MicrocHir ASF4 APl Reference Manual
ASF4 API Reference Manual

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 1

ASF4 API Reference Manual

Table of Contents

1. Advanced Software Framework Version 4 (ASF4) Introduction and Context 8
P O 1Y oo (0T i (o g T (o3] SR ERR R 8
1.2. ASF4: Atmel START, Software Content and IDES.............oooiviiiiiiiiieeeeeeeeeeeee e 9
1.3. Quick Start and WOrkfloW OVEIVIEWcoiiiiiiiiiieiiiie ettt 11
1.4. Documentation RESOUICES...........uuiiiiiiiiei ettt e e e e e e e e e neeeeeas 12
1.5, ASFV4 vS ASFV3 BeNChMArK.......ooiiii e e 14
2. Software ArChiteCIUIE.ccooiiiieeee e 16
2.1. Peripheral Driver - Architecture OVEIVIEW...........c..ooiiiiiiiiiiiiieeee e 16
2.2. Driver Use-cases, Types, and Variants. ... 18
2.3, ASF4 Project FOIAEr SrUCIUIE.........ccoiiiiiiiiii ittt 21
2.4. Hardware Abstraction Layer (HAL).......c.cooiiiiiii ittt e e e e e ea e e 28
D2 T 1@ I Y= (Yo o RS S 30
2.6. Hardware Proxy Layer (HPL)..........eoiii ettt ettt e et e e e e e e e e e e annees 32
2.7. Hardware Register Interface (HRI).........oouiiiiiiii s 34
D T S @ S TS U] o] o] o SO PTSPRPPPPRNE 37
2.9. ASF4 Project Folder Structure - FUll.............oooiiiioii e 39
3. Driver Implementation and Design Conventions.............ooocuiiiiiiiiiiniiiieeee e 42
R Tt IR | 011 (oo [¥ Tox o] o PRSP 42
3.2. ASF4 and Atmel START Configuration............c.coeeiiieiiieeeiiieeeriee e e e e e e 42
3.3, Driver Implementation...........coooi i ——————————————————aaaaaaaaaan 43
3.4, DeSIgN CONVENTIONS.eiiiiitiii ittt e bt e et e sbr e e sbb e e et e e nne e e e neneeeas 45
3.5. Toolchain and Device-SpecCific SUPPOIT.........oouiiiiiiiiiiie e 49
3.6. Embedded Software Coding StYlE.........cooiiiiiiiieie s 50
A, AC DIIVELS ..o 62
4.1. AC Basics and Best PractiCe..........ccoiiiiuiiiiiiiiiiiiee et e e e 62
4.2, AC ASYNCIIONOUS DIVET......cciiiiiiiiiiieiiiie ettt et ettt e e et e e st eese e e eneeeesneeeeanbeeennee 62
4.3, AC SYNCIIONOUS DIIVET.....coiiiiiieiiiii et e e ee e e st e st e e st e e e ante e e smneeeeneeeeanseeeannees 67
T NI T O I 4 Y= TP 72
5.1. ADC Basics and Best PractiCe.............oiiiiiiiiiiiiee e 72
5.2 ADC ASYNCIhIONOUS DIVET.......oiiitiiieiiiieeeiie et e et e et s e e e st e e e aee e seneeeeenseeeeneeeenneeas 73
LT T L\ T 1V 1N I T Y= RSP 86
5.4, ADC RTOS DIVutiieiiie ettt e ettt e ettt e et e e et e e e ettt e e st e e e saeesasseeessbeeesasseesanseeesnbeeessseeennnes 96
5.5. ADC SYNChIONOUS DIVE......coiiiiiiiiiiie ittt sttt e st e s e e s b e e eneeeennneas 108
6. ANAlOg GlUE FUNCLON.........iiiiiiiiiiiiieeeeeee ettt eeeeeeeees 117
6.1. Summary of the API's Functional Features.............cocoeiiiiiiiiiiii e 117
6.2. Summary of Configuration OPLIONS.........c.eiiiiiiiiiiie e 117
6.3. Driver Implementation DeSCriPtiON..........ooiiiiiiiecccceeeee e e 17
6.4. EXAMPIE Of USAGE. ... ittt ettt et e e et e e e e e e e e e anneeeas 117
(SRS T B T=T o =T g o (=T g Tor =T PP OU PP OTPPPPRRO 117

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 2

ASF4 API Reference Manual

B.6. FUNCHONS. ...ttt ettt e e e ettt e e e e e et e e e e e e ante et aeeeeanneeeeaeeaannreeeaaann 118
T AUAIO DIFIVET ... et et e e e e e e e e et e e e e eaeeeees 119
7.1, Audio Basics and Best PracCliCe.ccooiiuiiiiiiiiiiie e 119
A U Lo [T T 1Y N B 1Y S URRR 119
8. CAN DIIVEI .ttt et e e e e e e e et e e e e e e e e e e eaa e e eeaaaeeeenes 127
8.1. CAN Basics and Best PractiCe...........ccueiiiiiiiiiii e 127
8.2. CAN ASYNCIIONOUS DIIVET......oiii ettt e et e e e e et e e e e e e nneeeaaeeaanneneeaaean 127
S T O 2 G2 B ¢ V=T PP PS PRSPPIt 135
9.1. CRC Basics and Best PractiCe...........oiiiuiiiiiiie it 135
9.2, CRC SYNCAIONOUS DIFIVEN........eiiiiiiiiie ettt e e e et e e e e et e e e e e aneeeeaaeaan 135
10. Calendar DIIVEIS.oouiiieii ettt e e e e e e e e e e e et eeeeaeeeeesnaas 140
10.1. Calendar Basics and Best PractiCe.ccoiuiiiiiiiiiiiie et 140
10.2. Calendar Bar€-bone DIVET.........ccoouiiiiiieiiee ettt e et e e e tee e e e e e sneeeean 140
10.3. Calendar RTOS DIIVET........coi ittt e et a e e e e see e e e e e e ansbeeeaaeannaneaaeeanneeas 147
(B OF= 10 1= T = T B 4 1Y PSP RRR RPN 154
11.1. Camera Basics and Best PractiCe..........cououii it 154
11.2. Camera ASYNCAIONOUS DIiVE..........uiiiiiiiee ettt e e e e et e e e e e neeeeaaeeas 154
12. Cryptography (AES) DIIVE.......cooiiiiiieieeee e 159
12.1. AES Basics and Best PractiCe..........couiuiiiiiiieiieeie ettt 159
12.2. AES SYNCIIONOUS DIIVET......eoiii ettt e ettt e e e et e e e e e e e e e e e e snbeeeaaeaannns 159
T3, DAC DIIVEIS. ..ot e e e e e ettt e e e e e e e e e e ee bt e e e aaaeeeeeaeas 177
13.1. DAC Basics and Best PractiCe...........cueiiuiiiiiiiiiiie et e 177
13.2. DAC ASYNCHIONOUS DIIVET ... eiieiiiieeiie ettt ettt e st e st e e s enee e e sneeeeanteeeenneeeeaneeeenn 177
13.3. DAC RTOS DIIVET....eieiiiii et e et et ee st e et e e et e e st e e e saeeeesnseeeanseeeeanseeesnseeeasaeeeanseeeannenns 183
13.4. DAC SYNCAIrONOUS DIFIVET........eiiiiiiiiiiiie ettt e e naee 188
L 1= = YA D =Y 192
14.1. Summary of the API's Functional Features.............coooiiiiii e 192
14.2. Summary of Configuration OPIONS.........cccuiiiiiiii e 192
14.3. Driver Implementation DeSCHPLON.ccciuiiiiie e e e e e sneae e e eas 192
14.4. EXAMPIE Of USAGE. .. .eiiiuiiieiiiie ettt ettt e st e e et e e e ente e e s e e e snteeeanneeeennes 192
B T B L= o 1T oo [T o Tor =TT PRSP 192
L3 T U g [ox 1] 1T SRR PRSP 192
LRSI B o r= 1R €] (U= oo | o3P 195
15.1. Summary of the API's Functional Features............cccooiiiiii i 195
15.2. Summary of Configuration OPtIONS........ccccuiiiiiiiiii e 195
15.3. Driver Implementation DESCHPLON.coiiiiiiiieeiiiie ettt e e sibee e 195
15.4. EXAMPIE Of USAGE. .. .iiiuiiieiiiie ittt e et e et e e st e e e et e e e enneeeennes 195
B TR TR B =Y o 1Y oo [T o Tor =P 195
15,6, FUNCHONS. ...ttt e e ettt e e e e ettt e e e e e e nnseeeaeeeannteeeaeeaannneeaaaean 196

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 3

ASF4 API Reference Manual

16. Ethernet MAC DIIVET... ... ettt e e e e e e e e e e e 197
16.1. Ethernet ASYNChroNOUS DIFIVET..........ooiiiiiiiiiii ettt 197
17. EVENE SYSIEM DIIVE...ccoiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee ettt 205
17.1. Event System Basics and Best PractiCe............oooo i 205
17.2. Summary of the API's Functional Features.............coceiiiiiiiiiiiiine e 205
17.3. Summary of Configuration OPiONS.........cccuiiiiiiiiiiie e e 205
17.4. Driver Implementation DeSCriPtioN.........ccoiiiii i i 206
17.5. EXAMPIE Of USAQE....coii ittt e e e e et e e e e e eeeeeannee 206
T7.6. DEPENAENCIES. ... tiieiiiie ettt ettt st e et e e e st e e s et e et e e s enr e e e nareee s 206
L R 11 o1 oo = PSPPSR 206
18. EXternal BUS DIFIVENo e 209
18.1. Summary of the API's Functional Features.............cocviiiiiiiiiii e 209
18.2. Summary of Configuration OPIONS........coocuiiiiiiii e 209
18.3. EXAMPIE Of USAQE.....cii oottt e e e et e e e s et e e e e e e sanraeeeeeaanes 209
B TR S I =Y o Y=Y o 1= o Tor =T PR 210
RS IR T b= T | B B 1= P 211
19.1. External IRQ Basics and Best PractiCe.coociiiiieiiiiiieeie e 211
19.2. Summary of the API's Functional Features..............oociiiiiiriiiieeee e 211
19.3. Summary of Configuration OPIONS.........co i e 21
19.4. EXAMPIE OF USAGE.....ciiiiiiiiiiie ettt ettt 21
LS TR T B 1T o 1= T g o =1 o Tor L= S PSPPI 212
RS G 1Y/ o =T 1= £ PSS 212
RS I ¥ g (o3 1T o 1T PSRRI 212
20. FIASN DIIVEN ... 215
20.1. Summary of the API's Functional Features............ccooceiiiiiriniii e 215
20.2. Summary of Configuration OPtiONS...........ueiiiiiii e 215
20.3. Driver Implementation DeSCriptioN..........cciiiiiiiiiiii e 215
20.4. EXAMPIE OFf USAGE....cciuueiiiiiiieiiii ettt ettt ettt et sb e e na e e e e e sneee s 215
b2 0 IR T B 1= o T= T To 1= o o 1= SRS 216
20,8, SHUCES. ..ttt e et e e e e et et e e e e e e nbe et e e e e e aaeeeeeeeaneeeeeeeaanreeeaaeaanna 216
b =131 o T OO PSP PP UPR T PPPRO 216
DO T Y/ o T To [£ PSPPSRI 216
20.9. FUNCHONS. ..ttt ettt e e ettt e e e e ettt e e e s b et e e e e e e aante e e e e e e nnreeeeaean 217
21. FrequenCy Meter DIIVEIS. e 223
21.1. Frequency Meter Basics and Best PractiCe............ccccooiiiiiiiiiiiici e 223
21.2. Frequency Meter ASYNChronOUS DIiVEN..........cooiiiiiiiiieeeee et 223
21.3. Frequency Meter SyNnchronOUS DIiVET............coiiiiiiiee et 229
22. GraphiC LCD DIiVEI ... 234
22.1. Summary of the API's Functional FEatures..............ccocuuiiiiiiiiiiiiie e 234
22.2. Summary of Configuration OPIONS.........cciiiiiiiiiie e 234
22.3. Driver Implementation DeSCriplioN..........cooiiiiiiii e 234

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 4

ASF4 API Reference Manual

22,4, EXAMPIE Of USAGE.. ..o ittt ettt 234
P T B 1= o =T g o (=Y o Tor o TSP 235
4 T I 1= 1 =Y SR 235
7 R V4T o] R 235
23. Graphics Processing Unit Driver(2D)........coooiiiiiiiiiiiieiieeeeee e 240
23.1. Summary of the API's Functional Features..............ccocuuviiiiiiiiiiiee e 240
23.2. Summary of Configuration OPtIONS.cciiiiiiiiiie e 240
23.3. Driver Implementation DeSCriptioN..........cciiiiiiiiiiiii e s 240
23.4. EXAMPIE Of USAGE.....ccueiiiiiiiiitit ettt ettt 240
PG TR T B 1= o 1= To [=T o Lo = PP PRPRPRN 241
D2 T I T Y SR 241
23.7. FUNCHONS. ..ottt 241
24, Hash AIGOrithm DIIVET..........eeiiiiiiiiie e 246
24.1. SHA SYNCHIONOUS DIIVET.....cciiiiiiiiiee ettt et e et e e s nee e e snee e e eneeeeeneeeeeneeeean 246
D24 T (=Y =T I A=Y 253
25,1, ATOMIC DIIVET....eeiiii ittt e e ettt e e e e et e e e e e s sataeeee e s e sbaeeeeeaassseeaaeeannsaeeeeeean 253
DA T 1@ N B Ly Y SRS 254
P4 T [o114 1Y PP ERP S 256
25,4, RESEE DIIVETttt ettt e oottt e e e e ettt e e e e e s neaeee e e e e s taeeeae e e nnneeeaeeaannneeean 256
P T TS 11=T=T o B4 = PRSP RPR 257
B 1 O I 1YY SRR 259
26.1. 12C Basics and Best PracCliCe.cooo it 259
26.2. 12C Master ASYNCHIONOUS DIFIVET...........oiiiiiiiiiiie ettt e e e e e e e e e e sneeeeeas 259
P T VO Y = 1) (=T S O I I 4 = OSSR 269
26.4. 12C Master SYNChroNOUS DIIVET..........ooiiiiieiiee et e e e e enneas 277
26.5. 12C Slave ASYNChrONOUS DIiVET..........uuiiiiieiiiiee ettt e et a e e e e e e e e neeeeeas 284
26.6. 12C Slave SYNCHIONOUS DIIVET.........coiiiiiiiiiiee et e ettt e e et e e e s et ee e e e s nsreeeaeeenees 292
27 . 12S CONIIOIEE DIIVET....cce ettt e e e e e e e eeeeas 297
27.1. 128 Controller SYNChroNOUS DIIVET.........coiuuiiiiie et e e e e e eeaeee e 297
28, IMCI DIIVEIS. ...ttt e e et e e e e e e e e e et e e e e aeeeeeaans 301
24 T T |V (O I 1S T Y S 301
28.2. MCI SYNCNIONOUS DIIVET.......oiiiiiiieiii et ettt e e e e et e e e e e nnee e e e e e s nneeeaeeeannes 310
29, PAC DIIVET ...ttt et e e e e e e e ettt e e e e e e e e e e st e aeaaaeeeeeraraaans 318
29.1. Summary of the API's Functional Features..............ccocuuiiiiiiiiiiiiee e 318
29.2. Summary of Configuration OPtIONS.........c.ciiiiiiiiii e 318
29.3. Driver Implementation DeSCriptioN..........c.ciiiiiiiiiiii e 318
29.4. EXAMPIE OFf USAGE... .o iueiiiiiiieiii ettt ettt bttt 318
P2 IR T B 1= o 1= To 1= o Lo = PSP PEPRPR N 318
P24 B G T U | o3 o] o =PSRRI 319
0. PWWM DIV ..ttt e ettt e e e e e e e e e e ettt eeeaeeeseestaan e aeaaeaeeens 321

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 5

ASF4 API Reference Manual

30.1. PWM Basics and Best PractiCe...........ccoiuiiiiiiii it 321
30.2. PWM ASYNCHRIONOUS DFIVET........uiiiiiiiiiiiiee ettt ettt 321
N I oY1 (ot L= ot oo [=T gl I L= 326
31.1. PDEC Basics and Best PractiCe...........couuiiiiiiiiiiiiie et 326
31.2. PDEC ASYNCAIONOUS DIIVET......coiiiiiiiiiiiitit ettt e e 326
32. QUAA SPI DFIVEIS....ceiiiiiiiiieie ettt e e e e e et e e e e e e e s s nnn e eeeeaeeaanas 333
32.1. Quad SPI Basics and Best PractiCe...........ccuueiiiiiiiiiiii e 333
32.2. QUAA SPIDIMA DIVET ...ttt ettt ettt ettt sae et e st e et e e e s e sabeesteeembeesbeeenseesaeeebeeeneeenees 333
32.3. Quad SPI SYNChroNOUS DIIVET........cuiiiiiieeiiiie ettt et e e e snnees 337
33 RAND DIV . 342
33.1. RAND SyNChIroONOUS DIVcoiiiiiiiiiiic ettt 342
B4, SPIDFIVEIS...ccoiiiieieeeeeee e 347
34.1. SPIBasics and Best PractiCe.........ccouiiiiiiiiiiee et 347
34.2. SPI Master ASYNChronOUS DIIVET.........cocuiiiiiiiiiiieie ittt 347
34.3. SPIMaSTEr DIMA DIIVETciiiiiiiiiiii ettt ettt ettt e s e e st e s bn e e e aabeeenaee 357
34.4. SPIMaSIEr RTOS DIVuuiiiiiiiieeiie ettt ettt ettt et e e st e e st e e st e e et e e eaneeeennnes 365
34.5. SPI Master SYNChronOUS DIVET............ciiiiiieiiiie et ee et e e e e s e e e e eneeeeenes 372
34.6. SPI Slave ASYNChroNOUS DIFIVET.........cciiiiiiiiiiiiiiec e 379
34.7. SPI Slave SyNChronNOUS DIIVET........cciiiiiiiiiieiiiie ettt e e naes 388
35. SegMENT LCD DIVEIS......uuuuiiiiiiiiiiiiiiiiiiiiitiieieisssessssessesssessssessssssssseeeseeeereeeereeeeeeeees 395
35.1. Segment LCD SyNChronOUS DIiVETooiiiiiiiiiii et e e e e e e e 395
36. Temperature SENSOr DIIVEIS.uuuuuuuiiiiiieiiiiiiieieieeeeeeeeeeeeeeeeeeeeereeeeeeeereeeeeeeeeeeeeeees 402
36.1. Temperature Sensor ASYNChronOUS DIVET..........cc.uiiiiiiiiiiieeeiie e 402
36.2. Temperature Sensor SYNChroNOUS DIiVET............oiiiiiiiiiiiie e 407
AN 0 1= G I Y= 411
37.1. Timer Basics and Best PractiCe...........oouuiiiiiiiiiii e 411
37.2. Summary of the API's Functional FEatures............ooueviiireioie e 411
37.3. Summary of Configuration OPLIONS.ooiiiiiiiii s 411
37.4. Driver Implementation DeSCriptioN............oiiiiiiiii e 411
37.5. EXAMPIE Of USAGE.......uuiiiiiiiiiiiiii ettt e e et e e e e st e e e e s e e e e e e e snnbeeeaeesnsbaeeaeaan 412
AL T B 1= o =T g o 1= g o7 1Y OSSN 412
B A RS 1 ¥ o1 TSR OUPRRRN 412
B A S O = 01U o SRR OPRRRN 413
B A T 1Y/ oT=To 1= £ TSP SPRPRPPNS 413
O A O TR ¥ T (o PP USPPY 413
38. USART DIIVEIS. ..o iieiiietieee ettt 418
38.1. USART Basics and Best PractiCe...........cuuiiiiiiiiiiiceiee e 418
38.2. USART ASYNCIIONOUS DIVET......ccoiiiieiiiieeiiee ettt et s e e snee e e e e e eneeeesnneeas 418
38.3. USART DIMA DIV ... ittt ettt ettt ettt et et e ebe e bt esae e st e e saeeenbeesebeeneesineens 429
38.4. USART RTOS DIiVET. ... uiiiuiieiie ittt stee st stee ettt et saee e beesaeeenbeesseeenbeesnbeesaeesaneesseeenneenees 437

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 6

ASF4 API Reference Manual

38.5. USART SYNCNIONOUS DIIVET......cciiiiiiiiiiieiiiei ittt e e 446
39, USB DIIVEIS...c e 455
39.1. USB Driver Basics and Best PractiCe............cocuviiiiiiiiiiiiicieeceest e 455
39.2. USB DEVICE DIIVET......eiiiiiie ittt ettt ettt e et e e s aane e e sneeeesareeenaee 455
39.3. USB HOSE DIIVET ...ttt be e et e et e e s anne e e aabeeenaes 466
0. ULIlItY DIIVEIS . .. e 479
L0 g T T S USSP 479
40.2. RING BUFFEI ...ttt e bt e e e et 483
L0 IR T U 1171420 1Y, = o2 o1 PP OPPPRP 485
T N I 1= PP 488
41.1. Summary of the API's Functional Features.............ccceiiiiiiiiiiiiii e 488
41.2. Summary of Configuration OPLIONS.........c.eiiiiiiiiiiie e 488
41.3. Driver Implementation DeSCriPtiON.........cooiiiii i e e e e e e raaeeees 488
41.4. EXaMPIE OFf USAGE. ... ittt ettt e e e et e e e e e e et e e e e e e anaeeeas 488
IR T B T=T o =T g o (=T g Lo o PO TP PP PPI 489
ST | F o1 - PR RR 489
g T G U] 1o = O P R ROPP R PPRPURI 489
42. ReViSiON HIStOIY......ooo i 493
The Microchip Web Site...... ... 494
Customer Change Notification ServiCe..............oeiiiiiiiiiiiiiii e 494
101 (o]0 0 1= RS 10T o] oo o VN 494
Microchip Devices Code Protection Feature...........ccoooiiiiiiiiiiiis 494
[I=To = 1IN N o) (o TP POPUPPPPPPR 495
TrAAEMAIKS.coiiiieiieeeieeeeeee e e e e e e e e e e 495
Quality Management System Certified by DNV.........oooiiiiiiiiiieeeeee e 496
Worldwide Sales and SErVICE.........coocuiiiiiiiiiiiiiiie e 497

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 7

1.1

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

Advanced Software Framework Version 4 (ASF4) Introduction and
Context

This chapter starts with an overview of the features and objectives of ASF4. The context in the larger SW/
Tools ecosystem is defined, giving a relation between the ASF4, START, and the IDE. A high-level work-
flow overview is presented and documentation resources are described, to give insight into which
references to use for what.

Introduction to ASF4

ASF4 is a collection of software components such as peripheral drivers, middleware, and software
applications provided by Microchip. The framework supports the Microchip's SAM family of
microcontrollers.

Unlike older versions of the software framework, version 4 is designed to work together with Atmel
START. Atmel START is a web-based user interface, which allows the users to configure code according
to their needs. The configuration is input to START’s code generator, resulting in an optimal code
implementing exactly the functionality configured by the user. The generated C-code is exported from
START and into the user’s development environment of choice for modification and compilation.

The tight integration with Atmel START means that the ASF4 code is more tailored to the users’
specification than before. For instance, instead of using C preprocessor conditional expressions to
enable/disable code blocks, disabled code blocks can be entirely removed from the project source, which
results in cleaner and easier to read code. The integration into Atmel START means that software
configuration is done in a much more user-friendly environment and the only configuration information
loaded on the device is the raw peripheral register content, which makes the firmware image much more
compact. Code generation results in smaller and faster code compared to previous versions of ASF.

ASF4 has many improvements compared to previous ASF versions:

« Common set of software interfaces across different devices
¢« Smaller code size
. Easier to use

Common set of software interfaces across different devices

ASF4 has a set of fully hardware-abstracted interfaces as a part of the core architecture. These interfaces
are use-case driven and supports only a subset of the functionality offered by the hardware. One
hardware module is typically supported by multiple interfaces, and START is used to select which
interfaces to be included in his project.

Providing common interfaces that are completely abstracted from the hardware makes them easier to use
in middleware and software stacks since it is not necessary to add architecture specific code.

Smaller code size

Having START generate the code exactly matching the required configuration reduces the code size
according to drivers in previous versions of ASF. Full featured and generic drivers make it hard for the
driver developer to make optimal decisions for often mutually exclusive design parameters, such as like
high speed, low power, low code size, ease of use, and advanced feature support. Such drivers often
miss the target in many applications because some of the parameters are wrongly tuned for the
application in mind. However, limiting the scope of the driver to a specific use-case, ASF4 drivers are able
to get the balance between these parameters right.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 8

1.2

1.2.1

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

Use-case drivers limit the driver functionality to the functionality required by the user, which usually is a
subset of the full functionality provided by the peripheral. The use-cases can also tailor the driver to work
in a specific environment such as:

» Barebone synchronous, optimized to be used on the "bare metal" (OS less application)
* RTOS asynchronous, optimized to be used with an RTOS

See 1.5 ASFv4 vs ASFv3 Benchmark for more details on improved code efficiency.

Easier to use
ASF4 is easy to use due to:

* Graphical configuration of the system through Atmel START

» Use-case drivers offering only the functionality required by the user's application, reducing the
configuration complexity compared to full-featured generic drivers. ASF4 provides multiple use-
case drivers for each peripheral, each with a specific application target.

ASF4: Atmel START, Software Content and IDEs
This section gives an overview of ASF4 within the larger context of the SAM Tools ecosystem.

Getting Started Topics

@ AVR® & SAM Tools: Intro & Overview

MicrocHIP

In this video:

Context in Microchip Tools Ecosystem ‘

+ IDE, Compiler, MCU & SW configurator tools,
Firmware Libraries

START, Software Content and IDEs

» How these pieces fit together.
» START-based development

» START user manual
» Getting Started projects in START

Atmel Studio 7

» Bare-metal- vs. START-based development
¢ Build from scratch (bare-metal):

» Getting Started Atmel Studio 7

+ Getting Started with AVR Tools

Video: AVR and SAM Tools ecosystem overview

Atmel START

Atmel START is a web-based software configuration tool, for various software frameworks, which helps
you get started with MCU development. Starting from either a new project or an example project, Atmel
START allows you to select and configure software components (from ASF4 and AVR Code), such as
drivers and middleware to tailor your embedded application in a usable and optimized manner. Once an
optimized software configuration is done, you can download the generated code project and open it in the

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 9

http://alexandria.atmel.com/keyword/ATMEL.VSIDE.AVRSTUDIO.GETTINGSTARTED/redirect
https://youtu.be/8HNG8EnAjfw?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

IDE of your choice, including Studio 7, IAR Embedded Workbench®, Keil® pVision®, or simply generate a
makefile.

Atmel START enables you to:

* Get help with selecting an MCU, based on both software and hardware requirements
* Find and develop examples for your board
» Configure drivers, middleware, and example projects
* Get help with setting up a valid PINMUX layout
» Configure system clock settings
Figure 1-1. Relation between START, Software Content, and IDEs

Explore/Select: | e e | START m

Configure Device: j_L

Develop in IDE:

58 'STKEIL
IAREmbedded g 25
= uVision'4

e s s g

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 10

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

1.2.2 Software Content (Drivers and Middlewares)

Advanced Software Framework(ASF)

ASF, the Advanced Software Framework, provides a rich set of proven drivers and code modules
developed by experts to reduce customer design-time. It simplifies the usage of microcontrollers by
providing an abstraction to the hardware through drivers and high-value middlewares. ASF is a free and
open-source code library designed to be used for evaluation, prototyping, design, and production phases.

ASF4, supporting the SAM product line, is the fourth major generation of ASF. ¢ represents a complete
re-design and -implementation of the whole framework, to improve the memory footprint, code
performance, as well as to better integrate with the Atmel START web user interface. ASF4 must be used
in conjunction with Atmel START, which replaces the ASF Wizard of ASF2 and 3.

Microchip.com: ASF Product Page

AVR Code

AVR Code, supporting the AVR product line, is a simple firmware framework for AVR 8-bit MCUs,
equivalent to Foundation Services, which supports 8- and 16-bit PIC MCUs. AVR Code is optimized for
code-size and -speed, as well as simplicity and readability of code. AVR Code is configured by Atmel
START.

1.2.3 Integrated Development Environment (IDE)

An IDE (Integrated Development Environment) is used to develop an application (or further develop an
example application) based on the software components, such as drivers and middlewares, configured in
and exported from Atmel START. Atmel START supports a range of IDEs, including Studio 7, IAR
Embedded Workbench®, Keil® pVision®.

Atmel Studio 7 is the integrated development platform (IDP) for developing and debugging all AVR and
SAM microcontroller applications. The Atmel Studio 7 IDP gives you a seamless and easy-to-use
environment to write, build, and debug your applications written in C/C++ or assembly code. It also
connects seamlessly to the debuggers, programmers, and development kits that support AVR and SAM
devices. The development experience between Atmel START and Studio 7 has been optimized. Iterative
development of START-based projects in Studio 7 is supported through re-configure and merge
functionality.

This Getting Started training for Atmel Studio 7 will guide you through all the major features of the IDE. It
is designed as a video series with accompanying hands-on. Each section starts with a video, which
covers that section.

1.3 Quick Start and Workflow Overview

ASF4 is a software library consisting of peripheral drivers and example applications. The Atmel START
web page (http://start.atmel.com) is used to select which software modules are needed in the user's
application, and to configure these modules according to the user's needs. When using the Export
Project screen, the corresponding generated C-code project can be downloaded to the user's computer
and imported into an IDE of the user’s choice, such as Atmel Studio 7, IAR™ Embedded Workbench, or
Keil puVision. The IDE is used to modify, compile, program, and debug the project.

Installation
ASF4 is configured using the Atmel START web page (http://start.atmel.com), and the configured
application is thereafter downloaded to the user’s computer as a zip-file. ASF4 does not need to install

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 11

http://alexandria.atmel.com/keyword/ATMEL.VSIDE.AVRSTUDIO.GETTINGSTARTED/redirect
http://start.atmel.com
http://start.atmel.com

1.4

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

any components locally. The user will normally want to have an IDE or stand-alone toolchain installed on
their computer, so the user can compile, program, and debug the downloaded code.

Workflow
The workflow is quite straightforward, starting with either the Create New Project screen or the Browse
Existing Examples.

Starting with the Browse Existing Examples screen:

The Atmel START examples were designed to be used as a starting point for development. Efficient
filtering mechanisms are therefore available to help developers find the projects closest to their
requirements, giving them high quality, production ready code that will work "out of the box". However,
these example projects are also easy to modify as the software configuration can be extended by
changing the pinout (PINMUX screen) or adding additional drivers or middlewares (project
DASHBOARD). For example, adding support for an extra timer or even adding a BLE interface. See the
Configuration Screens section of the Atmel START user manual to understand project configuration
options using Atmel START. It is also possible to create or re-configure Atmel START projects, directly
from Atmel Studio 7 (File > New > Atmel Start project).

Starting with the Create New Project screen:

This screen was designed to help select an MCU for your project, based on both software and hardware
requirements.

1. Filter MCUs by requirements before starting a project.

2. Add components to your project, i.e. peripheral drivers and middlewares.

3. Configure each component.

4. Export the project and add it into one of the supported IDEs for further development.

The role of the IDE and Running the Code

Once the user is happy with the software configuration, the project is exported as a zip-file to the
developer’s IDE of choice. See Using Atmel Start Output in External Tools in the Atmel START user
manual for instructions about how to do this, as well as present a list of supported IDEs. ASF4/Atmel
START does not need to install any components on your local computer.

An IDE is used to develop the code required to extend the functionality of the example project into the
final product, as well as compile, program, and debug the downloaded code. A downloaded application is
ready to compile. Refer to your IDE documentation for instructions on compiling the code. The behavior
of the downloaded code is application-dependent:

» Configuring a "New project" generates a main()-function initializing all drivers, but no other
operations

* Configuring an "Example project" generates a main()-function performing more complex operations

Documentation Resources

The major sources of documentation are Getting Started projects, the Atmel START User Manual, as
well as reference manuals for ASF4 and Foundation Services framework content.

Getting Started projects
How to use the different pieces of the system to get them work together, for example, how to use Atmel
START efficiently with an IDE, such as Atmel Studio 7, in order to build your embedded application.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 12

http://start.atmel.com/static/help/index.html?GUID-D337FDDA-039D-4028-850B-8425FC671BAA
http://start.atmel.com/static/help/index.html?GUID-AB6C30C2-90EB-4F75-843D-ED9EC099F76C

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

Getting Started projects have training materials like video series and/or hands-on training manuals, linked
to the project user guides. The example project itself often represents the goal or end-point of the related
hands-on or video training material. Training materials will give you a workflow overview of how the Atmel
START and your IDE work together.

.

Open Browse Examples, click the "Category" drop-down menu, and select the “Getting started”
category

Links to training materials are found in the example project user-guides, which can be accessed
without opening the project

See the Atmel START User Manual

START User Manual

.

What is Atmel START?
Quick Start and Workflow Overview
— Using Getting Started projects, finding/reconfiguring relevant example projects

— Create New Project, selecting an MCU based on both software and hardware project
requirements

How to use the various Atmel START configuration screens:
— Dashboard
— PINMUX
— Event System Configurator
— QTouch® Configurator
How to export projects to various IDEs as:
— Atmel Studio 7
— |AR Embedded Workbench
— Keil pVision
— Makefile
Content overview, software that Atmel START can configure and generate:
— ASF4
— Foundation Services

ASF4 API Reference Manual

.

