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Average Current Mode Control of LLC Resonant Converter
ABSTRACT

Average Current Mode Control (ACMC) of a Pulse
Frequency Modulated (PFM) LLC Resonant Converter
considerably improves the dynamic response of the
converter relative to other techniques, such as Voltage
Mode Control (VMC). ACMC also facilitates meeting
current sharing requirements of parallel connected
converters. A good control loop bandwidth is required
to meet the dynamic response specifictions and can be
achieved using the ACMC-PFM LLC resonant
converter. The plant transfer functions of the converter
are derived using the Extended Describing Function
(EDF), and appropriate compensators for the current
and voltage control loops are designed. Experimental
results verifying the model and design are presented
and compared with the MATLAB® model results.

INTRODUCTION

In resonant converters, the operating principle is based
on the characteristic gain curve of the resonant tank,
where a variation of the switching frequency will
change the gain. This results in an effective regulation
of output voltage or current in relation to the load and
input voltage changes. In the LLC resonant converter,
the resonant tank is a set of two inductive elements and
one capacitor (LLC).

The LLC resonant converter has several advantages
over other traditional topologies. A few of them are as
follows:

• LLC resonant converter can operate in both Step-up 
and Step-Down modes

• LLC resonant converter accommodates a wide 
range of output to input voltage ratios, with a 
relatively small frequency modulation range

• Soft switching (Zero Voltage Switching (ZVS)/
Zero Current Switching (ZCS)) could be achieved 
over the entire operating range

The primary side of the ACMC-LLC resonant converter
has a half-bridge configuration, and the secondary side
of the transformer has a center-tapped full wave recti-
fier and capacitive filter (Cf). A simple capacitor filter is
used instead of a standard LC filter, thereby reducing
the cost, component count and converter dimensions.
The Q1 and Q2 MOSFETs are driven in Complementary
mode at 50% duty cycle (neglecting the dead time).
The resonant tank in the primary side of the converter
has three passive components: magnetizing induc-
tance (Lm), resonant capacitor (Cs) and series resonant
inductor (Ls).

Modeling of the converter and compensator design for
the ACMC-LLC resonant converter has been
performed similar to the VMC-LLC resonant converter.
Refer to AN1477, “Digital Compensator Design for LLC
Resonant Converter” (DS01477) for more information.

In order to develop the state-space model for the
ACMC-LLC resonant converter, the linearized plant
model equations are inherited from the equations
derived in the document, AN1477, “Digital Compensator
Design for LLC Resonant Converter”. This application
note describes the mathematical modelling and digital
compensator design for the ACMC-LLC resonant
converter.

Figure 1 illustrates the ACMC-LLC resonant converter.
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FIGURE 1: SCHEMATIC OF AVERAGE CURRENT MODE CONTROLLED LLC RESONANT CONVE
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AN1495
AVERAGE CURRENT MODE 
CONTROL VS. VOLTAGE MODE 
CONTROL

Current Mode Control (CMC) is a two-loop system,
comprised of an inner current loop and an outer voltage
loop (see Figure 1). The CMC method is widely used in
Pulse-Width Modulation (PWM) converters and has the
following advantages:

• Improved transient response: A CMC converter 
can be typically modeled as a first order system. 
Hence, it is easier to design a feedback network, 
and further, the overall transient response is 
improved.

• Improved disturbance rejection: The output of the 
constant current converter is nearly independent 
of variations in input voltage. This is achieved by a 
fast acting inner current loop which tightly controls 
the load current.

• Suitability for modular operation: When multiple 
converters are paralleled in an input-parallel/
output-parallel combination, a common outer volt-
age feedback loop is sufficient for all paralleled 
converters. This configuration automatically 
enables equal or weighted load sharing through a 
common current reference for the individual inner 
current loops. The paralleled converters have the 
same control voltage, so there is equal load 
sharing.

• Self-protection against overload: The ACMC 
converter incorporates overload protection 
through the provision of limit checks to the current 
reference for the inner current loop.

