
Micrel 1588 PTP Developer Guide

Micrel 1588 PTP Developer Guide

Rev 1.3

August 8, 2012

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 1

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Table of Contents
1 Revision History..4
2 Introduction..5

2.1 Glossaries...5
3 Using PTP Hardware...5
4 Verifying PTP Hardware..9

4.1 Verifying Clock Adjustment...9
4.2 Verifying Message Filtering...10
4.3 Verifying Trigger Output and Event Detection..10

5 Using Linux Drivers...11
5.1 Multiple Network Device Interfaces..11

5.1.1 One Simple Network Interface for Each Port...11
5.1.2 One Additional VLAN Interface for Each Port..12
5.1.3 One Additional Network Interface for Each Port...12

5.2 RSTP Support...13
5.3 Sysfs Support...13
5.4 PTP Access Inside Network Device...13
5.5 Getting RX and TX Timestamps From Network Device...14

6 PTP APIs..14
6.1 Data Structures and Definitions...14
6.2 Initialization Functions...20

6.2.1 tsm_init...20
6.2.2 tsm_cleanup..21
6.2.3 tsm_exit..21

6.3 File I/O...21
6.3.1 tsm_recv...21
6.3.2 tsm_send...23
6.3.3 tsm_cmd_get...23
6.3.4 tsm_cmd_get_time...24
6.3.5 tsm_cmd_set_cfg..25
6.3.6 tsm_cmd_set_clock..26
6.3.7 tsm_cmd_correct_clock..26
6.3.8 tsm_cmd_get_gps...27

6.4 Ioctl..28
6.4.1 Hardware Settings..28

6.4.1.1 get_global_cfg..28
6.4.1.2 set_hw_domain...29
6.4.1.3 set_hw_master..30
6.4.1.4 set_hw_2_step...30
6.4.1.5 set_hw_p2p...31
6.4.1.6 set_hw_as..32
6.4.1.7 set_hw_csum...32
6.4.1.8 set_hw_unicast..33

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 2

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.1.9 set_hw_domain_check..33
6.4.1.10 set_hw_alternate...34
6.4.1.11 set_hw_delay_assoc..34
6.4.1.12 set_hw_pdelay_assoc..35
6.4.1.13 set_hw_sync_assoc...35
6.4.1.14 set_hw_drop_sync..36
6.4.1.15 set_hw_priority...36
6.4.1.16 set_global_cfg...37

6.4.2 Trigger Output and Event Detection...38
6.4.2.1 rx_event..39
6.4.2.2 tx_event...41
6.4.2.3 tx_cascade_init...43
6.4.2.4 tx_cascade...44
6.4.2.5 get_rx_event...45
6.4.2.6 poll_rx_event..46

6.4.3 Hardware Clock Controls...46
6.4.3.1 get_clock...46
6.4.3.2 set_clock...47
6.4.3.3 adj_clock...48

6.4.4 Hardware Configurations...49
6.4.4.1 get_delay...49
6.4.4.2 set_delay...49
6.4.4.3 get_clock_ident...50
6.4.4.4 set_clock_ident...51
6.4.4.5 get_reg..51
6.4.4.6 set_reg...52
6.4.4.7 get_peer_delay..52
6.4.4.8 set_peer_delay..53
6.4.4.9 get_utc_offset..53
6.4.4.10 set_utc_offset..54
6.4.4.11 get_rx_timestamp..54
6.4.4.12 get_tx_timestamp..55

7 PTP Message Filtering...56
8 Hardware Limitations..64

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 3

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

1 Revision History

Revision Date Summary of Changes

1.0 04/13/11 Initial revision.

1.1 06/06/11 Added TSM_CMD_GET_GPS_TS API.

1.2 08/04/11 Corrected clk_adjust_val algorithm.

1.3 08/08/12 Updated APIs.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 4

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

2 Introduction

This document describes how to use the 1588 PTPv2 engine in KSZ846x device. Precision Time
Protocol (PTP) is an application protocol that allows clock synchronization in sub-microsecond.
The messages used in the protocol are normally UDP packets in IPv4 or IPv6, although they can
be in 802.3 format. The packets are normally in multicast, but a unicast option is supported.

The PTPv2 messages are broken into 2 types: event and general. Event messages require
hardware help to generate a timestamp when the message is received or sent, while general
messages do not. Refer to PTPv2 Standard for how PTP messages are used.

2.1 Glossaries

Following are acronyms and terms used throughout the document:

● Audio/Video Bridge AVB
● End-to-end E2E
● Precision Time Protocol PTP
● Peer-to-peer P2P
● Pulse per second PPS
● Inter-range Instrumentation Group IRIG
● Network Time Protocol NTP
● Rapid Spanning Tree Protocol RSTP
● Master Clock MC
● Ordinary Clock OC
● Slave Clock SC
● Transparent Clock TC

Syntonization with master clock means the slave clock is running in step with the master clock.
The time difference is called the offset from master. Transparent clocks are required to syntonize
with the master to have accurate correction field adjustment. Synchronization means the device
is completely in sync with the master, where the path delay is known.

3 Using PTP Hardware

The PTP driver is responsible for handling PTP hardware access. Currently only Linux driver is
provided.

The driver provides two types of control access: file I/O and ioctl. For direct access where the

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 5

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

information can be retrieved immediately ioctl is used as there is no waiting. For response that
may take a while to arrive file I/O is used.

The PTP driver exposes two devices: /dev/ptp_dev and /dev/ptp_event. The first is
used for standard clock adjustment using file I/O. The second is used strictly for retrieving
events using file I/O. Ioctl can be used on both devices.

Commands sent to the driver using file I/O or ioctl have to be sent separately. For responses
using file I/O the data have to be parsed to separate several responses. The data structure used
for the response is struct ptp_udp_msg. The first field is len, which indicates how many
bytes is in the response. If there are more data, the next buffer contains another response. See
the tsm_recv code for the actual implementation.

It is up to the developers to implement code correctly to use the access control APIs provided by
the driver. It is assumed a thread is used to read data from the device using file I/O so that
reading can be blocked.

The driver maintains a PPS signal at GPIO 6. This can be measured with a scope to compare
with another PPS.

There are 3 reserved fields in the PTP message header. The hardware and the driver use two of
them to pass information to each other.

The hardware reports the timestamp of incoming PTP message in the 32-bit reserved field. The
format is (((second & 3) << 30) | nanosecond). This allows the application to get
the timestamp directly from the PTP message payload without doing anything special. As the
second part is not complete the application needs to get it from the driver. Alternately the
application can maintain a system second and deduct the real second from the timestamp. The
driver actually is doing this way instead of reading the hardware clock. Note the timestamp is
stored in all the PTP messages, although it is not necessary for PTP general messages.

The application has control of which port to send PTP message. The 8-bit reserved field is used
to specify the port destination. A value of 1 means port 1, 2 means port 2, and 3 means both
ports. The hardware will not send the message if port destination is 0. For next revision of chip
a port destination of 0 is interpreted by the switch engine and the packet will be sent either to
both ports or one of them depending on the lookup table. Note in certain configurations the
network driver associated with the PTP hardware can automatically insert the port destination in
the PTP message header without the application doing anything, but it is expected the application
specifies the correct port destination in the standard configuration.

There are 3 registers to hold the transmit timestamps for each port. These registers hold the
Sync, Delay_Req/Pdelay_Req, and Pdelay_Resp transmit timestamps. It is necessary to retrieve
these timestamps soon after sending the PTP messages, as subsequent sending the same type of
message will override the previous result. This is not a problem in normal operation as those
event messages are not sent very quickly and often. However, for a 2-step TC implementation it

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 6

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

requires careful monitoring of sent event messages. The hardware is designed to run as 1-step
TC so it may not be a concern.

The value held in the registers is the same as the incoming timestamp. As the application
retrieves those timestamp information with API call the driver supplies the correct second part.

There are two special cases in sending Pdelay_Req and Pdelay_Resp messages. The application
only needs to send one Pdelay_Req messages with the destination port 3. The hardware
automatically replaces the source port number when the message is sent out. However the
application needs to make sure the source port number is zero. Otherwise the hardware
calculates a wrong UDP checksum. This will be fixed in next revision of chip.

The other case is for 1-step Pdelay_Resp message hardware needs to know the previous
Pdelay_Req receive timestamp. This information needs to be inserted in the 32-bit reserved field
of the PTP message header. The format is the same as the incoming timestamp. The hardware
will calculate the difference of the Pdelay_Resp transmit time and Pdelay_Req receive time and
put it in the correction field of the Pdelay_Resp message.

The hardware adjusts the clock continually for it to run in step with the master clock. The
system clock runs in 25 MHz. The unit for adjustment is 2-32 ns. So the mathematical formula is
(2^32 * adjustment * 1000000000 / interval / 25000000) = hardware
adjustment unit. If the interval is normalized at 1 second the formula is reduced to (2^32 *
adjustment / 25000000). If floating point operation cannot be used and 64-bit division
function is unavailable, then the following integer arithmetic code can be used to yield
approximate value. The hardware register holds only 30-bit of adjustment, so the range of
adjustment is under 6250 microseconds. In normal operation the adjustment should be under 60
microseconds. Putting a better crystal or tuning the load capacitors will yield a better clock.

#define MAX_DRIFT_CORR 6250000
#define LOW_DRIFT_CORR 2499981
#define MAX_U32_SHIFT 32
#define MAX_DIVIDER_SHIFT 31

static u32 drift_in_sec(u32 abs_offset, u64 interval64)
{

u32 abs_drift;
u32 divider;
u32 interval;
u64 drift64;

/* 2^32 / 1000 */
interval64 *= 4294967;
interval64 += (u32)(1 << (MAX_U32_SHIFT - 1));
interval64 >>= MAX_U32_SHIFT;

/* interval64 / 1000 */
interval = (u32) interval64;

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 7

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

divider = (1 << MAX_DIVIDER_SHIFT);
divider += interval / 2;
divider /= interval;

drift64 = abs_offset;

/* NANOSEC_IN_SEC / 1000 */
drift64 *= 1000000;
drift64 *= divider;
drift64 += (u32)(1 << (MAX_DIVIDER_SHIFT - 1));
drift64 >>= MAX_DIVIDER_SHIFT;
if (drift64 > 0xffffffff)

abs_drift = 0xffffffff;
else

abs_drift = (u32) drift64;
return abs_drift;

}

static u32 clk_adjust_val(int diff, u32 interval)
{

u32 adjust;
u64 adjust64;

if (0 == diff)
return 0;

if (diff < 0)
adjust = -diff;

else
adjust = diff;

if (interval != NANOSEC_IN_SEC)
adjust = drift_in_sec(adjust, interval);

/* 2^32 * adjust * 1000000000 / interval / 25000000 */
if (adjust >= MAX_DRIFT_CORR)

adjust = 0x3fffffff;
else {

adjust64 = adjust;

/* 2^32 * 10 / 25 */
adjust64 *= 1717986918;

/* 2^32 / 10000000 */
if (adjust < LOW_DRIFT_CORR)

adjust64 *= 4295;
else

adjust64 *= 429;
adjust64 += (u32)(1 << (MAX_U32_SHIFT - 1));
adjust64 >>= MAX_U32_SHIFT;
if (adjust < LOW_DRIFT_CORR) {

adjust = (u32) adjust64 + 5;
adjust /= 10;

} else {
adjust = (u32) adjust64;
if (adjust < 0x199998f3)

adjust = 0x199998f3;
}

}
if (diff < 0)

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 8

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

adjust |= PTP_RATE_DIR << 16;
return adjust;

} /* clk_adjust_val */

The main 1588 PTP code is in files ksz_ptp.c and ksz_ptp.h. It is designed to be
included in the main network driver. The network driver needs to declare data structures
required and implement the following functions: ptp_read, ptp_write, ptp_acquire,
and ptp_release. In addition, it needs to implement code to support the PTP operation.