ASF4 Software Architecture
Driver implementation and Design conventions
API reference

AVR Code API Reference Manual

.

.

Foundation Services Software Architecture
Driver implementation and Design conventions
APl reference

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 13

http://start.atmel.com/#examples

1.5

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

ASFv4 vs ASFv3 Benchmark

ASFv4 vs ASFv3 benchmark comparison.

One of the best ways to show how the changes in ASFv4 have improved the drivers is to show some
benchmark numbers. These benchmarks compare applications are written in ASFv4 code with the same
application written in ASFv3 code. The behavior of these example applications is exactly the same. In all

these examples the default linker script has been used which set aside 8192 bytes of SRAM for a stack.
The stack usage has been removed from the SRAM numbers.

Table 1-1. ASFv4 vs. ASFv3 SPI Master Driver Memory Size Benchmark

Full code Driver code Full code Driver code
ASFv3 4328 2916 184 + STACK 120
ASFv4 2908 1916 208 + STACK 64

Table 1-2. ASFv4 vs. ASFv3 SPI Master Driver Throughput

ASFv3 54078
ASFv4 82987

Compiled in Atmel Studio 7 (7.0.582) with GCC 4.9.3, with default settings except for optimization level -
03 and using the C lib specification nano-lib.

Hardware used is a SAMD21J18A. Both the CPU, buses, and SERCOM module are running at 8 MHz.

The example used for this benchmark initializes the device (clock setup, pin multiplexing, interrupts), set
up a SERCOM instance for SPI Master mode with 1000,000 baud rate, enables it, and writes "Hello
World!" on the SPI bus. "Full code" is the memory usage for the whole application loaded on the device
while "driver code" is the memory usage of the SPI driver-specific code components. Because many
different drivers support the same hardware in ASFv4, a lookup table is used to figure out which interrupt
handler to execute for a given peripheral instance. On Cortex MO+ based devices this table is 112 bytes,
and will not grow with the size of the project, this is the reason for ASFv4 slightly higher total (full code)
SRAM usage in this small example code.

Table 1-3. ASFv4 vs. ASFv3 USART Driver Memory Size Benchmark

Full code Driver code Full code Driver code
ASFv3 4940 3376 168 + STACK 80
ASFv4 2684 1756 232 + STACK 88

Compiled in Atmel Studio 7 (7.0.582) with GCC 4.9.3, and with default settings except for optimization
level -Os, and using the C lib specification nano-lib.

The code was compiled for SAM D21.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 14

ASF4 API Reference Manual

Advanced Software Framework Version 4 (ASF4) ...

The example used for this benchmark initializes the device (clock setup, pin multiplexing, interrupts), set
up a SERCOM instance for USART mode with 9600 baud rate, enables it, and writes "Hello World!" on
the USART bus. "Full code" is the memory usage for the whole application loaded on the device while
"driver code" is the memory usage of the USART driver-specific code components. It's worth noting that
the same 112 bytes interrupt handler lookup table is used in this example, and the USART driver includes
a 16 bytes ring buffer for data reception to make it much less likely to lose data.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 15

21

ASF4 API Reference Manual

Software Architecture

Software Architecture

This chapter documents the architecture and high-level design of ASF4. The ASF4 driver architecture
(describes the ASF4 drivers) is built of three layers; HAL, HPL, and HRI. ASF4 has drivers which are
designed to support Use-Cases, e.g. Timer and PWM drivers are use-cases of a Timer-Counter (TC)
peripheral. Driver Variants are different driver implementation architectures, such the Synchronous-,
Asynchronous-, DMA-, and RTOS-Drivers. Driver Types are; Peripheral-, Utility-, and Middleware-drivers.

The ASF4 project folder structure is described, followed by a walk-through of the system initialization
sequence, which relies largely on Root Level Files in the project. The following sections describe in more
detail elements within the project, namely Examples Folder, Pin Configuration, and a description of
START configuration and the Config Folder.

More details are then given about the implementation of the three driver layers, respectively the
Hardware Abstraction Layer (HAL), the Hardware Proxy Layer (HPL), and the Hardware Register
Interface (HRI). For some of the drivers, there is an 1/0O system on top of the HAL interface, which
disconnects middleware from any driver dependency because the middleware only needs to rely on the
interface that the 1/0 system provides. Mechanisms for RTOS support are described. The
implementations of various driver variants, such as Synchronous-, Asynchronous-, DMA-, and RTOS-
Drivers, are described in the following chapter in Section Driver Implementation.

Peripheral Driver - Architecture Overview

Peripheral driver structure
A driver is designed to support a use-case (of a peripheral). For example, instead of one timer-counter
driver, the ASF4 has drivers for PWM, timer, and input-capture.

Use-case drivers can sometimes support various peripherals, for example, a timer could run on the TC,
TCC, or RTC. These are all peripherals that provide the functionality of the use-case, in this case, a
counter and a compare IRQ. For example: On Microchip's MO+ family, the USART, SPI, and I2C are use-
cases of the SERCOM peripheral.

The ASF4 driver architecture is built up of three layers:

» Hardware Abstraction Layer — HAL
* Hardware Proxy Layer — HPL
* Hardware Register Interface — HRI

Users are intended to interact with the HAL layer, which is hardware agnostic and can be used on a wide
range of devices and platforms. The three layers are largely transparent to the user, though all are
available. Each layer is organized into folders in the project structure, each containing files with API
associated with the respective layer.

HAL folder (Hardware Abstraction Layer)

This folder contains hardware independent/agnostic API, for hardware with the same kind of functionality.
The interface, which most users will use, is in the HAL layer.

Naming convention: HAL functions start with usecase_, for example, adc_dma_driver.

In the hal folder, there are four sub-folders. The include and the src folders contain the definition of
the HAL interfaces and implementation of the hardware agnostic part of the driver. The documentation

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 16

ASF4 API Reference Manual

Software Architecture

folder contains the documentation of each driver as displayed in the Atmel START help text. The utils
folder contains API definitions and implementations of the utility function drivers.

HPL folder (Hardware Proxy Layer)

Hardware-aware functionality is needed by the HAL, is implemented in the hardware-aware HPL level,
keeping the HAL level hardware agnostic. There will be a peripheral configuration file associated with the
HPL layer.

Naming convention: HPL functions start with _usecase_, for example: usart async init ()

The hp1l folder has multiple subfolders - one folder per hardware module supported by ASF4. These
folders contain .h and .c files implementing the HPL layer.

HRI folder (Hardware Register Interface)
HRI level functions are used to configure register bits or bitfields, for example bit set (), bit clr ().

The hri folder has multiple .h-files - one file per hardware module supported by ASF4. These files define
the register interface of hardware modules.

Layers
The drivers are implemented in layers in order to:

1. Provide software interfaces abstracted from the underlying implementation.

2. Make it easier to document the drivers and architecture making it easier for users and developers
to create, use, modify, and debug the code.

3. Multiple layers make it possible to have both stable and unstable APIs. For instance, the top layer
HAL API should be as stable as possible, and only modified when necessary, and these
modifications must be documented. The HPL layer, however, is not meant to be used as
standalone and cannot, in that context, be called a "public" API, which means that the threshold for
modifying this interface shall be much lower. For example, support for a new feature in hardware
can be performed in the HPL and the HAL is kept untouched.

4. Multiple layers make it easier to separate code making up the hardware support from reusable
common code. In ASF4, all hardware support code is in the HPL. The HRI interface describes only
the hardware register interface. The HAL usually needs to be written only once and then reused
with different HPL layers.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 17

ASF4 API Reference Manual

Software Architecture

Figure 2-1. The ASF4 Driver Architecture

Middleware

HAL

Y

Abstract device

Y Y
HPL
\ 4 \ 4
HRI
2.2 Driver Use-cases, Types, and Variants

Driver use-cases The application functionality, which a peripheral can be used for, such as PWM and
Timer for a Timer-Counter (TC) peripheral.

Driver variants Different driver implementation architectures, such the Synchronous-,
Asynchronous-, DMA-, and RTOS-Drivers.

Driver Types Relates to whether a driver supports a peripheral, utility function, or middleware.

2.2.1 Driver Use-cases

Instead of having one generic driver per peripheral, the ASF4 drivers provide interfaces to ways of using
the peripheral. These ways are named "use-cases". A use-case typically implements a subset of the total
functionality provided by the peripheral. This is useful as many of the peripherals on SAM devices, such
as the SERCOM, provide a very broad functionality. This would cause a generic driver providing access
to all the functionality of the module to be very large. Because the use-case limits the scope of
functionality provided to the user, the driver is easier to implement and test and is more optimal than a
generic driver would be. The figure below shows that a SERCOM hardware module can be used to
implement various communication protocols, each protocol (or use-case) being implemented by a specific

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 18

2.2.2

ASF4 API Reference Manual

Software Architecture

ASF4 driver. There is no generic "SERCOM" driver in the ASF4 HAL layer, but instead a specific
"USART" driver, "I2C" driver, "LIN" driver, and so on.

The use-case approach together with the HAL and HPL layers allow the driver to be implemented in
different ways, depending on the available hardware. As an example, a driver that issues a periodic
interrupt can be implemented using for example:

. TC Timer
¢ TCC Timer
« RTC

* Systickin CPU

Atmel START is used to select the hardware instance to be used to implement the driver. This is done
during ASF4 configuration.

Figure 2-2. Example of Use-cases for a SERCOM Module

USART
RS485 12C
Y
<
SERCOM
> <
A
ISO7016 SPI
LIN

ASF4 has different types of drivers; Peripheral-, Utility-, and Middleware-drivers.

Driver Variants
A use-case such as "ADC" can be implemented using drivers with different architectures, such as:
* ADC with blocking receive/transmit functions
* ADC with non-blocking receive/transmit functions
» ADC implemented using DMA transfer of data between peripheral registers to memory
* ADC intended for use with a Real-Time operating system

ADC Synchronous Driver

The driver will block (i.e. not return) until the requested data has been read. Functionality is therefore
synchronous to the calling thread, i.e. the thread waits for the result to be ready. The
adc_sync_read_channel() function will perform a conversion of the voltage on the specified channel and
return the result when it is ready.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 19

2.2.3

ASF4 API Reference Manual

Software Architecture

ADC Asynchronous Driver

The driver adc_async_read_channel function will attempt to read the required number of conversion
results from a ring buffer. It will return immediately (i.e. not block), even if the requested number of data is
not available immediately. If data was not available, or fewer data than requested was available, this will
be indicated in the function's return value. The asynchronous driver uses interrupts to communicate that
ADC data is available, and the driver's IRQ handler reads data from hardware and into ringbuffers in
memory. These ringbuffers decouple the generation of data in the ADC with the timing of the application
request for this data. In a way, the producer and consumer events are asynchronous to each other. The
user can register a callback function to piggyback on the IRQ handler routine for communicating with the
main application.

ADC DMA Driver

Uses DMA system to transfer data from ADC to a memory buffer in RAM. The user must configure the
DMAC system driver accordingly. To set the memory buffer and its size the adc_dma_read function is
used. This function programs DMA to transfer the results of input signal conversion to the given buffer. A
callback is called when all data is transferred if it is registered via the adc_dma_register_callback
function.

ADC RTOS Driver
The driver is intended for using ADC functions in a real-time operating system, i.e. a thread-safe system.

For drivers providing multiple variants, the variant to be used is selected during the ASF4 configuration in
START.

ADC 0

Analog to digital converter (ADC) in asynchronous mode using interrupts

COMPOMNENT SETTINGS

Driver: HAL:Driver:ADC_Async
HAL:Driver:ADC_Sync
CLOCKS _
HAL:Driver:ADC_Async
ADC: HAL:Driver:ADC_DMMA
HAL:Driver:ADC_RTOS_Beta
Driver Types

Driver Types relate to whether a driver supports a peripheral, utility function, or middleware.

Peripheral Driver

A peripheral driver is a driver that is directly related to some functionality in some hardware peripherals.
This is usually not the full functionality set available in the hardware peripheral, but a subset to make it
portable between hardware platforms with different hardware peripheral implementations. A peripheral
driver in the ASF4 consists of the HRI, HPL, and HAL layers. The user will normally interface only with the
topmost HAL layer.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 20

2.3

ASF4 API Reference Manual

Software Architecture

Utility Driver

Utility drivers are hardware agnostic drivers that implement commonly used software concepts. The utility
drivers are available for both the ASF4 drivers and the user application. Examples of utility drivers are a
generic linked list or a ring buffer. Utility drivers can also be in form of C macro definitions.

Moving commonly used code into utility drivers makes it easier to maintain code and help the compiler to
optimize the code because the same code is used by different drivers, but only one copy is needed. The
utility drivers are fully abstracted and not bound to any particular hardware platform or type.

Middleware Driver

Middleware drivers are built on top of peripheral drivers and do not have any direct link to the underlying
hardware. A middleware driver can depend on multiple peripheral drivers at the same time or support a
range of different peripheral drivers. These drivers usually implement highly abstracted code that
implements some kind of software concepts like graphics libraries, USB classes, or file systems.

ASF4 Project Folder Structure

In this section, the project folder structure and file descriptions of an example Atmel START/ASF4 project
are described. By clicking the VIEW CODE tab, at the top of the project, the folder structure, as well as
the generated code based on the current configuration, can easily be previewed. This will be the same as
the one generated in the Export Project screen, once the imported into an IDE. For example, the figure
below shows the project structure from both the VIEW CODE preview, as well as the Atmel Studio 7
solution explorer.

Figure 2-3. Folder Structure of an ASF4 Project Generated from Atmel START

PREVIEW - ATMEL_START.C Selution Explorer B

@ o-d | p -

+-O config
— R er (Ctrlem) .
+-[documentation Search Solution Explorer (Ctrl P

+ [examples I Solution 'GettingSTARTedSensors' (1 project)

4 GettingSTARTedSensors

] ternperature_sensor_main.c

+_—_ ha =d| Dependencies
+ [hpl =d| Output Files
[h b i3 Libraries
+.._ r
b [Config < Configuration files
+-[0 temperature_sensor b [3 Device Startup P
b s <€ Application level example
tmel_start.c L examples < i i i
g = - b g hal functions to quickly get going
atmel_start.h b 3 hpl
- atmel_start_pins.h b [hri
o b [temperature_sensor .
L. driver initc = athI e System_init() as well as
: _start.c €——— " — L7 .
. driver_inith b atmel start.h middleware init functions.
main.c h. atrnel_start_pins.h
. driver_init.c
be temperature_sensor_main.c h! driver init.h
‘. temperature_sensor_main.h ¢ mainc <€ Application
(=
n

temperature_sensor_main.h

The config folder contains one * config.h for each hpl-device configured by Atmel START. The files
in the config folder are used by the HPL layer to configure the functionality the user entered in Atmel
START. The files use the CMSIS wizard annotation format.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 21

2.31

ASF4 API Reference Manual

Software Architecture

The examples folder contains examples of using the drivers and is useful to see how to use the ASF4
drivers.

The root folder contains the following files:

* atmel start.c — Code for initializing MCU, drivers, and middleware in the project
* atmel start.h—APIforinitializing MCU, drivers, and middleware in the project

* atmel start pins.h—Pin MUX mappings as made by the user inside START

* driver init.c — Code for initializing drivers

* driver init.h — API for initializing drivers

* main.c — Main application, initializing the selected peripherals

A full expanded project directory for a simple generated project for the SAM D21 with a single USART is
available in 2.9 ASF4 Project Folder Structure - Full.

In the following sections, more details are given about Root Level Files, Pin Configuration, Examples
Folder, and Config Folder. Then System Initialization walks through the start-up sequence of an ASF4
project.

System Initialization

This section walks you through the startup sequence of an ASF4 project. This system initialization
sequence relies mainly on root level files, which are described in more detail in 2.3.2 Root Level Files.

An empty ASF4 project, generated from Atmel START will contain only the atmel start init()
functioninmain ().

int main (void)
{

atmel start init();

/* Replace with your application code */
while (1) {
}

}

The atmel start init () function is implemented in atmel start.c and:
« initializes any middleware libraries, which have been added to the project

* calls system init ()

void system init (void)
{
system init();
temperature sensors_init();

}

The system init () function is implemented in driver init.c and:

* initializes the MCU (oscillators, clocks, flash wait states, etc.) using the init mcu () function

» initializes the peripherals, which have been selected (in our case the USART), using the
USART 0 init () function

void system init (void)
{
init mcu();
USART 0 _init();

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 22

ASF4 API Reference Manual

Software Architecture

The different initialization functions which are called in system init (), use the configuration’s
parameters that the user has selected during the Atmel START_configuration process.
An example initialization of an SPI peripheral is considered in the picture below.
1. Inmain.c:main () calls atmel start init().
2. Inatmel_start.c: atmel start init () calls temperature sensors init (), a middleware
initialization function, as well as system init ().

3. Indriver_init.c: system init () calls init mcu (), pin configuration functions and driver
initialization functions, such as SPI_0 init ().

4. SPI 0 init () writes START configuration to the SPI (SERCOM) peripheral registers.

* Initializes MCU, drivers and middleware in the pr‘ojeﬁ

"
!

SPI atmel_start.c

§ van e T

e void atmel_start_init(void)

B v couPonEnT {
system_init();
Lohn M il temperature_sensors_init();
ATVARCID COMTICUMATION u_:\..-._.i. }
void system_init(void) driver init.c
{ L
init_mcu(); Initializes the MCU (oscillators,
L larle wrat o tac 3
Eiiog i T | // GPIO on PEIL CIOCKS, 1 wait states.)

#include "atmel start.h” // Set pin direction to output

#include “atmel start_pins.h"” gpio_set_pin_direction(DGI_SS, GPIO_DIRECTION_OUT);
;_..int main(uoid) gpio_set pin_level(DGI_SS, Sets up GPIO. as
{ /f <y> Initial level config "d in
uint8_t example_test[] = "Hello World!"; ; <id> pfd_i”iti‘al_ie"’fi s F“'ll}:hl I)I(
struct io descriptor *spi_io; dalsﬁ B i
) /4 <true®™> High configurator
atmel start_init();] Talze):
io_set_pin_function(DGI_SS, GPIO_PIN_FUNCTION_OFF);
(Spi_m_sync_enable(BoPL 0); £ - g J
spi_m_sync_get io descriptor(&SPI_8, &spi_io); 12C_INSTANCE init();
io_write(spi_io, example test, 12); USART_@_init();
L VAfr — o e
ViV confi
wile() { @ Writes “T'n' guration to
} peripheral registers
1 ADC_@_init();

delay_driver_init();

2.3.2 Root Level Files

main.c Main application, initializing the See project initialization sequence
selected peripherals by calling
atmel start init().

atmel start.c Code for initializing the MCU, #include <atmel start.h>
drivers, and middleware in the yoid atmel_start_init(void)
project. system init();

The system init () function temperature sensors_init();
initializes the MCU (oscillators, :

clocks, flash wait states, etc.) and

peripherals, which have been

selected.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 23

ASF4 API Reference Manual

Software Architecture

atmel start.h

atmel start pins.h

driver init.c

driver init.h

Middleware initialization functions
are called.

API for initializing the MCU,
drivers, and middleware in the
project. Function definitions of
atmel start init().

Pin MUX mappings as made by
the user inside Atmel START.
Defines of pin user labels are
found in the file

atmel start pins.h. These
user labels match what is
configured in the PINMUX
CONFIGURATOR.

Code for initializing drivers.
Contains system init () and all
peripheral initialization functions.
For peripherals using
asynchronous drivers (IRQ
enabled), there are IRQ handler
functions.

For example: ADC_Handler () is
the IRQ handler. If the HAL layer
has callbacks this handler will call
these callbacks.

API for initializing drivers. Function
definitions of peripheral
initialization functions, related
variables, and header files.

void atmel start init(void);

#define PB23 GPIO(GPIO_PORTB, 23)
#define DGI_SS GPIO(GPIO_PORTB, 31)

driver_initc"_# X

ADC_0_init{void)
ADC_Handler{void)
delay_driver_init{vaoid)
DMAC_Handler(void)
RC_INSTANCE_CLOCE init{void)
RC_INSTAMNCE init{void)

RC IMNSTAMNCE_PORT _init(void)
MCLE_Handler{void)
OSC32KCTRL_Handler(void)
QOSCCTRL_Handler(void)
SERCOMO_Handler(void)
SERCOM3_Handler(void)
SERCOMS_Handler(void)
SPLO_CLOCK init{void)
SPLO_init{veid)

SPLO_PORT _init(void)
systermn_init{void)
USART_0_CLOCEK_ init{void)
USART_Q_init{void)
USART_0_PORT_init{void)

e eaeaeaaa

#include <hal usart sync.h>
extern struct

usart sync descriptor USART O0;
void USART 0 PORT init (void);
void USART 0 CLOCK init (void);
void USART 0 init (void);

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 24

2.3.3

234

ASF4 API Reference Manual

Software Architecture

mlddlewarefmaln -¢ Initialization of middleware void temperature sensors init (void)
libraries. i
middleware main.h |Function definition of middleware #include <at30tse75x.h>
initialization functions, related #include <at30tse75x_config.h>
. . extern struct temperature sensor
variables, and header files. *TEMPERATURE SENSOR 0;
void N N

temperature sensors init (void);

Examples Folder

Application level example functions are provided in examples\driver examples.c. When we
develop an application in the main. c file, these functions may be useful to call and adapt (if required), in
order to very quickly build and test peripheral functionality. For example, a function to call “Hello World!” is
provided for the USART.

/**
* Example of using USART 0 to write "Hello World" using the IO abstraction.
*/void USART 0 example (void)
{
struct io descriptor *io;
usart_sync_get io descriptor (&USART 0, &io);
usart sync_enable (&USART 0);

io write(io, (uint8 t *)"Hello World!", 12);
}

If you have added the USART driver only, you will find USART related functions only as this is the only
peripheral that has been added to the project and configured in Atmel START.

Example functions are grouped into separate folders, which can easily be deleted if not needed so that
the final project contains the production code only.

Pin Configuration
Defines of pin user labels are found in the file atmel start pins.h. These user labels match what is
configured in the PINMUX CONFIGURATOR.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 25

235

ASF4 API Reference Manual

Software Architecture

PINMUX CONFIGURATOR @
g Pin label Board label Signal Show labels... Zoom in Zoomout Auto fit
Mode
g Pad Use Header Pin Labe Mode
=
9 R
a 19 PAT0 PATD EXT2,QT.. ADC+QT.. Analog AINAE Enabled
EP I2C_INSTANCE -
2
17 PADS PADE EXT3EX.. TWISDA. I2C SDA 3 _
= = &
9
18 PADS E] EXT3EX.. TWLSCL. I2C sCL i 8=
= Ee
PORT |3 2
I 58
60 PE31 DGILS5 DGISPl DGI_SS Digital.. PORT/PL.
SPID
L] PE1S PE1G EXT3EX. SPIMIS.. MISD
a9 PE22 PE22 EXT3.EX.. SPIMOS. MOs!
50 PE23 PE23 EXT3EX. SPISCK.. Digital. 50X
USART_O
(4] a3 PAZ2 PaZ2 VCR XD Parip. T
8 a4 PAZ3 PAZ3 VCF RXD Perip.. RX
e} amT 3R
(WA 1o software components HEART 2 (RN
(_D PADOD 32kHz XK. XIN3Z USART_0(TX)
z PADT 3ZkHz K. XOUT3Z
3 PAD2 Butlons,.. SWOSPL.
PAD3 EXT1 ADCI) 5010 MIST)
5 PED4 EXT1 IRQ
& PBODS EXT1 ADC(+)
7 GND...
8 VDDA
9 PEDG EXT1 GPIOD
10 PED7 EXT1 GRIOT
A FEEEEEEEEEE
1 PEDS EXT1 USART_TX = E = @ | |m o
12 PEDS EXT1 USART_RX -
3 PAD EXT1 SPI_MISO F
14 PADS EXT1 SPISE A ZZla
— [
R
15 PADS EXT1 SPI_MOSI a8 =
momoa
16 PADT EXT1 SPI_SCK ;j 8
20 Pal EXTZ ADC-
21 VDDI...
bl GNDL
-
] : - User label: DGI_SS Initial level: Low
Pin 60 (PB31)is used as PORT/P/60with PORT. =
Pin mode: Digital output

Tip: Use ctrf or shift to select more than ane

pin

For example, PB31 is given a user label DGI_SS, which can be seen as the define associated with this
pininthe atmel start pins.hfile:

#include <hal gpio.h>

f#define PAOS8
#define PAQ9
#define PA10
fdefine PA22
#define PA23
#define PB16
f#define PB22
#define PB23

GPIO (GPIO_PORTA,
GPIO (GPIO_PORTA,
GPIO (GPIO PORTA,
GPIO (GPIO_PORTA,
GPIO (GPIO_PORTA,
GPIO (GPIO_PORTB,
GPIO (GPIO_PORTB,
GPIO (GPIO_PORTB,

#define DGI_SS

Config Folder

GPIO(GPIO_PORTB,

1)

The config folder contains header files, which hold the configuration data associated with each driver.
These configuration files are associated with the Hardware Proxy Layer (HPL) of the driver. By
connecting the configuration file to the HPL it is possible to expose hardware-specific configuration
options to the user, that is, the configuration includes settings which are hardware-aware.

The START-based configuration is based on the ARM-CMSIS wizard annotation format.

© 2018 Microchip Technology Inc.

User Guide DS50002633B-page 26

https://www.keil.com/pack/doc/CMSIS/Pack/html/configWizard.html

ASF4 API Reference Manual

Software Architecture

Solution Explorer > X
@ o-d@ L -
Search Solution Explorer (Ctrl+5) P~
@ Solution 'GetStartedd' (1 project)
P GetStarted0

=d| Dependencies
=d| Cutput Files
I+ -2 Libraries

n hpl_gelk2_v111_config.h
h hpl_mclk_v101_config.h Oscillators
h hpl_osc32ketrl_v110_config.h and clocks
h hpl_oscctrl_v110_config.h
h hpl_sercom_v200_cenfigh —— USART (SERCOM)
h| peripheral_gclk_config.h
h| RTE_Components.h

As an example, if you open the hpl oscctrl vxxx config.h file, you can check that the only
oscillator enabled is the OSC16M:

// <h> 16MHz Internal Oscillator Control
// <g> Enable
// <i> Indicates whether 16MHz Internal Oscillator is enabled or not
// <id> osclém_arch enable
#ifndef CONF_OSC16M ENABLE
define CONF 0SC16M ENABLE 1
fendif

And that the selected frequency for the OSC16M oscillator is 4 MHz:

// <y> Oscillator Frequency Selection (Mhz)

// <OSCCTRL_OSC16MCTRL_FSEL 4 Val"> 4

// <OSCCTRL OSC16MCTRL FSEL 8 Val"> 8

// <OSCCTRL_OSC16MCTRL_FSEL 12 Val"> 12

// <OSCCTRL_OSC16MCTRL_FSEL 16 val"> 16

// <i> This defines the oscillator frequency (Mhz)

// <id> osclém freq
#ifndef CONF OSC16M FSEL
define CONF 0SC16M FSEL OSCCTRL OSC16MCTRL FSEL 4 Val
#endif

An extract of the ADC config file (hpl adcl v120 config.h)is shown below, representing the ADC
conversion resolution configuration output.

// <o> Conversion Result Resolution
// <0x0=>12-bit
// <0x1=>16-bit (averaging must be enabled)
// <0x2=>10-bit
// <0x3=>8-bit
// <i> Defines the bit resolution for the ADC sample values (RESSEL)
// <id> adc_resolution
#ifndef CONF ADC 0 RESSEL
define CONF_ADC_0_RESSEL 0x3
#endif

In the #define, the RESSEL is the register bit field name. The value of the define represents what will be
written to the associated register. The commented out values function as an enumerator of other potential
valid values. Enumerators used in ASF3 have been replaced by this syntax.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 27

2.4

ASF4 API Reference Manual

Software Architecture

Note: To find the register this relates to, open the data sheet register summary for the given peripheral,
then search for this bit field value.

Another example is given below, which shows a baud rate calculation of the SERCOM in USART mode,
that is the USART use-case of the SERCOM peripheral. Here one can also see the formula in the
generated macro in order to calculate the correct value to be programmed into the BAUD register. These
calculations will tend to be found near the bottom of the configuration file.

// <o> Baud rate <1-3000000>

// <i> USART baud rate setting

// <id> usart baud rate

#ifndef CONF SERCOM 3 USART BAUD

define CONF_ SERCOM 3 USART BAUD 9600

#endif

// gclk freq - (i2c_scl_freq * 10) - (gclk_freqg * i2c_scl_freg * Trise)
/4 BAUD 4 BAUDLOW = ==ss-ss=css=ssssssssssossossosss s s s e s s s e s e s s s s e s oo s e ==
// i2c scl freq

// BAUD: register value low [7:0]

// BAUDLOW: register value high [15:8], only used for odd BAUD + BAUDLOW

#define CONF_SERCOM 0 I2CM BAUD BAUDLOW (((CONF_GCLK SERCOMO CORE FREQUENCY - \

(CONF_SERCOM 0 I2CM BAUD * 10) -\
(CONF_SERCOM 0 I2CM TRISE * (CONF SERCOM 0 I2CM BAUD / 100) * \
(CONF_GCLK_SERCOMO CORE_FREQUENCY / 1000) / 10000)) * 10 + 5) / \
(CONF_SERCOM 0 I2CM BAUD * 10))

#ifndef CONF SERCOM 0 I2CM BAUD RATE

What configuration files will | see?
The configuration files appearing depends on the configuration selected. For example, consider adding
Timer and PWM drivers to a SAM D21 project. Both drivers can run on either the TC or TCC peripherals.

If both the Timer and the PWM are configured to run on the TC, then a single conf tc.h will be placed
in the Config folder. However, if the Timer driver runs on the TC while the PWM runs on the TCC, then
both the conf tc.h and the conf tcc.h will be generated for the Timer and PWM respectively.

Naming convention
What is in the hpl adcl v120 config.h file name?

hpl this is the hardware-aware software layer

adc1_v120(a) adc1is an ADC project in IC design v120, a silicon version of the ADC integrated
peripheral (FYI) (a) variant of the silicon version to support a subset of MCUs.

Hardware Abstraction Layer (HAL)

The HAL is the topmost driver layer and the only one that most users should interact with. This layer is a
common, reusable interface supporting a range of devices and architectures. This layer abstracts away
the peculiarities of hardware and provides the same services to the programmer irrespectively of the
hardware implementing the HAL. The HAL layer contains functions allowing the user access to the
driver's functionality. Therefore, many of the functions are driver specific and may perform things such as:

» Transfer data between the driver and the application
» Start a specific operation provided by the driver, such as start a data transmission

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 28

2.41

ASF4 API Reference Manual

Software Architecture

Driver handle

As part of the abstraction between a specific hardware implementation and the HAL interface, the HAL
driver specifies its own handle to store necessary data like hardware register interface pointers, buffer
pointers, etc. The handle is used as a parameter to HAL functions in order to identify which resource to
address.

The handles have the following definition:

struct [namespace]_descriptor

Example: struct usart sync descriptor USARTO;

Mandatory Driver Functionality
The following functions are found in all drivers and complement the driver-specific functions.

Driver initialization

All HAL interfaces have an initialization function named init (). This function is responsible for loading
the module configuration, pin MUX setup, and clock source setup found in the configuration file. This
function is also responsible for initializing the HAL device handle, with references to the hardware
interface and buffers if needed. The parameter list of this function shall start with the HAL device handle,
followed by a pointer to the hardware register interface of the module instance to be associated with this
HAL device. Any parameters after the first two parameters are interface specific. After this call, the
module is enabled and ready for use, if not an error code should be returned to the application.

Name convention
[namespace] init (struct [namespace] descriptor *desc, adc *hw, ...);
Example

adc_sync_init (struct adc_sync descriptor *adc, adc *hw, ...);

Driver deinitialization

All high-level HAL interfaces have a deinitialization function named deinit (). This function is
responsible for releasing the hardware module and any resource allocated by this module. This includes
disabling any clock source for the module, resetting any pin MUX setting and resetting the module itself.

Name convention

[namespace] deinit (struct [namespace) descriptor *desc);

Example

adc_sync_deinit (struct adc sync descriptor *adc);

Register interrupt handler callback

APIs supporting interrupts have a function to register different interrupt handlers. When this function
returns, the interrupt is enabled in the module and is ready for use. This function does not change the
state of the global interrupt flag. Registering a NULL pointer as handler disables the interrupt used by the
driver.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 29

2.5

ASF4 API Reference Manual

Software Architecture

Name convention

[namespace] register callback(struct [namespace] descriptor *desc, [namespace] callback type
type) ;

Example

adc_async_register callback (struct adc async descriptor *adc, adc_async callback type type);

Get driver version
All HAL drivers are tagged with a version number. The version number has the format 0x00xxyyzz and
can be retrieved using the [namespace] get version() function, e.g. adc sync get version().

* xx: Major version number
— Additions/changes to the driver and/or driver API
— Driver does not need to stay backward compatible
* yy: Minor version number
— Additions to the API
— Bug-fixes and/or optimization to the implementation
— The driver shall stay backward compatible
* zz: Revision number
— Bug-fixes and/or optimizations of the driver
— The API shall not be changed
— The driver shall stay backward compatible

Get I/O descriptor
For APIs with 1/0 system support, there is a function to extract the I/O descriptor from the device
descriptor. This function returns a pointer to the generic 1/0 descriptor type.

