MICROCHIP

Usage Manual

Rev 0.8 | 8 August 2017

MICROCHIP CONFIDENTIAL

Copyright © 2013 Microchip or its subsidiaries. All rights reserved.

The information contained herein is confidential and proprietary to Microchip, shall be used solely in
accordance with the agreement pursuant to which it is provided, and shall not be reproduced or disclosed to
others without the prior written consent of Microchip. Although the information is believed to be accurate, no
responsibility is assumed for inaccuracies. Microchip reserves the right to make changes to this document
and to specifications and product descriptions at any time without notice. Neither the provision of this
information nor the sale of the described semiconductor devices conveys any licenses under any patent
rights or other intellectual property rights of Microchip or others. The product may contain design defects or
errors known as anomalies, including but not necessarily limited to any which may be identified in this
document, which may cause the product to deviate from published specifications. Microchip products are
not designed, intended, authorized or warranted for use in any life support or other application where
product failure could cause or contribute to personal injury or severe property damage. Any and all such
uses without prior written approval of an officer of Microchip will be fully at the risk of the customer.

MICROCHIP DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL
WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT
SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY
KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT,;
NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR
OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS
ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

Page 2 of 20

TABLE OF CONTENTS

1 INTRODUCTION ...ttt e e e e et e e ettt s e e e st e e s et e s e eaba e s s aaase s s baessssbasessaaansessbnssesrannseans 3
N R U 1= = 1] = 3
T T 0] == 3
I T = = = =] = N =5 3
1.4 GLOSSARY OF TERMS AND ACRONYMS ...uutituuiittniitteitieettitestetsteesaetaessttestetst ettt easttesetseeesreres 3

A O AV =y A I I i O 1 N [] 4
P R = {0 | 01U [0 Il = = = TST = =0 1 LV =T 4
2.2 OPERATING ENVIRONMENT ...ctutiitt ittt iett e teee et e e st e st s e aas e saa e s st s e eaa st sb s e st e saa s s b s e sba et sassba e ranessbasesnsssnns 4
2.3 DESIGN AND IMPLEMENTATION CONSTRAINTS ... titttieeiett i eeeeteeesetaeeeeaaasessssaeesetaeesestaeerennsessrneeseasnses 4
2.4 USER DOCUMENTATION c.uuutettttueetetteeseata s essssaeesataseeseasasessasasesetaeeeeataesresaasesetaaeeretaeerennsessrnneesrsrnsss 4
2.5 ASSUMPTIONS AND DEPENDENCIES. .. .ccuuuitittuietetieeeeetneseeaseesetaeeeeatesreseesstaeeereteerrareseraeeersnns 4
2.6 USING THE IMANUAL. ... ceettet ettt ee et e e e e e et e e e s et e e e e aaa e s e aaa e e s e ba e e e e e ba e s s e aaa e s e ban e e saba e esesnnsesetnnaserarases 4

3 EXTERNAL INTERFACE REQUIREMENTS ..., 5
3.1 HARDWARE INTERFACES. .. .ctuuiiettttiettteteteteaeeeteta s eeeeatsete st s sasetaeeeeataetetassas st sesssanesesasserstsesesrnnreees 5
3.2 SOFTWARE INTERFACES ...uitttititetttt et ee e et et ae e et e e st e s s e e aa e s e st b s e ea s s ab s e aa e s an s st e sansssnseansenansasnnns 5

L AN e L0 7 X] 6
] o 1N A = TR 6

N R AN B 1 (=Tt A e TR 6
S I AN Y = TR 6
G T O o YL 3 Y =TT 6
R O o 1 NS N 2 1 o =TT 7
I = S Y AN A =R 8
4.2.1 Method 1: USING OlUEI APISeiiiiiiiiieee ittt ettt e et e e e sbre e e e sbneeeeaa 8
4.2.2 Method 2: USING NEW APIS ...ttt ettt e et e e et e e e sba e e e e sbreeeeaa 9
T A o ST 10
0 T R Y/ 1= 1 T Yo R U L= [To [(o =T o . P 10
O T Y/ 1= 1 T To B2 U L= [g To I T N P 10
4.4 RANDOM NUMBER GENERATOR ...otutitiittutettttetetttseeesetesesesssese s ssesstasssesasesstssesataeesseressraseersnss 11
o R \V/ 1= 1 T Yo I R U L= T To [(o L= o e PP 11
o V1= 1 T To B2 U L= [To TN T N P 11
4.5 ECDSA VERIFICATION ..ituitutiitteittieetessteessessnesstasessessssstsesaessttestetseestteetetseeettereese e 11
451 Method 1: USING OlAEI APISuiiiiiiiiiie ittt ettt e e e e enneeeas 11
4.5.2 Method 2: USING NEW APIS ...ttt ettt ettt e et e e abn e e e enneeeas 12
BUILD AND LINK ettt e et e e et e e et e e e e et e e e e et e et e s e s e e et s e e esaa s e s e sasseeatassesnnnnsesenen 15