The function ptp_init should be called during driver initialization. When the device is
opened ptp_start can be called to initiate PPS. The function ptp_close, if implemented,
should be called when the device is being closed. The function ptp_exit should be called
when the driver is unloading.

The function ptp_init_state should be called when PTP operation is initiated. It normally
is triggered by application doing PTP stack work. The function ptp_exit_state should be
called when the application stops processing PTP messages.

The shared switch code is in files ksz_sw.c and ksz_sw.h. It is designed to be included in
the main driver. That driver needs to declare data structures required and implement the
following functions: sw_acquire, sw_release, and exit_mib_read. The following
macros also need to be defined: SW_R8, SW_W8, SW_R16, SW_W16, SW_R32, SW_W32. In
addition, the driver needs to implement code to support the switch operation.

Refer to Micrel 1588 PTP Application Notes to see how the PTP hardware registers are
programmed to complete certain operations. Refer to KSZ8463 Switch Application Notes to see
how the switch registers are used. More detailed instructions of using and porting these code are
provided by Micrel.

4 Verifying PTP Hardware

Two sample programs are provided to test and verify the functionality of the PTP hardware. The
first program, ptp, generates simple PTP messages. It can be compiled to run in PC to send
PTP messages to the PTP clock. Capturing the messages from the clock can verify some
timestamp capabilities. The other program, ptp_cli, provides a command line utility to access
the PTP hardware. Refer to Micrel PTP Utilities User Guide on how to use these programs.

4.1 Verifying Clock Adjustment

To completely synchronize the slave clock to a grandmaster clock it requires a PTP stack, an

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 9

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

application to process PTP messages and adjust the clock accordingly. OnTime Network
provides a sample stack for demonstration only. All questions related to the stack should be
forwarded to OnTime Network.

The driver has a testing mechanism to syntonize the clock internally. While the actual offset
from master is not known, it can be verified from the displayed messages and the PPS generated
that the slave clock follows the master clock closely.

To enable this feature the conditionals PTP_MONITOR and PTP_PROCESS have to be enabled.
Verify syntonization is supported in the driver by checking the PTP syntonization feature is
offered after running this command:

cat /sys/class/net/eth0/ptp/features

 After that the following command is used to enable it:

echo 600000?? > /sys/class/net/eth0/ptp/features

This command is used to disable the feature:

echo 000000?? > /sys/class/net/eth0/ptp/features

The “??” values should be whatever in the original features.

The utility ptp_cli has simple commands to set and adjust the clock.

4.2 Verifying Message Filtering

Normal users should not concern about PTP message filtering. It is documented here for debug
purpose only.

The driver also needs to be compiled with the PTP_MONITOR conditional. In addition, the
VERIFY_PTP_MSG conditional should also be defined.

The following command is used to enable message monitoring:

echo 400000?? > /sys/class/net/eth0/ptp/features

Send PTP messages using the ptp program. The driver will display those messages as received.
Use the ptp_cli utility to turn on and off certain hardware settings to see whether the
messages are passed or dropped. For verification of forwarding to the other port connect another
PTP clock to the second port and verify the messages received.

4.3 Verifying Trigger Output and Event Detection

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 10

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

The utility ptp_cli has commands to enable trigger output and event detection. The GPIO
pins can be connected to a scope so the generated waveform can be seen. Without a scope event
detection should be enabled to capture all events. From those events a waveform can be
constructed. Matching the generated waveform with the output waveform should verify the
trigger output operation.

5 Using Linux Drivers

There are 2 versions of the Micrel 1588 PTP evaluation kit: KSZ8463MLI and KSZ8462HLI.
Both chips are connected to a Micrel KSZ9692PB SoC for general operation. The KSZ8462HLI
chip contains a network engine so its driver is independent and can be easily ported to other
systems. The KSZ8463MLI chip contains only a switch engine and so requires other MAC such
as the KSZ9692PB network engine. In this case the driver model is more complicated. There is
a KSZ8463 driver which uses SPI to access the hardware. It provides a pseudo PHY device
interface so that KSZ9692PB network driver can hook on the KSZ8463 driver to program switch
registers. Both KSZ9692PB network driver and KSZ8463 driver are independent, but the switch
data structure can be shared between them. It is possible to include the KSZ8463 driver code
inside the KSZ9692PB network driver so that the pseudo PHY device model is not used to
provide a little performance boost.

All KSZ8462, KSZ8463, and KSZ9692PB drivers use the shared switch code in ksz_sw.c.
Both KSZ8462 and KSZ9692PB network drivers use the shared 1588 PTP code in
ksz_ptp.c.

5.1 Multiple Network Device Interfaces

The KSZ8463MLI and KSZ8462HLI chips contain a switch with 2 ports. For an Ordinary Clock
running in E2E mechansim the PTP stack can treat the device as having one port and run without
problem. But for other clock types such as Transparent Clock and Boundary Clock and in P2P
mechansim the PTP stack needs to take into consideration the different ports and handle them
properly. The PTP stack may like to deal with actual network devices rather than manipulating
the PTP message header for port operation. There are ways to accommodate that.

5.1.1 One Simple Network Interface for Each Port

The driver can create another network device for the other port. Suppose the original network
device name is eth0. The new configuration will allow eth0 to link with port 1 and eth1 to

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 11

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

port 2. The default hardware configuration is the ports will be independent; there are no
forwarding between the ports. This is not very helpful, and more switch setup need to be done to
allow forwarding. The idea is to run a RSTP daemon on the switch so that the ports can be
blocked and the network traffic be forwarded between the ports properly.

This driver configuration is enabled by specifying the driver variable multi_dev to 1. This
can be accomplished in 3 ways: change the variable directly in the driver, specify the variable in
the Linux command line while building the Linux kernel, and specify a new Linux command line
when booting the kernel.

The multi_dev variable in the KSZ9692PB network driver is named lan_multi_dev. To
specify this variable in the Linux command line it has to be in the right format. For KSZ9692PB
it is “ksz8692.lan_multi_dev=1.” For KSZ8462 it is “ksz846x_h.multi_dev=1.” The Linux
command line in the Linux configuration file is named CONFIG_CMDLINE.

To specify the Linux command line during boot it is required to change the bootarg
environment variable in U-Boot. The whole Linux command line should be put in that variable.
The command to set the variable in normal configuration is

set bootargs console=ttyS0,115200 init=/etc/preinit
ksz846x.spi_bus=2 ksz8692.lan_multi_dev=1 ksz846x_h.multi_dev=1

5.1.2 One Additional VLAN Interface for Each Port

Another way to use virtual network devices for different ports is through VLAN devices. The
Linux kernel allows creating VLAN virtual network devices in which it automatically inserts a
correct VLAN tag when sending packets through a VLAN device and forwards VLAN tagged
packets to that device before stripping out the VLAN tag. This allows the driver to simulate port
forwarding using VLAN id. When a packet with a special VLAN id indicating a certain port is
sent the driver will remove the VLAN tag and sends the packet through that port. When a packet
is received the driver will insert a proper VLAN tag so that the packet can be passed to the
specific network device. The main network device eth0 is still available and used normally.
The command to create a new VLAN device for port 1 is

vconfig add eth0 200
ifconfig eth0.200 up

This driver configuration is enabled by setting multi_dev to 2.

5.1.3 One Additional Network Interface for Each Port

The third way is similar to the second but VLAN is not used as the application would like to
know the link status of the port but the VLAN device is not actually accessible by the driver.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 12

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

This driver configuration is an extension of the first one in which after the main device eth0 is
created there will be additional devices named eth0.200 and eth0.201 to indicate port 1
and port 2. There are no forwarding between the ports, so more switch setup need to be done.

This driver configuration is enabled by setting multi_dev to 3.

5.2 RSTP Support

RSTP hardware support is planned so that network forwarding is done inside the switch rather
than by software.

5.3 Sysfs Support

It is possible to access switch registers for switch operation in user space by reading and writing
the Sysfs files exposed by the drivers. For KSZ9692PB and KSZ8462 network drivers the files
are located at /sys/class/net/eth0/. For KSZ89463 SPI driver the location is
/sys/bus/spi/devices/spi2.0/.

The subdirectory sw is for the whole switch. The subdirectories sw0, sw1, and sw2 are for
individual ports. The subdirectories mac? are for static MAC table. The subdirectories vlan?
are for VLAN table.

Use the command “cat” to read the file to get the value. Use the command “echo” to write to the
file to set the value.

cat sw1/1_rx
echo 0 > sw1/1_rx

There are some special files which require the “echo” command to read. An example is the reg
file for reading and writing hardware registers:

echo 600 > sw/reg
echo 600=22 > sw/reg

5.4 PTP Access Inside Network Device

As PTP stack code deal mainly with regular network devices it is a bit inconvenient to open a
separate PTP device to access PTP hardware. It is possible to access PTP hardware through
network device ioctl calls. The whole PTP APIs can be passed to the PTP driver for processing
by using the network device ioctl call number (SIOCDEVPRIVATE + 15). As the file I/O of
network device is interpreted as sending or receiving network traffic it is not possible to use that

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 13

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

mechanism to communicate with the PTP driver. If timestamp input event is used it is required
to open a PTP device to receive the event notifications.

