes
v0.436

Updated 6-22-05

The information contained herein is confidential and proprietary to SMSC, shall be used solely in
accordance with the agreement pursuant to which it is provided, and shall not be reproduced or disclosed
to others without the prior written consent of SMSC. Although the information is believed to be accurate, no
responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to this document and
to specifications and product descriptions at any time without notice. Neither the provision of this
information nor the sale of the described semiconductor devices conveys any licenses under any patent
rights or other intellectual property rights of SMSC or others. The product may contain design defects or
errors known as anomalies, including but not necessarily limited to any which may be identified in this
document, which may cause the product to deviate from published specifications. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product
failure could cause or contribute to personal injury or severe property damage. Any and all such uses
without prior written approval of an officer of SMSC will be fully at the risk of the customer. SMSC is a
registered trademark of Standard Microsystems Corporation (“SMSC”).

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY
AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF
DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL,
INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR
REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT;
NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER
ORNOT ANY REMEDY OF BUYER ISHELD TO HAVE FAILED OF ITSESSENTIAL PURPOSE, AND WHETHER OR
NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

USB2230 Software Release Notes
Page- 2 -
Software Compliance

The software in this release conforms to the following industry flash card specifications. SMSC has tested to the best of its
ability to ensure that this software conforms to these specifications. However, no other warranty is assured, express or implied,
other than provided by SMSC's standard terms and conditions.

SmartMediaTM Electrical Specification Version 1.40
SmartMediaTM Physical Format Specifications Version 1.40
SmartMediaTM Logical Format Specifications Version 1.30
MultiMediaCard System Specification Version 4.00

SD Memory Card Specifications Version 1.1

Memory Stick Standard Format Specification Version 1.41-00
Memory Stick Pro Standard Format Specifications Version 1.01-01
Memory Stick Duo Standard Format Specifications Version 1.10-00
CompactFlash Specification Rev 2.1

10. XD Picture Card Specification Version 1.2

11. Universal Serial Bus Specification Rev 2.0

12. USB Mass Storage Class, Bulk Only Transport Version 1.0

©CoNoO~WNE

USB2230 Software Release Notes

Page- 3 -

Table of Contents
YIS To T o T o Y SRR 5
THENON-VOIALITE SEOM @ DIBEActeee ettt ettt h et eese e be s bt eheeheeaeaaeeae e besaeebeebeeaeeae e e enbesbeebesbeeaeeneeneanbeseenbeneas 6
Using Flash ROM 10 StOr@the NV SEOr € DAtacccuevuerieriesiesieeieeeereeesees e stestesseeees e stes e stessessesseessessensessessessesseesesnssnsessessessenns 6
Creating thE EEPROM .DAT FilB ..ottt sttt et st e s e e e tese e s bestesaeeseeseenaeseeneeseessenseeneeneeneeneenannrens 6
Using the USB Drive Manager Application (for Windows XP ONIY)cccceiiiineiniesere e seese et 7
LI LTI o SO SRTPSR 8
QLIS 2 =10 1 2T L= o S 8
USING .dat fIlESWITN USBDIMcouiiieeciese sttt e e e st e st st sae et e e seeseese e s e teseeeseeneeneeseeeeseesaeesennneneeneenseneenrnns 8
LI T @0 T [V (Koo T 1= o USSP 9
LI o 10O T I o USRS 10
ATEETDULE BIt DEFINMITIONS. ...ttt ettt s e e bt bt eh e e h e et e a e e se e be s beebeeheeheea e e e embeseeebesbeeaeeae e e anbeseenbesaeaaeas 11
Setting the ITDA TransCEIVEr MOUE Pin Bit:cooiiieie ittt s et e b b e s st ene e e ebesaesbesneeneennans 12
Setting MM C-4 Clock Speed and Card Power Management BitS:.........coccceririeirierine et s 13
Programming the NV SEOr@ DALa..........ooiiiiiieiteeeeee ettt et b ettt e e b sb e s b e s aeeae e e e besbeebeeheeaeeneene e beseesbeeneeneenes 13
LUN Configuration and 10N SNaliNQ......c.eceieiireieiesiseeeeeeseesesees e st s tesses e eseeaesseseestesaessesseessessessessessesnsessensessessessessennes 14
[1IN @0 g1 1o 0= 1 o o S 14
o0 R =TT oo S 14
(I 1AV oY= @ T U] - o o) o T 15
LUN POWEE IMBSKS ..ottt ettt st st b e sttt s bt e e st b e s 4 e st bt e e s e bt e e R e e bt st e st e b et e st e b e st e n e e b e s b eneebeneenes 16
Using Device Firmwar @ UPGrade (DFU) ...ttt e st b bt se e e e eesbesbeshe e st ens e s abesbeebesaeeneenes 18
L@ QYT PP 18
Files Required fOr DFU fOF WINOOWScuoiuiiiieeieeeeieee ettt st be bt ae e e e e b e seeebesb e sbesbe e e et e se e besaesbesneeneanes 18
Creating the 128KB DFU Capable Flash Binary “DOth.Din" ... e e 19
Preparing @ DeViCe fOr DIFU OPEIaLIONco.iiteiieeereeieee ettt re et se bbb s bt e ae e e e eabeseesbesbesaeebeeaeaneeseenbesaeebesneennanes 20
Choosing a Flash EEProm fOr Y OUI DEVICE.........coiuiiiee ettt he s s e et e b bt b e e st ese e e e nbesaesbesaeeneennans 20
S Lo U o1 =N o = 0 1T = 20
Using the USBDM Application to Perform Device Firmware Upgrade (DFU).......cccooovveeirerecieeee e 21
Using the OEM.eXE t0 UPAAE FiTMMWAIEccueiueeiireeeeeeeeste e sees e ste st s se e e e e see e saestessesseese e e enseseessessesaesseeseenseseensessessesseenennes 23
Creating @ DFU UplOadabl@ Fil@.........ccioeece ettt st st sae s e e e e e seesaesseeneeneeneansesaesrennnenennenns 24
L0 LS TaTo gL D =] 25
Using the USB2230 CUSLOM 1CONS PACKAGE.cueiirierieirieeeriesestesteseeaeseestestessesseesessestessesseessessessessessessessssssnssensessessensessennes 26
Contents of the USB2230 CUSLOM 1CONS PACKBGE........c.eiviriirieiieieieie sttt st sb et st se b e b e eneeneans 26
Creating the Required SEtICON TNi FTTES.... ..ot ettt et s be bt b e e st et e seebeseesbesaeeneeneans 26
Manually Installing the Custom 1cons APPlICaETION FIlESc.oiiiiiie e e e b 28
Troubleshooting the CuStomM 1CONS APPLICELIONoiuiiirieiee ettt et b e sbe s be b et e e e e besbesbeeneenean 30
(U Tl R LR Y S O g BN [1Y TSP 31
Needed files for the USB2230 SMSCT ITDA ArIVENc..oiiiiiiieieeeee ettt b et e e e b sbe b sbe s e eneese e besaesbesaeeneenes 31
Manually Installing the SMSC ITDA ArIVETcceeiiieieeerecre s st s e e e e st te e sresseese e e e e ensesaesseeseeneeseensessessesseenennes 33
Using the Automated Installer to Install the SMSC ITDA AriVEN.......cccvceiiciieceeeres e sa et e e sne e 33
WiNAOWS INSLAIIEr PACKAGES.cveveieisieiiitistieeeeeseese s e s e st se st s e e e seesaestesae st e s seeseeseeneenteseesbeaseeseenseneeseestesseeneesenneenseseensessensens 33
Using the Production Line Descriptor Update Utility (PLDU)cciviiiiiiceeiecieesee e sees et ese e snesre s eneenes 34
Setting Up the PLDU APPIICAIION. .. .cceiiiieieieceeeeeieestes e steste s e saeste s e sseeseeseesaeseessessesaessessessessesssessessessessesssesssnsessessesseesennenns 36
Using the PLDU t0 Update DEVICE DESCIIPLOIS........ccuerueeieieie st st etesieee et seeste e st sbesaesae s e eseeseesbesbesaesae s e aneeseenbesaesbesneeneanes 36
Using the Production Line TSt ULIITY (PLTU)....coiiiiirereeeeieeeie sttt sttt et st b bt s se e e s et saesbesne e e s 37
Creating the PLTU NI FITE......oiieieeee ettt ettt h et e e £ e se e be bt eb £ e et e m e e ee e b e seeebeeheeaeeneeneebeseesbenae e 37
A SAMPIE PLTU TN FITE. ettt st b e et b e bt bt e b e e st e st e e e eh e e aeem e e ee e besbeebeeheeneanbe st e besaesbeenas 38
Setting UP the PLTU APPIICAITONoueiei ittt sttt e bbb e b e st eae s e e besbesbesbeemeenseneanbeseesbesaeeneeneans 39
USINg the PLTU t0 TSt MUILIPIE DEVICESceeiue ettt st b e bt e e e e e e sb e bt e bt et e e e se e besaesbesneeneenes 39
Known Issueswith the USB2230 Production Line ULITITIES.........cuviiriiiirienesee s 40
Using the QuickTest Production Line Read/Writ@ TSt ULIITY ...cvccveeeiece e 41
USING the EPRM UPDT .XE ULHITY ...ueeiie ittt sttt sr et ese e e e see st e sneeneenae e antesnenrenneeneenes 42
Using the Windows XP Special Memory Stick Format REQISITY K@Y ...ocuviieieiiiece et 44
L0 LT aTo Rt A= T = L 11T 2 45
L0 LT aTo R AT 7= Lo | Y LU | S 46
Using the Dos Production Line Utility (DOSPLTU) ..ottt s be s s e e b e s enes 47

Media Tested With the USB2230.........coo ettt b e b b bt e bt s bt e e e e bt s b e s eb e b e nn st nn s 51

USB2230 Software Release Notes

Page- 4 -

USB2230 Performance BENCNMAIKSc..oi ittt ettt s et e st e e te e s beeebe e s sbeeeeaeeesabeebeeesbseeaseeesabeessseesabeeenseess 52
LT L@ NS To T a gL o LA =T o] =TSO 53
KNOWN Fir MWAr €@ REGEEO I SSUESccviitieitiiiticeeitee ittt ettt e eteeete et e eteeabeeabesseesbeesbesabesasesbeesbeansesaseanbeenbessbesssesaeesaeesbeesseensesnsenns 54
(1= 0TS = TSROSO 54

I DIBVICES. ...t iteeiteeeteeete et et te st e s bt e e te e teetesbeeebe e beeabesabesaeeshaesheesbeesbeaaseeaeeebeaabeanbeeabeeabesheesbeebeesbeaasesaeesaeeabeenteenbesnbesseesreens 54

IMIS DIBVICES: ...vveiveeiteeiteeite et et e e te e be e beeaesaeesheesbeebesasesaeeebeeabeeabeeabeeaeeebe e beesbeenbesasesaeesheenbeenbeenbeeabeeasesheesbeesbeeseensesnnesanenbeanes 54

SIM DEVICES:vvicteecteeeteeite et s te st esteesteetesaeesbeeebeebeeabesaeesbeeabaebeeabesasesaeesheesbeenbeaabeeaeeebeebeesbeesbeebeanseeaseeaeeebeenbeenbeenbennrenanens 54
SD/MMEC DEVICES:eccteeteiiteiiteieeiee it eeteeitesteeeteeabeesbesbesssesaaesbeesbeesesasesaesabeeabeenbeeabeeasesbeesbeebeebeanseanessaesabeenbeenbennbensressness 54

XD DIBVICES: ..uveiitee ettt ettt et e et e e et e e be e e tee st e e s beesabeseabeesabeseaseesabeeaabeesabeeaaseesabeaeaseesabeeaaeeeahbeeasseeaabeeaneeeabeeeseeeateeeneeeres 54

| SSUES NOt REIALEA 1O FITINWWAT ©... .ttt ettt e et e e et e e e s e e e e s st ae e s e sbe s s s sseaessabeeassanbassssabeeessssbeeesanbeesssasanassssbaness 55

USB2230 Software Release Notes
Page-5-

Revision History

0.390: -ROM Mask O1.

-Initial Release

0.409: -External Evaluation Build.

Firmware:

Enabled firmware to detect a multiple-emulation error when the mediareports a write failurein order to
pass xD compliancy testing.

Adheresto final 1.2 USB IrDA Bridge Protocol

Fixed intermittent CRC errors found during FIR transfers

Implemented SIP generation in order to guaranteed non-disruptive coexistence with slower systems
(115.2khit/s and below), once a higher speed (above 115.2 kbit/s) connection has been established.
Fixed an issue with the IRDA connection disconnecting and reconnecting during media card transfers
Fixed a bug where the MS media would not be recognized after a USB cable surprise removal was
performed during aread from the MS.

Changed iSerialNumber in the Device Descriptors to report 0x00 when the “Report the Serial number
string as Zero” attribute bit is set.

Added support for additional types of IrDA transceivers

There is no support for device firmware update with this release of firmware. Thisfunctionality will be
included in afuture release.

Applications:

0.428: -External Evaluation Build.

Firmware:

Added support for 4-bit High Speed MMC

Added support for device firmware update

Added support for IrDA transceiver shutdown during suspend

Fixed a bug where the USB2230 device acting as aremote IrDA host fails to transfer single files whose
sizes are greater than 450M B

Applications:

USBDM (v2.0.0.3) Added dropdown option for MM C-4 attribute bits

USBDM (v2.0.0.3) Added checkboxes for IrDA transceiver shut down bits

USBDM (v2.0.0.3) Added dropdown option for CIR attribute bits(does not apply to 2230)
USBDM (v2.0.0.3) Added capability to manually change attribute bits

USBDM (v2.0.0.3) Reorganized Configuration tab for attribute bits to be separated by media type
KillReg (v1.0.0.6) Added functionality to remove all registry entries associated with USB2230

0.436: -ROM Mask 02.

Firmware:

Added IrDA MIR support.
Changed Variable PID attribute bit and Idle Time Limit bytes to reserved

Applications:

USBDM (v2.0.0.4) Removed Variable PID checkbox and Idle Time Limit field
PLDU (v2.0.0.7) Removed Variable PID checkbox and Idle Time Limit field

USB2230 Software Release Notes
Page- 6 -
The Non-Volatile Store Data

The NV Store is user modifiable data that is stored in either seriadl EEPROM or external program flash ROM and used by
the device during operation. Some of the values that can be modified in the NV Store data include the serial number,
VID/PID, Manufacturers ID String, Product ID String, LUN ID Strings, the modifiable device desciptors such as
bmAttributes and MaxPower, number of LUNs, LUN order, and other modifiable bytes which customize the operation of
the USB2230.

The NV Store data is programmed into the device using atext file “EEPROM.DAT”, which contains the bytes of data that
are written to the EEPROM.

SMSC provides a utility to program the NV Store data called “USBDM.exe”. The procedure for using the USBDM Utility
to write the NV Store data is described in the following paragraphs.

Using Flash ROM to Store the NVStore Data

If you are using external program flash you can, as a cost reduction measure, eliminate the need for a serial eeprom in your
device by using the SST39VF010 Flash ROM, and the “NO EEPROM” version of the USB2230 firmware. The NO EEPROM
firmware uses a portion of the memory storage area in the SST39VF010 Flash to hold all of the NV Store data. Currently, the
SST39VF010 is the only chip supported by the NO EEPROM firmware. If you have a requirement to use another flash, please
contact SMSC Sales to inquire about adding support for your chip.

Note: If external program flash is used, the access time of the flash media must be less than 66 nanoseconds.

Note: The USB2230 contains internal masked ROM program code. If you are running the 2230 from internal ROM code, you
must use an external eeprom to store the NV Store data (V1D/PID/Manufacturer and Product 1D Strings, Attribute Bytes, etc.)

Creating the EEPROM.DAT File

An eeprom.dat file can be created using the USBDM application by altering all fields in the Configuration and Branding tab as
desired for the new file and saving the file using the “Save” button. This can be done with or without a device attached to the
host computer. The following section describes these tabs and the USBDM application in detail.

