
 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 1

Introduction
This document is the user guide for the implementation of the PRIME 1.3 Stack for Service Nodes developed by
Microchip.

The mechanisms and functionalities of the PRIME specification are the basis for the entire PRIME FW stack
implementation. Therefore, it is highly recommended to use it as a reference. Basic concepts that are
introduced by the PRIME specification are assumed to be known within this document.

Features
• Implementation of PRIME 1.3 stack for Service Nodes
• Support of several microcontroller families including PIC32CXMTx, SAM4C, SAM4CMx, and SAMG55
• Support of PLC modems including PL360 and PL460
• This document applies to PRIME FW stack version 1.3.10

 PRIME 1.3 FW Stack for Service Nodes
 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 2

Table of Contents
Introduction...1

Features... 1

1. Overview...4

1.1. General Architecture..4
1.2. Event-Driven Operation...5

2. Understanding the Firmware Package... 6

2.1. PRIME Firmware Package Contents... 6

3. PRIME FW Stack Project.. 12

3.1. Introduction..12
3.2. PRIME Stack User Configuration Parameters...13

4. Integrating the PRIME FW Stack.. 19

4.1. Memory Allocation...19
4.2. Hardware Resources Usage..22
4.3. PRIME Interfaces.. 23
4.4. PRIME Integration Requirements...27
4.5. Main Function Structure... 28
4.6. Application Configuration Parameters..31

5. Data Exchange... 33

5.1. Null SSCS... 33
5.2. IEC 61334-4-32... 33
5.3. Automatic Repeat Request (ARQ).. 33

6. File Transfer Service for Firmware Upgrade...37

6.1. Introduction..37
6.2. CRC Result Callback... 40
6.3. FU Configuration Data...40
6.4. Starting FU.. 41
6.5. Providing the Bitmap...41
6.6. Writing FU Data.. 41
6.7. CRC Calculation.. 42
6.8. Finishing FU.. 42
6.9. Managing the Received File.. 42

7. PRIME Management Plane...44

8. Toolchain.. 45

8.1. General Prerequisites..45
8.2. Building the Applications.. 45

9. Supported Platforms.. 46

9.1. Supported MCU Families.. 46
9.2. Supported Devices...46
9.3. Supported Boards..46

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 3

10. PICS... 47

10.1. Major Roles for Devices Compliant with PRIME... 47

11. API of PHY and PAL Layers... 49

11.1. PLC PHY SAP... 49
11.2. PAL SAP... 49
11.3. PAL Primitives... 50

12. API of PRIME FW Stack.. 51

12.1. MAC Primitives... 51
12.2. IEC 61334-4-32 Primitives... 54
12.3. PIB Objects Specification and Access.. 55

13. Example Applications..59

13.1. Usage of the Firmware.. 59
13.2. PRIME Service DLMS + Metrology Application... 59
13.3. PRIME Service DLMS Application... 60
13.4. PRIME Service Modem.. 61
13.5. PHY Applications.. 62

14. Serialization with Embedded USI.. 64

14.1. USI Frame Format.. 64
14.2. USI PRIME Protocols.. 65
14.3. Embedded USI Configuration...67

15. Abbreviations...69

16. References..71

17. Revision History...72

17.1. Rev A - 07/2018...72
17.2. Rev B - 12/2018.. 72
17.3. Rev C - 07/2020...72
17.4. Revision D - 02/2024..73

Microchip Information... 75

The Microchip Website... 75
Product Change Notification Service.. 75
Customer Support...75
Microchip Devices Code Protection Feature.. 75
Legal Notice..75
Trademarks.. 76
Quality Management System...77
Worldwide Sales and Service... 78

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Overview

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 4

1. Overview
1.1 General Architecture

The PRIME FW stack general architecture follows the suggested separation of the network stack into
logical layers, as described in the PRIME specification. Besides the core stack containing the protocol
implementation, the PRIME general architecture contains additional layers implementing shared
services (for example, serial interfaces, vendor specific configurations), a Hardware Abstraction
Layer (HAL) and user application examples.

The general architecture of a user application including the PRIME FW stack is shown in the next
figure.

Figure 1-1. Block Diagram of the PRIME General Architecture

USER
APPLICATION

PRIME API

PRIME FW Stack

HAL

HARDWARE

The PRIME general architecture has been implemented with separated software modules as a
way to optimize hardware resources and provide flexibility and versatility to the final user system.
Following this concept, the user application and the PRIME FW stack have separated binary images.
Additionally, in the PL360/PL460 platform, there is a third binary image corresponding to the PL360
firmware to be loaded into the PL360 device.

Important: Device memory and HAL must be managed by the users in order to
allocate all binary images of the system and to handle the hardware resources
according to their needs (see chapter Integrating the PRIME FW Stack).

Microchip provides an example project of the PRIME FW stack. Structure and features of this project
are described in chapter PRIME FW Stack Project. The API of the PRIME FW stack is described in
chapter API of PRIME FW Stack.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Overview

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 5

Structure, requirements and features of the user application are described in chapter Integrating the
PRIME FW Stack. Microchip provides different user application examples to ease user development
(see chapter Example Applications).

1.1.1 User Application
The user application is the main application in the system. It is responsible for managing the
hardware and the external resources and for setting up and running the whole system. The PRIME
FW stack provides connectivity to the user application through the PRIME API (see chapter API of
PRIME FW Stack).

The user application can configure the PRIME FW stack by means of configuration files and PIB
attributes.

Important: The HAL is also part of the user application and users can allocate
it at any address within their region. The pointer to the HAL functions must be
passed to the PRIME FW stack at initialization. Users are also responsible for
initializing, starting and running the HAL.

1.1.2 PRIME FW Stack
The PRIME firmware stack described in this document constitutes Microchip's implementation of a
PRIME 1.3 Service Node.

This stack interacts with the user application through the PRIME API (see chapter API of PRIME FW
Stack), with peripherals and specific software services through the Hardware Abstraction Layer (see
chapter HAL API) and with the PL360 Host Controller component (used to communicate with the PLC
PHY layer implemented in the PL360 device of the PL360/PL460 platform).

1.2 Event-Driven Operation
Microchip implementation of the PRIME FW stack is event-driven. Every time an API function is
called, an asynchronous notification message is received after the function task is completed. This
notification is delivered by means of the callback associated to the called function. Programmatically,
the user application provides the underlying layers with a function pointer, which the layers below
call after the request is serviced.

In such an event-driven system, user code related to PRIME functions executes in a callback that
must be registered with the PRIME FW stack by the user application. Thus, the user application
functions related to PRIME run entirely in stack-invoked callbacks. More information about callbacks
in the PRIME general architecture can be found in chapter PRIME API.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 6

2. Understanding the Firmware Package
The following chapter describes the content of the PRIME firmware package, required common
modules and drivers, and explains some general guidelines about how the various software layers
are structured.

One of the most important features of the PRIME implementation is its ability to manage the PRIME
FW stack and the user application as separate software modules. The corresponding binary images
(together with the PL360 firmware in the PL360/PL460 platform) can be allocated to any memory
addresses configured by the end user, thus providing a highly flexible and versatile implementation.

2.1 PRIME Firmware Package Contents
Microchip provides PRIME packages for every platform that supports PRIME. These packages include
PRIME applications that communicate using the PRIME network and applications that only make
use of the PRIME PHY layer, so that users can easily access all available user applications and their
related files. Provided example applications are described in chapter Example Applications.

Users are responsible for configuring and compiling the applications (see chapter Toolchain) and
assigning memory resources.

2.1.1 PRIME FW Stack Project Example
The following figure shows where the PRIME FW stack is located inside the complete general
architecture.

Figure 2-1. PRIME FW Stack in the PRIME General Architecture

USER
APPLICATION

PRIME API

PRIME FW Stack

HAL

HARDWARE

The PRIME FW stack project example contains the PRIME library (with the PL360 Host Controller) and
the configuration files described in chapter PRIME Stack User Configuration Parameters. This project
generates the mentioned binary image corresponding to the PRIME FW stack.

The PRIME FW stack project can be found in the package following this path:

..\thirdparty\prime_ng\bin_service\prime_service_bin_1_3
The structure of this PRIME FW stack project in IAR Embedded Workbench® is shown in the following
figure.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 7

Figure 2-2. Folder Structure of the PRIME FW Stack Project

Important: It is recommended that users modify only the available configuration
files according to their application needs (see chapter PRIME Stack User
Configuration Parameters).

2.1.2 User Application Project Examples
The following figure shows where the user application is located inside the complete general
architecture.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 8

Figure 2-3. User Application in the PRIME General Architecture

USER
APPLICATION

PRIME API

PRIME FW Stack

HAL

HARDWARE

Microchip provides several user application projects that show how to interact with the PRIME FW
stack:

• DLMS (Device Language Message Specification) application: this application shows how to
interact with the PRIME FW stack to simulate the exchange of DLMS data in a PRIME network.

• DLMS+Metrology application: this application shows how to interact with the PRIME FW stack to
exchange real DLMS data in a PRIME network (only available in the SAM4C platform).

• Modem application: this application shows how to manage the PRIME FW stack from an external
application by serializing the PRIME API.

The user application projects can be found in the package following this path:

..\thirdparty\prime_ng\apps\
All of these user application projects are provided in dual mode, i.e., they can be used in any Service
Node regardless of the PRIME FW stack version that is running.

Important: Dual mode applications are not provided in the SAMG55 platform
due to the lack of internal memory space. See Chapter Memory Allocation for
more information.

Additionally, Microchip also provides several PLC PHY applications that show how to manage the
PRIME PLC PHY layer exclusively:

• PHY Tester: this PHY application example shows the capabilities of the PL360 device in a point-to-
point connection, using the USI to serialize the API of the PLC PHY layer.

• PHY TX Test Console: this PHY application example uses a terminal console to configure the PLC
PHY layer and perform several board tests.

• PHY Sniffer: this PHY application allows monitoring of data traffic on a PRIME network by
serializing PHY frames. Depending on the platform, this PHY sniffer might be located in the apps
folder instead of the phy apps folder.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 9

• PHY PLC&Go: this PHY application shows the basic code required to work with the PLC PHY layer.

The PHY application projects can be found in the package following this path:

..\thirdparty\prime_ng\phy\atpl360\apps
See Chapter Example Applications for detailed information about the operation of every example.

For example, a DLMS+Metrology application project can be found in the package following this path:

..\thirdparty\prime_ng\apps\prime_service_dual_dlms_met\sam4cms16c_atpl360mb_
bootloader\iar\apps_prime_service_dual_dlms_met.eww
The structure of this project in IAR Embedded Workbench is shown in the following figure. Files
and folders required to develop a user application over the PRIME FW stack are marked with red
asterisks.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 10

Figure 2-4. Folder Structure of the DLMS+Metrology Application Example Project

**
**
*

*
*

*
*

Important: Users must not modify any of the provided files except for the
configuration files, the HAL and the board definition (in folder \sam\boards\) in
order to adapt them to their hardware design. Users are free to use the example
applications as templates to create new user applications. Users can also develop
their own applications in the apps directory.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Understanding the Firmware Package

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 11

2.1.3 PL360 Firmware
For the PL360/PL460 platform, Microchip provides a binary file to be loaded into the PL360 device,
where the PLC PHY layer of the PRIME FW stack runs. Details about loading the PL360 firmware can
be found in the "PL360 Host Controller User Guide".

2.1.4 USI Host Example
Microchip provides the required files to develop the host controller side of the serialization of the
PRIME FW stack. These files are included in the USI (Universal Serial Interface) Host. Details about
usage of serialization can be found in chapter Example Applications. For the USI Host, see the USI
Host User Guide.

2.1.5 Bootloader Example
Microchip provides a bootloader example in order to allow the upgrade not only of the PRIME FW
stack but also of the user application and of the PL360 firmware running in the PL360 device. Details
about the firmware upgrade can be found in chapter File Transfer Service for Firmware Upgrade.

Important: All provided user application project examples that interact with the
PRIME FW stack are configured to be used together with this bootloader example.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME FW Stack Project

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 12

3. PRIME FW Stack Project
3.1 Introduction

The PRIME Firmware Stack follows a layered approach based on the PRIME specification. The
following figure shows the stack architecture.

Figure 3-1. Block Diagram of the PRIME FW Stack Architecture

PRIME API

CL MNGP

PRIME Stack

MAC

PAL

PHY

HAL

USER
APPLICATION

PRIME API

PRIME FW Stack

HAL

HARDWARE

HAL API

Microchip provides a library which contains the MAC layer, the Convergence Layer and the
Management Plane as described in the PRIME specification. The binary file generated with the
PRIME FW stack project example contains the complete PRIME FW stack with all the layers shown in
the previous figure. The PHY is not the PHY layer as such but the host controller component.

It is important to note that the only entry point to the PRIME FW stack from the user application
is through the PRIME API, which contains the interfaces defined in the PRIME specification as well
as stack control functions. The API of the PRIME FW stack is described in chapter PRIME API and
in chapter API of PRIME FW Stack. The PRIME FW stack accesses the hardware through the user
application with the HAL API described in chapter HAL API.

Additionally, Microchip provides the source code of the PL360 Host Controller that manages the
interface of the PLC PHY layer in the PL360 device and the PAL layer.

The PHY layer, the MAC layer and the Convergence Layer have all their own version numbers, which
can be accessed through the corresponding vendor specific PIB attributes PIB_PHY_SW_VERSION
(0x8080), PIB_MAC_INTERNAL_SW_VERSION (0x8126) and PIB_CL_INTERNAL_SW_VERSION (0x8201).
These PIB attributes are described in chapter PIB Objects Specification and Access.

The PRIME FW stack modules from the bottom up are briefly described in the following sections.
Basic concepts that are discussed in the PRIME specification are assumed to be known. The
conformance statement about the current implementation of the PRIME protocol is found in chapter
Protocol Implementation Conformance Statement.

3.1.1 Physical Layer (PHY)
The Physical Layer (PHY) handles the transmission and reception of MPDUs at the physical level
between neighbor nodes.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME FW Stack Project

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 13

On the transmission side, the PHY layer receives its inputs from the MAC layer through the PAL. At
the end of transmission, the data is passed to the physical medium via the HAL.

On the reception side, the PHY layer receives its inputs from the physical medium via the HAL. At the
end of reception path, the data flows to the MAC layer through the PAL.

By providing an interface through the PAL, the MAC layer is then independent from the underlying
modem. Besides that, the PHY interface can be used by basic applications without requiring the
MAC layer (see a PHY application example in chapter PHY Applications). The API of the PHY layer is
described in chapter API of PHY and PAL Layers.

The PHY layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the PHY layer are stored in the PHY PIB storage and the PHY layer
provides an interface to access and update their values through the PHY Layer Management Entity
(PLME). The PRIME FW stack supports all mandatory PHY PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-6).

3.1.2 Physical Abstraction Layer (PAL)
The Physical Abstraction Layer (PAL) provides an interface between the PHY layer and the MAC layer,
so that the MAC layer is independent from the PHY layer and the underlying modem.

The PAL is based on the PHY primitives for data and control planes described in the PRIME
specification, although the current implementation offers enhanced versions of some of them
to take a full advantage of the features available in the PHY layer. These features improve the
operation of the MAC layer.

A description of the PHY data and management primitives available in the PAL as well as the
extended features can be found in chapter API of PHY and PAL Layers.

3.1.3 Medium Access Control Layer (MAC)
The Medium Access Control (MAC) layer provides core MAC functionalities of system access,
bandwidth allocation, connection establishment/maintenance and topology resolution according to
the PRIME specification.

The MAC layer maintains a set of attributes that provide detailed information about its operation.
The PIB attributes related to the MAC layer are stored in the MAC PIB storage and the MAC layer
provides an interface to access and update their values through the MAC Layer Management Entity
(MLME). The PRIME FW stack supports all mandatory MAC PIB attributes as described in the PRIME
specification as well as some vendor specific ones (see Table 12-7).

3.1.4 Convergence Layer (CL)
The Convergence Layer (CL) associates the data received from a user application to its proper MAC
connection. It is composed by a common part to segment and reassemble packets and one or more
service specific sublayers (e.g. IEC 61334-4-32). Information about data exchange using the CL can
be found in chapter Data Exchange.

3.1.5 Management Plane (MNGP)
The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade inside the stack. More information about this layer can be found in
chapter PRIME Node Management Plane.

The PRIME certification conformance tests require accessing the PIB attributes and this is achieved
via the Management Plane.

3.2 PRIME Stack User Configuration Parameters
The PRIME FW stack can be configured to suit user requirements. This is achieved with several
configuration files, which allow:

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME FW Stack Project

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 14

• The stack to configure the required stack resources according to the application needs based on
the required functionality, and

• The application to configure its own resources

Note that some parameters must be configured during the Manufacturing Test Procedure (MTP).

Some parameters are subject to change during execution and it could be needed to store them in
non-volatile memory so that they can be recovered after a system restart. See chapter 4.2.1. Data
Storage for more information.

3.2.1 Firmware Version Information
In the provided PRIME FW stack binary project, the first 20 bytes contain the Vendor, Model and
Version information corresponding to the PRIME FW stack library. These metadata are useful to
identify and control which library is being used or upgraded. Users can edit this information in file
conf_prime_stack.h.

 /* Firmware Information */
 #define PRIME_FW_VENDOR “MCHP”
 #define PRIME_FW_MODEL “PL360MB”
 #define PRIME_FW_VERSION “S13.10.05\0\0\0\0\0\0\0”

 /* Prime PIB firmware information. FW Version is used as PIB version */
 #define PRIME_PIB_VENDOR 0x0000
 #define PRIME_PIB_MODEL 0x3937

The modifiable attributes are the following:

Table 3-1. PRIME FW Information Attributes
Attribute Definition Format

PRIME_FW_VENDOR Vendor name, e.g. “MCHP”. ASCII. Maximum 16 bytes.