Name convention

[namespace] get io descriptor(struct [namespace] descriptor *descriptor, struct io descriptor
**i0) ;

Example

usart sync _get io descriptor (struct usart sync descriptor *descriptor, struct io descriptor
**iO) B

1/10 System

For some of the drivers, there is an 1/0 system on top of the HAL interface. The I/O system disconnects
middleware from any driver dependency because the middleware only needs to rely on the interface that
the 1/0 system provides. The I/O system has a write and a read method that are used to move data in/out
of the underlying interface. An example is a file system stack that can be used with any of the external
interfaces on the device to communicate with an external storage unit. The application will have to set up
the interface, and then supply a pointer to the 1/0O object to the file system stack.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 30

ASF4 API Reference Manual

Software Architecture

Figure 2-4. Overview of the 1/0 System

Common
Module A HAL A 10 System
Module B HALB € > Middleware
Module C HAL C
int32_t write(...)

int32_t read(...)

Example of I/0 system code

/* This is conceptual code, and not copied from ASF4 framwork code */
#define BUF_SIZE 4

uint8 t buf[BUF SIZE];
int8 t data received;

io_handle t spi io;
fs_handle t £
file handle_t file;

hal spi init(&spi_io, hw);

do {
data received = io.read(buf, BUF SIZE);
} while (data recieved == 0);

if (data received < 0) {
/* Something wrong was detected */
while (1) {
}i

}

/* Write something on the SPI bus */
spi io.write(buf, data received);

/* Using a storage device over the SPI interface */
fat fs init(fs, spi_io);
fat fs write file(fs, file);

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 31

ASF4 API Reference Manual

Software Architecture

2.6 Hardware Proxy Layer (HPL)
Figure 2-5. Example HPL for TC Supporting Three Different HAL APIs

TASKS PWM TIMER

TC HPL

_tc_generic_init();
_tasks_init();
_pwm_init();
_timer_init();

TC HRI

Most drivers consist of a mix of code that do not require direct hardware peripheral access and code that
require hardware access. In ASF4 this code is split into two different layers called the Hardware
Abstraction Layer (HAL) and the Hardware Proxy Layer (HPL). The HAL is the layer where all hardware
agnostic code is implemented and the interface that the user access, to use the framework, is defined.
The HPL is where the hardware-aware code is implemented.

A typical example of this split is a function that reads a buffer of some length from a hardware module
asynchronously. The application does not know when data will arrive at the peripheral so a ring-buffer is
used to store the data until the application is ready to read it. As none of the actual hardware
implementations of the module supported through this interface has a hardware-based ring-buffer, a
software implementation of the buffer is used. Since the data going into the buffer is hardware
independent, the ring-buffer is implemented in the HAL driver. Reading the data from the hardware
module will, on the other hand, be hardware dependent as the register location, name, and access
sequence might differ. This code will, therefore, be implemented in the HPL driver.

The split between HAL and HPL makes it clear which code has to be updated when adding support for
new hardware, and which code can be reused without any modification. The expected interface between
the HAL and HPL is defined by an abstract device.

The HPL/HAL driver split allows the different hardware modules with overlapping functionality, to use the
same HAL interface. As an example, a device contains different timer/counter module designs: One
simple timer/counter design and one more advanced targeted for advanced PWM. Both types can be

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 32

ASF4 API Reference Manual

Software Architecture

used to periodically increment a counter and to trigger an interrupt event when the counter reaches some
pre-defined value. The same HAL interface and implementation can be used for both module types but
mapped to the two different HPL layers.

The abstracted device and interface

The abstracted device is a definition of a non-physical virtual device with a defined feature set. This
feature set can be implemented using compatible features in physical hardware modules. This means
that an abstract device has a feature set which is a subset of what the physical hardware modules
support.

Figure 2-6. An Abstract USART Device is Defined with a Subset of the Feature Sets in USART A,
B,and C

USART C
feature set

Virtual
USART
feature set

USART A
feature set

USART B
feature set

The abstract USART device in the figure above is defined as a subset of what USART A, B, and C can
offer. USART implementations often support features like IrDA, SPI-master, Lin, RS485, etc., on top of
the USART/UART support, but it is not given which of these features are supported by which
implementation. To make sure that the virtual USART device is compatible with the feature set of each
physical implementation, the feature scope will be limited to UART/USART. Support for other features can
be provided through other abstract device definitions.

The HAL interface gives the user one common interface across multiple hardware implementations. This
makes the code easier to port between devices/platforms. Since the HAL implements use cases, the
code is more focused, and therefore more optimized for the limited scope than a more general driver
would be. Since the HAL driver interfaces hardware through the abstracted device, the HAL driver is
completely decoupled from the hardware. The abstract interface is implemented by the hardware’s HPL
driver.

Example of abstract device

struct usart device ({
struct usart callbacks usart cb;
void *hw;

}i

_usart _init(void *const hw);

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 33

ASF4 API Reference Manual

Software Architecture

_usart deinit (void *comst hw);
_usart transmit (void *const hw, uint8 t *const buf, uint32 t length);

This is a simple abstract USART device, with a small interface for init, deinit, and transmit data. If we
implement this abstract device for SAM D21 an obvious choice would be to use the SERCOM module to
implement this abstract device. To accomplish that, a function to set up the SERCOM and put it into
USART mode (init), put data into the data register (transmit), and disable the SERCOM (deinit), must be
implemented in the HPL driver for the SERCOM.

In ASF4, the abstract device is defined as a data container for any data that is shared between the HAL
and the HPL implementation. Examples are pointers to hardware registers, buffers, state information, and
callback functions for events (interrupts, error detected, etc.). As an example one can use interrupt
events. Parts of an interrupt event are processed in the HPL and parts are processed in the HAL like
custom callback functions. As earlier noted, the HAL must stay hardware agnostic, so, to be notified that
something happens in the underlying hardware, it must register callback functions in the abstract device.
This data is shared with the HPL driver, and the HPL driver can use these callbacks to notify the HAL that
something has happened in the hardware. This keeps the HAL and the HPL decoupled and there are no
dependencies between those two layers, only to the abstract device.

Figure 2-7. Example of Hardware Event Propagation from the HPL to the HAL

device device

register callback A get|callback pointer process event

trigger callback

A 4 Y
. HALA HALA
device->event_callback = > HPL >
process_event; process_event();
A
some event
Hardware
Timeline

v

Hardware Register Interface (HRI)

The layer closest to the hardware is named HRI. This layer is a simple interface with very little logic that
do register data content manipulation with a set of defined functions calls. The data manipulation
operations can be performed on a bit, bit field, and complete register level.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 34

ASF4 API Reference Manual

Software Architecture

Figure 2-8. HRI Example Data Manipulation of Bit and Bit Field Contents

toggle()
1] | > 1
set(0b0011)
1 0 1 0 | > 1 0 1 1
clear(0b0011)
1 0 1 0 | > 1 0 0 0

This layer also abstracts special register access properties like data synchronization between clock
domains. It also ensures that data integrity is kept within an interruptible system by inserting critical
sections when it is not possible to do data manipulation atomically.

Using the HRI interfaces as access interface to the peripheral registers helps the compiler optimize the
code towards targets like low code size or faster code. When targeting fast code, the compiler can
choose to inline the function to be able to optimize the code in context and avoid call conventions. For low
code size, the compiler can avoid in-lining the function and reuse the same copy of the function multiple
times.

All functions in the HRI are defined as static inline. This gives the compiler the possibility to optimize the
code within the context of where it is used. Using functions instead of pre-processor macros keeps the
possibility to use the compiler for type checking and makes the code a bit safer compared to pre-
processor macros.

There are three main categories of access functions; single-bit access functions (accesses one bit at the
time), bit field access functions (accesses multiple bits with a common purpose), and register access
functions (access the content of a full register).

Different operation types available for the access functions
» get - Returns the value of the bit, bit field, or register (bit fields and registers are anded with a mask)
+ set - Sets the value to a high state (bit fields and registers are anded with a mask value)
* clear - Sets the value to a low state (bit fields and registers are anded with a mask value)
» toggle - Value is changed to the opposite (bit fields and registers are anded with a mask value)
+ write - Copy all bit states from the input data to the bit field or register
» read - Copy all bit states from the register and return it to the application

Note: If shadow registers are detected for set, toggle, and clear they will be used instead of normal
access.

These operations are available for single bit access
» get - read state of bit
* set - set bit state to high
+ clear - set bit state to low

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 35

ASF4 API Reference Manual

Software Architecture

» toggle - change bit state to the opposite
» write - change the state of the bit based on input, independent of the previous state

Note: Access to some registers, such as status and INTFLAG registers, only have get and clear access
functions.

These operations are available for bit field access
+ get (read the state of bits defined by a mask)
» set (set bit states to high for bits defined by a mask)
* clear (set bit states to low for bits defined by a mask)
» toggle (change bit states to opposite for bits defined by a mask)
» write (set states of all bits to the state defined in the input data)
* read (read the state of all bits)

These operations are available for register access
* get (read the state of bits defined by a mask)
» set (set bit states to high for bits defined by a mask)
* clear (set bit states to low for bits defined by a mask)
» toggle (change bit states to opposite for bits defined by a mask)
* read (read the state of all bits in the register)
» write (set the state of all bits in the register based on input data)

These operations are available for write-only register access
* write register

Note: The bit and bitfield operations are not available for write-only register since they are based on the
latest value in the register.

These operations are available for read-only register access
* read/get register
* read/get bit field
* getbit

Shadow register access

The shadow registers are grouped registers that share data of named or virtual register value. They offer
some atomic way to change this shared data value. As an example, in SAM D20 there is a register group
of OUT, OUTCLR, OUTSET, and OUTTGL in PORT peripheral for port outputs. Writing to OUTCLR,
OUTSET, and OUTTGL actually modifies the value in OUT register. In SAM V71, there is a similar
register group of ODSR, CODR, and SODR in PIO peripheral for I/0 outputs, where writing to CODR and
SODR causes changes in ODSR and applies to the actual output pin levels.

Shadow registers have all possible operations for register, bit, and bit field access. The operations target
the actual named or virtual register: There is register, bit, and bit field operations to access OUT register,
but no operation to access OUTCLR, OUTSET, and OUTTGL.

Naming scheme
* module name - The acronym used in the data sheet in lower case letters (e.g. adc) function

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 36

2.8

ASF4 API Reference Manual

Software Architecture

* get, set, clear, toggle, write, read bit name - The register position name as written in the data sheet
in upper case letters

» bit field name — The register position name (multiple bits) as written in the data sheet in upper case
letters register name - The register name as written in the data sheet in upper case letters

Single bit access

hri [module name] [function] [REGISTER NAME] [BIT NAME]
eg. adc_set CTRLA ENABLE (hw) ;

Bit field access

hri [module name] [function] [REGISTER NAME] [BIT FIELD NAME]
eg. adc_set AVGCTRL SAMPLENUM (hw, mask);

Register access

hri [module name] [function] [REGISTER NAME]
eg. adc_set CTRLA (hw, mask);

Note: Special naming rule for single bit access to an interrupt flag register. This applies only to interrupt
status registers, not interrupt related registers for enabling, disabling, clearing, etc.

[module name] [function] interrupt [BIT NAME]

RTOS Support

Some of the drivers in ASF4 have RTOS support. RTOS support is selected as a use case in Atmel
START.

Drivers designed for use in RTOSes are designed differently to take advantage of RTOS features. For
example, drivers do not need to poll a signal or status, the RTOS provides synchronization mechanisms
to notify the driver, releasing CPU resources for other tasks.

Semaphore

Semaphores are used as synchronization mechanism in the drivers since all RTOSes have them. Their
behavior and interface are similar, making it easy to support various RTOSes. A typical process of using
an RTOS driver looks like this:

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 37

ASF4 API Reference Manual

Software Architecture

Figure 2-9. RTOS and Semaphores

~

User thread Driver

'

Start HW
operation

:

Wait on ISR release
semaphore semaphore

' J

The driver has an internal semaphore object for synchronizing between the ISR and the thread. The user
thread may be suspended in the driver, and be woken up once the ISR finishes.

User thread

A

/rﬁ) K_L\

To be compatible with various RTOSes, an abstraction interface for semaphores is designed:

int32 t sem init(sem t *sem, uint32 t count);
int32 t sem up(sem_ t *sem);

int32_t sem_down(sem t *sem, uint32_t timeout);
int32 t sem deinit (sem t *sem);

To support an RTOS, these functions and the sem_t typedef must be implemented.

OS lock and OS sleep

These two features are useful and are added to the RTOS abstraction. The OS locks/unlocks and
disables/enables the OS scheduler and is an easy way to protect shared code and data among threads.
OS sleep suspends the current thread for a specified tick period.

Thread creation

ASF4 does not provide an abstract interface for thread creation. For pre-defined threads in middleware,
the thread body function and thread stack usage size are provided to the user, allowing the user to easily
create such threads in his application.

HAL and HPL

Since HPL is designed for hardware abstraction, while HAL contains software and algorithms, RTOS
support is located in the HAL layer. RTOS-enabled drivers do not change the HPL layer. The figure below
shows how these two layers work together in an RTOS.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 38

2.9

ASF4 API Reference Manual

Software Architecture

Figure 2-10. HAL and HPL in RTOS

/
HAL

~

HAL init, register
callback

HPL

(HPL init (interrupt

HAL interface

"
Lad

L mode)

kﬁ-l PL HW operation

Wait on
semaphore

LT_/__/ —
-

— — — —

Release
semaphore

— — — — —

ASF4 Project Folder Structure - Full
The following is the folder structure generated for a simple project containing a SAM D21 with a single

USART.

The root folder contains the following files:

4_
)

'L(interrupt mode)

ISR callback

*+ atmel start.c — Code for initializing MCU, drivers, and middleware in the project

* atmel start.h—APIforinitializing MCU, drivers, and middleware in the project
* atmel start pins.h—Pin MUX mappings as made by the user inside Atmel START

*+ driver init.c — Code for initializing drivers
* driver init.h — API forinitializing drivers

atmel start.c

AtmelStart.gpdsc
atmel start.h
atmel start pins.h
config

atmel start config.atstart

hpl dmac _v100 config.h
hpl gclkl v210 config.h
hpl pml_v201 config.h
hpl sercom v200 config.h
hpl sysctrl v20la config.h
peripheral clk config.h

main.c — Main application, initializing the selected peripherals

atmel start config.atstart —Atmel START-internal description of the project
atmelStart.gpdsc — Atmel START-internal description of the project

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 39

ASF4 API Reference Manual

Software Architecture

— hal

— hpl

— driver_init.c
— driver init.h
— examples

driver_ examples.c
driver examples.h

documentation

incl

core

=

dmac
L

gclk

usart async.rst
ude

hal atomic.h

hal delay.h

hal gpio.h

hal init.h

hal io.h

hal sleep.h

hal usart_async.h
hpl core.h

hpl delay.h

hpl dma.h

hpl gpio.h

hpl i2c m async.h
hpl i2c_m_sync.h
hpl i2c_s async.h
hpl i2c_s sync.h
hpl init.h

hpl irg.h

hpl missing features.h
hpl reset.h

hpl sleep.h

hpl spi async.h
hpl spi.h

hpl spi m async.h
hpl spi m sync.h
hpl spi s async.h
hpl spi_s sync.h
hpl spi sync.h
hpl usart_async.h
hpl usart.h

hpl usart sync.h

hal atomic.c

hal delay.c

hal gpio.c

hal init.c

hal io.c

hal sleep.c
hal_usart_async.c

L— utils

include

— compiler.h

— err_codes.h

— events.h

— parts.h

— utils assert.h

— utils_event.h

— utils.h

— utils increment macro.h
— utils_list.h

— utils repeat macro.h
“— utils ringbuffer.h

— utils assert.c

— utils event.c

— utils_list.c

— utils ringbuffer.c
— utils syscalls.c

hpl core mOplus_base.c
hpl core_port.h
hpl init.c

hpl dmac_v100.c

hpl gclkl v210 base.c
hpl gclkl v210_base.h

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 40

ASF4 API Reference Manual

Software Architecture

— pm
hpl pml v20la.c
hpl pml v201 base.h
— port
— hpl port v100.c
— sercom
L— hpl sercom v200.c
— sysctrl
hpl sysctrl v20la.c

— hri dmac v100.h

— hri gclkl v210.h
— hri nvmctrl v106.h
— hri pm v20la.h

— hri port v100.h

— hri_sercom_v200.h
— hri sysctrl v20la.h
— main.c

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 41

3.1

3.2

3.21

3.2.2

3.2.3

ASF4 API Reference Manual

Driver Implementation and Design Conventions

Driver Implementation and Design Conventions

Introduction
This chapter covers driver implementation and design conventions, in the following major sections:

3.2 ASF4 and Atmel START Configuration
* 3.3 Driver Implementation

* 3.4 Design Conventions

* 3.5 Toolchain and Device-specific Support
* 3.6 Embedded Software Coding Style

ASF4 and Atmel START Configuration

The ASF4 framework cannot be used as a stand-alone framework, it must be used together with Atmel
START. Atmel START contains a code generator that generates ASF4 C-code based on the user's
configuration. Atmel START uses two mechanisms to generate the final C-code:

» Code generation - Atmel START has an internal representation of the C-code. This internal
representation is processed by a code generator resulting in C-code.

» Parameter generation - The generated C-code accepts parameters in the form of C #define
statements. These statements are generated by Atmel START, based on the user's input. The
CMSIS wizard annotation format is used for the parameters.

Hardware Configuration

For microcontroller projects, configuration data is normally available before or at the point of compilation.
Calculation of register data and resolving of configuration can therefore be calculated at compile time.
This will free up flash space and lower the processing power needed to initialize the module. An added
benefit of less code in the initialization function is that time spent to get into the main loop will be shorter.
A combination of constants set by Atmel START, pre-processor macros, and static functions are used to
avoid doing such calculations in the runtime code.

The configuration for each module and each instance of the module is stored statically in configuration
files in the config/ folder as #define macros. All configuration parameters have names in uppercase and
belong to the "CONF_" namespace, followed by the name of the hardware module, instance, and then
the bit or bit field name as spelled in the data sheet. All parameters that are visible in configuration
dialogs in Atmel START are annotated with the CMSIS configuration wizard annotation language.

Output from Atmel START

When exporting a project from Atmel START, the output is a single file with an *.atzip extension. This is
basically an ordinary zip-file. Renaming it from *.atzip to *.zip allows it to be unzipped with standard zip-
tools. This would result in a file tree as shown in the folder structure section shown elsewhere in this
manual.

Reconfiguring Output from Atmel START

There may be a need to reconfigure code generated by ASF4 at a later time, for example changing
baudrate of a USART, or moving an I/O pin to a new location. If using Atmel Studio as IDE, the ASF4
code can be imported back into Atmel START again and reconfigured by right-clicking on the project

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 42

3.24

3.3

3.3.1

ASF4 API Reference Manual

Driver Implementation and Design Conventions

name in Project Explorer, and selecting "Re-Configure Atmel Start Project". This will open Atmel START
inside a window in Studio, allowing the user to perform the required changes and export the result back
into the Studio project. Studio will detect any changed ASF4 files, and attempt to merge them into the
original project.

If using other IDEs than Studio, or no IDE at all, an already generated project can be reconfigured by
opening the Atmel START webpage, and selecting "Load existing project" from the front page. Use the
originally generated *.atzip-file as input file. The project can thereafter be reconfigured and exported
anew. Any changes and conflicts between the original and the reconfigured project must be merged
manually by the user.

Versioning of ASF4 Code

Atmel START and ASF4 are tightly connected. A specific version of ASF4 code will only run on a
compatible version of Atmel START. This may pose problems as an ASF4 code generated with a
particular version of Atmel START may not be possible to read back into and reconfigure with newer
versions of Atmel START. Since Atmel START is a web-based tool, it may be updated without the user
being able to affect the update process.

Future versions of Atmel START will add the concept of versioning, where the web-based Atmel START
configurator will support different versions of ASF4.

Driver Implementation

Drivers consist of two parts; a static part and a dynamic or configurable part. The static part is hardwired
code not intended to be changed or reconfigured by the application after being exported from Atmel
START. The dynamic part allows the application to configure the behavior of the driver through e.g.
callbacks, or provide resources such as ring buffers to drivers.

The dynamic part is normally configured during driver initialization by calling the driver's init-function. This
is typically done during the device initialization and startup phase.

The functionality provided by the static and dynamic parts of the driver is unique to each driver, and
documented separately for each driver.

Driver Initialization

All drivers configured in Atmel START are automatically initialized. Atmel START generates calls to the
init()-functions of all drivers inside driver_init.c. The driver_init.c file is called by the main.c-file generated
by Atmel START.

Each driver has an init()- and a deinit()-function. The init() function:

* hooks up IRQ handler and enables the module's IRQs if necessary

» configures the module as desired by writing the module descriptor contents to the correct control
registers

* enables the module

» does NOT enable any clocks required by the module, this must be done separately

* does NOT enable any I/O pins required by the module, this must be done separately

The deinit()-function:

» disables and clears the module's interrupts, if enabled
« disbles the module, typically by clearing the module's enable-bit in the module's control register

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 43

3.3.2

3.3.3

ASF4 API Reference Manual

Driver Implementation and Design Conventions

+ does NOT disable any clocks used by the module, this must be done separately
* does NOT disable any /O pins used by the module, this must be done separately

Descriptors

Descriptors are driver-specific data structures that are used to fine-tune the behavior of the driver. The
application populates the descriptors with the desired configuration information, and passes the
descriptors into the driver. Typical information contained in descriptors can be:

* pointer to and size of ring buffer to be used by the driver
» desired behavior or configuration of the driver hardware
» description of interrupt routines

* pointers to callback functions

Configuring the Dynamic Part of Drivers

The dynamic part of drivers is normally configured during system initialization. The most commonly
configured resources are interrupt routine callback functions and memory buffers. How this is done is best
illustrated with an example, using the ADC in synchronous mode as an example. All the following code is
found in driver_init.c.

The following code declares and defines various resources that will be made available to the ADC:

/* The channel amount for ADC */

#define ADC 0 CH _ AMOUNT 1

/* The buffer size for ADC */

#define ADC_0 BUFFER SIZE 16

/* The maximal channel number of enabled channels */

#define ADC_0 CH MAX O

extern struct irg descriptor * irqg table[PERIPH COUNT IRQn];
extern void Default Handler(v01d)

struct adc_ async descrlptor ADC O;

struct adc_async_channel descrlptor ADC 0 ch[ADC_ 0 CH AMOUNT];
static uints8 _t ADC 0 buffer[ADC 0 BUFFER SIZE]

static uint8 _t ADC 0 map[ADC 0 CH MAX+1]

The system_init()-function is called by main and initializes the peripheral driver(s), in this case the ADC:

void system init (void)
{

ADC 0 init();
}

The ADC_0_init() function initializes ADCO. The two first lines enable the clock to the ADC.

static void ADC 0 init (void)

{ _pm_enable “bus _clock (PM_BUS APBC, ADC); _gclk enable channel (ADC_GC
LK ID, CONF GCLK _ADC SRC) ; adc_async_init (&ADC_0, ADC, ADC 0 _map, ADC_O_
CH MAX, ADC 0 CH AMOUNT, &ADC 0 ch[0]); adc_async_register channel buffe

r (§ADC_0, 0, ADC_0 buffer, ADC 0 BUFFER SIZE);}

The 5.2.9.1 adc_async _init-function updates the ADC_0 descriptor with information found in the other
parameters of the function, and writes this configuration to the ADC hardware. The configured data
includes:

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 44

3.34

3.3.5

3.4

3.41

ASF4 API Reference Manual

Driver Implementation and Design Conventions

* hooking up any callback functions
» configuring the number of channels to use, in this case one channel (channel 0)
» configuring the behavior of each channel used

The 5.2.9.3 adc_async_register_channel_buffer-function hooks the ring buffer ADC_0_buffer with size
ADC_0 BUFFER_SIZE up to the ADC descriptor ADC_0, to be used for channel 0.

The ADC_Handler()-function hooks the driver's ISR up to the IRQ vector table. _irq_table[] is a table of
interrupt handler descriptors handled by the HPL layer of the IRQ driver.

void ADC Handler (void)
{
if (_irg table[ADC IROn + 0]) {
_irqg table[ADC IRQOn + 0]-
>handler (_irg table[ADC IRQn + 0]->parameter);
} else {
Default Handler();
}

Compile-time Configuration and Parameterization from Atmel START

The user is normally able to configure driver parameters in Atmel START. A typical example is setting of
baudrate and parity for a USART. The files in the config-folder are generated by Atmel START in order to
transfer the configurations the user made in Atmel START into the HPL layer. The files use the CMSIS
wizard annotation format. Example of contents in hpl_sercom_v200_config.h:

// <o> Frame parity
// <0x0=>No parity
// <0xl=>Even parity
// <0x2=>0dd parity
// <i> Parity bit mode for USART frame
// <id> usart parity
#ifndef CONF_SERCOM 0 USART PARITY
define CONF_SERCOM 0 USART PARITY 0x0
#endif

Utility Drivers

The utility drivers support other drivers with commonly used software concepts and macros such as ring
buffers, linked lists, state machines, etc. Moving this commonly used code into utility drivers makes it
easier to maintain the code and help the compiler to optimize the code because the same code is used
by different drivers, but only one copy is needed. The utility drivers are fully abstracted and not bound to
any particular hardware platform or type. Utility drivers are located in the hal/utils folder with public
declaration files in a include folder and function declaration in a src folder. All filenames starts with the
prefix utils_. See the API reference in the file "utils.h" for more information on the utility functions.

Design Conventions
Memory Buffers

As a rule of thumb, no memory buffer is allocated by the driver. Allocation is done by the application and
provided to the driver as pointer variables. This allows the author of the application freedom to choose

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 45

3.4.2

3.4.3
3.4.31

3.4.31.1

3.4.31.2

34313

3.431.4

ASF4 API Reference Manual

Driver Implementation and Design Conventions

how memory is allocated in the application. In many cases, memory management can be done at compile
time by allocating memory statically. Allocation outside the driver also gives the user the possibility of
using a memory manager of his choosing.

Parameter List

The parameter list for a given public ASF4 function shall have a hard limit of up to four parameters. If this
limit is surpassed the function's purpose shall be redesigned or split into multiple function calls. Another
approach would be to use a container for the parameters like a struct.

Naming Convention

Reserved Words/Acronyms
Some words/acronyms are given a special meaning in the framework to give the user a better
understanding about the purpose of function/symbol/etc. These words are:

Callback
Short: cb

Typically used for functions or pointers. Refers to functions/code that is triggered by events in hardware
or other parts of the software.

struct spi dev callbacks ({
/* TX callback, see \ref spi dev cb xfer t. */
spi_dev _cb xfer t tx;
/* RX callback, see \ref spi dev cb xfer t. */
spi_dev cb xfer t rx;
/* Complete callback, see \ref spi dev cb complete. */
spi dev cb complete t complete;

Configuration
Short: conf

Typically used to symbols, macros defining a configuration parameter or a set of configuration
parameters.

#define CONF_SERCOM 0 USART DORD CONF_SERCOM USART DATA ORDER
_LSB
#define CONF_SERCOM 0 USART CPOL CONF_SERCOM USART CLOCK_POLA

RITY TX RISING EDGE

#define CONF_SERCOM 0 USART CMODE CONF_SERCOM USART COMMUNICAT
ION_MODE_ASYNCHRONOUS

Deinitialize

Short: deinit

Typically used for a function that resets something to the initial state, for instance deinit of a peripheral
should disable it, remove any clock connections and preferably set it back to device power up state.

int32 t adc deinit (struct adc descriptor *const descr);

Device
Short: dev

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 46

3.4.3.1.5

3.4.3.1.6

3.431.7

3.4.31.8

ASF4 API Reference Manual

Driver Implementation and Design Conventions

Typically used when referring to something that can be described as a "device" like the abstracted device
definition.

struct adc device ({
struct adc callbacks adc cb;
void *hw;

}i

Initialize
Short: init

Typically used for functions that initializes something, like a peripheral for instance.

int32 t usart sync_init (struct usart sync descriptor *const descr, void *co
nst hw) ;

Interface
Short: iface

Typically used when referring to driver interfaces (APIs) like the abstracted interface used between the
HPL and HAL.

struct i2c_interface ({

int32 t (*init) (struct i2c _device *i2c dev);
int32 t (*deinit) (struct i2c_device *i2c dev);
int32 t (*enable) (struct i2c device *i2c dev);
int32 t (*disable) (struct i2c_device *i2c_ dev)
int32 t (*transfer)

(struct i2c device *i2c dev, struct i2c_msg *msqg);
int32 t (*set baudrate)

(struct i2c device *i2c dev, uint32 t clkrate, uint32 t baudrate);

’

Message
Short: msg

Typically used when data sent over an interface has to be compiled from different data sources before it
is sent. For instance, an 12C message has to consist of an address and data.

struct i2c _msg {

uintl6_ t addr;

volatile uintl6 t flags;
int32 t len;

uint8 t *buffer;

Private
Acronym: prvt

Typically used for private data members or symbols, which contain data that should not be accessed by
external code (for instance user code, or it can even be localised to just parts of the owner code).

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 47

ASF4 API Reference Manual

Driver Implementation and Design Conventions

Typically used for the hardware pointer member in the device descriptor struct as it should only be
accessed by the HPL after it has be assigned.

struct spi_sync dev {
/
* Pointer to the hardware base or private data for special device. */
void *prvt;
/* CS information,
* Pointer to information list to configure and use I/
O pins as SPI CSes

S (master), or CS pin information when \c cs num is 0 (slave).

)

union spi dev cs cs;

/
* Number of Chip Select (CS), set to 0 for SPI slave, OxFF to ignore CS beh
aviour */

int8 t cs_ num;

/* Data size, number of bytes for each character */

uint8 t char size;

/
* Flags for the driver for implementation use (could change in implementati
on) */

uintlé t flags;

bi

3.4.3.1.9 Status
Short: stat

Typically used when referring to functions/symbols related to returning or storing status information.

3.4.3.1.10 Error
Short: err

Typically used for containers/variables holding information about error state information in hardware or
software, can also refer to callbacks or functions referring to error handling code.

static void dac_tx error(struct dac device *device, const uint8 t ch);

3.4.3.1.11 Transfer
Short: xfer

Typically used when referring to functions/symbols related to moving data in one or both direction.

enum spi transfer mode ({
/
* Leading edge is rising edge, data sample on leading edge. */
SPI_MODE 0,
/
* Leading edge is rising edge, data sample on trailing edge. */
SPI_MODE 1,
/
* Leading edge is falling edge, data sample on leading edge. */
SPI_MODE 2,
/

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 48

3.5

3.5.1

3.5.2

3.5.3

3.54

ASF4 API Reference Manual

Driver Implementation and Design Conventions

* Leading edge is falling edge, data sample on trailing edge. */
SPI_MODE 3
}i

Toolchain and Device-specific Support

System Startup Sequence
An ASF4 project executes the following startup sequence:

1. The initial value of the stack pointer is read from the linker script, and written to the first 32-bit
address in the exception vector. The startup sequencing hardware will write this value to the stack
pointer (SP) in the register file, before releasing the CPU from reset.

2. The address of the Reset_Handler() is placed as the second 32-bit word in the exception vector.
The ARM hardware will execute the code in this function immediately after releasing the CPU from
reset.

The Reset_Handler() function can be found in the /Device_Startup/startup_{device}.c file, where {device}
is the name of the device chosen. The reset handler:

1. Initializes various memory segments

2. Configures the bus matrix if applicable
3. Initializes data structures in the C library
4. Jumps to the main() function

Portability of Generated ASF4 Code Between Devices

An ASF4 project generated for one device should in general not be compiled for other devices. There
may be differences between devices so that the code may not compile, or may compile but not behave as
intended.

CMSIS-CORE Library

The CMSIS-CORE library is provided as part of the Device Family Packages (DFPs) for all Microchip
SAM devices. Functions in CMSIS-CORE, for example __set BASEPRI() can be called from the ASF4
code. ASF4 also provides an HPL library abstracting the CPU core. This core-specific library is part of the
*.atzip file exported from Atmel START. The library can be found in the /hpl/core/ directory. The device
header file, named {device}.h, present in the device DFP directory, configures the CMSIS-CORE
parameters and includes the CMSIS-CORE header file, named core_{core_name}.h. An example of a
{device-file, CMSIS-CORE file}-pair is {samd21e15a.h, core_cmOplus.h}.

Interrupt Vectors

The interrupt vector table can be found in the /Device Startup/startup_{device}.c file, where {device} is
the name of the device chosen, e.g. samd21. The vector table is populated with jumps to a
Dummy_Handler(), performing an eternal while-loop. The Dummy_Handler() has the GCC attribute
"weak", and is intended to be overridden by the appropriate handler provided by ASF4, or defined by the
user.

ASF4 does not assign a specific priority to the IRQs, but instead uses the default priority as assigned by
the NVIC. Different ARM cores have NVIC interrupt controllers with individual specifications and features.
Refer to the device data sheet and NVIC documentation for the ARM core being used in the selected
target device for more information on manipulating interrupt priorities and masking interrupts.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 49

3.5.5

3.5.6

3.5.7

3.5.71

3.5.71.1

3.5.71.2

3.5.7.2

3.5.7.3

3.6

3.6.1

ASF4 API Reference Manual

Driver Implementation and Design Conventions

The ARM CMSIS-CORE specification has functions for manipulating the NVIC in order to prioritize IRQs
and mask interrupts. Refer to the CMSIS specification and CMSIS-CORE
library(doc_driver_hal_intro_toolchain_1s_ds_cmsis) for more information.

C Library

Atmel START generates code to be used together with the GCC tool suite for ARM. This includes system
call implementations for the GCC newlib C library, such as _exit() and _close(). The system call
implementations can be found in /hal/utils/src/utils_syscalls.c. Other compilers, such as IAR or Keil, may
use proprietary C-libraries, and not use these syscall implementations.