B TIMING AN A LY SIS ..ottt e e ettt e et et et e e e e e e et e e e e s et et e eee et eeesaseesetaeeeensnnreees 16
0 R 1 i 16
T O B 1Y NPT 16
LT T = S TP 17
LR] I NPT 17
LTS T = 4L T 17

VA o S O N L U ST AN 1 T 19

Page 3 of 20

1 Introduction

1.1 Purpose
This document specifies the usage of MEC2016 Rom API’s.

1.2 Scope
This document entails the zero code and steps to use the API’s provided in MEC2016 ROM

1.3 References
/ldepot_pcs/FWEnNg/projects/MEC2016/docs/rom api/MEC2016 Rom API Manual.docx

1.4 Glossary of Terms and Acronyms

AES - Advanced encryption Standard

RSA - Rivest-Shamir-Adleman cryptosystem

PKE - Public Key Encryption

SHA - Secure Hash Algorithm

RNG — Random Number Generator

SCM - Shared Crypto Memory

CRT - Chinese Remainder Theorem

KCDSA — Korean Elliptic Curve Digital Signature Algorithm
ECDSA - Elliptic Curve Digital Signature Algorithm
EC25519 — Elliptic Curve 25519

EC — Elliptic Curve

SRP — Secure Remote Password

Page 4 of 20

2 Overall Description

2.1 Product Perspective

This document is for MEC2016 users who wish to use the crypto API’'s provided with the
MEC2016 ROM.

2.2 Operating Environment
The zero code provided is OS independent and can only be used with MEC2016.

2.3 Design and Implementation Constraints

Many of the API’s require buffers and memory to be specified. The onus of maintaining the
proper buffers and memory is on the caller of the API’s.

2.4 User Documentation
/ldepot_pcs/FWENg/projects/MEC2016/docs/rom api/MEC2016 Rom API Manual.docx

2.5 Assumptions and Dependencies

The usefulness of this document is contingent upon the knowledge of the MEC2016 target
hardware features and the API’s available.

2.6 Using the Manual

This document has usage for both older (APIs that are backward compatible with the previous
version Al) and new APIs (version B0). Method 1 has the usage for the APIs in version Al
Method 2 has the usage for the APls in version BO. It is recommended to use the new API
functions.

3 External Interface Requirements

3.1 Hardware Interfaces

MEC2016 EVB / FPGA with proper bit map
Keil pVision Ulink Pro Debugger tool —
MCHP Trace debugger Tool

Dediprog SPI programmer

3.2 Software Interfaces

Keil Compiler IDE-Version:
pVision V5.15

Tool Version Numbers:

Toolchain: MDK-ARM Standard Cortex-M Version: 5.15.0
Toolchain Path: C:\Keil_v5\ARM\ARMCC\BIn

C Compiler: Armcc.exe V5.05 update 2 (build 169)
Assembler: Armasm.exe V5.05 update 2 (build 169)
Linker/Locator: ArmLink.exe V5.05 update 2 (build 169)
Library Manager: ArmAr.exe V5.05 update 2 (build 169)
Hex Converter: FromElf.exe V5.05 update 2 (build 169)

CPU DLL: SARMCMS.DLL V5.15.0
Dialog DLL: DCM.DLL V1.13.2.0
Target DLL: ULP2CMS.DLL V2.200.17.0

Dialog DLL: TCM.DLL V1.14.5.0

Page 5 of 20

Page 6 of 20

4 API Usage

The following section lists the API’'s available and its usage.

Notel: All blocks need to be powered ON with corresponding APIs before usage of any of the
API for crypto operations.

Note2: Some crypto APIs require free running timer to be active. Ensure proper operation of
free running timer before calling any of the crypto APIs.

Note3: Refer to Section 2.6 on details about using this document.

4.1 SHA APIs

41.1

1)
2)

3)
4)

5)

6)
7

8)
9)

SHA Direct APIs

Power on SHA block with api_aes_hash_power ().