PRIME_FW_MODEL Product name, e.g. “PL360MB”. ASCII. Maximum 16 bytes.

PRIME_FW_VERSION Version identifier as defined in
PIB 0x0075 (PIB_MAC_APP_FW_VERSION), e.g.
“S13.10.05\0\0\0\0\0\0\0”.

Numerical, ASCII recommended. It must
be 16 bytes long.

PRIME_PIB_VENDOR Vendor name as defined in PIB 0x0076
(PIB_MAC_APP_VENDOR_ID), e.g. 0x0000.

Numerical, two bytes size. This value is
assigned by the PRIME Alliance.

PRIME_PIB_MODEL Product name as defined in PIB 0x0077
(PIB_MAC_APP_PRODUCT_ID), e.g. “97”.

Numerical or ASCII, two bytes size.

3.2.2 Communication Channel and other PHY Parameters
Microchip provides solutions that cover frequencies from 41 kHz up to 89 kHz and are compliant
with different applicable regulations in the PLC domain.

The table below shows the available frequency bands with their associated PLC coupling boards. To
configure the PLC coupling in PL360 and PL460, see the corresponding chapters.

Table 3-2. Frequency Bands
Channel Frequency band (kHz) PLC coupling board (PL360) PLC coupling (PL460)

1 41 - 89

ATPLCOUP000
ATPLCOUP001
ATPLCOUP003
ATPLCOUP004
ATPLCOUP007
ATPLCOUP011

Main branch or auxiliary branch

The PRIME FW stack needs PHY parameters to be kept safe in a non-volatile storage area in case the
system restarts for any reason.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME FW Stack Project

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 15

These PHY parameters are the PLC communication channel.

The PRIME FW stack uses a configuration key to determine whether these parameters are available
in the non-volatile storage or not. The structure with the configuration key and the PHY parameters
that must be kept in the non-volatile storage area is defined in file hal.h as follows:

 /** Configuration key to manage PHY params */
 #define HAL_PRIME_PHY_CONFIG_KEY 0xAA99

 /** Type to manage PHY params */
 typedef struct {
 uint16_t ul_cfg_key;
 uint8_t txrxChannel;
 } x_phy_cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key matches the value defined by HAL_PRIME_PHY_CONFIG_KEY,
then the PRIME FW stack considers that the stored values are valid and reads them from the
non-volatile storage area. However, if the stored key does not match HAL_PRIME_PHY_CONFIG_KEY,
then the stored values are discarded and the PRIME FW stack reads and stores the default values
from the PHY layer.

The PLC communication channel can be changed by users using vendor specific PIB attribute
PIB_PHY_TX_CHANNEL (0x8090) described in Table 12-6. This update is only permitted under
MTP mode and requires a reset to take effect. The changed value is always stored in the
non-volatile storage area. After a reset, since the configuration key matches the defined value
HAL_PRIME_PHY_CONFIG_KEY, the last value stored in the non-volatile storage area will be the one
used by the stack.

Important: Do not change the value assigned to the configuration key
HAL_PRIME_PHY_CONFIG_KEY because this is a compilation constant in the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL_PHYCFG_OFFSET_USER_SIGN in order to access the PHY parameters in the non-
volatile storage area.

3.2.3 PLC Coupling (PL360 Platform)
When using the PL360 platform, the hardware coupling implemented in the user board must only
be taken into account when using ATPLCOUP011. In that case, the parameter PAL_ENABLE_C11_CFG
must be defined in file conf_pal.h.

 /* If coupling 11 is chosen */
 #define PAL_ENABLE_C11_CFG

3.2.4 PLC Coupling (PL460 Platform)
When using the PL460 platform, the default configuration uses the auxiliary branch to transmit in
channel 1. To use the hardware variant in order to transmit in channel 1 using the main branch, the
parameter PAL_ENABLE_PL460_CEN_A_CFG must be defined in file conf_pal.h.
 /* PL460 + PLCOUP007 (Single Branch) / PL460 CEN-A (Single Branch) configuration */
 #define PAL_ENABLE_PL460_CEN_A_CFG

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME FW Stack Project

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 16

3.2.5 Band Plan in PLC
Although the PLC PHY layer can handle several communication channels, for this version of
the PRIME specification only channel 1 is supported, as shown in Table 3-2. This is set in
USER_BAND_PLAN in file conf_pal.h.
 /* Define the band plan */
 #define USER_BAND_PLAN (CHANNEL1)

3.2.6 MAC Address
A MAC address is mandatory for a normal operation of the PRIME FW stack. The MAC address
identifies the node in the network and therefore it must be kept safe in a non-volatile storage area in
case the system restarts for any reason.

Important: Note that whenever the system restarts and the PRIME FW stack
cannot find a valid MAC address, it enters into MTP mode.

The PRIME FW stack uses a configuration key to determine whether the MAC address is available in
the non-volatile storage or not. The structure with the configuration key and the MAC address that
must be kept in the non-volatile storage area is defined in file hal.h as follows:

 /** Configuration key to manage MAC address */
 #define HAL_MAC_CONFIG_KEY 0xAA55

 /** Type to manage MAC address */
 typedef struct {
 uint16_t us_cfg_key;
 uint8_t uc_mac[6];
 } x_mac_cfg_t;

Whenever the system restarts, the PRIME FW stack checks the configuration key stored in the non-
volatile storage area. If the stored key does not match the value defined by HAL_MAC_CONFIG_KEY,
the PRIME FW stack enters into MTP mode. Users can then set the MAC address using the vendor
specific PIB 0x8100 (PIB_MTP_MAC_EUI_48 in Table 12-7). The MAC address is then stored in the
non-volatile storage area. If the stored key matches HAL_MAC_CONFIG_KEY, the MAC address is read
and the PRIME FW stack starts in normal operating mode.

Important: Do not change the value assigned to the configuration key
HAL_MAC_CONFIG_KEY because this is a compilation constant in the PRIME FW
stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL_MACCFG_OFFSET_USER_SIGN in order to access the MAC address in the non-volatile
storage area.

3.2.7 Enabling PLC PHY Layer
The PLC PHY layer is enabled in file conf_pal.h by defining PAL_PLC.
 /* Definition of available PHY layers */
 #define PAL_PLC

3.2.8 PL360 Firmware Information (PL360/PL460 Platform)
Users must configure information related to the PL360 firmware that is loaded into the
PL360 device. This information includes the address where the binary image is stored
(ATPL360_BINARY_ADDRESS) as well as its size (ATPL360_BINARY_LEN). These values must be

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME FW Stack Project

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 17

taken into account when assigning memory resources. See chapter Memory Allocation for more
information.

 /* Component ATPL360 Binary Information */
 #define ATPL360_BINARY_ADDRESS 0x010C0000
 #define ATPL360_BINARY_LEN 0x10000

3.2.9 Sniffer Serialization
The different PHY layers include an embedded sniffer, which provides the traffic via serial interface
so that it can be analyzed if necessary.

To set the port number for the serialized sniffer in conf_pal.h, see chapter Linking of PRIME Sniffer.

To configure the sniffer for the PLC PHY layer, users must enable the code related to the embedded
sniffer in file conf_atpl360.h:
 /* Enable ADDONS module */
 #define ATPL360_ADDONS_ENABLE

Important: When the embedded sniffer code is included, the sniffer serialization
can be enabled and disabled through the vendor specific PIB attribute 0x8106
(PIB_PHY_SNIFFER_ENABLED in Table 12-6).

The sniffer frame format can be found in chapter PRIME Sniffer Frame Format.

3.2.10 Serial Communication Profile of PRIME Management Plane
The Management Plane can be accessed through the Serial Communication Profile, as described
in the PRIME specification. If users want to use the Serial Communication Profile, they need to
define the port number for the serialization in file conf_mngp.h. See chapter Linking of Serial
Communication Profile of PRIME Management Plane for details.

Important: Note that the Serial Communication Profile of the Management Plane
is required for PRIME certification. The baud rate must be set to 57600 bauds. See
the PRIME Certification test book for more information.

3.2.11 PRIME Mode
The PRIME FW stack library must be configured for the right type of node (board mode) and for
the correct version of the PRIME specification. This information must be kept safe in a non-volatile
storage area so that it can be recovered in case of restart.

The PRIME FW stack uses a configuration key to determine whether the PRIME mode information
is available in the non-volatile storage or not. The structure with the configuration key and the
PRIME mode information that must be kept in the non-volatile storage area is defined in file hal.h as
follows:

 /** Configuration key to manage PRIME mode */
 #define HAL_PRIME_MODE_CONFIG_KEY 0xA55A

 /** Type to manage PRIME mode configuration.
 * board_mode indicates board function (PRIME_BN or PRIME_SN)
 * prime_version indicates protocol version (PRIME_1_3, PRIME_1_4 or PRIME_BC)
 */
 typedef struct {
 uint16_t key;
 uint8_t prime_version;
 uint8_t board_mode;
 } x_prime_mode_info_cfg_t;

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME FW Stack Project

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 18

Whenever the system restarts, the PRIME FW stack checks the configuration key stored
in the non-volatile storage area. If the stored key does not match the value defined by
HAL_PRIME_MODE_CONFIG_KEY, the PRIME FW stack reads and stores the default values defined
in file conf_mac.h. If the stored key matches HAL_PRIME_MODE_CONFIG_KEY but any of the stored
values does not match the value in file conf_mac.h, the values defined in conf_mac.h are read and
stored.

Important: Do not change the value assigned to the configuration key
HAL_PRIME_MODE_CONFIG_KEY because this is a compilation constant in the
PRIME FW stack library.

The PRIME FW stack invokes the functions included in file hal_cfg.c of the HAL with the configuration
type set to HAL_PRIME_MODE_OFFSET_USER_SIGN in order to access the MAC address in the non-
volatile storage area.

3.2.12 Zero Cross Detection in PLC
When using the PL360/PL460 platform, if there is a zero cross detection circuit in the user board, it
must be configured appropriately with the parameters available in the PL360 device. For additional
information, refer to the "PL360 Host Controller User Guide".

3.2.13 Network Behavior
The behavior of the PRIME FW stack can be altered by means of the PIB attributes described in the
PRIME specification.

The PRIME specification defines default values for some of these PIB attributes but the current
implementation is not always using the default ones. These modified values have been set to
achieve maximum performance on real networks.

The following table lists all read-write PIB attributes together with their default values according to
the PRIME specification and the values configured in the PRIME FW stack. Users are free to modify
any of these values through MLME or Management Plane primitives in order to customize the PRIME
FW stack according to their needs. These PIB attributes can be found in file mac_pib.h .

Table 3-3. Configured PIB Values in the PRIME FW Stack
Attribute ID PRIME default value Implementation

value

PIB_MAC_MIN_SWITCH_SEARCH_TIME 0x0010 24 32

PIB_MAC_MAX_PROMOTION_PDU 0x0011 2 2

PIB_MAC_PROMOTION_PDU_TX_PERIOD 0x0012 5 5

PIB_MAC_SCP_MAX_TX_ATTEMPTS 0x0014 5 5

PIB_MAC_CTL_RE_TX_TIMER 0x0015 15 2

PIB_MAC_MAX_CTL_RE_TX 0x0018 3 5

PIB_MAC_EMA_SMOOTHING 0x0019 3 0

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 19

4. Integrating the PRIME FW Stack
The purpose of this section is to indicate requirements and provide recommendations in order to
integrate the PRIME FW stack into the user application.

The following issues must be taken into account:

• Memory allocation
• Hardware requirements
• Interfaces with the PRIME FW stack (PRIME API and HAL API)
• Integration requirements
• Main function structure

4.1 Memory Allocation
One of the most important features of the PRIME implementation is its ability to manage the PRIME
FW stack and the user application as separate software modules. The corresponding binary images
can be allocated to any memory addresses configured by the end user, thus providing a highly
flexible and versatile implementation. The PL360 firmware also requires a separate memory section.

Important: The PRIME FW stack requires a minimum size of 128kB for its
memory sector in ROM and a minimum size of 32kB of RAM. Additionally, the
PL360 firmware requires a minimum size of 64kB for its memory sector in ROM.

The allocation address of the PRIME FW stack module is defined and managed by the user
application. All the PRIME functions in the PRIME API are referenced relatively to this address. The
pointer to the HAL API is also needed, so that the PRIME FW stack can invoke the HAL API functions
as shown in the figure below.

Figure 4-1. Pointers in the User Application

PRIME FW Stack PRIME_MAC_SIZE

PRIME_API

HAL_API pointer

PRIME pointer

APP

HAL_API

PL360 Firmware PRIME_PHY_SIZE

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 20

Important: Users can reserve and manage as many memory regions as they
wish provided they keep at least one area for a copy of the last upgraded binary
file. The PRIME specification requires this in case the firmware upgrade process
must revert to a previous version.

4.1.1 Default Memory Allocation Example
The figures below depict the memory allocation configured in the provided application project
examples with bootloader. As it can be seen, there are several regions reserved for all the binaries
as well as for the firmware upgrade management, whose region must be at least as big as the
biggest binary region (according to the example provided by Microchip).

This memory distribution has been chosen to ease the firmware upgrade process. The memory
addresses can be configured in file conf_app_example.h. For example, for a Flash memory of 1MB in a
dual mode application:

 /* Define PRIME location in flash */
 #define PRIME_APP_SIZE 0x00040000
 #define PRIME_MAC13_SIZE 0x00020000
 #define PRIME_MAC14_SIZE 0x00022000
 #define PRIME_PHY_SIZE 0x00018000
 #define PRIME_IMAGE_SIZE 0x00040000
 #define PRIME_APP_FLASH_LOCATION 0x01010000
 #define PRIME_IMAGE_FLASH_LOCATION 0x01050000
 #define PRIME_MAC14_FLASH_LOCATION 0x01090000
 #define PRIME_PHY_FLASH_LOCATION 0x010B8000
 #define PRIME_MAC13_FLASH_LOCATION 0x010D0000

Important: The address of the PLC PHY layer configured in file
conf_app_example.h must have the same value of the address of the PL360
firmware that is configured in file conf_pal.h (see chapter PL360 Firmware
Information (PL360/PL460 Platform).

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 21

Figure 4-2. Flash Example for PRIME with Bootloader (Compilation with 1 MB Flash Memory in Dual Mode
Application)

0x01000000

0x010D0000

0x010FFFFF

PRIME 1.3 FW Stack

0x01050000

0x010CFFFF

0x0100FFFF

0x01010000

0x0104FFFF

User App

Bootloader

0x010B8000
0x010B7FFF

PL360 Firmware

PRIME 1.4 FW Stack

0x0108FFFF

0x01090000

Bootloader: 16 kB reserved

User App: 256 kB reserved

FU image: 256 kB reserved

PL360 Firmware: 96 kB reserved

PRIME FW Stack 1.3: 128 kB reserved

PRIME FW Stack 1.4: 136 kB reserved

And this is an example for the SAMG55 platform, which does not support dual mode:
 /* Define PRIME location in flash */
 #define PRIME_APP_SIZE 0x0001C000
 #define PRIME_MAC13_SIZE 0x00020000
 #define PRIME_MAC14_SIZE 0x00022000
 #define PRIME_PHY_SIZE 0x00018000
 #define PRIME_IMAGE_SIZE 0x00022000
 #define PRIME_APP_FLASH_LOCATION 0x00408000
 #define PRIME_IMAGE_FLASH_LOCATION 0x00424000
 #define PRIME_PHY_FLASH_LOCATION 0x00446000
 #define PRIME_MAC14_FLASH_LOCATION 0x0045E000
 #define PRIME_MAC13_FLASH_LOCATION 0x0045E000

Important: The address of the PLC PHY layer configured in file
conf_app_example.h must have the same value of the address of the PL360
firmware that is configured in file conf_pal.h (see chapter PL360 Firmware
Information (PL360/PL460 Platform).

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 22

Figure 4-3. Flash Example for PRIME with Bootloader (Compilation for SAMG55)

User App: 112 kB reserved

0x00400000

0x0045E000

0x00480000

PRIME FW Stack: 136 kB reservedPRIME FW Stack

FU image: 136 kB reserved

0x00424000

0x0045DFFF

0x00403FFF

0x00404000

0x00423FFF

ISP Bootloader: 16 kB reserved

User App

ISP Bootloader

0x00446000

0x00445FFF

PL360 Firmware PL360 Firmware: 96 kB reserved

0x00407FFF

0x00408000

Bootloader: 16 kB reservedBootloader

Additionally, the PRIME FW stack imposes memory requirements to the user application regarding
the RAM. This is shown in the next figure. The memory addresses and sizes are defined in the linker
scripts that go with the application examples.

Figure 4-4. 128 kB SRAM Memory Map

User App

PRIME FW Stack

96 kB

32 kB

0x20000000

0x20017FFF

0x20018000

0x2001FFFF

4.2 Hardware Resources Usage
MCU hardware resources include microcontroller peripherals, buses, timers, IRQ lines, I/O registers,
and so on. Since many of these interfaces have corresponding APIs in the HAL, users are
encouraged to use the high-level APIs instead of the low-level register interfaces to ensure that the
resource usage does not overlap with that of the PRIME FW stack. The hardware resources reserved
for internal use by the PRIME FW stack are the following:

• Mandatory timers: The 1µs service requires one timer TCx to have a common timer reference
between the PHY and the MAC layer.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 23

• Exceptional timers: During certification, when a UART or USART is required (see Chapter Serial
Communication Profile of PRIME Management Plane), a timer TCx is used.

• SPI: The PLC PHY layer requires one SPI port.
• DMA: DMA0 is used.
• Interrupts: The PLC PHY layer uses a GPIO as PLC External Interrupt pin (EINT).

Important: Hardware resources reserved for use by the PRIME FW stack must
not be accessed by the user application.