Linker Scripts

A set of default linker scripts for the GCC compiler are provided by Atmel START. The scripts are tailored
to the device selected in Atmel START. They can be found in the /Device_Startup/*.Id files. Multiple
scripts may be provided, e.g. one script for placing code in flash, another for placing code in RAM. Other
compilers, such as IAR or Keil, may use proprietary linker scripts and formats, and not use these linker
scripts implementations. Atmel START does not generate linker scripts for other compilers than GCC.

Support for Various Toolchains

ASF4 consists of generic C-code and can in be compiled using any ARM C-compiler. However, Atmel
START includes support for exporting projects into the following toolchains:

* Atmel Studio/GCC

* |AR Embedded Workbench
* Keil uVision

» Standalone makefile system

GCC and Atmel Studio

When generating output for Atmel Studio, an *.atzip file is generated. This file can be opened directly in
Studio.

Compiler options

The various compiler and toolchain options set by default by Atmel START can be examined by right-
clicking on the project name in Studio. The default build configuration is Debug, with debug symbol
generation enabled (-g) and minimum optimization (-O1).

Build system
The project in the *.atzip file can be built directly using Studio's build system. Refer to the Studio
documentation for more information.

IAR Embedded Workbench (EW)

The ASF4 code can be imported into IAR EW. Refer to the Atmel START documentation for more
information.

Keil uVision

The ASF4 code can be imported into Keil uVision. Refer to the Atmel START documentation for more
information.

Embedded Software Coding Style

MISRA 2004 Compliance
ASF4 follows the MISRA 2004 rules with the CMSIS-CORE exceptions.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 50

3.6.2

3.6.21

3.6.2.2

3.6.3

3.6.3.1

3.6.3.2

ASF4 API Reference Manual

Driver Implementation and Design Conventions

Function and Variable Names
* Functions and variables are named using all lower case letters: [a-z] and [0-9]
* Underscore' 'is used to split function and variable names into more logical groups

Example

void this is a function prototype (void);

Rationale
All-lowercase names are easy on the eyes, and it is a very common style to find in C code.

Constants
» Constants are named using all upper case letters: [A-Z] and [0-9]
* Underscore' 'is used to split constant names into more logical groups
* Enumeration constants shall follow this rule

« Constants made from an expression must have braces around the entire expression; single value
constants may skip this

» Constants must always be defined and used instead of "magic numbers" in the code

» Definitions for unsigned integer constants (including hexadecimal values) must use a "u" suffix
* For hexadecimal values, use upper case A-F

* Samme rules apply to enumerations as they are constants too

Example
#define BUFFER_SIZE 512
#define WTK FRAME RESIZE WIDTH (WTK_FRAME RESIZE RADIUS + 1)
enum buffer size = {
BUFFER SIZE A = 128,
BUFFER SIZE B = 512,
bi
Rationale

Constants shall stand out from the rest of the code, and all-uppercase names ensure that. Also, all-
uppercase constants are very common in specification documents and data sheets, from which many
such constants originate. MISRA rule 10.6. MISRA specifies "U", but this is less readable than "u" and
both are accepted. The braces around an expression are vital to avoid an unexpected evaluation. For
example, a constant consisting of two variables added together, which are later multiplied with a variable
in the source code.

#define NUM X PINS (24u)
#define XEDGEGRADIENT_MASK (0x3Fu)
#define NUM MATRIX PINS (NUM_X PINS + NUM Y PINS)

Do not include cast operations types in constant definitions:
#define THIS CONSTANT (uint8 t) (0xO0Fu)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 51

ASF4 API Reference Manual

Driver Implementation and Design Conventions

3.64 Inline Constants
Where a constant value is only to be used once within a particular function, and is not derived from or
related to functionality from another module, it should be defined as an appropriately typed const (using
variable naming conventions) within that function, e.g.:

void this function (void)

{

uint8 t const num x pins = 24u; /* max number of X pins */

3.6.4.1 Rationale
Keeps constant definition close to where it is used and in appropriate scope; avoids a large block of often
unrelated macro definitions.

3.6.5 Variables
Variables should be defined individually on separate lines. Examples:

/* Do like this */

uint8 t x edge dist;

uint8 t y edge dist;

/* Don't do like this */

uint8 t x edge dist, y edge dist;

Constant or volatile variables should be defined with the qualifier following the type. Examples:

/* Do like this */

uint8 t const x edge dist;
uint8 t volatile register status;
/* Don't do like this */

const uint8 t x edge dist;

Variables must only be defined at the start of a source code block (denoted by {} braces). Examples:

void this function (void)
{ uint8 t x edge dist;for (line idx = LINE IDX MIN; line idx <= LINE IDX
_MAX; line idx++) { bool t this flag = FALSE;

3.6.6 Type Definitions
« stdint.h and stdbool.h types must be used when available
» Type definitions are named using all lower case letters: [a-z] and [0-9]
* Underscore ' 'is used to split names into more logical groups
* Every type definition must have a trailing '_t'

3.6.6.1 Example

typedef uint8 t buffer item t;

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 52

ASF4 API Reference Manual

Driver Implementation and Design Conventions

3.6.6.2 Rationale
stdint and stdbool ensures that all drivers on all platforms uses the same set of types with clearly defined
size. Trailing _t follows the same convention used in stdint and stdbool, which clearly differentiate the
type from a variable.

3.6.7 Structures and Unions
« Structures and unions follow the same naming rule as functions and variables
* When the content of the struct shall be kept hidden for the user, typedef shall be used

3.6.7.1 Example

struct cmd {
uint8 t length;
uint8 t *payload;
bi
union cmd parser {
cmd t cmd a;
cmd t cmd b;
}i
typedef struct {
void *hw;
} device handle t;

3.6.8 Functions
Lay out functions as follows, explicitly defining function return type and naming any parameters, and
where possible writing them all on the same line:

return type t function name (paraml t paraml, param2 t param?2)

{

statements;

}

For a function with a long definition, split it over several lines, with arguments on following lines aligned
with the first argument. Example:

uintl6 t this function(uint8 t uint8 value,
char t *char value ptr,
uintl6 t *uintl6 t value ptr);

If a function has more than three parameters, consider passing them via a pointer to a structure that
contains related values, to save compiled code and/or stack space. Using a structure in this way also
avoids having to update a function prototype, and therefore having to update calling software, should
additional parameter values be needed. Use "const correctness" to protect parameters passed via pointer
from being changed by a function. Example:

void this function (uint8 t *value ptr, /
* pointer to value */
uint8 t const *const ptr, /
* pointer to const value */
uint8 t *const const value ptr, /

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 53

ASF4 API Reference Manual

Driver Implementation and Design Conventions

* const pointer to value */
uint8 t const *const const ptr); /
* const pointer to const value */

3.6.9 Return Statement

Every function should have only one return statement, unless there are specific and commented reasons
for multiple return statements e.g. saving compiled code, clarifying functionality.

3.6.9.1 Rationale
MISRA rule 14.7 Easier debugging.

Do not embed conditional compilation inside a return statement. Examples:

/* Don't do like this */
return (
#ifdef PRXXX_ ADDR

(uint32_ t*)PRXXX _ADDR
felse

(uint32_t*)NULL_PTR
#endif
) &
/* Do like this */
uint32 t* addr ptr;

#ifdef PRXXX ADDR

addr ptr = (uint32 t*)PRXXX ADDR;
#else

addr ptr = (uint32 t*)NULL PTR;
#endif

return (addr ptr);

3.6.10 Function like Macro

* Function like macros follow the same naming rules as the functions and variables. This way it is
easier to exchange them for inline functions at a later stage.

* Where possible, function like macros shall be blocked into a do {} while (0)

* Function like macros must never access their arguments more than once

* Al macro arguments as well as the macro definition itself must be parenthesized

» Function like macros shall be avoided if possible, static inline function shall be used instead.

. Functional macros must not refer to local variables from their "host" calling function, but can make
use of global variables or parameters passed into them.

3.6.10.1 Example

#define set io(id) do { \
PORTA |= (1 << (id)): \
} while (0)

3.6.10.2 Rationale
We want function like macros to behave as close to regular functions as possible. This means that they
must be evaluated as a single statement; the do { } while (0) wrapper for "void" macros and surrounding
parentheses for macros returning a value ensure this. The macro arguments must be parenthesized to

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 54

3.6.11

3.6.11.1

3.6.11.2

3.6.12

3.6.12.1

ASF4 API Reference Manual

Driver Implementation and Design Conventions

avoid any surprises related to operator precedence; we want the argument to be fully evaluated before it's
being used in an expression inside the macro. Also, evaluation of some macro arguments may have side
effects, so the macro must ensure it is only evaluated once (sizeof and typeof expressions don't count).

Indentation

* Indentation is done by using the TAB character. This way one ensures that different editor
configurations do not clutter the source code and alignment.

* The TAB characters must be used before expressions/text, for the indentation.

» TAB must not be used after an expression/text, use spaces instead. This will ensure good
readability of the source code independent of the TAB size.

¢ The TAB size shall be fixed to four characters.

Example
enum scsi asc _ascqg {
[TAB] [spaces]
SCSI_ASC NO ADDITIONAL SENSE INFO = 0x0000,
SCSI_ASC LU NOT READY REBUILD IN PROGRESS = 0x0405,
SCSI_ASC WRITE ERROR = 0x0c00,
SCS I_ASC_UNRECOVERED_READ_ERROR = 0x1100,
SCSI_ASC INVALID COMMAND OPERATION CODE = 0x2000,
SCSI ASC INVALID FIELD IN CDB = 0x2400,
SCSI_ASC MEDIUM NOT PRESENT = 0x3a00,
SCSIiASCiINTERNALiTARGETiFAILURE = 0x4400,
}i
Rationale

The size of the TAB character can be different for each developer. We cannot impose a fixed size. In
order to have the best readability, the TAB character can only be used, on a line, before expressions and
text. After expressions and text, the TAB character must not be used, use spaces instead. The entire
point about indentation is to show clearly where a control block starts and ends. With large indentations, it
is much easier to distinguish the various indentation levels from each others than with small indentations
(with two-character indentations it is almost impossible to comprehend a non-trivial function). Another
advantage of large indentations is that it becomes increasingly difficult to write code with increased levels
of nesting, thus providing a good motivation for splitting the function into multiple, more simple units and
thus improve the readability further. This obviously requires the 80-character rule to be observed as well.
If you're concerned that using TABs will cause the code to not line up properly, see the section about
continuation.

Text Formatting

* One line of code, documentation, etc. should not exceed 80 characters, given TAB indentation of
four spaces

» Textlines longer than 80 characters should be wrapped and double indented
Example

/

* This is a comment which is exactly 80 characters wide for example showing
*/

dma pool init coherent (&usbb desc pool, addr, size,

sizeof (struct usbb sw dma desc), USBB DMA DESC ALIGN);

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 55

ASF4 API Reference Manual

Driver Implementation and Design Conventions

#define unhandled case (value)

\
do {
\
if (ASSERT_ENABLED) {
\
dbg printf level (DEBUG ASSERT,
\
"%s:%d: Unhandled case value %d
\n", \
__FILE_, _LINE , (value));
\
abort () ;
\
}
\
} while (0)

3.6.12.2 Rationale
Keeping line width below 80 characters will help identify excessive levels of nesting or if code should be
refactored into separate functions.

3.6.13 Space
* After an expression/text, use spaces instead of the TAB character
* Do not put spaces between parentheses and the expression inside them
* Do not put space between function name and parameters in function calls and function definitions

3.6.13.1 Example

fat dir current sect
= ((uint32_t)
(dclusters[fat dchain index].cluster + fat dchain nb clust - 1)

fat cluster size) + fat ptr data + (nb sect % fat cluster
size);

3.6.14 Continuation
» Continuation is used to break a long expression that does not fit on a single line
* Continuation shall be done by adding an extra TAB to the indentation level

3.6.14.1 Example

static void xmega usb udc submit out queue (struct xmega usb udc *xudc,
usb _ep id t ep id, struct xmega usb udc _ep *ep)
{
(o00)
}
#define xmega usb read(reg) \
mmio read8 ((void *) (XMEGA USB BASE + XMEGA USB

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 56

ASF4 API Reference Manual

Driver Implementation and Design Conventions

\sectionreq))

3.6.14.2 Rationale
By indenting continuations using an extra TAB, we ensure that the continuation will always be easy to
distinguish from code at both the same and the next indentation level. The latter is particularly important
in if, while, and for statements. Also, by not requiring anything to be lined up (which will often cause
things to end up at the same indentation level as the block, which is being started), things will line up
equally well regardless of the TAB size.

3.6.15 Comments

3.6.15.1 Short Comments
Short comments may use the

/* Comment */(...)

3.6.15.2 Long Comments, Comment Blocks
Long (multiline) comments shall use the

/* * Long comment that might wrap multiple lines ... */(...)

3.6.15.3 ss_cs_comment_ind Comment Indentation
Indent comments with the corresponding source code. Example:

for (;;) |
/
* get next token, checking for comments, pausing, and printing */
process token(token, token size);

}

3.6.15.4 Comment Placement
Put comments on lines by themselves, not mixed with the source code. Example:

/* get next token */process token(token, token size);

3.6.15.5 Rationale
Ease of readability, ease of maintenance, makes using file comparison tools easier.

3.6.15.6 Commenting long code
Where a source code block is typically more than 25 lines (so that matching opening/closing braces
cannot be seen together onscreen), add a comment to the end brace of the block to clarify which
conditional block it belongs to. Example:

if (MAX LINE LENGTH <= line length) {
/* ...long block of source code... */
} else { /* MAX LINE LENGTH > line length */
/* ...long block of source code... */
} /* end if (MAX LINE LENGTH <= line length) ...else... */

3.6.16 Braces

* The opening brace shall be put at the end of the line in all cases, except for function definition. The
closing brace is put at the same indent level than the expression

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 57

ASF4 API Reference Manual

Driver Implementation and Design Conventions

* The code inside the braces is indented
* Single line code blocks should also be wrapped in braces

3.6.16.1 Examples

if (byte cnt == MAX CNT) {
do_something () ;
} else {

do something else();

}

3.6.17 Pointer Declaration
When declaring a pointer, link the star (*) to the variable.

3.6.17.1 Example

3.6.17.2 Rationale

uint8 t *pl;

If multiple variable types are declared on the same line, this rule will make it easier to identify the pointers

variables.

3.6.18 Compound Statements
* The opening brace is placed at the end of the line, directly following the parenthesized expression
» The closing brace is placed at the beginning of the line following the body

* Any continuation of the same statement (for example, an 'else’ or 'else if' statement, or the 'while' in
a do/while statement) is placed on the same line as the closing brace

* The body is indented one level more than the surrounding code
* The'if, 'else’, 'do', 'while', and 'switch' keywords are followed by a space

* Where an else if() clause is used, there must be a closing else clause, even if it is empty. MISRA
rule 14.10.

3.6.18.1 Example

if (byte cnt == MAX1 CNT) {
do_something () ;
} else if (byte cnt > MAX1 CNT) ({
do_something else();
} else {
now for something completely different();
}
while (i <= OxFF) {
++1i;
}
do {
Aral g
} while (i <= OxFF);
for (i = 0; i < OxFF; ++i) {
do something () ;
}
/* Following example shows how to break a long expression. */
for (uint8 t i = 0, uint8 t ii = 0, uint8 t iii = 0;
(i < LIMIT I) && (ii < LIMIT II) && (iii == LIMIT III);

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 58

ASF4 API Reference Manual

Driver Implementation and Design Conventions

++i, +4+ii, ++iii) {
do_something () ;

3.6.19 Switch-case Statement
* The switch block follows the same rules as other compound statements
* The case labels are on the same indentation level as the switch keyword
* The break keyword is on the same indentation level as the code inside each label
* The code inside each label is indented
* The switch-case shall always end with a default label
» Labels may be shared where the same statements are required for each

» Should primarly be used for flow control; with any complex processing inside each case being
moved to (inline if appropriate) functions

3.6.19.1 Example

switch (byte cnt) {
case 0:

break;
case 1:
case 2:

break;
default:

}

3.6.20 "Fall-through" Switch-cases

Avoid using "fall-through" from one case to a following case where it saves compiled code and/or reduces
functional complexity, it may be used but must be clearly commented and explained:

case VALUE 1:
statements;
/* no break; - DELIBERATE FALL-
THROUGH TO VALUE 2 CASE TO REDUCE COMPILED CODE SIZE */
case VALUE 2:
statements;
break;

3.6.21 Goto Statments

The goto statement must never be used. The only acceptable label is the default: label in a switch()
statement.

3.6.22 Operators
Do not add spaces between an unary operator (-, |, ~, &, *, ++, etc.) and its operand. Example:

/* Do like this */
X = ++y;

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 59

3.6.23

3.6.23.1

3.6.24
3.6.24.1

ASF4 API Reference Manual

Driver Implementation and Design Conventions

/* Don't do like this */
X = ++ y;

Add a space on either side of a binary operator. Examples:

Restrict use of the ternary operator to simple assignments e.g.:
range setting = (5u <= parm value)
Use braces to clarify operator precedence, even if not strictly required. Example:

a=>b+ (c *d);

Preprocessor Directives
* The # operator must always at the beginning of the line
* The directives are indented (if needed) after the #

Example
#if (UART CONF == UART SYNC)
define INIT CON (UART _EN | UART SYNC |
#elif (UART CONF == UART ASYNC)
define INIT CON (UART_EN | UART ASYNC)
#elif (UART CONF==UART PCM)
define INIT CON (UART EN | UART PCM |
#telse
error Unknown UART configuration
#endif

? RANGE IS HIGH :

RANGE IS LOW;

UART PAUSE)

UART NO_HOLE)

Comment #endif statements to clarify which conditional block they belong to, regardless of how many
lines of source code the block comprises of. This is especially important for nested conditional blocks.

Example:

statements;
#ifdef DEBUG

statements;
#endif /* DEBUG */

Header Files

Include of Header Files

When including header files, one shall use " for files that are included relative to the current file’s path
and <> for files that are included relative to an include path. Essentially, this means that "" is for files that

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 60

3.6.24.2

3.6.25

3.6.26

3.6.26.1

ASF4 API Reference Manual

Driver Implementation and Design Conventions

are included from the ASF module itself, while <> is for files that are included from other ASF modules.
For example, in adc.c, one could include accordingly:

#include <compiler.h>
#include "adc.h"

Header File Guard

Include guards are used to avoid the problem of double inclusion. A module header file include guard
must be in the form MODULE_H_INCLUDED. For example, in adc.h:

#ifndef ADC H INCLUDED
#define ADC_H INCLUDED
#endif /* ADC_H INCLUDED */

Doxygen Comments

Comments that are to appear in Doxygen output shall start with /** characters and end with * / where the
comments refer to the following statement. For example:

/** node index; */
uint8 t node idx;

End-of-line Doxygen comments shall start with /**< characters and end with * /. The < tells Doxygen that
the comment refer to the preceding statement. For example:

uint8 t node idx; /**< node index */

End of File
Each file must end with a new line character i.e. have a final blank line.

Rationale
ISO C99 requirement.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 61

41

4.2

421

4.2.2

423

424

ASF4 API Reference Manual
AC Drivers

AC Drivers

This Analog Comparator (AC) driver provides an interface for voltage comparison of two input channels.
The following driver variants are available:

4.3 AC Synchronous Driver: The driver supports polling for hardware changes, functionality is
synchronous to the main clock of the MCU.

4.2 AC Asynchronous Driver: The driver supports a callback handler for the IRQ caused by
hardware state changes. Functionality is asynchronous to the main clock of the MCU.

AC Basics and Best Practice

An analog comparator compares two analog voltage levels, and outputs a digital value indicating which is
the larger. The comparator has normally two analog inputs, V+ and V-, but internal sources in the MCU
can also be used as source for one of the inputs. The digital output value is outputted on Vout.

AC Asynchronous Driver

In the Analog Comparator (AC) asynchronous driver, a callback function can be registered in the driver by
the application and triggered when comparison is done to let the application know the comparison result.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Hookup callback handlers on comparison done
* Enable or disable AC comparator
« Start single-short comparison if signal-shot mode is enabled (no need to start for continuous mode)

Summary of Configuration Options
Below is a list of the main AC parameters that can be configured in START. Many of these parameters
are used by the 4.2.9.1 ac_async_init function when initializing the driver and underlying hardware.

» Select positive and negative input for AC comparator

» Select single shot or continuous measurement mode

« Filter length and hysteresis setting, etc.

* Runin Standby or Debug mode

* Various aspects of Event control

Driver Implementation Description

After the AC hardware initialization, the application can register the callback function for comparison done
by 4.2.9.5 ac_async_register_callback.

Example of Usage

The following shows a simple example of using the AC. The AC must have been initialized by 4.2.9.1
ac_async_init. This initialization will configure the operation of the AC, such as input pins, single-shot, or
continuous measurement mode, etc.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 62

4.2.5

4.2.6
4.2.6.1

4.2.6.2

4.2.7
4271

4.2.8
4.2.8.1

ASF4 API Reference Manual
AC Drivers

The example registers a callback function for comparison ready and enables comparator 0 of AC, and
then finally starts a voltage comparison on this comparator.

static void ready cb AC O (struct ac_async descriptor *const descr, const ui
nt8 t comp, const uint8 t result)

{
/* Handle date here */

}

/**

* Example of using AC 0 to compare the voltage level.
*/

void AC 0 example (void)

{

ac_async_register callback(&AC 0, AC COMPARISON READY CB, (ac_cb t)read
y _cb AC 0);
ac_async_enable (&AC 0);
ac_async_start comparison (&AC_0, 0);

Dependencies
* The AC peripheral and its related I/O lines and clocks
* The NVIC must be configured so that AC interrupt requests are periodically serviced

Structs

ac_callbacks Struct
AC callbacks.

Members
comparison_ready

ac_async_descriptor Struct
AC descriptor.

Members

device AC HPL device descriptor
cb AC Callback handlers
Enums

ac_callback_type Enum

AC_COMPARISON_READY_CB Comparison ready handler

Typedefs

ac_cb_t typedef
typedef void(* ac_cb_t) (const struct ac_async_descriptor *const descr, const uint8_t comp, const uint8_t
result)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 63

ASF4 API Reference Manual
AC Drivers

AC callback type.

Parameters
descr Direction: in
An AC descriptor
comp Direction: in
Comparator number

result Direction: in

Comparison result, 0 positive input less than negative input, 1 positive input high than negative
input

4.2.9 Functions

4.291 ac_async_init
Initialize AC.

int32 t ac async init(
struct ac_async_descriptor *const descr,
void *const hw

)

This function initializes the given AC descriptor. It checks if the given hardware is not initialized and if the
given hardware is permitted to be initialized.

Parameters
descr Type: struct 4.2.6.2 ac_async_descriptor Struct *const
An AC descriptor to initialize

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

4.29.2 ac_async_deinit
Deinitialize AC.

int32 t ac_async _deinit(
struct ac_async_descriptor *const descr

)

This function deinitializes the given AC descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 64

4.2.9.3

4294

4.2.9.5

ASF4 API Reference Manual
AC Drivers

Parameters

descr Type: struct 4.2.6.2 ac_async_descriptor Struct *const

An AC descriptor to deinitialize

Returns
Type: int32_t

De-initialization status.

ac_async_enable
Enable AC.

int32 t ac_async_enable(
struct ac_async descriptor *const descr

)

This function enables the AC by the given AC descriptor.

Parameters

descr Type: struct 4.2.6.2 ac_async_descriptor Struct *const

An AC descriptor to enable

Returns
Type: int32_t

Enabling status.

ac_async_disable
Disable AC.

int32 t ac_async_disable(
struct ac_async_descriptor *const descr

)

This function disables the AC by the given AC descriptor.

Parameters

descr Type: struct 4.2.6.2 ac_async_descriptor Struct *const

An AC descriptor to disable

Returns
Type: int32_t

Disabling status.

ac_async_register_callback
Register AC callback.
int32 t ac_async register callback(

struct ac_async_descriptor *const descr,
const enum ac callback type type,

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 65

4.2.9.6

4.2.9.7

ASF4 API Reference Manual

AC Drivers

ac_cb t cb

Parameters

descr Type: struct 4.2.6.2 ac_async_descriptor Struct *const

An AC descriptor

type Type: const enum 4.2.7.1 ac_callback_type Enum
Callback type

cb Type: 4.2.8.1 ac_cb_t typedef

A callback function, passing NULL will de-register any registered callback

Returns
Type: int32_t

The status of callback assignment.

-1 Passed parameters were invalid or the AC is not initialized

0 A callback is registered successfully

ac_async_start_comparison
Start comparison.

int32 t ac_async_start comparison (
struct ac_async descriptor *const descr,
uint8 t comp

)

This function starts the AC comparator comparison.

Parameters

descr Type: struct 4.2.6.2 ac_async_descriptor Struct *const
The pointer to AC descriptor

comp Type: uint8_t

Comparator number

Returns
Type: int32_t

The result of comparator n start operation.

ac_async_stop_comparison
Stop comparison.

int32 t ac _async stop comparison (
struct ac_async descriptor *const descr,
uint8 t comp

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 66

ASF4 API Reference Manual
AC Drivers

This function stops the AC comparator comparison.

Parameters

descr Type: struct 4.2.6.2 ac_async_descriptor Struct *const

The pointer to AC descriptor

comp Type: uint8_t

Comparator number

Returns
Type: int32_t

The result of comparator n stop the operation.

4.2.9.8 ac_async_get_version
Retrieve the current driver version.
uint32 t ac_async_get version(

void

)

Returns
Type: uint32_t

Current driver version.

4.3 AC Synchronous Driver

The functions in the Analog Comparator (AC) synchronous driver will block (i.e. not return) until the
operation is done.

The comparison result can be get by 4.3.7.5 ac_sync_get_result, if the return is not ERR_NOT_READY
then it's the result of voltage comparison for two input channels.

4.31 Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Enable or disable the AC comparator
» Start single-short comparison if signal-shot mode is enabled (no need to start for continuous
sampling mode)
* Read back the comparison result

4.3.2 Summary of Configuration Options

Below is a list of the main AC parameters that can be configured in START. Many of these parameters
are used by the 4.3.7.1 ac_sync_init function when initializing the driver and underlying hardware.

» Select positive and negative input for the AC comparator
» Select single shot or continuous measurement mode
* Filter length and hysteresis setting, etc.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 67

433

43.4

4.3.5

4.3.6

4.3.6.1

4.3.7

43.71

ASF4 API Reference Manual
AC Drivers

* Runin Standby or Debug mode
* Various aspects of Event control

Driver Implementation Description

After AC hardware initialization, the comparison result can be get by 4.3.7.5 ac_sync_get_result. If the
AC hardware is configured to single-shot mode, then 4.3.7.6 ac_sync_start_comparison is needed to
start conversion, otherwise the comparator is continuously enabled and performing comparisons.

Example of Usage

The following shows a simple example of using the AC. The AC must have been initialized by 4.3.7.1
ac_sync_init. This initialization will configure the operation of the AC, such as input pins, single-shot, or
continuous measurement mode, etc.

The example enables comparator 0 of AC, and finally starts a voltage comparison on this comparator.

/**
* Example of using AC 0 to compare the voltage level.
*/

void AC 0 example (void)

{
int32 t cmp result;

ac_sync_enable (&AC 0);
ac_sync_start comparison (&AC 0, 0);
while (true) {
cmp_result = ac_sync get result (&AC 0, 0);
}

Dependencies
* The AC peripheral and its related I/O lines and clocks
Structs

ac_sync_descriptor Struct
AC descriptor.

Members

device AC HPL device descriptor

Functions

ac_sync_init
Initialize AC.
int32_t ac_sync_init(
struct ac_sync descriptor *const descr,

void *const hw

)

This function initializes the given AC descriptor. It checks if the given hardware is not initialized and if the
given hardware is permitted to be initialized.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 68

4.3.7.2

43.7.3

ASF4 API Reference Manual
AC Drivers

Parameters
descr Type: struct 4.3.6.1 ac_sync_descriptor Struct *const
An AC descriptor to initialize

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

ac_sync_deinit
Deinitialize AC.

int32 t ac sync deinit(
struct ac sync_descriptor *const descr

)
This function deinitializes the given AC descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.
Parameters

descr Type: struct 4.3.6.1 ac_sync_descriptor Struct *const

An AC descriptor to deinitialize

Returns
Type: int32_t

De-initialization status.

ac_sync_enable
Enable AC.

int32 t ac_sync_enable(
struct ac_sync descriptor *const descr

)

This function enables the AC by the given AC descriptor.

Parameters

descr Type: struct 4.3.6.1 ac_sync_descriptor Struct *const

An AC descriptor to enable

Returns
Type: int32_t

Enabling status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 69

43.7.4

4.3.7.5

4.3.7.6

ASF4 API Reference Manual
AC Drivers

ac_sync_disable
Disable AC.

int32 t ac_sync disable(
struct ac_sync descriptor *const descr
)

This function disables the AC by the given AC descriptor.

Parameters

descr Type: struct 4.3.6.1 ac_sync_descriptor Struct *const

An AC descriptor to disable

Returns
Type: int32_t

Disabling status.

ac_sync_get_result
Read Comparison result.

int32 t ac_sync _get result(
struct ac sync descriptor *const descr,
const uint8_t comp

Parameters
descr Type: struct 4.3.6.1 ac_sync_descriptor Struct *const

The pointer to AC descriptor

comp Type: const uint8_t

Comparator number

Returns
Type: int32_t

The comparison result.

0 The comparison result is 0

1 The comparison result is 1

ERR_NOT_READY The comparison result is not ready or input parameters are not correct.
ac_sync_start_comparison

Start conversion.

int32 t ac_sync start comparison (
struct ac_sync descriptor *const descr,
uint8 t comp

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 70

4.3.7.7

4.3.7.8

ASF4 API Reference Manual
AC Drivers

This function starts single-short comparison if signal-shot mode is enabled.

Parameters

descr Type: struct 4.3.6.1 ac_sync_descriptor Struct *const
The pointer to AC descriptor

comp Type: uint8_t

Comparator number

Returns
Type: int32_t

Start Comparator n start Comparison.

ac_sync_stop_comparison
Stop conversion.

int32 t ac_sync stop comparison (
struct ac_sync descriptor *const descr,
uint8 t comp

)

This function stops single-short comparison if signal-shot mode is enabled.

Parameters

descr Type: struct 4.3.6.1 ac_sync_descriptor Struct *const
The pointer to AC descriptor

comp Type: uint8_t

Comparator number

Returns
Type: int32_t

Start Comparator n start Comparison.

ac_sync_get_version
Retrieve the current driver version.

uint32 t ac_sync get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 71

5.1

ASF4 API Reference Manual
ADC Drivers

ADC Drivers

This Analog to Digital Converter (ADC) driver provides an interface for the conversion of analog voltage
to digital value.

The following driver variants are available:

5.5 ADC Synchronous Driver: The driver will block there (i.e. not return) until the requested data
has been read. Functionality is therefore synchronous to the calling thread, i.e. the thread will wait
for the result to be ready. The 5.5.7.5 adc_sync_read_channel function will perform a conversion of
the voltage on the specified channel and return the result when it is ready.

5.2 ADC Asynchronous Driver: The driver 5.2.9.7 adc_async_read_channel function will attempt
to read the required number of conversion results from a ring buffer. It will return immediately (i.e.
not block), even if the requested number of data is not available. If data was not available, or less
data than requested was available, this will be indicated in the function's return value. The
asynchronous driver uses interrupts to communicate that ADC data is available, and the driver's
IRQ handler reads data from hardware and into ring buffers in memory. These ring buffers decouple
the generation of data in the ADC with the timing of the application request for this data. In a way,
the producer and consumer events are asynchronous to each other. The user can register a
callback function to piggyback on the IRQ handler routine for communicating with the main
application.

+ 5.4 ADC RTOS Driver: The driver is intended to use ADC functions in a Real-Time operating
system, i.e. is thread safe.

5.3 ADC DMA Driver: The driver uses a DMA system to transfer data from ADC to a memory buffer
in RAM.

ADC Basics and Best Practice

An Analog-to-Digital Converter (ADC) converts analog signals to digital values. A reference signal with a
known voltage level is quantified into equally sized chunks, each representing a digital value from 0 to the
highest number possible with the bit resolution supported by the ADC. The input voltage measured by the
ADC is compared against these chunks and the chunk with the closest voltage level defines the digital
value that can be used to represent the analog input voltage level.

Normally an ADC can operate in either differential or single-ended mode. In differential mode two signals
(V+ and V-) are compared against each other and the resulting digital value represents the relative
voltage level between V+ and V-. This means that if the input voltage level on V+ is lower than on V- the
digital value is negative, which also means that in differential mode one bit is lost to the sign. In single-
ended mode only V+ is compared against the reference voltage, and the resulting digital value can only
be positive, but the full bit-range of the ADC can be used.

Normally multiple resolutions are supported by the ADC. Lower resolution can reduce the conversion
time, but lose accuracy.

Some ADCs have a gain stage on the input lines, which can be used to increase the dynamic range. The
default gain value is normally x1, which means that the conversion range is from 0V to the reference
voltage. Applications can change the gain stage to increase or reduce the conversion range.

The window mode allows the conversion result to be compared to a set of predefined threshold values.
Applications can use the callback function to monitor if the conversion result exceeds the predefined
threshold value.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 72

5.2

5.21

5.2.2

5.2.3

5.2.3.1

ASF4 API Reference Manual
ADC Drivers

Normally multiple reference voltages are supported by the ADC, both internal and external, with different
voltage levels. The reference voltage have an impact on the accuracy, and should be selected to cover
the full range of the analog input signal and never less than the expected maximum input voltage.