USB2230 Software Release Notes
Page- 7 -

Using the USB Drive Manager Application (for Windows XP only)

The USB Drive Manager (USBDM) application can be used to create the eeprom.dat file and program the USB2230 device via
USB, plus some additional functions such as creating end-user firmware updates contained within asingle, easily distributable
exe, and having the ability to instantly read the NV Store data from the device without the need for adriver swap.

Note: Only USBDM version 2.0.0.4 or newer will work properly for updating 2230

Note: USBDM will not work for updating a SM SC standalone hub.

Note: The USBDM Application is supported in Windows XP only.

m P M e i L e bl g i

Getting Started: B d
4 e H |E"- |ﬂ irn.' LA -
To start the USB Drive Manager application, simply ST I . Lt ik L s
double click onthe “USBDM.exe” executable. Once 215
the application opens you will see the screen shown to aritaarhng -
theright if there is a device attached to the host Sbatar
computer. If thereisno device present, avirtual device Pt
will be listed instead of the USB MSC Device =i
information shown in this example. Thisvirtual device e M
allows a .dat file to be edited without the need for a B s 1)
device to be attached to the host computer. TN

vt HH

‘m USB Mass Storage Class Drive Manager

File Edit Options Wiew Help

20 a

The USBDM Toolbar

=

Erase

= | A ES
Fmt | “DFU |

The toolbar buttons shown above are displayed at the top left hand side of the application. Starting from left to right, they
perform the following functions:

Button 1: Refresh Drive List Button 5: Format Drive (Not Used With 2230)
Button 2: Load .dat file Button 6: Upload Firmware

Button 3: Save .dat file Button 7: Copy

Button 4: Erase Media (Not Used With 2230) Button 8: Paste

*|f you do not see these buttons displayed, go to “View” in menu bar and make sure there is a check next to the “Toolbar”
option.

*Clicking on the “Help” option above the toolbar and selecting “ About Drive Manager” will display the version of the
USBDM application.

Thelnfo Tab

Theinfo tab is displayed whenever a USB mass storage
class device is attached to the host while USBDM is
running. Thistab displays the key fields in the NV Store
data for the device. Note: Unless the device contains the
SMSC USBDM firmware extensions, most of the data
fieldswill display INVALID.

Attach a device containing the USBDM firmware
extensionsto the PC viaa USB cable. The USB Drive
Manager application will read the NV Store data for this
deviceif there exists valid data. It will display
information for each drive that is available on the device.
The example to the right has information for Drive F,
Drive G, Drive H, and Drivel. Y ou can toggle between
the information for each of these drives by single clicking
on the Drive entry under the “USB MSC Device’ folder
on the left side of the application.

USB2230 Software Release Notes

Page- 8 -

e Gl P e

A RE
;_—H‘ﬂrlil =u u_'

B S [
— =

i v

luls | Brewding Codapemiae | S

2y L i i gy

Pl Bl [l B ™

Hrwin

Lo |

Note: The detach button seen on this tab will momentarily detach the target device from the system.

The Branding Tab

The Branding tab is used to write vendor specific data
to the NV Store. Programmabl e fields include: Vendor
ID, Product 1D, Language 1D, Product String,
Manufacturing String, and Serial Number String. Any
of thisinformation can be changed on the device. Once
you have entered the information for your device, click
on the “Update Now” button to program the NV Store.

Vendor ID: Unique for every vendor. Assigned by the
USB Implementers Forum.

Product 1D: Unique to product. Assigned by vendor.
Language | D: 0409 is the Language Code for English.
Other Language Codes may be found in the USB
specification.

Product String: 28 characters max. Used to identify
the product. This string will be used during the USB
enumeration process in Windows.

Manufacturing String: 28 characters max. Used to
identify the manufacturer.

Serial Number: 12 hex digits max. Must be unique to
each device.

e Ll fem e

S35 Ll P
e - L Pt

H - H_l.E.. |= J--'I'. oW

mis Miwdeg | Cenlgurvian |

[o b s

Jarein 1 0

e i t |

e g ol Pugiss i

il b vy TR

mg i Parded (2

ey Mmak a

Inquiry Manufacturer (8 Bytes) and Product (5 Bytes) ID Strings: If bit 4 of the 1% attribute byte is set, the device will use
these strings in response to a USB inquiry command, instead of the USB Descriptor Manufacturer and Product ID Strings.

Using .dat files with USBDM

The Load .dat file button can be used to populate these fieldsfrom avalid .dat file. After clicking the Load .dat file button, you
will be prompted to specify a .dat file. Once the .dat file has loaded, the text fields will be updated to reflect the datain the .dat
file. Any changes made to the text fields can also be saved into a.dat format using the Save .dat file button at the top of the

application.

USB2230 Software Release Notes
Page- 9 -

The Configuration Tab

The Configuration tab contains all of the other NV Store P | w
programmable fields not found in the Branding Tab. a1
| = e i b
The Configuration Tab is where you set: o e T T a el i i i
1) TheNVStore signature (always“ATAL” for USB2230) i TV :
2) Theattribute bits = R
3) TheLUN assignments e Poicbimcn e
4) TheLUN IDs e

5) NAND Profile (Not Used for USB2230)
6) Miscellaneous settings such as the USB descriptors e — ! =
bMaxPower and bmAttribute T e

These user programmable fields are described in detail in the =Ty era s
following paragraphs.

Signature: Signature should remain set to ATA1 for USB2230. s

Attribute Bytes: Thisfield should only be used in development st e S e
phase to modify attribute bits that have not yet been implemented virlesrermen s, svzamreelld |

into check boxes and dropdown choices on thistab. There needs i

to be full understanding of what effect altering a specific bit will — —-

have on the device before changing this field. All released features will be able to be selected without utilizing this field.

Attribute Bits: The attribute bits are used to customize the functionality of the USB2230 firmware. They are organized by
which particular media type they pertain to. Attribute bit checkboxes that are not specific to a mediatype are contained in the
Misc. Settings section. A complete list of al programmable attribute bits and their function is listed in the section of this
document entitled “ Attribute Bit Definitions and NV Store Editable Values.” In the image shown above “Reverse SD Card
Write Protect Sense” isthe only option selected. Placing a check to the left of an option sets an attribute bit. If the box is
unchecked, the attribute bit will be cleared. Any of these options may be checked or unchecked depending on the various
needs for the product being programmed. There are also dropdown optionsin the “IrDA”, “CIR” and “MMC-4" sections. Only
the “MMC-4" and “IrDA” dropdowns apply to the 2230 and are explained in detail in the Attribute Bit definitions section.

LUN Configuration:

LUN ID Strings (7 bytes each)- There are four LUN ID strings corresponding to LUN# 0,1,2 and 3.

Number of Iconsto Display, CF Lun#, MSLun # NAND Lun #, SD/MMC Lun #, SM Lun # These bytes are used to
specify the number of LUNSs the device exposes to the host. These bytes are also used for

icon sharing- Assigning more than one LUN to asingleicon. Thisis used in applications ALt

where the device utilizes a combo socket and the OEM wishes to have only asingle icon [FF 1 of e o Dinpieg

displayed for one or more interfaces. For more information, see the section of this [FF Compact Flas I LLBHD-ID
document entitled “LUN Configuration and Icon Sharing.” If thisfield is set to “FF”, the [T —— W LB -1
program assumes that you are using the default value of “04” and will display icons for CF, [—— =N LUBHE - ID

MS, SM, and SD. If thisfield is any other value besides “FF”, you must specify the LUN# [« n s EOATE -
assignments in the boxes starting with LUN 00 and going to (# of Iconsto Display -1) il =L L el
NAND Profile (2 Bytes): (Not used for the USB2230) Thisis where the NAND IFF nano i
performance profile is specified for controllers that use it.

Note that more than one interface (CF, MS, SM, or SD) can share a LUN. Remember L UN numbering always starts at 00.

The configuration to the right directs the firmware to show three LUN’sin the order of CF, SD/MMC, and SM. Note that
Memory Stick is not enabled in this configuration.

LUK Confgns alas
Of Iconsto Display: 03 3 8 of loont o Diiply
Compact Flash (1* LUN): 00 0 CompaciPlgh |OF LD 1D
Memory Stick (will not display): FF FT b ey 5 i [LLME! + 1D
Smart Media (2™ LUN): 02 T Sl Medka (e .

§ i d .
Secure Digital/MMC (3 LUN):01 T SoousDigiatac [OANE Lisim- 1D

SFAND 4 |[FFFF R KD Faafila

Misc. Settings: The Misc. Settings section is used to program the other
miscellaneous NV Store editable values. They are:

USB2230 Software Release Notes
Page - 10 -

k|30 MaPowm o [54 LunBwrCig

Bf05 Bimkiriereal |12 Lun Powes Mack 1

1) grl\ga[a;Pt(;]v;ﬁrlglome). Per USB specification. Do not set this value [Ak b £ Lun Pesves ack 3

2) Blink Interval (1 byte): Programmablein 10msintervals. Hi bit KW bt
indicates idle state: 0—Off, 1-On. The remaining bits are used to
determine the blink interval up to amax of 128 x 10 ms.

3) Blink Duration (1 byte): This byte is used to designate the number of seconds that the GPIO 0 LED will continue to
blink after adrive access. Setting this byteto “05” will cause the GPIO 0 LED to blink for 5 seconds after a drive
access.

4) bmAttribute (1 byte): Per USB Specification.

80 - Device is Bus Powered
CO — Deviceis Self Powered

5) Lun Pwr Cfg (1 byte): — Should be avalid hexadecimal number. Default = 54. Refer to the “Lun Power Configuration”
section for additional information on how to calculate this byte.

6) Lun Power Mask 1 (1 byte): - contains the power mask setting for CF and MS controllers. The mask used depends on how the
LUN isconfigured in the LUN Power Configuration byte. Refer to the “Lun Power Configuration” section for additional
information on how to calculate this byte.

7) Lun Power Mask 2 (1 byte): - contains the power mask setting for SM and SD controllers. The mask used depends on how the
LUN is configured in the LUN Power Configuration byte.

TheHub Tab

m IP s B e i L e s g

The Hub tab is non-functional for the 2230

T ———

product. If a2230 (or any USB mass storage flolglmimeo e
class device that does not support thistab’s e W [e
functions) is connected to the host when | v TR

USBDM isrunning, the entries will be grayed | Tk

out and inactive. Attempting to modify the
contents of the Hub tab will have no effect on
the operation of the device. Changing any
values on the Hub tab will have no effect, as
these entries will be grayed out and inactive.

sty

g o el —)
et P s Popsamng

[T T ey e —
i | vk S | gt b Hr—

HH

USB2230 Software Release Notes
Page- 11 -
Attribute Bit Definitions

Attributes (4 bytes): The attribute value for your device is determined by the options selecting in the USBDM utility provided by SMSC.
Changing the checkboxes and dropdown boxes and updating the device can update thisinformation. These bits are defined below and
organized by the Byte/Bit order. Inthe USBDM GUI, these hits are organized by which media type/feature they affect. The mgjority of
these bits are displayed as checkboxesin the USBDM GUI. A few of them are displayed in dropdown options. The“CIR” dropdown option
is not used with the 2230 and cannot be altered. The “MMC-4" and “IrDA” dropdowns do apply to the 2230 and are described in detail
following the bit definitions. The bit definitions are as follows:

Note: The bit names are shown in bold below and correlate to how the attribute checkbox islabeled in USBDM. Not all checkboxes apply to
the USB2230. Those bits that do not apply will specify, “ Reserved — always set to 0" in the definitions bel ow.

Byte 1, bit 0: Reserved — always set to 0. Use Slow NAND FLASH Media Timing
Byte 1, bit 1: Reserved — always set to 0. Enumerate NAND Device as Removable
Byte 1, bit 2: Reserved —always set to 0. Use GPIO5 asan SD Card Insert Indicator
Byte 1, bit 3: Report Serial Number String Index asZERO
1 - Always report iSeria as zero in the device descriptor.
O(default) - Report non-zero iSerial in device descriptor if serial number isvalid.
Byte 1, bit 4: Usethe Inquiry Manufacturer and Product ID Strings
1 — Usethe Inquiry Manufacturer and Product 1D Strings.
0 (default) - Use the USB Descriptor Manufacturer and Product ID Strings.
Byte 1, bit 5: Set Activity GPIO High when Suspended.
1-Theactivity LED GPIO is set to High when suspended.
O(default) - The activity LED GPIO is set to Low when suspended.
Byte 1, bit 6: Reverse SD Card Write Protect Sense
1 (default) - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP s low
0 - SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high
Byte 1, bit 7: Make SD Cards Write Protected Always (Read Only)
1 - SD cards will always be write protected, regardless of the state of the card's write protect switch
0 (default) - SD cards will only be write protected when the write protect switch on the SD card is engaged
Byte 2, bit 0: Don’t Perform Smart M edia CI S Checking
1 —Ignore CIS check for Smart Mediato allow the USB2230 to work with non-compliant cards.
O(default) — Enforce Strict CIS checking for Smart Media cards.
Byte 2, bit 1: Reserved —always setto 0. Perform NAND Media I dle processing
Byte 2, bit 2: Use Slow Compact Flash Compatibility M ode
1 — Compact Flash will operate in slow PIO-0 mode only regardless of CF card’s actual capability.
O(default) — Compact Flash will operate at the fastest mode the card reports it can support.
Byte 2, bit 3: Device Responds To Get Status(1)
1 - Device will report itself as SELF POWERED in response to a GET STATUS from the host.
O(default) — Device will report itself as BUS POWERED in response to a GET STATUS from the host.
Byte 2, bit 4: Device Reports USB Version *1.1 or 2.0 (War ning: Setting thisbit will result in the device being non-compliant
with the USB 2.0 specification.)
1 - Devicewill report itself as USB version 1.1 in the bcdUSB device descriptor.
O(default) — Device will report itself as USB version 2.0 in the bcdUSB device descriptor.
Byte 2, bit 5: Usea Common Media Insert / Media Activity LED.
1 —The activity LED will function as a common media inserted/media access LED.
O(default) — The activity LED will remain in itsidle state until mediais accessed.
Byte 2, bit 6: Reserved —always set to 0. Perform Software 1-bit ECC Error Correction on Smart Media.
Byte 2, bit 7: Reserved —always setto 0. Skip Page Status Byte Check on SM and xD.

USB2230 Software Release Notes
Page- 12 -
Attribute Bit Definitions (cont.)

Byte 3, bit 0: Reserved —always setto 0. Attach on Card Insert / Detach on Card Removal.
Byte 3, bit 1: Reserved — always set to 0. Enable xD Door Support
Byte 3, bit 2: Use Lun Power Configuration.
1 — Custom LUN Power Configuration stored in the NVSTORE isused. Refer to section “LUN Power Configuration” section for
additional information about this feature.
O(default) — Default LUN Power Configuration is used.
Byte 3, bit 3: Reserved —always setto 0
Byte 3, bit 4: MM C-4 clock speed. (Set or cleared by dropdown option in MM C-4 section)
1 - Use 24 MHz clock only
O(default) — Use clock speed supported by card-24/48MHz.
Byte 3, bit 5: MM C-4 Card Power M anagement. (Set or cleared by dropdown option in MM C-4 section)
Combined with Byte 3, bit 6 to form the MM C-4 current allowed dropdown option. See section below titled “ Setting MM C-4
Clock Speed and Card Power Management Bits” for additional information about this bit. Thisbit is set to 0 by default.
Byte 3, bit 6 MM C-4 Card Power Management. (Set or cleared by dropdown option in MM C-4 section)
Combined with Byte 3, bit 5 to form the MM C-4 current allowed dropdown option. See section below titled “ Setting MM C-4
Clock Speed and Card Power Management Bits” for additional information about this bit. Thisbit is set to 0 by default.
Byte 4, bit 1: Use ATC programming ver sus dynamic control of the M ODE pin (set or cleared by dropdown optionin IrDA
section. See section titled “ Setting the IrDA M ode pin bit” below for additional infor mation)
1 - Fast, Mode Pin Active, Use Dynamic ATC Programming
0 (default) —Slow, Mode Pin Inactive, Use Static Control of the Mode Pin.
Byte 4, bit 3: Enable Transceiver Shutdown
1 —Transceiver shutdown enabled
0 (default) — Transceiver shutdown disabled
Byte 4, bit 4: Transceiver Shutdown Polarity
1 — Transceiver shutdown is active low
0 (default) — Transceiver shutdown is active high.