4.2.1 Data Storage
The PRIME FW stack requires storage of data in a non-volatile storage area that must be provided by
users. Non-volatile data are:
• the MAC address (see chapter MAC Address)
• the PRIME mode (see chapter PRIME Mode)
• the PHY parameters (see chapter Communication Channel and other PHY Parameters)

4.3 PRIME Interfaces
As shown in Figure 1-1, the PRIME FW stack has two interfaces: one towards the user application and
another one towards the HAL.

4.3.1 PRIME API
The PRIME API is the only interface that the user application must use to interact with the PRIME FW
stack.

The PRIME API is based on a request/confirm mechanism, which is a particular instance of an event-
driven programming model. A request is an asynchronous call to the underlying stack to perform
some action on behalf of the user application; a confirm is the callback that executes when that
action has been completed and the result of that action is available.

Apart from request/confirm pairs, there are cases when the application needs to be notified of an
external event that is not a reply to any specific request. For this, there are a number of user-defined
callbacks named indications that are invoked by the stack asynchronously. Note that during the
execution of an indication callback, it is not permitted to invoke any request as this could lead to the
generation of a callback chain.

Important: Callback functions must be registered in the PRIME FW stack by the
user application upon initialization (see chapter Main Function Structure).

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 24

Figure 4-5. API Calls in Event-Driven Programming

A PP P R IM E

m ac_establish_request

m ac_establish_confirm

A PP P R IM E

m ac_establish_indication

m ac_establish_response

The confirm callback can be divided in two types:

• Asynchronous: For most operations, request execution takes a considerable amount of time and
a confirm callback function can be called seconds after the request was issued. During this time,
the application must postpone other requests of the same type until the first request is completed.
(i.e.: previous confirm has been received). Furthermore, it is not recommended to execute any
other action after invoking the request. Considering that the PRIME FW stack always replies with a
confirm, the application must wait for the corresponding confirm before performing a new request
of the same type

• Immediate: For PLME and MLME operations, the confirm callback function is called right away
from the request during the same execution cycle, i.e. it acts as a normal function call and it
is thus possible to perform other actions after the request. Note that for any operation (not
only PLME or MLME), when the result is not successful, the confirm callback function is called
immediately instead of asynchronously

The complete PRIME API structure is located relatively to the address indicated by the prime_api
pointer. It is defined as a set of macros in the header file prime_api.h. The function parameters
are defined in several defs header files depending on the layer the function is related to. The user
application can simply call these functions without modifying them. For more information, see
chapter API of PRIME FW Stack.

4.3.1.1 Request/Confirm Example
Consider the establishment of a MAC connection from a node. The user application needs to call the
following function:

prime_cl_null_establish_request(uint8_t *puc_eui48, uint8_t uc_type, uint8_t *puc_data,
uint16_t us_data_len, uint8_t uc_arq, uint8_t uc_cfbytes);

Previously, it has registered the callback to the corresponding confirm (see chapter PRIME FW Stack
Initialization), which must be a function of the following type:

typedef void (*mac_establish_cfm_cb_t)(uint16_t us_con_handle, mac_establish_confirm_result_t
uc_result, uint8_t *puc_eui48, uint8_t uc_type, uint8_t *puc_data, uint16_t us_data_len);

The example illustrates a particular instance of using a request/confirm mechanism but all other
uses follow the same approach.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 25

4.3.1.2 Indication/Response Example
If the user application wants to be informed about the establishment of a MAC connection in
the node, it must register a callback to the corresponding indication (see chapter PRIME Callback
Functions), which must be a function of the following type:

typedef void (*mac_establish_ind_cb_t)(uint16_t us_con_handle, uint8_t *puc_eui48, uint8_t
uc_type, uint8_t *puc_data, uint16_t us_data_len, uint8_t uc_cfbytes);

Indications may or may not need a response. In this example, the callback code for the indication
must include a call to the following function:

prime_cl_null_establish_response(uint16_t us_con_handle, mac_establish_response_answer_t
uc_answer, uint8_t *puc_data, uint16_t us_data_len);

The example illustrates a particular instance of using an indication mechanism but all other uses
follow the same approach.

4.3.2 HAL API
Apart from the PRIME FW stack, Microchip provides an open code of the Hardware Abstraction Layer
(HAL). The HAL functionalities are used both by the user application as well as by the PRIME FW
stack.

The HAL can be allocated at any address within the region of the user application, which must
keep a pointer to the HAL API functions. This pointer must be passed to the PRIME FW stack at
initialization.

The API of the HAL, defined in header file hal.h, must not be changed under any
circumstances.

Important: Note that the provided HAL source code is only an implementation
example. Users should modify the function code according to their hardware and
specifications.

The HAL contains all platform (i.e., MCU and board) specific functionality (required by the PRIME FW
stack) and provides interfaces to the upper modules. Therefore, all upper modules are independent
from the underlying platform.

The HAL provides interfaces to several components, such as the PLC access functionality through
SPI or access to persistent storage (for example, serial Flash) among others. These components are
implemented as software blocks which interact with the hardware.

The HAL also implements software components that may or may not interact with the hardware.
For example, the CRC component or the serial interface to handle the different serial interfaces
described in the PRIME specification through one or more UART ports. The Universal Serial Interface
(USI) is an example of implementation of this serial interface. For additional information about
services in the USI, refer to the Application Note "PLC Universal Serial Interface".

The following table shows all HAL functions used by the PRIME FW stack, the file where they are
implemented and a brief description of their usage. Note that there might be other functions not
described here but available in hal.h. Those functions are irrelevant in this context.

Table 4-1. HAL API
Function File Description

hal_restart_system hal.c Restart the complete system.

hal_pcrc_calc hal_pcrc.c Calculate the CRC of the input buffer according to the PRIME specification.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 26

...........continued
Function File Description

hal_pcrc_config_sna hal_pcrc.c Configure the SNA for the CRC.

hal_fu_data_write hal_fu.c Write data in memory during FU.

hal_fu_data_cfg_read hal_fu.c Read FU configuration data.

hal_fu_data_cfg_write hal_fu.c Write FU configuration data.

hal_fu_start hal_fu.c Initialize and unlock memory for a FU process.

hal_fu_end hal_fu.c Finish the FU process.

hal_fu_revert hal_fu.c Revert to the old firmware.

hal_fu_crc_calculate hal_fu.c Calculate the CRC of the received file.

hal_fu_crc_set_callback hal_fu.c Specify the callback function to provide the calculated CRC.

hal_fu_get_bitmap hal_fu.c Get bitmap with the status of each page.

hal_plc_init1 hal_plc.c Initialize the PLC interface.

hal_plc_reset1 hal_plc.c Reset the internal PLC modem.

hal_plc_set_handler1 hal_plc.c Specify the callback function for the PLC interrupt.

hal_plc_tx_signal hal_plc.c Indicate a transmission event.

hal_plc_rx_signal hal_plc.c Indicate a reception event.

hal_get_config_info2 hal_cfg.c Read configuration parameters. This function disables all interrupts
when accessing the User Signature.

hal_set_config_info2 hal_cfg.c Write configuration parameters. This function disables all interrupts
when accessing the User Signature.

hal_usi_set_callback hal_usi.c Specify the callback function for a given protocol.

hal_usi_send_cmd hal_usi.c Transmit data through the serial interface.

hal_trng_init hal_trng.c Initialize the true random number generator.

hal_trng_read hal_trng.c Read information from the true random number generator.

hal_debug_report hal.c Report a debug error.

hal_plc_send_boot_cmd3 hal_plc.c Send a boot command. This function disables all interrupts.
hal_plc_send_wrrd_cmd3 hal_plc.c Send a write/read command. This function disables all interrupts.
hal_plc_enable_interrupt3 hal_plc.c Enable or disable the PLC interrupt.

hal_plc_delay3 hal_plc.c Delay execution.

hal_pib_get_request hal_pib.c Get user specific PIB value.

hal_pib_get_request_set_callback hal_pib.c Specify the callback function to get a user specific PIB value.

hal_pib_set_request hal_pib.c Set user specific PIB value.

hal_pib_set_request_set_callback hal_pib.c Specify the callback function to return the result of setting a user specific
PIB value.

hal_swap_stack hal.c Request to swap the PRIME FW stack.

hal_plc_set_stby_mode3 hal_plc.c Set the stand-by mode.

hal_plc_get_thermal_warning3 hal_plc.c Check if there is a thermal warning active.

timer_1us_get timer_1us.c Get the current time in microseconds.

timer_1us_set_int timer_1us.c Set an interrupt for the specified time in microseconds.

timer_1us_cancel_int timer_1us.c Cancel a programmed time interrupt.

timer_1us_enable_interrupt timer_1us.c Enable/disable the TC interrupt.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 27

Notes: 
1.

Microchip does not recommend changing these functions as they are related
to the PLC interrupt.

2.

Important: The Microchip implementation of these functions uses the User
Signature in the MCU to store some configuration parameters. This is just an
example. Users can store such parameters in any non-volatile storage area of
their choice and then they must update these functions accordingly.

3. These functions are only available in the PL360/PL460 platform.

4.4 PRIME Integration Requirements
The goal of this section is to provide recommendations, requirements and limitations to be taken
into account in the application development with the PRIME FW stack. Users are strongly advised to
follow these guidelines.

Failure to comply with the requirements may result in an anomalous and/or
unexpected behavior of the PRIME node.

4.4.1 Task Manager, Priorities and Preemption
A major aspect of application development is managing the control flow and ensuring that different
parts of the application do not interfere with each other's execution. The PRIME FW stack can be
integrated in the user application like any other task.

Important: The PRIME task must have at least the same or a higher priority than
any other user task.

If several user tasks are defined, then it is highly recommended to configure the user tasks with a
lower priority than the PRIME task. The reason to do this is to ensure that the PRIME task is executed
as soon as the system tick arrives, in the defined timer rate. This synchronization is critical for the
PRIME FW stack.

Important: Call the PRIME FW stack process every 10ms as a maximum period,
ideally every 5ms.

Note that the maximum execution time of the PRIME FW stack process is less than 1ms.

4.4.2 Stack Size
Users must take into account their own user tasks. User tasks need to have an appropriate stack
size to guarantee that no heap task overflow occurs. The optimal number of tasks and memory task
stack sizes need to be configured by users to avoid unexpected behaviors. This also applies to the
PRIME task stack size because it depends on the callback functions implemented by users.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 28

Important: Users must calculate the stack size considering the PRIME FW stack
functions, the HAL functions and the application functions in order to obtain the
worst case. Then, they should add a safety margin.

4.4.3 Other Coding Requirements
The following requirements must be taken into account for a proper system performance:

• Avoid invoking a request function inside a callback function. This increases the call stack size
and may provoke endless loops. For example, do not request to send data in the same callback
function that handles the confirm of a data request.

• Set to NULL all unused callback function pointers:
 memset(&mac_cbs, NULL, sizeof(mac_cbs));
 memset(&cl432_cbs, NULL, sizeof(cl432_cbs));

• Provide the callback function pointers again after an MLME_RESET.confirm primitive.
• Do not modify critical regions in the HAL. The PRIME process already disables any interrupts that

could affect its operation (all interrupts with priority 2 and higher). When the PRIME process has
finished, disabled interrupts are enabled again.

• Do not modify the functions and parameters in the PRIME API and the HAL API.
• Modify the available user configuration files according to your needs.
• Give a MAC address to the board. If the PRIME FW stack cannot find a MAC address, it enters into

MTP mode.
• Do not reset the software in the function that receives the result of the FU process. The reset

must take place in a user task.
• Do not reset the software or change the PRIME API pointer in the function that requests a swap

of the PRIME FW stack versions. The reset or pointer change must take place in a user task.
• Define an exclusive serial port number for the Serial Communication Profile of the Management

Plane (only required for PRIME certification). The baud rate must be set to 57600 bauds.
• Initialize and refresh the watchdog to avoid hangings of any application during execution.
• Use the supply monitor controller, if available in the board, to avoid malfunctions.

4.4.4 CPU Usage
The CPU usage due to the PRIME FW stacks varies depending on the task that is being executed.

4.5 Main Function Structure
Every user application contains a main function, which is, as usual, the starting point of the
application. A basic main function is presented below.

Example of main function
 int main(void)
 {
 /* Function to setup clocking. */
 sysclk_init();

 /* Ensure all priority bits are assigned as preemption priority bits.*/
 NVIC_SetPriorityGrouping(__NVIC_PRIO_BITS);

 /* Library function to setup for the evaluation kit being used.*/
 board_init();

 /* Configure supply monitor */
 hal_setup_supply_monitor(CONTINUOUS_MONITORING, THRESHOLD_3V04);

 /* Initialize flash: 6 wait states for flash writing. */

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 29

 flash_init(FLASH_ACCESS_MODE_128, CHIP_FLASH_WRITE_WAIT_STATE);

 /* Set up watchdog */
 hal_watchdog_setup(WATCHDOG_TIME);

 /* Configure console */
 _configure_dbg_console();
 puts(STRING_HEADER);

 /* Initialize hal layer */
 hal_init();

 /* Init HAL callback for stack swap request */
 hal_swap_stack_set_callback(_prime_swap_stack_request);

 /* Read PRIME ptr address */
 prime_api = PRIME_MAC_FLASH_LOCATION;

 /* Initialize PRIME stack */
 prime_init((hal_api_t *)&hal_api);

 /* Init HAL PLC signalling */
 hal_plc_set_tx_signalling_handler(_blink_plc_tx_activity_led);
 hal_plc_set_rx_signalling_handler(_blink_plc_rx_activity_led);

 /* Init user application (callbacks to PRIME) */
 app_init();

 while (1) {
 /* Restart watchdog */
 wdt_restart(WDT);

 /* Process HAL layer */
 hal_process();

 /* Process PRIME stack */
 prime_process();

 /* Process user application */
 app_process();
 }
 }

A developer can add additional code into the body of the function, but the main function should
always follow the structure provided:

1. Set the prime_api pointer

2. Invoke the prime_init() function to initialize the PRIME FW stack

3. Invoke the prime_process() function in the infinite loop to pass control to the task manager

The task manager begins invoking the task handlers of each layer in order of priority (from
highest to lowest), eventually invoking the application task handler. Following the initial call to the
application task handler, the control flow passes between the PRIME FW stack and the callbacks, as
shown in Figure 4-5.

Important: The pointer to the HAL functions must be passed to the PRIME
FW stack at initialization. Users are also responsible for initializing, starting and
running the HAL.

Important: In order to avoid hangings of any application during execution, it is
recommended to initialize and refresh the watchdog. This is a driver available in
any Microchip board.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 30

In order to start using the PRIME FW stack, it is necessary to initialize different parameters and to
call the corresponding initialization functions. These actions must follow the order indicated in the
next sections.

4.5.1 Pointer to the PRIME FW Stack
In order to call the functions of the PRIME API, the prime_api pointer must be available. The user is
responsible for setting this pointer according to the required memory allocation.

4.5.2 PRIME FW Stack Swap
When a node detects traffic from a different stack version, it notifies it to the HAL with function
hal_swap_stack (see HAL API) indicating the type of the detected traffic. If users want to be
notified about this in their application, the corresponding callback function must be provided to the
HAL with the following function:

void hal_swap_stack_set_callback(void (*p_handler)(uint8_t uc_traffic));

Parameters:

• p_handler: Pointer address to the callback function

4.5.3 PLC Signaling (optional)
If users want to be notified about PLC transmission and reception events, the corresponding
callback functions must be provided to the HAL.

4.5.3.1 Providing the Pointer to the Transmission Event Callback Function
To set up the callback for transmission events, the following function must be used:

void hal_plc_set_tx_signalling_handler(void (*p_handler)(void));

Parameters:

• p_handler: Pointer address to the callback function

4.5.3.2 Providing the Pointer to the Reception Event Callback Function
To set up the callback for reception events, the following function must be used:

void hal_plc_set_rx_signalling_handler(void (*p_handler)(void));

Parameters:

• p_handler: Pointer address to the callback function

4.5.4 PRIME FW Stack Initialization
After setting up pointers, the user application can call the initialization function of the PRIME FW
stack. Additionally, since the HAL is part of the application, the application must provide the HAL
pointer to the PRIME FW stack at this point. The function used for this purpose is the following:

prime_init(void *px_hal_api);

Parameters:

• px_hal_api: Pointer to the HAL API

Important: This function initializes the complete PRIME FW stack, from the PHY
layer to the CL shown in Block Diagram of the PRIME FW Stack Architecture.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 31

4.5.5 PRIME Callback Functions
In order to be informed about confirm and indication primitives from the MAC layer and the CL,
when the user application is initialized, it must set up required callback function pointers. This must
be performed after the PRIME FW stack has been initialized. The following functions are used:

void prime_cl_null_set_callbacks(mac_set_callbacks_t *mac_cbs);

Parameters:

• mac_cbs: Pointer to the callback structure of the MAC layer (see chapter Callback Functions in the
MAC Layer for details)

void prime_cl_432_set_callbacks(cl_432_set_callbacks_t *cl432_cbs);

Parameters:

• cl432_cbs: Pointer to the callback structure of the 4.32 SSCS (see chapter IEC 61334-4-32
Primitives for details)

This is an example of callback function pointer setup:

 mac_callbacks_t mac_cbs;
 cl_432_callbacks_t cl432_cbs;

 /* Initialize all callback pointers to NULL */
 memset(&mac_cbs, NULL, sizeof(mac_cbs));
 memset(&cl432_cbs, NULL, sizeof(cl432_cbs));

 /* Initialize callback pointers for MAC */
 mac_cbs.mlme_register_ind_cb = _user_app_mlme_register_ind_cb;
 mac_cbs.mlme_unregister_ind_cb = _user_app_mlme_unregister_ind_cb;
 mac_cbs.mac_establish_cfm_cb = _user_app_establish_confirm_cb;
 mac_cbs.mac_release_ind_cb = _user_app_release_ind_cb;
 mac_cbs.mac_data_ind_cb = _user_app_data_indication_cb;

 prime_cl_null_set_callbacks(&mac_cbs);

 /* Initialize callback pointers for 4.32 */
 cl432_cbs.cl_432_establish_cfm_cb = _user_app_cl_432_establish_cfm_cb;
 cl432_cbs.cl_432_release_cfm_cb = _user_app_cl_432_release_cfm_cb;
 cl432_cbs.cl_432_dl_data_ind_cb = _user_app_cl_432_dl_data_ind_cb;
 cl432_cbs.cl_432_dl_data_cfm_cb = _user_app_cl_432_dl_data_cfm_cb;

 prime_cl_432_set_callbacks(&cl432_cbs);

4.5.6 PRIME FW Stack Process
Every program cycle, the PRIME FW stack must perform several actions for its normal operation. This
is achieved by calling the following function:

prime_process(void);

This function processes events and invokes the corresponding callback functions.