Check if Hash Block is busy, if not busy proceed. If busy, wait until busy status is false
(api_hash_busy())

Use api_sha_direct_init() with the required mode (1,256 or 512) and the pointer to the buffer
where the digest will be stored.

Check if Hash Block is busy, if not busy proceed. If busy, wait until busy status is false
(api_hash_busy())

Run api_sha_direct_update() with a buffer pointer to message on which digest is to be calculated.
The input message must be 32 bytes aligned and the number of 64 byte blocks of data in the
input message must be mentioned.

If start hash block was not specified in the flags in the previous call, call api_hash_start() to start
the Hash engine.

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

Run api_sha_direct_finalize() to complete the final operations of the SHA calculation.

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

10) The digest calculated will be in the buffer specified in step 3.

4.1.2

1)
2)

3)
4)

5)
6)

7
8)

4.1.3

1)

SHA1 APIs

Power on SHA block with api_aes_hash_power ().

Check if Hash Block is busy, if not busy proceed. If busy, wait until busy status is false
(api_hash_busy())

Run api_shal_init() with the SHA12_CONTEXT _T data structure.

Run api_shal_update() with a buffer pointer to message on which digest is to be calculated and a
pointer to the SHA12 _CONTEXT _T data stricture initialized in step 4.

Wait until hash operation is complete (api_hash_busy())

Run api_shal_finalize().

Wait until hash operation is complete (api_hash_busy()).

The digest calculated will be in the buffer specified in step 3 (shal2_ctx.digest.b or
shal2_ctx.digest.w).

SHA256 APIs

Power on SHA block with api_aes_hash_power ().

2)

3)
4)

5)

6)
7

8)

Page 7 of 20

Check if Hash Block is busy, if not busy proceed. If busy, wait until busy status is false
(api_hash_busy())

Run api_sha256 _init() with the SHA12 CONTEXT _T data structure.

Run api_sha256_update() with a buffer pointer to message on which digest is to be calculated
and a pointer to the SHA12 CONTEXT _T data stricture initialized in step 4.

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

Run api_sha256 _finalize().

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

The digest calculated will be in the buffer specified in step 3 (shal2_ctx.digest.b or
shal2_ctx.digest.w).

4.1.3.1 For Input less than 56 Bytes

1)
2)

3)
4)
5)

6)

Power on SHA block with api_aes_hash_power().

Check if Hash Block is busy, if not busy proceed. If busy, wait until busy status is false
(api_hash_busy())

Call api_sha256_under56() with a pointer to the output buffer, input buffer, length of the input (in
bytes) and the flag value for enabling/disabling interrupts and starting the hash block.

If start hash block was not specified in the flags in the previous call, call api_hash_start() to start
the Hash engine.

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

The calculated digest will be in the buffer specified in step 3.

4.1.3.2 SHA256 Block APIs

1)
2)

3)
4)
5)
6)

7
8)

9)

Power on SHA block with api_aes_hash_power().

Check if Hash Block is busy, if not busy proceed. If busy, wait until busy status is false
(api_hash_busy())

Call api_sha256_block_init() with a pointer to the output buffer.

Call api_sha256_block_update().

If start hash block was not specified in the flags in the previous call, call api_hash_start() to start
the Hash engine.

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

Call api_sha256_block_finalize().

If start hash block was not specified in the flags in the previous call, call api_hash_start() to start
the Hash engine.

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

10) The calculated digest will be in the output buffer specified in step 3.

4.1.4

1)
2)

3)
4)

5)
6)

SHA512 APIs

Power on SHA block with api_aes_hash_power ().

Check if Hash Block is busy, if not busy proceed. If busy, wait until busy status is false
(api_hash_busy())

Call api_shab512_init() with SHA5_CONTEXT_T data structure.

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

Call api_shab512_update().

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

7
8)

9)

Page 8 of 20

Call api_sha512_finalize().

Check the done status of the block using api_hash_is_done_status() and proceed only if the
previous operation has completed.

The calculated digest will be available in the data structure provided in Step 3 (sha5_ctx.hash.b
or sha5_ctx.hash.w).

4.2 RSA APIs

42.1

1)
2)

3)

4)

5)

Method 1: Using older APIs

Power on PKE block with pke_power().