5.5 Getting RX and TX Timestamps From Network Device

From Linux kernel 2.6.38 and up it is possible to get the receive and transmit timestamps directly
from the network device interface instead of using PTP APIs to retrieve them. First the hardware
timestamp support needs to be turned on inside the driver by using the ioctl call
SIOCSHWTSTAMP. Next the application needs to read the error packet from the socket error
queue by specifying the MSG_ERRQUEUE flag in the recvmsg call. The packet returned is the
whole Ethernet frame so the application needs to parse it to get to the PTP message header. This
allows the application to get the PTP message code and sequence id for bookkeeping. The actual
timestamp is retrieved using the cmsghdr structure inside the msghdr structure. The name of
that cmsghdr structure is SCM_TIMESTAMPING and the PTP hardware timestamp is in the
third buffer of hardware timestamp. Application needs to provide a bigger data buffer to retrieve
all these information. This code is used in the modified PTPd provided by Micrel.

6 PTP APIs

6.1 Data Structures and Definitions

The PTP APIs use the following defined data types and data structures:

Data types

u8 8-bit unsigned value.

S16 16-bit signed value.

u16 16-bit unsigned value.

u32 32-bit unsigned value.

s64 64-bit signed value.

u64 64-bit unsigned value.

The device ioctl call structure and returned error values:

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 14

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Device Ioctl Returned Values

DEV_IOC_OK Operation is successful.

DEV_IOC_INVALID_SIZE Parameter size is not correct.

DEV_IOC_INVALID_CMD Command not recognized.

DEV_IOC_INVALID_LEN

DEV_IOC_UNIT_UNAVAILABLE No more units available for use.

DEV_IOC_UNIT_USED Unit is being used.

DEV_IOC_ERROR Command error.

struct ksz_request

int size Size of the request.

int cmd Main command.

int subcmd Subcommand.

int output Output of the request if one exists.

int result Result of the request.

union param Parameters of the request.

struct ptp_clock_identity

u8 addr[8] 8-byte array of 8-bit unsigned value.

struct ptp_utime

u32 sec The clock's second value.

u32 nsec The clock's nanosecond value.

struct tsm_cfg

u8 cmd

u8 port Port number.

u8 enable Configurations to set.

u8 gmp Grandmaster port number.

u32 ingress_delay Ingress delay value.

u16 egress_delay Egress delay value.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 15

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

struct tsm_clock_set

u8 cmd

u32 timestamp The clock's eventual nanosecond value.

u32 nsec The clock's second value.

u32 sec The clock's nanosecond value.

u8 reserved[5]

struct tsm_clock_correct

u8 cmd

u8 add Used to indicate adding or subtracting continual clock
adjustment.

u32 sec Not used.

u32 nsec Used to indicate nanosecond adjustment.

u32 drift The drift value related to master clock.

u32 offset Used to indicate adding or subtracting nanosecond
adjustment.

struct tsm_db

u8 cmd

u8 index Used to indicate which timestamp to retrieve.

u16 seqid The sequence id.

u8 mac[2]

u32 sec The timestamp's second value.

u32 nsec The timestamp's nanosecond value.

u32 timestamp

struct tsm_get_time

u8 cmd

u16 seqid The sequence id.

u8 msg The PTP message code.

u32 sec The clock's second value.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 16

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

u32 nsec The clock's nanosecond value.

struct tsm_get_gps

u8 cmd

u8 reserved[7]

u16 seqid The sequence id.

u32 sec The GPS clock's second value.

u32 nsec The GPS clock's nanosecond value.

struct ptp_cfg_options

u8 master:1 Hardware master setting.

u8 two_step:1 Hardware 2-step mode setting.

u8 p2p:1 Hardware P2P mode setting.

u8 as:1 Hardware 802.1AS setting.

u8 domain_check:1 Hardware domain check setting.

u8 udp_csum:1 Hardware UDP checksum setting.

u8 unicast:1 Hardware unicast setting.

u8 alternate:1 Hardware alternate master setting.

u8 delay_assoc:1 Hardware Delay_Req association setting.

u8 pdelay_assoc:1 Hardware Pdelay_Req association setting.

u8 sync_assoc:1 Hardware Sync association setting.

u8 drop_sync:1 Hardware drop Sync setting.

u8 priority:1 Hardware message priority setting.

u8 reserved1:3

u8 master_set:1 Master setting changed.

u8 two_step_set:1 2-step mode setting changed.

u8 p2p_set:1 P2P mode setting changed.

u8 as_set:1 802.1AS setting changed.

u8 domain_check_set:1 domain check setting changed.

u8 udp_csum_set:1 UDP checksum setting changed.

u8 unicast_set:1 Unicast setting changed.

u8 alternate_set:1 Alternate master setting changed.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 17

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

u8 delay_assoc_set:1 Delay_Req association setting changed.

u8 pdelay_assoc_set:1 Pdelay_Req association setting changed.

u8 sync_assoc_set:1 Sync association setting changed.

u8 drop_sync_set:1 Drop Sync setting changed.

u8 priority_set:1 Priority setting changed.

u8 reserved_set:2

u8 domain_set:1 Domain changed.

u8 domain Domain number.

u8 reserved3

u32 access_delay Hardware access delay value.

struct ptp_tsi_info

u8 cmd Type of information returned.

u8 unit The event unit.

u8 signal Detect signal specified.

u8 num Number of struct ptp_utime followed.

u32 edge Edges detected in events. Least significant bit is of the
first event.

struct ptp_utime t[0] Time in second and nanosecond.

struct ptp_tsi_options

u8 tsi Event unit.

u8 gpi General purpose input pin.

u8 event Input event.

u8 flags Operation flags.

u8 total Number of event units.

u8 reserved[3]

u32 timeout Timeout value in millisecond.

struct ptp_tso_options

u8 tso Output unit.

u8 gpo General purpose output pin.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 18

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

u8 event Output event.

u8 flags Operation flags.

u8 total Number of output units.

u8 reserved

u16 cnt Repeat count.

u32 pulse Pulse time in nanosecond.

u32 cycle Cycle time in nanosecond.

u32 sec Starting time in second.

u32 nsec Starting time in nanosecond.

u32 iterate Iteration time in nanosecond.

struct ptp_clk_options

u32 sec The clock's second value.

u32 nsec The clock's nanosecond value.

int drift The clock's continual adjustment value.

u32 interval Interval value is normally nanoseconds in 1 second.

struct ptp_ts_options

u32 timestamp The hardware timestamp value.

u32 sec The timestamp's second value.

u32 nsec The timestamp's nanosecond value.

u8 msg PTP event message code.

u8 port The port index.

u16 seqid Sequence id of PTP event message. Used for delayed
response.

u8 mac[2] Last 2 bytes of source clock identity. Used for delayed
response.

struct ptp_delay_values

u16 rx_latency The receive latency value.

u16 tx_latency The transmit latency value.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 19

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

short asym_delay The asymmetric delay value.

u16 reserved Used to store the peer delay value.

struct ptp_udp_msg

u16 len Length of message.

u8 data[] Message data.

struct dev_info

int fd Device handle.

u8 *udp_buf Data buffer.

int udp_len Buffer length.

int index For data tracking.

int left For data tracking.

6.2 Initialization Functions

6.2.1 tsm_init

#define DATA_BUFFER_SIZE 2000

static struct dev_info dev[2];

int tsm_init (void);

Parameters None.

Return int 0 if successful.

Description This function opens the devices and does some
initialization.

It is assumed two struct dev_info are declared for devices ptp_dev and ptp_event.
All other functions use these structures to access the devices. Data buffers will be allocated with
the declared size. If the function returns an error code, then there is something wrong with the
PTP driver and the application should exit.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 20

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.2.2 tsm_cleanup

void tsm_cleanup (void);

Parameters None.

Return None.

Description This function frees the data buffers used by the devices.

6.2.3 tsm_exit

int tsm_exit (void);

Parameters None.

Return int 0 if successful.

Description This function closes the devices.

Before closing the devices this function sends a command to the driver to indicate the devices are
not used anymore. The driver sends something back using file I/O so that the threads reading the
device responses can be unblocked and exit properly.

6.3 File I/O

6.3.1 tsm_recv

int tsm_recv (struct dev_info *info, u8 data[], int len);

Parameters struct dev_info
*info

The device to retrieve data.

u8 data[] Buffer to store data received.

int len Size of buffer.

Return int Number of bytes received.

Description This function retrieves available data from the device.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 21

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

If there is no available data this function will be blocked, so it is better used inside a thread.

As the device data buffer can contain several responses, calling this function immediately again
can yield another response.

For a response to a command using file I/O the first few bytes of data are exactly the same as the
command except the response bit is set. The table below describes all available commands.

Command Code No. Meaning

TSM_CMD_RESP 0x04 This is a command response.

TSM_CMD_GET_TIME_RESP 0x08 This is a database get time command response.

TSM_CMD_CLOCK_SET 0x10 Clock set command.

TSM_CMD_CLOCK_CORRECT 0x20 Clock correct command.

TSM_CMD_DB_SET 0x30 Database set command. Not used.

TSM_CMD_DB_GET 0x40 Database get command.

TSM_CMD_STAT_CLEAR 0x50 Statistics clear command. Not used.

TSM_CMD_STAT_GET 0x60 Statistics get command. Not used.

TSM_CMD_CNF_SET 0x70 Configuration set command.

TSM_CMD_CNF_GET 0x80 Configuration get command. Not used.

TSM_CMD_GPIO_SET 0x90 GPIO set command. Not used.

TSM_CMD_GPIO_GET 0xA0 GPIO get command. Not used.

TSM_CMD_SET_SECONDS 0xB0 Second set command. Not used.

TSM_CMD_GET_GPS_TS 0xE0 GPS timestamp get command.

TSM_CMD_DB_GET_RESRV1 0xB0 Database get reserved1 command. Not used.

TSM_CMD_DB_GET_RESRV2 0xC0 Database get reserved2 command. Not used.

TSM_CMD_DB_GET_TIME 0xD0 Database get time command.

TSM_CMD_DB_SET_TIME 0xF0 Database set time command. Not used.

The ptp_event device uses the following command responses to indicate events to
application.

Command Code No. Meaning

PTP_CMD_RESP 0x01 This is a command response.

PTP_CMD_GET_MSG 0x00 Get raw Ethernet PTP message.

PTP_CMD_GET_OUTPUT 0xE0 Get output result.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 22

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

PTP_CMD_GET_EVENT 0xF0 Get input event.

6.3.2 tsm_send

int tsm_send (u8 data[], int len);

Parameters u8 data[] Data to send.

int len Number of bytes to send.

Return int Number of bytes sent.

Description This function sends command in data format.