There are two conversion modes supported by ADC: single shot and free running. In single shot mode
the ADC make only one conversion when triggered by the application. In free running mode it continues
to make conversion from it is triggered until it is stopped by the application. When window monitoring, the
ADC should be set to free running mode.

ADC Asynchronous Driver

The Analog to Digital Converter (ADC) asynchronous driver 5.2.9.7 adc_async_read_channel function
will attempt to read the required number of conversion results from a ring buffer. It will return immediately
after call (i.e. not block) if the requested number of data is not available. If data was not available, or less
data than requested was available, this will be indicated in the function's return value.

The asynchronous driver uses interrupts to communicate that the ADC data is available, and the IRQ
handler reads data from hardware and into ring buffers in memory. These ring buffers decouple the
generation of data in the ADC with the timing of the application request for this data. In a way, the
producer and consumer events are asynchronous to each other. The user can register a callback
function to piggyback on the IRQ handler routine for communicating with the main application.

Summary of the API's Functional Features

The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Select single shot or free running conversion modes
» Configure major ADC properties such as resolution and reference source
* Hookup callback handlers on conversion done, error, and monitor events
» Start ADC conversion
* Read back conversion results

Summary of Configuration Options

Below is a list of the main ADC parameters that can be configured in START. Many of these parameters
are used by the 5.2.9.1 adc_async_init function when initializing the driver and underlying hardware.
Most of the initial values can be overridden and changed runtime by calling the appropriate API functions,
such as 5.2.9.10 adc_async_set_resolution.

» Selecting which ADC input channels to enable for positive and negative input
* Which clock source and prescaler the ADC uses

* Various aspects of Event control

+ Single shot or free running conversion modes

» Sampling properties such as resolution, window mode, and reference source
* Runin Standby or Debug mode

Driver Implementation Description

Channel Map

The ADC asynchronous driver uses a channel map buffer to map the channel number of each enabled
channel and the index of the descriptor for the channel.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 73

ASF4 API Reference Manual
ADC Drivers

The channel map is an array defined as follows:

static uint8 t ADC_0 map[ADC 0 CH MAX+1];

The index of the channel map buffer is the channel number, and the value of the channel map buffer is
the index of the channel descriptor. For example, when registering (using 5.2.9.3
adc_async_register_channel_buffer) channel_1, channel_5, and channel_9 in sequence, the value of
channel_map[1] is O, the value of channel_map[5] is 1, and the value of channel_map[9] is 2.

5.2.3.2 Ring Buffer
The ADC asynchronous driver uses a ring buffer to store ADC sample data. When the ADC raise the
sample complete the interrupt, and a copy of the ADC sample register is stored in the ring buffer at the
next free location. This will happen regardless of the ADC being in one shot mode or in free running
mode. When the ring buffer is full, the next sample will overwrite the oldest sample in the ring buffer.

The 5.2.9.7 adc_async_read_channel function reads bytes from the ring buffer. For ADC sample size
larger than 8-bit the read length has to be a power-of-two number greater than or equal to the sample
size.

5.24 Example of Usage
The following shows a simple example of using the ADC. The ADC must have been initialized by 5.2.9.1
adc_async_init. This initialization will configure the operation of the ADC, such as single-shot or
continuous mode, etc.

The example hooks up a callback handler to be called every time conversion is complete, thereafter
enables channel 0 of ADCO, and finally starts a conversion on this channel.

uint32 t number of conversions = 0;
uint8 t Dbuffer[32];
/*

* Example of callback function called by the ADC IRQ handler when conversi
on is complete.
* The printf-
string is printed every time a conversion is complete.

*/

static void convert cb ADC 0(const struct adc_async descriptor *const descr
, const uint8 t channel)
{
number of conversions++;
printf ("Number of conversions is now: %d
\n", number of conversions);
}
/**
* Example of using ADC 0 to generate waveform.
*/
void ADC 0 example (void)
{

adc_async_register callback(&ADC 0, 0, ADC_ASYNC CONVERT CB, convert cb
_ADC 0);
adc_async_enable channel (&ADC 0, 0);
adc_async_start conversion (&ADC 0) ;
/* Attempt to read 4 conversion results into buffer */

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 74

ASF4 API Reference Manual
ADC Drivers

int32 t conversions read = adc async read channel (&ADC 0, 0, buffer, 4)

}

5.2.5 Dependencies
* The ADC peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that ADC interrupt requests are periodically serviced

5.2.6 Structs

5.2.6.1 adc_async_callbacks Struct
ADC callbacks.

Members
monitor Monitor callback
error Error callback

5.2.6.2 adc_async_ch_callbacks Struct
ADC channel callbacks.

Members

convert_done Convert done callback

5.2.6.3 adc_async_channel_descriptor Struct
ADC channel buffer descriptor.

Members

adc_async_ch_cb ADC channel callbacks type
convert Convert buffer
bytes_in_buffer Bytes in buffer

5.2.6.4 adc_async_descriptor Struct
ADC descriptor.

Members

device ADC device

adc_async_cb ADC callbacks type

channel_map Enabled channel map
channel_max Enabled maximum channel number
channel_amount Enabled channel amount

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 75

5.2.7

5.2.7.1

5.2.8

5.2.8.1

5.29

5.2.91

ASF4 API Reference Manual
ADC Drivers

descr_ch

Enums

ADC channel descriptor

adc_async_callback_type Enum

ADC_ASYNC_CONVERT_CB ADC convert done callback
ADC_ASYNC_MONITOR_CB ADC monitor callback
ADC_ASYNC_ERROR_CB ADC error callback
Typedefs

adc_async_cb_t typedef

typedef void(* adc_async_cb_t) (const struct adc_async_descriptor *const descr, const uint8_t channel)

ADC callback type.

Functions

adc_async_init
Initialize ADC.

int32 t adc _async init(
struct adc_async descriptor *const descr,

void *const hw,

uint8 t * channel map,

uint8 t channel max,

uint8 t channel amount,

struct adc_async channel descriptor *const descr ch,

void *const func

)

This function initializes the given ADC descriptor. It checks if the given hardware is not initialized and if
the given hardware is permitted to be initialized.

Parameters

descr

hw

channel_map

channel_max

channel_amount

Type: struct 5.2.6.4 adc_async_descriptor Struct *const
An ADC descriptor to initialize

Type: void *const

The pointer to hardware instance

Type: uint8_t*

The pointer to ADC channel mapping

Type: uint8_t

ADC enabled maximum channel number

Type: uint8_t

ADC enabled channel amount

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 76

5.29.2

5.29.3

ASF4 API Reference Manual
ADC Drivers

descr_ch Type: struct 5.2.6.3 adc_async_channel_descriptor Struct *const

A buffer to keep all channel descriptor

func Type: void *const

The pointer to as set of functions pointers

Returns
Type: int32_t

Initialization status.

-1 Passed parameters were invalid or an ADC is already initialized

0 Theinitialization is completed successfully

adc_async_deinit
Deinitialize ADC.

int32 t adc_async deinit(
struct adc_async descriptor *const descr

)

This function deinitializes the given ADC descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.

Parameters
descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const

An ADC descriptor to deinitialize

Returns
Type: int32_t

De-initialization status.

adc_async_register_channel_buffer
Register ADC channel buffer.

int32 t adc_async register channel buffer(
struct adc_async descriptor *const descr,
const uint8_t channel,
uint8 t *const convert buffer,
const uintl6_t convert buffer length

)

This function initializes the given ADC channel buffer descriptor.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
An ADC descriptor to initialize

channel Type: const uint8_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 77

5.2.94

5.2.9.5

ASF4 API Reference Manual
ADC Drivers

Channel number

convert_buffer Type: uint8_t *const

A buffer to keep converted values

convert_buffer_length Type: const uint16_t

The length of the buffer above

Returns
Type: int32_t

Initialization status.

-1 Passed parameters were invalid or an ADC is already initialized

0 Theinitialization is completed successfully

adc_async_enable_channel
Enable channel of ADC.

int32 t adc_async enable channel (
struct adc_async _descriptor *const descr,
const uint8 t channel

)

Use this function to set the ADC peripheral to enabled state.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
Pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

Operation status.

adc_async_disable_channel
Disable channel of ADC.

int32 t adc_async disable channel (
struct adc_async descriptor *const descr,
const uint8 t channel

)

Use this function to set the ADC peripheral to disabled state.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 78

5.2.9.6

5.2.9.7

ASF4 API Reference Manual

ADC Drivers

Pointer to the ADC descriptor

channel Type: const uint8_t

Channel number

Returns
Type: int32_t

Operation status.

adc_async_register_callback
Register ADC callback.

int32 t adc async register callback(
struct adc_async descriptor *const descr,
const uint8 t channel,
const enum adc_async callback type type,
adc_async_cb t cb

Parameters
io_descr An adc descriptor
channel Type: const uint8_t
Channel number
type Type: const enum 5.2.7.1 adc_async_callback_type Enum
Callback type
cb Type: 5.2.8.1 adc_async_cb_t typedef
A callback function, passing NULL de-registers callback
Returns
Type: int32_t

The status of callback assignment.
-1 Passed parameters were invalid or the ADC is not initialized

0 A callback is registered successfully

adc_async_read_channel
Read data from the ADC.

int32 t adc_async_read channel (
struct adc_async_descriptor *const descr,
const uint8_t channel,
uint8 t *const buffer,
const uintl6_t length

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 79

5.2.9.8

5.2.9.9

ASF4 API Reference Manual

ADC Drivers
Parameters
descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor
channel Type: const uint8_t
Channel number
buf A buffer to read data to
length Type: const uint16_t
The size of a buffer
Returns
Type: int32_t

The number of bytes read.

adc_async_start_conversion
Start conversion.

int32 t adc _async start conversion (
struct adc_async descriptor *const descr

)

This function starts single conversion if no automatic (free-run) mode is enabled.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const

The pointer to the ADC descriptor

Returns
Type: int32_t

Start conversion status.

adc_async_set_reference
Set ADC reference source.

int32 t adc async set reference(
struct adc_async descriptor *const descr,
const adc_reference t reference

)

This function sets ADC reference source.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

reference Type: const adc_reference_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 80

5.2.9.10

5.2.9.11

ASF4 API Reference Manual
ADC Drivers

A reference source to set

Returns
Type: int32_t

Status of the ADC reference source setting.

adc_async_set_resolution
Set ADC resolution.

int32 t adc async set resolution(
struct adc_async descriptor *const descr,
const adc_resolution t resolution

)

This function sets ADC resolution.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

resolution Type: const adc_resolution_t
A resolution to set

Returns

Type: int32_t

Status of the ADC resolution setting.

adc_async_set_inputs
Set ADC input source of a channel.

int32 t adc_async_set inputs(
struct adc_async_descriptor *const descr,
const adc_pos input t pos input,
const adc _neg input t neg_ input,
const uint8 t channel

)

This function sets the ADC positive and negative input sources.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

pos_input Type: const adc_pos_input_t
A positive input source to set

neg_input Type: const adc_neg_input_t

A negative input source to set

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 81

5.2.9.12

5.2.9.13

ASF4 API Reference Manual
ADC Drivers

channel Type: const uint8_t

Channel number

Returns
Type: int32_t

Status of the ADC channels setting.

adc_async_set_conversion_mode
Set ADC conversion mode.

int32 t adc_async_set conversion_mode (
struct adc_async_descriptor *const descr,
const enum adc conversion mode mode

)

This function sets ADC conversion mode.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const

The pointer to the ADC descriptor

mode Type: const enum adc_conversion_mode

A conversion mode to set

Returns
Type: int32_t

Status of the ADC conversion mode setting.

adc_async_set_channel_differential_mode
Set ADC differential mode.

int32 t adc_async_set channel differential mode (
struct adc_async descriptor *const descr,
const uint8 t channel,
const enum adc_differential mode mode

)

This function sets ADC differential mode.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

mode Type: const enum adc_differential_mode

A differential mode to set

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 82

ASF4 API Reference Manual
ADC Drivers

Returns
Type: int32_t

Status of the ADC differential mode setting.

5.2.9.14 adc_async_set_channel_gain
Set ADC channel gain.

int32 t adc_async set channel gain(
struct adc_async descriptor *const descr,
const uint8_t channel,
const adc_gain_t gain

)

This function sets ADC channel gain.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

gain Type: const adc_gain_t
A gain to set

Returns

Type: int32_t

Status of the ADC gain setting.

5.2.9.15 adc_async_set_window_mode
Set ADC window mode.

int32 t adc_async set window_mode (
struct adc_async descriptor *const descr,
const adc window _mode t mode

)

This function sets ADC window mode.

Parameters
descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

mode Type: const adc_window_mode_t

A window mode to set

Returns
Type: int32_t

Status of the ADC window mode setting.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 83

ASF4 API Reference Manual
ADC Drivers

5.2.9.16 adc_async_set_thresholds
Set ADC thresholds.

int32 t adc_async_set thresholds (
struct adc_async descriptor *const descr,
const adc threshold t low threshold,
const adc_threshold t up_threshold

)

This function sets the ADC positive and negative thresholds.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

low_threshold Type: const adc_threshold t
A lower thresholds to set

up_threshold Type: const adc_threshold_t
An upper thresholds to set

Returns

Type: int32_t

Status of the ADC thresholds setting.

5.2.9.17 adc_async_get_threshold_state
Retrieve threshold state.

int32 t adc_async _get threshold state(
const struct adc_async descriptor *const descr,
adc_threshold status_t *const state

)

This function retrieves ADC threshold state.

Parameters
descr Type: const struct 5.2.6.4 adc_async_descriptor Struct *const

The pointer to the ADC descriptor

state Type: adc_threshold_status_t *const

The threshold state

Returns
Type: int32_t

The state of ADC thresholds state retrieving.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 84

ASF4 API Reference Manual
ADC Drivers

5.2.9.18 adc_async_is_channel_conversion_complete
Check if conversion is complete.

int32 t adc_async_is channel conversion complete (
const struct adc_async descriptor *const descr,
const uint8_t channel

)

This function checks if the ADC has finished the conversion.

Parameters

descr Type: const struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

The status of the ADC conversion completion checking.
1 The conversion is complete

0 The conversion is not complete

5.2.9.19 adc_async_flush_rx_buffer
Flush ADC ringbuf.

int32_t adc_async_flush rx buffer (
struct adc_async _descriptor *const descr,
const uint8 t channel

)

This function flush ADC RX ringbuf.

Parameters

descr Type: struct 5.2.6.4 adc_async_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

ERR_NONE

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 85

ASF4 API Reference Manual
ADC Drivers

5.2.9.20 adc_async_get_version

5.3

5.3.1

5.3.2

5.3.3
5.3.3.1

5.3.4

Retrieve the current driver version.

uint32 t adc async get version(
void

)

Returns
Type: uint32_t

Current driver version.

ADC DMA Driver

The Analog to Digital Converter (ADC) DMA driver uses DMA system to transfer data from ADC to a
memory buffer in RAM. User must configure DMAC system driver accordingly. To set memory buffer and
its size 5.3.9.6 adc_dma_read function is used. This function programs DMA to transfer the results of
input signal conversion to the given buffer. A callback is called when all the data is transfered, if it is
registered via 5.3.9.5 adc_dma_register_callback function.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Select single shot or free running conversion modes
» Configure major ADC properties such as resolution and reference source
* Notification via callback about errors and transfer completion

Summary of Configuration Options

Below is a list of the main ADC parameters that can be configured in START. Many of these parameters
are used by the 5.3.9.1 adc_dma_init function when initializing the driver and underlying hardware. Most
of the initial values can be overridden and changed runtime by calling the appropriate API functions, such
as 5.3.9.9 adc_dma_set_resolution.

» Selecting which ADC input channels to enable for positive and negative input
* Which clock source and prescaler the ADC uses

* Various aspects of Event control

» Single shot or free running conversion modes

» Sampling properties such as resolution, window mode, and reference source
* Runin Standby or Debug mode

DMA is a system driver in START and can be enabled and configured there.

Driver Implementation Description

Dependencies
* ADC hardware with result ready/conversion done and error interrupts

Example of Usage

The following shows a simple example of using the DMA to transfer ADC results into RAM buffer. User
must configure DMAC system driver accordingly in START.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 86

ASF4 API Reference Manual
ADC Drivers

The ADC must have been initialized by 5.3.9.1 adc_dma_init. This initialization will configure the
operation of the ADC, such as resolution and reference source, etc.

/* The buffer size for ADC */
#define ADC_0 BUFFER SIZE 16
static uint8 t ADC 0 buffer[ADC 0 BUFFER SIZE];

static void convert cb ADC 0 (const struct adc dma descriptor *const descr)

{
}

/**
* Example of using ADC 0 to generate waveform.
*/
void ADC 0 example (void)
{
adc_dma register callback(&ADC 0, ADC DMA COMPLETE CB, convert cb ADC 0

);
adc_dma enable channel (&§ADC 0, 0);
adc_dma_read(&ADC 0, ADC 0 buffer, ADC 0 BUFFER SIZE);

5.3.5 Dependencies
* The ADC peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that ADC interrupt requests are periodically serviced
- DMA

5.3.6 Structs

5.3.6.1 adc_dma_callbacks Struct
ADC callbacks.

Members
convert_done DMA convert done callback
error DMA Error callback

5.3.6.2 adc_dma_descriptor Struct
ADC descriptor.

Members

device ADC device
adc_dma_cb ADC callbacks
resource ADC DMA resource

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 87

5.3.7

5.3.71

5.3.8
5.3.8.1

5.3.9

5.3.9.1

5.3.9.2

ASF4 API Reference Manual
ADC Drivers

Enums

adc_dma_callback_type Enum

ADC_DMA_COMPLETE_CB ADC DMA complete callback
ADC_DMA_ERROR_CB ADC DMA error callback
Typedefs

adc_dma_cb_t typedef
typedef void(* adc_dma_cb_t) (const struct adc_dma_descriptor *const descr)

ADC callback type.

Functions

adc_dma_init
Initialize ADC.

int32 t adc _dma_ init(
struct adc dma descriptor *const descr,
void *const hw

)
This function initializes the given ADC descriptor. It checks if the given hardware is not initialized and if
the given hardware is permitted to be initialized.
Parameters
descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const

An ADC descriptor to initialize

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

-1 Passed parameters were invalid or an ADC is already initialized
0 Theinitialization is completed successfully

adc_dma_deinit

Deinitialize ADC.

int32 t adc dma deinit(
struct adc_dma descriptor *const descr

)

This function deinitializes the given ADC descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 88

5.3.9.3

5.3.94

ASF4 API Reference Manual
ADC Drivers

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const

An ADC descriptor to deinitialize

Returns
Type: int32_t

De-initialization status.

adc_dma_enable_channel
Enable ADC.

int32 t adc_dma enable channel (
struct adc _dma descriptor *const descr,
const uint8_t channel

)

Use this function to set the ADC peripheral to enabled state.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const
Pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

Operation status

adc_dma_disable_channel
Disable ADC.

int32 t adc_dma disable channel (
struct adc_dma_descriptor *const descr,
const uint8 t channel

)

Use this function to set the ADC peripheral to disabled state.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const
An ADC descriptor

channel Type: const uint8_t

Channel number

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 89

5.3.9.5

5.3.9.6

ASF4 API Reference Manual

ADC Drivers

Returns
Type: int32_t

Operation status

adc_dma_register_callback
Register ADC callback.

int32 t adc dma register callback(
struct adc_dma descriptor *const descr,
const enum adc _dma_callback type type,
adc dma cb t cb

Parameters

io_descr An ADC descriptor

type Type: const enum 5.3.7.1 adc_dma_callback type Enum
Callback type

cb Type: 5.3.8.1 adc_dma_cb _t typedef
A callback function, passing NULL de-registers callback

Returns

Type: int32_t

The status of the callback assignment.
-1 Passed parameters were invalid or the ADC is not initialized

0 A callback is registered successfully

adc_dma_read
Read data from ADC.

int32 t adc_dma_ read(
struct adc_dma descriptor *const descr,
uint8 t *const buffer,
const uintlé6_t length

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const
The pointer to the ADC descriptor

buf A buffer to read data to

length Type: const uint16_t

The size of a buffer

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 90

5.3.9.7

5.3.9.8

5.3.9.9

ASF4 API Reference Manual
ADC Drivers

Returns
Type: int32_t

The number of bytes read.

adc_dma_start_conversion
Start conversion.

int32 t adc_dma start conversion(
struct adc _dma descriptor *const descr

)

This function starts the single conversion if no automatic (free-run) mode is enabled.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const

The pointer to the ADC descriptor

Returns
Type: int32_t

Start conversion status.

adc_dma_set_reference
Set ADC reference source.

int32 t adc dma set reference(
struct adc_dma descriptor *const descr,

const adc_reference t reference

)

This function sets ADC reference source.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const
The pointer to the ADC descriptor

reference Type: const adc_reference_t
A reference source to set

Returns

Type: int32_t

Status of the ADC reference source setting.

adc_dma_set_resolution
Set ADC resolution.
int32 t adc dma set resolution(

struct adc dma descriptor *const descr,
const adc resolution t resolution

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 91

ASF4 API Reference Manual
ADC Drivers

This function sets ADC resolution.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const
The pointer to the ADC descriptor

resolution Type: const adc_resolution_t
A resolution to set

Returns

Type: int32_t

Status of the ADC resolution setting.

5.3.9.10 adc_dma_set_inputs
Set ADC input source of a channel.

int32 t adc_dma_ set inputs(
struct adc _dma descriptor *const descr,
const adc_pos input t pos input,
const adc_neg input t neg input,
const uint8 t channel

)

This function sets ADC positive and negative input sources.

Parameters
descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const
The pointer to the ADC descriptor
pos_input Type: const adc_pos_input_t
A positive input source to set
neg_input Type: const adc_neg_input_t
A negative input source to set
channel Type: const uint8_t
Channel number
Returns
Type: int32_t

Status of the ADC channels setting.

5.3.9.11 adc_dma_set_conversion_mode
Set ADC conversion mode.

int32 t adc dma set conversion mode (
struct adc _dma descriptor *const descr,
const enum adc conversion mode mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 92

ASF4 API Reference Manual
ADC Drivers

This function sets ADC conversion mode.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const

The pointer to the ADC descriptor

mode Type: const enum adc_conversion_mode

A conversion mode to set

Returns
Type: int32_t

Status of the ADC conversion mode setting.

5.3.9.12 adc_dma_set_channel_differential_mode
Set ADC differential mode.

int32 t adc dma set channel differential mode (
struct adc dma descriptor *const descr,
const uint8_ t channel,
const enum adc differential mode mode

)

This function sets the ADC differential mode.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

mode Type: const enum adc_differential_mode
A differential mode to set

Returns

Type: int32_t

Status of the ADC differential mode setting.

5.3.9.13 adc_dma_set_channel_gain
Set ADC channel gain.

int32 t adc _dma set channel gain(
struct adc _dma descriptor *const descr,
const uint8_t channel,
const adc_gain_ t gain

)

This function sets ADC channel gain.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 93

ASF4 API Reference Manual

ADC Drivers

Parameters
descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const

The pointer to the ADC descriptor
channel Type: const uint8_t

Channel number
gain Type: const adc_gain_t

A gain to set
Returns
Type: int32_t

Status of the ADC gain setting.

5.3.9.14 adc_dma_set_window_mode
Set ADC window mode.

int32 t adc dma set window mode (
struct adc _dma descriptor *const descr,
const adc_window mode t mode

)

This function sets ADC window mode.

Parameters
descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const

The pointer to the ADC descriptor

mode Type: const adc_window_mode_t

A window mode to set

Returns
Type: int32_t

Status of the ADC window mode setting.

5.3.9.15 adc_dma_set_thresholds
Set ADC thresholds.

int32 t adc_dma set thresholds(
struct adc_dma descriptor *const descr,
const adc threshold t low threshold,
const adc_threshold t up_threshold

)

This function sets ADC positive and negative thresholds.

Parameters

descr Type: struct 5.3.6.2 adc_dma_descriptor Struct *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 94

ASF4 API Reference Manual
ADC Drivers

The pointer to the ADC descriptor

low_threshold Type: const adc_threshold_t

A lower thresholds to set

up_threshold Type: const adc_threshold_t

An upper thresholds to set

Returns
Type: int32_t

Status of the ADC thresholds setting.

5.3.9.16 adc_dma_get_threshold_state
Retrieve threshold state.

int32 t adc_dma get threshold state(
const struct adc _dma descriptor *const descr,
adc_threshold status t *const state

)

This function retrieves ADC threshold state.

Parameters

descr Type: const struct 5.3.6.2 adc_dma_descriptor Struct *const

The pointer to the ADC descriptor

state Type: adc_threshold_status_t *const

The threshold state

Returns
Type: int32_t

The state of ADC thresholds state retrieving.

5.3.9.17 adc_dma_is_conversion_complete
Check if conversion is complete.

int32 t adc dma is conversion complete (
const struct adc_dma descriptor *const descr

)

This function checks if ADC has finished the conversion.

Parameters
descr Type: const struct 5.3.6.2 adc_dma_descriptor Struct *const

The pointer to the ADC descriptor

Returns
Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 95

5.3.9.18

5.4

5.4.1

5.4.2

543

ASF4 API Reference Manual
ADC Drivers

The status of ADC conversion completion checking.
1 The conversion is complete

0 The conversion is not complete

adc_dma_get_version
Retrieve the current driver version.

uint32 t adc dma get version(
void

)

Returns
Type: uint32_t

Current driver version.

ADC RTOS Driver

The Analog to Digital Converter (ADC) RTOS driver is intended to use ADC functions in a Real-Time
operating system, i.e. is thread safe.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Select single shot or free running conversion modes
» Configure major ADC properties such as resolution and reference source
» Start ADC conversion
* Read back conversion results

Summary of Configuration Options

Below is a list of the main ADC parameters that can be configured in START. Many of these parameters
are used by the 5.4.7.1 adc_os_init function when initializing the driver and underlying hardware. Most of
the initial values can be overridden and changed runtime by calling the appropriate API functions, such as
5.4.7.9 adc_os_set_resolution.

» Selecting which ADC input channels to enable for positive and negative input
* Which clock source and prescaler the ADC uses

* Various aspects of Event control

+ Single shot or free running conversion modes

» Sampling properties such as resolution, window mode, and reference source
* Runin Standby or Debug mode

Driver Implementation Description

The convert functions of the ADC RTOS driver are optimized for RTOS support. That is, the convert
functions will not work without RTOS. The convert functions should only be called in an RTOS task or
thread.

The ADC OS driver use a ring buffer to store ADC sample data. When the ADC raise the sample
complete interrupt, a copy of the ADC sample register is stored in the ring buffer at the next free location.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 96

5.4.4

ASF4 API Reference Manual
ADC Drivers

This will happen regardless of if the ADC is in one shot mode or in free running mode. When the ring
buffer is full, the next sample will overwrite the oldest sample in the ring buffer.

To read the samples from the ring buffer, the function 5.4.7.6 adc_os_read_channel is used. This
function reads the number of bytes asked for from the ring buffer, starting from the oldest byte. If the
number of bytes asked for are more than currently available in the ring buffer, or more than ringbuf size,
the task/thread will be blocked until read done. If the number of bytes asked for is less than the available
bytes in the ring buffer, the remaining bytes will be kept until a new call. The 5.4.7.6
adc_os_read_channel function will return the number of bytes that want to read from the buffer back to
the caller.

During data conversion, the ADC convert process is not protected, so that a more flexible way can be
chosen in the application if multi-task/thread access.

Example of Usage

The following shows a simple example of using the ADC. The ADC must have been initialized by 5.4.7.1
adc_os_init. This initialization will configure the operation of the ADC, such as single-shot or continuous
mode, etc.

The example creates two tasks for channel 0 of ADCO: convert task and read task, and finally starts the
RTOS task scheduler.

/**
* Example convert task of using ADC 0.
*/
void ADC 0 example convert task(void *p)
{
(void)p;
adc_os_enable channel (&ADC 0, 0);
while (1) {
adc_os start conversion (&ADC 0);
os_sleep(10);

}
/**
* Example read task of using ADC O.
*/
void ADC 0 example read task(void *p)
{
uint8 t adc values([8];
uint8 t num = 0;
(void)p;
while (1) {
num = adc_os_read channel (&ADC 0, 0, adc_values, 8);

if (num == 8) {
/* read OK, handle data. */;
} else {

/* error. */;
}
}
}

#define TASK ADC_CONVERT STACK SIZE (256/
sizeof (portSTACK TYPE))
#define TASK ADC CONVERT PRIORITY (tskIDLE_PRIORITY + 1)
#define TASK ADC_READ STACK SIZE (256/
sizeof (portSTACK TYPE))
#define TASK ADC READ STACK PRIORITY (tskIDLE_PRIORITY + 1)

static TaskHandle t xAdcConvertTask;

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 97

ASF4 API Reference Manual
ADC Drivers

static TaskHandle t xAdcReadTask;

int main (void)

{
/* Initializes MCU, drivers and middleware */
atmel start init();
/* Create ADC convert task */

if (xTaskCreate (ADC 0 example convert task, "ADC convert", TASK ADC CON
VERT STACK SIZE,
NULL,
TASK_ADC_CONVERT_PRIORITY, &xAdcConvertTask) !
= pdPASS) {
while (1) {

}

}
/* Create ADC read task */

if (xTaskCreate (ADC 0 example read task, "ADC read", TASK ADC READ STAC
K _SIZE,
NULL,
TASK_ADC_READ STACK PRIORITY, &xAdcReadTask) !
= pdPASS) {
while (1) {
}

}
/* Start RTOS scheduler */

vTaskStartScheduler () ;

/* Replace with your application code */
while (1) {

}

5.4.5 Dependencies
* The ADC peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that ADC interrupt requests are periodically serviced
+ RTOS

5.4.6 Structs

5.4.6.1 adc_os_channel_descriptor Struct
ADC os channel buffer descriptor.

Members

convert Storage the ADC convert data
rx_sem ADC read data semaphore

rxbuf Pointer to data buffer to RX

size Size of data characters in RX

num The user wants to read data number

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 98

5.4.6.2

5.4.7
5.4.7.1

ASF4 API Reference Manual
ADC Drivers

adc_os_descriptor Struct
ADC descriptor.

Members

device Pointer to ADC device instance

descr_ch Pointer to ADC os channel instance
monitor_sem ADC window_threshold_reached semaphore
channel_map Enabled channel map

channel_max Enabled maximum channel number
channel_amount Enabled channel amount

Functions

adc_os_init

Initialize ADC.

int32 t adc os_init(

struct adc os descriptor *const descr,

void *const hw,

uint8_t * channel map,

uint8 t channel max,

uint8 t channel amount,

struct adc_os channel descriptor *const descr ch
)

This function initializes the given ADC descriptor. It checks if the given hardware is not initialized and if
the given hardware is permitted to be initialized.

Parameters
descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
An ADC descriptor to initialize
hw Type: void *const
The pointer to hardware instance
channel_map Type: uint8_t*
The pointer to adc channel mapping
channel_max Type: uint8_t
ADC enabled maximum channel number
channel_amount Type: uint8_t
ADC enabled channel amount
descr_ch Type: struct 5.4.6.1 adc_os_channel_descriptor Struct *const

A buffer to keep all channel descriptor

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 99

5.4.7.2

5.4.7.3

ASF4 API Reference Manual
ADC Drivers

Returns
Type: int32_t

Initialization status.

<0 Passed parameters were invalid or an ADC is already initialized

ERR_NONE The initialization is completed successfully

adc_os_deinit
Deinitialize ADC.
int32 t adc_os_deinit(

struct adc_os descriptor *const descr

)

This function deinitializes the given ADC descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const

An ADC descriptor to deinitialize

Returns
Type: int32_t

ERR_NONE

adc_os_register_channel_buffer
Register ADC channel buffer.

int32 t adc_os register channel buffer (
struct adc_os_descriptor *const descr,
const uint8 t channel,
uint8 t *const convert buffer,
const uintl6_t convert buffer length

)

This function initializes the given ADC channel buffer descriptor.

Parameters
descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
An ADC descriptor to initialize
channel Type: const uint8_t
Channel number
convert_buffer Type: uint8_t *const
A buffer to keep converted values
convert_buffer_length Type: const uint16_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 100

5.47.4

5.4.7.5

ASF4 API Reference Manual
ADC Drivers

The length of the buffer above

Returns
Type: int32_t

Initialization status.
-1 Passed parameters were invalid or an ADC is already initialized

0 Theinitialization is completed successfully

adc_os_enable_channel
Enable channel of ADC.

int32 t adc_os_enable channel (
struct adc_os descriptor *const descr,
const uint8_ t channel

)

Use this function to set the ADC peripheral to enabled state.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const

Pointer to the ADC descriptor

channel Type: const uint8_t

Channel number

Returns
Type: int32_t

ERR_NONE

adc_os_disable_channel
Disable channel of ADC.

int32 t adc _os_disable channel (
struct adc os descriptor *const descr,
const uint8 t channel

)

Use this function to set the ADC peripheral to disabled state.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
Pointer to the ADC descriptor

channel Type: const uint8_t

Channel number

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 101

5.4.7.6

5.4.7.7

ASF4 API Reference Manual
ADC Drivers

Returns
Type: int32_t

ERR_NONE

adc_os_read_channel
Read data asked for from the ring buffer.

int32 t adc_os_ read channel(
struct adc_os descriptor *const descr,
const uint8 t channel,
uint8 t *const buffer,
const uintl6é t length
)

If the number of data in ring buffer less than want to read, the task/thread will be blocked until read is
done.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

channel Type: const uint8_t
Channel number

buf A buffer to read data

length Type: const uint16_t
The size of the buffer

Returns

Type: int32_t

The number of bytes the user wants to read.

adc_os_start_conversion
Start conversion.

int32 t adc os_start conversion (
struct adc os descriptor *const descr

)

This function starts single conversion if no automatic (free-run) mode is enabled.