Call the rsa_load_key() to load Public-Private Key pairs into the PKE engine. Specify the RSA
bite length (1024, 2048 or 4096) and the byte order of data provided. 4 combinations are possible
according to which keys may be loaded. The slot numbers are handled by the api. Keys can be
explicitly programmed with pke_write_scm() calls.

a. RSA Encryption with Public Key

i. Pointer to private exponent = Not used
ii. Pointer to public modulus = your public key modulus -> Slot 0
iii. Pointer to public exponent = your public key exponent -> Slot 8
b. RSA Decryption with Private Key
i. Pointer to private modulus = your private key modulus -> Slot 6
ii. Pointer to public modulus = your public key modulus -> Slot 0
iii. Pointer to public exponent = your public key exponent -> Slot 8
c. RSA Encryption with Private Key
i. Pointer to private exponent = Not used
ii. Pointer to public modulus = your public key modulus -> Slot 0
iii. Pointer to public exponent = your private key exponent -> Slot 8
d. RSA Decryption with Public Key
i. Pointer to private exponent = your private exponent -> Slot 6
ii. Pointer to public modulus = your public modulus -> Slot 0
iii. Pointer to public exponent = Not used
If data is to be encrypted, call rsa_encrypt() with the rsa bit len (1024, 2048 or 4096), pointer to
structure having byte length of input data & pointer to input data. Start the PKE engine by calling
pke_start().
Wait for PKE engine to complete operation (pke_busy()). Once complete, the encrypted message
can be found in slot 5 of crypto memory. The data can be read into a local buffer with
pke_read_scm().
If data is to be decrypted, there are two methods — RSA decryption and CRT RSA decryption
RSA Decryption:

a. Callrsa_decrypt() with rsa bit len (1024, 2048 or 4096), pointer to structure having byte
length of encrypted data & pointer to encrypted data.

b. Start the PKE engine by calling pke_start().

CRT RSA Decryption:

a. Callrsa_load_crt_params() api with first exponent, second exponent, coefficient to load
these parameters into appropriate slots in the shared crypto memory(scm slots).
Alternatively, the parameters can be generated using rsa_crt_gen_params(). Wait for for
PKE engine to complete operation (pke_busy()).

b. Then call pke_write_scm () to load the two prime numbers to scm slots 2 and 3.

c. Finally, call pke_rsa_crt_decrypt() with bit len (1024, 2048 or 4096), input data, byte
length of input data.

d. Pke engine can be started by specifying the appropriate flag parameter. If not started, the
pke engine may be explicitly started with pke_start().

e. Perform RSA CRT decryption using pke_rsa_crt_decrypt().

f. Program the command value corresponding to CRT decryption in the PKE command
Register and start the pke engine using pke_start().

6)

7

4.2.2

1)
2)
3)

4)

5)

7

Page 9 of 20

Wait for PKE engine to complete operation (pke_busy()). Once complete, the decrypted data will
be in slot 5 of Shared Crypto memory. This data can be read into a local buffer with
pke_read_scm().

RSA Signature Generation and Verification:

i) Callthe rsa_load_key() to load Public-Private Key pairs into the PKE engine. Specify the
RSA bite length (1024, 2048 or 4096) and the byte order of data provided.

i) Wait for PKE engine to complete operation(pke_busy()).

iii) Call rsa_signature_gen() with bit length, hash digest, specifying the byte order of data
provided.

iv) Signature for the given hash digest will be generated in scm slot 5.

v) After completion of PKE operation(pke_busy()), copy expected hash digest to slot C using
pke_write_scm().

vi) Call rsa_signature verify() with pointer to signature generated in the above process.

vii) After completion of PKE operation(pke_busy()), read PKE status register by api
pke_done_status(). If bit 9 is set in the status register, it indicates that the signature is not
valid for the given expected hash digest.

viii) The regenerated hash digest calculated by the PKE engine may be read from slot 5.

Method 2: Using new APIs

Power on PKE block with api_pke_power().

Load the message into Slot 4 of the SCM using api_pke_copy_to_scm2().

Load RSA keys into the SCM. Two combinations are possible according to which suitable APIs
can be called. The slot numbers are handled by the APIs. Keys can be explicitly programmed
with api_pke_rsa_load_param() calls.

a. RSA Encryption with Public Key and Decryption with Private Key — use
api_pke_rsa_load_key() to load the private exponent, public modulus and public
exponent into their respective slots.

b. RSA Encryption with Private Key — use api_pke_rsa_load_prv_key() to load the public
modulus and the private exponent.