• Transformer anti-saturation control: The current 
threshold control algorithm (inner current loop) 
automatically limits the maximum current through 
the transformer windings, thereby keeping the 
operating point of the transformer near the center 
of its B-H curve.

ACMC is implemented by sensing the resonant tank cur-
rent (ir in Figure 1) using a current sensing network (CT),
which functions as a low-pass filter. This sensed current
is fed to the current loop compensator. The reference to
the inner current loop compensator is obtained from the
output of the outer voltage loop compensator. The output
of the current compensator defines the required operat-
ing frequency to be programmed to the PWM generator
(PTPER register) for controlling the primary side
MOSFETs of the half-bridge.

Plant Transfer Function

The plant transfer functions of the LLC resonant con-
verter are derived using the EDFs. As mentioned in the
Introduction, the modeling of the converter and
compensator design for the ACMC-LLC resonant
converter has been performed similar to the VMC-LLC
resonant converter. Refer to Equation 23 in the applica-
tion note, AN1477, “Digital Compensator Design for
LLC Resonant Converter”, for deriving the large signal
model of the LLC resonant converter.

The large signal model of the LLC resonant converter
is provided in Equation 1.

EQUATION 1: LARGE SIGNAL MODEL OF 
LLC RESONANT 
CONVERTER

An equivalent circuit representation of the large signal
model of the LLC resonant converter is illustrated in
Figure 2.
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FIGURE 2: LARGE SIGNAL MODEL OF LLC RESONANT CONVERTER

The following variables are used in Large Signal model:

• is and ic : Sine and cosine components of the 
resonant inductor current

• ims and imc: Sine and cosine components of the 
magnetizing current

• Vs and Vc : Sine and cosine components of the 
resonant capacitor voltage 

• Ves and Vec: Sine and cosine components of the 
half-bridge output voltage

• Vps and Vpc : Sine and cosine components of the 
transformer primary voltage

• ips and ipc: Sine and cosine components of the 
transformer primary current

• ip and rs: Transformer primary current and DCR of 
the resonant Inductor

• isp and Vcf : Transformer secondary current and 
output filter capacitor voltage

• Ωs  and Vo: Steady-state switching frequency and 
output voltage 

• Cf and rc: Output filter capacitor and filter 
capacitor Equivalent Series Resistance (ESR) 

• R and Io: Load resistance and load current

The large signal model of the LLC resonant converter,
provided in Equation 1, is perturbed and linearized
about the chosen operating point to obtain small signal
model equations. These equations are used to deter-
mine the plant transfer functions, such as output
voltage-to-switching frequency (Gvω(s)) and inductor
current-to-switching frequency (Giω(s)) for ACMC.

The difference between the state-space models of
VMC and ACMC is the presence of an additional output
variable, which is the average inductor current (ir) in the
ACMC model.

The perturbation and linearization of the resonant
inductor current is provided in Equation 2.

EQUATION 2: PERTURBATION AND 
LINEARIZATION OF 
RESONANT INDUCTOR 
CURRENT

The linearized small signal model of the LLC resonant
converter for ACMC is provided in Equation 3.
Equation 3 incorporates the linearized resonant
current, as derived in Equation 2.
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Linearization of the Tank Current is:
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EQUATION 3:  LINEARIZED SMALL SIGNAL MODEL OF LLC RESONANT CONVERTER
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LmIms0
Lm

---------------------- ̂sn+ + +=

The Output Equation is:
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Formation of State-Space Model

State-space representation is a mathematical model of
a physical system as a set of input, output and state
variables, related by first order differential equations.

The state-space representation (known as time domain
approach) provides a convenient and compact way to
model and analyze systems with multiple inputs and
outputs.

The linearized model obtained in Equation 3 is
transformed into the state-space representation. The
state-space model is used to obtain the transfer func-
tions between output voltage and switching frequency
(Gvω(s)), and between inductor current and switching
frequency (Giω(s)).