All other bitsin the Attribute fields are reserved and should be set to 0.

Setting the IrDA Transceiver Mode Pin Bit:

The IrDA Transceiver Maode pin bit isByte 4, bit 1. The description of thisbit islisted in the i
previous section. Thisbit is set or cleared depending on what option is selected in the dropdown [Hode Fin Inacive

option in the IrDA section of the configuration tab in USBDM. The dropdown shown to theright, is o

used to set or clear Byte 3, bit 4. When “Mode Pin Inactive’ is selected, Byte 4, bit 1isset to 0.
When “Mode Pin Active’ is selected, Byte 4, bit 1issetto 1.

When Enable Transceiver Shutdown is selected (Byte 4, bit 3 isset to 1) and ATC Programming is off (Byte 4 bit 1 isset to 0)
then GPIO 12 is used to control transceiver shutdown.

The following table lists the various transceivers that have been tested with the USB2230. It also lists the necessary setting for
Byte 4, bit 1 for each transceiver.

Transceiver Transceiver Part M ode Pin selection Transceiver
Manufacturer Number (Byte 4, bit 1) Shutdown Pin
Vishay TFDU6102 Mode Pin Inactive (0) GPIO12
Agilent HSDL -3602-007 Mode Pin Inactive (0) GPIO12
Agilent HSDL -3603-007 Mode Pin Active (1) IRMode

USB2230 Software Release Notes
Page- 13 -
Setting MM C-4 Clock Speed and Card Power Management Bits:

The MM C-4 Card Power Management bits are Byte 3, bit 5 and Byte 3, bit 6.

WHC-

Most attribute bits are set by placing a check to the left of an option sets an attribute
bit. Thisis not true for Byte 3, bit 4; Byte 3, bit 5; and Byte 3, bit 6. A dropdown [Cond Diigratind - 24/83MH: =

box sets or clears these bits. Dropdown A shown to the right, is used to set or clear m
Byte 3, bit 4. When “ Card Designated —24/48MHZ" is selected, Byte 3, bit 4 isset to

0. When “Force 24MHz clock always’ is selected, Byte 3, bit 4isset to 1. Dropdown A
Dropdown B shown to the right is used to set Byte 3, bit 5 and Byte 3, hit 6 by HMLC-4
selecting the appropriate option in the dropdown box. The table below shows how Cord Dosgrsed - 24MBMHz =)
each the dropdown choice correlates to the MM C-4 Card Power Management bits. ey -
- - - A0y
Dropdown option Byte 3, bit 6 Byte 3, bit 5
(Current allowed) = FATEEE T
200mA (default) 0 0 Dropdown B
300mA 0 1
400mA 1 0
500mA or whatever 1 1
the card requests

Programming the NVVStore Data

e Bl fee W

- H_l.E. |= Jé'-llc | W

Once the eeprom.dat file has been created and loaded into] .
USBDM, you are ready to program the NV Store data into ST T [Srepp T e — ey

your device. I i D gt
Press the “ Update Now” button on either the Branding or e

Configuration Tab of the USBDM application. Both | | 77"
buttons will update all of the information displayed on
any tab in USBDM. The operation will report that the
Update completed Successfully once the data has been
programmed.

e |

L |

e S L
b Plagemsi o
g i Parart

v Mk i

USB2230 Software Release Notes
Page- 14 -
LUN Configuration and I con Sharing

LUN Configuration

LUN (Logical Unit Number) isthe term given to each available media type in the USB2230. The USB2230 has atotal of 4
LUNSs available for use: Compact Flash, Memory Stick, Smart Media, and Secure Digital/Multimedia Card. OEMs can specify
the number and order of LUNSs exposed to the user by setting the LUN Configuration section of the Configuration tab in
USBDM and updating the NV STORE with these new settings.

Example: The example on the right shows the correct settings for a 2230 LLIH Conlxpration
device that exposesiconsfor MS, SM and CF in that order. Note the (03 & of lorst o Ditoley
following bytes: -

03 Compact Flah ¥ LUNHD- |0
Number of Iconsto Display: “03” (The user will see 3 icons) 00 Moty Slek M5 LUK - 1D
MSLUN # “00” (Memory Stick will be the 1% icon displayed) [0 St Media M LLINH2 - b

SM LUN #: “01” (Smart Mediawill be the 2" icon displayed)
CF LUN #: “02" (Compact Flash will be the 3% icon displayed)
SD/MMC LUN # “FF” (Aniconfor SD/MMC will not be displayed)

FF cevive gt [S0MMEC piyna.in
FF M&MD % |FFFF HAMD Probls

Note: LUN numbering always starts at “00”.

I con Sharing

In addition to LUN configuration, the USB2230 can be further customized to allow more than one LUN to share anicon. This
functionality would most likely be used for devices that contain multi-card adapters (adapters that can read more than one type
of card.) So if you wanted to use a“5-in-1" or a“6-in-1" adapter, the USB2230 could be configured to only display asingle
icon to the user, rather than an icon for each individual mediatype. Alternatively, if you wanted to use a“4-in-1" adapter for
Memory Stick, Smart Media, Secure Digital and Multimedia Card, but have a separate adapter for Compact Flash, you could
configure the USB2230 to display 2 iconsto the user (one for the 4-in-1 adapter and one for the Compact Flash) as shown in
the example on the right.

Example: The example on the right shows the correct settings for a 2230 device

that exposes 2 icons: 1 for (CF) and 1 for (MS, SM and SD/MMC) in that order. LLIN Carfiguraion

Note the following bytes: [02 8 of koo o Displap

Number of Iconsto Display: “ 02" (The user will see 2 icons) "_ Fore Tl — L
CF LUN #: “00" (Compact Flash will be the 1% icon displayed) [0 Wemeny Stick il Ll
MSLUN # “01” (01 Srmart Weadia M LLIH2 - 1D
SM LUN #: “01” } (These media will all share asingleicon) [m Encise DiglalMHEC [S0MHE | gt
SD/MMC LUN #: “01"

||T HARD u |FFFF HaND Piodie

USB2230 Software Release Notes
Page - 15 -
LUN Power Configuration

The LUN Power Configuration allows the user to customize which GPIOs control power to which LUNSs.
Without this feature, users designing card readers that utilize multi-card sockets (sockets which can accept different
flash card types) must include one FET for each card that the socket supports. Therefore, if a socket can accept
any card type, the board design must include 4 FETs even though only 1 FET is active at a time. In order to reduce
cost, only one FET is needed per socket. Users can set the LUN Power Configuration to have a single GPIO
control power to the FET to deliver power to the multi-card socket, instead of requiring 4 GPIOs to power 4 FETs
independently.

An additional feature for the 2230 is that it has 3 internal FETs which can be utilized instead of external
FETs. The Lun Power Configuration feature allows any card (except CF cards) to be powered either by an external
FET or internal FET. (CF cards can ONLY be powered by an external FET). Also, any card (except CF cards) can
be powered by any combination of internal FETs. These features are configured via the NVSTORE settings.

These configurations are described below.

In order to use this feature the user must set the “Use LUN Power Configuration” bit (Attribute byte

3 bit 2) and assign a valid hexadecimal number to the “LUN Pwr Cfg” byte (byte 172),“ LUN Power
Mask 1", and “LUN Power Mask 2" in the NVSTORE.

The format of the NVStore LUN Pwr Cfg byte is as follows:

Bit
7 | 6 5 | 4 3 | 2 1 | o
SD Power GPIO | SM Power GPIO | MS Power GPIO | CF Power GPIO

The Power GPIO field for each of the sockets shall be defined as follows:

Bi

—

1 Bi

—

0 Power GPIO

Use external FET, connected with GPIO 8,9,10 and/or 11
Use Internal FET, connected with GPIO 8, 10, or 11
Reserved

Reserved

[l Ll ==}

ROk |O

By default the LUN Power Configuration byte will be as follows:

LUN Power Configuration
716|543 |2]|1]|0 Definition
CF 0 0 Use External FET
MS 0 1 Use Internal FET
SM 0 1 Use Internal FET
SD/MMC |0 1 Use Internal FET
54h

The above chart shows SD being powered by internal FET, SM powered by internal FET, MS powered by internal FET, and
CF powered by external FET.

Note: When the appropriate attribute byte LUN Power GPIO is changed, the behavior of the Power GPIOs will change to that
specified above regardless of LUN configuration.

LUN Power Masks

The LUN Power Masks are 4-bit fields that represent which GPIOs or FETs are configured for use with each LUN.

USB2230 Software Release Notes

The mask definition is different, depending on how the LUN is configured.

Power Mask Table

Config | Mask [FET(s) PIN(s)

00 0001 [External GPIO 8

00 0010 [External GPIO 9

00 0100 [External GPIO 10

00 1000 [External GPIO 11

01 0001 |Internal FET O GPIO 8

01 0010 |(Internal FET 1 GPIO 10
Internal FET 0 and GPIO 8 and

01 0011 |Internal FET 1 GPIO 10

01 0100 |(Internal FET 2 GPIO 11
Internal FET 0 and GPIO 8 and

01 0101 |(Internal FET 2 GPIO 11
Internal FET 1 and GPIO 10 and

01 0110 |(Internal FET 2 GPIO 11
Internal FET 1 and GPIO 8 and
Internal FET 2 and GPIO 10 and

01 0111 |Internal FET 3 GPIO 11

01 1xxx |[Invalid Invalid

LUN Power Mask 1

LUN Power Mask 1 contains the power mask setting for CF and MS controllers. The mask used depends on how

the LUN is configured in the LUN Power Configuration byte.

Bit

7 6 5 4

3 | 2 | 1 | o

MS Power Mask
Default: 0001 — Internal FET 0

CF Power Mask
Default: 0010 — External FET GPIO 9

Default value for LUN Power Mask 1 is 0x12

LUN Power Mask 2

LUN Power Mask 2 contains the power mask setting for SM and SD controllers. The mask used depends on how

the LUN is configured in the LUN Power Configuration byte.

Bit

7 6 5 4

3 | 2 | 1 | o

SD Power Mask
Default: 0100 — Internal FET 2

SM Power Mask
Default: 0010 — Internal FET 1

Default value for LUN Power Mask 2 is 0x42

USB2230 Software Release Notes
Page- 17 -

Example: The Icon Sharing example in the previous sections describes a device with 2 icons: 1 for (CF) and 1 for (MS, SM
and SD/MMC) in that order. Since MS, SM and SD/MMC are all sharing a socket in that example only 2 FETs would be
needed. The Lun Power Configuration feature can be used to assign two GPIOs to power these LUNs instead of the four
GPIOs used by default. Suppose for example that the user would like the CF slot to be powered externally by GPIO 9 and the
combo slot to be powered internally by FETO. First the user would set the attribute bit “Use LUN Pwr Config”. Then the user
would set the LUN Power Configuration byte to 0x54, the LUN Power Mask 1 to 0x12, and the LUN Power Mask 2 to Ox11.
(See tables below for how this value is found)

0x54 Example:
LUN Power Configuration
7/6|5/4]13[2|1]0 Definition
CF 0 O Use External FET
MS 0 1 Use Internal FET
SM 0 1 Use Internal FET
SD/MMC | 0 1 Use Internal FET
54h

For MS, SM, and SD combo dot: From the Power Mask Table above we know that if the LUN Power Configuration for the
media dot type is set to 0x01 and the desired power is from Internal FET 0, then the Power Mask for that media slot typeis
0x0001.

For CF dot: From the Power Mask Table above we know that if the LUN Power Configuration for the media dot typeis set to
0x00 and the desired power is from External GPIO9, then the Power Mask for that media slot type is 0x0010.

Thisinformation can be used to determine the LUN Power Mask bytes as follows:

Bit
7 6 5 4 3 | 2 | 1 0
MS Power Mask CF Power Mask
0001 — Internal FET O 0010 — External FET GPIO 9
1 2
LUN Power Mask 1 is 0x12
Bit
7 6 5 4 3 2 1 0
SD Power Mask SM Power Mask
0001 — Internal FET O 0001 — Internal FET O
1 1

LUN Power Mask 2 is 0x11

USB2230 Software Release Notes
Page- 18 -

Using Device Firmware Upgrade (DFU)

Overview

Device Firmware Upgrade (DFU) is the process by which device firmware is updated through a standard USB cable,
eliminating the need to remove, reprogram and replace flash memory. This operation is accomplished by placing special code
into an external flash memory chip at the time it isinitially programmed. (Note: the external flash memory must have access
time less than 66 nanoseconds in order for the firmware to run properly.) This code can then later be called upon to essentialy
change the USB device into a flash programmable device. Then new firmware can then be uploaded to the device and
reprogrammed into the flash. Once the operation is complete, the device configuresitself back to a normal USB device and
begins utilizing the new firmware. Please note that you can not perform a device firmwar e upgrade if you are running
from theinternal USB2230 ROM code. You must use an exter nal flash with lessthan 66nS accesstimeif you want to
have device firmwar e upgr ade capability.

SMSC’s Device Firmware Upgrade (DFU) package gives manufacturers the ability to easily utilize DFU to
dynamically update the firmware and descriptor information in their devices. Thisallows for in circuit programming of new
device firmware both on the assembly line, and by the end user in the field. This affords both the manufacturer and the end user
agreat opportunity to utilize the feature enhancements and bug fixes of new code immediately once it becomes available.

In order to help customers evaluate the DFU technology, SMSC provides a DFU package that consists of the DFU
driver, device firmware, sample DFU applications and source code. This document serves to describe the use of these tools,
and the implementation of Device Firmware Upgrade in atypical device application.

Files Required for DFU for Windows

USBDM .exe —A sample DFU application that demonstrates the procedure for updating the firmware and NV Store data.

eeprom.dat —A text file containing the changeable descriptor information used to update the NV Store. Thisfile can be created
and edited by changing the data in the Branding and Configuration tab in the USBDM application and saving the data.

hex2bin.exe -A batch capable utility that converts INTEL HEX, MOTOROLA 'S, or TEKTRONIX HEX filesto Binary
Format.

dfu.exe -A utility used to add, remove, or check for the presence of a DFU file suffix. Any firmware image that isto be
uploaded to adevice via DFU, should contain a valid DFU file suffix.

dfu2230.hex -The DFU execution code that is inserted into the lower 16kb of a 128kb flash when it isinitially programmed.
This hex fileis merged with the 128K binary file "fmc.bin" with the “hex2bin.exe” utility to create the 128kb flash image.
(Included with the USB2230 firmware).

fmc.hex -The USB2230 device firmware that isinserted into the upper 112kb of a 128kb flash when it isinitially programmed.
This hex fileis converted to a 128kb binary file with the “hex2bin.exe” utility, and then merged with the 16kb “dfu.hex” fileto
create the 128kb flash image. (Included with the USB2230 firmware).

fmc.dfu -A firmware image that can be uploaded to the device. Thisfileis created by the user. This document explainsin
detail how to make downloadable DFU images through the use of the “DFU.exe” utility, which appends a DFU file suffix to
the firmware file to be uploaded to the device. (Thisfileis created by the user).

Application Source Code -All of the source code for the USBDM sampl e application.