RSA Decryption with Public Key — use api_pke_rsa_load _pub_key() to load the public
keys.
Perform RSA encryption with api_pke_rsa_operation() by passing rsa bit len (1024, 2048 or
4096), operation to be performed and interrupt status.
Alternatively, api_pke_rsa_crypt() can be used.
Start the PKE engine by calling api_pke_start().
Wait for PKE engine to complete operation (api_pke_busy()). Once complete, the encrypted
message can be found in slot 5 of crypto memory. The data can be read into a local buffer with
api_pke_copy_from_scm ().
If data is to be decrypted, there are two methods — RSA decryption and CRT RSA decryption
RSA Decryption:

a. Load the encrypted message into Slot 4 of the SCM using api_pke_copy_to_scm2().

b. Perform RSA decryption with api_pke_rsa_operation() by passing rsa bit len (1024, 2048
or 4096), operation to be performed and interrupt status.

Alternatively, api_pke_rsa_crypt() can be used.

c. Start the PKE engine by calling api_pke_start().

CRT RSA Decryption:

a. Load the private key and CRT parameters into the SCM using
api_pke_rsa load_prv_key() and api_pke rsa_load_crt_key() respectively.

b. Perform RSA CRT Decryption using api_pke_rsa_crt_decrypt() and then use
api_pke_rsa_operation() to start the operation.

c. Program the command value corresponding to CRT decryption in the PKE command
Register.

d. Start the PKE block using api_pke_start().

Page 10 of 20

8) Wait for PKE engine to complete operation (api_pke busy()). Once complete, the decrypted data
will be in slot 5 of Shared Crypto memory. This data can be read into a local buffer with
api_pke_copy_from_scm ().

9) RSA Signature Generation and Verification:

i. Load RSA keys into the SCM using api_pke_rsa_load_key().
ii. Wait for PKE engine to complete operation(api_pke_busy()).

iii. Load the hash digest into Slot 4 of the SCM using api_pke_rsa_load_param()
and with for the operation to complete (api_pke_busy()).

iv. Call api_pke_rsa_operation() to generate the signature and pass rsa bit len
(1024, 2048 or 4096), operation to be performed and interrupt status.

v. Start the PKE engine using api_pke_start().

vi. Signature for the given hash digest will be generated in SCM slot 5. After
completion of PKE operation (pke_busy()), copy the signature generated and the
expected hash digest to slots 4 & C respectively using
api_pke_rsa_load_param().

vii. Call api_pke_rsa_operation() to verify the signature and pass rsa bit len (1024,
2048 or 4096), operation to be performed and interrupt status.

viii. Start the PKE engine using api_pke_start().

ix. After completion of PKE operation (pke_busy()), call
api_pke_rsa_is_signature_valid() to check if the signature is valid.

X. The regenerated hash digest calculated by the PKE engine may be read from
slot 5.

4.3 AES

4.3.1 Method 1: Using older APIs

1) Power on AES block with aes_hash_power ().

2) Reset the AES hash block with aes_hash_reset().

3) Check if AES block is busy with aes_busy ().If it is not busy, continue with step 4.

4) Set AES Private key (randomly generated) LSB first, optional initialization vector LSB first and
also specify the AES key length used using api aes_set_key()

5) Check for AES status with rom API aes_status()

a. clear status for leftover status bits if any using API aes_iclr()

6) Call API aes_crypt() for encryption or decryption. The message should be an aligned input data
buffer, a pointer buffer to load the aligned output data buffer and the mode of operation.
Supported modes are ECB, CBC, CTR and OFB.

7) Start the AES operation to be performed by calling function aes_start()

8) Wait for the done status by calling APl aes_done_status()

9) Once done the operated data output will be in the buffer provided vis APl aes_crypt()

10) Stop AES block using the API aes_stop()

11) Put the AES block in sleep sate using aes_hash_power(false);

4.3.2 Method 2: Using new APIs

1) Power on the AES block with api_aes_hash_power().

2) Resetthe AES block using api_aes_hash_reset().

3) Check if the AES block is busy using api_aes_busy(). If it is not busy, continue with step 4.

4) Set AES Private Key (randomly generated), AES Private Key length and the initialization vector

(optional) using api_aes_set_key(). The initialization vector and the AES Private Key must be in
LSB first format.
Alternatively, AES private key and the initialization vector (optional) can be programmed using
api_aes_prog_key() and api_aes_prog_iv() respectively. The initialization vector and the AES
Private Key must be in LSB first format.

5) Check for AES status using api_aes_status().