Equation 4 provides the state-space representation of
the ACMC-LLC resonant converter.

EQUATION 4: STATE-SPACE MODEL OF LLC RESONANT CONVERTER
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îr

= Outputs

A

Hip rs+

Ls
-------------------–

sLs Hic+ 
Ls

-------------------------------– 1
Ls
-----– 0

Hip

Ls
--------

Hic

Ls
-------- Hvcf

Ls
----------–

sLs Gip–

Ls
--------------------------

Gic rs+

Ls
-------------------– 0

1
Ls
-----–

Gip

Ls
--------

Gic

Ls
--------

Gvcf

Ls
----------–

1
Cs
------ 0 0

Css

Cs
-------------– 0 0 0

0
1

Cs
------

Css

Cs
------------- 0 0 0 0

Hip

Lm
--------

Hic

Lm
-------- 0 0 Hip

Lm
--------–

Hic Lms+

Lm
----------------------------–

Hvcf

Lm
----------

Gip

Lm
--------

Gic

Lm
-------- 0 0

Gip Lms–

Lm
----------------------------– Gic

Lm
--------–

Gvcf

Lm
----------

Kis r'c
Cf

rc
-------------

Kic r'c
Cf

rc
-------------- 0 0

Kis r'c
Cf

rc
-------------–

Kic r'c
Cf

rc
--------------–

r'c
RCf

rc
--------------–

=

B
Ls0Ic

Ls
-----------------–

Ls0Is

Ls
----------------

Cs0Vc

Cs
-------------------–

Cs0Vs

Cs
-------------------

Lm0Imc

Lm
----------------------–

Lm0Ims

Lm
---------------------- 0=

C
Kis r'c Kicr'c 0 0 Kisr'c– Kicr'c–

r'c
rc
------

Js Jc 0 0 0 0 0

=

D 0
0

=

DS01495A-page 6  2013 Microchip Technology Inc.



AN1495
From the state-space model in Equation 4, the control-
to-output voltage transfer function (Gvω(s)) and the
control-to-inductor current transfer function (Giω(s)) are
provided in Equation 5, where the control variable is
the PWM switching frequency of an LLC resonant
converter.

EQUATION 5: (Giω(s)) AND (Gvω(s)) 
TRANSFER FUNCTIONS 

Equation 5 is solved in order to obtain the Gvω(s) and
Giω(s) transfer functions.

HARDWARE DESIGN 
SPECIFICATIONS

Series resonant inductor (Ls) = 62 µH

Series resonant capacitance (Cs) = 9.4 nF 

Magnetizing inductor (Lm) = 268 µH

Input voltage (Vin) = 400V (DC)

Output filter capacitance (Cf ) = 2000 µF

Output power = 200W

Switching frequency (fs) = 200 kHz

DC Resistance (DCR) of resonant inductor (rs) = 15 mΩ

ESR of output capacitor (rc) = 15 mΩ

Transformer turns ration (n) = 16.667

Equation 1 provides the MATLAB commands to obtain
the Gvω(s) and Giω(s) transfer functions.

EXAMPLE 1: MATLAB® COMMANDS

PLANT TRANSFER FUNCTION

After solving Equation 5, using Example 1 with the
hardware design specifications, Giω(s) and Gvω(s) are
provided in Equation 6 and Equation 7. In resonant
converters, the poles and zeroes are the functions of
the normalized switching frequency (sn = s /0).
Where, s = switching frequency and 0 = resonant
frequency.

Equation 6 and Equation 7 are obtained after
neglecting the poles and zeros above the switching
frequency (s).