USB2230 Software Release Notes
Page- 19 -

Creating the 128KB DFU Capable Flash Binary “both.bin”

128KB Flash EEPROM

In order to prepare adevice for DFU operation, the flash must be programmed
with both the DFU code, and the normal USB2230 device code. The device code is
converted to a 128K B hinary file, and merged with the DFU code. Together they

form the 128K B binary file which is uploaded to the flash eeprom. When thisfile -

is uploaded to the flash, the DFU code occupies the lower 16KB block, and the Device
device code occupies the upper 112K B block. 112 Code
In normal operation, a DFU capable USB2230 device executes only the device

code in the upper 112K B block of memory. This code allowsit to function as a 16K DFU
normal USB 2.0 flash media controller. However, when the device is switched to Code
DFU mode, the DFU code in the lower 16KB block begins executing and the

device ceases to be a flash media device. Essentially, it changes to become an

eeprom programming device. In thismode it is capable of reprogramming the USB2230 device code in the upper 112KB block
of flash memory. Once the operation is complete, the device switches code execution back to the upper bank and begins
operating with the newly updated code. At this point is ceases to be an eeprom programming device, and returnsto being a
flash media device.

To create the 128KB DFU capable flash binary file that will initially be programmed into the flash eeprom, you will need two
files:

1) fmc.hex (The device code)
2) dfu2230.hex (The DFU code)

The “dfu2230.hex” fileis provided by SMSC, and provides programming support for alimited number of eeproms. The
“fmc.hex” fileisthe standard USB2230 device firmware. These two files, “dfu2230.hex” and “fmc.hex,” are both converted to
binary files with the “hex2bin.exe” utility, and then merged with each other during the hex2bin command on the dfu file.
Together they become the 128K B binary file “both.bin”. The procedure for creating “both.bin” is outlined below.

Note that this entire procedure can be accomplished easily using a simple DOS batch file:

hex2bin -1131070 fmc.hex fmc.bin
hex2bin -m -116384 dfu2230.hex fmc.bin

USB2230 Software Release Notes
Page - 20 -

Preparing a Device for DFU Operation

In order to prepare adevice for DFU operation, the flash must initially be programmed with the “both.bin” code. The
“both.bin” file contains both the device code as well asthe DFU code. The DFU code must preexist on the flash in order for it
to be capable of receiving a DFU upload. The DFU code remains dormant in the lower 16KB of memory until it is called upon
to perform a device firmware upgrade operation.

Note: The external flash used to program the "both.bin" must have access time less than 66 nanoseconds.

Once the flash has been programmed with the “both.bin” file, it may be inserted into the 2230’ s flash socket in
preparation for DFU operation.

Choosing a Flash Eeprom for Your Device

SMSC provides customers the “dfu.hex” file that supports only the SST39VF010, AM 29L V010B, AM 29L V040B,
and the STM 29W010B flash eeproms. While all of these flash support DFU firmware uploads, only the SST39VF010 supports
NO EEPROM operation.

If you wish to use another flash in your device, it would most likely require some modification to the existing DFU
code by SMSC to support the electrical characteristics of the new chip. If thisisthe case, please contact SMSC sales to have
the project scheduled.

If you do decide to use another flash egprom, there are a few requirements to look for to make sure it will work with
DFU. First of all it should be 128KB and byte writable. It needs to have an access time of less than 66 nanoseconds in order for
the external firmware to operate properly. Also, it should have equivalent programming characteristics as the supported chips,
i.e. block size, erase size, read/write/erase speed, command set, and command address. Provided the chip meets all of the above
requirements, there is a good chance that it will support DFU.

Setting up the Hardware

Either aUSB 1.1 or 2.0 controller may be used for the DFU operation, however some USB 2.0 host controller drivers
such as OMI’s have been found to have defects which prevent DFU from performing normally. If you are going to use a USB
2.0 host controller, it is recommended that you use Microsoft’s host controller driversin order to achieve the best results. Once
the board is attached and powered up, it should enumerate as a norma USB flash media controller. When you see the drive
icon(s) appear, the deviceisready. The following section describes the next step in the process, which is setting up the
software application to perform the DFU.

USB2230 Software Release Notes
Page- 21 -

Using the USBDM Application to Perform Device Firmware Upgrade (DFU)

The following files are needed to perform a device firmware upgrade with the USBDM application:

The USBDM application executable (USBDM.exe)

The device code (both.bin) *Must be preprogrammed in the device flash in order to accept DFU
A HEX to BIN converter (hex2bin.exe)

Utility to add the .dfu suffix (dfu.exe)

The updated firmware image. Stepsto create thisfile are explained below (fmc.dfu)

grwdhpE

* Note that if you also want to perform an update of the serial eeprom, you will need a 6th file, “eeprom.dat” which contains
the descriptor information for the serial eeprom.

A firmware update can only be done using this application if a valid both.bin file is already programmed onto the device. See
the section of this document entitled “ Creating the 128K B DFU Capable Flash Binary ‘both.bin’” for steps on how to create
the both.bin file.

Creating the .dfu File:

The .dfu fileisa DFU uploadable firmware image. It is essentially USB2230 firmware converted to binary format using the
hex2bin.exe utility, with a DFU suffix appended to it. For information on creating the .dfu file, please see the section of this
document entitled “Creating a DFU Uploadable File”. Please note that the USBDM application uses the device ID field (DID)
to check firmware version information. The DID field should be filled with the major and minor firmware version (for this
example, v4.28, the DID would be 0x0428).

This procedure can be completed using asimple DOS batch file:

hex2bin -1131070 fmc.hex fmc.bin

hex2bin -m -116384 dfu2230.hex fmc.bin

dfu fmc.bin -did 0x0428 -pid 0x2230 -vid 0x0424
ren fme.bin fmc.dfu

m LSS i S e C i Diive Wi i

e pir e
2| 1| o o e (o0 | W
= Jﬂﬂl-lm lefo | Busading | Coaligaaian | ul | Aow |
USBDM isused for the firmware update. e ol e iy,
To begin the firmware update, start USBDM B v o a{insm st e
by double clicking on the icon. Jhlig
Frudar
sl H b I
Foll P 1)
O DiMes
Eiads Fesswn M
[
% 2k et

USB2230 Software Release Notes
Page - 22 -

Updating the Firmware;

To perform afirmware update, click on the “Upload Firmware” button at the top of the application. Fim

Y ou will then be prompted to select the .dfu file that you wish to Fing *.diu {iim and click “{iper’
upload to your device. Navigate to the .dfu file (if it is not already ook | 3 DFLI +| &= & e T
listed in the current folder) and click open. e ¥

o =]

Pt by | i s =| £ 1g]

| Copar g puid-onie

Y ou will see apop up box on your screen that displays the status of the
firmware upload. This status will cycle through “Waiting for DFU
Driver to Load”, “Switching to DFU Mode”, “Uploading New

Firmware”, “Validating New Firmware”, and “Firmware Upload whniing Fou DFL Do L
Successful”. Once the loading is complete you will be prompted to |
unplug the device and reattach it to continue (or to restart the host if the % 5% 1008

deviceisinternally mounted). Once the deviceis reattached, the device

will enumerate and the information for the updated firmware will be
loaded into the USB Drive Manager application.

Note: Thefirst time USBDM isused for DFU on a Windows XP host, the found new hardware wizard will be seen when the
dfu driver is used during the firmware update process. Thiswill only happen the first time a DFU is performed on a host.
When this comes up, choose to have windows automatically install the driver. Choose to continue loading the SMSC DFU
driver even though it is unsigned. While thisis occurring, you may receive a message from USBDM asking you if you wish to
continue waiting for the device to respond. Select yes to continue waiting.

Using USB Drive Manager to Create a Consumer Firmware Update Executable

USBDM can be used to create a very simple, easy to use, easy to distribute firmware update that OEMs can give to their
customersto allow firmware upgrades. To create the executable, you only need two files:

1. The Drive Manager application (USBDM .exe)
2. The updated firmware image. (fmc.dfu)

Note: Ensurethat the DID set in the DFU file matchesthe Major and Minor firmwarerevision.

Simply drag and drop the .dfu file on the USBDM.exeiconin A T .,.,...,.,..._1
Windows. Y ou will see a popup box asking if you would like to r : — : —
create an OEM consumer version of the DFU application. Click yes

and the application will build the consumer firmware update N s ey) A
executable. The executable will be given the default name of

“OEM.exe”. You can rename this file to whatever you like. Thisis

the file that is distributed to the customer to allow firmware

upgrades. £ - |

Note: Thetarget device must be preprogrammed with a valid
“both.bin” fileto allow firmwar e upgrades.

USB2230 Software Release Notes
Page - 23 -

Using the OEM.exe to Update Firmware

The OEM executable icon is shown to the right. E

1) Double click on this executable to begin updating the firmware in your target device.

2) You will be prompted to attach a supported USB device.

Firwvmss | incnds Ireraricre

This prompt also displays which firmware version the executable will
use to update your device. For thisexample, Firmware Version 3.00 is
used.

Allacs a nuppaied LISE devos and ek o

Frresars Varmon 308

3) Connect your device(if not connected already) and click
“Continue”. £l Timsanin

Note: This application allows consumers to make firmware updates to their device provided that 1) avalid both.bin fileis
already programmed on the target device and 2) the firmware that they are attempting to upgrade to is equal to or newer than
the firmware version already on the device. This application will not allow an update to a version of firmware that is older than
what is currently on the device. You will be asked if you would like to update your device firmware, click “yes’ to verify the
update and the application will begin to update your device.

The application will show the status of the update. It will cycle
through “Waiting for DFU Driver to Load”, “ Switching to DFU
Mode”, “Uploading New Firmware”, “Validating New ming fos [FL Dirver 2 Lasd

Firmware”, and “Firmware Upload Successful”.
% 50% 1005

4) The USB Drive Manager application will prompt you to either reboot your

computer (if an internal USB device was updated) or unplug the device and —
plug it back in (if an external device was updated). H them o s e vl L0 e, planem
pebanl yiir cowpuber, T Dok, pleais

unpdi] Hhe derdce and Dhig & back i
halay e

After thisis completed, you will see the device status pop up
return with the message “ The Update Completed Successfully”.

The firmware is now updated on your device. The Lidais Conplelsd Siiocesshil
e ———
& 5% 133%

USB2230 Software Release Notes
Page - 24 -

Creating a DFU Uploadable File

In order for afile to be uploadable viaa DFU operation, it must contain avalid DFU file suffix. The DFU file suffix
contains a CRC of the entire file, a DFU signature, and the VID, PID, and DID for the device to be upgraded. The following
table was extracted from the USB Device Firmware Upgrade Specification (Rev 1.0), and shows the composition of the DFU
file suffix.

Offset Field Size Value Description

-0 dwCRC 4 Number The CRC of the entire file, excluding
dwCRC. (Calculation specified in the
following section).

-4 bLength 1 16 The length of this DFU suffix including
dwCRC.

-5 ucDfuSignature 3 uc The unique DFU signature field.

-8 bcdDFU 2 BCD DFU specification number.

-10 idvVendor 2 ID The vendor ID associated with this file.
Either FFFFh or must match device’s
vendor ID.

-12 idProduct 2 ID The product ID associated with this file.
Either FFFFh or must match device’s
product ID.

-14 bcdDevice 2 BCD The release number of the device
associated with this file. Either FFFFh or a
BCD firmware release or version number.

In the SMSC DFU application, DFU downloadable files are given the extension “.dfu”. Thisis strictly arbitrary; the
files can be of any extension as long as the application is designed to handle them. In order to create your own DFU
downloadable file, you begin with the firmware file that is going to be used to upgrade the device. If the new firmware fileis
not already in binary format, it should be converted to binary using the Hex2Bin utility provided. Once in binary format, the
“dfu.exe” utility isused to append avalid DFU file suffix to the firmware file (See the next section titled “Using the DFU.exe
Utility”). Once the DFU file suffix has been added, you may rename the file with a .dfu extension to indicate that it is DFU
downloadable. The entire procedure for creating the DFU downloadable file is summarized below.

fmc.hex fmc.hin fmc.bin finc.dfu
Firmware . Firmware Firmware DFU
File a2 File —_— File —el2TE e | Downloadable
{Hex Format) {Bin Format) (With DFU Suffix) Firmware

USB2230 Software Release Notes
Page - 25 -

Using the DFU.exe Utility
The“DFU.exe” utility can be used to add a DFU suffix to afile, or to check for the presence of avalid DFU suffix on

an existing file. If required, the “DFU.exe" utility can also be used to remove a DFU suffix from afile. The“DFU.exe” utility
is run from a command box in Windows.

The usage of DFU.exeis: DFU.exe <filename> [optiong]

To check for the presence of a DFU file suffix: DFU.exe <filename>

To remove a DFU suffix from afile: DFU.exe <filename> -del

To add aDFU suffix to afile: DFU.exe <filename> -did <val> -pid <val> -vid <val>
Example of adding a DFU suffix to “fmc.bin”: DFU.exe fmc.bin -did OXFFFF -pid 0x2230 -vid 0x0424

L WINNTS System32h cmd.exe

E:sxdfu

nsage: dfu fname [options]

to check for a suffix use: dfu fname
to remove a suffix nsze: dfu fname —del
to add a suffix use: dfu fname —did val —pid val —wvid val

e.g., dfu myfile —did Bx@182 —pid 2345 —vid 817
sets idDevice BxB182 idProduct BxB72? idlUendor BxBAAF

Once the DFU suffix has been added to thefile, the last step isto give it afile extension that matches the type
expected by your application. The dfuTest sample application is programmed to accept DFU uploadable files that have the
“.dfu” extension. Finally, to check and make sure that the file has a valid suffix:

[5] O\ WINNT . System32 cmd

Liwordfu fmc.dfu
idDevice: BxFFFF
idProduct: Bx2BFC
idUendor: BxB424

valid dfu suffix found

R

USB2230 Software Release Notes
Page - 26 -

Using the USB2230 Custom | cons Package

The USB2230 custom icons package allows OEMs to assign custom icons to the drives associated with the USB2230
flash media controller. This allows the end user to easily distinguish between the different media typesin Windows Explorer.
A new feature availablein Setlcon is the ability to dynamically change icons based on media state. In other words, you can
specify that oneicon appear if thereis mediain the reader dot, and another icon appear when there is no mediain the reader
slot. Also, the dynamic icon functionality enables the detection of MMC, MS Pro, and xD, allowing the user to display custom
icons for those media types as well.

Contents of the USB2230 Custom | cons Package

The USB2230 Custom I cons Package consists of the following:

Setl con.exe- The custom icon application.

Smsc.ini- A sample Windows ini file.

Sample | cons- The sample icons distributed with this package are for evaluation use only.

Eeprom.dat- A text file containing the changeable descriptor information used to update the serial eeprom with the USBDM
utility.

Creating the Required Setlcon Ini Files

In order for the Setlcon application to work properly, anini file with a specific file name and format must be installed on the

host computer. Theini file tells the Setlcon application which icons are associated with which drives, and provides afull path
to each icon. The following four paragraphs describe the procedure for creating, naming, formatting and installing the ini file
on the host PC.

1) Settingthelni File Name:
Windows XP - The name of theini file should be the same as the device's Manufacturer string, but be no
longer than 8 characters. If the Manufacturer string is greater than 8 characters, then only the first 8
characters of the string should be used. If the Manufacturer string is less than 8 characters, then theini file
should use the entire Manufacturer’ s string.
Example: If MFG string is " Standard Microsystems Corp", the ini filename should be " Standard.ini"
Example: If MFG stringis"SMSC", the ini filename should be "SMSC.ini"

(Note: The Manufacturer’s string may be set or viewed using the USBDM Branding Tab. See the “Using the
USB Drive Manager Application” section of this document for more details.)

USB2230 Software Release Notes
Page - 27 -

Creating the Required Setl con I ni Files (Cont.)

2) Setting the Ini Section Name:

Windows XP - The name of the section should be same as the first 5 characters of the Device's Product 1D
string enclosed in square brackets, including any spaces if present.

Example: If the Product ID string is 223 USB Controller", the section name should be "[223 U]"
Example: If the Product ID string is"223US", the section name should be "[223US]"

Example: If the Product ID string is"223", the section name should be "[223]"

Example: If the Product ID string is™", the section name should be "[]"

(Note: The Manufacturer’s string may be set or viewed using the USBDM utility Branding Tab.)