6)

7
8)
9)

Page 11 of 20

a. Clear the interrupts using api_aes_iclr().
Encrypt/decrypt the message using api_aes_crypt(). The message and the output need to be
stored in an aligned data buffer. Supported modes of operation are: ECB, CBC, CTR and OFB.
Start the AES operation using api_aes_start().
Check for the done status using api_aes_is_done_status2().
Once the operation is done, the output is stored in the data buffer provided to api_aes_crypt().

10) Stop the AES block using api_aes_stop().
11) Put the AES block in sleep sate using api_aes_hash_power(0).

4.4 Random number generator

441

6)

7

Method 1: Using older APIs

Power on RND HW block with APl rng_power (true).
Reset the RND HW block with rng_reset()
Two modes of random number are generated asynchronous/true random mode and Non-zero
(pseudo-random mode). Select the mode of operation by calling rng_mode(mode)
a. 0-asynchronous
b. 1 - pseudo-random mode
Start the HW block run state by calling function rng_start();
Wait for operation completion by polling rng_get_fifo_level() for data in the internal buffer
a. Return 0 for not completion
b. Non -zero value for completion of operation — FIFO will have random data
Once completion internal buffer will have 1Kbits of random data use API
a. rng_get bytes() number of random bytes to retrieve. Must be less or equal to the size of
the buffer or
b. rng_get words() Reads the FIFO level register and return the number of 32-bit words of
random data currently in the FIFO — max value supported is 1024 bits.
Stop the RND HW block with rng_stop().

Method 2: Using new APIs

Power on the RND block using api_rng_power().
Reset the RND block using api_rng_reset().
Set the mode of operation using api_rng_mode(). The two modes are asynchronous (0) and
pseudo random (1).
Start the RND block using api_rng_start().
Poll for data in the internal buffer using api_rng_get_num_random_words().
a. 0 - Buffer empty
b. Non - zero value indicates the number of 32 bit words currently in the internal buffer.
Maximum value is 1 KB.
Data can be retrieved from the buffer using
a. api_rng_get _random_bytes() to get the specified number of bytes.
b. api_rng_get random_words() to get the specified number of words.
Stop the RND HW block with api_rng_stop().

4.5 ECDSA Verification

45.1

Method 1: Using older APIs

Generate SHA Digest of the message to be validated. (Optional if digest already exists).
Check if pke block is busy (pke_busy()). If not busy, proceed.
Loat the curve into the SCM using ec_prog_curve().

Page 12 of 20

4) Check if pke block is busy (pke_busy()). If not busy, proceed.

5) Call the ecdsa_verify() APl with the Public key, The signature of message and the digest
calculated.

6) Start the PKE Engine by calling pke_start().

7) Wait until PKE operations are done by polling on pke_done_status(PKE_STATUS).

8) Check the 9" bit of PKE_STATUS. If it is reset, Signature is valid, if set, the signature is Invalid.

ECDSA Point Operations:

The procedure for ec point operations like ec_point_add, ec_point_double, ec_point_scalar_mult2,
ec_point_scalar_mult3 is explained below.

1) Call pke_power() to power on the block.

2) For ECDSA point operations, the curve should be programmed to slots using API
ec_prog_curve().

3) Check PKE engine ready using api pke_busy().

4) Set slot numbers to operand pointers A,B,C using pke_set_operand_slots() APl. Operand
pointers A and B correspond to input data to the ec point operations. The output of the operation
is pointed by pointer C. pke_set_operand_slots() api instructs the PKE engine the slot numbers
where it should look for operands A and B, and also where it should store output C. The slot
numbers used as default for pointers A,B,C are 6,8,C respectively.

5) Call API to appropriate point operation with required parameters, data byte order.

6) The output of operation may be read from slot number corresponding to pointer C (slot C if using
default values).

Curve 25519 Operations:

ec25519 xrecover:

1) Call pke_power() to power on the block.

2) Call ec25519 xrecover() API with y coordinate, size and byte order.

3) Call pke_start() and wait for operation to complete(pke_busy()).

4) The recovered x coordinate is always loaded to scm slot 6. Read x coordinate using call to
pke_read_scm().

ed25519 scalar mult:

1) Call pke_power() to power on the block.

2) Call ed25519 scalar_mult() APl with point on curve 25519, scalar and byte order.

3) Call pke_start() and wait for operation to complete(pke_busy()).

4) The x and y coordinates of product are always loaded to scm slots A and B. Read using call to
pke _read_scm().

ed25519 valid_sig:

1) Call pke_power() to power on the block.