EQUATION 6: INDUCTOR CURRENT-TO-SWITCHING FREQUENCY TRANSFER FUNCTION

EQUATION 7: OUTPUT VOLTAGE-TO-SWITCHING FREQUENCY TRANSFER FUNCTION

v̂0 ̂sn

îr ̂sn
C sI A–  1– B D

Gv s 

Gi s 
=+=

sys=ss(A,B,C,D); % arranges the A,B,C,D          
matrices into a state-space model
H=tf(sys); % Plant transfer functions

Gi s 
1.2573 s

1174------------ 1+ 
 

s
2

1.107 106 
2----------------------------------- 2.76 105 s

1.107 106
---------------------------- 1+ +

 
 
  s

2

2.99 104 2
-------------------------------- 973.6s

2.99 104
------------------------- 1+ +

 
 
 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

The General Form of Gi(s):

Gi s 

Gco 1 s
esr
----------+ 

 

s
2

p1
2--------- s

Q1 p1 
------------------------- 1+ +

 
 
  s

2

2
p2

----------- s
Q2 p2 

------------------------- 1+ +
 
 
 



--------------------------------------------------------------------------------------------------------------------------=

Gv s 

5.56 s

3.314 104


----------------------------- 1+
 
 
 

 s

8.262 105


----------------------------- 1–
 
 
 



s
2

1.107 106 
2----------------------------------- 2.76 105

s

1.107 106
---------------------------- 1+ +

 
 
  s

2

2.99 104 
2-------------------------------- 973.6s

2.99 104
------------------------- 1+ +

 
 
 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Digital Compensator Design for 
ACMC-LLC Resonant Converter

The ACMC-LLC resonant converter control system is
comprised of two loops: an inner current loop and an
outer voltage loop, as illustrated in Figure 3. The inner
current loop directly controls the inductor current. The
output of the inner current loop defines the frequency of
the PWM module to drive the half-bridge MOSFETs.
The outer voltage loop controls the output voltage by
generating the current reference for the inner current
loop. To ensure stable operation of the multi-loop
converter, all the sequential loops in the circuit should
be stable with a sufficient degree of stability.

The digital compensator is designed for the plant
transfer functions, as obtained in Equation 6. For stable
operation of a multi-loop control system, the inner
current loop must be faster than the outer voltage loop.

In order to achieve a higher bandwidth for the inner
current loop, and satisfy the gain margin and phase mar-
gin stability requirements, a digital 2-Pole 2-Zero (2P2Z)
compensator has been chosen. A digital PI compensator
has been chosen for the outer voltage loop.

The digital compensators have been derived using the
design by emulation or digital redesign approach. In
this approach, the compensator is designed in the
continuous time domain and then converted to discrete
time domain using the Bilinear or Tustin transformation.

FIGURE 3: CONTROL LOOP BLOCK DIAGRAM OF ACMC-LLC RESONANT CONVERTER 

Inner Current Loop

The inner current loop compensator is designed to con-
trol the frequency to inductor current transfer function
of the converter (Giω(s)). The inner current loop (Vc[n])
directly controls the inductor current.

The output of the inner current loop defines the
frequency of the PWM module output to drive the half-
bridge MOSFETs. The frequency response of
Equation 6 is illustrated in Figure 4.

FIGURE 4: FREQUENCY RESPONSE OF INDUCTOR CURRENT-TO-SWITCHING FREQUENCY 
TRANSFER FUNCTION
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The control block diagram for the inner current loop,
including the low-pass filter (Gfc), computation and dig-
ital delay (Gdelay), digital 2-Pole 2-Zero (2P2Z) (Gci)
compensator and PWM (GPWM) is illustrated in Figure 5. 

FIGURE 5: CONTROL BLOCK DIAGRAM OF INNER CURRENT LOOP

A first order low-pass filter (Gfc) is provided to filter the
resonant tank current using a current transformer or
any other current sensing network. The low-pass filter
transfer function is provided in Equation 8.

EQUATION 8: CURRENT SENSOR 
NETWORK LOW-PASS 
FILTER TRANSFER 
FUNCTION

The inductor current to switching frequency plant trans-
fer function, provided in Equation 6, consists of a zero
due to the ESR (esr) of the output filter capacitor and
a pair of dominant complex poles. To compensate the
increased gain at high frequency, and thereby increas-
ing the ripple effect due to ESR zero, a pole (ωp) is
included in the compensator. In order to minimize the
steady-state error, an integrator (Kci ) is added to the
compensator.