4.6 Application Configuration Parameters

4.6.1 Example Configuration – conf_app_example.h
In this file, users need to define anything related to their application. For example, the reserved
memory addresses, communication ports, etc.

4.6.2 HAL Configuration – conf_hal.h
Users need to define in this file the configurable hardware parameters according to their HAL code.
These can be timers, buffer sizes, interruptions, etc. (see chapter Hardware Resources Usage).

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Integrating the PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 32

4.6.3 PRIME Stack Configuration – conf_prime_stack.h
This file enables parameter PRIME_API_SEPARATED_APPS to indicate that the PRIME FW stack is
separated from the user application.

Important: Currently, Microchip only provides support for separated
applications.

By commenting this parameter, users could also implement a monolithic architecture, that is, one
project contains both the PRIME FW stack library as well as the user application and only one binary
file is generated (including the PL360 firmware if necessary). However, a firmware upgrade of this
kind of architecture is not supported by the provided example applications. The main purpose of
this action would be to debug.

4.6.4 USI Configuration – conf_usi.h
This file configures the characteristics of the ports used for serializations. More information about
this file can be found in chapter Definition and Configuration of Serial Ports.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 33

5. Data Exchange
Users are free to use the provided specific convergence sublayers or access the MAC layer directly
to establish a MAC connection to exchange data between application peers. Such connections can
be made between a Base Node and a Service Node or between two Service Nodes (i.e. a direct
connection).

Please refer to PRIME specification for detailed information about the semantics of the primitives
available in the MAC service access point.

Please note that an Automatic Repeat Request (ARQ) mechanism is available in order to provide
guaranteed communications between peers.

Important: Remember that all requests to exchange data are followed by a
confirm and that the application must always wait for it before performing a new
request. The confirm can be immediate or be delayed for a considerable amount
of time. For communications with ARQ, the invocation of the confirm callback
could take up to several minutes. More information about the request/confirm
mechanism can be found in chapter PRIME API.

5.1 Null SSCS
Users can directly access the MAC layer through the Null SSCS.

Available signalling primitives can be found in Table 12-1.

Available data primitives can be found in Table 12-2.

5.2 IEC 61334-4-32
Users can make use of the provided IEC 61334-4-32 compliant SSCS.

Available IEC 61334-4-34 primitives can be found in Table 12-5.

5.3 Automatic Repeat Request (ARQ)
The PRIME specification defines two kinds of ARQ: windowed and “Stop and wait”. The current
implementation of the PRIME FW stack only supports windowed ARQ with a window size fixed to 4.

The following figure shows how ARQ works. If the application needs more than one second to send
the reply, the Service Node sends the ACK after that time. If the response is received within one
second, the PRIME FW stack piggybacks the ACK in the response.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 34

Figure 5-1. ARQ with One Fragment and Piggyback

1
 s
e
co

n
d

B N S N

1
5
 s
e
co
n
d
s

M E TERD C U P LC

1
 s
e
co

n
d

1
 s
e
co

n
d

In certain situations, it might be possible that the ACK is sent as soon as the request is received, i.e. it
is never piggybacked. That is shown in the next figure.

Figure 5-2. ARQ with One Fragment
BN SN METERDCU PLC

For long fragmented responses, there is an ACK piggybacked to each fragment and the BN sends the
ACK after receiving the last fragment, as shown in the following figure.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 35

Figure 5-3. ARQ with Four Fragments
BN SN METERDCU PLC

DATA_REQ

DATA_REQ +ACK (Frag 1 of 4)

DATA_IND

DATA_CONFIRM

DATA_REQ

DATA_REQ

1s
ec

on
d

ACK

DATA_REQ+ACK(Frag 2 of 4)

DATA_REQ+ACK (Frag 3 of 4)

DATA_REQ+ACK(Frag 4 of 4)

DATA_IND

DATA_CONFIRM

It is possible that a fragment with its corresponding ACK is lost. In that case, a NACK with the missing
fragment is sent, so that the Service Node can resend it. This is shown in the following figure.

Figure 5-4. ARQ with Four Fragments and Retransmission
BN SN METERDCU PLC

DATA_REQ

DATA_REQ +ACK (Frag 1 of 4)

DATA_IND

DATA_CONFIRM

DATA_REQ

DATA_REQ

1s
ec

on
d

ACK

DATA_REQ+ACK(Frag 2 of 4)

DATA_REQ+ACK (Frag 3 of 4)

DATA_REQ+ACK(Frag 4 of 4)

DATA_IND

NACK3

DATA_REQ +ACK (Frag 3 of 4)

DATA_CONFIRM

The worst case scenario occurs when the last fragment is lost because then the Service Node does
not receive any ACK or NACK from the Base Node. In this case, the Service Node waits for 3 seconds

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Data Exchange

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 36

before retransmitting the last fragment. If the ACK or NACK is still not received, the Service Node
makes up to 5 retransmissions. After all the retransmissions, the disconnection process starts.

Figure 5-5. ARQ with Four Fragments and Maximum Number of Retransmissions

BN SN METERDCU PLC

DATA_REQ

DATA_REQ+ACK(Frag 1 of 4)

DATA_IND

DATA_CONFIRM

DATA_REQ

DATA_REQ

1s
ec

on
d

ACK

DATA_REQ+ACK(Frag 2 of 4)

DATA_REQ+ACK(Frag 3 of 4)

3s
ec

s

DATA_REQ+ACK(Frag 4 of 4)

DATA_IND DATA_REQ+ACK(Frag 4 of 4)

DATA_CONFIRM

W
or

st
ca

se
=3

se
cs

*5
re

tri
es

*N
um

_f
ra

gm
en

ts
+1

se
c

W
or

st
ca

se
=3

se
cs

*5
re

tri
es

*N
um

_f
ra

gm
en

ts

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
File Transfer Service for Firmware Upgrade

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 37

6. File Transfer Service for Firmware Upgrade
6.1 Introduction

The PRIME FW stack implements the PRIME FU process as described in the PRIME specification.
Please refer to the PRIME specification for details.

In order to upgrade any binary, Microchip provides an example where it is only needed to reserve
one memory region, which will first store the new image and, after the restart, the previous
binary (see chapter Memory Allocation). The PRIME FW stack is only responsible for managing the
FU process as described in the PRIME specification, whereas the user application is responsible
for handling the pointers to these regions and managing the indications received in the HAL.
Additionally, a complete system restart is required when the FU process finishes so that the
bootloader application moves the received binary to its right location and keeps the previous binary
for a possible revert.

Important: The bootloader application as well as the FU handling in the user
application and in the HAL are only an example provided by Microchip. Users can
develop any other strategy that fits their system requirements and resources in a
more optimal way.

Moreover, since the PRIME FW stack does not control what kind of file is being received, the user
application can also use the PRIME FU process to transfer files. In this case, users need to define
a memory area to store the received file. Later, when the FU process finishes, the user application
decides what to do with this file.

According to the PRIME specification, where it is assumed that the FU process is only used to
upgrade the PRIME stack, the FU process does not end until the sent file is confirmed (result
HAL_FU_FW_CONFIRM in the state diagram in Figure 6-2), i.e. regardless of the type of received file,
the PRIME FW stack must always be restarted so that the FU process finishes properly.

The user should note that the PRIME FW stack is not able to access the hardware by itself, i.e.
it is not directly reading from or writing to the memory, and it is not even changing the running
PRIME FW stack. The user application manages and controls the HAL, which defines and handles the
hardware accesses, including memories, and decides what to do with the received file.

At the beginning of an FU process, the PRIME FW stack starts the HAL FU module so that the HAL
prepares the memory area to use when the stack requests to access the memory. The received file
will be stored in that location.

At the end of the FU process, the PRIME FW stack indicates the result of the FU process to the HAL
and then the user application manages the received file accordingly. This file can be a new image of
the PRIME FW stack, a new image of the PL360 firmware, a new image of the user application or any
other user file.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
File Transfer Service for Firmware Upgrade

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 38

Important: Note that the FU process in the PRIME FW stack only checks the
integrity and authentication of the received file using the file CRC. It does not
perform any check on the validity of this file for a potential upgrade. It is
recommended that the application performs its own validation by means of
checking any metadata contents in the received file. It is up to the users to define
how to check them.

For instance, in the PRIME FW stack binary file, the first 20 bytes contain the
Vendor, Model and Version information. It is recommended to only accept
binary files with matching Vendor and Model (as set in PRIME_FW_VENDOR and
PRIME_FW_MODEL). The HAL is performing such check in file hal_fu.c.

Furthermore, in the provided examples, the last 16 bytes of any binary file are
expected to include an identifier of the file being upgraded or transferred (the
expected identifiers in file hal_fu.c are defined in file conf_app_example.h).

Figure 6-1 shows a flow diagram for a successful FU process with associated states and actions.
Figure 6-2 shows the FU state diagram of the PRIME specification with the results provided by the
HAL during a FU process. Both diagrams apply to any kind of file transfer.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
File Transfer Service for Firmware Upgrade

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 39

Figure 6-1. FU Flow Diagram with States and Actions

Base NodePRIME StackUser APP PLC
Channel

.

.

.

Erase the reserved
memory region and save

image and page size

IDLE

RECEIVING

COMPLETE

CRC checked
successfully

Manage the received file
according to user needs
and reset PRIME stack

COUNTDOWN

UPGRADE

Reset

Calculate CRC

FU process finished
successfully

hal_fu_crc_set_callback()
INIT

hal_fu_data_cfg_read()

hal_fu_data_cfg_write()

FU_INIT_REQUEST

hal_fu_get_bitmap()

hal_fu_start()

hal_fu_data_cfg_write()

FU_DATA

hal_fu_data_write() FU_DATA

hal_fu_data_write()

FU_DATA(Lastpage)

hal_fu_data_write()(LastPage)

hal_fu_crc_calculate()

CallCRCcallback

hal_fu_data_cfg_write()

FU_STATE_REQUEST

FU_STATE_RESPONSE(Complete)

FU_EXEC_REQUEST(RestartTimer!=0)

FU_STATE_RESPONSE(Countdown)

hal_fu_end()

→HAL_FU_SUCCESS

Wait
RestartTimer

hal_fu_data_cfg_write()

hal_fu_data_cfg_read()
REG_REQ

REG_CONFIRM

FU_STATE_REQUEST

FU_STATE_RESPONSE(Upgrade)

FU_CONFIRM_REQUEST
hal_fu_end()

→HAL_FU_FW_CONFIRM

FU_STATE_RESPONSE(Idle)

hal_fu_data_cfg_write()

IDLE

Save
Pages

prime_init()

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
File Transfer Service for Firmware Upgrade

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 40

Figure 6-2. FU State Diagram with HAL FU Results

RECEIVING

[FW1]

UPGRADE

[FW2]

COMPLETE

[FW1]

COUNTDOWN

[FW1]

Co
nfir
m

(HA
L_F
U_
FW
_C
ON
FIR
M)

Kill/S
afety

timer

(HAL
FU

FW_R
EVER

T)

Re
boo
t

(HA
L_F
U_
CA
NC
EL
)

E
xe
c/
R
es
ta
rtt
im
er

(H
A
L_
FU
_S
U
C
C
E
S
S
)

K
ill
/R
eb
oo
t

(H
A
L_
FU
_C
A
N
C
E
L)

Restarttimer

(HAL_FU_SUCCESS)

K
ill/R
eboot

(H
A
L_FU

_C
A
N
C
E
L)

CRCnotok

(HAL_FU_CRC_ERRO
R)

Kill/Reboot

(HAL_FU_CANCEL)

Pageaddresserror

(HAL_FU_ERROR)

[FW2]

[FW1]

IDLE

6.2 CRC Result Callback
The HAL is responsible for calculating the CRC of the received file when requested by the PRIME
FW stack. The calculated result is provided invoking a callback function whose pointer is set at
initialization by the PRIME FW stack with the following function:

void hal_fu_crc_set_callback(void (*p_handler)(uint32_t ul_crc));

Parameters:

• p_handler: Pointer address to the callback function

6.3 FU Configuration Data
The PRIME FW stack needs to save some configuration data that cannot be lost during the FU
process. The provided HAL stores this data in four 32-bit General Purpose Backup Registers (GPBR0
to GPBR3) but users can determine to use a non-volatile storage area.

The PRIME FW stack requests to read the FU configuration data with the following function:

void hal_fu_data_cfg_read(void *pv_dst, uint16_t us_size);

Parameters:

• pv_dst: Pointer where the read data must be stored

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
File Transfer Service for Firmware Upgrade

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 41

• us_size: Length of data to be read

The PRIME FW stack requests to save the FU configuration data with the following function:

uint8_t hal_fu_data_cfg_write(void *pv_src, uint16_t us_size);

Parameters:

• pv_src: Pointer to the data to be saved
• us_size: Length of data to be saved

Result: 1 if there is no error. Otherwise, 0.

6.4 Starting FU
When a FU process starts, the PRIME FW stack indicates it to the user application with the following
function:

void hal_fu_start(hal_fu_info_t *x_fu_info);

Parameters:

• x_fu_info: Pointer to FU information:
 typedef struct {
 uint32_t image_size; /* in bytes */
 uint8_t page_size; /* in bytes */
 } hal_fu_info_t;

The HAL stores the received information and erases the region where the file will be safely stored.

6.5 Providing the Bitmap
The bitmap is used to keep track of received pages during a FU process. The PRIME FW stack does
that internally, but the user application can do the same if desired. Then, when a new FU process
starts or if there is a reset and the FU process restarts, the PRIME FW stack requests this information
to use it if available. The function to request this from the HAL is the following:

uint16_t hal_fu_get_bitmap(uint8_t *puc_bitmap, uint32_t *pus_num_rcv_pages)

Parameters:

• puc_bitmap: Pointer to the bitmap
• pus_num_rcv_pages: Pointer to the number of received pages

Result: Bitmap size.

6.6 Writing FU Data
When the PRIME FW stack has received a page of the file, it requests the HAL to write it with the
following function:

uint8_t hal_fu_data_write(uint32_t ul_addr, uint8_t *puc_buf, uint16_t us_size);

Parameters:

• ul_addr: Address of page to write
• puc_buf: Pointer to page to write
• us_size: Page size

Result: 1 if there is no error. Otherwise, 0.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
File Transfer Service for Firmware Upgrade

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 42

6.7 CRC Calculation
When all the pages have been successfully received, the PRIME FW stack needs to verify that the
received file is correct and thus it requests the HAL to calculate its CRC with the following function:

void hal_fu_crc_calculate(void);

The HAL can calculate the CRC over the complete file but, as this can take some time for large files,
it is recommended to calculate it page by page in a process function. The result is returned through
the CRC callback function as defined in chapter CRC Result Callback.

6.8 Finishing FU
The PRIME FW stack can finish the FU process at any time, as shown in Figure 6-2. This is indicated to
the HAL with the following function:

void hal_fu_end(hal_fu_result_t uc_hal_res);

Parameters:

• uc_hal_res: Result of the FU process

The user application is responsible for storing this result at this point and later, during its process
time, deciding what to do. The following results are possible:

 typedef enum {
 HAL_FU_SUCCESS, /* Request to restart with new image */
 HAL_FU_CANCEL, /* The FU has been killed */
 HAL_FU_CRC_ERROR, /* CRC error */
 HAL_FU_FW_ERROR, /* (Deprecated) */
 HAL_FU_FW_REVERT, /* Request to restart with old image */
 HAL_FU_FW_CONFIRM, /* The FU has been confirmed */
 HAL_FU_ERROR /* Error during FU */
 } hal_fu_result_t;

Important: Both results HAL_FU_SUCCESS and HAL_FU_FW_REVERT require a
restart of the PRIME FW stack so that the PRIME FU process finishes properly. The
rest of the results do not have any specific action associated.

6.9 Managing the Received File
Once the file has been successfully received, the user application can check what type of file it is.
But in all cases the PRIME FW stack must always be restarted so that the FU process continues with
confirmation and goes to idle again, as shown in Figure 6-1 and Figure 6-2.

In case of receiving a new image, the decision to swap regions in order to execute the new version
(or to revert to the old one) is made in the user application. This triggers a software reset that
restarts the whole system by executing the bootloader. The specific actions to complete a PRIME
firmware upgrade are shown in the next figure.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
File Transfer Service for Firmware Upgrade

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 43

Figure 6-3. Finishing a PRIME FU Process

Iden�fy the received file as a
binary image, swap regions
and restart the system

COUNTDOWN

UPGRADE

Reset

FU process finished
successfully

hal_fu_end()

→HAL_FU_SUCC
ESS

Wait
RestartTimer

hal_fu_data_cfg_write()

hal_fu_data_cfg_read()
REG_REQ

REG_CONFIRM

FU_STATE_REQUEST

FU_STATE_RESPONSE(Upgrade)

FU_CONFIRM_REQUEST
hal_fu_end()

→HAL_FU_FW_CONFIRM

FU_STATE_RESPONSE(Idle)

hal_fu_data_cfg_write()

IDLE

prime_init()

Important: The system must not be restarted in the HAL function that receives
the result of the FU process. The restart must take place in a user task.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PRIME Management Plane

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 44

7. PRIME Management Plane
The Management Plane enables a local or remote control entity to perform actions on a node.
These actions include providing access to internal parameters defined by PIB attributes as well as
managing the firmware upgrade.