2) Call ed25519 valid_sig() API with structure variable of type Ed25519 SIG_VERIFY.

3) Call pke_start() and wait for operation to complete(pke_busy()).

4) The parameters P1x,P1y,P2x,P2y,P3x,P3y are loaded to slots A,B,C,D,E,F respectively.
5) Verify validity of signature by comparing P1 and P3.

4.5.2 Method 2: Using new APIs

1) Generate SHA Digest of the message to be validated. (Optional if digest already exists).
2) Check if pke block is busy (api_pke_busy()). If not busy, proceed.

3)
4)
5)

6)
7
8)

Page 13 of 20

Load the curve parameters using api_pke_ec_prog_curve().

Check if pke block is busy (api_pke_busy()). If not busy, proceed.

Use api_pke_ecdsa_verify3 with the Public key, the signature of message and the digest
calculated to verify the signature.

Start the PKE Engine by calling api_pke_start().

Wait until PKE operations are done by polling on api_pke _is_done_status2().

Check the 9" bit of PKE_STATUS. If it is set, the signature is Invalid; otherwise, the signature is
valid.

ECDSA Point Operations:

The procedure for ec point operations like ec_point_add, ec_point_double, ec_point_scalar_mult2,

ec_|

1)
2)

3)
4)

5)

6)

point_scalar_mult3 is explained below.

Call api_pke_power() to power on the block.

For ECDSA point operations, the curve should be programmed to slots using API
api_pke_ec_prog_curve().

Check PKE engine ready using api_pke_busy().

Set slot numbers to operand pointers A,B,C api_pke_set_operand_slots(). Operand pointers A
and B correspond to input data to the ec point operations. The output of the operation is pointed
by pointer C. api_pke_set_operand_slots instructs the PKE engine the slot numbers where it
should look for operands A and B, and also where it should store output C. The slot numbers
used as default for pointers A,B,C are 6,8,C respectively.

Call API to appropriate point operation with required parameters and the appropriate data byte
order.

The output of operation may be read from slot number corresponding to pointer C (slot C if using
default values) using api_pke_copy_from_scm().

Curve 25519 Operations:

Call api_pke_ed25519 xrecov() with a pointer to the y coordinate, size of the y coordinate and

Call api_pke_start() and wait for operation to complete(api_pke_busy()).
The recovered x coordinate is always loaded to SCM slot 6. Read x coordinate using call to

Call api_pke_ed25519_scalarmult() API with points on curve 25519, scalar and byte order.
Call api_pke_start() and wait for operation to complete(api_pke_busy()).
The x and y coordinates of product are always loaded to SCM slots A and B. Read using call to

Call api_pke_ed25519 valid_sig() API with structure variable of type Ed25519 SIG_VERIFY.
Call api_pke_start() and wait for operation to complete(api_pke_busy()).

api_pke ed25519 xrecover:
1) Call api_pke_power() to power on the block.
2)
byte order.
3)
4)
api_pke_copy_from_scm().
api_pke ed25519 scalar_mult:
1) Call api_pke_power() to power on the block.
2)
3)
4)
api_pke_copy_from_scm().
api_pke ed25519 valid_sig:
1) Call api_pke_power() to power on the block.
2)
3)
4)

The parameters P1x,P1ly,P2x,P2y,P3x,P3y are loaded to slots A,B,C,D,E,F respectively.
Verify validity of signature by comparing P1 and P3.

Page 14 of 20

pke ec25519 ptmult:

ap

1) Call api_pke_power() to power on the block.

2) Call api_pke_ec25519_ptmult() API with points the x coordinate, scalar and byte order.

3) Call api_pke_start() and wait for operation to complete(api_pke_busy()).

4) The x coordinate of product is loaded to SCM slot C. Read using call to
api_pke_copy_from_scm().

SRP Operation:

1) Call api_pke_power() to power on the block.

2) Load SRP parameters into the Crypto Memory by calling api_pke_srp_sc().

3) Call api_pke_start() to start the operation and wait for operation to complete(api_pke_busy()).
4) The output can be read from Slot B using api_pke_copy_from_scm().

Page 15 of 20

5 Build and link

Use the provided symdef file and API header file for proper linking of the application code with
bootrom.

If running on FPGA need to download the bootcode for proper linking of the object binary on runtime
for the API calls.

Use linker script for loading the bootcode binary using load incremental option.

