Implementing DICE with the Current CEC1702

CEC1702

We would like to work with Microsoft to implement a DICE prototype using the current CEC1702, without
DICE code in ROM. This will allow us to determine if the security needs can be met with the current part.

In the existing CEC1702 the MCHP ECC Private Key can optionally be encrypted and stored in eFuse
and then locked, which prevents access until the next power-on.

The DICE code can be signed and encrypted - the CEC1702 can authenticate as well as decrypt the

code before execution.

A secret key can be stored in the user area of eFuse and then locked, specifically the DICE Encrypted
User Key, the unique device identity used by the DICE code.

The CEC1702 provides APIs that the DICE code can use to load the application code, as well as
authenticate and decrypt this code.

The following is a list of the keys to be used in this implementation.

Key Location Description Protection
Customer eFuse This public key is used to perform ECDSA | Locked by boot ROM
Authentication Key verification of the Binary Image code before passing
control to DICE Code.
MCHP AES ROM MCHP AES key to decrypt the MCHP Locked by boot ROM
Symmetric Key ECC Private Key in eFuse code before passing
control to DICE Code.
MCHP ECC Private eFuse Private Key used for Elliptic Curve Diffie- Locked by boot ROM
Key Hellman Key Exchange (ECDH). This is code before passing
part of the Private/Public key pair used for | control to DICE Code.
ECDH. Itis used in decrypting the Binary
Image. It can be stored in encrypted form.
DICE Encrypted User | eFuse This is the unique device identity used by | Locked by DICE code
Key user region | the DICE code. before passing control
to application code.
DICE Decryption Key | DICE code | This is the key to decrypt the DICE Deleted by DICE code
Encrypted User Key in the eFuse. before passing control
to application code.
Optional keys for Option A: Optional keys for authenticating/ Deleted by DICE code
authenticating/ DICE code | decrypting the application code before passing control
decrypting the to application code.
application code Option B: Optional keys for authenticating/ Locked by DICE code
eFuse user | decrypting the application code before passing control
region to application code.

Outline of the authentication and decryption process of CEC1702

1. Authenticate the header of the Binary Image from the flash:

e The ROM calculates the SHA-256 hash of the first 64 bytes of the header.

e The ROM performs ECDSA signature verification on the calculated hash digest, using the

Customer Authentication Key (public key) stored in the eFuse (see Note 1).

o If the ECDSA verification procedure returns an error, the load terminates.
Note 1: Header is signed by customer and public key is loaded into eFuse

2. Authenticate the Binary Image from the flash:
e The ROM calculates the SHA-256 hash of the image.
e The ROM performs ECDSA signature verification on the calculated hash digest, using the

Customer Authentication Key (public key) stored in the eFuse (see Note 2).

Microchip Confidential

1

December 5, 2016

CEC1702

o |f the ECDSA verification procedure returns an error, the load terminates.
Note 2: Binary Image is signed by customer and public key is loaded into eFuse

3. Decrypt the Binary Image:

After the image is authenticated, if it is encrypted, then the ROM decrypts the image as follows.

e Obtain the MCHP ECC Private Key s from eFuse. If the private key is encrypted, derive s by
AES256-CBC decryption using the 256-bit MCHP AES Symmetric Key stored in the secure
region of ROM.

Extract the point R=[Rx,Ry] from Key Header (R is customer’s ECDH public key)

Check the point R to verify that it is on the NIST standard P-256 curve.

Perform ECC point-multiply s.R=K, where K=[Kx,Ky] on the curve P-256.

Generate a 512-bit block to be hashed from the 256-bit Kx.

Hash the 512-bit block using SHA-256. This creates a 256-bit digest that is used as the AES key.
Generate another 512-bit block to be hashed from the 256-bit Kx.

Hash the 512-bit block using SHA-256. This creates a 256-bit digest: the least significant 128 bits
are used as the Initialization Vector for the encryption.

Decryption is AES256-CBC, using the AES key and Initialization Vector just calculated.

Options for DICE Implementation

Option 1: 2 stage loader. See concept diagram. This is the recommended solution.

First the boot ROM loads the DICE code from the SPI flash into SRAM. This code should be encrypted
and signed and the boot ROM will authenticate and decrypt it.

The boot ROM code then turns over control to the DICE code. Before doing so, the boot ROM code will
lock the MCHP AES Symmetric Key in ROM, and the Customer Authentication Key and MCHP ECC
Private Key in eFuse.

After the boot ROM gives control over to the DICE code, the DICE code uses the provided APIs to load
the application code. The DICE code can optionally authenticate and decrypt the application code using
APIs that are provided for the CEC1702. The DICE code contains the DICE Decryption Key to decrypt the
DICE Encrypted User Key in the eFuse. This DICE Encrypted User Key is the unique device identity used
by the DICE code.

The DICE code then turns over control to the application code. Before doing so, the DICE code will lock

the DICE Encrypted User Key in eFuse by locking the eFuse user region, and it will delete/overwrite any
keys it has in SRAM so the application code can’t access them.

Microchip Confidential 2 December 5, 2016

CEC1702

Figure 1: 2-Stage Loader Concept Diagram

2-Stage Loader Concept using CEC1702

st
1" Load ROM
SPI Boot ROM Code
MCHP AES Key
DICE Code Authenticate/
(Encrypted and Signed) Decrypt with SRAM
_ MCHP Private key
DICE Decryption Key
o » DICE Code
Application Code DICE Decryption Key
(Optionally
Encrypted and Signed)
eFuse
User Region
[€— Lock
[DICE Encrypted User Key |
MCHP ECC Private Key [¢— Lock
ROM Customer Authentication Key [«— Lock
2" Load
Boot ROM Code —_|
SPI MCHP AES Ke
DICE Code
(Encrypted and Signed) SRAM
DICE Decryption Key

DICE Code

DICE Decryption Key

Application Code
(Optionally >
Encrypted and Signed)

Verify

» Application Code

Option 2: Load all code (DICE and Application) at once.

The boot ROM loads the DICE code and application code all at once from the SPI flash into SRAM. This
code should be encrypted and signed and the boot ROM will authenticate and decrypt it.

The boot ROM code then turns over control to the DICE code. Before doing so, the boot ROM code will
lock the MCHP AES Symmetric Key in ROM, and the Customer Authentication Key and MCHP ECC
Private Key in eFuse.

The DICE code contains the DICE Decryption Key to decrypt the DICE Encrypted User Key in the eFuse.
This DICE Encrypted User Key is the unigue device identity used by the DICE code.

The DICE code then turns over control to the application code. Before doing so, the DICE code will lock
the DICE Encrypted User Key in eFuse by locking the eFuse user region, and it will delete/overwrite any
keys it has in SRAM so the application code can’t access them.

Future Discussion

If full DICE support can be implemented in the CEC1702 with a ROM update, this is something we will

consider.

e We can include the DICE code in the boot ROM and all the keys will be encrypted.

e The ROM will lock the keys and delete/overwrite any keys in SRAM before transitioning to the
application code.

Microchip Confidential 3 December 5, 2016