To compensate for reduction in system damping, and
hence, increased overshoots, increased settling time
due to the effect of the complex dominant poles, two
zeros (s+α+jβ) and (s+α-jβ) are added.

Effectively, the inner current loop control system will
have a 2-Pole 2-Zero (2P2Z) compensator in the
continuous domain, as provided in Equation 9.

EQUATION 9: 2P2Z COMPENSATOR 
(Gci(s)) IN CONTINUOUS 
TIME DOMAIN

The compensator pole, ωp (2πfp), is placed at ωesr (1.17k
radians/second) to cancel the ESR zero. A pair of
complex zeros is included in the compensator transfer
function at locations, s1 = -487+j29.9k (–α+jβ) and
s2 = -487-j29.9k (-α-jβ), having a corner frequency (ωz).
ωz is chosen slightly below or equal to the corner
frequency of the dominant resonant poles (ωp1) (29.9k
radians/second) to provide the necessary phase lead. Kci
represents the integrator gain of the compensator and is
adjusted to achieve the desired crossover frequency of
the converter. In this analysis, computation and digital
delay, and PWM gain, are assumed to be unity.

The desired crossover frequency is fci in Hz and
ωci = j2πfci in radians/second. At crossover frequency,
the loop gain of the system should be 0 dB or one in
linear scale. The inner current loop compensator gain
calculation is provided in Equation 10.

EQUATION 10: INNER CURRENT LOOP 
COMPENSATOR GAIN 
CALCULATION

I ref [n]

Ir [n]

–

+ Vc[n] F(t)

Current Sensor + ADC

Gdelay GPWM

Gfc

i r(t)GiGcid

Where:

Gfc s  1
RfcCfc s 1+ 

--------------------------------=

Rfc 10=

Cfc 10 F=

Gci s 

Kci
s

2

2 z
-------- s

Qc z
------------------- 1+ +

 
 
 



s s
p
------ 1+ 
 

---------------------------------------------------------------=

Kci

z
2-------

 
 
 

s  j+ +  s a j–+ 

s s
p
------ 1+ 
 

-----------------------------------------------------------------------------------=

Gi s 
s ci=

Gci s 
s ci=

 1=

Kci
1

Gi s 
s ci=

Gci s 
s ci=


----------------------------------------------------------------------=

The Required Gain of the Compensator is:
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It is to be noted that in Equation 10, the magnitude of
Gci(s) is calculated by excluding Kci . The resulting
compensator for achieving a crossover frequency of
5000 Hz is provided in Equation 11.

EQUATION 11: INNER CURRENT LOOP 
COMPENSATOR TRANSFER 
FUNCTION (Gci(s))

The inner current loop gain is the product of gains
around the forward path and feedback path of the loop,
as provided in Equation 12. Equation 12 shows how
the addition of a feedback loop modifies the transfer
functions and performance of the inner current loop.

EQUATION 12: INNER CURRENT LOOP GAIN

Frequency response of the inner current loop gain in
Equation 12 is illustrated in Figure 6, and it is observed
that the crossover frequency is ~5 kHz.

FIGURE 6: FREQUENCY RESPONSE PLOT OF LOOP GAIN (INNER CURRENT LOOP)

Gci s 
0.032753 s

2 973.6s 2.99 104 
2

+ + 
s s 1174+ 

----------------------------------------------------------------------------------------------------=

Inner Current Loop Gain Gfc s  Gci s  Gdelay s  GPWM s  Gi s =

Where:

Gdelay(s) = Transfer Functions of Transportation Delay

Gci
(s) = Transfer Function of the Inner Current Loop  Compensator

Gfc
(s) = Current Sensor Network Low-Pass Filter

GPWM
(s) = PWM Module Gain
DS01495A-page 10  2013 Microchip Technology Inc.
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The continuous domain 2-Pole 2-Zero (2P2Z)
compensator in Equation 11 is converted to z-domain
using the Tustin or Bilinear transformation, where
s = 2/Ts [(z-1)/(z+1)] with a sampling frequency of
50 kHz. The z-domain compensator transfer function
(Gcid (z)) is provided in Equation 13.