3) Creating the Ini Section Content:

Under the Ini Section name should be atwo line entry for each mediatype. The format for the two line entry
is"Prod=Path\IlconName.ico", where "Prod" is the string following the dash (-) in the Disk Drives section of
the Device Manager for that drive (as seen in the screenshot to the right).

Path\lconName.ico is the full path and icon name for the icon to be used RIS

for that drive. "ProdLABEL=Label Name" — (A declaration used to j algm [z =10
display a descriptive label in Windows Explorer for disk volumes with no = 3 e talraT

names) where "ProdLABEL" isthe same as "Prod" as explained above ¢ 8 compe
appended with the word "LABEL" and "Label Name" isthe label that is et o)

to be displayed for the corresponding drive. 5D S USE 2SS

{20 SMSC USE 2 HS-SDMMC
(3D SMSC USE 2 HS-5M
- (33 WDC WD1028A
@ Display adapters
-1} DVDJCD-ROM drives
52 Floppy disk controllers
¥-= Floppy disk drives
-5 1DE ATAIATAFI contrallers
]-@ Keyboards
¥y Mice and other pointing devices
- @ Moniters
¢ -EE} Metwork adapters
£ Ports (COM& LPT)
+)-<fJ Sound, video and game contrallers
- Storage volumes

-3 System devices
¥]-83 Universal Serial Bus controllers

Note: The string length of "Label Name" should be less than 32 characters
and should only contain a pha-numerical characters and specia characters
'space’ (' ") and 'under score' ().

Example: CF=\Program Files\Icons\CF.ico

Example: CFLABEL=Compact Flash Drive

Example: SD/MM C=\Program Files\Icons\SDMMZC.ico

Example: SD/IMMCLABEL=SDMMC Drive (Notethereisno slash “/")

Important Notes:

1) Thefull path to the icon should be less than 64 characters.

2) Thefile containing theicon should only be an .ico, .dll or .exefile.
3) There should not be any extra spaces before and after the '=' sign

To use the dynamic icon functionality, you also need to add lines for each LUN number and interface type

(i.e. CF, SM, XD, etc.) for both the media present “L# " and media not present “L# NM” states. Please see
the sampleini file that follows for clarification.

4) Placing the Ini Filein the Correct Location on the Target PC:

In order for the custom icon application to work correctly, theini file must be placed in one of the Windows
System directories, depending on which operating system is being used. Those directories are:

Windows XP - "Windows\System32"

USB2230 Software Release Notes
Page - 28 -

Manually I nstalling the Custom I cons Application Files

In order to perform a manual installation of the custom icons application files, the following steps should be

performed:

1. Copy the Setlcon.exe fileto alocation on the target computer’s hard drive. (i.e. “ C:\Program
Files\Icons\Setlcon.exe™)

2. Copy theicon filesto alocation on the target computer’s hard drive. (i.e. “ C:\Program Files\Icons\”).

3. Add a String entry to the Windows registry key
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.

String: Setlcon Value: C:\Program Files\Icons\Setl con.exe

4. Copy theini fileto the appropriate Windows System directory on the host PC. (See the previous section
“Creating the Ini Files’ for details.)

5. Manually start the Setlcon.exe application by double clicking it, or smply reboot the host PC. The entry

placed in the registry during Step 3 will automatically start the application after the PC is rebooted.

USB2230 Software Release Notes
Page - 29 -

A Samplelni File

[2230]

CF=C:\Program Files\Icons\CF.ico
CFLABEL=Compact Flash Drive

M S=C:\Program Files\Icons\M S.ico
MSLABEL=Memory Stick Drive
SM=C:\Program Files\Icons\SM.ico
SMLABEL=Smart Media Drive
SD/MMC=C:\Program Files\Icons\SDMMZC.ico
SD/MMCLABEL=SDMMC Drive

LO_CF=\Program Files\SM SC\Cf.ico
LO_CFLABEL=Compact Flash Drive
LO_NM=\Program Files\SM SC\cf-gray.ico
LO_ NMLABEL=Compact Flash Drive

L1 MS=\Program Files\SM SC\Ms.ico

L1 MSLABEL=Memory Stick Drive

L1 MSPR=\Program Files\SM SC\M sPro.ico
L1 MSPRLABEL=Memory Stick Pro Drive
L1 NM=\Program Files\SM SC\ms-gray.ico
L1 NMLABEL=Memory Stick Drive

L2 _SM=\Program Files\SM SC\Sm.ico

L2 SMLABEL=Smart Media Drive

L2 XD=\Program Files\SM SC\Xd.ico
L2 XDLABEL=xD MediaDrive

L2 NM=\Program Files\SM SC\sm-gray.ico
L2 NMLABEL=Smart Media Drive

L3 _SD=\Program Files\SM SC\Sd.ico

L3 SDLABEL=SD MediaDrive

L3 _MMC=\Program Files\SM SC\Mmc.ico
L3 MMCLABEL=MMC MediaDrive

L3 _NM=\Program Files\SM SC\sdmmc-gray.ico
L3 NMLABEL=SDMMC MediaDrive

USB2230 Software Release Notes
Page - 30 -

Creating a Windows | nstaller for the Custom | cons Application Files

Using an automated installer is the preferred method for installing and setting up the Custom I cons application to run
on an end user’s PC. As part of the USB2230 Custom Icons Application Package, a sample Windows installer 1sincluded
which demonstrates a practical example of using a Windows installer to install, setup and run the Custom Icons application. To
usetheinstaller, si mplg run it and then reboot the host PC once the installation is complete. When the reboot is complete, the
custom icons for the 2230 should appear in Windows Explorer.

Important Note: Theini filesthat are installed bﬁ the SMSC provided installer are hard coded to match SMSC's
VID/PID, Manufacturer String, and Product ID String. The EEPROM.DAT file that is included with the software distribution
contains the required data, and should be used to program evaluation boards to be used with the installer. Otherwise theini files
will not match the datain your board, and the icons will not appear. In general, to create a Windows Installer you should
configureit to do the following:

1. Copy the Setlcon.exe file to alocation on the target computer’s hard drive. (i.e. “ C:\Program
Files\Icons\Setlcon.exe™)

2. Copy theicon filesto alocation on the target computer’s hard drive. (i.e. “ C:\Program Files\Icons\”).
3. Add a String entry to the Windows registry key]) .
“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentV ersion\Run” that will
automatically start the Setlcon application each time the host computer is booted.
String: Setlcon Value: C:\Program Files\Icons\Setl con.exe

4. Configuretheinstaller to do a conditional installation depending on the operating system, to copy the ini
files to the appropriate Windows System directory. (See the section “Creating the Ini Files’ for details.)

5. Configure theinstaller to run the “ Setlcon.exe” application once the install is complete. Alternatively,
you could force the user to reboot the PC.

Troubleshooting the Custom I cons Application

I ssue: Cause:
After installing the Custom Icons application and 1) If you used the custom installer it islikely that the contents of your serial eeprom do not
rebooting, the custom icons do not appear. match theini files that areinstalled with the installer. Read the section “Programming the

Serial EEPROM” and program the eeprom to match SMSC's VID/PID, Manufacturers
String, and Product ID String for the 2230. An EEPROM.DAT file with this datais
included in the Setlcon software release for your convenience.

2) If you created your own ini files and installed the application files manually, the causeis
most likely an incorrectly named or formatted ini file. Refer to the section “Creating the
Ini Files’ and double check to make sure that the ini files are correctly named, formatted,
and placed in the proper location.

3) Check to seethat the “ Setlcon.exe” application is running by checking the Processes tab in
the Task Manager.

After installing the Custom Icons application the Unplug the USB cable and then regttach it. Icons are only displayed when the deviceis attached with

drives still show the original icon. the Setlcon application running. If this does not correct the problem, try the troubleshooting steps
above.
In Windows XP (SP1) the custom icons do not Thisisabug in Windows XP. Microsoft has developed a fix (KB823293).

appear after areboot of the host. However if the
USB cable is detached and resttached, or mediais
either inserted or gected, the icon(s) appear.

In Windows XP, the drive medialabel is not Thisisaknown issuein Windows XP. As aworkaround, you can either hit F5 to refresh the label, or
updated when a card isinserted. remove and reinsert the media.
Card Reader Software Installer does not install When the Card Reader Software Installer is removed, the uninstall stops the device and removes all

properly when attempting to run the installer after registry entries associated with the device. The device must be unplugged and reattached before it
removing a previous version of the installer will enumerate.

USB2230 Software Release Notes
Page- 31 -

Using the SMSC IrDA driver
The USB2230 SMSC IrDA driver needs to be properly loaded in order for IrDA to function with the USB2230. This

driver only works with Windows XP. The driver may be installed manually or automatically by running the installer provided.
The process for both methods is detailed below.

Needed files for the USB2230 SMSC IrDA driver

The following files are needed in order to load the SMSC IrDA driver
1) smscuir.sys
2) smscuir.inf

Below is a sample of the smscuir.inf file

; Smscuir.inf
; Copyright 2004-2005, SMSC

[Version]

Signature = "$Windows NT$"

Class = Infrared

provider = %SM SC%

ClassGUID = {6bdd1fc5-810f-11d0-BEC7-08002BE2092F}
DriverVer = 11/30/2004,1.3.0.7

Catal ogFile=SmscUIR.cat

[Manufacturer]
%SM SC%=SMSC

[ControlFlags]
ExcludeFromSelect = *

[SMSC]
%USB\VID_0424&PID_2230&Mi_01.DeviceDesc%=SmscUIR.Dev,USB\VID_0424& PID_2230& Mi_01

[DestinationDirs]
SmscUIR.CopyFiles = 12
DefaultDestDir = 12

[SmscUIR.Dev.NT]

CopyFiles=SmscUIR.CopyFiles
AddReg=SmscUIR.AddReg, SmscUIR.Params.AddReg
BusType=15

Characteristics = 0x04; NCF_PHY SICAL

[SmscUIR.Dev.NT.Services]
Addservice = SmscUIR, 0x00000002, SmscUIR.AddService, common.EventLog

[SmscUIR.AddService]
DisplayName = %SmscUIR.SvcDesc%

ServiceType =1 ; SERVICE_KERNEL_DRIVER
StartType =3 ; SERVICE_DEMAND_START
ErrorControl =1 ; SERVICE_ERROR_NORMAL

ServiceBinary = %12%\Smscuir.sys
LoadOrderGroup = NDIS

USB2230 Software Release Notes
Page - 32 -

[SmscUIR.AddReg]

HKR, Ndi, HelpText, 0O, %SmscUIR.Help%
HKR, Ndi, Service, 0, "SmscUIR"

HKR, Ndi\lnterfaces, UpperRange, 0, "ndisirda"
HKR, Ndi\lnterfaces, LowerRange, 0, "nolower"
HKR, Ndi, RequiredAll, 0, "MS_IrDA"

[SmscUIR.Params.AddReg]
; Nothing as of now

[common.EventLog]
AddReg = common.AddEventLog.reg

[common.AddEventLog.reg]
HKR, , EventM essageFile, 0x00020000, " %%SystemRoot%%\System32\netevent.dIl"
HKR, , TypesSupported, 0x00010001, 7

[SmscUIR.CopyFiles]
Smscuir.sys

[SourceDisksFiles]
Smscuir.sys=1

[SourceDisksNames]
1 =%DRIVERDISK%,,,

[Strings]

SMSC="sSMSC"

USB\VID_0424&PID_2230&Mi_01.DeviceDesc="SMSC USB CardReader-IrDA Adapter"
SmscUIR.SveDesc="Smscuir.sys SMSC USB CardReader-IrDA Adapter”

SmscUIR.Help ="The USB-IrDA bridge can be used to establish wireless serial and network links with other IrDA devices."

DRIVERDISK=""

USB2230 Software Release Notes
Page - 33 -

Manually Installing the SMSC IrDA driver
In order to perform a manual installation of the SMSC IrDA driver, the following steps should be performed:
1. Copy the smscuir.sysfile to the “Windows\System32\drivers” directory.
2. Copy the smscuir.inf file to the “Windows\inf” directory.
3. AttachaUSB2230 device. The “Found new Hardware” wizard will come up.
4. Click next to have Windows XP search for the driver to use.
5. After severa moments, Windows will find the SMSC IrDA driver and display a message asking the user

if they want to continue loading the SMSC USB CardReader-IrDA Adapter driver even thoughitis
unsigned. Click “Continue Anyway” to finish the install

Using the Automated | nstaller to I nstall the SMSC IrDA driver
In order to perform an automated installation of the SMSC IrDA driver, the following steps should be performed:

1. Attach aUSB2230 device. Double click on the “Card Reader - IrDA Software Installer vXXX.exe".

2. Continueto click “Next” through the installation process. Once the installation completed, the SMSC
[rDA driver will be loaded properly without any user intervention.

Windows | nstaller Packages

The“Card Reader - IrDA Software Installer vXXX.exe” isasampleinstaller included in the USB2230 DFU and Driver
Package and USB2230 Eval Board Package. Thisinstaller demonstrates ggractlcal example of using a Windowsinstaller to 1)
install, setup and run the Custom Icons application and 2) install the SMSC IrDA Driver. To usetheinstaller, simply run it and
then reboot the host PC once the installation is compl ete.

USB2230 Software Release Notes
Page - 34 -

Using the Production Line Descriptor Update Utility (PLDU)

Purpose: The PLDU is used to update device firmware and/or device descriptors such as the VID/PID, Manufacturer and
Product ID stringsin a production line environment using Windows 2000 SP3 and SP4. Under Windows XP, this can be used
to update device descriptors or firmware if all the devices have same descriptor data. Otherwise, each device will enumerate as
aMSC device and the utility needs to keep swapping drivers which is atime consuming operation and not really effective
under a production line environment. This application is intended to be used by OEMsin their production line environment and
is not intended for other users. The utility features a simple interface that displays success or failure of the programming
operation in graphical form using either a green box with a checkmark (PASS), or ared box with an “X” (FAIL). The PLDU is
capable of programming one device at atime and takes approximately 12 seconds to complete. The IRDA functionality of
2230 is currently only supported in Windows X P, however; this application can still be used in Windows 2000 to update the
Mass Storage portion of the 2230.

Features:
Firmware update.
Descriptor (NVRAM) update.
Read descriptor (NVRAM) data from device.
GUI editor to edit and create DAT files.
Graphical and Text status display.
Automatic serial number increment after every descriptor update.
Break up of serial number to YY-MM-DD-S-SN format where
YY - Year (2 digits)
MM - Month (2 digits)
DD - Day (2 digits)
S - Station number (1 digit)
SN - Serial number (5 digits)

NogokrwdpE

Application Behavior:

1. When the application is run with no SMSC devices plugged in, al controls should be disabled.

2. While the application is running, the controls should be dynamically enabled and disabled as
the deviceis plugged and unplugged.

3. The button controls on all tabs except the "Production” tab will always be disabled.

4. The "Update Device" button will be enabled only after loading aDAT file.

5. If the "Update Firmware" button is clicked, the utility removes reference to a previously
loaded DAT file and disables the "Update Device" button.

6. Any changes made to the YY-MM-DD-S-Sno controls will be lost if user switchesto a different
tab and returns to the "Production” tab. The changes should be saved immediately to a DAT
file before switching tabs. If the user needs to switch tabs to make changes in those tabs,
then those changes should be made first and lastly switch to the "Production” tab. Now the
user can make necessary changes to the formatted serial number controls and can be saved to
aDAT filethat will include all the changes done on the other tabs as well. However, NOTE
THAT THISISTHE BEHAVIOR ONLY WHEN A DAT FILE HASNOT BEEN LOADED ALREADY AND THE

BUTTON
"Update Device" IS DISABLED.

7. When aDAT fileisloaded and the "Update Device" button is enabled, following behavior is
to be expected;

a. Changes made to serial number controlsin "Production” tab will be lost if user changes
tabs. However, these changes will be active for the user to save to aDAT file or update
to the device immediately after the changes are made and before switching tabs.

b. Changes made to controls on other tabs will be lost and can never be saved to a DAT file
or updated to adevice.