Parameters
descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const

The pointer to ADC descriptor

Returns
Type: int32_t

ERR_NONE

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 102

5.4.7.8

5.4.7.9

5.4.7.10

ASF4 API Reference Manual
ADC Drivers

adc_os_set_reference
Set ADC reference source.

int32 t adc os_set reference(
struct adc_os descriptor *const descr,
const adc_reference t reference

)

This function sets ADC reference source.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

reference Type: const adc_reference_t
A reference source to set

Returns

Type: int32_t

ERR_NONE

adc_os_set_resolution
Set ADC resolution.

int32 t adc os_set resolution(
struct adc_os descriptor *const descr,
const adc_resolution t resolution

)

This function sets ADC resolution.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

resolution Type: const adc_resolution_t
A resolution to set

Returns

Type: int32_t

ERR_NONE

adc_os_set_inputs
Set ADC input source of a channel.

int32 t adc_os_set inputs(
struct adc_os descriptor *const descr,
const adc_pos_ input t pos input,
const adc_neg input t neg input,
const uint8 t channel

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 103

ASF4 API Reference Manual
ADC Drivers

This function sets ADC positive and negative input sources.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

pos_input Type: const adc_pos_input_t
A positive input source to set

neg_input Type: const adc_neg_input_t
A negative input source to set

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

ERR_NONE

5.4.7.11 adc_os_set_conversion_mode
Set ADC conversion mode.

int32 t adc os_set conversion mode (
struct adc_os descriptor *const descr,
const enum adc_conversion mode mode

)

This function sets ADC conversion mode.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const

The pointer to ADC descriptor

mode Type: const enum adc_conversion_mode

A conversion mode to set

Returns
Type: int32_t

ERR_NONE

5.4.7.12 adc_os_set_channel_differential_mode
Set ADC differential mode.

int32 t adc_os_set channel differential mode (
struct adc os descriptor *const descr,
const uint8_t channel,
const enum adc differential mode mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 104

ASF4 API Reference Manual
ADC Drivers

This function sets ADC differential mode.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

channel Type: const uint8_t
Channel number

mode Type: const enum adc_differential_mode
A differential mode to set

Returns

Type: int32_t

ERR_NONE

5.4.7.13 adc_os_set_channel_gain
Set ADC gain.

int32 t adc os_set channel gain(
struct adc_os descriptor *const descr,
const uint8 t channel,
const adc_gain_t gain

)

This function sets ADC gain.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

channel Type: const uint8_t
Channel number

gain Type: const adc_gain_t
A gain to set

Returns

Type: int32_t

ERR_NONE

5.4.7.14 adc_os_set_window_mode
Set ADC window mode.
int32 t adc os set window mode (

struct adc_os descriptor *const descr,
const adc_window mode t mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 105

ASF4 API Reference Manual
ADC Drivers

This function sets ADC window mode.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const

The pointer to ADC descriptor

mode Type: const adc_window_mode_t

A window mode to set

Returns
Type: int32_t

ERR_NONE

5.4.7.15 adc_os_set_thresholds
Set ADC thresholds.

int32 t adc os_set thresholds(
struct adc os descriptor *const descr,
const adc_threshold t low_threshold,
const adc_threshold t up threshold

)

This function sets ADC positive and negative thresholds.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

low_threshold Type: const adc_threshold_t
A lower threshold to set

up_threshold Type: const adc_threshold_t
An upper threshold to set

Returns

Type: int32_t

ERR_NONE

5.4.7.16 adc_os_get_threshold_state
Retrieve threshold state.

int32 t adc os _get threshold state(
const struct adc_os descriptor *const descr,
adc_threshold_status_t *const state

)

This function retrieves ADC threshold state.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 106

5.4.7.17

5.4.7.18

ASF4 API Reference Manual
ADC Drivers

Parameters
descr Type: const struct 5.4.6.2 adc_os_descriptor Struct *const

The pointer to ADC descriptor

state Type: adc_threshold_status_t *const

The threshold state

Returns
Type: int32_t

ERR_NONE

adc_os_wait_channel_threshhold_reach
Wait reach the ADC window threshhold.

int32 t adc_os wait channel threshhold reach (
struct adc os descriptor *const descr,
const uint8 t channel

)

This function waits for the reach of ADC window threshhold. The task/thread will block until reach window
threshhold.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const
The pointer to ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

ERR_TIMEOUT The semaphore down timeout

ERR_NONE The window threshhold has reached

adc_os_flush_rx_buffer
Flush ADC ringbuf.

int32 t adc _os_flush rx buffer(
struct adc os descriptor *const descr,
const uint8 t channel

)

This function flushes ADC RX ringbuf.

Parameters

descr Type: struct 5.4.6.2 adc_os_descriptor Struct *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 107

5.4.7.19

5.5

5.5.1

5.5.2

ASF4 API Reference Manual
ADC Drivers

The pointer to ADC descriptor

channel Type: const uint8_t

Channel number

Returns
Type: int32_t

ERR_NONE

adc_os_get_version
Retrieve the current ADC RTOS driver version.
uint32 t adc_os_get version(

void

)

Returns
Type: uint32_t

Current driver version.

ADC Synchronous Driver

The Analog to Digital Converter (ADC) synchronous driver will block (i.e. not return) there until the
requested data has been read. Functionality is therefore synchronous to the calling thread, i.e. the thread
will wait for the result to be ready. The 5.5.7.5 adc_sync_read_channel function will perform a conversion
of the voltage on the specified channel and return the result when it is ready.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Select single shot or free running conversion modes
» Configure major ADC properties such as resolution and reference source
* Read back conversion results

Summary of Configuration Options

Below is a list of the main ADC parameters that can be configured in START. Many of these parameters
are used by the 5.5.7.1 adc_sync _init function when initializing the driver and underlying hardware. Most
of the initial values can be overridden and changed runtime by calling the appropriate API functions, such
as 5.5.7.7 adc_sync_set_resolution.

» Selecting which ADC input channels to enable for positive and negative input
* Which clock source and prescaler the ADC uses

* Various aspects of Event control

» Single shot or free running conversion modes

» Sampling properties such as resolution, window mode, and reference source
* Runin Standby or Debug mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 108

5.5.3

5.5.4

5.5.5

5.5.6
5.5.6.1

5.5.7
5.5.7.1

ASF4 API Reference Manual

ADC Drivers

Driver Implementation Description

The functions in the ADC synchronous driver will block (i.e. not return) until the operation is done.

Example of Usage

The following shows a simple example of using the ADC. The ADC must have been initialized by 5.5.7.1
adc_sync_init. This initialization will configure the operation of the ADC, such as single-shot or continuous

mode, etc.

The example enables channel 0 of ADCO, and finally starts a conversion on this channel.

/**
* Example of using ADC 0 to generate waveform.
*/
void ADC 0 example (void)
{
uint8 t buffer[2];
adc_sync_enable channel (&¢ADC 0, O0);
while (1) {
adc_sync_read channel (&ADC 0, 0, buffer,
}

Dependencies
* ADC peripheral and its related I/O lines and clocks
Structs

adc_sync_descriptor Struct
ADC descriptor.

Members

device ADC device

Functions

adc_sync_init
Initialize ADC.

int32 t adc sync init(
struct adc_sync descriptor *const descr,
void *const hw,
void *const func

)

2);

This function initializes the given ADC descriptor. It checks if the given hardware is not initialized and if

the given hardware is permitted to be initialized.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const

An ADC descriptor to initialize

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 109

ASF4 API Reference Manual
ADC Drivers

hw Type: void *const

The pointer to hardware instance

func Type: void *const

The pointer to a set of functions pointers

Returns
Type: int32_t

Initialization status.

5.5.7.2 adc_sync_deinit
Deinitialize ADC.

int32 t adc_sync deinit(
struct adc_sync_descriptor *const descr

)

This function deinitializes the given ADC descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const

An ADC descriptor to deinitialize

Returns
Type: int32_t

De-initialization status.

5.5.7.3 adc_sync_enable_channel
Enable ADC.

int32 t adc sync enable channel (
struct adc sync descriptor *const descr,

const uint8 t channel

)

Use this function to set the ADC peripheral to enabled state.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
Pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 110

5.5.7.4

5.5.7.5

ASF4 API Reference Manual
ADC Drivers

Operation status

adc_sync_disable_channel
Disable ADC.

int32 t adc_sync disable channel (
struct adc sync descriptor *const descr,
const uint8 t channel

)

Use this function to set the ADC peripheral to disabled state.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
Pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

Operation status

adc_sync_read_channel
Read data from ADC.

int32_t adc_sync_read_channel (
struct adc sync descriptor *const descr,
const uint8_ t channel,
uint8_t *const buffer,
const uintlé6_t length

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

buf A buffer to read data to

length Type: const uint16_t
The size of a buffer

Returns

Type: int32_t

The number of bytes read.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 111

5.5.7.6

5.5.7.7

5.5.7.8

ASF4 API Reference Manual
ADC Drivers

adc_sync_set_reference
Set ADC reference source.

int32 t adc sync_set reference (
struct adc sync descriptor *const descr,
const adc_reference t reference

)

This function sets ADC reference source.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor

reference Type: const adc_reference_t
A reference source to set

Returns

Type: int32_t

Status of the ADC reference source setting.

adc_sync_set_resolution
Set ADC resolution.

int32 t adc sync set resolution(
struct adc_sync descriptor *const descr,
const adc_resolution t resolution

)

This function sets ADC resolution.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor

resolution Type: const adc_resolution_t
A resolution to set

Returns

Type: int32_t

Status of the ADC resolution setting.

adc_sync_set_inputs
Set ADC input source of a channel.

int32 t adc_sync_set inputs(
struct adc_sync _descriptor *const descr,
const adc_pos input t pos input,
const adc neg input t neg_ input,
const uint8 t channel

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 112

ASF4 API Reference Manual
ADC Drivers

This function sets ADC positive and negative input sources.

Parameters
descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor
pos_input Type: const adc_pos_input_t
A positive input source to set
neg_input Type: const adc_neg_input_t
A negative input source to set
channel Type: const uint8_t
Channel number
Returns
Type: int32_t

Status of the ADC channels setting.
5.5.7.9 adc_sync_set_conversion_mode

Set ADC conversion mode.

int32 t adc sync_set conversion mode (
struct adc_sync descriptor *const descr,
const enum adc_conversion mode mode

)

This function sets ADC conversion mode.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const

The pointer to the ADC descriptor

mode Type: const enum adc_conversion_mode

A conversion mode to set

Returns
Type: int32_t

Status of the ADC conversion mode setting.

5.5.7.10 adc_sync_set_channel_differential_mode
Set ADC differential mode.

int32 t adc_sync_set channel differential mode (
struct adc sync descriptor *const descr,
const uint8_t channel,
const enum adc differential mode mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 113

ASF4 API Reference Manual
ADC Drivers

This function sets ADC differential mode.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

mode Type: const enum adc_differential_mode
A differential mode to set

Returns

Type: int32_t

Status of the ADC differential mode setting.

5.5.7.11 adc_sync_set_channel_gain
Set ADC channel gain.

int32 t adc sync set channel gain(
struct adc_sync descriptor *const descr,
const uint8 t channel,
const adc_gain_t gain

)

This function sets ADC channel gain.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

gain Type: const adc_gain_t
A gain to set

Returns

Type: int32_t

Status of the ADC gain setting.

5.5.7.12 adc_sync_set_window_mode
Set ADC window mode.
int32 t adc sync set window mode (

struct gdc_sync_descriptor *const descr,
const adc_window mode t mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 114

ASF4 API Reference Manual
ADC Drivers

This function sets ADC window mode.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const

The pointer to the ADC descriptor

mode Type: const adc_window_mode_t

A window mode to set

Returns
Type: int32_t

Status of the ADC window mode setting.

5.5.7.13 adc_sync_set_thresholds
Set ADC thresholds.

int32 t adc sync_set thresholds (
struct adc sync descriptor *const descr,
const adc_threshold t low_threshold,
const adc_threshold t up threshold

)

This function sets ADC positive and negative thresholds.

Parameters

descr Type: struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor

low_threshold Type: const adc_threshold_t
A lower thresholds to set

up_threshold Type: const adc_threshold_t
An upper thresholds to set

Returns

Type: int32_t

Status of the ADC thresholds setting.

5.5.7.14 adc_sync_get_threshold_state
Retrieve threshold state.

int32 t adc sync _get threshold state(
const struct adc_sync descriptor *const descr,
adc_threshold_status_t *const state

)

This function retrieves ADC threshold state.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 115

5.5.7.15

5.5.7.16

ASF4 API Reference Manual

ADC Drivers

Parameters

descr

state

Returns
Type: int

Type: const struct 5.5.6.1 adc_sync_descriptor Struct *const

The pointer to the ADC descriptor

Type: adc_threshold_status_t *const

The threshold state

32 t

The state of ADC thresholds state retrieving.

adc_syn
Check if

c_is_channel_conversion_complete
conversion is complete.

int32_ t adc_sync_is_channel conversion_complete (
const struct adc_sync descriptor *const descr,
const uint8 t channel

)

This function checks if the ADC has finished the conversion.

Parameters

descr Type: const struct 5.5.6.1 adc_sync_descriptor Struct *const
The pointer to the ADC descriptor

channel Type: const uint8_t
Channel number

Returns

Type: int32_t

The status of ADC conversion completion checking.

1
0

adc_syn
Retrieve

The conversion is complete

The conversion is not complete

c_get_version
the current driver version.

uint32 t adc _sync_get version(
void

)

Returns

Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 116

6.1

6.2

6.3

6.4

6.5

ASF4 API Reference Manual

Analog Glue Function

Analog Glue Function

This custom analog driver offers a way to initialize on-chip programmable analog units, such as
Operational Amplifiers (OPAMP), so that a specific analog circuit is built. Then this analog "circuit" can be
connected to internal or external analog circuit to perform analog signal processing.

Summary of the API's Functional Features

The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
« Enabling and disabling

Summary of Configuration Options

Most custom analog driver parameters are configured in START. Many of these parameters are used by
the 6.6.1 custom_analog_init function when initializing the driver and underlying hardware (for example,
OPAMP).

Driver Implementation Description
The implementation is simple in this driver and most custom analog parameters are static configuration.

Example of Usage

The following shows a simple example of using the custom analog driver. The custom analog driver must
have been initialized by 6.6.1 custom_analog_init. This initialization will configure the operation of the
hardware programmable analog instance.

* *
/* Example of using ANALOG GLUE FUNCTION 0 to generate waveform.
*
void ANALOG_GLUE FUNCTION 0 example (void)
{ custom analog enable () ;
* Now custom/analog (operational amplifiers) works as configured */

}

Dependencies
* On-chip programmable analog units, such as Operational Amplifiers (OPAMP)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 117

6.6

6.6.1

6.6.2

6.6.3

6.6.4

ASF4 API Reference Manual

Analog Glue Function

Functions

custom_analog_init
Initialize the custom logic hardware.
static int32_t custom analog_init(

void

)

Returns
Type: int32_t

Initialization operation status

custom_analog_deinit
Disable and reset the custom logic hardware.

static void custom _analog deinit(
void

)

Returns
Type: void

custom_analog_enable
Enable the custom logic hardware.
static int32 t custom_analog enable (

void

)

Returns
Type: int32_t

Initialization operation status

custom_analog_disable
Disable the custom logic hardware.

static void custom analog disable (
void

)

Returns
Type: void

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 118

7.1

7.2

7.21

7.2.2

ASF4 API Reference Manual

Audio Driver

Audio Driver

An audio peripheral can be interfaced to most available codec devices to provide microcontroller-based
audio solution. The audio driver is designed to provide raw data read and write function through different
audio peripherals.

The following driver variants are available:

e 7.2 Audio DMA Driver: The driver uses a DMA system to transfer data from audio peripheral to
memory buffer in RAM.

Audio Basics and Best Practice

Audio peripheral is a serial bus standard for connecting to most available codec devices to provide
microcontroller-based audio solution. The driver only focus on raw data transfer, so it supports most audio
protocols like 12S, TDM, PCM, even though a PDM microphone.

In most use case, the audio driver should work with some of decoder libraries. Like AAC/FLAC/MP3/
Opus/Speex/WMA Decoder Library. And a thirdpart codec driver maybe included if the audio peripheral
connected to a configable codec device, Like AK4662 codec have a 12C Control Interface.

Audio DMA Driver

The Audio DMA driver provides a set of data buffer based transfer functions, both of writing or reads data
to/from the audio peripheral. Each buffer should be assigned with a handler. In the Audio DMA driver, a
callback function can be registered in the driver by the application and triggered when buffer transfer is
done to let the application know the transfer result. The callback function has a handler parameter to let
the application know which buffer was processed. The driver has an internal buffer queue mechanism,
the queue size can be configurable in drivers configurations. The driver also needs to know the DMA
channel number for each write and read.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Hookup callback handlers on data buffer transfer done
« Enable or disable Audio hardware
* Add buffer to write/read data from hardware
* Flush(discard) data buffer for write/read which not transferred yet
» Return the number of bytes has been processed in the buffer queue

Summary of Configuration Options

Below is a list of the main audio parameters that can be configured in START. Many of these parameters
are used by the 7.2.9.1 audio_dma_init function when initializing the driver and underlying hardware.
Select Clock for audio hardware to generate peripheral clock and audio clock.

Select Pin for audio hardware.

» Configure Audio peripherals, such like data format, baud rate, etc.

Select DMA channel for data to write/read operation.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 119

ASF4 API Reference Manual

Audio Driver

* Select queue size for internal buffer queue mechanism.

7.2.3 Driver Implementation Description
After the Audio hardware initialization, the application can register the callback function for transfer done
by 7.2.9.5 audio_dma_register_callback, and invoke 7.2.9.6 audio_dma_add_buffer to write/read data
from audio hardware.

7.24 Example of Usage
The following shows a simple example of using the Audio DMA driver. The Audio must have been
initialized by 7.2.9.1 audio_dma_init. This initialization will configure the operation of the Audio
Peripheral, such as the clock, input pins, baud rate, format, etc.

The example registers a callback function for data transfer done and enables Audio hardware, and then
finally starts a buffer transfer to the hardware.

audio buffer handler t tx buffer handler = 0;
uint8 t data[1024];
uint8 t tx result

I~

0;

void audio buffer event handler (enum audio buffer event event, audio buffer
_handler t handler)
{

if (tx buffer handler == 0) {
if (event == AUDIO BUFFER EVENT COMPLETE) {
tx result = 1;
} else {
tx result = 2;
}
}
}
/**
* Example of using AUDIO 0 to write data
*/

void audio example (void)

{
uint32 t len;

audio dma register callback (&AUDIO 0, audio buffer event handler);
audio_dma enable (&AUDIO 0);
audio_dma_ add buffer (&AUDIO 0, AUDIO WRITE, data, 1024);
/* Wait for buffer send out */
while (tx result == 0) {
}
/**

* Error handling here.

* We can find out how many bytes were processed in this buffer
* before the error occurred.
=
if (tx result == 2) {
len = audio dma get buffer size (&AUDIO 0, AUDIO WRITE);
1

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 120

ASF4 API Reference Manual

Audio Driver

7.25 Dependencies
* The AUDIO peripheral and it's related I/O lines and clocks
* The DMA peripheral and its configuration must be aligned with AUDIO peripheral

7.2.6 Structs

7.2.6.1 audio_dma_descriptor Struct
Audio Driver descriptor.

Members

dev Audio HPL device descriptor
cb Audio Buffer Callback function
txq Internal TX Queue

rxq Internal RX Queue

7.2.7 Enums
7.2.7.1 audio_dir Enum
AUDIO_READ Read data from codec or microphone

AUDIO_WRITE Write data to codec or speaker

7.2.7.2 audio_buffer_event Enum

AUDIO_BUFFER_EVENT_COMPLETE Data was transferred successfully
AUDIO_BUFFER_EVENT_ERROR Data while processing the request
AUDIO_BUFFER_EVENT_ABORT Data transfer aborted

7.2.8 Typedefs

7.2.8.1 audio_buffer_handler_t typedef
typedef uint32_t audio_buffer_handler t

7.2.8.2 audio_buffer_cb typedef
typedef void(* audio_buffer_cb) (enum audio_buffer_event event, audio_buffer_handler_t handler)

Audio Buffer Event Handler Function.

Parameters
event Direction: in

Identifies the type of event

handler Direction: in

Handle identifying the buffer which the event relates

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 121

ASF4 API Reference Manual

Audio Driver

context Direction: in

Value identifying the context of the application that registered the event handling function

7.2.9 Functions

7.29.1 audio_dma_init
Initialize Audio Device Driver.

int32 t audio dma_init(
struct audio dma descriptor *const desc,
void *const hw

)

This function initializes the Audio Driver Descriptor for the given hardware instance. Making it ready for
application enable and use it.

Parameters

desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const

Pointer to the driver descriptor

hw Type: void *const

Pointer to the hardware instance

Returns
Type: int32_t

Initialization status.

7.2.9.2 audio_dma_deinit
Deinitialize Audio Device Driver.

int32_ t audio_dma_deinit (
struct audio dma descriptor *const desc

)
This function deinitializes the given Audio Driver descriptor. Disabling its operation (and any hardware).
Invalidates all the internal data.
Parameters

desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const

Pointer to the audio driver descriptor

Returns
Type: int32_t

De-initialization status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 122

7.2.9.3

7.29.4

7.2.9.5

ASF4 API Reference Manual

Audio Driver

audio_dma_enable
Enable Audio Device.

int32 t audio_dma_enable (
struct audio dma descriptor *const desc
)

This function enables the Audio Driver by the given Audio Driver descriptor.

Parameters

desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const

Pointer to the audio driver descriptor

Returns
Type: int32_t

Enabling status.

audio_dma_disable
Disable Audio Device.

int32 t audio dma disable(
struct audio dma descriptor *const desc

)

This function disables the Audio Driver by the given Driver descriptor.

Parameters

desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const

Pointer to the Audio Driver descriptor

Returns
Type: int32_t

Disabling status.

audio_dma_register_callback
Register Audio callback function.

int32 t audio dma register callback(
struct audio dma descriptor *const desc,
audio buffer cb cb

)

This function allows the application to register a function for the driver to call back when queued buffer
transfer has finished, or error happens.

Parameters

desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const

Pointer to the audio driver descriptor

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 123

ASF4 API Reference Manual

Audio Driver

cb Type: 7.2.8.2 audio_buffer_cb typedef

Callback function, passing NULL will de-register any registered callback function

Returns
Type: int32_t

The status of callback assignment.

7.29.6 audio_dma_add_buffer
Schedule a non-blocking read or write operation.

int32 t audio dma_ add buffer(
struct audio dma descriptor *const desc,
enum audio_dir dir,
audio buffer handler t handler,
void * buf,
uint32_t size
)

This function schedules a non-blocking read or write operation. The function adds the requests to the
hardware instance queue and returns immediately.

Parameters
desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const
Pointer to the audio driver descriptor
dir Type: enum 7.2.7.1 audio_dir Enum
Identifies add the buffer to read or write queue
handler Type: 7.2.8.1 audio_buffer_handler_t typedef
Pointer the return buffer handle
buf Type: void *
Buffer where the read or write data will be stored
size Type: uint32_t
Buffer size in bytes
Returns
Type: int32_t

The state of the buffer operation.
ERR_NONE Schedule buffer operation success

ERR_NO_RESOURCE Buffer queue was full

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 124

7.29.7

7.2.9.8

7.2.9.9

ASF4 API Reference Manual

Audio Driver

audio_dma_flush_buffer
Flush off the buffers.

int32 t audio_dma flush buffer(
struct audio dma descriptor *const desc,
enum audio dir dir

)

This function flushes off the write or read buffers and disable the DMA channel.

Parameters
desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const

Pointer to audio driver descriptor

dir Type: enum 7.2.7.1 audio_dir Enum

Identifies flush the read or write queue

Returns
Type: int32_t

The result of comparator n stop the operation.

audio_dma_get_buffer_size
Get the number of bytes has been processed for the queued buffer.

int32 t audio_dma get buffer size(
struct audio dma descriptor *const desc,
enum audio_dir dir

)

This function returns the number of bytes has been processed in the buffer queue of the driver instance.
The application can use this function to know how many bytes has been processed.

Parameters
desc Type: struct 7.2.6.1 audio_dma_descriptor Struct *const

Pointer to audio driver descriptor

dir Type: enum 7.2.7.1 audio_dir Enum

Identifies flush the read or write queue

Returns
Type: int32_t

The number of bytes that have been processed for this buffer

audio_dma_get_version
Retrieve the current driver version.
uint32 t audio_dma get version(

void

)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 125

ASF4 API Reference Manual

Audio Driver

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 126

8.1

8.2

8.2.1

8.2.2

ASF4 API Reference Manual
CAN Driver

CAN Driver

This Control Area Network (CAN) driver provides an interface for CAN message transfer.
The following driver variant is available:

» 8.2 CAN Asynchronous Driver: The driver supports a callback handler for the IRQ caused by
hardware state changes. Functionality is asynchronous to the main clock of the MCU.

CAN Basics and Best Practice

CAN is a multi-master serial bus standard for connecting Electronic Control Units (ECUs) also known as
nodes. Two or more nodes are required on the CAN network to communicate. The complexity of the node
can range from a simple I/O device up to an embedded computer with a CAN interface and sophisticated
software.

CAN bus is a message based protocol designed specifically for automotive applications, but is also used
in areas such as aerospace, maritime, railway vehicles, industrial automation, and medical equipment.
The CAN message ID not only provides identification for the type of message being sent or received, it
also determines the priority of the message. Message IDs must be unique on a single CAN bus,
otherwise two nodes would continue transmission beyond the end of the arbitration field (ID) causing an
error.

CAN Asynchronous Driver

In Control Area Network (CAN) asynchronous driver, a callback function can be registered in the driver by
the application and triggered when CAN message transfer done or error happen.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Enable or disable CAN instance
* CAN message transfer: transmission, reception
* Callback on message transmitted, recepted, error
» Callback on error warning, error active, error passive, bus off, data overrun
» Set CAN mode: normal, monitoring

Summary of Configuration Options
Below is a list of the main CAN parameters that can be configured in START. Many of these parameters
are used by the 8.2.8.1 can_async_init function when initializing the driver and underlying hardware.

*+ CAN TX and RX signal pin

» Data bit timing and prescaler configuration

* Normal bit timing and prescaler configuration

* TXFIFO configuration

* RXFIFO configuration

* Filter configuration

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 127

8.2.3

8.24

ASF4 API Reference Manual
CAN Driver

Driver Implementation Description

The driver is focus on the MAC layer and try to offer the APIs which can be used by upper application
layer.

Example of Usage

The following shows a simple example of using the CAN. The CAN must have been initialized by 8.2.8.1
can_async_init. This initialization will configure the operation of the CAN, such as input pins, single-shot,
or continuous measurement mode, etc.

The example registers callback functions for CAN message send and receive.

void CAN 0 tx callback(struct can async descriptor *const descr)
{
(void)descr;
}
void CAN O rx callback(struct can async descriptor *const descr)
{
struct can message msg;
uint8 t data[64];
msg.data = data;
can_async_read(descr, &msg);
return;
}
/**
* Example of using CAN 0 to Encrypt/Decrypt data.
*/
void CAN 0 example (void)
{
struct can message msg;
struct can filter filter;
uint8 t send datal[4];

send data[0] = 0x00;

send data[l] = 0x01;

send data[2] = 0x02;

send data[3] = 0x03;
msg.id = 0Ox45A;
msg.type = CAN TYPE DATA;
msg.data = send data;
msg.len = 4;

msg.fmt = CAN FMT STDID;

can_async_register callback(&CAN 0, CAN ASYNC TX CB, (FUNC_PTR)CAN 0 tx
_callback) ;
can async enable (&CAN O0);
Jxx - -
* CAN 0 tx callback callback should be invoked after call

* can_async _write, and remote device should receive message with ID=0
x45A
*/
can_async_write (&CAN 0, &msg);
msg.id = 0x100000A5;
msg.fmt = CAN FMT EXTID;

/**

* remote device should receive message with ID=0x100000A5
*/

can_async_write (&CAN 0, &msg);

/**

* CAN 0 rx callback callback should be invoked after call

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 128

ASF4 API Reference Manual
CAN Driver

* can_async_set filter and remote device send CAN Message with the sa

me
* content as the filter.
v
can_async_register callback(&CAN 0, CAN ASYNC RX CB, (FUNC PTR)CAN 0 rx
_callback) ;
filter.id = 0x469;

filter.mask = 0;

can_async set filter(&CAN 0, 0, CAN FMT STDID, &filter);
filter.id = 0x10000096;

filter.mask = 0;

can_async set filter (&CAN 0, 1, CAN FMT EXTID, &filter);

8.25 Dependencies
* The CAN peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that CAN interrupt requests are periodically serviced

8.2.6 Structs

8.2.6.1 can_callbacks Struct
CAN callbacks.
Members
tx_done
rx_done

irq_handler

8.2.6.2 can_async_descriptor Struct
CAN descriptor.

Members
dev CAN HPL device descriptor
cb CAN Interrupt Callbacks handler

8.2.7 Typedefs

8.2.7.1 can_cb_t typedef
typedef void(* can_cb _t) (struct can_async_descriptor *const descr)

8.2.8 Functions

8.2.8.1 can_async_init
Initialize CAN.

int32 t can async init(
struct can_async descriptor *const descr,
void *const hw

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 129

8.2.8.2

8.2.8.3

ASF4 API Reference Manual
CAN Driver

This function initializes the given CAN descriptor.

Parameters
descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

A CAN descriptor to initialize.

hw Type: void *const

The pointer to hardware instance.

Returns
Type: int32_t

Initialization status.

can_async_deinit
Deinitialize CAN.

int32 t can _async deinit(
struct can async descriptor *const descr

)

This function deinitializes the given CAN descriptor.

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor to deinitialize.

Returns
Type: int32_t

De-initialization status.

can_async_enable
Enable CAN.

int32 t can async enable (
struct can async descriptor *const descr

)

This function enables CAN by the given can descriptor.

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor to enable.

Returns
Type: int32_t

Enabling status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 130

8.2.84

8.2.8.5

8.2.8.6

ASF4 API Reference Manual
CAN Driver

can_async_disable
Disable CAN.

int32 t can _async disable(
struct can async descriptor *const descr

)

This function disables CAN by the given can descriptor.

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor to disable.

Returns
Type: int32_t

Disabling status.

can_async_read
Read a CAN message.

int32 t can_async_read(
struct can_async_descriptor *const descr,
struct can_message * msg

Parameters
descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor to read message.

msg Type: struct can_message *

The CAN message to read to.

Returns
Type: int32_t

The status of read message.

can_async_write
Write a CAN message.

int32 t can_async write(
struct can async descriptor *const descr,
struct can message * msg

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor to write message.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 131

8.2.8.7

8.2.8.8

ASF4 API Reference Manual
CAN Driver

msg Type: struct can_message *

The CAN message to write.

Returns
Type: int32_t

The status of write message.

can_async_register_callback
Register CAN callback function to interrupt.

int32 t can async register callback(
struct can async descriptor *const descr,
enum can_async_callback type type,
FUNC_PTR cb

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const
The CAN descriptor

type Type: enum can_async_callback_type
Callback type

cb Type: 40.3.2.1 FUNC_PTR typedef

A callback function, passing NULL will de-register any registered callback

Returns
Type: int32_t

The status of callback assignment.

can_async_get_rxerr
Return number of read errors.

uint8 t can async get rxerr(
struct can_async_descriptor *const descr

)

This function returns the number of read errors.

Parameters
descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor pointer

Returns
Type: uint8_t

The number of read errors.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 132

ASF4 API Reference Manual
CAN Driver

8.2.8.9 can_async_get_txerr
Return number of write errors.

uint8 t can_async_get txerr(
struct can_async descriptor *const descr

)

This function returns the number of write errors.

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor pointer

Returns
Type: uint8_t

The number of write errors.

8.2.8.10 can_async_set_mode
Set CAN to the specified mode.

int32 t can_async_set mode (
struct can_async_descriptor *const descr,
enum can mode mode

)

This function sets CAN to a specified mode.

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const

The CAN descriptor pointer

mode Type: enum can_mode

The CAN operation mode

Returns
Type: int32_t

Status of the operation.

8.2.8.11 can_async_set_filter
Set CAN Filter.

int32 t can_async _set filter(
struct can async descriptor *const descr,
uint8 t index,
enum can_format fmt,
struct can filter * filter
)

This function sets CAN to a specified mode.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 133

ASF4 API Reference Manual
CAN Driver

Parameters

descr Type: struct 8.2.6.2 can_async_descriptor Struct *const
The CAN descriptor pointer

index Type: uint8_t
Index of Filter list

fmt Type: enum can_format

CAN Indentify Type

filter Type: struct can_filter *

CAN Filter struct, NULL for clear filter

Returns
Type: int32_t

Status of the operation.

8.2.8.12 can_async_get_version
Retrieve the current driver version.

uint32 t can async get version(
void

)

Returns
Type: uint32_t

The current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 134

9.1

9.2

9.2.1

9.2.2

9.2.3

ASF4 API Reference Manual
CRC Driver

CRC Driver

This Cyclic Redundancy Check (CRC) driver provides an interface for the CRC calculation of given length
data.