EQUATION 13: INNER CURRENT LOOP 
COMPENSATOR TRANSFER 
FUNCTION IN DISCRETE 
DOMAIN (Gcid(z))

Outer Voltage Loop

The outer voltage loop controls the output voltage (Vo )
by generating a current reference (Iref (n)) for the inner
current loop. To ensure stable operation of the multi-
loop converter, all the sequential loops (inner current
loop in this application) in the circuit should be stable
with sufficient stability. The outer voltage loop control
system block diagram is illustrated in Figure 7.

FIGURE 7: CONTROL SYSTEM BLOCK DIAGRAM OF OUTER VOLTAGE LOOP 

From Figure 7, it is clear that the closed loop transfer
function of inner current loop is necessary to obtain the
frequency response of the outer voltage loop. The
closed loop transfer function of inner current loop (GiCL )
is provided in Equation 14 and this includes the transfer
function of the forward path and feedback path.

EQUATION 14: CLOSED LOOP TRANSFER 
FUNCTION OF INNER 
CURRENT LOOP (GiCL(s))

For the outer voltage loop, the plant transfer function
will be the inductor current-to-output voltage transfer
function (Gvi(s)), as provided in Equation 15.

EQUATION 15: INDUCTOR CURRENT-TO-
OUTPUT VOLTAGE 
TRANSFER FUNCTION (Gvi(s))

A first order low-pass filter has been used for filtering
high-frequency noise from the output voltage
measurement. This filter transfer function is provided in
Equation 16.

EQUATION 16: LOW-PASS FILTER 
TRANSFER FUNCTION (Gfv(s))

Gcid z  0.03558z
2 0.05895z– 0.03495+

z
2 1.976z– 0.9767+

------------------------------------------------------------------------------=

Gfv

Gvi
V0(t)

Ir [n]

–

Gcid+

Current Sensor

GPWM Gi

Gfc

i r(t)Gdelay Gdelay

–
+

Vm[n]

Vref[n] Vc[n] F(t)I ref [n]

Outer Voltage Loop Inner Current Loop

Gcvd

G iCL s 
ir s 

iref s 
---------------=

Gci s  Gdelay s  GPWM s  Gi s 
1 Gfc s  Gci s  Gdelay s  GPWM s  Gi s +
----------------------------------------------------------------------------------------------------------------------------------=

Gvi s 
Gv s 
Gi s 
-----------------=

1.9067 10 7–
s 8.26 105–  s 3.314+ 107 

s 1174+ 
-------------------------------------------------------------------------------------------------------------------------------=

Gfv s  1
RfvCfv s 1+ 

--------------------------------=

Where:

Rfv 1153=

Cfv 2200 pF=
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AN1495
The outer voltage loop gain is the product of gains
around the forward path and feedback path of the loop
are provided in Equation 17, and this includes the
closed loop transfer function of the inner current loop.

EQUATION 17: OPEN-LOOP GAIN OF OUTER 
VOLTAGE LOOP (Gvl(s))

Open-loop gain of the outer voltage loop frequency
response is illustrated in Figure 8.

FIGURE 8: FREQUENCY RESPONSE OF OPEN-LOOP GAIN OF OUTER VOLTAGE LOOP

The voltage PI compensator theoretically produces
infinite gain at DC. As a result, a zero steady-state volt-
age error can be achieved. The proportional gain is
tuned to achieve the desired crossover frequency.

The current compensator nullifies the effect of the com-
plex dominant poles (p1), thereby simplifying the
design of the outer voltage loop compensator (Gcv).