¢. Changes made to serial number controls, though available for an immediate update to a
device, will be lost after the update completesif those changes don't reflect the
current date (YY-MM-DD).

USB2230 Software Release Notes
Page - 35 -

Button Behaviour:
1. Update Device
a. Enabled only after aDAT fileisloaded
b. Disabled whenever afirmware update is done
¢. When clicked, app reads the serial number from the Y'Y -MM-DD-S-Sno controls and embeds
this serial number into the DAT file that isloaded in memory to write to the device.
d. After every update, the DAT file is updated to reflect the last serial number used to
write to the device and also automatically increments the serial number.

2. Update Firmware

a. Prompts for aDFU file (only the first time) and uses thisfile to update the device's
firmware.

b. Alwaysignores any changes done to the controlsin al tabs. The utility always reads
the descriptor data from the device and embeds this into the DFU file image before
writing the DFU file image to the device. Thus, after a firmware update, the device's
descriptor data should be the same as it was before the update.

c. If aDAT file was previously loaded, clicking this button would unload the DAT file and
disable the "Update Device" button.

3. Load DAT File

a. LoadsaDAT fileinto memory.

b. Enables the "Update Device" button

c¢. Any changes done to controls on all tabs are lost while switching tabs.

d. Changes done to YY-MM-DD-S-Sno controls are available for saving to a DAT file or
writing to device only immediately after the changes are made.

e. When aDAT fileisloaded, the YY-MM-DD-S-Sno controls are set to reflect current date,
same station number digit asin the DAT file and either a default value of "00000" or
DAT file'slast 5 digits of serial number value incremented by one. The default value
of "00000" is used whenever the DAT file's YY-MM-DD digits do not match the current date.

4. Save DAT File
a. Savesthe values from the controlsto a DAT file.
b. Refer to earlier sections to find out when changes to controls are lost.
c. After saving to DAT file, this DOES NOT automatically load that DAT fileinto memory.

Setting Up the PLDU Application

1

USB2230 Software Release Notes

Page - 36 -

First attach a USB2230 device to the host. To start the PLDU application, simply double click “PLDU.exe”

executable.

After the main program dialog opens the production tab
displays four options:

a. Update Device- Updates NV Store descriptor data
such as VID/PID, Manufacturer and Product 1D
strings from the “EEPROM.DAT” file. Note —
this option is not available until aDAT fileis
loaded.

b. Update Firmware- Updates the device firmware
using a DFU update file with the .dfu extension.

c. Load DAT file—LoadsaDAT fileinto memory

d. SaveDAT file - Savesthe values from the
controlsto aDAT file

Using the PLDU to Update Device Descriptors

1.

The first operation that should be performed on a USB2230 device
coming off the production line is to update its descriptors. To do this,
The application will prompt you to select
the EEPROM .dat file that will be used to program the descriptors.
Once the EEPROM.DAT file has been selected the option to Update

first press“Load DAT file”.

Device will now be available.

Click the “Update Device” button. The PLDU application will swap

the mass storage class driver for the SMSC DFU driver.

Once the DFU driver swap has completed, the data from
the eeprom.dat file that is loaded is programmed into the
device. The operation takes about 12 seconds to complete.
Provided the programming was successful, the Status box
displays a green box with a checkmark and reports
success. At this point the user simply detaches the device
and reattaches the next device to be programmed. The
PLDU automatically updates the EEPROM.DAT fileto
the next unique serial number.

ﬂ& [Prommrme Frumiley | Crafpmuiion | ol lein

1
ey
u sy e L

Flonll " bl il mwdl chisl g

s e]
Pleidier | awis

T D i

e 1h iy Cmclymiden Bah e
RPN

S Er

e Bl
i e s e

= = oY

1]

USB2230 Software Release Notes
Page - 37 -

Using the Production Line Test Utility (PLTU)

Purpose: The PLTU application is used to test the basic functionality of USB2230 devicesin a production line environment
using Windows 2000 (SP3) only. The IRDA functionality of 2230 is currently only supported in Windows XP, however; this
application can till be used in Windows 2000 to test the functionality of the Mass Storage functionality of the 2230. The
application creates a subdirectory on the mediafor each LUN, copies a 'Test Fil€' to the subdirectory, deletes the 'Test File, and
then deletes the subdirectory.

Features:
1. Capable of testing 5 devices with 4 LUNs each simultaneoudly.
2. After testing, the application cleans up the registry entries involving the OEM's VID, PID, Inquiry MFG and Product
strings.
3. Graphical and Text status display of test results.
4. GUI editor to edit and create ini files.

Creatingthe PLTU ini File

Before using the PLTU you must create or edit an ini file. A sampleini fileis shipped with the PLTU application which can be
modified for your setup. The ini file should contain the following lines:

OEMVID =VID
Thisisthe original equipment manufacturer’s VID (Vendor ID) of the device whose descriptor has already been updated.
The‘VID’ is specified as afour digit hexadecimal number.

OEMPID =PID
Thisisthe original equipment manufacturer’s PID (Product I1D) of the device whose descriptor has already been updated.
The'PID’ is specified as afour digit hexadecimal number.

INQUIRY_MFG = Inquiry MFG String
Thisisthe string returned by the device as part of the Vendor information in the Inquiry data. This can be of maximum 8
characters.

INQUIRY_PRODUCT = Inquiry Product String
Thisis part of the string returned by the device Product information Inquiry data. This can be of maximum 5 characters.

TEST_FILE = path to Test file
Specifies the full path to the file that isto be used during file copy tests.

DEV1 LUNO = Drive Letter
DEV1 LUN1 = Drive Letter
DEV1 LUN2 = Drive Letter
DEV1 LUN3=Drive Letter

DEV2_LUNO = Drive Letter
DEV2_LUN1 = Drive Letter
DEV2_LUN2 = Drive Letter
DEV2 LUN3 = Drive Letter

DEV3 _LUNO = Drive Letter
DEV3 LUN1 = Drive Letter
DEV3 LUN2 = Drive Letter
DEV3 LUN3 = Drive Letter

DEV4 LUNO = Drive Letter
DEV4 LUN1 = Drive Letter
DEV4 LUN2 = Drive Letter
DEV4 LUN3 = Drive Letter

Creating the PLTU ini File (Cont.)

DEV5_LUNO = Drive Letter
DEV5_LUN1 = Drive Letter
DEV5_LUN2 = Drive Letter
DEV5_LUNS3 = Drive Letter

USB2230 Software Release Notes
Page - 38 -

These lines specify the Drives that are associated with the multiple LUNSs of the respective devices to be tested. If the
‘Drive Letter’ is not specified for a particular LUN, then it means that the corresponding LUN of that device isNOT to be
tested. If the ‘Drive Letter’ isnot specified for all LUNs for a particular device, then it means that the entire deviceis

either NOT present or NOT to be tested.

A Sample PLTU ini File

OEMVID =0424
OEMPID =2230
INQUIRY_MFG =SMSC
INQUIRY_PRODUCT = 2230

DEV1 LUNO=F
DEV1 LUN1=G
DEV1 LUN2=H
DEV1 LUN3 =1

DEV2 LUNO=J
DEV2 LUN1=K
DEV2_LUN2=L
DEV2_LUN3=M

DEV3_LUNO=N
DEV3 LUN1=0
DEV3 LUN2=P
DEV3 LUN3=0Q

DEV4 LUNO=R
DEV4 LUN1=S
DEV4 LUN2=T
DEV4_LUN3=U

DEV5 LUNO=
DEVS5 LUN1=
DEV5 LUN2=
DEVS5 LUN3 =

TEST_FILE =C\TEST\IMEG.R01

NOTE:

There can be spaces before and after the '=' sign, but the total number of characters for an entire line (including

spaces) should be less than 255.

USB2230 Software Release Notes

Page - 39 -
Setting Up the PLTU Application
1. First attach aUSB2230 device to the host. To start the PLTU application, I L
simply double click “TestDevice.exe” executable. The application will bt [T d+mnon
prompt you to select the location of theini file when it isfirst started. el
esee [Com]
L T P —— | = _I
I O i o
i ; [bt e o R | D o md i s T LI
2. Provided theini file contains the correct path to the =
key files on the local machine, the main program iy — S 4
dialog opens. The station is now ready to begin PRBNSPR | U - s T e
testing devices. At this point you should attach the Yoot i [ERTECT TR TR
devices to be tested and ensure that they have good fermm
media with sufficient free space to hold the file i | [EaEE]
being used for testing. [
‘ e e |
I P
£l

Using the PLTU to Test Multiple Devices

1. Onceall of the devices have been attached, the user

simply presses the “Start Test” button to begin
testing devices in accordance with the contents of b = — e 3
theini file being used. After the testing has PO ST bkt [5 e i - ekl
completed, the user receives a graphical Yot e [ETTEETER T bt
representation of the test results in the form of a g r
green box with a black checkmark to indicate nn | _tawi | e (e
“PASS’, or ared box with ablack “X” to indicate e b P
“FAIL".
o] SR
1] | e O —
PanT P gl

Once the test has completed, the user should remove all of the tested devices and then attach the next set of devicesto
be tested. Once all of the devices are attached and enumerated (as indicated by the presence of drive iconsin Windows
Explorer), the user repeats step 1 to test the next set of devices.

USB2230 Software Release Notes

Known | ssues with the USB2230 Production Line Utilities

Issue:

Workaround:

Page - 40 -

Status:

The PLDU and PLTU applications are designed to be used
with Windows 2000 (SP3) host systems using the Microsoft
mass storage class driver. While the applications may work
with other operating systems, only Windows 2000 (SP3) is
supported.

N/A

N/A

Some EHCI host controller drivers such as Orange Micro's do
not work properly with the DFU driver swapping performed
by the PLDU and PLTU applications.

We highly recommend that you use the Microsoft supplied
EHCI drivers for the test systems running the PLDU and
PLTU applications.

N/A

The PLTU does not distinguish between general device write
failures and media specific write failures. This meansthat the
test will fail if no media present in the drive, mediaisfull,
mediais unformatted, mediais corrupt, mediaiswrite
protected, etc.. Under such circumstances, the test results do
not reflect the status of the device, but rather the failure of the
media. Hence, it is recommended that the test is performed
again on the device with known good media.

Only use known good mediato perform the PLTU testing.

N/A

Due to caching by the OS, the 10 transfer may not be fully
completed before the test results are displayed by the
application. It is recommended that the user wait for 5 to 10
seconds before disconnecting the devices.

Wait 5-10 seconds after completion of the PLTU tests before
removing the devices from the host.

N/A

User may experience errors when running applications if
certain files used by applications are marked read only.

Make sure that all files used with these utilities are not marked
read only

N/A

PLDU displays a program error when attempting to update
the firmware using an external version of the 2230 firmware.

Use USBDM application for device firmware updates. PLDU
may still be used for Descriptor Updates.

Will befixed in future
release.

USB2230 Software Release Notes
Page- 41 -

Using the QuickTest Production Line Read/Write Test Utility

The QuickTest utility is astreamlined version of the full Production Line Test Utility discussed previously. QuickTest can test
amaximum of (4) USB2230 devices at atime, with a maximum of 4 LUNs each. The testing procedureisvery si mple

involving these only 4 steps T Py e Y T
L e ET
)) i DEEYD s ST LT LT L [
1. Writesto mediaon each LUN starting from st T it AT | [man .
LBA 1024 M D [MmliMe [T
2. Readsfrom mediaon each LUN starting ; y
from LBA 1024 et iat o e
3. Compares the data read against the data LowdmeFe | Ediwre |
written to the media
4. Updatesthe status for each LUN in the Test
application
B
(] I

Thetesting is performed on all the LUNs of the device serially. However, tests on multiple devices are performed
simultaneously using multiple threads. The QuickTest utility requires the presence of the SMSC password filter driver to send
BULK-ONLY commands, totally by-passing the native file system. On windows 2000 systems, Service Pack 3 should be
installed. The IRDA functionality of 2230 is currently only supported in Windows XP, however; this application can till be
used in Windows 2000 to test the functionality of the Mass Storage functionality of the 2230.

QuickTest.exe requires the SM SC password filter driver (Smscpswd.inf) to be installed in order to function properly. This
driver isno longer installed by the card reader installer and must be installed manually before running QuickTest. In order to
install the password filter drivers, copy Smscpswd.inf and Smscpswd.sys to your system. Open the device manager and double
click on the USB Mass Storage Device entry in the Universal Serial Bus Controllers section. In the driver tab, select update
driver. Thewizard will assist in installing this driver. When given the choice, specify to have the wizard display alist of
known drivers for this device. Choose “Have Disk” and browse to where you copied the smscpswd.inf file and select it. This
should give you the option to install “USB Mass Storage Device with Password Protection (WinMe)”.

Limitations of the QuickTest Utility:

1. Doesnot distinguish between general device write failures and media specific write failures. This means that the test
will fail if no mediais present in the drive, the mediais full, unformatted, corrupt, write protected, etc.. Under such
circumstances, the test results do not reflect the status of the device. Hence, it is recommended that the test is
performed again on the device with known good media.

2. Thetimetaken to complete the tests depend on the following:

» Test size- Thiscan be from 64KB to 5000KB. The bigger the size, the more time it will take to complete the
tests.

* Number of devices connected- The field "Max Devices' specifies how many devicesto test at once (should
be 1 <= N <= 4). However, it is not necessary that the actual number of devices connected be equal to the
number specified in the "Max Devices' field. For example, the "Max Devices' field can specify 4 but the
actual number of devices connected may be <4 or >4. However, the utility will either test only the actual
number of devices connected or the "Max Devices', whichever is less. Though tests on multiple devices are
performed simultaneoudly, the time taken for the tests to complete on multiple devices will be alittle more
than that for asingle device.

USB2230 Software Release Notes
Page - 42 -

Using the EPRMUPDT .exe Utility

EPRMUPDT.exeisaDOS based utility used to write and / or read EEPROM datato / from the USB2230 device. This utility is
designed to be used by OEM s in a production line environment with as little human intervention as possible.

EprmUpdt Usage:
EprmUpdt [-h[-u] [-V] [-c] [-w"oFileName"] [-r"iFileName"] [-t"HostController"]
[-I"LogFileName'] [-p"xxxxyyyy"]

-hjU print help/usage
Vo verbose, optional, default is off
“C e confirm scanned serial number (last 3 digits) before updating EPPROM

-w"oFileName"........ name of DAT file (with full path) that isto be written to device EEPROM

-r'iFileName'"........ name of formatted text file (with full path) that isto be created by reading device EEPROM

-I"LogFileName"......log the serial number to the specified log file

-t"HostController"...specifies the host controller type to which the deviceis attached. This should be "UHCIn",
"OHCIn" or "EHCIn", where 'n" is anumber (0 to 9) specifying the host controller in the enumeration order.
Thisisan optional parameter and if not specified, a default value of "UHCI" will be used. Similarly 'n'isalso
optional and if it is not specified, a default value of ‘0" will be used.

-PXXXXYYYY" e specifies that multiple M SC devices may be connected to the system and that the utility should
find the device by matching the specified Vid and Pid. The value "xxxx" denotes the Vid and the value
"yyyy" denotesthe Pid. Both the Vid and Pid are to be specified as 4 digit HEX numbers. The -p optionis
optional and if not specified, or contains an invalid value, then the utility would default to finding the first
MSC device using the class, subclass and protocol values.

S I infinite loop, till user presses 'CTRL C' to quit

1. All options can be specified using both UPPERCASE or |lowercase | etters.

2. The double quotes (") around file names for -w, -r and -1 optionsis optional. If the path names does not contain
blank spaces, then the double quotes are not necessary. If the path names contain blank spaces, then the
double quotes are mandatory.

3. The file names for the -w, -r and -1 options are to be specified with full path information. If the files are in the
current directory, then the path information is not necessary.

4. The double quotes around the 'HostController' in -t option is optional .

Features:

1. Uses atemplate EEPROM.DAT file, modifying the serial number alone by scanning it
off the keyboard buffer, to update the device EEPROM.