Node management in the PRIME FW stack is accomplished through a set of attributes. Attributes
are defined for both PHY and MAC layers. The set of these management attributes is called PLC
Information Base (PIB). Some attributes are read-only, while others are read-write. For details
about implementation of PIB attributes described in the PRIME specification, see chapter Major
Capabilities of the MAC Layer and chapter Major Capabilities of the Management Plane. The PRIME
FW stack also implements vendor specific PIB attributes, which are described in chapter PIB Objects
Specification and Access. Additionally, Microchip offers an interface through the HAL that enables
the implementation of user specific PIBs in the application. Those user specific PIBs can only be
defined with a size of 4 bytes in the ID range 0xF000 - 0xFCFF.

The control entity can access the Management Plane by using the two communication profiles
defined in the PRIME specification:

• PRIME Profile. A remote control entity, usually the Base Node, uses the PLC to send requests to
the node. These requests are received in the Management Plane from the Null SSCS in the CL
(see chapter Null SSCS)

• Serial Communication Profile. It is implemented as a service in the USI of the HAL and is used by
the local control entity. For more information about the different services available in the USI, see
chapter Serialization with Embedded USI

Whenever the Management Plane receives a request from any of the specified profiles, it passes it to
the MAC layer using the functions of the Null SSCS in the CL (see chapter Null SSCS). This access is
depicted in the next figure.

Figure 7-1. Management Plane Access to the MAC Layer

M anagem ent
P lane

IE C -432
S SC S

N U LL
S SC S

C P C S

C L

M A C

P LM E M LM E

P H Y

Important: Please note that the PRIME Certification Tool needs to access the
Management Plane through the Serial Communication Profile and therefore it
must be configured appropriately (see Serial Communication Profile of PRIME
Management Plane).

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Toolchain

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 45

8. Toolchain
The following sections describe the required tools and toolchain for the development and build
process and how the provided example applications can be built.

8.1 General Prerequisites
The following tools and toolchains are used for building the applications from this firmware
package: IAR Embedded Workbench for Arm® V9.20 (see http://www.iar.com/).

8.2 Building the Applications

8.2.1 Using IAR Embedded Workbench
As explained in chapter General Architecture, for a system to be operative with the user application
and the PRIME FW stack, two different projects must be built and loaded into the board as well as
the bootloader. All provided projects can be built using the IAR Embedded Workbench directly.

For the project generating the binary file with the bootloader, follow the procedure as described:

1. Open the project addons/bootloader
2. Build the project
3. Program the board

For the project generating the binary file with the PRIME FW stack, follow the procedure as
described:

1. Open the project prime_service_bin
2. Configure the library as required (see chapter PRIME Stack User Configuration Parameters)
3. Build the project
4. Program the board so that the binary file is stored at the selected memory location (see chapter

Memory Allocation)

For each example application described in chapter Example Applications, follow the procedure as
described:

1. Open the corresponding project
2. Configure the project as required (see chapter Application Configuration Parameters)
3. Build the project
4. Program the board so that the binary file is stored at the selected memory location (see chapter

Memory Allocation)

In the PL360/PL460 platform, the PL360 firmware is also required for a system to be operative but it
is directly provided as a binary file. Therefore, it is only needed to store it in the board at the selected
memory location (see chapter Memory Allocation).

Important: Make sure that the Flash memory is erased before programming it.

http://www.iar.com/

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Supported Platforms

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 46

9. Supported Platforms
This chapter describes which hardware platforms are currently supported with the PRIME firmware
package. A platform usually comprises of three major components:

• An MCU
• A modem chip (this may be integrated into the MCU for single chips)
• A specific hardware that contains the MCU and/or the modem chip

9.1 Supported MCU Families
The only supported generic MCU families are PIC32CXMTx, SAM4C and SAMG55 platforms.

The dedicated code for each device of the family can be found in the corresponding subdirectories.

9.2 Supported Devices
Currently the only supported devices are:
• With PL360: SAM4CMS16C, SAMG55J19
• With PL460: PIC32CX2051MTSH128, PIC32CX2051MTG128, SAMG55J19

9.3 Supported Boards
The currently supported boards and combinations are given below:

• ATPL360-EK
• PIC32CXMTSH-DB with PL460-EK on Xplained port
• PIC32CXMTG-EK with PL460-EK on Xplained port
• PL360G55CF-EK
• SAMG55 Xplained with PL460-EK on Xplained port

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PICS

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 47

10. PICS
This chapter lists the conformance of the Microchip PRIME implementation with the requirements
and optional features as defined by the PRIME specification document.

A Protocol Implementation Conformance Statement (PICS) is a declaration listing the capabilities and
options supported by an implementation. The PICS is based on a list of options and values, defined
in the PRIME specification and in the test suites used by the certification process.

10.1 Major Roles for Devices Compliant with PRIME

10.1.1 Major Capabilities of the PHY Layer
The current PHY layer is the implementation of the PRIME PHY layer as specified in PRIME
specification versions 1.3.6 and 1.4.

10.1.1.1 PHY Frames
The current PHY layer supports frame types A, B and BC specified in PRIME specification version 1.4.

10.1.1.2 PLME Primitives
The current implementation of the PHY layer does not support the following optional
functionalities of the PRIME specification: suspend and resume (primitives PLME_SLEEP.request and
PLME_RESUME.request) and test mode (primitive PLME_TESTMODE.request).

10.1.2 Major Capabilities of the MAC Layer
The current MAC layer is compliant with PRIME specification version 1.3.6 and is valid for a Service
Node.

The following table shows which optional features of the PRIME specification are currently
implemented in the MAC layer provided by Microchip.

Table 10-1. Implementation of Optional Features in the MAC Layer
Feature Implementation

Direct Connection Not available

ARQ Available

Packet Aggregation Not available

Multicasting Available1

Contention-Free Service Not available

Security Profile 1 Not available

Roaming Not available

Note: 
1. Switch Nodes handle multicast packets as broadcast packets since the tracking of nodes in a

Switch Node is not performed.

10.1.2.1 PLC Information Base
All mandatory PHY and MAC PIB attributes defined in PRIME specification version 1.3.6 for a Service
Node are available in the current MAC layer through PLME and MLME.

Optional PIB attributes from PRIME specification version 1.3.6 currently implemented in PLME and
MLME can be found in file mac_pib.h.

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
PICS

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 48

10.1.3 Major Capabilities of the Convergence Layer
The current Convergence layer is compliant with PRIME specification version 1.3.6 and is valid for a
Service Node.

The following table shows which Service-Specific Convergence Sublayers are currently implemented
in the CL provided by Microchip.

Table 10-2. Implementation of SSCS
SSCS Implementation

Null Available

IPv4 Not available

IEC 61334-4-32 Available

IPv6 Not available

10.1.4 Major Capabilities of the Management Plane
10.1.4.1 PLC Information Base

All mandatory PIB attributes defined in PRIME specification version 1.3.6 for a Service Node are
available in the current Management Plane of the PRIME FW stack.

Optional PIB attributes from PRIME specification version 1.3.6 currently implemented in the
Management Plane can be found in file mac_pib.h .

For details about vendor specific PIB attributes, see chapter PIB Objects Specification and Access.

10.1.4.2 Communications Profiles
The Management Plane implements both the interface over the Null SSCS (PRIME Profile) and the
interface over the local serial link (Serial Communication Profile) according to PRIME specification
version 1.3.6.

10.1.4.3 Firmware Upgrade
According to the PRIME specification, when the Base Node requests information about the missing
pages during a FU process with packet FU_MISS_REQ, the Service Node can decide to reply with
either FU_MISS_BITMAP or FU_MISS_LIST. The current implementation of PRIME specification version
1.3.6 usually replies with packet FU_MISS_BITMAP and in some cases with FU_MISS_LIST. This cannot
be changed by users.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PHY and PAL Layers

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 49

11. API of PHY and PAL Layers
The following API is to be used by applications which do not integrate the MAC layer, i.e. that only
require transmission and reception of messages through the PHY layer.

11.1 PLC PHY SAP
The PLC PHY SAP corresponds to the PHY API described in header files atpl360.h and
atpl360_comm.h. More information about management, communication and configuration functions
of the PHY API can be found in User Guide PL360 Host Controller.

11.2 PAL SAP
The PAL SAP corresponds to the PAL API described in the header file pal.h.

11.2.1 Initialization Function
The PAL layer must always be initialized when the system starts the execution. The following
function is used for that purpose:

void pal_init(void);

Depending on the PAL configuration, this function initializes the transmission handlers according to
the available PHY layers.

11.2.2 Process Function
Every program cycle the PAL layer must check transmission and reception events. This is achieved by
calling the following function:

void pal_process(void);

This function is also responsible for invoking the corresponding callback functions.

11.2.3 Callback Functions
When a previously requested transmission finishes (data confirm) and when a frame is received
(data indication), the PAL layer informs about it by calling the corresponding callback function. To set
up the callback function pointers, the following function is required:

void pal_set_callbacks(pal_callbacks_t *pal_cbs);

Parameters:

• pal_cbs: Pointer to the callback structure:
 typedef struct TPalCallbacks {
 pal_data_confirm_cb_t data_confirm;
 pal_data_indication_cb_t data_indication;
 } pal_callbacks_t;

11.2.4 Noise Capture Function (PL360/PL460 Platform)
The PL360 device offers a functionality to capture noise in the channel. The PAL layer can access this
service with the following function:

uint16_t pal_get_noise_capture(uint8_t *puc_dst, uint8_t uc_mode, uint32_t ul_time_start,
uint32_t ul_duration);

Parameters:

• puc_dst: Pointer to destination buffer to store data

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PHY and PAL Layers

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 50

• uc_mode: Capture mode
• ul_time_start: Start time in µs based on PL360 timer reference
• ul_duration: Duration time in µs

Return value: Size in bytes of noise capture.

Important: During the noise capture, any ongoing transmission or reception is
cancelled.

11.3 PAL Primitives
The PAL primitives are described in header file pal.h.

11.3.1 Data Primitives
The PAL implements the data interface to the PHY layer based on the PHY primitives from the PRIME
specification.

Table 11-1. PHY Data Plane Primitives
PHY primitive Function

PHY_DATA.request uint8_t pal_data_request(x_pal_msg_tx_t *px_msg);
PHY_DATA.confirm typedef void (*pal_data_confirm_cb_t)(x_pal_data_cfm_t *px_data_cfm);
PHY_DATA.indication typedef void (*pal_data_indication_cb_t)(x_pal_data_ind_t *px_data_ind);

11.3.2 Management Primitives
The PAL implements the control interface to the PHY layer based on the PHY primitives from the
PRIME specification.

Table 11-2. PHY Control Plane Primitives
PHY primitive Function

PHY_AGC.set1 uint8_t pal_agc_set(uint8_t uc_mode, uint8_t uc_gain, uint16_t us_pch);

PHY_AGC.get
uint8_t pal_agc_get(uint16_t us_id, void *p_val, uint16_t uc_len,
uint16_t us_pch);

PHY_AGC.confirm Referenced parameters of pal_agc_get.

PHY_TIMER.get uint8_t pal_timer_get(uint32_t *pul_timer, uint16_t us_pch);
PHY_TIMER.confirm Referenced parameters of pal_timer_get.

PHY_CD.get
uint8_t pal_cd_get(uint8_t *puc_cd, uint8_t *puc_rssi, uint32_t
*pul_time, uint8_t *puc_header, uint16_t us_pch);

PHY_CD.confirm Referenced parameters of pal_cd_get.

PHY_NL.get uint8_t pal_nl_get(uint8_t *puc_noise, uint16_t us_pch);
PHY_NL.confirm Referenced parameters of pal_nl_get.

PHY_SNR.get uint8_t pal_snr_get(uint8_t *puc_snr, uint8_t uc_qt, uint16_t us_pch);
PHY_SNR.confirm Referenced parameters of pal_snr_get.

PHY_ZCT.get uint8_t pal_zct_get(uint32_t *pul_zct, uint16_t us_pch);
PHY_ZCT.confirm Referenced parameters of pal_zct_get.

Note: 
1. Manual management of AGC is not supported in the current implementation.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 51

12. API of PRIME FW Stack
The API of the PRIME FW stack defines the functions as macros in the header file prime_api.h.

Note that there might be other functions not described in this document, but available in the
prime_api.h file. Those functions are irrelevant in this document.

Likewise, there might be other parameters belonging to a different specification. Such parameters
must be set to 0 when invoking the function.

12.1 MAC Primitives
Refer to the PRIME specification for more information about MAC primitives and their
functionalities.

12.1.1 Signalling Primitives

Table 12-1. Signalling Primitives
Signalling primitive Function

MAC_ESTABLISH.request prime_cl_null_establish_request(mac_establish_request_t)
typedef void (*mac_establish_request_t)(uint8_t *puc_eui48, uint8_t
uc_type, uint8_t *puc_data, uint16_t us_data_len, uint8_t uc_arq, uint8_t
uc_cfbytes);

MAC_ESTABLISH.indication typedef void (*mac_establish_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_eui48, uint8_t uc_type, uint8_t *puc_data, uint16_t us_data_len,
uint8_t uc_cfbytes);

MAC_ESTABLISH.response prime_cl_null_establish_response(mac_establish_response_t)
typedef void (*mac_establish_response_t)(uint16_t us_con_handle,
mac_establish_response_answer_t uc_answer, uint8_t *puc_data, uint16_t
us_data_len);

MAC_ESTABLISH.confirm typedef void (*mac_establish_cfm_cb_t)(uint16_t us_con_handle,
mac_establish_confirm_result_t uc_result, uint8_t *puc_eui48, uint8_t
uc_type, uint8_t *puc_data, uint16_t us_data_len);

MAC_RELEASE.request prime_cl_null_release_request(mac_release_request_t)
typedef void (*mac_release_request_t)(uint16_t us_con_handle);

MAC_RELEASE.indication typedef void (*mac_release_ind_cb_t)(uint16_t us_con_handle,
mac_release_indication_reason_t uc_reason);

MAC_RELEASE.response prime_cl_null_release_response(mac_release_response_t)
typedef void (*mac_release_response_t)(uint16_t us_con_handle,
mac_release_response_answer_t uc_answer);

MAC_RELEASE.confirm typedef void (*mac_release_cfm_cb_t)(uint16_t us_con_handle,
mac_release_confirm_result_t uc_result);

MAC_JOIN.request prime_cl_null_join_request(mac_join_request_t)
typedef void (*mac_join_request_t)(mac_join_mode_t us_broadcast, uint16_t
us_con_handle, uint8_t *puc_eui48, connection_type_t uc_con_type, uint8_t
*puc_data, uint16_t us_data_len);

MAC_JOIN.indication typedef void (*mac_join_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_eui48, uint8_t uc_con_type, uint8_t *puc_data, uint16_t us_data_len);

MAC_JOIN.response prime_cl_null_join_response(mac_join_response_t)
typedef void (*mac_join_response_t)(uint16_t us_con_handle, uint8_t
*puc_eui48, mac_join_response_answer_t uc_answer);

MAC_JOIN.confirm typedef void (*mac_join_cfm_cb_t)(uint16_t us_con_handle,
mac_join_confirm_result_t uc_result);

MAC_LEAVE.request prime_cl_null_leave_request(mac_leave_request_t)
typedef void (*mac_leave_request_t)(uint16_t us_con_handle, uint8_t
*puc_eui48);

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 52

...........continued
Signalling primitive Function

MAC_LEAVE.indication typedef void (*mac_leave_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_eui48);

MAC_LEAVE.confirm typedef void (*mac_leave_cfm_cb_t)(uint16_t us_con_handle,
mac_leave_confirm_result_t uc_result);

12.1.2 Data Primitives

Table 12-2. Data Primitives
Data primitive Function

MAC_DATA.request prime_cl_null_data_request(mac_data_request_t)
typedef void (*mac_data_request_t)(uint16_t us_con_handle, uint8_t
*puc_data, uint16_t us_data_len, uint8_t uc_prio);

MAC_DATA.confirm typedef void (*mac_data_cfm_cb_t)(uint16_t us_con_handle, uint8_t
*puc_data, mac_data_result_t drt_result);

MAC_DATA.indication typedef void (*mac_data_ind_cb_t)(uint16_t us_con_handle, uint8_t
*puc_data, uint16_t us_data_len);

12.1.3 PLME Primitives

Table 12-3. PLME Primitives
PLME primitive Function

PLME_RESET.request prime_cl_null_plme_reset_request(plme_reset_request_t)
typedef void (*plme_reset_request_t)(void);

PLME_RESET.confirm typedef void (*plme_reset_cfm_cb_t)(plme_result_t x_result);
PLME_SLEEP.request1 prime_cl_null_plme_sleep_request(plme_sleep_request_t)

typedef void (*plme_sleep_request_t)(void);
PLME_SLEEP.confirm typedef void (*plme_sleep_cfm_cb_t)(plme_result_t x_result);
PLME_RESUME.request1 prime_cl_null_plme_resume_request(plme_resume_request_t)

typedef void (*plme_resume_request_t)(void);
PLME_RESUME.confirm typedef void (*plme_resume_cfm_cb_t)(plme_result_t x_result);
PLME_TESTMODE.request1 prime_cl_null_plme_testmode_request(plme_testmode_request_t)

typedef void (*plme_testmode_request_t)(uint8_t uc_enable, uint8_t uc_mode,
uint8_t uc_modulation, uint8_t uc_pwr_level);