The following driver variant is available:

* 9.2 CRC Synchronous Driver: The driver supports polling for hardware changes, functionality is
synchronous to the main clock of the MCU.

CRC Basics and Best Practice

A Cyclic Redundancy Check (CRC) is an error-detecting code for detecting errors of raw data. It takes a
data block of any length, and gives out a fixed length check value. The CRC cannot make corrections
when errors are detected.

In the CRC method, a fixed length check value (often called Checksum) is appended to the transmit data
block. The receiver can use the same CRC function to check whether the checksum matches the
received data. If the received checksum does not match the computation checksum, it means something
is wrong when the transfered data. The receiver can request the data to be send.

Below is an application example for how to use this driver:

* Calculate a checksum for a data block to be sent and append it to the data. When the data block
with checksum has been received by the receiver, the receive checksum can be compared with the
new and calculated checksum from the data block.

CRC Synchronous Driver

The functions in the Cyclic Redundancy Check (CRC) synchronous driver will block (i.e. not return) until
the operation is done.

Summary of the API's Functional Features
The API provides functions to:

* Initialization and de-initialization

* Enabling and Disabling

* CRC32 (IEEE-802.3)

« CRC16 (CCITT)

Summary of Configuration Options
Normally there is no parameter to be configured in START.

Driver Implementation Description

The driver supports IEEE CRC32 polynomial and CCITT CRC16 polynomial. The initial value used for the
CRC calculation must be assigned. This value is normally OxFFFFFFFF(CRC32) or OXFFFF(CRC16), but
can be, for example, the result of a previously computed CRC separate memory blocks.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 135

ASF4 API Reference Manual
CRC Driver

9.24 Example of Usage
The following shows a simple example of using the CRC32 functions.

/* CRC Data in flash */
COMPILER_ALIGNED(4)
static const uint32 t crc datas[] = {0x00000000,
Ox11111111,
0x22222222,
0x33333333,
0x44444444,
0x55555555,
0x66666666,
0x77777777,
0x88888888,
0x99999999};
/**
* Example of using CRC 0 to Calculate CRC32 for a buffer.
*
/
void CRC 0 example (void)
{
/
* The initial value used for the CRC32 calculation usually be OxFFFFFFFF,

* but can be, for example, the result of a previous CRC32 calculation
if

* generating a common CRC32 of separate memory blocks.
%)

uint32 t crc = OXFFFFFFFF;

uint32 t crc2;

uint32 t ind;

crc_sync_enable (&CRC_0) ;

crc_sync_crc32(&CRC_0, (uint32 t *)crc datas, 10, é&crc);

/* The read value must be complemented to match standard CRC32
* implementations or kept non-

inverted if used as starting point for

* subsequent CRC32 calculations.
=4

crc = OxFFFFFFFF;

/

* Calculate the same data with subsequent CRC32 calculations, the result

* should be same as previous way.
)

crc2 = OxXFFFFFFFF;

for (ind = 0; ind < 10; ind++) {

crc_sync_crc32(&CRC_0, (uint32 t *)&crc datas[ind], 1, &crc2);
}
crc2 "= OxXFFFFFFFF;
/* The calculate result should be same. */
while (crc != crc2)

’

9.2.5 Dependencies

* CRC capable hardware. For Cortex-M0+ based SAM devices, the CRC uses hardware DSU engine
which only supports CRC32 (IEEE-802.3) reversed polynomial representation.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 136

9.2.6

9.2.6.1

9.2.7

9.2.7.1

9.2.7.2

ASF4 API Reference Manual
CRC Driver

Structs

crc_sync_descriptor Struct
CRC descriptor.

Members

dev CRC HPL device descriptor

Functions

crc_sync_init
Initialize CRC.

int32 t crc_sync init(
struct crc_sync descriptor *const descr,
void *const hw

)

This function initializes the given CRC descriptor. It checks if the given hardware is not initialized and if
the given hardware is permitted to be initialized.
Parameters
descr Type: struct 9.2.6.1 crc_sync_descriptor Struct *const
A CRC descriptor to initialize
hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

crc_sync_deinit
Deinitialize CRC.

int32 t crc sync deinit(
struct crc sync descriptor *const descr

)

This function deinitializes the given CRC descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.

Parameters

descr Type: struct 9.2.6.1 crc_sync_descriptor Struct *const

A CRC descriptor to deinitialize

Returns
Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 137

ASF4 API Reference Manual
CRC Driver

De-initialization status.

9.2.7.3 crc_sync_enable
Enable CRC.

int32 t crc sync enable(
struct crc_sync descriptor *const descr

)

This function enables CRC by the given CRC descriptor.

Parameters

descr Type: struct 9.2.6.1 crc_sync_descriptor Struct *const

A CRC descriptor to enable

Returns
Type: int32_t

Enabling status.

9.2.7.4 crc_sync_disable
Disable CRC.

int32 t crc_sync disable(
struct crc_sync_descriptor *const descr
)

This function disables CRC by the given CRC descriptor.

Parameters

descr Type: struct 9.2.6.1 crc_sync_descriptor Struct *const

A CRC descriptor to disable

Returns
Type: int32_t

Disabling status.

9.2.7.5 crc_sync_crc32
Calculate CRC32 value of the buffer.

int32 t crc sync crc32(
struct crc_sync descriptor *const descr,
uint32 t *const data,
const uint32 t len,

uint32 t * pcrc

)

This function calculates the standard CRC-32 (IEEE 802.3).

Parameters

data Type: uint32_t *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 138

9.2.7.6

9.2.7.7

ASF4 API Reference Manual
CRC Driver

Pointer to the input data buffer

len Type: const uint32_t
Length of the input data buffer

pcrc Type: uint32_t*
Pointer to the CRC value

Returns
Type: int32_t

Calculated result.

crc_sync_crc16
Calculate the CRC16 value of the buffer.

int32 t crc_sync_crclé(
struct crc_sync descriptor *const descr,
uintl6_t *const data,
const uint32 t len,
uintlé_t * pcrc

)

This function calculates CRC-16 (CCITT).

Parameters
data Type: uint16_t *const

Pointer to the input data buffer
len Type: const uint32_t

Length of the input data buffer
pcrc Type: uint16_t*

Pointer to the CRC value
Returns
Type: int32_t

Calculated result.

crc_sync_get_version
Retrieve the current driver version.

uint32 t crc_sync get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 139

10.

10.1

10.2

ASF4 API Reference Manual

Calendar Drivers

Calendar Drivers

This Calendar driver provides an interface to set and get the current date and time, and also the alarm
functionality.

The following driver variants are available:

* 10.2 Calendar Bare-bone Driver: The driver supports setting and getting the current date and time,
and alarm functionality with callback handler.

* 10.3 Calendar RTOS Driver: The driver is intended for using calendar functions in a Real-Time
operating system, i.e. is thread safe.

Calendar Basics and Best Practice
The Calendar driver provides functions to set and get the current date and time. After enabling, an

instance of the driver starts counting time from the base date with a resolution of one second. The default
base date is 00:00:00 1st of January 1970.

The current date and time is kept internally in a relative form as the difference between the current date
and the time, and the base date and time. This means that changing the base year changes current date.

The base date and time defines time "zero" or the earliest possible point in time that the calender driver
can describe, this means that current time and alarms cannot be set to anything earlier than this time.

The Calendar driver provides an alarm functionality. An alarm is a software trigger, which fires on a given
date and time with given periodicity. Upon firing, the given callback function is called.

An alarm can be in single-shot mode, firing only once at matching time; or in repeating mode, meaning
that it will reschedule a new alarm automatically based on the repeating mode configuration. In single-
shot mode an alarm is removed from the alarm queue before its callback is called. It allows an application
to reuse the memory of an expired alarm in the callback.

An alarm can be triggered on the following events: match on second, minute, hour, day, month, or year.
Matching on second means that the alarm is triggered when the value of seconds of the current time is
equal to the alarm's value of seconds. This means repeating alarm with match on seconds is triggered
with the period of a minute. Matching on minute means that the calendar's minute and seconds values
have to match the alarms, the rest of the date-time values are ignored. In repeating mode this means a
new alarm every hour. The same logic is applied to match on hour, day, month, and year.

Each instance of the Calendar driver supports an infinite amount of software alarms, only limited by the
amount of RAM available.

Below are some application examples for how to use this driver:
* A source of current date and time for an embedded system
» Periodical functionality in low-power applications since the driver is designed to use 1Hz clock
» Periodical function calls in case if it is more convenient to operate with absolute time

Calendar Bare-bone Driver

This Calendar bare-bone driver provides an interface to set and get current date and time, and also alarm
functionality.

Refer 10. Calendar Drivers for more detailed calendar basics.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 140

10.2.1

10.2.2

10.2.3

10.2.3.1

10.2.3.2

10.2.4

ASF4 API Reference Manual

Calendar Drivers

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Enable and disable calendar instance
» Settime, date, and base year
* Get current date and time
+ Set the software alarm timer with callback handler on the alarm event happen

Summary of Configuration Options
Below is the main Calendar parameters that can be configured in START. These parameters are used by
the 10.2.8.1 calendar_init function when initializing the driver and underlying hardware.

» The clock source and the prescaler of counter hardware used by the calendar

Driver Implementation Description

The calendar driver implementation is based on a hardware counter which is configured to increase with
one every second. The hardware may be RTC (Real-Time Counter) or RTT (Real-time Timer) depend on
the device.

Concurrency

The Calendar driver is an interrupt driven driver. This means that the interrupt that triggers an alarm may
occur during the process of adding or removing an alarm via the driver's API. In such case the interrupt
processing is postponed until the alarm adding or removing is complete.

The alarm queue is not protected from the access by interrupts not used by the driver. Due to this it is not
recommended to add or remove an alarm from such interrupts: in case if a higher priority interrupt
supersedes the driver's interrupt. Adding or removing an alarm may cause unpredictable behavior of the
driver.

Limitations
* Only years divisible by 4 are leap year. This gives a correct result between the years 1901 to 2099
* The driver is designed to work outside of an operating system environment. The software alarm
queue is therefore processed in interrupt context, which may delay execution of other interrupts
» If there are a lot of frequently called interrupts with a priority higher than the driver's one, it may
cause a delay in the alarm's triggering

* Changing the base year or setting current date or time does not shift the alarms' date and time
accordingly or expires alarms

Example of Usage

The following shows a simple example of using the Calendar. The calendar must have been initialized by
10.2.8.1 calendar_init. This initialization will configure the operation of the underlying hardware counter.

The example first sets the given date and time, then sets a repeat alarm timer on specific second match
with a callback function.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 141

10.2.5

10.2.6
10.2.6.1

ASF4 API Reference Manual

Calendar Drivers

Tip:
TaFl:e for example SAM D21. The RTC peripheral is used in counter mode and to be increased
by one every second. Correct RTC clock settings can be configured in START:
+ Clock
+ Select OSCULP32K source as generic clock generator 1 input
+ Enable generic clock generator 1 with division 32 to get 1kHz output
+ Calendar driver (RTC)
+ Select generic clock generator 1 as RTC clock input
» Set prescaler to 1024, then RTC get a 1Hz clock input

static void alarm cb(struct calendar descriptor *const descr)
{ /* alarm expired */
ioid CALENDAR 0 example (void)
{ struct calendar date date;
struct calendar time time;

calendar enable (&§CALENDAR O0);

date.year = 2000;
date.month = 12;
date.day = 31;
time.hour = 12;
time.min = 59;
time.sec = 59;

calendar set date (&CALENDAR 0, &date);
calendar set time (&CALENDAR 0, &time);

alarm.caI_algrm.datetime.time.sec = 4;
alarm.cal alarm.option = CALENDAR ALARM MATCH SEC;
alarm.cal alarm.mode = REPEAT;

calendar set alarm(&CALENDAR 0O, &alarm, alarm cb);

Dependencies
« This driver expects a counter to be increased by one every second to count date and time correctly
» Each instance of the driver requires separate hardware timer

Structs

calendar_alarm Struct
Struct for alarm time.

Members

elem
cal_alarm

callback

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 142

ASF4 API Reference Manual

Calendar Drivers

10.2.7 Typedefs

10.2.7.1 calendar_cb_alarm_t typedef
typedef void(* calendar_cb_alarm_t) (struct calendar_descriptor *const calendar)

Prototype of callback on alarm match.

Parameters

calendar Direction:

Pointer to the HAL Calendar instance.

10.2.8 Functions

10.2.8.1 calendar_init
Initialize the Calendar HAL instance and hardware.
int32_ t calendar_init(

struct calendar descriptor *const calendar,
const void * hw

Parameters
calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.
hw Type: const void *
Pointer to the hardware instance.
Returns
Type: int32_t

Operation status of init

0 Completed successfully.

10.2.8.2 calendar_deinit
Reset the Calendar HAL instance and hardware.

int32 t calendar deinit(
struct calendar descriptor *const calendar

)

Reset Calendar instance to hardware defaults.

Parameters

calendar Type: struct calendar_descriptor *const

Pointer to the HAL Calendar instance.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 143

10.2.8.3

10.2.8.4

10.2.8.5

ASF4 API Reference Manual

Calendar Drivers

Returns
Type: int32_t

Operation status of reset.

0 Completed successfully.

calendar_enable
Enable the Calendar HAL instance and hardware.

int32 t calendar_ enable(
struct calendar descriptor *const calendar

)

Parameters

calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.

Returns

Type: int32_t

Operation status of init

0 Completed successfully.

calendar_disable
Disable the Calendar HAL instance and hardware.

int32 t calendar disable(
struct calendar descriptor *const calendar

)

Disable Calendar instance to hardware defaults.

Parameters

calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.

Returns

Type: int32_t

Operation status of reset.

0 Completed successfully.

calendar_set_baseyear

Configure the base year for calendar HAL instance and hardware.

int32 t calendar set baseyear(
struct calendar descriptor *const calendar,
const uint32 t p base year

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 144

ASF4 API Reference Manual

Calendar Drivers

Parameters

calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.

p_base_year Type: const uint32_t
The desired base year.

Returns

Type: int32_t

0 Completed successfully.

10.2.8.6 calendar_set_time
Configure the time for calendar HAL instance and hardware.
int32 t calendar set time(

struct calendar descriptor *const calendar,
struct calendar time *const p calendar time

Parameters

calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.

p_calendar_time Type: struct calendar_time *const
Pointer to the time configuration.

Returns

Type: int32_t

0 Completed successfully.

10.2.8.7 calendar_set_date
Configure the date for calendar HAL instance and hardware.
int32 t calendar set date(

struct calendar descriptor *const calendar,
struct calendar date *const p calendar date

Parameters

calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.

p_calendar_date Type: struct calendar_date *const

Pointer to the date configuration.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 145

10.2.8.8

10.2.8.9

ASF4 API Reference Manual

Calendar Drivers

Returns
Type: int32_t

Operation status of time set.

0 Completed successfully.
calendar_get_date_time

Get the time for calendar HAL instance and hardware.

int32 t calendar get date time(
struct calendar descriptor *const calendar,
struct calendar date time *const date time

Parameters
calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.
date_time Type: struct calendar_date_time *const
Pointer to the value that will be filled with the current time.
Returns
Type: int32_t

Operation status of time retrieve.

0 Completed successfully.

calendar_set_alarm
Config the alarm time for calendar HAL instance and hardware.

int32 t calendar set alarm(
struct calendar descriptor *const calendar,
struct calendar alarm *const alarm,
calendar _cb_alarm_t callback

)

Set the alarm time to calendar instance. If the callback is NULL, remove the alarm if the alarm is already
added, otherwise, ignore the alarm.

Parameters

calendar Type: struct calendar_descriptor *const
Pointer to the HAL Calendar instance.

alarm Type: struct 10.2.6.1 calendar_alarm Struct *const
Pointer to the configuration.

callback Type: 10.2.7.1 calendar_cb_alarm_t typedef

Pointer to the callback function.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 146

ASF4 API Reference Manual

Calendar Drivers

Returns
Type: int32_t

Operation status of alarm time set.

0 Completed successfully.

10.2.8.10 calendar_get_version

10.3

10.3.1

10.3.2

10.3.3

10.3.31

Retrieve the current driver version.

uint32_t calendar_get version(
void

)

Returns
Type: uint32_t

Current driver version.

Calendar RTOS Driver

This Calendar RTOS driver provides an interface to set and get current date and time, and also alarm
functionality used in a Real-Time operating system.

Refer 10. Calendar Drivers for more detailed calendar basics.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Settime, date and base year
* Get current date, and time
» Set the software alarm timer with callback handler on the alarm event happen

Summary of Configuration Options
Below is the main Calendar parameters that can be configured in START. These parameters are used by
the 10.3.9.1 calendar_os_init function when initializing the driver and underlying hardware.

» The clock source and the prescaler of counter hardware used by the calendar

Driver Implementation Description

The calendar driver implementation is based on a hardware counter which is configured to increase with
one every second. The hardware may be RTC (Real-Time Counter) or RTT (Real-time Timer) depend on
the device.

To use the software alarm, the alarm task API (calendar_os_task) should be called as an RTOS task or in
the user while-loop thread.

The alarm task functions use semaphore to block the current task or thread until an alarm occurs. So the
alarm task functions do not work without RTOS, and must be called in an RTOS task or thread.

Limitations
* Only years divisible by 4 are leap year. This gives a correct result between the years 1901 to 2099
* The task API (calendar_os_task) should be called in a user while-loop thread

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 147

ASF4 API Reference Manual

Calendar Drivers

10.3.4 Example of Usage

The following shows a simple example of using the Calendar. The calendar must have been initialized by

10.3.9.1 calendar_os_init. This initialization will configure the operation of the underlying hardware
counter.

The example creates the calendar example task. In the task, it first sets the given date and time, then it
sets two alarm timers on specific second match with a callback function. Finally, the 10.3.9.6
calendar_os_task is called in the while-loop thread.

Tip:
Take for example SAM D21. The RTC peripheral is used in counter mode and is to be increased
by one every second. Correct RTC clock settings can be configured in START:
+ Clock
+ Select OSCULP32K source as generic clock generator 1 input
+ Enable generic clock generator 1 with division 32 to get 1kHz output
» Calendar driver (RTC)
» Select generic clock generator 1 as RTC clock input
+ Set prescaler to 1024, then RTC get a 1Hz clock input

static struct calendar os alarm alarml,
/**

* Example of using CALENDAR O.

*/

static void alarm cb(struct calendar os descriptor *const descr)

{

alarm?2;

/* Handle alarm event */
}
/**
* The alarm task function (calendar os task)
* in user while-
loop thread, so that the soft alarm could be processed and
* the alarm cb function could be called.
)
void CALENDAR 0 example task(void)
{

should be called

struct calendar date time dt;

dt.date.year = 2000;
dt.date.month = 12;
dt.date.day = 31;
dt.time.hour = 12;
dt.time.min = 59;
dt.time.sec = 59;

calendar os_set date time (&CALENDAR O,

alarml.cal alarm.datetime.time.sec

alarml.cal alarm.option

alarml.cal alarm.mode

calendar os_set alarm(&CALENDAR O,

alarm2.cal alarm.datetime.time.sec

alarm2.cal alarm.option

alarm2.cal alarm.mode

calendar os set alarm(&CALENDAR O,

while (1) {
calendar os_ task (&CALENDAR O0);

&dt) ;

= 20;

= CALENDAR ALARM MATCH SEC;
= ONESHOT;

&alarml, alarm cb);

= 40;

= CALENDAR ALARM MATCH SEC;
= REPEAT;

&alarm2, alarm cb);

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 148

ASF4 API Reference Manual

Calendar Drivers

}

}

#define TASK EXAMPLE STACK SIZE (256 / sizeof (portSTACK TYPE))

#define TASK EXAMPLE STACK PRIORITY (tskIDLE PRIORITY + 1)
static TaskHandle t xCreatedExampleTask;
int main(void)

{

LL,

= pdPASS) {

10.3.5 Dependencies

/* Initializes MCU, drivers and middleware */
atmel start init();
if (xTaskCreate (

CALENDAR 0 example task, "Example", TASK EXAMPLE STACK SIZE, NU

TASK EXAMPLE STACK PRIORITY, xCreatedExampleTask) !

while (1) {
}
}
vTaskStartScheduler () ;
/* Replace with your application code */
while (1) {
}

« This driver expects a counter to be increased by one every second to count date and time correctly
» Each instance of the driver requires a separate hardware timer

« RTOS

10.3.6 Structs

10.3.6.1 calendar_os_descriptor Struct
Calendar HAL driver struct.

Members
device
alarms

alarm_sem

10.3.6.2 calendar_os_alarm Struct
Struct for alarm time.

Members
elem
cal_alarm

callback

© 2018 Microchip Technology Inc.

User Guide DS50002633B-page 149

ASF4 API Reference Manual

Calendar Drivers

10.3.7 Defines

10.3.7.1 DEFAULT_BASE_YEAR
#define DEFAULT_BASE_YEAR() 1970

Default base year.

10.3.8 Typedefs

10.3.8.1 calendar_os_cb_alarm_t typedef
typedef void(* calendar_os_cb_alarm_t) (struct calendar_os_descriptor *const calendar)

Prototype of callback on alarm match.

Parameters

calendar Direction:

Pointer to the HAL Calendar instance.

10.3.9 Functions

10.3.9.1 calendar_os_init
Initialize the Calendar HAL instance and hardware.
int32 t calendar os init(

struct calendar os descriptor *const calendar,
const void * hw

Parameters

calendar Type: struct 10.3.6.1 calendar_os_descriptor Struct *const
Pointer to the HAL Calendar instance.

hw Type: const void *
Pointer to the hardware instance.

Returns

Type: int32_t

Operation status of init
0 Completed successfully.
10.3.9.2 calendar_os_deinit
Reset the Calendar HAL instance and hardware.

int32 t calendar os deinit(
struct calendar os descriptor *const calendar

)

Reset Calendar instance to hardware defaults.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 150

10.3.9.3

10.3.9.4

ASF4 API Reference Manual

Calendar Drivers

Parameters

calendar Type: struct 10.3.6.1 calendar_os_descriptor Struct *const
Pointer to the HAL Calendar instance.

Returns

Type: int32_t

Operation status of reset.

0 Completed successfully.

calendar_os_set_date_time
Configure the time for calendar HAL instance and hardware.
int32 t calendar os set date time(

struct calendar os_descriptor *const calendar,
struct calendar date time *const time

Parameters

calendar Type: struct 10.3.6.1 calendar_os_descriptor Struct *const
Pointer to the HAL Calendar instance.

time Type: struct calendar_date_time *const
Pointer to the time configuration.

Returns

Type: int32_t

0 Completed successfully.

calendar_os_get_date_time
Get the time for calendar HAL instance and hardware.

int32 t calendar os get date time(
struct calendar_ os_descriptor *const calendar,
struct calendar date time *const time

)

Retrieve the time from calendar instance.

Parameters

calendar Type: struct 10.3.6.1 calendar_os_descriptor Struct *const
Pointer to the HAL Calendar instance.

time Type: struct calendar_date_time *const

Pointer to the value that will be filled with the current time.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 151

ASF4 API Reference Manual

Calendar Drivers

Returns
Type: int32_t

Operation status of time retrieve.

0 Completed successfully.

10.3.9.5 calendar_os_set_alarm
Config the alarm time for calendar HAL instance and hardware.

int32 t calendar os set alarm(
struct calendar os descriptor *const calendar,
struct calendar_ os_alarm *const alarm,
calendar os cb alarm t callback

)

Set the alarm time to the calendar instance. If callback is NULL, remove the alarm if the alarm is already
added, otherwise, ignore the alarm.

Parameters

calendar Type: struct 10.3.6.1 calendar_os_descriptor Struct *const
Pointer to the HAL Calendar instance.

alarm Type: struct 10.3.6.2 calendar_os_alarm Struct *const
Pointer to the configuration.

callback Type: 10.3.8.1 calendar_os_cb_alarm_t typedef
Pointer to the callback function.

Returns

Type: int32_t

Operation status of alarm time set.

0 Completed successfully.

10.3.9.6 calendar_os_task
Alarm process task.

int32 t calendar os task(
struct calendar os descriptor *const calendar

)

It should be called in the user thread or while loop.

Parameters

calendar Type: struct 10.3.6.1 calendar_os_descriptor Struct *const
Pointer to the HAL calendar instance.

Returns

Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 152

10.3.9.7

ASF4 API Reference Manual

Calendar Drivers

Operation status of alarm task.

0 Completed successfully.

calendar_os_get_version
Retrieve the current driver version.

uint32_ t calendar os_get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 153

1.

1.1

1.2

11.2.1

11.2.2

11.2.3

ASF4 API Reference Manual

Camera Driver

Camera Driver

This Camera driver provides an interface for a CMOS digital image sensor.
The following driver variant is available:

* 11.2 Camera Asynchronous Driver: The driver supports a callback handler for the IRQ caused by
hardware state changes. The functionality is asynchronous to the main clock of the MCU.

Camera Basics and Best Practice

A Camera can be used to interface a CMOS digital image sensor to the processor and provide image
capture.

The Camera interface driver supports the CMOS sensor data format configuration and data stream
capture.

Camera Asynchronous Driver

In the Camera asynchronous driver, a callback function can be registered in the driver by the application
and triggered when the capture is done.

The Camera interface driver supports the CMOS sensor data format configuration and data stream
capture. The "Image Sensor" middleware is used to select which image sensor is to be used.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
« Enabling and disabling
* Hookup callback handlers on capture done
» Data stream capture

Summary of Configuration Options

Below is a list of the main Camera parameters that can be configured in START. Many of these
parameters are used by the 11.2.9.1 camera_async_init function when initializing the driver and
underlying hardware. Most of the initial values can be overridden and changed runtime by calling the
appropriate API functions.

» Select input data stream format

* Select input data stream path

» Set vertical and horizontal size of the image sensor
+ Set vertical and horizontal size of the preview path
* Which clock source is used

Driver Implementation Description

After the Camera hardware initialization, the application can register a callback function for capture done
by 11.2.9.5 camera_async_register_callback.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 154

ASF4 API Reference Manual

Camera Driver

11.2.4 Example of Usage
The following shows a simple example of using the Camera. The Camera must have been initialized by
11.2.9.1 camera_async_init. This initialization will configure the operation of the Camera, such as input
pins, Camera configuration, and interrupt configuration, etc.

The example registers a callback function for capture done and enables the Camera to start recording.

/**
* Example of using CAMERA O.
*/ -
static void capture cb(struct camera async descriptor *const descr, uint32
t ch)
{
if (ch == 0) {
// Application can process data in frame buf.
camera_async_capture start (&CAMERA 0, 0, frame buf);
}
}
/**
* Application example.
*/

void CAMERA 0 example (void)
{

camera_ async_register callback (&CAMERA 0, capture cb);
camera_ async_enable (&CAMERA 0);
camera async_capture start (¢§CAMERA 0, 0, frame buf);

11.2.5 Dependencies
* The Camera peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that Camera interrupt requests are periodically serviced

11.2.6 Structs

11.2.6.1 camera_async_descriptor Struct
Camera sensor descriptor.

Members
device Camera sensor HPL device descriptor
capture_done Capture done callback handlers on camera channels

11.2.7 Defines

11.2.7.1 CAMERA_ASYNC_DRIVER_VERSION
#define CAMERA_ASYNC_DRIVER_VERSION() 0x00000001u

Camera driver version.

11.2.8 Typedefs

11.2.8.1 camera_async_cb_t typedef
typedef void(* camera_async_cb _t) (struct camera_async_descriptor *const descr, uint32_t ch)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 155

11.2.9
11.2.9.1

11.2.9.2

ASF4 API Reference Manual

Camera Driver

Camera sensor callback type.

Parameters
descr Direction: in

Camera sensor descriptor
ch Direction: in

Camera channel number
Functions

camera_async_init
Initialize Camera sensor.

int32 t camera async init(
struct camera async_descriptor *const descr,
void *const hw

)
This function initializes the given Camera sensor descriptor. It checks if the given hardware is initialized or
not and if the given hardware is permitted to be initialized.
Parameters
descr Type: struct 11.2.6.1 camera_async_descriptor Struct *const
The camera sensor descriptor to initialize

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

camera_async_deinit
Deinitialize camera sensor.

static int32 t camera async_deinit(
struct camera async_descriptor *const descr

)
This function deinitializes the given camera sensor descriptor. It checks if the given hardware is initialized
and if the given hardware is permitted to be deinitialized.
Parameters

descr Type: struct 11.2.6.1 camera_async_descriptor Struct *const

Camera sensor descriptor to deinitialize

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 156

11.2.9.3

11.2.9.4

11.2.9.5

ASF4 API Reference Manual

Camera Driver

Returns
Type: int32_t

De-initialization status.

camera_async_enable
Enable camera sensor.

static int32 t camera async enable (
struct camera async_descriptor *const descr

)

This function enables the camera sensor by the given camera sensor descriptor.

Parameters

descr Type: struct 11.2.6.1 camera_async_descriptor Struct *const

Camera sensor descriptor to enable

Returns
Type: int32_t

Enabling status.

camera_async_disable
Disable camera sensor.

static int32 t camera async disable(
struct camera_async_descriptor *const descr

)

This function disables the camera sensor by the given camera sensor descriptor.

Parameters

descr Type: struct 11.2.6.1 camera_async_descriptor Struct *const

The camera sensor descriptor to disable

Returns
Type: int32_t

Disabling status.

camera_async_register_callback
Register camera sensor callback.

static int32_t camera_ async_register_ callback(
struct camera async descriptor *const descr,
camera_async_cb t cb

Parameters

descr Type: struct 11.2.6.1 camera_async_descriptor Struct *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 157

ASF4 API Reference Manual

Camera Driver

Pointer to the HAL descriptor

cb Type: 11.2.8.1 camera_async_cb_t typedef

A callback function, passing NULL de-registers callback

Returns
Type: int32_t

The status of callback assignment.

ERR_NONE A callback is registered successfully

-1 Passed parameters were invalid

11.2.9.6 camera_async_capture_start
Start camera data capture.

static int32 t camera async capture start(
struct camera async descriptor *const descr,
uint32_t ch,
uint32 t * buf

)

This function starts capturing camera data.

Parameters

descr Type: struct 11.2.6.1 camera_async_descriptor Struct *const
Camera sensor descriptor

ch Type: uint32_t
Capture channel

buf Type: uint32_t*

Pointer to frame buffer

Returns
Type: int32_t

Capture start status.

11.2.9.7 camera_async_get_version
Retrieve the current driver version.

static uint32 t camera async_get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 158

12.

121

12.2

12.2.1

ASF4 APl Reference Manual
Cryptography (AES) Driver

Cryptography (AES) Driver

This Cryptography driver provides an interface for encryption or decryption.
The following driver variant is available:

* 12.2 AES Synchronous Driver: The driver will block (i.e. not return) until the requested data has
been read. Functionality is therefore synchronous to the calling thread, i.e. the thread wait for the
result to be ready.

AES Basics and Best Practice

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data
established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES operates on
a 128-bit block of input data. The key size used for an AES cipher specifies the number of repetitions of
transformation rounds that converts the input, called the plaintext, into the final output, called the
ciphertext. The AES works on a symmetric-key algorithm, meaning the same key is used for both
encrypting and decrypting the data.

The driver supports ECB/CBC/CFB/OFB/CTR mode for data encryption, and GCM/CCM for authenticated
encryption. Before using any encrypted mode of AES, the key must be first be set. For privacy situation,
after encrypting/decrypting data, the key should be cleared by the application. Common practice is to set
the key to zero.

AES Synchronous Driver

The Advanced Encryption Standard (AES) driver provides an interface for encryption or decryption.

The driver will block (i.e. not return) until the requested data has been read. Functionality is therefore
synchronous to the calling thread, i.e. the thread waits for the result to be ready.

Refer 12. Cryptography (AES) Driver for more detailed calendar basics.

Summary of the API's Functional Features

The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Enable or disable the driver
» Configure 128/192/256 bit cryptographic keys

* Support of the Modes of Operation Specified in the NIST Special Publication 800-38A and NIST
Special Publication 800-38D:

+ ECB: Electronic Code Book

+ CBC: Cipher Block Chaining

* CFB: Cipher Feedback in 8,16,32,64,128 bits size

* OFB: Output Feedback

+ CTR: Counter

» CCM: Counter with CBC-MAC mode for authenticated encryption
* GCM: Galois Counter mode encryption and authentication

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 159

12.2.2

12.2.3

12.2.31

12.2.4

12.2.5

ASF4 APl Reference Manual
Cryptography (AES) Driver

Summary of Configuration Options

The user selects which clock source the AES uses in START. No more parameters are configured when
initializing the driver and underlying hardware.

Driver Implementation Description
The functions in the AES synchronous driver will block (i.e. not return) until operation is done.

Limitations
* The GCM supports data processes with known lengths only. This mean the 12.2.7.19
aes_sync_gcm_update cannot be invoked multiple times. The application should assembly all data
into a data buffer and then call the 12.2.7.19 aes_sync_gcm_update to encrypt/decrypt data.

Example of Usage

The following shows a simple example of using the AES. The AES must have been initialized by 12.2.7.1
aes_sync_init.