2. Reads the contents of the device EEPROM and generates a formatted text file that
vividly describes all the fields of EEPROM structure.

3. The options for writing and reading EEPROM data can be specified together or alone.

4. Provides an option (-¢) to confirm the scanned serial number (last 3 digits) with
the user before updating the EEPROM data.

5. Provides an option (-v) to turn on or off the additional debug / status comments.
6. Provides an option (-"LogFileName") to log the serial number to the user specified log file.
7. Allows processing devices one after another in aloop till user wantsto exit (by

pressing 'Ctrl C') by specifying the -i option in the command line. Otherwise, the
utility will exit back to the command prompt after it is done with a single device.

USB2230 Software Release Notes
Page - 43 -

Using the EPRMUPDT .exe Utility (cont.)

8. Displays the status by showing abig "ERR", "FAIL" or "PASS" along with other relevant information.

"ERR"

"FAIL"

"PASS'

- Means an error occurred outside of the main process of updating or reading to / from the device.
This can happen if there are any errors while parsing the input arguments, or invalid usage, or
invalid file paths, or any errors while starting the host controller and root hub. The application will
exit with code 2 during such circumstances.

- Means an error occurred during the process of updating or reading to / from the device. This can
happen if no matching devices are found, or verification of last 3 digits of serial number fails, or
error while writing data to device, or error while reading data from device, or verification of read
and write data fails. The actual reason for the failure is given below the "FAIL" status and the
application exits with code 1 during such circumstances. If the -i option is specified, then the
application proceeds to prompt for scanning the serial number again. At this point, it isleft to the
user discretion, whether to connect a new device or proceed with the existing device. For example,
if the failureis dueto last 3 digits serial number mismatch, it could be due to human error rather
than a device error and so the user may want to proceed with the same device again.

- Means no error occurred and the process of updating or reading to / from the device completed
successfully, inclduing all necessary verifications and the application exits with code O. If the -i
option is specified, then the application proceeds to prompt for scanning the serial number again. At
this stage, the user can safely remove the existing device and connect a new device and enter the
serial number again.

9. The utility will return with one of the following exit codes.

0 - Indicates "PASS"
1- Indicates"FAIL"
2 - Indicates "ERR"

10. The utility will work with all types of host controllers (UHCI, OHCI & EHCI) and the host controller to which the device is
connected is specified by the -t option. The -t option specifies the type of the host controller as well as the number in
the PCI enumeration order of the host controllers. These two together identify an unique host controller which the
application enumerates to detect the test device. Note that thisis optional and that the default values will be used if it

is not specified.
examples:
-t"UHCI" - Test on the 1st UHCI host controller
-t"EHCIO" - Test on the 1st EHCI host controller
-t"OHCI2" - Test on the 3rd OHCI host controller

11. The utility was searching for the MSC device by looking in to the DeviceClass, DeviceSubClass and DeviceProtocol
values of all connected devices and using the first matched device for further operations. Thislead to limitations like
the "The MSC device that is to be processed by the utility has to be the first MSC device in enumeration order".
Moreover, the Class, SubClass and Protocol values of aMSC device are 0, 0 and 0 which are the values of any USB
composite class device. This meant that the limitation had to be extended further as"The MSC device that isto
be processed by the utility has to be the first Composite class device in enumeration order”. This was modified inv2.0
of the utility so that the utility can now find a device by searching for it's Vendorld (Vid) and Productld (Pid). Thisis
accomplished by using the "-p" option and specifying the Vid and Pid as 4 digit Hex numbers. For backwards
compatibility reasons, thisis provided as an optional option. Test systems which do not have any other composite
class or MSC devices need not specify this option.

USB2230 Software Release Notes
Page - 44 -

Limitations of the EPRM UPDT .exe Utility:

1. Supports devices connected only at the root hub level.

2. When"-p" option is specified with aVid and Pid and multiple devices of same Vid and Pid are connected to
the system, the utility will process only the first device in the enumeration order.

3. Thereisno bustraffic after SPT EEPROM write call. Still, the EEPROM write call should pass and the
application will report the status of the write. Use only one of the -w or -r options and don't combine both the
options. If both the options are used, then the write should pass but the read should fail because of a known
issue.

Using the Windows XP Special Memory Stick Format Registry Key

Windows XP has the capability to apply a Sony factory format on Memory Stick cards by adding a special key to the registry:

[HKEY_LOCAL_MACHINE\SOFTWAREWMicrosoft\Windows NT\CurrentV ersion\PerHwl dStorage\
USBSTOR#DiskSMSC 2230 U HSMS | "DeviceGroup"="MemoryStick"

This key hasto be customized to match the inquiry data returned from the device. The inquiry datais made up of the first 8
characters of the Manufacturer String, followed by the first 5 characters on the Product String. In the example registry key
above, the strings are:

Manufacturer String = “SMSC” (Note that SMSC is followed by four spaces denoted by underscores to make up the 8
characters.)

Product String = “2230 USB2230" (Note that only the first 5 characters, including the space, are used.)
Thisregistry key works for Windows XP only. It will not work for any other operating system. Once the registry key has been

added, when a user formats a Memory Stick card from using Windows, the Sony factory FAT format will be applied, including
the creation of the “MEMSTICK.IND" hidden file.

USB2230 Software Release Notes
Page - 45 -

Using the KillReg Utility

KillReg isa DOS bhased application to stop adevice and clean itsrelated registry entries during an automated uninstallation
process. KillReg is designed to be called from a Windows Installer script. It is used during installation and uninstallation of
USB97C210/223/2224/2228/2230 devices under all Windows operating systems to remove the device entries from the registry.
This allows the SMSC Win2K or Windows native driver to be loaded if the device has previously been installed without a
driver, or with an incorrect driver. KillReg is also used during the uninstallation process to completely remove the registry
entries for a particular device.

Requirements:
KillReg requires an ini file to be present in the Windows directory. The name of thisini file should be passed as command line

argument to the application from the installer script.

INI File Requirements:
1. Theini file should be in the Windows directory.
2. Theini file should contain the following lines;

VID =VID
PID = PID1[,PID2,PID3,...,PID30]

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sampleini File:

VID =0424

; The following line shows how
; to specify multiple PIDs

PID = 20FC, 223A, 211A, 2230

; Thefollowing lineis used by SwapDrvr.exe
; only and NOT by KillReg.exe

INFFILE = smscpswd.inf

4

NOTE:

1. Theini fileis also used by the application " SwapDrvr.exe", which will expect the line specifying the INFFILE. KillReg
ignoresthisline.

2. Multiple PIDs separated by a comma can be specified to uninstall all the PIDs associated with asingle VID.

USB2230 Software Release Notes
Page - 46 -

Using the Swapdrvr Utility

Swapdrvr isa DOS based application used by a Windows installer to load the password filter driver in Windows XP. The only
USB2230 application that requires the password filter driver be loaded when running XP is the QuickTest production line test
utility. The Cardreader Software Installer Safe Removal.exe a so requires the use of Swapdrvr. If you are not using these
utilities or do not want to include it in your installer, you can skip this section.

Requirements:

1. The device should be connected while this application isinvoked from a Windows installer. The application will prompt the
user to connect the device during run time.

2. Swapdrvr needs an ini file to be present in the Windows directory. The name of thisini file should be passed as command
line argument to the application from the installer script.

3. Theinstaller application should have already placed the required INF and SY Sfilesin their correct locations.

INI File Requirements:
1. Theini file should be in the Windows directory.
2. Theini file should contain the following lines;

VID =VID
PID =PID
INFFILE = Inf file name

where VID and PID are represented as 4 digit hexadecimal numbers.

A Sampleini File:

VID =0424
PID =2230
INFFILE = swapdrvr.inf

USB2230 Software Release Notes
Page - 47 -

Using the Dos Production Line Utility (DosPL TU)

DosPLTU isaDOS based utility intended to be used by OEMs to streamline their production testing, requiring as little human
intervention as possible. This utility supports checking the device firmware version, checking and / or updating the
device EEPROM with atemplate DAT file, and performing R/W tests on all the logical units (LUNS) supported by the device.

DosPLTU Usage:

DosPLTU [-h|-u] [-V] [-f"version”] [-t -n"loopcount” -S'testsize"]
[-e'DATFileName" | -w"DATFileName" | -x"DATFileName']
[-I"LogFileName"] [-c"HostController"] [-d" CfgFileName"]
[-p"xxxxyyyy"]

-hfFU e print help/usage

Vo verbose, optional, default is off

-f'version”.......... version number that isto be checked against the firmware version of the device

S (TR perform R/W tests

-n"loopcount”........ specifies the number of times the R/W tests are to be performed. Thisis optional and a default

value of 10 will be used if thisis not specified

-S'testsize"......... specifies the test transfer sizein KB for the R/W tests. Thisis optional and a default value of 64KB
will be used if thisis not specified

-d"CfgFileName"......name of the configuration file (with full path) that specifies the media types for each supported
LUN. Thisis optional and if not specified, then testing would be done on all LUNs for one media type, with
out prompting the user to insert other types of media

-€'DATFileName"......name of DAT file (with full path) that is to be checked against the device EEPROM. This
option cannot be specified with -w or -x options

-W"'DATFileName"......name of DAT file (with full path) that isto be written to device EEPROM This option cannot
be specified with -e or -x options

-X"DATFileName"......name of DAT file (with full path) that isto be checked against the device EEPROM and if
necessary that isto be written to the device EEPROM. This option cannot be specified with the -e or -w
options

-I"LogFileName"......name of the log file (with full path) to which the test status messages are logged

-c"HostController”...specifies the host controller to which the device is attached. This should be "UHCIn", "OHCIn"
or "EHCIn", where 'n" isa number (0 to 9) specifying the host controller in the enumeration order. Thisisan
optional parameter and if not specified, a default value of "UHCI" will be used. Similarly 'n'is aso optional
and if it is not specified, a default value of '0" will be used.

-PXXXXYYYY" o specifies that multiple MSC devices may be connected to the system and that the utility should
find the device by matching the specified Vid and Pid. The value "xxxx" denotes the Vid and the value
"yyyy" denotesthe Pid. Both the Vid and Pid are to be specified as 4 digit HEX numbers. The -p optionis
optiona and if not specified, or contains an invalid value, then the utility would default to finding the first
MSC device using the class, subclass and protocol values.

S IR infinite loop, till user wantsto quit

1. All options can be specified using both UPPERCASE or lowercase |etters.

2. Thedouble quotes (*") around file namesis optional. If the path names does not contain blank spaces, then
the double quotes are not necessary. If the path names contain blank spaces, then the double quotes are
mandatory.

3. Thefile names are to be specified with full path information. If the files are in the current directory, then the

path information is not necessary.

The double quotes around the 'version' in -f option is optional.

The value of 'version' is specified as a max 4-digit decimal integer number.

The double quotes around the 'HostController' in -t option is optional.

The double quotes for -n and -s options are optional .

No ok~

USB2230 Software Release Notes
Page - 48 -

Option Groupsand Priority Levels:

1

The options are classified into 5 groups as described below.

a Usage -"-h" or "-u"

b. Firmware check -

¢. EEPROM check / update -"-g","-w" and "-Xx"

d. R/W tests -t M-, -8t and "-d"]

e. Miscellaneous -ty et -t -pt and M-

The utility has a proirity level for each group of options. The priority level
and processing details are described below.

a. Usage group - Has the highest priority (level 0). If thisis specified, then the utility would just display the program
usage and exit. All other options are ignored and are not processed.

b. Firmware check group - Has the next highest priority (level 1). The utility processes this option before EEPROM
check and R/W test options. If the device firmware does not match the version specified with this option,
then the utility would display an error message and exit without processing any other option.

c. EEPROM check / update group - Has a priority level of 2. If "-f" option is specified, the utility would process this
option after successfully checking the device firmware version. Otherwise, this would be processed first. It is
important to note that this group has 3 options ("-€", "-w" and "-x") which are mutually exclusive. That is,
only one of the 3 options can be specified. If any error occurs while processing this group, the utility ignores
the R/W test option and exits after displaying the corresponding error message.

d. R/W test group - This has the lowest priority (level 3) and is processed last after successfully processing other
specified options. This group has three additional options ("-n", "-s" and "-d") that may or may not be
specified. Refer to the usage for more details about these options.

e. Miscellaneous group - Has no priority level at all. The options under this group are very general and only help the
user to control how the tests are done and how the results are displayed. These options, by themselves, do not
affect the types of tests or their order in any way.

DosPLTU Features:

©o N

Checks the firmware version of the device.

Checks the device EEPROM against atemplate DAT file and returns an error if any mismatch isfound. Thisis
achieved by using the "-€" option and is useful in testing devices whose EEPROM has already been updated.
Updates the device EEPROM always with atemplate DAT file with out checking for any mismatch. After every
update, the serial number is automatically incremented and the DAT fileis updated. Thisis achieved by using the "-
w" option and is useful in updating the device EEPROM for the first time.

Checks the device EEPROM against atemplate DAT file and updates the device EEPROM if any mismatch is found.
If the EEPROM is updated, the serial number is automatically incremented and the DAT fileis updated. Thisis
achieved by using the "-x" option and is useful in testing devices whose EEPROM may or may not have been already
updated.

Performs R/W tests on all LUNSs supported by the device. The tests are performed using the loop count and test size
values specified with "-n" and "-s" options. The R/W test option also takes in an optional -d option that specifies the
device configuration. When this option is specified, the tests are performed on each LUN prompting the user to insert
the supported media types for the LUN. This option is useful in cases, where LUN sharing is done in devices by
having a combo socket and it is necessary to test al the media types supported by the socket. For a sample device
configuration file, please ook in to "Device.cfg" file.

Provides an option (-v) to turn on or off the additional debug / status comments.

Provides an option (-I"LogFileName") to log all messages to the user specified log file.

Allows processing devices one after another in aloop till user wantsto exit by specifying the "-i" option in the
command line. Otherwise, the utility will exit after it is done with a single device.

Displays the status by showing abig "ERR", "FAIL" or "PASS" along with other relevent information.

"ERR" - Meansan error occurred outside of the test process. This can happen if there are any errors while
parsing the input arguments, or invalid usage, or invalid file paths, or any errors while starting the
host controller and root hub.

The application will exit with error code 1 during such circumstances.

USB2230 Software Release Notes
Page - 49 -

"FAIL" - Meansan error occurred during the process of testing. This can happen if no matching devices are
found or any of the test fails. The actual reason for the failure is given below the "FAIL" status.
The application will exit with error code > 1 during such circumstances.

"PASS" - Means no error occurred and the process of testing completed successfully.
The application will exit with error code 0 during such circumstances.

10. The utility will work with all types of host controllers (UHCI, OHCI & EHCI) and the host controller to which the
deviceis connected is specified by the -c option. The -c option specifies the type of the host controller as well asthe
number in the PCI enumeration order of the host controllers. These two together identify an unique
host controller which the application enumerates to detect the test device. Note that thisis optional and that the default
values will be used if it is not specified.

examples:

-c"UHCI" - Test on the 1st UHCI host controller
-c"EHCIO" - Test on the 1st EHCI host controller
-c"OHCI2" - Test on the 3rd OHCI host controller

Note: In order to properly specify the number in the PCI enumeration order of the host controllers the end user has to
know how many host controllers of the given type are present in the system and also the enumeration order of the host
controller to which the device is attached. If these details are not known, this information can be found by trial and
error methods.