This function sends a command to device ptp_dev using file I/O as device ptp_event does
not accept commands using file I/O. The data are one of the struct tsm_* data types and
the cmd field contains the command code in the above table. As the command and response are
processed separately it is not guaranteed that every command that expects a response will get
one. The first few bytes of the response match the command and that is how the application
differentiate responses with same command code.

The following TSM functions are the simple ones that demonstrate how the driver act on the
commands. The OnTime application versions are the complete ones, with more parameters.
However, those parameters are only used by the application and not the driver. The driver just
echos those parameters in the responses.

TSM functions use network format so 32-bit value needs to be converted with htonl and ntohl
macros and 16-bit value with htons and ntohs macros.

6.3.3 tsm_cmd_get

int tsm_cmd_get (u8 msg, u8 port, u16 seqid, u8 mac[2]);

Parameters u8 msg PTP message code.

u8 port Port where message arrives.

Return int A positive value to indicate success.

Description This function asks device to return the timestamp of PTP
message.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 23

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Data struct tsm_db

cmd TSM_CMD_DB_GET | msg

index 1 << port

seqid seqid

mac[2] mac[2]

Resp cur_sec time in second.

cur_nsec time in nanosecond.

timestamp same as cur_nsec.

The response bit of this command is TSM_CMD_RESP.

Depending on the index position the driver will return either the receive or transmit timestamp of
the PTP message. Right now only the transmit timestamp is supported. The message can be
Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp.

The sequence id are echoed back for use by the application for bookkeeping.

6.3.4 tsm_cmd_get_time

int tsm_cmd_get_time (u32 timestamp);

Parameters u32 timestamp 32-bit timestamp value generated by hardware.

Return int A positive value to indicate success.

Description This function asks device to return the time based on the
timestamp.

Data struct tsm_cmd_get_time

cmd TSM_CMD_DB_GET_TIME

nsec timestamp

Resp sec time in second.

nsec time in nanosecond.

The response bit of this command is TSM_CMD_GET_TIME_RESP.

The format of the timestamp is (((sec & 3) << 30) | nanosec). Driver will return
the actual second close to the timestamp. Obviously if this function is called later than 3 seconds
the result will not be accurate.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 24

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Application can keep track of the system second so that calling this function is not necessary.

Driver reads the hardware clock when the timestamp is zero.

6.3.5 tsm_cmd_set_cfg

int tsm_cmd_set_cfg (u8 port, u8 enable, u8 gmp, u32 ingress,
u16 egress);

Parameters u8 port Port number.

u8 enable Hardware configurations to set.

u8 gmp Grandmaster port number. Not used.

u32 ingress Ingress delay value.

u32 egress Egress delay value. Not used.

Return int A positive value to indicate success.

Description This function sets some hardware configurations.

Data struct tsm_cfg

cmd TSM_CMD_CNF_SET

port port

enable enable

gmp gmp

ingress_delay ingress

egress_delay egress

OnTime application uses this function to set some hardware configurations like P2P and peer
delays. When the port parameter is 0xFF, meaning all ports, setting bit 2 (0x4) of the enable
parameter means the clock is running in P2P mode. When the port is set to value other than zero,
it means the configuration only applies to that port, number 1 for port 1 and number 2 for port 2.
Generally this is used to the specify the peer delay of the port under P2P. The value is supplied
in the ingress parameter. The gmp parameter can be set to tell the hardware which port is the
grandmaster port, i.e., which port the Announce and Sync messages come from. For now
hardware does not do anything special with this information.

The peer delay of each port is used by hardware to compensate the correct field correctly when
running in 1-step P2P mode.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 25

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.3.6 tsm_cmd_set_clock

int tsm_cmd_set_clock (u32 sec, u32 nsec, u32 timestamp);

Parameters u32 sec Clock's second value.

u32 nsec Clock's nanosecond value.

u32 timestamp Clock's eventual nanosecond value.

Return int A positive value to indicate success.

Description This function sets the clock as close as possible to the
master clock.

Data struct tsm_clock_set

cmd TSM_CMD_CLOCK_SET

timestamp timestamp

nsec nsec

sec sec

This function tries to set the clock as close as possible to the master clock after receiving the
Sync message from the master. When the Sync message is received the incoming nanosecond
timestamp is generated. With this information application knows the difference between the
master clock and local clock. The difference is added to the nanosecond value to generate the
timestamp value.

However due to hardware limitation the resulting time may not match the intent of this function.
It will require a few more clock adjustments to bring the local clock close to the master clock.

6.3.7 tsm_cmd_correct_clock

int tsm_cmd_correct_clock (int drift, int nsec);

Parameters int drift The drift value to adjust the clock continually.

int nsec Zero to indicate no nanosecond adjustment.

Return int A positive value to indicate success.

Description This function adjusts the clock continually for
synchronization.

Data struct tsm_clock_correct

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 26

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

cmd TSM_CMD_CLOCK_CORRECT

add Used to indicate adding or subtracting clock adjustment.

sec Not used.

nsec Used to indicate nanosecond adjustment.

drift The drift value related to master clock.

offset Used to indicate adding or subtracting nanosecond
adjustment.

The drift value is calculated as the nanosecond difference related to the master clock under 1
second. If the slave clock is found to be running 100 ns slower than the master clock in 1 second
interval, then the clock adjustment should be increased by 100 ns.

The nanosecond adjustment is used to quickly close the nanosecond difference gap is it is big
enough. Generally it is preferable to adjust the drift value to close the gap slowly.

OnTime application specifies the add value to be (2 << 4) when calling this function the very
first time after reset. The driver ignores the command.

6.3.8 tsm_cmd_get_gps

int tsm_cmd_get_gpos (void);

Parameters None.

Return int A positive value to indicate success.

Description This function requests the GPS timestamp to be sent.

Data struct tsm_get_gps

cmd TSM_CMD_GET_GPS_TS

Resp seqid The sequence id.

sec Timestamp in second.

nsec Timestamp in nanosecond.

This function is used to request GPS timestamp to be sent to the application. The PPS of the
GPS is supposedly connected to one the GPIO pins. OnTime application uses the GPS
information to adjust the master clock.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 27

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4 Ioctl

The following functions use ioctl to send commands. Immediate responses are stored in the ioctl
parameters, while delayed responses will be sent using file I/O.

6.4.1 Hardware Settings

These functions affect hardware operation related to PTP messages.

6.4.1.1 get_global_cfg

int get_global_cfg (int *master, int *two_step, int *p2p, int
*as, int *csum, int *unicast, int *alternate, int *check, int
*delay_assoc, int *pdelay_assoc, int *sync_assoc, int
*drop_sync, int *priority, u8 *domain, u32 *delay);

Parameters int *master Buffer to store the master clock setting.

int *two_step Buffer to store the 2-step clock setting.

int *p2p Buffer to store the P2P clock setting.

int *as Buffer to store the 802.1AS setting.

int *csum Buffer to store the UDP checksum setting.

int *unicast Buffer to store the unicast setting.

int *alternate Buffer to store the alternate master setting.

int *check Buffer to store the domain check setting.

int *delay_assoc Buffer to store the Delay_Req association setting.

int *pdelay_assoc Buffer to store the Pdelay_Req association setting.

int *sync_assoc Buffer to store the Sync association setting.

int *drop_sync Buffer to store the drop Sync setting.

int *priority Buffer to store the message priority setting.

u8 *domain Buffer to store the domain number.

u32 *delay Buffer to store the access delay value.

Return int 0 if successful.

Description This function retrieves the hardware settings in use.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 28

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_GET

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

master *master

two_step *two_step

p2p *p2p

as *as

udp_csum *csum

unicast *unicast

alternate *alternate

domain_check *check

delay_assoc *delay_assoc

pdelay_assoc *pdelay_assoc

sync_assoc *sync_assoc

drop_sync *drop_sync

priority *priority

domain *domain

access_delay *delay

This function is generally called during application initialization to get the current hardware
settings in use. The most important value is the hardware access delay, as the hardware can run
in generic bus or SPI, where the register access is very slow. In that case the clock correct
command cannot be called too frequently as the result will not be correct. The application needs
to adjust correspondingly as generally the clock correction is done when a Sync message is
received and the Sync frequency can be very high.

The hardware access delay in generic bus is about 5 microseconds. The hardware can handle up
to 100 Sync per second. Hardware access delay in SPI bus is about 15 milliseconds. The
hardware can handle up to 16 Sync per second.

The other values are for information only as generally the application will override them as it
setup the hardware.

6.4.1.2 set_hw_domain

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 29

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

int set_hw_domain (u8 domain)

Parameters u8 domain The domain number to set.

Return int 0 if successful.

Description This function sets the domain number for domain
checking.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

domain_set 1

domain domain

6.4.1.3 set_hw_master

int set_hw_master (int master);

Parameters int master Zero to run as a slave; others to run as a master.

Return int 0 if successful.

Description This function configures the clock to run as a master or a
slave.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

master_set 1

master master

6.4.1.4 set_hw_2_step

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 30

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

int set_hw_2_step (int two_step);

Parameters int two_step Zero to run in 1-step mode; others to run in 2-step mode.

Return int 0 if successful.

Description This function configures the clock to run in 2-step or 1-
step clock mode.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

two_step_set 1

two_step two_step

6.4.1.5 set_hw_p2p

int set_hw_p2p (int p2p);

Parameters int p2p Zero to run in E2E mode; others to run in P2P mode.

Return int 0 if successful.

Description This function configures the clock to run in P2P or E2E
mode.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

p2p_set 1

p2p p2p

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 31

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.1.6 set_hw_as

int set_hw_as (int as);

Parameters int as Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware 802.1AS
feature, which acts as a debug tool to forward all PTP
messages to host CPU.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

as_set 1

as as

6.4.1.7 set_hw_csum

int set_hw_csum (int csum);

Parameters int csum Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware IPv4 UDP
checksum feature. It has no effect on IPv6 PTP
messages.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

udp_csum_set 1

udp_csum csum

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 32

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.1.8 set_hw_unicast

int set_hw_unicast (int unicast);

Parameters int unicast Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware receive
unicast feature.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

unicast_set 1

unicast unicast

6.4.1.9 set_hw_domain_check

int set_hw_domain_check (int check);

Parameters int check Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware domain
check feature.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

domain_check_set 1

domain_check check

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 33

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.1.10 set_hw_alternate

int set_hw_alternate (int alternate);

Parameters int alternate Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware alternate
master feature, which allows Sync forwarding when
running as a master.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

alternate_set 1

alternate alternate

6.4.1.11 set_hw_delay_assoc

int set_hw_delay_assoc (int assoc);

Parameters int assoc Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware Delay_Req
association feature.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

delay_assoc_set 1

delay_assoc assoc

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 34

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.1.12 set_hw_pdelay_assoc

int set_hw_pdelay_assoc (int assoc);

Parameters int assoc Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware Pdelay_Req
association feature.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

pdelay_assoc_set 1

pdelay_assoc assoc

6.4.1.13 set_hw_sync_assoc

int set_hw_sync_assoc (int assoc);

Parameters int assoc Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware Sync
association feature.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

sync_assoc_set 1

sync_assoc assoc

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 35

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.1.14 set_hw_drop_sync

int set_hw_drop_sync (int drop);

Parameters int drop Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware drop Sync
feature.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

drop_sync_set 1

drop_sync drop

6.4.1.15 set_hw_priority

int set_hw_priority (int priority);

Parameters int priority Zero to disable; others to enable.