The general form of a PI compensator in continuous
domain is given in Equation 18.

EQUATION 18: OUTER VOLTAGE LOOP PI 
COMPENSATOR (Gcv(s)) 
TRANSFER FUNCTION

Gvl s  Gdelay s  GiCL s  Gvi s =

Open-Loop Gain of the Outer Voltage Loop:

Gcv s  Kp

Ki

s
-----+

Kcv s v+ 
s

-----------------------------= =

Where:

Kp = Proportional Gain

Ki = Integral Gain

Kcv = Gain of Pl Compensator

v = Magnitude of Pl Compensator Zero in 
Radians/Second
DS01495A-page 12  2013 Microchip Technology Inc.
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The desired crossover frequency is fcv in Hz and
ωcv = j2πfcv in radians/second. At crossover frequency,
the loop gain of the system should be 0 dB or one in
linear scale, as provided in Equation 19. The
magnitude of Gcv(s) is calculated by excluding Kcv.

EQUATION 19: COMPENSATOR GAIN 
CALCULATION

The PI compensator zero (ωv) is placed at
25000 radians/second to obtain the required phase at
a crossover frequency of 3000 Hz, as provided in
Equation 20.

EQUATION 20: COMPENSATOR TRANSFER 
FUNCTION (Gcv(s))

The compensated converter loop gain (Gvs(s))  transfer
function is provided in Equation 21.

EQUATION 21: CONVERTER LOOP GAIN 
(Gvs(s))

The frequency response is illustrated in Figure 9.

FIGURE 9: CONVERTER LOOP GAIN

The Required Gain of the Compensator is:

Kcv
1

Gvl s 
s ci=

Gcv s 
s cv=


----------------------------------------------------------------------=

Gvl s 
s cv=

Gcv s 
s cv=

 1=

Gcv s  7.3 s 25000+ 
s

------------------------------------ 7.3s 1.82 105+
s

-----------------------------------------==

Gvs s  Gfv s  Gcv s  Gdelay s  Gi CL s  Gvi s =

Converter Loop Gain:
 2013 Microchip Technology Inc. DS01495A-page 13
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Simulation results in Figure 9 indicate that the
crossover frequency of the converter is at 3 kHz.

Figure 10 illustrates the measured loop gain obtained
from the network analyzer. The measured crossover
frequency of the converter is very close to 3 kHz,
thereby confirming the model prediction.

FIGURE 10: MEASURED LOOP GAIN OF THE CONVERTER
DS01495A-page 14  2013 Microchip Technology Inc.
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CONCLUSION

Average Current Mode Controlled (ACMC) Pulse
Frequency Modulated (PFM) LLC resonant converter
plant transfer function is derived by employing Extended
Describing Functions (EDF). The ACMC-LLC resonant
converter has superior noise immunity, and provides
good dynamic response and current sharing
requirements of parallel connected converters. A multi-
loop digital compensator is designed to meet the
specifications of phase margin, gain margin and
bandwidth for the converter. The hardware results or
waveforms are in conformity to the developed analytical
model and also meet the target specifications.
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LIST OF PARAMETERS

TABLE 1: LIST OF PARAMETERS AND 
DESCRIPTION

Parameter Description

Vref Reference output voltage

Gcv Transfer function of voltage loop 
compensator

Gdelay Transfer functions of transportation 
delay

Iref Reference current

Gci Transfer function of the current loop 
compensator

Gvω Transfer function between output 
voltage and switching frequency

Giω Transfer functions between inductor 
current and switching frequency

Gfv Voltage measurement low-pass filter

Gfc Current measurement low-pass filter

Gvl Transfer function between output 
voltage and inductor current

Kp Proportional gain of PI compensator

Ki Integral gain of PI compensator

Kcv Gain of outer voltage loop PI 
compensator

Kci Gain of 2P2Z compensator

ir Resonant inductor current

ωs Switching frequency

V0 Output voltage

KA/D Gain of ADC measurement

TF Transfer function
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