11. The utility will return with one of the following exit codes.

0 - Indicates "PASS'

1- Indicates"ERR"

2 - Indicates "FAIL" (Device not found error)

3 - Indicates "FAIL" (Firmware mismatch error)

4 - Indicates"FAIL" (Error while reading device EEPROM)

5- Indicates "FAIL" (Device EEPROM and template DAT file mismatch error)
6 - Indicates "FAIL" (Error while writing to the device EEPROM)
7 - Indicates "FAIL" (Error verifying updated EEPROM data)

8 - Indicates "FAIL" (Error while initializing disk(s) for R/W tests)
9 - Indicates "FAIL" (Error while writing to disk)

10 - Indicates "FAIL" (Error while reading from disk)

11 - Indicates "FAIL" (Error verifying read and write data)

12 - Indicates "FAIL" (Error creating the log file)

12. The utility was searching for the MSC device by looking in to the DeviceClass, DeviceSubClass and DeviceProtocol
values of all connected devices and using the first matched device for further operations. Thislead to limitations like
the "The MSC device that is to be processed by the utility has to be the first MSC device in enumeration order".
Moreover, the Class, SubClass and Protocol values of aMSC device are 0, 0 and 0 which are the values of any USB
composite class device. This meant that the limitation had to be extended further as"The MSC device that isto

be processed by the utility has to be the first Composite class device in enumeration order”. This was modified in
v2.0 of the utility so that the utility can now finda device by searching for it's Vendorld (Vid) and Productld (Pid).
Thisisaccomplished by using the "-p" option and specifying the Vid and Pid as 4 digit Hex numbers. For

backwards compatibility reasons, thisis provided as an optional option. Test systems which do not have any other
composite class or MSC devices need not specify this option.

NOTE:

As mentioned above, when the device EEPROM is updated, the DAT file is updated with the serial number incremented by
one. During such cases, there is a chance for the serial number to overflow from "FFFFFFFFFFFF" to "000000000000". When
this overflow occurs, there will be a warning displayed to indicate the overflow. However, the testing on the current device
continues normally as the overflow will matter only with the next device that isto be tested. Even if the tests on the current
device pass successfully, the return value will be "ERR" to indicate the serial number overflow error.

USB2230 Software Release Notes
Page - 50 -

Limitations of the DosPL TU.exe Utility:

oA

Supports devices connected only at the root hub level.

In order to properly specify the number in the PCI enumeration order of the host controllers the end user has to know
how many host controllers of the given type are present in the system and also the enumeration order of the host
controller to which the device is attached. If these details are not known, this information can be found by trial and
error methods.

The utility does not distinguish between actual device failures and media specific failures during R/W tests. Hence, it
is recommended that the R/W tests are done on devices with known good media.

It is recommended that no other USB devices are connected to the system, specially when the system is booting.

It is recommended that the utility is used on systems having Pentium 11 or |11 processors (400 - 800 MHz processor
speed). The utility seemsto fail more as the processor speed increases. On systems having Pentium4 processors with
speed as high as 1.4 to 2.4 GHz, the utility works reliably around 80% of the times and varies with different system
configurations.

Device Configuration File Structure;

The device configuration file is used with the "-d" option for performing R/W tests on all supported media types of each LUN
of the device. The utility prompts the user to insert different media, one by one, in order to perform the tests. For this, the
utility needs to know the device configuration, ie. how many LUNSs the device supports and the different media types supported
by each LUN. These are specified in the device configuration file.

The number of LUNSs supported by the device isindicated by the following line;

MAX_LUNS=n
where 'n'isanumber (> 0 and <= 4) that specifies the number of LUNS

The mediatypes supported by each LUN are indicated as shown below;

Lx=t1,t2,...,t6
where X' isa zero based LUN number, that should be < 'n' specified above
and 't1','t2',...,'t6' are media types that should be one of the valid media types.

The valid media types that are defined, for now (more could be added |ater), are
given below;
1=CF 2=MS 3=SM 4=XD 5=SD 6=MMC

1. There should be no spaces before and after the equals ('=") sign
2. Number of LUNSs specified is 1 based, ie. if the device supports 4 LUNSs, specify MAX_LUNS=4
3. The LUN index ('x") is O based, ie. 1st LUN isindexex as LO.
4. Multiple mediatypes are separated by commas (',") without any spaces in between as shown below
LO=1
L1=2
L2=34
L3=5,6

The utility parses thisfile to understand the device configuration. From the example file shown above, the utility understands
that the device supports 4 LUNs and the 1% LUN supports only CF media, the 2nd LUN supports only MS media, the 3rd LUN
supports SM and XD media and the 4th LUN supports SD and MMC media.

Media Tested with the USB2230

USB2230 Software Release Notes

Page- 51 -

The following flash media cards were used during the development and testing of the USB2230. All media listed has been
determined to work properly and be compatible with the USB2230.

Compact Flash

Memory Stick

Secure Digital

Mobile MMC

CompUSA 16MB
CompUSA 48MB
CompUSA 64MB
Delkin Devices Pro 640MB
Hyperstone 8MB
IO Data 4MB

IO Data 8MB

IO Data 32MB
King Max 8MB
King Stone 64MB
Lexar 16MB

Lexar 32MB

Lexar 48MB

Lexar 64MB

Lexar 128MB
Lexar 256MB
Lexar 512MB (24x)
Lexar 512MB (80x)
Lexar 1GB (4x)
Lexar 1GB (24x)
Lexar 2GB (40x)
Memorex 32MB
Memorex 64MB
Memorex 128MB
Memorex 256MB
PNY 64MB

PNY 128MB

PNY 256MB

PNY 512MB

PQI 16MB

PQI 64MB
Samsung 128MB
SanDisk 16MB
SanDisk 32MB
SanDisk 1GB
SanDisk Extreme 1GB
SanDisk Ultra 128MB
Viking 32MB

Lexar 16MB
Lexar 32MB
Lexar 64MB
Lexar 128MB
Lexar 256MB
PQI 64MB

PQI 128MB
SanDisk 16MB
SanDisk 64MB
SanDisk 128MB
Sony 8MB
Sony 16MB
Sony 32MB
Sony 64MB
Sony 128MB
Sony 256MB

High Speed Memory Stick

Sony 16MB
Sony 32MB
Sony 128MB

Memory Stick Pro

Sony 256MB
Sony 512MB
Sony 1GB
SanDisk 256MB
SanDisk 512MB
SanDisk 1GB

IO Data 64MB
Buffalo 256MB
Kingston 256MB
Lexar 16MB

Lexar 32MB

Lexar 64MB

Lexar 128MB
Lexar 256MB
Lexar 512MB
Memorex 32MB
Memorex 128MB
Panasonic 512MB
PNY 64MB

PNY 128MB

PNY 512MB

PQI 64MB

PQI 128MB

PQI 256MB
SanDisk 32MB
SanDisk 64MB
SanDisk 128MB
SanDisk Extreme 256MB
SanDisk 512MB
SanDisk 2GB
SanDisk Ultra Il 2GB
SimpleTech 128MB

Samsumg 128MB

Smart Media

Fuji Film 8MB
Fuji Film 16MB
Kingston 64MB
I-O Data 8MB
I-O Data 16MB
I-O Data 32MB
I-O Data 64MB
I-O Data 128MB
Lexar 16MB
Lexar 32MB
Lexar 64MB
Lexar 128MB
Memorex 32MB
Memorex 64MB
Memorex 128MB
Olympus 8MB
PNY 128MB
Samsung 32MB
SanDisk 32MB
SanDisk 64MB
SanDisk 128MB
Viking 64MB

High Speed Secure Digital

xD Picture Card

Memory Stick Duo

Panasonic 512MB
Panasonic 1GB

Sony 16MB
Sony 32MB
Sony 64MB
Sony 128MB

MMC

Mini Secure Digital

IBM MicroDrive

IBM Microdrive 340MB
IBM Microdrive 1GB
Hitachi 2GB
Magicstor 2.2GB

Panasonic 32MB
Panasonic 64MB
Panasonic 128MB
SanDisk 32MB
SanDisk 64MB
Toshiba 32MB

Lexar 16MB
Lexar 32MB
Lexar 64MB

PQI 32MB

PQI 64MB

PQI 128MB

PQI 256MB
SanDisk 8MB
SanDisk 16MB
SanDisk 32MB
SanDisk 64MB
SimpleTech 64MB
SimpleTech 128MB

Fuji 32MB

Fuji 64MB

Fuji 128MB

Fuji 256MB

Fuji 512MB
Olympus 16MB
Olympus 32MB
Olympus 64MB
Olympus 128MB
Olympus 256MB
Olympus 512MB
PQI 64MB

USB2230 Performance Benchmarks

USB2230 Software Release Notes
Page - 52 -

The measurements were performed using HDBench v3.30 on a Windows XP (SP1) system with an ICH4 south bridge.
(Pentium 4, 1.8GHz, 512MB DDR). All benchmarks were measured on new (out of the box) media. Please note that the
benchmark performance of flash cards varies widely from manufacturer to manufacturer, and the performance of all
manufacturers’ cards degrade with use. In order to duplicate the results below, you must use brand new media and test on a

similarly configured host.

USB2230 Benchmark Data

Full Speed (USB1.1)
Compact Flash

Memory Stick

High Speed Memory Stick
Memory Stick Pro

Smart Media

XD Card

Secure Digital

High Speed Secure Digital
Multimedia Card
High Speed Multimedia Card

High Speed (USB2.0)
Compact Flash
Memory Stick
High Speed Memory Stick
Memory Stick Pro
Smart Media
XD Card
Secure Digital

High Speed Secure Digital
Multimedia Card
High Speed Multimedia Card

Reads
1043 KB/s
909 KB/s
811 KB/s
1031 KB/s
977 KB/s
818 KB/s
1039 KB/s
913 KB/s

996 KB/s
882 KB/s

Reads
9682 KB/s
1540 KB/s
4031 KB/s
4027 KB/s
4762 KB/s
3968 KB/s
7275 KB/s
10400 KB/s

1522 KB/s
5696 KB/s

Writes
932 KB/s
550 KB/s
652 KB/s
902 KB/s
537 KB/s
437 KB/s
945 KB/s
906 KB/s

374 KB/s
811 KB/s

Writes
5953 KB/s
833 KB/s
897 KB/s
3157 KB/s
1746 KB/s
669 KB/s
5340 KB/s
7700 KB/s

486 KB/s
4442 KB/s

Media Used for Testing:

SanDisk Ultra Il 1GB

Lexar Media 128MB

Sony MagicGate 128MB

Sony 512MB

Memorex 128MB

Fuji xD-Picture Card 512MB
SanDisk Extreme 256MB
Panasonic Pro High Speed 512MB

Lexar Media 64MB
Samsung MMC Mobile 128MB

Media Used for Testing:
SanDisk Ultra Il 1GB

Lexar Media 128MB

Sony MagicGate 128MB
Sony 512MB

Memorex 128MB

Fuji xD-Picture Card 512MB
SanDisk Extreme 256 MB

Panasonic Pro High Speed 512MB
Lexar Media 64MB
Samsung MMC Mobile 128MB

USB2230 Software Release Notes
Page - 53 -

GPI1 O Assignment Table

The following is atable of GPIO assignments for the USB2230. Please note that multi-function GPIO
operations are determined by attribute settings. Please refer to the software release notes for detail on
configuration settings.

Name Description Function
GPIOO0 Not avaliable due to pin count

GPIO1 Flash Media Activity LED Media Activity LED

GPIO2 EE_CS EE_CS

GPIO3 V_BUS V_BUS

GPIO4 EE_DIN/EE_DOUT EE_DIN&DOUT/xD Card Identification
GPIO5 SD Card Detect SD Card Detect

GPIO6 A16 (external ROM only) /ROMEN ROMEN/A16 \

GPIO7 EE_CLK/Unconfigured LED EE_CLK/Uncfg LED

GPIO8 MS Power Control MS Power Control

GPIO9 CF Power Control CF Power Control

GPIO10 SM Power Control SM Power Control

GPIO11 SD Power Control SD Power Control

GPIO12 MS Activity/Transceiver ShutDown MS Activity/Transceiver ShutDown

Known Firmware Related | ssues

USB2230 Software Release Notes

Page - 54 -

General:

| ssue: Workaround: Status:

If version 436 firmware is run externally (not from internal None. Thisfirmware release

ROM) SIR speeds fail to meet acceptable benchmarks in only for internal
ROM. Thiswill be
fixed in the next
external firmware
release.

CF Devices:

I ssue: Workaround: Status:

No known issues.

M S Devices:

| ssue: Workaround: Status:

When High Speed Magic Gate Memory Stick mediais None. Webelievethisisa

formatted with a FAT file system on aMacOS 10.X host, the Magic Gate security

media becomes unreadable on machines with Windows protocol issue. We will

operating systems, but will continue to work normally with continue to investigate

Macs. and provide afixina
future release of the
UsSB2230 firmware if
possible.

SM Devices:

| ssue: Workaround: Status:

Writesto 2MB Smart Media cards are not supported. None. 2MB Smart Media
cards can be read by the
USB2230, but writes
are not supported.
These cards are
considered obsolete and
there are no plansto
implement support for
them in the future.

SD/MMC Devices:

I ssue: Workaround: Status:

Under certain conditions, the USB2230 device may fail to
recognize an SD/MMC card inserted while writing to either
CFor MSor SM cards.

Attempt to reinsert the card.

Currently under
investigation. May be
fixed in afuture release

of the USB2230
firmware.

xD Devices:

| ssue: Workaround: Status:

No known issues.

| ssues Not Related to Firmware
I ssue:

USB2230 Software Release Notes

Workaround:

Page - 55 -

Status:

Due to the write caching functionality of Windows, data
corruption can sometimes occur if the mediaisremoved
improperly.

Before removing any piece of media, you should right click
the driveicon in Windows Explorer and select “Eject” from
the context menu. Thiswill force the operating system to
perform awrite of any cached data.

Limitation of the OS.

Reading or writing multiple media types simultaneously will
generally happen at the slowest media rate.

Thisisalimitation of the OS. If writesto aslow media type
like MS are made while reading from a fast media type like
CF or SM, then the read will slow to approximately the rate of
thewrite. Thisisbecause the OS must process each
command separately. It is not alimitation of the firmware.

Limitation of the OS.

If the USB2230 evaluation board does not have a properly
programmed serial number, only one drive will appear in
Windows Explorer.

Program a unique serial number into the board using the
“USBDM" utility.

Occasionally, surprise removal of the USB cable during Reboot the host. This appears to be a bug

writes to any mediatype under Windows XP, resultsin the in Windows XP. No mass

failure of the device to re-enumerate after being reattached. storage class USB devices
will enumerate once the
host isin this state.

When M SPro mediaisinserted and the device is enumerated None.

driveicons won't come up until mediais ready to be read. Per
M SPro spec larger media could takes 10 seconds to be ready

SMSC IRDA driver functionality is currently only supported
in Windows XP

Use a host computer running Windows XP if IRDA
functionality is needed.

NA

Benchmarks taken when a Tapwave Zodiacl handheld is
transferring filesvia IrDA at 1.1 speeds to the USB2230 vary
from several seconds up to four minutes depending on the
specific host computer used. (Files transferred from the
USB2230 to the Zodiacl pass benchmark testing)

Connect the USB2230 to a USB 2.0 host when transferring
files from the Zodiacl.

Currently under
investigation. May be
fixed in afuture release of
the USB2230 firmware

Some host systems will not communicate via IrDA using the
USB2230 or any third party IrDA device.

Right click on “My Computer”, select “Manage’, under
“Services and Application” double click on “Services’,
highlight “Infrared Monitor”, and select “Restart Service”

Thisisalimitation of
certain hosts. It isnot
seen in many hosts, but
those that have this
problem do not work with
any IrDA devices without
completing the work
around steps.

Setting attribute byte 3, bit 1 to one may result in USB2230
not functioning properly.

Set attribute byte 3, bit 1 to zero as specified in the attribute
bit definitions section.

Itisaninvalid
configuration to set this
bit; the next release will
prevent a user from being
ableto set this.

Some Memory Sticks can not be formatted with the Sony
Format utility if “Physical Device Display” is not checked

Check the “Physical Device Display” if the MS does not have
the option to format. After the first format, this box may not
need to be checked for future formats.

Thisisalimitation of the
Sony Format toal, and is
mentioned in the
applications help topics.

IRDA transmit icon intermittently remains on the desktop
when thereisno IRDA devicein range

Reboot the host

This appearsto be a
limitation of the OS's
IrDA stack.