6 Timing Analysis

Page 16 of 20

For all the crypto operations mentioned in section 4 timing measurement is done at CPU clock of 48MHz
and the results are added below

6.1 AES

BLOCK OPERATION [ENCRYPTION |DECRYPTION | ENCRYPTION | DECRYPTION | ENCRYPTION |DECRYPTION | ENCRYPTION | DECRYPTION | ENCRYPTION | DECRYPTION
TIME (usec)

=(1/CPUCLK) ¥(CPU | 14655 | 21564 146.61 215.61 143.85 215.19 143.88 215.16 143.85 214,05

TOTALTIME (usec) 36219 3622 359.04 359.04 3571

6.2 ECDSA

BLOCK OPERATION
TIME (usec)
=(1/CPU_CLK) * (CPU
CYCLES) 9280
TOTAL TIME (usec) 9280

Page 17 of 20

6.3 PKE
BLOCK OPERATION
TIME (usec)
= (1/CPU_CLK) * (CPU
CYCLES) 156346 157719
TOTAL TIME (usec) 156346 157719
6.4 SHA

BLOCK OPERATION
TIME (usec)
=(1/CPU_CLK) * (CPU 477.24 478.74 425.55
TOTAL TIME (usec) 477.24 478.74 425.55

6.5 RNG

BLOCK OPERATION
CPU CYCLES 3285 6407
TIME (usec)
= (1/CPU_CLK) * (CPU
CYCLES) 68.43 133.47
TOTAL TIME (usec) 68.43 133.47

Page 18 of 20

Page 19 of 20

7 PKE slot usage

MEC2016 has dedicated crypto SRAM (shared crypto memory - SCM) for PKE block usage. This memory
is shared by various PKE operations and hence it limits the operations which can be carried out in
parallel. Some of the operations supported by PKE are

Primitive arithmetic operation
RSA Cryptosystem
Curve25519

ECDSA

The SCM is used to program parameters & keys and to upload/download operands/results from
the host side. The shared crypto memory of MEC2016 is divided into 31 slots (slot0-slot30) each of 512
bytes

Below table lists the usage of the slots for various operations

PKE operation Slots used

RSA Encryption with Public Key Slot 8 - public exponent
Slot 0 — public modulus
Slot 5 — Encryption output

RSA Encryption with Private Key Slot 8 — private exponent
Slot 0 — public modulus
Slot 5 — Encryption output

RSA Decryption with Private key Slot 0 — public modulus
Slot 6 — private exponent
Slot 8 — public exponent
Slot 5 — Decryption output

EC program curve Slot 0 — prime

Slot 1 — order

Slot 2 - generator point x-coordinate
Slot 3 - generator point y-coordinate
Slot 4 — curve parameter a

Slot 5 — curve parameter b

EC25519 recover x coordinate Slot 6 — result

PKE clear slot Specified at run time
PKE read slot Specified at run time
PKE write slot Specified at run time
EC Modular arithmetic Specified at run time

Since above operations share multiple slots these PKE crypto operations cannot be run in parallel

8 Revision History

Page 20 of 20

Name Revision Date Section Remarks
Level
Hemal 0.1 21 Apr 2016 4.4 Created a new copy to include
Guijarathi — changes for Bootrom Al version
115581
Akshaya 0.2 13 May 2016 4.4 Updated usage information for rsa
Karthikeyan crt decryption.
- 117306
Akshaya 0.3 10 Aug 2016 4.7 Updated usage information for
Karthikeyan ecdsa check point operations and
- 117306 rsa signature generation.
Swastik 0.4 6 April 2017 4.6 Updated the RNG usage
Pramanik
Manisha 0.5 26 June 2017 2.6,4,45,4.6 Added Section 2.6 to include details
Mishra about using the manual.
C19242 Added Note3 in Section 4.
Updated Section 4.5,4.6 to include
usage information for BootROM BO
version.
Manisha 0.6 30 June 2017 4.4 Updated Section 4.4 to include
Mishra usage information for BootROM BO
C19242 version.
Manisha 0.7 18 July 2017 14 Updated Section 1.4
Mishra 4 Regrouped Section 4.
C19242 4.2 Included usage for CRT decryption
4.5 Updated SHA APIs for BootROM BO
version.
Updated Section 4.5 to include
usage information for BootROM BO
version.
Manisha 0.8 8 August 2017 45.2 Added usage for api_pke_srp_sc()
Mishra and api_pke_ec25519 ptmult()

C19242