PLME_TESTMODE.confirm typedef void (*plme_testmode_cfm_cb_t)(plme_result_t x_result);
PLME_GET.request prime_cl_null_plme_get_request(plme_get_request_t)

typedef void (*plme_get_request_t)(uint16_t us_pib_attrib);
PLME_GET.confirm typedef void (*plme_get_cfm_cb_t)(plme_result_t x_status, uint16_t

us_pib_attrib, void *pv_pib_value, uint8_t uc_pib_size);
PLME_SET.request prime_cl_null_plme_set_request(plme_set_request_t)

typedef void (*plme_set_request_t)(uint16_t us_pib_attrib, void
*pv_pib_value, uint8_t uc_pib_size);

PLME_SET.confirm typedef void (*plme_set_cfm_cb_t)(plme_result_t x_result);

Note: 
1. The marked primitives invoke optional functionality that is currently not available.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 53

12.1.4 MLME Primitives

Table 12-4. MLME Primitives in the Service Node
MLME primitive Function

MLME_REGISTER.request prime_cl_null_mlme_register_request(mlme_register_request_t)
typedef void (*mlme_register_request_t)(uint8_t *puc_sna, uint8_t
uc_sid);

MLME_REGISTER.confirm typedef void (*mlme_register_cfm_cb_t)(mlme_result_t x_result, uint8_t
*puc_sna, uint8_t uc_sid);

MLME_REGISTER.indication typedef void (*mlme_register_ind_cb_t)(uint8_t *puc_sna, uint8_t
uc_sid);

MLME_UNREGISTER.request prime_cl_null_mlme_unregister_request (mlme_unregister_request_t)
typedef void (*mlme_unregister_request_t)(void);

MLME_UNREGISTER.confirm typedef void (*mlme_unregister_cfm_cb_t)(mlme_result_t x_result);
MLME_UNREGISTER.indication typedef void (*mlme_unregister_ind_cb_t)(void);
MLME_PROMOTE.request prime_cl_null_mlme_promote_request(mlme_promote_request_t)

typedef void (*mlme_promote_request_t)(uint8_t *puc_eui48);
MLME_PROMOTE.confirm typedef void (*mlme_promote_cfm_cb_t)(mlme_result_t x_result);
MLME_PROMOTE.indication typedef void (*mlme_promote_ind_cb_t)(void);
MLME_DEMOTE.request prime_cl_null_mlme_demote_request(mlme_demote_request_t)

typedef void (*mlme_demote_request_t)(void);
MLME_DEMOTE.confirm typedef void (*mlme_demote_cfm_cb_t)(mlme_result_t x_result);
MLME_DEMOTE.indication typedef void (*mlme_demote_ind_cb_t)(void);
MLME_RESET.request prime_cl_null_mlme_reset_request(mlme_reset_request_t)

typedef void (*mlme_reset_request_t)(void);
MLME_RESET.confirm typedef void (*mlme_reset_cfm_cb_t)(mlme_result_t x_result);
MLME_GET.request prime_cl_null_mlme_get_request(mlme_get_request_t)

typedef void (*mlme_get_request_t)(uint16_t us_pib_attrib);
MLME_GET.confirm typedef void (*mlme_get_cfm_cb_t)(mlme_result_t x_status, uint16_t

us_pib_attrib, void *pv_pib_value, uint8_t uc_pib_size);
MLME_LIST_GET.request prime_cl_null_mlme_list_get_request(mlme_list_get_request_t)

typedef void (*mlme_list_get_request_t)(uint16_t us_pib_attrib);
MLME_LIST_GET.confirm typedef void (*mlme_list_get_cfm_cb_t)(mlme_result_t x_status,

uint16_t us_pib_attrib, uint8_t *puc_pib_buff, uint16_t us_pib_len);
MLME_SET.request prime_cl_null_mlme_set_request(mlme_set_request_t)

typedef void (*mlme_set_request_t)(uint16_t us_pib_attrib, uint32_t
ul_pib_value);

MLME_SET.confirm typedef void (*mlme_set_cfm_cb_t)(mlme_result_t x_result);

12.1.5 Retrieval of Lists
The MLME_LIST_GET.confirm primitive returns a buffer puc_pib_buff where the requested list
us_pib_attrib is contained. Valid records are found one after the other, with their fields ordered
as described in the PRIME specification. From the provided buffer length us_pib_len and the
record size, users can calculate the number of records contained in the returned buffer and extract
them.

If there are valid records in the list, the confirm primitive is invoked twice: the first time with a buffer
containing the records and the second with a buffer length of zero to indicate that there are no
more valid records.

If there are no valid records in the list, the confirm primitive is invoked with a buffer length of zero.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 54

12.1.6 Callback Functions
The result of confirm and indication primitives is returned by the MAC layer invoking the
corresponding callback function. To set up the callback function pointers, the following function
is required:

typedef void (*mac_set_callbacks_t)(mac_callbacks_t *px_prime_cbs);

Parameters:

• px_prime_cbs: Pointer to the callback structure:
 typedef struct {
 mac_establish_ind_cb_t mac_establish_ind_cb;
 mac_establish_cfm_cb_t mac_establish_cfm_cb;
 mac_release_ind_cb_t mac_release_ind_cb;
 mac_release_cfm_cb_t mac_release_cfm_cb;
 mac_join_ind_cb_t mac_join_ind_cb;
 mac_join_cfm_cb_t mac_join_cfm_cb;
 mac_leave_ind_cb_t mac_leave_ind_cb;
 mac_leave_cfm_cb_t mac_leave_cfm_cb;
 mac_data_ind_cb_t mac_data_ind_cb;
 mac_data_cfm_cb_t mac_data_cfm_cb;
 plme_reset_cfm_cb_t plme_reset_cfm_cb;
 plme_sleep_cfm_cb_t plme_sleep_cfm_cb;
 plme_resume_cfm_cb_t plme_resume_cfm_cb;
 plme_testmode_cfm_cb_t plme_testmode_cfm_cb;
 plme_get_cfm_cb_t plme_get_cfm_cb;
 plme_set_cfm_cb_t plme_set_cfm_cb;
 mlme_register_ind_cb_t mlme_register_ind_cb;
 mlme_register_cfm_cb_t mlme_register_cfm_cb;
 mlme_unregister_ind_cb_t mlme_unregister_ind_cb;
 mlme_unregister_cfm_cb_t mlme_unregister_cfm_cb;
 mlme_promote_ind_cb_t mlme_promote_ind_cb;
 mlme_promote_cfm_cb_t mlme_promote_cfm_cb;
 mlme_demote_ind_cb_t mlme_demote_ind_cb;
 mlme_demote_cfm_cb_t mlme_demote_cfm_cb;
 mlme_reset_cfm_cb_t mlme_reset_cfm_cb;
 mlme_get_cfm_cb_t mlme_get_cfm_cb;
 mlme_list_get_cfm_cb_t mlme_list_get_cfm_cb;
 mlme_set_cfm_cb_t mlme_set_cfm_cb;
 } mac_callbacks_t;

Important: Unused callback functions must be set to NULL.

12.2 IEC 61334-4-32 Primitives
Refer to the PRIME specification for more information about IEC 61334-4-32 primitives and their
functionalities.

Table 12-5. IEC 61334-4-32 Primitives in the Service Node
IEC 61334-4-32 primitive Function

CL_432_ESTABLISH.request prime_cl_432_establish_request(cl_432_establish_request_t)
typedef void (*cl_432_establish_request_t)(uint8_t *puc_device_id,
uint8_t uc_device_id_len);

CL_432_ESTABLISH.confirm typedef void (*cl_432_establish_cfm_cb_t)(uint8_t *puc_device_id,
uint8_t uc_device_id_len, uint16_t us_dst_address, uint16_t
us_base_address);

CL_432_RELEASE.request prime_cl_432_release_request(cl_432_release_request_t)
typedef void (*cl_432_release_request_t)(uint16_t us_dst_address);

CL_432_RELEASE.confirm typedef void (*cl_432_release_cfm_cb_t)(uint16_t us_dst_address,
dl_432_result_t uc_result);

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 55

...........continued
IEC 61334-4-32 primitive Function

DL_DATA.request prime_cl_432_dl_data_request(cl_432_dl_data_request_t)
typedef void (*cl_432_dl_data_request_t)(uint8_t uc_dst_lsap, uint8_t
uc_src_lsap, uint16_t us_dst_address, dl_432_buffer_t *px_buff,
uint16_t uc_lsdu_len, uint8_t uc_link_class);

DL_DATA.confirm typedef void (*cl_432_dl_data_cfm_cb_t)(uint8_t uc_dst_lsap,
uint8_t uc_src_lsap, uint16_t us_dst_address, dl_432_tx_status_t
uc_tx_status);

DL_DATA.indication typedef void (*cl_432_dl_data_ind_cb_t)(uint8_t uc_dst_lsap, uint8_t
uc_src_lsap, uint16_t us_dst_address, uint16_t us_src_address, uint8_t
*puc_data, uint16_t uc_lsdu_len, uint8_t uc_link_class);

The result of confirm and indication primitives is returned by the SSCS invoking the corresponding
callback function. To set up the callback function pointers, the following function is required:

typedef void (*cl_432_set_callbacks_t)(cl_432_callbacks_t *px_cl_432_cbs);

Parameters:

• px_cl_432_cbs: Pointer to the callback structure:
 typedef struct {
 cl_432_dl_data_ind_cb_t cl_432_dl_data_ind_cb;
 cl_432_dl_data_cfm_cb_t cl_432_dl_data_cfm_cb;
 cl_432_establish_cfm_cb_t cl_432_establish_cfm_cb;
 cl_432_release_cfm_cb_t cl_432_release_cfm_cb;
 } cl_432_callbacks_t;

Important: Unused callback functions must be set to NULL.

12.3 PIB Objects Specification and Access
The PRIME FW stack supports all the mandatory attributes of the PLC Information Base (PIB) defined
in the PRIME specification. In addition, Microchip has added several proprietary PIB attributes to
support extra functionalities. These attributes are described in the next sections. The list of all
available PIB attributes can be found in file mac_pib.h .

12.3.1 Proprietary PIB Attributes in the PHY Layer

Table 12-6. Proprietary PIB Attributes in the PHY Layer
Attribute ID Size Range Description

PIB_PHY_SW_VERSION 0x8080 4 bytes - PLC PHY layer software version.

PIB_PHY_ZCT 0x8081 4 bytes - Time in microseconds between the
zero cross of the mains and the end
of the last transmission or reception.
Only applicable in PLC.

PIB_PHY_HOST_VERSION 0x8082 4 bytes - PL360 Host Controller version.

PIB_MTP_PHY_TX_TIME 0x8085 4 bytes - Transmission time of the last frame
transmitted in PLC in tenths of µs.

PIB_MTP_PHY_RMS_CALC_CORRECTED 0x8086 4 bytes - RMS value of the last PLC signal.

PIB_MTP_PHY_EXECUTE_CALIBRATION 0x8087 2 bytes - Executes calibration process [0: stop
process, 1: start process]. It returns
threshold level to configure board for
PLC.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 56

...........continued
Attribute ID Size Range Description

PIB_MTP_PHY_RX_PARAMS 0x8088 22 bytes - RX PLC PHY structure1:
• RxParam[0]. Modulation scheme:

DBPSK = 0
DQPSK = 1
D8PSK = 2
DBPSK_CC = 4
DQPSK_CC = 5
D8PSK_CC = 6
DBPSK_RB = 12
DQPSK_RB = 13

• RxParam[1]. RSSI.

• RxParam[2-3]. Reception data
length in bytes.

• RxParam[4-5]. EvmHeader.

• RxParam[6-7]. EvmPayload.

• RxParam[8-11].
EvmHeaderAcum.

• RxParam[12-15].
EvmPayloadAcum.

• RxParam[16-19]. Reception time
in microseconds.

• RxParam[20]. Noise.

• RxParam[21]. SNR in dB (0 - 21).

PIB_MTP_PHY_TX_PARAMS 0x8089 7 bytes - TX PLC PHY structure1:
• TxParam[0]. Modulation scheme:

DBPSK = 0
DQPSK = 1
D8PSK = 2
DBPSK_CC = 4
DQPSK_CC = 5
D8PSK_CC = 6
DBPSK_RB = 12
DQPSK_RB = 13

• TxParam[1]. Attenuation level (0
- 21 dB). When set to 255,
attenuation and gain are set to 0.

• TxParam[2-3]. Transmission data
length in bytes.

• TxParam[4]. Inter-frame time in
tenths of ms (0 - 2550 ms).

• TxParam[5]. Random seed data
generation. (0: send the same
constant payload in each
message, 1 - 255 seed used
to generate different ranges
of random values in the data
payload).

• TxParam[6]. Number of
messages (1 - 0xFF).

PIB_MTP_PHY_CONTINUOUS_TX 0x808A 1 byte 0 - 1 Set the PLC PHY layer to
transmit continuously [0: disabled, 1:
enabled].

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 57

...........continued
Attribute ID Size Range Description

PIB_MTP_PHY_ENABLE 0x808E 1 byte 0 - 1 Manufacturing test procedure for
PLC [0: disabled, 1: enabled]. Only
when the MTP is enabled, related
PIBs can be set.

PIB_PHY_TX_CHANNEL 0x8090 1 byte 1 - 8 Transmission/Reception PLC channel,
only when hardware permits
multichannel. The channel depends
on the selected PLC coupling.
It can only be set when MTP is
enabled.

PIB_PHY_SNIFFER_ENABLED 0x8106 1 byte 0 - 1 Enable/disable the sniffer [0:
disabled, 1: enabled].

PIB_PHY_DRV_AUTO 0x8301 1 byte 0 - 1 Enable/disable automatic selection of
PLC transmission mode [0: disabled,
1: enabled].

PIB_PHY_DRV_IMPEDANCE 0x8302 1 byte 0 - 2 Enable/disable the PLC high
impedance branch [0: high, 1: low, 2:
very low].

PIB_PHY_DRV_ATTENUATION 0x8303 1 byte 0 - 255 Additional attenuation with which a
PLC message must be transmitted.

Note: 
1. See Application Note Guidelines for PLC performance verification.

12.3.2 Proprietary PIB Attributes in the MAC Layer

Table 12-7. Proprietary PIB Attributes in the MAC Layer
Attribute ID Size Range Description

PIB_MTP_MAC_EUI_48 0x8100 6 bytes - MAC address.

PIB_MAC_PLC_STATE 0x8101 1 byte - PRIME PLC state:
• 0: SN disconnected

• 1: SN detection

• 2: SN registering

• 3: SN operative

• 4: BN

PIB_MAC_SERVICE_STATE 0x8102 1 byte - Service Node state:
• 0: SN disconnected

• 1: SN registering

• 2: SN terminal

• 3: SN unregistering

• 4: SN promoting

• 5: SN switch

• 6: SN demoting

• 7: SN roaming

PIB_MAC_REG_RSS 0x8103 1 byte 0 - 255 Attenuation level to send REG and
PNPDU messages.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
API of PRIME FW Stack

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 58

...........continued
Attribute ID Size Range Description

PIB_CERTIFICATION_MODE 0x8120 1 byte 0 - 3 Certification mode:
• 0: no certification mode

• 1: PHY certification for 1.3

• 2: MAC certification

• 3: PHY certification for 1.4

PIB_CERTIFICATION_SEND_MSG 0x8121 Array - Send message in PHY certification
mode.
See Table 12-8.

PIB_MAC_INTERNAL_SW_VERSION 0x8126 4 bytes - MAC internal software version.

Table 12-8. Data in PIB_CERTIFICATION_SEND_MSG
Element Size Range Description

MsgCount 2 bytes 1 - 2000 Number of messages to transmit

Modulation 1 byte 0 - 7 Modulation scheme (as in PIB_MTP_PHY_TX_PARAMS)

SignalAtt 1 byte 0 - 21 Signal attenuation (in dB)

DutyCycle 1 byte 1 - 100 Duty cycle

PrimeFrame 1 byte 0 - 3 PRIME frame:
• 1.3 frame

• 1.4 type A frame

• 1.4 type B frame

• 1.4 type BC frame

12.3.3 Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

Table 12-9. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer
Attribute ID Size Range Description

PIB_432_CON_STATE 0x8200 1 byte 0 - 3 State of IEC 61334-4-32 SSCS layer:
• 0: closed

• 1: connecting

• 2: disconnecting

• 3: open

PIB_CL_INTERNAL_SW_VERSION 0x8201 4 bytes - Internal software version of the
SSCS layer.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 59

13. Example Applications
13.1 Usage of the Firmware

The user application can use the complete PRIME FW stack for any PRIME related functionality even
if network capabilities offered by any specific protocol of the CL are not required. In that case, the
primitives to use are those of the Null SSCS (see chapter Null SSCS), which transparently match the
MAC primitives.

When the user application is using the complete PRIME FW stack in the same device, the system
structure is the same as depicted in Figure 1-1.

The user application may also be running in a different device from the PRIME FW stack. In this
case, the PRIME API is serialized using a UART or a USB port. The Modem example in chapter PRIME
Service Modem shows an application with the serialized PRIME API.

The user application can also be dual, i.e., it can allocate different versions of the PRIME FW stack
and then swap to any of them. The example applications provided by Microchip are dual, allocating
PRIME FW stack versions 1.3 and 1.4., if such allocation is possible in the selected platform. For more
information, see chapter Memory Allocation.

It is also possible that an application only requires the ability of sending and receiving data through
the PLC PHY layer without any MAC layer. Then, it is possible to remove the MAC layer and access
the PLC PHY layer directly from the PAL. Microchip provides several examples of applications that
only require the PRIME PLC PHY layer (see chapter 13.5. PHY Applications).