Return int 0 if successful.

Description This function disables/enables the hardware all PTP
message high priority feature.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

priority_set 1

priority priority

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 36

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.1.16 set_global_cfg

int set_global_cfg (int master, int two_step, int p2p, int as);

Parameters int master Zero to run as a slave; others to run as a master.

int two_step Zero to run in 1-step mode; others to run in 2-step mode.

int p2p Zero to run in E2E mode; others to run in P2P mode.

int as Non-zero to run in 802.1AS mode.

Return int 0 if successful.

Description This function configures the hardware settings
frequently used.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_cfg_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CFG

Param struct ptp_cfg_options

master_set 1

master master

two_step_set 1

two_step two_step

p2p_set 1

p2p p2p

as_set 1

as as

The set_hw_* functions are used to turn on/off certain hardware features. Most of them are
related to message filtering and called once to set a hardware setting that will stay the same
through the life of the application. The set_global_cfg function combines the functions
set_hw_master, set_hw_2_step, set_hw_p2p, and set_hw_as as they are called
frequently inside the application.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 37

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.2 Trigger Output and Event Detection

The PTP hardware can generate trigger outputs and capture incoming events using general-
purpose I/O pins. Up to 12 GPIO pins can be used for trigger output and event detection
depending on chip configurations. However, most of the time some of the GPIO pins are not
available and at least one is reserved for hardware interrupt. There are 12 output units and 12
events units available for use in event generation and detection. They are labeled from 0 to 11.
The last units (11) in output and event units are special and the last output unit is reserved for use
by the system. One of the event units, 10, is reserved for use in the driver.

Input Event Value Input Signal

DETECT_FALL 0 Detect falling edge

DETECT_RISE 1 Detect rising edge

DETECT_BOTH 2 Detect both falling and rising edges.

The following trigger output events are supported:

Output Event Value Output Signal

TRIG_NEG_EDGE 0 Negative edge—a falling edge from high to low

TRIG_POS_EDGE 1 Positive edge—a rising edge from low to high

TRIG_NEG_PULSE 2 Negative pulse—falling edge then rising edge after
pulse time

TRIG_POS_PULSE 3 Positive pulse—rising edge then falling edge after
pulse time

TRIG_NEG_CYCLE 4 Negative cycle—falling edge then rising edge after
pulse time and stay high through cycle time

TRIG_POS_CYCLE 5 Positive cycle—rising edge then falling edge after
pulse time and stay low through cycle time

TRIG_REG_OUTPUT 6 Register bit pattern output—0 to indicate low and 1 to
indicate high

For TRIG_NEG_CYCLE and TRIG_POS_CYCLE outputs that require cycle time the output can
be repeated. For the others the output is one-shot. To repeat those outputs or generate more
complex signals cascade mode can be used. In cascade mode several output units are grouped to
perform an output signal in sequence. The cascaded output itself can be repeated.

The output units in cascade are separated by an iteratation time. When these iteratation times in
output units are the same doing the cascaded output repeatedly has no concern. As this
iteratation time is configured separately for each output unit and can be different, care must be

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 38

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

exercised to not repeat the cascade output too much lest the individual outputs overlap each
other.

For event detection the hardware can only detect falling and rising edges. Each event unit can
only store 2 events, except the last one, which can store 8 events. To detect an event signal that
has more than 2 events cascade mode has to be used. The API automatically takes care of this
and so the users do not need to concern whether cascade mode is being used or not.

Command Flags Values Meaning

PTP_CMD_INTR_OPER 0x01 Enable interrupt.

PTP_CMD_SILENT_OPER 0x02 Silent output.

PTP_CMD_ON_TIME 0x04 Operate exactly on trigger time.

PTP_CMD_REL_TIME 0x08 Trigger time is relative.

PTP_CMD_CLK_OPT 0x10 Enable clock option.

PTP_CMD_CASCADE_RESET_OPER 0x40 Used for testing only.

PTP_CMD_CANCEL_OPER 0x80 Cancel operation.

The flags above are used in trigger output and timestamp event operations to influence the
operation results.

6.4.2.1 rx_event

int rx_event (u8 tsi, u8 gpi, u8 event, u8 total, u8 flags, u32
timeout, int *unit);

Parameters u8 tsi Event unit to use.

u8 gpi General purpose input pin to use.

u8 event 0 for falling edge and other for rising edge.

u8 total Number of event units to use.

u8 flags Flags to modify operation.

u32 timeout Timeout value in millisecond.

int *unit Event unit assigned.

Return int 0 if successful.

Description This function starts the event detection.

Ioctl size sizeof(struct ksz_request) +

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 39

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

sizeof(struct ptp_tsi_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_TEVT

Resp output The event unit assigned if successful.

Param struct ptp_tsi_options

tsi tsi

gpi gpi

event event

flags flags

total total

timeout timeout

This function starts an event unit to detect either a falling or rising edge signal from a GPIO
input pin.

The event unit can be specified directly. If a value equal to or greater than
MAX_TIMESTAMP_UNIT is used the driver will choose an available one and returns that in the
unit variable. If there is no unit available for use the function will fail.

The GPIO input pin should be less than the MAX_GPIO value.

Event can only be 0 for falling edge detection, 1 for rising edge, and other for both edge
detection.

The total units can be specified if more event captures are needed. All event units are assigned
consecutively starting from the first one. If there are not enough available units the function will
fail.

Note the units can loop to the beginning, so it is not necessary to make sure the last unit is
greater than the first unit.

Setting the PTP_CMD_INTR_OPER bit in the flags indicates interrupt should be enabled for
event units. When event is detected the driver immediately notifies the application. Setting the
PTP_CMD_CANCEL_OPER bit stops the unit and allows the unit to be used in other way. This
is necessary if the event does not happen at all.

Setting the PTP_CMD_SILENT_OPER bit in the flags causes the driver not to notify
applications about the event. This is used internally by the driver.

A timeout value other than zero indicates the driver can stop and free the unit after that timeout
passes since the first event happens. Application does not need to call this function specifically
to free the unit. A zero timeout value indicates the event is repeatable. The driver automatically
restarts the unit after the event.

A timeout value is normally needed as the hardware only notifies the driver via interrupt when

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 40

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

the first event happens, but not the second. The driver needs to poll the hardware to detect the
second event. As applications likely care only the first event, this provides a means to quickly
reuse the event unit.

The timeout is checked using system ticks, which normally is updated every 10 milliseconds.
Therefore, the minimum timeout is 10 milliseconds.

The unit returned should be the same unit specified if it is less than the
MAX_TIMESTAMP_UNIT value.

In addition to normal error codes returned by ioctl calls, the error can be
DEV_IOC_UNIT_USED for unit in used and DEV_IOC_UNIT_UNAVAILABLE for unit not
available.

6.4.2.2 tx_event

int tx_event (u8 tso, u8 gpo, u8 event, u32 pulse, u32 cycle
u16 cnt, u32 iterate, u32 sec, u32 nsec, u8 flags, int *unit);

Parameters u8 tso Output unit to use.

u8 gpo General-purpose output pin to use.

u8 event Trigger output event to use.

u32 pulse Pulse time in 8 nanoseconds unit.

u32 cycle Cycle time in nanosecond.

u16 cnt Repeat count.

u32 iterate Iteration time in nanosecond. Used in cascade mode.

u32 sec Starting time in second.

u32 nsec Starting time in nanosecond.

u8 flags Operation flags.

int *unit Output unit assigned.

Return int 0 if successful.

Description This function starts the trigger output in normal mode. It
is used to setup individual output unit in cascade mode.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_tso_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_TOUT

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 41

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Resp output The starting output unit assigned if successful.

Param struct ptp_tso_options

tso tso

gpo gpo

event event

flags flags

pulse pulse

cycle cycle

cnt cnt

sec sec

nsec nsec

iterate iterate

This function starts an output unit to generate a signal in normal mode. It is also used to setup an
output unit in cascade mode.

The output unit can be specified directly. If a value equal to or greater than MAX_TRIG_UNIT
is used the driver will choose the first available one and returns that in the unit variable. If
there is no available unit the function will fail.

The GPIO output pin should be less than the MAX_GPIO value.

The output event is one of the codes displayed in the Output Event table.

Setting the PTP_CMD_INTR_OPER bit in the flags indicates interrupt should be enabled for the
output unit so that after the operation is completed the unit can immediately be stopped and freed
for other use. Setting the PTP_CMD_CANCEL_OPER bit stops the output unit and allows it to
be used again.

Setting the PTP_CMD_SILENT_OPER bit in the flags causes the driver not to notify
applications after the command is completed. It is used when the application does not care about
that information.

The pulse time is required for pulse signals. It is in unit of 8 ns and the value is 16-bit, so the
minimum pulse time is 8 ns, and the maximum is 524280 ns.

The last unit can use a 24-bit value as pulse time, so it is reserved to generate PPS as 20 ms pulse
time is required.

The cycle time is required for cycle signals.

The repeat count can be more than 1 for repeated signals. A count of zero means infinite.

The second and nanosecond are used to specify when the output starts. They are absolute time.
For ease of testing a PTP_CMD_REL_TIME bit can be set in the flags to make them relative

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 42

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

from the current time, i.e., they act like a delay value.

Setting the PTP_CMD_ON_TIME bit in the flags means the operation has to start right on the
target time. If that time is past the operation returns in error. If that bit is not set the operation
will always run to completion.

The unit returned should be the same output unit specified if it is less than the
MAX_TRIG_UNIT value.

In addition to normal error codes returned by ioctl calls, the error can be
DEV_IOC_UNIT_USED for unit in use or DEV_IOC_UNIT_UNAVAILABLE for unit not
available. An error of DEV_IOC_ERROR will be returned if PTP_CMD_ON_TIME bit is set and
the target time is past.

In cascade mode the units allowed to be operated are the ones pre-allocated in the
tx_cascade_init function.

6.4.2.3 tx_cascade_init

int tx_cascade_init (u8 tso, u8 gpo, u8 total, u8 flags, int
*unit);

Parameters u8 tso Starting output unit requested for use in cascade mode.

u8 gpo GPIO output pin operated on.

u8 total Number of output units requested for use.

u8 flags Operation flags.

int *unit Starting output unit assigned.

Return int 0 if successful.

Description This function reserves output units for use in cascade
mode.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_tso_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CASCADE

output 0

Resp output The starting output unit assigned if successful.

Param struct ptp_tso_options

tso tso

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 43

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

gpo gpo

total total

flags flags

The function pre-allocates output units for use in cascade mode.

The first starting output unit can be specified. If a value equal to or greater than
MAX_TRIG_UNIT is used the driver will choose the first available unit and returns that in the
unit variable.

The total units is specified to indicate how many output units are needed. Units are assigned
consecutively and if there are not enough available units the function will fail.

Setting the PTP_CMD_CANCEL_OPER bit in the flags frees the assigned units and allows them
to be used again.

6.4.2.4 tx_cascade

int tx_cascade (u8 tso, u8 gpo, u8 total, u16 cnt, u8 flags);

Parameters u8 tso Starting output unit.

u8 gpo GPIO output pin operated on.

u8 total Number of output units.

u16 cnt Repeat count.

u8 flags Operation flags.

Return int 0 if successful.

Description This function starts the trigger output in cascade mode.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_tso_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CASCADE

output 1

Param struct ptp_tso_options

tso tso

gpo gpo

total total

flags flags

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 44

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

cnt cnt

This function starts the cascade outputs.

The staring output unit and total units should match the ones used in tx_cascade_init
function.

The repeat count can be more than 1 for repeated signals.

The PTP_CMD_INTR_OPER bit in the flags can be set to indicate interrupt should be enabled
for the operation. When the operation is completed driver can stop and free the output units for
other use. The PTP_CMD_CANCEL_OPER bit can be set to manually stop the operation.

For ease of testing the PTP_CMD_REL_TIME bit can be set in the flags to indicate all the times
specified in tx_event setup are relative to the time when this function is executed.

6.4.2.5 get_rx_event

int get_rx_event (u8 tsi);

Parameters u8 tsi Event unit to retrieve the events.

Return int 0 if successful.

Description This function retrieves events from the event unit and
puts them in the data buffer.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_tsi_info)

cmd DEV_CMD_GET

subcmd DEV_PTP_TEVT

output 0

Param struct ptp_tsi_info

cmd PTP_CMD_GET_EVENT

unit tsi

This function requests the driver to return the events from the specified unit in struct
ptp_tsi_info using file I/O. The events returned are those stored in the driver, so calling
this function several times will yield the same information. The returned code can be
DEV_IOC_UNIT_UNAVAILABLE when there are no events.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 45

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

6.4.2.6 poll_rx_event

int poll_rx_event (u8 tsi);

Parameters u8 tsi Event unit to poll.

Return int 0 if successful.

Description This functions polls the event unit to see if there are new
events.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_tsi_info)

cmd DEV_CMD_GET

subcmd DEV_PTP_TEVT

output 1

Param struct ptp_tsi_info

cmd PTP_CMD_GET_EVENT

unit tsi

This function polls the hardware to read any new events from the event unit. The returned
information is the same as from ptp_get_event. Calling this function when the unit is
disabled will always give DEV_IOC_UNIT_UNAVALABLE error.

This function is necessary if the application wants to read the second event in the event unit in a
timely fashion as the driver only updates that information when there is an interrupt and after a
detection timeout. That period can be very short or long depending on PTP operation. The
maximum time is 1 second for the PPS generated by the hardware and detected by the driver.

6.4.3 Hardware Clock Controls

These functions manipulate the hardware clock.

6.4.3.1 get_clock

int get_clock (u32 *sec, u32 *nsec);

Parameters u32 *sec Buffer to store the second.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 46

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

u32 *nsec Buffer to store the nanosecond.

Return int 0 if successful.

Description This function gets the current clock and store the second
and nanosecond in the provided buffers.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_clk_options)

cmd DEV_CMD_GET

subcmd DEV_PTP_CLK

output 0

Param struct ptp_clk_options

sec *sec

nsec *nsec

This function returns the current hardware clock.

6.4.3.2 set_clock

int set_clock (u32 sec, u32 nsec);

Parameters u32 sec The second to set.

u32 nsec The nanosecond to set.

Return int 0 if successful.

Description This function sets the clock with supplied second and
nanosecond.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_clk_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CLK

output 0

Param struct ptp_clk_options

sec sec

nsec nsec

This function sets the hardware clock. It is used mostly in testing as the clock can not be set

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 47

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

accurately using this way.

6.4.3.3 adj_clock

int adj_clock (int add, u32 sec, u32 nsec, int drift, u32
interval);

Parameters int add Zero to subtract; others to add.

u32 nsec The number of seconds to change.

u32 nsec The number of nanoseconds to change.

int drift The continual clock adjustment drift value.

u32 interval The interval for continual clock adjustment.

Return int 0 if successful.

Description This functions adjusts the clock by adding or subtracting
nanoseconds and/or setting the clock drift value.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_clk_options)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CLK

output 1 to subtract; 2 to add

Param struct ptp_clk_options

sec sec

nsec nsec

drift drift

interval interval

This function adjusts the hardware clock by nanoseconds. Used this way the clock can be set
more accurately. Note the time should be less than 1 second. Next revision of chip allows
adjustment by second. For now driver also simulates second adjustment by adjusting the
nanoseconds several times if the second is small enough. Otherwise, a set clock command is
used instead.

This function also sets the continual clock adjustment value by calculating the drift value over
the interval. The drift value is the offset from master over the interval. Normally this value is
normalized over an interval of 1 second.

To set the continual clock adjustment value but not adjusting the clock, set the sec and

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 48

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

nanosecond values to zero. To adjust the clock but not setting the continual clock adjustment
value, set the interval value to zero.

6.4.4 Hardware Configurations

6.4.4.1 get_delay

int get_delay (int port, u32 *rx, u32 *tx, int *asym);

Parameters int port 0 for port 1 or 1 for port 2.

u32 *rx Buffer to store the receive delay in nanoseconds.

u32 *tx Buffer to store the transmit delay in nanoseconds.

int *asym Buffer to store the asymmetric delay in nanoseconds.

Return int 0 if successful.

Description This function gets the port receive, transmit, and
asymmetric delays in hardware.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_delay_values)

cmd DEV_CMD_GET

subcmd DEV_PTP_DELAY

output port

Param struct ptp_delay_values

rx_latency *rx

tx_latency *tx

asym_delay *asym

This function returns the receive latency, transmit latency, and asymmetric delay values stored in
hardware. They are for information only as applications normally will override them.

6.4.4.2 set_delay

int set_delay (int port, u32 rx, u32 tx, int asym);

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 49

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Parameters int port 0 for port 1 or 1 for port 2.

u32 rx Receive delay in nanoseconds.

u32 tx Transmit delay in nanoseconds.

int asym Asymmetric delay in nanoseconds.

Return int 0 if successful.

Description This function sets the port receive, transmit, and
asymmetric delays in hardware.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_delay_values)

cmd DEV_CMD_PUT

subcmd DEV_PTP_DELAY

output port

Param struct ptp_delay_values

rx_latency rx

tx_latency tx

asym_delay asym

This function is used to set the receive latency, transmit latency, and asymmetric delay values in
the hardware. Applications normally retrieve those values from configuration. The values are
used by hardware to adjust the correction field of PTP event messages when they are forwarded
to the other port.

6.4.4.3 get_clock_ident

int get_clock_ident (struct ptp_clock_identity *id);

Parameters struct
ptp_clock_identity
*id

Buffer to store the clock identity.

Return 0 if successful.

Description This function gets the clock id of the device.
It is primarily used to retrieve the MAC address of the
device.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_clock_identity)

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 50

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

cmd DEV_CMD_GET

subcmd DEV_PTP_CLOCK_IDENT

Param struct ptp_clock_identity

This function is used for debug purpose.

6.4.4.4 set_clock_ident

int set_clock_ident (struct ptp_clock_identity *id);

Parameters struct
ptp_clock_identity
*id

Clock identity.

Return 0 if successful.

Description This function sets the clock id of the device.
It is primarily used in debugging.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_clock_identity)

cmd DEV_CMD_PUT

subcmd DEV_PTP_CLOCK_IDENT

Param struct ptp_clock_identity

This function is used for debug purpose.

6.4.4.5 get_reg

int get_reg (int reg, int *val);

Parameters int reg Register.

int *val Buffer to store the value.

Return 0 if successful.

Description This function reads register to get its value.

Ioctl size sizeof(struct ksz_request)

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 51

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

cmd DEV_CMD_GET

subcmd DEV_PTP_REG

output reg

Resp output *val

This function allows reading the hardware register. It is used for debug purpose.

6.4.4.6 set_reg

int set_reg (int reg, int val);

Parameters int reg Register.

u16 val Value.

Return 0 if successful.

Description This function programs value to the register.

Ioctl size sizeof(struct ksz_request)

cmd DEV_CMD_PUT

subcmd DEV_PTP_REG

output reg | (val << 16)

This function allows writing to hardware register. It is used for debug purpose only as
application should use the supplied APIs to program any necessary hardware registers.

6.4.4.7 get_peer_delay

int get_peer_delay (int port, u32 *delay);

Parameters int port 0 for port 1 or 1 for port 2.

u32 *delay Buffer to store the peer delay in nanoseconds.

Return int 0 if successful.

Description This function gets the port peer delay in hardware.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_delay_values)

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 52

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

cmd DEV_CMD_GET

subcmd DEV_PTP_PEER_DELAY

output port

Param struct ptp_delay_values

reserved *delay

This function returns the peer delay values stored in hardware. They are for information only as
applications normally will override them.

6.4.4.8 set_peer_delay

int set_peer_delay (int port, u32 delay);

Parameters int port 0 for port 1 or 1 for port 2.

u32 delay Peer delay in nanoseconds.

Return int 0 if successful.

Description This function sets the port peer delay in hardware.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_delay_values)

cmd DEV_CMD_PUT

subcmd DEV_PTP_PEER_DELAY

output port

Param struct ptp_delay_values

reserved delay

This function is used to set the peer delay value of each port in the hardware. Applications
calculate peer delay using P2P mechanism. Hardware uses peer delay value to adjust the
correction field of Sync messages when they are forwarded to the other port.

6.4.4.9 get_utc_offset

int get_utc_offset (int *offset);

Parameters int *offset Buffer to store the UTC offset.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 53

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Return 0 if successful.