13.2 PRIME Service DLMS + Metrology Application
The Service DLMS+Metrology Application is an application example that shows how the PRIME API
should be used by integrating an application with a DLMS server. This application configures the
board as a Service Node with DLMS capabilities and exchanges real data between the PRIME Base
Node and the Service Node. DLMS is linked to the IEC 61334-4-32 SSCS and answers a minimum
set of objects requested from a commercial PRIME Data Concentrator. Therefore, for this example, a
PRIME Data Concentrator is required.

Important: Microchip does not provide a PRIME Data Concentrator. Note that
the Microchip Gateway example can be connected to a PRIME Data Concentrator
by means of TCP (DLMS over TCP). Note also that the Microchip PRIME Manager
tool can act as a gateway placed between any Microchip BN and a PRIME Data
Concentrator (see the User Manual of the PRIME Manager).

The following list provides the set of example OBIS implemented:

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 60

1-0:0.2.0.255 Class id 1
0-0:96.1.0.255 Class id 1
0-0:96.1.1.255 Class id 1
0-0:96.1.2.255 Class id 1
1-0:1.8.0.255 Class id 3
1-0:1.8.10.255 Class id 3
1-0:1.8.11.255 Class id 3
1-0:1.8.12.255 Class id 3
1-0:1.8.13.255 Class id 3
1-0:1.8.14.255 Class id 3
1-0:1.8.15.255 Class id 3
1-0:1.8.16.255 Class id 3
1-0:1.8.20.255 Class id 3
1-0:1.8.21.255 Class id 3
1-0:1.8.22.255 Class id 3
1-0:1.8.23.255 Class id 3
1-0:1.8.24.255 Class id 3

1-0:1.8.25.255 Class id 3
1-0:1.8.26.255 Class id 3
1-0:1.8.30.255 Class id 3
1-0:1.8.31.255 Class id 3
1-0:1.8.32.255 Class id 3
1-0:1.8.33.255 Class id 3
1-0:1.8.34.255 Class id 3
1-0:1.8.35.255 Class id 3
1-0:1.8.36.255 Class id 3
1-0:1.8.255.255 Class id 3
1-0:99.1.0.255 Class id 7
0-0:21.0.5.255 Class id 7
0-0:21.0.6.255 Class id 7
0-0:1.0.0.255 Class id 8
0-0:28.7.0.255 Class id 86
0-0:40.0.0.255 Class id 15

Important: Note that this project example is configured to be used with a
bootloader, thus allowing its upgrade using the file transfer over PRIME. It is also a
dual mode application, but only supported in the SAM4C platform.

13.3 PRIME Service DLMS Application
The Service DLMS Application is an application example that shows how the PRIME API should be
used by integrating an application with a DLMS server. This application configures the board as
a Service Node with DLMS capabilities and simulates the data exchange between the PRIME Base
Node and the Service Node. DLMS is linked to the IEC 61334-4-32 SSCS and answers a minimum
set of objects requested from a commercial PRIME Data Concentrator. Therefore, for this example, a
PRIME Data Concentrator is required.

Important: Microchip does not provide a PRIME Data Concentrator. Note that
the Microchip Gateway example can be connected to a PRIME Data Concentrator
by means of TCP (DLMS over TCP). Note also that the Microchip PRIME Manager
tool can act as a gateway placed between any Microchip BN and a PRIME Data
Concentrator (see the User Manual of the PRIME Manager).

The following list provides the set of example OBIS implemented:

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 61

1-0:0.2.0.255 Class id 1
0-0:96.1.0.255 Class id 1
0-0:96.1.1.255 Class id 1
0-0:96.1.2.255 Class id 1
1-0:1.8.0.255 Class id 3
1-0:1.8.10.255 Class id 3
1-0:1.8.11.255 Class id 3
1-0:1.8.12.255 Class id 3
1-0:1.8.13.255 Class id 3
1-0:1.8.14.255 Class id 3
1-0:1.8.15.255 Class id 3
1-0:1.8.16.255 Class id 3
1-0:1.8.20.255 Class id 3
1-0:1.8.21.255 Class id 3
1-0:1.8.22.255 Class id 3
1-0:1.8.23.255 Class id 3
1-0:1.8.24.255 Class id 3

1-0:1.8.25.255 Class id 3
1-0:1.8.26.255 Class id 3
1-0:1.8.30.255 Class id 3
1-0:1.8.31.255 Class id 3
1-0:1.8.32.255 Class id 3
1-0:1.8.33.255 Class id 3
1-0:1.8.34.255 Class id 3
1-0:1.8.35.255 Class id 3
1-0:1.8.36.255 Class id 3
1-0:1.8.255.255 Class id 3
1-0:99.1.0.255 Class id 7
0-0:21.0.5.255 Class id 7
0-0:21.0.6.255 Class id 7
0-0:1.0.0.255 Class id 8
0-0:28.7.0.255 Class id 86
0-0:40.0.0.255 Class id 15

Important: Note that this project example is configured to be used with a
bootloader, thus allowing its upgrade using the file transfer over PRIME. It is also a
dual mode application, except in the SAMG55 platform.

13.4 PRIME Service Modem
The Service Modem is an application example that shows how to serialize the PRIME API when the
user application and the PRIME FW stack are running in different devices. This example serializes the
PRIME API through the USI using the UART. The overall architecture of this functionality is shown in
the next figure.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 62

Figure 13-1. Layer Diagram for a Serialized PRIME FW Stack

HARDWARE

External device

UART

Microcontroller

Embedded USI

PRIME API

PRIME FW Stack

HAL

HAL API

PLC Modem

USI Host

User Application

In this architecture, files modem.h and modem_service.c in the embedded user application are in
charge of coding and decoding the PRIME API primitives, whereas the Embedded USI (included in
the HAL) is responsible for the transmission and reception of serial messages. Similarly, the USI Host
in the external application is responsible for coding and decoding the PRIME API primitives and also
for transmission and reception of serial messages.

The configuration required to support this serialization and the format of the serial messages in the
USI is described in chapter Serialization with Embedded USI. The integration of the USI Host in the
external application is explained Application Note PLC Universal Serial Interface.

Important: Note that this project example is configured to be used with a
bootloader, thus allowing its upgrade using the file transfer over PRIME. It is also a
dual mode application, except in the SAMG55 platform.

13.5 PHY Applications
Microchip also provides several applications that demonstrate the complete performance of the
PRIME PHY layer. Except for the PHY sniffer, such applications only offer the ability to send and

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Example Applications

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 63

receive PLC data through the PLC PHY layer without any MAC layer as shown in Figure 13-2. The API
of the PHY is described in chapter API of PHY and PAL Layers.

The available PLC PHY applications are the following:

• PHY Tester: This PHY application example shows the capabilities of the PL360 device in a point-to-
point connection, using the USI to serialize the API of the PLC PHY layer.

• PHY TX Test Console: This PHY application example uses a terminal console to configure the PLC
PHY layer and perform several board tests. Parameters that are configured include transmission
parameters such as modulation, frame data length and time interval between frames.

• PHY Sniffer: This PHY application allows monitoring of data traffic on a PRIME network by
serializing PHY frames (see the User Manual of the Hybrid Sniffer).

• PHY PLC&Go: This PHY application example shows the basic code required to work with the PLC
PHY layer.

Figure 13-2. Layer Diagram of a PHY-only Application

PAL

PHY

USER
APPLICATION

PAL API

HAL

HARDWARE

HAL API

PHY API

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 64

14. Serialization with Embedded USI
The Embedded USI is a wrapper part of the HAL that provides the interface between the PRIME FW
stack and the serial communications channel.

For serial transmissions from the PRIME stack, the Embedded USI provides a function that packs
and sends each message via the serial link to the external application. For serial receptions from the
serial link, the Embedded USI provides a function that unpacks the received message and passes it
to the PRIME FW stack.

The equivalent wrapper in the external application is the provided USI Host, which is also in charge
of coding and decoding the messages. If users want to develop their own USI Host application, they
will have to take into account the following operation of the Embedded USI to make it compatible:

• USI frame format
• USI PRIME protocols
• Embedded USI Configuration

For more information about available services and the provided USI Host, see Application Note PLC
Universal Serial Interface and the USI Host User Guide.

14.1 USI Frame Format
The USI frame format is based on the Serial Communications Profile of the Management Plane
defined in the PRIME specification, and is shown in the following figure.

Figure 14-1. USI Frame Format

7E
(1 byte)

MSG LENGTH
(10 bits)

PROTOCOL ID
(6 bits)

MESSAGE
DATA

CRC
(variable)

7E
(1 byte)

The frame starts and ends with 0x7E. The following is the description of each field:

• MSG LENGTH: Command length in bytes (protocol command byte plus message data bytes).
• PROTOCOL ID: Protocol in the frame (see Table 14-1).
• MESSAGE DATA: Variable field with the data of the exchanged message.
• CRC: Error correction code for the message. The CRC field can have a different length depending

on the protocol (see Table 14-1).

Table 14-1. USI Protocols and Associated CRC Size
Protocol Protocol ID CRC size (bits)

PROTOCOLS_MNGP_PRIME1 0x00 - 0x07 32

PROTOCOL_SNIF_PRIME 0x13 16

PROTOCOL_PHY_TESTER2 0x22 16

PROTOCOL_PRIME_API 0x30 8

PROTOCOL_INTERNAL 0x3F 16

PROTOCOL_USER_DEFINED3 0xFE Defined by the user. By default, 16.

Notes: 
1. These protocols are described in the Serial Communications Profile of the Management Plane

defined in the PRIME specification.
2. This protocol is only used by the PLC PHY Tester PC tool that Microchip provides with the

evaluation kit in order to serialize the API of the PLC PHY layer.
3. Defined by the user for their own proprietary protocol, if necessary.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 65

14.2 USI PRIME Protocols
The USI is able to serialize the following PRIME interfaces and services:

• PRIME Management Plane
• PRIME Sniffer
• PRIME API
• User Application

14.2.1 PRIME Management Plane Frame Format
This service refers to the different protocols defined in the Serial Communication Profile of the
Management Plane described in the PRIME specification.

The frame format is shown in the following figure.

Figure 14-2. MNGP PRIME USI Frame Format

7E
(1 byte)

MSG LENGTH
(10 bits)

PROTOCOL ID
(6 bits)

MESSAGE
DATA

CRC
(4 bytes)

7E
(1 byte)

The available management functions are described in the PRIME specification and shown in the
following table.

Table 14-2. USI MNGP PRIME Protocols
Protocols MNGP PRIME Protocol ID Description

PROTOCOL_MNGP_PRIME_GETQRY 0x00 This protocol is used to get a PIB with information
from the node.

PROTOCOL_MNGP_PRIME_GETRSP 0x01 This protocol is the response to
PROTOCOL_MNGP_PRIME_GETQRY.

PROTOCOL_MNGP_PRIME_SET 0x02 This protocol is used to set a PIB and thus modify
the behavior of the node.

PROTOCOL_MNGP_PRIME_RESET 0x03 This protocol is used to reset statistics.

PROTOCOL_MNGP_PRIME_REBOOT 0x04 This protocol is used to reboot the node.

PROTOCOL_MNGP_PRIME_FU 0x05 This protocol is used to exchange FU protocol
frames. In this way, it is possible to perform a FU
process through the serial port.

PROTOCOL_MNGP_PRIME_GETQRY_EN 0x06 This protocol is used to get a PIB with information
from the node in an enhanced way.

PROTOCOL_MNGP_PRIME_GETRSP_EN 0x07 This protocol is the response to
PROTOCOL_MNGP_PRIME_GETQRY_EN.

14.2.2 PRIME Sniffer Frame Format
The PRIME Sniffer is a service of the PRIME FW stack that uses the PHY layer to provide received
PLC traffic from the PRIME network. The USI is able to serialize and treat this service independently.
This serialization can be directly passed to Microchip PLC PC Tools to be analyzed or saved for later
use. The embedded sniffer is only available when it has been enabled and properly configured (see
chapter PRIME Stack User Configuration Parameters).

Figure 14-3 and Figure 14-4 show the USI frame format of the frames generated in the node. In this
case, the field MESSAGE DATA that appears in the USI frame format (see Figure 14-1) is divided into
two different fields: header and PDU sniffer message.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 66

Figure 14-3. PRIME Sniffer USI Frame Format

7E
(1 byte)

MSG LENGTH
(10 bits)

PROTOCOL ID
0x13 (6 bits)

MESSAGE DATA CRC
(2 bytes)

7E
(1 byte)HEADER

(32 bytes) PDU SNIFFER MSG

Figure 14-4. PRIME Sniffer USI Header Field

FRA T
1 byte

SNIF F
1 byte

SNIF T
1 byte

MODUL
1 byte

SYM PDU
1 byte

SNR
1 byte

EX SNR
1 byte

CHN
1 byte

CINR
1 byte

BERSOFT
1 byte

BERS MAX
1 byte

0x00...0x00
8 bytes

Time Start
4 bytes

Time End
4 bytes

RSSI
2 bytes

0x00
1 byte

PDU LEN
2 bytes

As indicated before, sniffer frames contain the received PDU (MAC encapsulation following the
PRIME specification) and some additional information related to the PHY layer, which is included in
the header part.

• FRA T: PDU type of the received frame (A, B, BC) (see values in file sniffer_if.h.h)
• SNIF F: Sniffer frame version: 0x14 for current version
• SNIF T: Sniffer type version: 0x11 for PL360
• MODUL: Modulation scheme of the received frame (see modulation values in file

atpl360_comm.h). Note that the modulation scheme of frames received in the serial PHY layer
is set to 0x0F

• SYM PDU: Length of the PDU in PHY symbols
• SNR: PRIME defined measurement of the SNR (from 0 to 7)
• EX SNR: High precision SNR
• CHN: Channel in which the frame has been received
• CINR: Minimum Carrier to Interference Noise Ratio
• BERSOFT: Viterbi soft bit error rate value
• BERS MAX: Viterbi soft bit error rate maximum value
• Time Start/Time End: High precision internal counter to measure length (time) of the PDUs in

microseconds
• RSSI: Average RSSI in dBuV
• PDU LEN: Length of the PDU in bytes

For details about the PHY information, see the datasheets for PL360 and PL460.

14.2.3 PRIME API Frame Format
This protocol consists of the serialization of the PRIME API primitives. The PRIME FW stack can
provide the PRIME API through a serial interface as an independent protocol of USI. It is only
available when the user application contains the modem example.

The frame format is shown in the following figure.

Figure 14-5. PRIME API USI Frame Format

7E MSG LENGTH
(10 bits)

PROTOCOL ID
0x30 (6 bits)

MESSAGE DATA
CRC

(1 byte) 7ELENGTH Extended
(1 bit)

PRIME API
COMMAND

(7 bits)

Primitive function
parameters

There are three fields in this frame inside the general MESSAGE DATA field:

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 67

• LENGTH Extended: Since the information contained in the message data can exceed the size
reserved for MSG length (10 bits), a bit has been added to increase the total message length size.
In this field the most significant bit of the message length is codified

• PRIME API COMMAND: This field refers directly to the primitive included in the message, using
the same primitives described in the PRIME API interface description (see chapter API of PRIME
FW Stack). The values for those primitives are defined in enumerator prime_api_cmd_t in file
modem.h

• Primitive function parameters: The serialization of each primitive directly concatenates the
different parameters included in the primitive function, with the most significant byte of a
variable always on the left. The only exception is that the length of buffers is always placed
before the buffer itself so that the data can be inserted and extracted more easily. This is
applicable to all primitives in the PRIME API. Figure 14-6 shows how a serialized primitive looks. It
is based on the MAC_ESTABLISH.request, which is mapped into the following type:
typedef void (*mac_establish_request_t)(uint8_t *puc_eui48, uint8_t uc_type, uint8_t
*puc_data, uint16_t us_data_len, uint8_t uc_arq, uint8_t uc_cfbytes);

Figure 14-6. Message Data for MAC_ESTABLISH.request Primitive

MAC_ADDR
(6 bytes)

CON_TYPE
(1 byte)

DATA_LEN
(2 bytes)

DATA
(variable)

ARQ
(1 byte)

CFP_BYTES
(1 byte)

14.3 Embedded USI Configuration
The Embedded USI must be configured according to the user requirements. This configuration
consists of indicating the protocols to be serialized and which port will be used by each protocol.

14.3.1 Definition and Configuration of USI Ports
Users can define the ports to be used and their configurations in the conf_usi.h file.

/* Port Communications configuration */
#define NUM_PORTS 2
#define PORT_0 CONF_PORT(UART_TYPE, 0, 115200, HAL_TX_UART_BUF0_SIZE, HAL_RX_UART_BUF0_SIZE)
#define PORT_1 CONF_PORT(USART_TYPE, 4, 57600, HAL_TX_USART_BUF1_SIZE, HAL_RX_USART_BUF1_SIZE)
#define PORT_2 CONF_PORT(USB_TYPE, 0, 115200, 1024, 1024)

NUM_PORTS defines the number of ports to be used. After that, every PORT_x must be configured
following a sequential order (PORT_0, PORT_1, etc.). The input parameters of the port configuration
are shown in the following table.

Table 14-3. USI Port Configuration Parameters
Parameter Description Valid Values

Type Type of link1 UART_TYPE for UART
USART_TYPE for USART
USB_TYPE for USB

Channel Instance 0: UART0/USART0/USB
1: UART1/USART1
2: UART2/USART2
4: USART4

Speed Baudrate 9600, 19200, 38400, 57600, 115200, 230400, 256000,
921600

TX_size Size of transmission buffer Size of buffer must be (at least) twice the size of the bigger
message payload linked to this port.2

RX_size Size of reception buffer Size of buffer must be (at least) twice the size of the bigger
message payload linked to this port.2

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Serialization with Embedded USI

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 68

Notes: 
1. Only UART, USART and USB are currently supported.
2. In case of IEC61334-4-32 messages, please note that protocol headers are part of the USI

message payload.

Important: Both Embedded USI and the external application must use the same
baud rate and protocols. Messages from protocols not serialized in both sides of
the serial communications channel are discarded.