Description This function gets the UTC offset stored in the driver.

Ioctl size sizeof(struct ksz_request)

cmd DEV_CMD_GET

subcmd DEV_PTP_UTC_OFFSET

This function retrieve the UTC offset from the driver. The UTC offset, or leap second, is used to
offset the system time in UTC from the PTP hardware time in TAI.

6.4.4.10 set_utc_offset

int set_utc_offset (int offset);

Parameters int offset UTC offset.

Return 0 if successful.

Description This function sets the UTC offset.

Ioctl size sizeof(struct ksz_request)

cmd DEV_CMD_PUT

subcmd DEV_PTP_UTC_OFFSET

This function sets the UTC offset to the driver. The UTC offset is reported from the grandmaster
or NTP server.

6.4.4.11 get_rx_timestamp

int get_rx_timestamp (u32 timestamp, u32 *sec, u32 *nsec);

Parameters u32 timestamp Timestamp supplied by the hardware.

u32 *sec Buffer to store the second value.

u32 *nsec Buffer to store the nanosecond value.

Return 0 if successful.

Description This function retrieves the receive time with the receive
timestamp.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 54

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_ts_options)

cmd DEV_CMD_GET

subcmd DEV_PTP_TIMESTAMP

Param struct ptp_ts_options

timestamp timestamp

Resp sec *sec

nsec *nsec

The function retrives the receive time of a PTP event message. The receive timestamp supplied
should be the one reported from hardware. This is stored in the 32-bit reserved field of the PTP
message header. It should be swapped from big-endian to little-endian.

As explained before about the hardware timestamp, the second contained in the timestamp is
limited to 3 seconds, so the call to retrieve the receive time should be made within 3 seconds
after the event message is received; otherwise, the second information will not be correct.

6.4.4.12 get_tx_timestamp

int get_tx_timestamp (u8 msg, u8 port, u16 seqid, u8 mac[2],
u32 *sec, u32 *nsec);

Parameters u8 msg One of the PTP event messages.

u8 port 0 for port 1 or 1 for port 2.

u16 seqid The sequence id of the PTP event message.

u8 mac[2] The last 2 bytes of the source clock identity.

u32 *sec Buffer to store the second value.

u32 *nsec Buffer to store the nanosecond value.

Return 0 if successful. Error code -EAGAIN if not available.

Description This function retrieves the transmit timestamp of the PTP
event message with supplied information.

Ioctl size sizeof(struct ksz_request) +
sizeof(struct ptp_ts_options)

cmd DEV_CMD_GET

subcmd DEV_PTP_TIMESTAMP

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 55

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Param struct ptp_ts_options

msg msg

port port

seqid seqid

mac[2] mac[2]

Resp sec *sec

nsec *nsec

This function retrieves the transmit timestamp of a PTP event message, which is Sync,
Delay_Req, Pdelay_Req, or Pdelay_Resp. If the timestamp is available, all the driver needs is
the message code and the port index, which is 0 for port 1 and 1 for port 2. If the timestamp is
not available and the PTP device is used to send this call, driver uses the sequence id and MAC
address information to later send a tsm_cmd_get response to the application. The application
has the option of keep sending this call or waiting for that response. With the echoed sequence
id and clock identity information application can easily find and match the sent event message.
See 6.3.3 tsm_cmd_get for more information.

7 PTP Message Filtering

The hardware is designed to filter PTP messages to help software handle less messages as those
dropped messages are not used by software at all. The following tables display how the
hardware forwards or drops messages depending on different hardware settings. They assume
the message is coming from port 1 and forwarded to host port 3 and the other port 2.

Legends used in the tables:

+ Forwarded as should be
- Not forwarded and dropped as should be
P Forwarded
D Not forwarded and dropped
M Domain number matched and forwarded; otherwise dropped
U Domain number not matched and forwarded; otherwise dropped
A Delay_Resp message matched Delay_Req and forwarded; otherwise dropped
B Delay_Resp message not matched Delay_Req and forwarded; otherwise dropped
C Pdelay_Resp/Pdelay_Resp_Follow_Up messages matched Pdelay_Req and forwarded
S Follow_Up message matched Sync and forwarded; otherwise dropped
P Result different from previous table.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 56

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync - D - D + + + + D - D - + - + -

Follow_Up - D - D + + + + D - D - + - + -

Delay_Req + D - - - + - - + - - - + - - -

Delay_Resp - D - - + + - - D - - - + - - -

Pdelay_Req P D + - - + + - + - + - + - + -

Pdelay_Resp - D + - P + + - D - + - + - + -

Pdelay_Resp_Follow_Up - D + - P + + - D - + - + - + -

Announce + + + + + + + + + P + P + P + P

Management + + + + + + + + + P + P + P + P

Signaling + + + + + + + + + P + P + P + P

Table 1: All Filtering Functions Disabled

In the default mode where all filtering functions are disabled it is assumed the PTP system has
only one grandmaster and one domain. The PTP 1-step slave clock in E2E mode only needs to
process Sync, Follow_Up, and Delay_Resp messages, so only those messages are forwarded to
port 3. All PTP messages are forwarded to port 2. P2P mode is not compatible to E2E, so all
Delay_Req and Delay_Resp messages are dropped. Pdelay_Req, Pdelay_Resp, and
Pdelay_Resp_Follow_Up messages are forwarded to port 3 and will never be forwarded to port 2
as those messages are stopped in the received device.

PTP 2-step clock never forwards messages to port 2 as forwarding is done in software. Slave
clock needs to receive all messages to determine which one to forward. As in previous case it is
assumed there are no Delay_Req and Delay_Resp messages in a P2P system and so they are
dropped.

The PTP 1-step master clock in E2E mode only needs to process Delay_Resp message, and so
only that message is forwarded to port 3. It is assumed there is one master and so the master
clock does not forward Sync, Follow_Up, Delay_Req, and Delay_Resp messages to port 2.
Theoretically it should forward Pdelay_Req, Pdelay_Resp, and Pdelay_Resp_Follow_Up
messages. But as it does not forward Sync and Follow_Up messages it does not really help any
P2P device connected to port 2 in actual use.

PTP 2-step master clock only forwards Delay_Req and Pdelay_Req messages to port 3, so
software cannot do any forwarding. The end result is the same as running in 1-step clock mode.

There are some errors in hardware implementation. In E2E mode master clock forwards

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 57

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Pdelay_Req message to port 3, and slave clock forwards not Pdelay_Req message but
Pdelay_Resp and Pdelay_Resp_Follow_Up messages. As those messages are ignored by
software, it does not impact PTP operation.

The only mode for hardware to forward all messages to port 2 is 1-step E2E slave mode. When
software is not running it is required to set this mode to not drop any message. It is the default
hardware mode after reset.

The E2E slave mode is the mode to use in 2-step clock setting to receive all messages so
software can determine which to forward.

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync - D - D + + + + D - D - + - + -

Follow_Up - D - D + + + + D - D - + - + -

Delay_Req + U - - - + - - + - - - + - - -

Delay_Resp - D - - + + - - D - - - + - - -

Pdelay_Req P U M - - + M - + - M - + - M -

Pdelay_Resp - D + - P + + - D - + - + - + -

Pdelay_Resp_Follow_Up - D + - P + + - D - + - + - + -

Announce + + + + + + + + + P + P + P + P

Management + + + + + + + + + P + P + P + P

Signaling + + + + + + + + + P + P + P + P

Table 2: Domain Check Disabled With Different Domain Number

There is a filtering feature called Domain Check in which hardware drops the message if the
domain number in the message does not match the domain number set in the hardware. It turns
out the hardware also has some implementation issues.

When Domain Check is disabled hardware is supposed to ignore the domain number. It seems
the hardware is still doing some checking on certain messages. In P2P mode the Pdelay_Req
message is only forwarded when the domain number matches. In E2E mode 1-step master clock
also passes Delay_Req and Pdelay_Req messages to port 2 when the domain number is not
matched.

As these problems do not impact PTP operation, it is not required to fix them. It is documented
here for regression testing.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 58

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

This can be verified by changing the domain number with set_hw_domain function.

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync - + - + + + + + + - + - + - + -

Follow_Up - + - + + + + + + - + - + - + -

Delay_Req + + - - - + - - + - - - + - - -

Delay_Resp - + - - + + - - + - - - + - - -

Pdelay_Req P D + - - + + - + - + - + - + -

Pdelay_Resp - D + - P + + - D - + - + - + -

Pdelay_Resp_Follow_Up - D + - P + + - D - + - + - + -

Announce + + + + + + + + + P + P + P + P

Management + + + + + + + + + P + P + P + P

Signaling + + + + + + + + + P + P + P + P

Table 3: Alternate Master Enabled

PTP standard has a feature called Alternate Master in which slave clocks can synchronize with
more than one master in case the main master fails. For this to work master clock needs to pass
Sync, Follow_Up, Delay_Req, and Delay_Resp messages to port 2. This can be done by
enabling Alternate Master setting.

This setting is disabled/enabled by set_hw_alternate function.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 59

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync - U - U M + M + U - U - + - + -

Follow_Up - U - U M + M + U - U - + - + -

Delay_Req M U - - - + - - + - - - + - - -

Delay_Resp - U - - M + - - U - - - + - - -

Pdelay_Req M U M - - + M - + - M - + - M -

Pdelay_Resp - U M - P + M - U - M - + - M -

Pdelay_Resp_Follow_Up - U M - P + M - U - M - + - M -

Announce P + P + P + P + + P + P + P + P

Management P + P + P + P + + P + P + P + P

Signaling P + P + P + P + + P + P + P + P

Table 4: Domain Check Enabled

To support multiple domains master clock needs to pass Sync and Follow_Up messages to port 2
in P2P mode, and all messages in E2E mode. This is accomplished by enabling Domain Check
setting.

Messages with different domain number received by master clock are passed to port 2 in 1-step
clock mode or forwarded to port 3 in 2-step clock mode so that software can forward them as
necessary. Otherwise, they are dropped as in Table 1.

Only Sync and Follow_Up messages with same domain number are forwarded to port 3 in slave
clock.

In E2E mode only Delay_Req message with same domain number is forwarded to port 3 in
master clock, and Delay_Resp message with same domain number in slave clock.

In P2P mode only Pdelay_Req, Pdelay_Resp, and Pdelay_Resp_Follow_Up messages with same
domain number are forwarded to port 3.

This is the setting software should use so that messages are properly forwarded. As a result, it
will be enabled in the driver.

It is noted that this does not mean Micrel PTP devices support multiple domains as specified in
PTP standard, in which a device can syntonize with master clocks in 2 or more domains.