Important: In the SAM4C microcontroller family, the UART1 has no access to the
DMA so it cannot be chosen for the USI operation.

14.3.2 Linking of Serial Communication Profile of PRIME Management Plane
To link the Serial Communication Profile of the PRIME Management Plane to a USI port defined in
the Embedded USI, users must use file conf_mngp.h.

By default, the link is set to PORT_0.

 /* Select PORT for Serial Profile */
 #define MNGP_SPROF_USI_PORT 0

14.3.3 Linking of PRIME Sniffer
To link the embedded PRIME sniffer to a USI port defined in the Embedded USI, users must use file
conf_pal.h.

By default, the link is set to PORT_0.

 /* Select PORT to serialize PHY sniffer */
 #define PHY_SNIFFER_USI_PORT 0

14.3.4 Linking of PRIME API
To link the PRIME API to a USI port defined in the Embedded USI, users must use file
conf_app_example.h (assuming they are using the modem example). By default, the link is set to
PORT_0.

 /** USI PORT */
 #define MODEM_USI_PORT 0

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Abbreviations

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 69

15. Abbreviations
AES Advanced Encryption Standard

AGC Automatic Gain Mode

API Application Programming Interface

ARQ Automatic Repeat Request

BER Bit Error Rate

BN Base Node

CC Convolutional Code

CFP Contention Free Period

CINR Carrier to Interference Noise Ratio

CL Convergence Layer

CPCS Common Part Convergence Sublayer

CRC Cyclic Redundancy Check

D8PSK Differential Eight-Phase Shift Keying

DBPSK Differential Binary Phase Shift Keying

DCU Data Concentrator Unit

DLMS Device Language Message Specification

DMA Direct Memory Access

DQPSK Differential Quaternary Phase Shift Keying

FU Firmware Upgrade

FW Firmware

GPIO General Purpose Input/Output

HAL Hardware Abstraction Layer

IEC International Electrotechnical Committee

IP Internet Protocol

MAC Medium Access Control

MCU Microcontroller Unit

MLME MAC Layer Management Entity

MNGP Management Plane

MPAL MultiPhy Abstraction Layer

MPDU MAC Protocol Data Unit

MTP Manufacturing Test Procedure

OBIS Object Identification System

PAL Physical Abstraction Layer

PDU Protocol Data Unit

PHY Physical

PIB PLC Information Base

PICS Protocol Implementation Conformance Statement

PLC Power Line Communications

PLME PHY Layer Management Entity

PRIME Powerline Intelligent Metering Evolution

RB Robust

RMS Root Mean Square

RSSI Received Signal Strength Indicator

SAP Service Access Point

SN Service Node

SNA Sub-Network Address

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Abbreviations

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 70

SNR Signal-to-Noise Ratio

SPI Serial Peripheral Interface

SSCS Service Specific Convergence Sublayer

TC Timer/Counter

TRNG True Random Number Generator

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous/Asynchronous Receiver/Transmitter

USI Universal Serial Interface

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
References

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 71

16. References
Microchip Smart Energy

Microchip Power Line Communications

Microchip Design Support

PRIME Alliance

PL360 Evaluation Kit

PL460 Evaluation Kit

PIC32CXMTSH Demo Board

PIC32CXMTG Evaluation Kit

SAMG55 Xplained PRO Evaluation Kit

Documents for supported families and boards

https://www.microchip.com/en-us/products/smart-energy-metering
https://www.microchip.com/en-us/products/smart-energy-metering/power-line-communications
https://microchip.my.site.com/s/
http://www.prime-alliance.org/
https://www.microchip.com/en-us/development-tool/ATPL360-EK
https://www.microchip.com/en-us/development-tool/EV13L63A
https://www.microchip.com/en-us/development-tool/EV84M21A
https://www.microchip.com/en-us/development-tool/EV11K09A
https://www.microchip.com/en-us/development-tool/atsamg55-xpro
https://www.microchip.com/en-us/document-listing

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Revision History

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 72

17. Revision History
17.1 Rev A - 07/2018

Document Initial document release.

17.2 Rev B - 12/2018
HAL API and PRIME Management Plane Added user specific PIBs.

Main Function Structure Improved hardware initialization.

HAL API Removed non-applicable function.
Changed structure for notes.

17.3 Rev C - 07/2020
Document Editorials.

Proprietary PIB Attributes in the PHY Layer Added new proprietary PIBs and updated MTP PIB.

Get Function and Set Function Aligned function parameters with code.

Proprietary PIB Attributes in the PHY Layer and PRIME Sniffer
Frame Format

Added clarifications about time units.

Default Memory Allocation Example Added warning about default values in Atmel Studio.

Other Coding Requirements Added effect on increased call stack size.
Removed optimizations in Atmel Studio projects.
Added clarifications about interrupt handling.

Brief about ASF, Using Atmel Studio, Usage of the Firmware,
PRIME Service DLMS + Metrology Application (PL360
Platform), PRIME Service DLMS Application and PRIME Service
Modem

Added that Atmel Studio projects are only for evaluation
purposes and cannot be upgraded.

Firmware Version Information Updated vendor and version.

Communication Channel and other PHY Parameters Added ATPLCOUP011.
Corrected configuration key.

Hardware Resources Usage Added remark about platform for mandatory timers.

Automatic Repeat Request (ARQ) Replaced frame by fragment.

General Prerequisites Updated IAR version.

Definition and Configuration of USI Ports Added USB type as USI port.

PLC Coupling (PL360 Platform) Added coupling configuration in PL360 platform.

FU Configuration Data Added more information about the usage of GPBR during FU.

Definition and Configuration of USI Ports, Linking of
Serial Communications Profile of PRIME Management Plane,
Linking of PRIME Sniffer (PL360 Platform) and Linking of
PRIME Sniffer (ATPL230A Platform)

Clarified usage of USI ports.

PHY Applications Added another PHY example.

PRIME Sniffer Frame Format Added sniffer type version for PL360.

Features, Supported Devices and Supported Boards Added new devices and boards.

PRIME Management Plan Corrected name of MNG protocol.

USI Host Example Added meaning of abbreviation.

References Updated links.

Usage of the Firmware Added USB as possible port for serialization.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Revision History

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 73

17.4 Revision D - 02/2024
Document Removed all references to ATPL230, ASF, Atmel Studio and

Doxygen.
Added and removed PLC where necessary to make it general
for all available PHY layers.
Added PL460 whenever there was a reference to PL360
platform.
Other editorials.

Features Updated platforms and modems.

PRIME FW Stack, Event-Driven Operation Updated description.

PRIME FW Stack Project Example Updated paths and images.

User Application Project Examples Updated paths and images. Added information about dual
mode applications.

Bootloader Example Added that PL360 firmware can also be upgraded.

Introduction Removed references to old platforms. Corrected PIB name.

Firmware Version Information Updated model and version.

Communication Channel and other PHY Parameters Added PLC couplings for PL460. Corrected configuration key.
Removed thresholds.

PLC Coupling (PL460 platform), PRIME FW Stack Swap New chapters.

Band Plan in PLC Renamed chapter. Forced channel 1 in band plan.

Enabling PLC PHY Layer, Sniffer Serialization Renamed chapter. Updated setting.

PL360 Firmware Information (PL360/PL460 Platform) Renamed chapter. Added link to memory allocation.

Memory Allocation Updated image.

Default Memory Allocation Example Updates sizes, locations and images due to dual mode.

Hardware Resources Usage Updated mandatory timers and SPI.

HAL API Updated HAL functions.

4.4.1. Task Manager, Priorities and Preemption Updated timing.

Other Coding Requirements Removed priority setting for TC0.
Added requirement when swapping stacks.

Main Function Structure Added swap function.

General Prerequisites Updated IAR version. Removed Atmel Studio.

Supported MCU Families, Supported Devices and Supported
boards

Updated devices and boards.

PHY Frames, Major Capabilities of the MAC Layer Removed date of specification.

PLC PHY SAP, Linking of PRIME Sniffer Renamed chapters.

Callback Functions Updated callback functions.

Data Primitives Updated request function input and output parameters.

Management Primitives Added PCH to primitives.

API of PRIME FW Stack Added comment about parameters from other specification
versions.

Proprietary PIB Attributes in the PHY Layer Removed obsolete PIBs. Updated MTP PIBs. Added new PIBs.

Proprietary PIB Attributes in the MAC Layer Removed PIB to write SNA.

Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer Corrected PIB name.

Usage of the Firmware, PRIME Service DLMS + Metrology
Application, PRIME Service DLMS Application, PRIME Service
Modem

Added comment about dual mode applications.

PLC PHY Applications Renamed chapter. Updated name of last application.

USI Frame Format Corrected name of protocol and added missing one.

Abbreviations Updated abbreviations.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460
Revision History

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 74

References Updated links.

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 75

Microchip Information
The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to
make files and information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests,
online discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip
products. Subscribers will receive email notification whenever there are changes, updates, revisions
or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are
also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip product is strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure

https://www.microchip.com/
https://www.microchip.com/pcn
https://www.microchip.com/support

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 76

that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer,
LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper
Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium,
TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic
Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge,
IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi,
MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II,
Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary
of Microchip Technology Inc., in other countries.

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

 PIC32CXMTx, SAM4C, SAMG55, PL360, PL460

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 77

All other trademarks mentioned herein are property of their respective companies.
© 2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3998-5

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit
www.microchip.com/quality.

https://www.microchip.com/quality

Worldwide Sales and Service

 User Guide
© 2024 Microchip Technology Inc. and its subsidiaries

DS50002777D - 78

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office

2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

www.microchip.com/support

Web Address:

www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455

Austin, TX

Tel: 512-257-3370

Boston

Westborough, MA

Tel: 774-760-0087

Fax: 774-760-0088

Chicago

Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983

Indianapolis

Noblesville, IN

Tel: 317-773-8323

Fax: 317-773-5453

Tel: 317-536-2380

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

Tel: 951-273-7800

Raleigh, NC

Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA

Tel: 408-735-9110

Tel: 408-436-4270

Canada - Toronto

Tel: 905-695-1980

Fax: 905-695-2078

Australia - Sydney

Tel: 61-2-9868-6733

China - Beijing

Tel: 86-10-8569-7000

China - Chengdu

Tel: 86-28-8665-5511

China - Chongqing

Tel: 86-23-8980-9588

China - Dongguan

Tel: 86-769-8702-9880

China - Guangzhou

Tel: 86-20-8755-8029

China - Hangzhou

Tel: 86-571-8792-8115

China - Hong Kong SAR

Tel: 852-2943-5100

China - Nanjing

Tel: 86-25-8473-2460

China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai

Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou

Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300

China - Xian

Tel: 86-29-8833-7252

China - Xiamen

Tel: 86-592-2388138

China - Zhuhai

Tel: 86-756-3210040

India - Bangalore

Tel: 91-80-3090-4444

India - New Delhi

Tel: 91-11-4160-8631

India - Pune

Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur

Tel: 60-3-7651-7906

Malaysia - Penang

Tel: 60-4-227-8870

Philippines - Manila

Tel: 63-2-634-9065

Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh

Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4485-5910

Fax: 45-4485-2829

Finland - Espoo

Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-8931-9700

Germany - Haan

Tel: 49-2129-3766400

Germany - Heilbronn

Tel: 49-7131-72400

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra’anana

Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Padova

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Norway - Trondheim

Tel: 47-72884388

Poland - Warsaw

Tel: 48-22-3325737

Romania - Bucharest

Tel: 40-21-407-87-50

Spain - Madrid

Tel: 34-91-708-08-90

Fax: 34-91-708-08-91

Sweden - Gothenberg

Tel: 46-31-704-60-40

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham

Tel: 44-118-921-5800

Fax: 44-118-921-5820

https://www.microchip.com/support
https://www.microchip.com

	Introduction
	Features
	Table of Contents
	1. Overview
	1.1. General Architecture
	1.1.1. User Application
	1.1.2. PRIME FW Stack

	1.2. Event-Driven Operation

	2. Understanding the Firmware Package
	2.1. PRIME Firmware Package Contents
	2.1.1. PRIME FW Stack Project Example
	2.1.2. User Application Project Examples
	2.1.3. PL360 Firmware
	2.1.4. USI Host Example
	2.1.5. Bootloader Example

	3. PRIME FW Stack Project
	3.1. Introduction
	3.1.1. Physical Layer (PHY)
	3.1.2. Physical Abstraction Layer (PAL)
	3.1.3. Medium Access Control Layer (MAC)
	3.1.4. Convergence Layer (CL)
	3.1.5. Management Plane (MNGP)

	3.2. PRIME Stack User Configuration Parameters
	3.2.1. Firmware Version Information
	3.2.2. Communication Channel and other PHY Parameters
	3.2.3. PLC Coupling (PL360 Platform)
	3.2.4. PLC Coupling (PL460 Platform)
	3.2.5. Band Plan in PLC
	3.2.6. MAC Address
	3.2.7. Enabling PLC PHY Layer
	3.2.8. PL360 Firmware Information (PL360/PL460 Platform)
	3.2.9. Sniffer Serialization
	3.2.10. Serial Communication Profile of PRIME Management Plane
	3.2.11. PRIME Mode
	3.2.12. Zero Cross Detection in PLC
	3.2.13. Network Behavior

	4. Integrating the PRIME FW Stack
	4.1. Memory Allocation
	4.1.1. Default Memory Allocation Example

	4.2. Hardware Resources Usage
	4.2.1. Data Storage

	4.3. PRIME Interfaces
	4.3.1. PRIME API
	4.3.1.1. Request/Confirm Example
	4.3.1.2. Indication/Response Example

	4.3.2. HAL API

	4.4. PRIME Integration Requirements
	4.4.1. Task Manager, Priorities and Preemption
	4.4.2. Stack Size
	4.4.3. Other Coding Requirements
	4.4.4. CPU Usage

	4.5. Main Function Structure
	4.5.1. Pointer to the PRIME FW Stack
	4.5.2. PRIME FW Stack Swap
	4.5.3. PLC Signaling (optional)
	4.5.3.1. Providing the Pointer to the Transmission Event Callback Function
	4.5.3.2. Providing the Pointer to the Reception Event Callback Function

	4.5.4. PRIME FW Stack Initialization
	4.5.5. PRIME Callback Functions
	4.5.6. PRIME FW Stack Process

	4.6. Application Configuration Parameters
	4.6.1. Example Configuration – conf_app_example.h
	4.6.2. HAL Configuration – conf_hal.h
	4.6.3. PRIME Stack Configuration – conf_prime_stack.h
	4.6.4. USI Configuration – conf_usi.h

	5. Data Exchange
	5.1. Null SSCS
	5.2. IEC 61334-4-32
	5.3. Automatic Repeat Request (ARQ)

	6. File Transfer Service for Firmware Upgrade
	6.1. Introduction
	6.2. CRC Result Callback
	6.3. FU Configuration Data
	6.4. Starting FU
	6.5. Providing the Bitmap
	6.6. Writing FU Data
	6.7. CRC Calculation
	6.8. Finishing FU
	6.9. Managing the Received File

	7. PRIME Management Plane
	8. Toolchain
	8.1. General Prerequisites
	8.2. Building the Applications
	8.2.1. Using IAR Embedded Workbench

	9. Supported Platforms
	9.1. Supported MCU Families
	9.2. Supported Devices
	9.3. Supported Boards

	10. PICS
	10.1. Major Roles for Devices Compliant with PRIME
	10.1.1. Major Capabilities of the PHY Layer
	10.1.1.1. PHY Frames
	10.1.1.2. PLME Primitives

	10.1.2. Major Capabilities of the MAC Layer
	10.1.2.1. PLC Information Base

	10.1.3. Major Capabilities of the Convergence Layer
	10.1.4. Major Capabilities of the Management Plane
	10.1.4.1. PLC Information Base
	10.1.4.2. Communications Profiles
	10.1.4.3. Firmware Upgrade

	11. API of PHY and PAL Layers
	11.1. PLC PHY SAP
	11.2. PAL SAP
	11.2.1. Initialization Function
	11.2.2. Process Function
	11.2.3. Callback Functions
	11.2.4. Noise Capture Function (PL360/PL460 Platform)

	11.3. PAL Primitives
	11.3.1. Data Primitives
	11.3.2. Management Primitives

	12. API of PRIME FW Stack
	12.1. MAC Primitives
	12.1.1. Signalling Primitives
	12.1.2. Data Primitives
	12.1.3. PLME Primitives
	12.1.4. MLME Primitives
	12.1.5. Retrieval of Lists
	12.1.6. Callback Functions

	12.2. IEC 61334-4-32 Primitives
	12.3. PIB Objects Specification and Access
	12.3.1. Proprietary PIB Attributes in the PHY Layer
	12.3.2. Proprietary PIB Attributes in the MAC Layer
	12.3.3. Proprietary PIB Attributes in the IEC 61334-4-32 SSCS Layer

	13. Example Applications
	13.1. Usage of the Firmware
	13.2. PRIME Service DLMS + Metrology Application
	13.3. PRIME Service DLMS Application
	13.4. PRIME Service Modem
	13.5. PHY Applications

	14. Serialization with Embedded USI
	14.1. USI Frame Format
	14.2. USI PRIME Protocols
	14.2.1. PRIME Management Plane Frame Format
	14.2.2. PRIME Sniffer Frame Format
	14.2.3. PRIME API Frame Format

	14.3. Embedded USI Configuration
	14.3.1. Definition and Configuration of USI Ports
	14.3.2. Linking of Serial Communication Profile of PRIME Management Plane
	14.3.3. Linking of PRIME Sniffer
	14.3.4. Linking of PRIME API

	15. Abbreviations
	16. References
	17. Revision History
	17.1. Rev A - 07/2018
	17.2. Rev B - 12/2018
	17.3. Rev C - 07/2020
	17.4. Revision D - 02/2024

	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