This setting is disabled/enabled by set_hw_domain_check function.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 60

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync - + - + M + M + + - + - + - + -

Follow_Up - + - + M + M + + - + - + - + -

Delay_Req M + - - - + - - + - - - + - - -

Delay_Resp - + - - M + - - + - - - + - - -

Pdelay_Req M U M - - + M - + - M - + - M -

Pdelay_Resp - U M - P + M - U - M - + - M -

Pdelay_Resp_Follow_Up - U M - P + M - U - M - + - M -

Announce P + P + P + P + + P + P + P + P

Management P + P + P + P + + P + P + P + P

Signaling P + P + P + P + + P + P + P + P

Table 5: Domain Check and Alternate Master Enabled

If Alternate Master feature is used, the hardware Alternate Master setting can be enabled to
forward Sync, Follow_Up, Delay_Req, and Delay_Resp messages in master clock without
checking the domain number.

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync - + - + M + M + + - + - + - + -

Follow_Up - + - + S + S + + - + - + - + -

Delay_Req M + - - - + - - + - - - + - - -

Delay_Resp - + - - A B - - + - - - + - - -

Pdelay_Req M U M - - + M - + - M - + - M -

Pdelay_Resp - U C - C + C - U - C - + - C -

Pdelay_Resp_Follow_Up - U C - C + C - U - C - + - C -

Table 6: Delay_Req, Pdelay_Req, and Sync Associations Enabled

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 61

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

There is an additional filtering feature called message association. A Delay_Resp message needs
to be associated with a certain Delay_Req message for software to accept the response.
Likewise, Pdelay_Resp, and Pdelay_Resp_Follow_Up messages are associated with certain
Pdelay_Req message. And Follow_Up message is associated with a 2-step Sync message. The
response is considered associated with a request if the domain number, sequence id, and source
port id match.

The Sync/Follow_Up Association setting checks the received Follow_Up message match the
previous 2-step Sync message and drops it if not matched.

This setting is disabled/enabled by set_hw_sync_assoc function.

The Delay_Req/Delay_Resp Association setting checks the received Delay_Resp message match
the Delay_Req message sent by the host. The message is forwarded to the host if matched and
dropped if not. Additionally the message is forwarded to port 2 if not matched and dropped if
matched. Messages with different sequence id are forwarded to the host.

This setting is disabled/enabled by set_hw_delay_assoc function.

The Pdelay_Req/Pdelay_Resp Association setting checks the received Pdelay_Resp and
Pdelay_Resp_Follow_Up messages match the Pdelay_Req sent by the host. The messages are
forwarded to the host if matched and dropped if not.

Note that this works even in 1-step E2E slave clock although software is not supposed to send
out Pdelay_Req messages.

This setting is disabled/enabled by set_hw_pdelay_assoc function.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 62

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync - D - D D D D D D - D - D - D -

Follow_Up - D - D D D D D D - D - D - D -

Delay_Req D D - - D D - - D - - - D - - -

Delay_Resp - + - - M + - - + - - - + - - -

Pdelay_Req M U M - - + M - + - M - + - M -

Pdelay_Resp - U M - P + M - U - M - + - M -

Pdelay_Resp_Follow_Up - U M - P + M - U - M - + - M -

Table 7: Drop Sync and Delay_Req Enabled

There is a hardware setting called Drop Sync and Delay_Req, which drop all Sync, Follow_Up,
and Delay_Req messages after receiving them. The idea was not to pass those messages to
clocks connected to port 2 while the slave clock is setting up and so the system clock is not
accurate. But the slave clock needs to receive Sync and Follow_Up messages to properly
syntonize with the master. So this feature has no practical use.

The practice is to enable 2-step clock mode first to not pass any message to port 2, then switches
back to 1-step clock mode after the system clock is syntonized with the master.

This setting is disabled/enabled by set_hw_drop_sync function.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 63

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

PTP Message 1-step 2-step

Master Slave Master Slave

E2E P2P E2E P2P E2E P2P E2E P2P

P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2 P3 P2

Sync + - + - + - + - + - + - + - + -

Follow_Up + - + - + - + - + - + - + - + -

Delay_Req + - + - + - + - + - + - + - + -

Delay_Resp + - + - + - + - + - + - + - + -

Pdelay_Req + - + - + - + - + - + - + - + -

Pdelay_Resp + - + - + - + - + - + - + - + -

Pdelay_Resp_Follow_Up + - + - + - + - + - + - + - + -

Announce + P + P + P + P + P + P + P + P

Management + P + P + P + P + P + P + P + P

Signaling + P + P + P + P + P + P + P + P

Table 8: 802.1AS Enabled

The 802.1AS setting is supposed to support running the clock in AVB. It forwards all messages
to port 3 and does not forward any to port 2. Software may not actually use this setting when
running in AVB as it may be desirable for hardware to forward some messages. For now this
setting is used as a fallback in case the filtering mechanism mentioned above fails in some ways.

The current chip always forwards Announce, Management, and Signaling messages to the other
port, which actually breaks the requirement of AVB and prevents the clock from being used as a
Boundary Clock. The next revision of chip will correct that.

This setting is disabled/enabled by set_hw_as function.

8 Hardware Limitations

There are some limitations in current hardware revision that software needs to be aware of:

• Continual clock adjustment needs to be disabled first before doing nanosecond clock
adjustment. Otherwise, operation may not be successful. This will be fixed in next
revision.

• Infinite running trigger outputs like PPS need to be restarted after the clock changes
significantly. Otherwise, the outputs may stop.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 64

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

• Hardware expects the reserved fields of incoming PTP message header to be zero.
Otherwise, wrong UDP checksum may be generated when the message is forwarded.
Workaround is to disable UDP checksum generation. This will be fixed in next revision.

• Hardware expects the source port of transmitted Pdelay_Req message to be zero when
running in P2P mode. Otherwise, wrong UDP checksum may be generated when the
message is sent out from each port. This will be fixed in next revision.

• Hardware expects the originTimestamp of 1-step Sync message to be zero. Otherwise,
wrong UDP checksum may be generated when the message is sent out from each port.
This will be fixed in next revision.

• When calculated UDP checksum is zero hardware does not change it to 0xffff. As a
result it is interpreted as no UDP checksum under IPv4 and rejected under IPv6. This
will be fixed in next revision.

• There are issues in trigger outputs when the time interval is very small. As a result it is
advised the minimum time interval be set at 80 ns.

• There are filtering errors when Domain Check and Sync Association are used. As a result
Sync Association has to be disabled. This will be fixed in next revision.

• When VLAN Tag Insertion/Tag Removal features of the switch are used hardware does
not modify the PTP message payload properly. Resolution is not to use those Tag
Insertion/Tag Removal features. This will be fixed in next revision.

• In rare occasion under heavy network traffic hardware will calculate wrong correction
field. This will be fixed in next revision.

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 65

http://www.micrel.com/

Micrel 1588 PTP Developer Guide

Alphabetical Index
Audio/Video Bridge (AVB).............................5, 64
End-to-end (E2E)...5
Master Clock (MC)..5
Ordinary Clock (OC)...5
Peer-to-peer (P2P)...5
Precision Time Protocol (PTP)..............................5

Pulse per second (PPS)................................5, 6, 64
Slave Clock (SC)...5
Synchronization...5
Syntonization...5
Transparent Clock (TC)...5

© 2011-2012 Micrel, Inc. Confidential Rev. 1.3
2180 Fortune Dr., San Jose, CA 95131, USA • (408) 944-0480 • http://www.micrel.com

Page 66

http://www.micrel.com/

	1 Revision History
	2 Introduction
	2.1 Glossaries

	3 Using PTP Hardware
	4 Verifying PTP Hardware
	4.1 Verifying Clock Adjustment
	4.2 Verifying Message Filtering
	4.3 Verifying Trigger Output and Event Detection

	5 Using Linux Drivers
	5.1 Multiple Network Device Interfaces
	5.1.1 One Simple Network Interface for Each Port
	5.1.2 One Additional VLAN Interface for Each Port
	5.1.3 One Additional Network Interface for Each Port

	5.2 RSTP Support
	5.3 Sysfs Support
	5.4 PTP Access Inside Network Device
	5.5 Getting RX and TX Timestamps From Network Device

	6 PTP APIs
	6.1 Data Structures and Definitions
	6.2 Initialization Functions
	6.2.1 tsm_init
	6.2.2 tsm_cleanup
	6.2.3 tsm_exit

	6.3 File I/O
	6.3.1 tsm_recv
	6.3.2 tsm_send
	6.3.3 tsm_cmd_get
	6.3.4 tsm_cmd_get_time
	6.3.5 tsm_cmd_set_cfg
	6.3.6 tsm_cmd_set_clock
	6.3.7 tsm_cmd_correct_clock
	6.3.8 tsm_cmd_get_gps

	6.4 Ioctl
	6.4.1 Hardware Settings
	6.4.1.1 get_global_cfg
	6.4.1.2 set_hw_domain
	6.4.1.3 set_hw_master
	6.4.1.4 set_hw_2_step
	6.4.1.5 set_hw_p2p
	6.4.1.6 set_hw_as
	6.4.1.7 set_hw_csum
	6.4.1.8 set_hw_unicast
	6.4.1.9 set_hw_domain_check
	6.4.1.10 set_hw_alternate
	6.4.1.11 set_hw_delay_assoc
	6.4.1.12 set_hw_pdelay_assoc
	6.4.1.13 set_hw_sync_assoc
	6.4.1.14 set_hw_drop_sync
	6.4.1.15 set_hw_priority
	6.4.1.16 set_global_cfg

	6.4.2 Trigger Output and Event Detection
	6.4.2.1 rx_event
	6.4.2.2 tx_event
	6.4.2.3 tx_cascade_init
	6.4.2.4 tx_cascade
	6.4.2.5 get_rx_event
	6.4.2.6 poll_rx_event

	6.4.3 Hardware Clock Controls
	6.4.3.1 get_clock
	6.4.3.2 set_clock
	6.4.3.3 adj_clock

	6.4.4 Hardware Configurations
	6.4.4.1 get_delay
	6.4.4.2 set_delay
	6.4.4.3 get_clock_ident
	6.4.4.4 set_clock_ident
	6.4.4.5 get_reg
	6.4.4.6 set_reg
	6.4.4.7 get_peer_delay
	6.4.4.8 set_peer_delay
	6.4.4.9 get_utc_offset
	6.4.4.10 set_utc_offset
	6.4.4.11 get_rx_timestamp
	6.4.4.12 get_tx_timestamp

	7 PTP Message Filtering
	8 Hardware Limitations