The example enables AES driver and sets ac encrypt key, and then invokes the function for Electronic
Code Book (ECB) mode. Finally, we can get the ciphered data. If the ciphered data isn't similar to the
plain data, the project will go into an infinite loop.

static uint8 t aes plain text[16]

= {0x6b, 0Oxcl, 0Oxbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x
11, 0x73, 0x93, 0x17, 0Ox2a};
static uint8 t aes key[1l6]

= {0x2b, 0x7e, 0x15, 0Oxle6, 0x28, Oxae, 0xd2, Oxa6, Oxab, 0xf7, 0x15, 0Ox
88, 0x09, Oxcf, 0x4f, 0x3c};
static uint8 t aes cipher text[16]

= {0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, O0xa8, 0x9e, Oxca, O0x
£3, 0x24, 0x66, Oxef, 0x97};

uint8 t aes output[l6] = {0x00};

/ ** - -
* Example of using CRYPTOGRAPHY 0 to Encrypt/Decrypt datas.
*/

void CRYPTOGRAPHY 0 example (void)
{
int32 t i;
aes_sync_enable (&CRYPTOGRAPHY 0);

aes_sync_set encrypt key (&CRYPTOGRAPHY 0, aes key, AES KEY 128);

aes_sync_ecb crypt (&CRYPTOGRAPHY 0O, AES ENCRYPT, aes plain text, aes ou
tput);
for (1 = 0; 1 < 16; 1i++) {
while (aes_output[i] != aes cipher text[i])

’

Dependencies
* AES peripheral and its related clocks

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 160

12.2.6
12.2.6.1

12.2.7
12.2.7.1

12.2.7.2

12.2.7.3

ASF4 API Reference Manual

Cryptography (AES) Driver

Structs

aes_sync_descriptor Struct

Members

dev AES HPL device descriptor
Functions

aes_sync_init
Initialize AES Descriptor.
int32 t aes_sync init(

struct aes_sync_descriptor * descr,
void *const hw

Parameters
desc The AES descriptor to be initialized
hw Type: void *const

The pointer to hardware instance
Returns
Type: int32_t

aes_sync_deinit
Deinitialize AES Descriptor.

int32 t aes_sync deinit(
struct aes_sync descriptor * desc

)

Parameters

desc Type: struct 12.2.6.1 aes_sync_descriptor Struct *

The AES descriptor to be deinitialized

Returns
Type: int32_t

aes_sync_enable
Enable AES.

int32 t aes sync enable (
struct aes_sync_descriptor * desc

)

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 161

ASF4 APl Reference Manual
Cryptography (AES) Driver

Parameters

desc Type: struct 12.2.6.1 aes_sync_descriptor Struct *

The AES descriptor

Returns
Type: int32_t

12.2.7.4 aes_sync_disable
Disable AES.

int32 t aes_sync disable(
struct aes sync descriptor * desc
)

Parameters

desc Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor

Returns
Type: int32_t
12.2.7.5 aes_sync_set_encrypt_key
Set AES Key (encryption).
int32_t aes_sync_set_encrypt_key(
struct aes sync descriptor * descr,

const uint8 t *7key,
const enum aes_keysize size

Parameters

desc The AES descriptor

key Type: const uint8_t *
Encryption key

size Type: const enum aes_keysize
Bit length of key

Returns

Type: int32_t

12.2.7.6 aes_sync_set_decrypt_key
Set AES Key (decryption).
int32 t aes_sync_set decrypt key(

struct aes_sync descriptor * descr,
const uint8 t * key,

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 162

ASF4 APl Reference Manual
Cryptography (AES) Driver

const enum aes_keysize size

Parameters

desc The AES descriptor

key Type: const uint8_t *
Decryption key

size Type: const enum aes_keysize
Bit length of key

Returns

Type: int32_t

12.2.7.7 aes_sync_ecb_crypt
AES-ECB block encryption/decryption.

int32 t aes sync ecb crypt(
struct aes_sync descriptor * descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output

Parameters

descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor

enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT

input Type: const uint8_t *
16-byte input data

output Type: uint8_t*
16-byte output data

Returns

Type: int32_t

ERR_NONE if successful

12.2.7.8 aes_sync_cbc_crypt
The AES-CBC block encryption/decryption length should be a multiple of 16 bytes.

int32 t aes_sync cbc crypt(
struct aes sync descriptor * descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output,

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 163

ASF4 APl Reference Manual
Cryptography (AES) Driver

uint32_t length,
uint8 t iv

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor
enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT
input Type: const uint8_t *
16-byte input data
output Type: uint8_t*
16-byte output data
length Type: uint32_t
Byte length of the input data
iv Type: uint8_t
Initialization vector (updated after use)
Returns
Type: int32_t

ERR_NONE if successful

12.2.7.9 aes_sync_cfb128_crypt
AES-CFB128 block encryption/decryption.

int32 t aes sync cfbl28 crypt(
struct aes_sync descriptor * descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output,
uint32 t length,
uint8_t * iv,
uint32 t * iv_ofst

Parameters

descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor

enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT

input Type: const uint8_t *

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 164

ASF4 API Reference Manual

Cryptography (AES) Driver

output

length

iv_ofst

Returns

Type: int32_t

Buffer holding the input data

Type: uint8_t*

Buffer holding the output data

Type: uint32_t

Byte length of the input data

Type: uint8_t*

Initialization Vector (updated after use)
Type: uint32_t*

Offset in IV (updated after use)

ERR_NONE if successful

12.2.7.10 aes_sync_cfb64_crypt
AES-CFB64 block encryption/decryption.

int32 t aes_sync cfb64 crypt(
struct aes sync descriptor * descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output,
uint32 t length,
uint8 t * iv,
uint32 t * iv ofst

Parameters

descr

enc

input

output

length

Type: struct 12.2.6.1 aes_sync_descriptor Struct *

The AES descriptor

Type: const enum aes_action

AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT

Type: const uint8_t *
Buffer holding the input data

Type: uint8_t*
Buffer holding the output data

Type: uint32_t
Byte length of the input data

Type: uint8_t*

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 165

ASF4 APl Reference Manual
Cryptography (AES) Driver

Initialization Vector (updated after use)

iv_ofst Type: uint32_t*
Offset in IV (updated after use)

Returns
Type: int32_t

ERR_NONE if successful

12.2.7.11 aes_sync_cfb32_crypt
AES-CFB32 block encryption/decryption.

int32 t aes_sync cfb32 crypt(
struct aes_sync descriptor * descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output,
uint32 t length,
uint8_t * iv,
uint32 t * iv_ofst

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor
enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8_t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data
iv Type: uint8_t*
Initialization Vector (updated after use)
iv_ofst Type: uint32_t*
Offset in IV (updated after use)
Returns
Type: int32_t

ERR_NONE if successful

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 166

ASF4 APl Reference Manual
Cryptography (AES) Driver

12.2.7.12 aes_sync_cfb16_crypt
AES-CFB16 block encryption/decryption.

int32 t aes_sync _cfblé crypt(
struct aes_sync descriptor * descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output,
uint32_t length,
uint8 t * iv,
uint32 t * iv_ofst

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor
enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8_t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data
iv Type: uint8_t*
Initialization Vector (updated after use)
iv_ofst Type: uint32_t*
Offset in IV (updated after use)
Returns
Type: int32_t

ERR_NONE if successful

12.2.7.13 aes_sync_cfb8_crypt
AES-CFB8 block encryption/decryption.

int32 t aes sync cfb8 crypt(
struct aes_sync descriptor * descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output,
uint32_t length,
uint8 t * iv

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 167

ASF4 APl Reference Manual
Cryptography (AES) Driver

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor
enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8_t*
Buffer holding the output data
iv Type: uint8_t*
Initialization Vector (updated after use)
Returns
Type: int32_t

ERR_NONE if successful

12.2.7.14 aes_sync_ofb_crypt
AES-OFB block encryption/decryption.

int32 t aes_sync ofb crypt(
struct aes sync descriptor * descr,
const uint8_ t * input,
uint8 t * output,
uint32 t length,
uint8 t * iv,
uint32 t * iv_ofst

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8_t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data
iv Type: uint8_t*

Initialization Vector (updated after use)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 168

ASF4 APl Reference Manual
Cryptography (AES) Driver

iv_ofst Type: uint32_t *
Offset in IV (updated after use)

Returns
Type: int32_t

ERR_NONE if successful

12.2.7.15 aes_sync_ctr_crypt
AES-CTR block encryption/decryption.

int32 t aes_sync _ctr crypt(
struct aes_sync descriptor * descr,
const uint8 t * input,
uint8 t * output,
uint32 t length,
uint8 t buffer,
uint8 t nc,
uint32 t * nc_ofst

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *
The AES descriptor
input Type: constuint8 t*
Buffer holding the input data
output Type: uint8 t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data

buffer Type: uint8_t

Stream block for resuming
nc Type: uint8_t

The 128-bit nonce and counter
nc_ofst Type: uint32 t*

The offset in the current stream_block (for resuming within current cipher stream). The offset
pointer should be 0 at the start of a stream.

Returns
Type: int32_t

ERR_NONE if successful

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 169

ASF4 API Reference Manual

Cryptography (AES) Driver

12.2.7.16 aes_sync_gcm_crypt_and_tag

AES-GCM block encryption/decryption.

int32 t aes_sync gcm crypt and tag(

struct aes_sync descriptor *const descr,

const enum aes_action enc,
const uint8 t * input,
uint8 t * output,

uint32_t length,

const uint8 t * iv,
uint32 t iv_len,

const uint8 t * aad,
uint32_t aad len,

uint8 t * tag,

uint32_t tag_len

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *const
The AES descriptor
enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8_t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data
iv Type: const uint8_t *
Initialization Vector
iv_len Type: uint32_t
Length of IV
aad Type: const uint8_t *
Additional data
aad_len Type: uint32_t
Length of additional data
tag Type: uint8_t*
Buffer holding the input data
tag_len Type: uint32_t

Length of tag

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 170

ASF4 API Reference Manual

Cryptography (AES) Driver

Returns
Type: int32_t

ERR_NONE if successful

12.2.7.17 aes_sync_gcm_auth_decrypt
AES-GCM block encryption.

int32 t aes sync gcm auth decrypt (
struct aes_sync descriptor *const descr,
const uint8 t * input,
uint8_t * output,
uint32_t length,
const uint8 t * iv,
uint32_t iv_len,
const uint8 t * aad,
uint32 t aad len,
const uint8 t * tag,
uint32_t tag_ len

Parameters
desc The AES descriptor
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8_t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data
iv Type: const uint8_t *
Initialization Vector
iv_len Type: uint32_t
Length of IV
aad Type: const uint8_t *
Additional data
aad_len Type: uint32_t
Length of additional data
tag Type: const uint8_t *
Buffer holding the input data
tag_len Type: uint32_t

Length of tag

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 171

ASF4 APl Reference Manual
Cryptography (AES) Driver

Returns
Type: int32_t

ERR_NONE if successful

12.2.7.18 aes_sync_gcm_start
AES-GCM block start.

int32 t aes sync gcm start(
struct aes_sync descriptor *const descr,
const enum aes_action enc,
const uint8 t * iv,
uint32 t iv_len,
const uint8 t * aad,
uint32_t aad len

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *const
The AES descriptor
enc Type: const enum aes_action
AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT
iv Type: const uint8_t *
Initialization Vector
iv_len Type: uint32_t
Length of the IV
aad Type: const uint8_t *
Additional data
aad_len Type: uint32_t
Length of additional data
Returns
Type: int32_t

ERR_NONE if successful

12.2.7.19 aes_sync_gcm_update
AES-GCM block update.

int32 t aes_sync _gcm update (
struct aes sync descriptor *const descr,
const uint8_ t * input,
uint8 t * output,
uint32_t length

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 172

ASF4 APl Reference Manual
Cryptography (AES) Driver

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *const
The AES descriptor
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8 t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data
Returns
Type: int32_t

ERR_NONE if successful

12.2.7.20 aes_sync_gcm_finish
AES-GCM block finish.

int32_t aes_sync_gcm finish(
struct aes_sync descriptor *const descr,
uint8 t * tag,
uint32_t tag_len

Parameters

descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *const
The AES descriptor

tag Type: uint8_t*
Buffer holding the input data

tag_len Type: uint32_t
Length of tag

Returns

Type: int32_t

ERR_NONE if successful

12.2.7.21 aes_sync_ccm_crypt_and_tag
AES-CCM block encryption/decryption.

int32 t aes_sync ccm crypt and tag(
struct aes sync descriptor *const descr,
const enum aes_action enc,
const uint8 t * input,
uint8 t * output,
uint32 t length,

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 173

ASF4 API Reference Manual

Cryptography (AES) Driver

const uint8 t * iv,
uint32_t iv_len,
const uint8 t * aad,
uint32_t aad len,
uint8 t * tag,
uint32 t tag len

Parameters

descr

enc

input

output

length

iv_len

aad

aad_len

tag

tag_len

Returns

Type: int32_t

Type: struct 12.2.6.1 aes_sync_descriptor Struct *const

The AES descriptor

Type: const enum aes_action

AES_SYNC_ENCRYPT or AES_SYNC_DECRYPT

Type: const uint8_t *

Buffer holding the input data
Type: uint8_t*

Buffer holding the output data
Type: uint32_t

Byte length of the input data
Type: const uint8_t *
Initialization Vector

Type: uint32_t

Length of IV

Type: const uint8_t *
Additional data

Type: uint32_t

Length of additional data
Type: uint8_t*

Buffer holding the input data
Type: uint32_t

Length of tag

ERR_NONE if successful

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 174

ASF4 API Reference Manual

Cryptography (AES) Driver

12.2.7.22 aes_sync_ccm_auth_decrypt

AES-CCM block authenticated decryption.

int32 t aes_sync ccm auth decrypt (

struct aes sync descriptor *const descr,

const uint8 t * input,
uint8 t * output,
uint32_t length,

const uint8 t * iv,
uint32 t iv_len,

const uint8 t * aad,
uint32_t aad len,
const uint8 t * tag,
uint32_t tag_len

Parameters
descr Type: struct 12.2.6.1 aes_sync_descriptor Struct *const
The AES descriptor
input Type: const uint8_t *
Buffer holding the input data
output Type: uint8_t*
Buffer holding the output data
length Type: uint32_t
Byte length of the input data
iv Type: const uint8_t *
Initialization Vector
iv_len Type: uint32_t
Length of IV
aad Type: const uint8_t *
Additional data
aad_len Type: uint32_t
Length of additional data
tag Type: const uint8_t *
Buffer holding the input data
tag_len Type: uint32_t
Length of tag
Returns
Type: int32_t

ERR_NONE if successful

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 175

ASF4 API Reference Manual

Cryptography (AES) Driver

12.2.7.23 aes_sync_get_version

Retrieve the current driver version.

uint32_t aes_sync _get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 176

13.

131

13.2

13.21

13.2.2

ASF4 API Reference Manual
DAC Drivers

DAC Drivers

This Digital-to-Analog Converter (DAC) driver provides an interface for the conversion of digital values to
analog voltage.

The following driver variants are available:

* 13.4 DAC Synchronous Driver: The driver supports polling for hardware changes. The functionality
is synchronous to the main clock of the MCU.

* 13.2 DAC Asynchronous Driver: The driver supports a callback handler for the IRQ caused by
hardware state changes. The functionality is asynchronous to the main clock of the MCU.

* 13.3 DAC RTOS Driver: The driver is intended for using functions in a Real-Time operating
system, i.e. is thread safe.

DAC Basics and Best Practice

A Digital-to-Analog Converter (DAC) converts a digital value to an analog voltage. The digital from 0 to
the highest value represents the output voltage value. The highest digital value is possible with the bit
resolution supported by the DAC. For example, for a 10-bit resolution DAC hardware, the highest value is
1024. The highest output voltage is possible with the reference voltage.

A common use of DAC is to generate audio signals by connecting the DAC output to a speaker, or to
generate a reference voltage; either for an external circuit or an internal peripheral, such as the Analog
Comparator.

DAC Asynchronous Driver

In the Digital-to-Analog Converter (DAC) asynchronous driver, the callback functions can be registered in
the driver by the application and triggered when the DAC convention is done or an error happens.

Summary of the API's Functional Features

The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Hookup callback handlers on DAC conversion done or error
* Enable and disable DAC channel
* Write buffers with multiple digital data to DAC

Summary of Configuration Options
Below is a list of the main DAC parameters that can be configured in START. Many of these parameters
are used by the 13.2.9.1 dac_async_init function when initializing the driver and underlying hardware.

» Select which DAC output signals are to be enabled

* Which clock source and prescaler the DAC uses

* Reference voltage selection

» Various aspects of Event control, such as "Start Conversion on Event Input"
* Runin Standby or Debug mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 177

ASF4 API Reference Manual
DAC Drivers

13.2.3 Driver Implementation Description
The driver can convert a serial digital value. The pre-defined data should be put in a data array.
Application can invoke 13.2.9.6 dac_async_write to start the conversion, and get a notice by the
registered callback function.

Implementation of 13.2.9.6 dac_async_write is based on the underlying DAC peripheral. Normally, there
is a FIFO buffer for writing conversion data. Take SAM D21 for example, the Data Buffer register
(DATABUF) and the Data register (DATA) are linked together to form a two-stage FIFO. The DAC uses
the Start Conversion event to load data from DATABUF into DATA and start a new conversion. In the
SAM D21 case, 13.2.9.6 dac_async_write will write data to the DATABUF register, so the Start
Conversion event should be configured properly to use this asynchronous driver.

13.2.4 Example of Usage
The following shows a simple example of using the DAC. The DAC must have been initialized by
13.2.9.1 dac_async_init. This initialization will configure the operation of the DAC, such as reference
voltage and Start Conversion Event Input, etc.

The example registers a callback function for conversion done and enables channel 0 of DACO, and
finally starts a D/A conversion to output a waveform.

Tip:

Normally it is also necessary to configure the Event system to trigger the DAC conversion. Take
SAM D21 for example, the RTC period 0 event can be used to trigger loading data from
DATABUF into DATA and start a new conversion in the DAC peripheral. These drivers are
needed for this example, with some configurations in START:

» Calendar driver (RTC)
+ Select 32.768kHz as RTC clock input
» Enable "Periodic Interval 0 Event Output"
+ Eventdriver
+ Enable one event channel for DAC and configure it
+ Select "RTC period 0" as Event generator and choose Event channel for DAC
» Select Event path "Asynchronous path"

* Enable "Start Conversion on Event Input"

static uintl6_t example DAC 0[10] = {
0, 100, 200, 300, 400,
500, 600, 700, 800, 900

i

static void tx cb DAC O (struct dac async descriptor *const descr, const uin
t8 t ch)
{
dac_async _write(descr, 0, example DAC 0, 10);
}
/**
* Example of using DAC 0 to generate waveform.
*/
void DAC 0 example (void)
{

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 178

ASF4 API Reference Manual
DAC Drivers

dac_async_enable channel (&DAC 0, 0);

dac _async_register callback (&DAC_0, DAC ASYNC CONVERSION DONE CB, tx cb
_DAC 0);
dac_async _write (&DAC 0, 0, example DAC 0, 10);

13.2.5 Dependencies
* The DAC peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that DAC interrupt requests are periodically serviced
e The Event Driver
» The driver (e.g RTC) of Event generator, which is used to trigger DAC convention

13.2.6 Structs

13.2.6.1 dac_async_callbacks Struct
DAC callback handlers.

Members
conversion_done Conversion done event handler
error Error event handler

13.2.6.2 dac_async_channel Struct
DAC asynchronous channel descriptor.

Members
buffer Pointer to buffer what to be converted
length The length of the buffer

13.2.6.3 dac_async_descriptor Struct
DAC asynchronous descriptor.

Members

dac_cb DAC callback handlers
device DAC device

sel_ch DAC channel handlers

13.2.7 Enums
13.2.7.1 dac_async_callback_type Enum
DAC_ASYNC_CONVERSION_DONE_CB DAC conversion done

DAC_ASYNC_ERROR_CB DAC conversion error

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 179

13.2.8
13.2.8.1

13.2.9
13.2.91

13.2.9.2

ASF4 API Reference Manual
DAC Drivers

Typedefs

dac_async_cb_t typedef
typedef void(* dac_async_cb_t) (struct dac_async_descriptor *const descr, const uint8_t ch)

DAC callback type

Parameters
descr Direction: in
A DAC descriptor
ch Direction: in
DAC channel number
Functions

dac_async_init
Initialize the DAC HAL instance and hardware.

int32_t dac_async_init(
struct dac_async _descriptor *const descr,
void *const hw

Parameters

descr Type: struct 13.2.6.3 dac_async_descriptor Struct *const

A DAC descriptor to initialize

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Operation status.

dac_async_deinit
Deinitialize the DAC HAL instance and hardware.

int32 t dac _async deinit(
struct dac_async descriptor *const descr
)

Parameters

descr Type: struct 13.2.6.3 dac_async_descriptor Struct *const

Pointer to the HAL DAC descriptor

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 180

13.2.9.3

13.2.94

13.2.9.5

ASF4 API Reference Manual
DAC Drivers

Returns
Type: int32_t

Operation status.

dac_async_enable_channel
Enable DAC channel.

int32 t dac_async_enable channel (
struct dac_async_descriptor *const descr,
const uint8_t ch

Parameters

descr Type: struct 13.2.6.3 dac_async_descriptor Struct *const

Pointer to the HAL DAC descriptor

ch Type: const uint8_t

channel number

Returns
Type: int32_t

Operation status.

dac_async_disable_channel
Disable DAC channel.

int32 t dac async disable channel (
struct dac_async descriptor *const descr,
const uint8 t ch

Parameters

descr Type: struct 13.2.6.3 dac_async_descriptor Struct *const
Pointer to the HAL DAC descriptor

ch Type: const uint8_t

Channel number

Returns
Type: int32_t

Operation status.

dac_async_register_callback
Register DAC callback.
int32 t dac_async_register callback(

struct dac_async descriptor *const descr,
const enum dac_async_callback type type,

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 181

ASF4 API Reference Manual
DAC Drivers

dac_async cb t cb

Parameters
descr Type: struct 13.2.6.3 dac_async_descriptor Struct *const

Pointer to the HAL DAC descriptor

type Type: const enum 13.2.7.1 dac_async_callback_type Enum

Interrupt source type

cb Type: 13.2.8.1 dac_async_cb _t typedef

A callback function, passing NULL de-registers callback

Returns
Type: int32_t

Operation status
0 Success
-1 Error
13.2.9.6 dac_async_write
DAC converts digital data to analog output.

int32 t dac_async write(
struct dac_async descriptor *const descr,
const uint8 t ch,
uintlé_t * buffer,
uint32_t length

Parameters
descr Type: struct 13.2.6.3 dac_async_descriptor Struct *const

Pointer to the HAL DAC descriptor

ch Type: const uint8_t

The channel selected to output

buffer Type: uint16_t*
Pointer to digital data or buffer
length Type: uint32_t

The number of elements in buffer

Returns
Type: int32_t

Operation status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 182

ASF4 API Reference Manual
DAC Drivers

13.2.9.7 dac_async_get_version

13.3

13.3.1

13.3.2

13.3.3

13.34

Get DAC driver version.

uint32 t dac_async _get version(
void

)

Returns
Type: uint32_t

Current driver version.

DAC RTOS Driver

The convert functions of the Digital-to-Analog Converter (DAC) RTOS driver are optimized for RTOS
support. That is, the convert functions will not work without RTOS, the convert functions should only be
called in an RTOS task or thread.

Summary of the API's Functional Features

The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Enable and disable the DAC channel
* Write buffers with multiple digital data to DAC

Summary of Configuration Options
Below is a list of the main DAC parameters that can be configured in START. Many of these parameters
are used by the 13.3.7.1 dac_os_init function when initializing the driver and underlying hardware.

» Select which DAC output signals to be enabled

* Which clock source and prescaler the DAC uses

» Reference voltage selection

* Various aspects of Event control, such as "Start conversion on Event Input"
* Runin Standby or Debug mode

Driver Implementation Description

The driver can convert a serial digital value. The pre-defined data should be put in a data array. The
Application can invoke 13.3.7.5 dac_os_write to start the conversion (asyn mode). The task/thread will
be blocked until the conversion is done.

During data conversion, the DAC convert process is not protected, so that a more flexible way can be
chosen in the application.

Example of Usage

The following shows a simple example of using the DAC. The DAC must have been initialized by the
13.3.7.1 dac_os_init. This initialization will configure the operation of the DAC, such as reference voltage
and Start Conversion Event Input, etc.

The example creates one convert task for channel 0 of DACO and finally starts the RTOS task scheduler.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 183

ASF4 API Reference Manual
DAC Drivers

Tip:
Normally it is also necessary to configure the Event system to trigger the DAC conversion. See
the example in 13.2 DAC Asynchronous Driver for reference.

static uintl6 t example DAC 0[10] = {
0, 100, 200, 300, 400,
500, 600, 700, 800, 900
}i
/**
* Example task of using DAC 0 to generate waveform.
*/
void DAC 0 example task(void *p)
{
(void) p;
dac_os_enable channel (&DAC 0, 0);
for(;:) |

if (dac _os write(&DAC 0, 0, example DAC 0, 10) == 10) {
/* convert OK */;
} else {

/* error. */;
}
}
}

#define TASK DAC CONVERT STACK SIZE (256/
sizeof (portSTACK TYPE))
#define TASK DAC CONVERT PRIORITY (tSkIDLEiPRIORITY + 1)

static TaskHandle t xDacConvertTask;
int main(void)

{

/* Initializes MCU, drivers and middleware */
atmel start init();
/* Create DAC convert task */

if (xTaskCreate(DAC 0O example task, "DAC convert", TASK DAC CONVERT STA

CK_SIZE,
NULL,
TASK_DAC_CONVERT PRIORITY, &xDacConvertTask) !
= pdPASS) {
while (1) {

}

}
/* Start RTOS scheduler */

vTaskStartScheduler () ;

/* Replace with your application code */
while (1) {

}

13.3.5 Dependencies
» The DAC peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that DAC interrupt requests are periodically serviced

« RTOS

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 184

ASF4 API Reference Manual
DAC Drivers

13.3.6 Structs

13.3.6.1 dac_os_channel Struct
DAC RTOS channel descriptor.
Members

buffer

length Pointer to buffer what to be converted

13.3.6.2 dac_os_descriptor Struct
DAC RTOS descriptor.

Members

device

sel_ch DAC device

tx_sem DAC channel handlers

error DAC channel write data semaphore

13.3.7 Functions

13.3.7.1 dac_os_init
Initialize the DAC HAL instance and hardware.

int32 t dac os_init(
struct dac_os descriptor *const descr,
void *const hw

Parameters

descr Type: struct 13.3.6.2 dac_os_descriptor Struct *const

A DAC descriptor to initialize

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Operation status.
<0 The passed parameters were invalid or a DAC is already initialized

ERR_NONE The initialization has completed successfully

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 185

13.3.7.2

13.3.7.3

13.3.74

ASF4 API Reference Manual
DAC Drivers

dac_os_deinit
Deinitialize the DAC HAL instance and hardware.

int32 t dac_os _deinit(
struct dac_os descriptor *const descr

)

Parameters

descr Type: struct 13.3.6.2 dac_os_descriptor Struct *const

Pointer to the HAL DAC descriptor

Returns
Type: int32_t

ERR_NONE

dac_os_enable_channel
Enable DAC channel.

int32 t dac os_enable channel (
struct dac_os descriptor *const descr,
const uint8 t ch

Parameters
descr Type: struct 13.3.6.2 dac_os_descriptor Struct *const

Pointer to the HAL DAC descriptor

ch Type: const uint8_t

Channel number

Returns
Type: int32_t

ERR_NONE

dac_os_disable_channel
Disable DAC channel.

int32 t dac os disable channel (
struct dac_os descriptor *const descr,
const uint8 t ch

Parameters

descr Type: struct 13.3.6.2 dac_os_descriptor Struct *const

Pointer to the HAL DAC descriptor

ch Type: const uint8_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 186

13.3.7.5

13.3.7.6

ASF4 API Reference Manual
DAC Drivers

Channel number

Returns
Type: int32_t

ERR_NONE

dac_os_write
The DAC convert digital data to analog output.

int32 t dac_os_write(
struct dac_os descriptor *const descr,
const uint8_t ch,
uintlé_t * buffer,
uint32_t length
)

It blocks the task/thread until the conversation is done. The buffer sample should be 16-bit wide. 8-bit
data will not be supported. You must convert to 16-bit if there are 8-bit samples.

Parameters
descr Type: struct 13.3.6.2 dac_os_descriptor Struct *const

Pointer to the HAL DAC descriptor
ch Type: const uint8_t

The channel selected to output
buffer Type: uint16_t*

Pointer to digital data or buffer
length Type: uint32_t

The number of elements in buffer
Returns
Type: int32_t

Operation status.

<0 Error code
length Convert success
dac_os_get_version

Get DAC driver version.

uint32 t dac os get version(
void

)

Returns
Type: uint32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 187

13.4

13.4.1

13.4.2

13.4.3

13.4.4

ASF4 API Reference Manual
DAC Drivers

Current driver version.

DAC Synchronous Driver

The functions in Digital-to-Analog Converter (DAC) synchronous driver will block (i.e. not return) until the
operation is done.

The 13.4.7.5 dac_sync_write function will perform a conversion of digital value to analog voltage and
return the result when it is ready.

Summary of the API's Functional Features

The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Enable and disable the DAC channel
* Write buffers with multiple digital data to DAC

Summary of Configuration Options
Below is a list of the main DAC parameters that can be configured in START. Many of these parameters
are used by the 13.4.7.1 dac_sync_init function when initializing the driver and underlying hardware.

» Select which DAC output signals to be enabled
* Which clock source and prescaler the DAC uses
» Reference voltage selection

* Runin Standby or Debug mode

Driver Implementation Description

In DAC synchronous driver, new digital values will be written directly to the DAC hardware and returned
when all digital data has been converted.

Example of Usage

The following shows a simple example of using the DAC. The DAC must have been initialized by
13.4.7.1 dac_sync_init. This initialization will configure the operation of the DAC, such as reference
voltage, etc.

The example enables channel 0 of DACO, and finally starts a D/A conversion to output a waveform.

/**
* Example of using DAC 0 to generate waveform.
*/
void DAC 0 example (void)
{
uintlée t i = 0;
dac_sync_enable channel (&DAC_0, 0);
for(;;) |
dac_sync write(&DAC 0, O, &i, 1);

i = (i+1l) % 1024;

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 188

ASF4 API Reference Manual
DAC Drivers

13.4.5 Dependencies
* The DAC peripheral and its related 1/O lines and clocks

13.4.6 Structs

13.4.6.1 dac_sync_channel Struct
DAC synchronous channel descriptor.

Members
buffer Pointer to buffer what to be converted
length The length of buffer

13.4.6.2 dac_sync_descriptor Struct
DAC synchronous descriptor.

Members
device DAC device
sel_ch DAC selected channel

13.4.7 Functions

13.4.7.1 dac_sync_init
Initialize the DAC HAL instance and hardware.

int32 t dac sync init(
struct dac_sync descriptor *const descr,
void *const hw

Parameters
descr Type: struct 13.4.6.2 dac_sync_descriptor Struct *const
A DAC descriptor to initialize

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Operation status.

13.4.7.2 dac_sync_deinit
Deinitialize the DAC HAL instance and hardware.
int32 t dac_sync deinit(

struct dac_sync_descriptor *const descr

)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 189

13.4.7.3

13.4.74

ASF4 API Reference Manual
DAC Drivers

Parameters

descr Type: struct 13.4.6.2 dac_sync_descriptor Struct *const

Pointer to the HAL DAC descriptor

Returns
Type: int32_t

Operation status.

dac_sync_enable_channel
Enable DAC channel.

int32 t dac sync_enable channel (
struct dac sync descriptor *const descr,
const uint8 t ch

Parameters

descr Type: struct 13.4.6.2 dac_sync_descriptor Struct *const
Pointer to the HAL DAC descriptor

ch Type: const uint8_t

Channel number

Returns
Type: int32_t

Operation status.

dac_sync_disable_channel
Disable DAC channel.

int32 t dac_sync disable channel (
struct dac_sync _descriptor *const descr,
const uint8_t ch

Parameters
descr Type: struct 13.4.6.2 dac_sync_descriptor Struct *const

Pointer to the HAL DAC descriptor

ch Type: const uint8_t

Channel number

Returns
Type: int32_t

Operation status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 190

ASF4 API Reference Manual
DAC Drivers

13.4.7.5 dac_sync_write
DAC converts digital data to analog output.

int32 t dac_sync _write(
struct dac_sync descriptor *const descr,
const uint8_t ch,
uintlé_t * buffer,
uint32 t length

Parameters

descr Type: struct 13.4.6.2 dac_sync_descriptor Struct *const

Pointer to the HAL DAC descriptor

ch Type: const uint8_t

the Channel selected to output

buffer Type: uint16_t*

Pointer to digital data or buffer

length Type: uint32_t

The number of elements in the buffer

Returns
Type: int32_t

Operation status.

13.4.7.6 dac_sync_get_version
Get DAC driver version.

uint32 t dac sync_get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 191

14.

141

14.2

14.3

14.4

14.5

14.6

14.6.1

ASF4 API Reference Manual

Delay Driver

Delay Driver

This Delay driver provides an interface for basic delay functions for applications requiring a brief wait
during execution.

Summary of the API's Functional Features

The API provides functions to:
* Initialize the Delay driver and associated hardware
» Delay for the given amount of microseconds
* Delay for the given amount of milliseconds

Summary of Configuration Options
No configuration is needed in START.

Driver Implementation Description

The driver will first calculate the amount of cycles to delay for the given time according to the system
clock, then use Systick to delay these cycles.

Example of Usage

The following shows a simple example of using the delay function. The delay driver must have been
initialized by 14.6.1 delay_init. This initialization will configure the operation of the SysTick.

void delay example (void)

{
delay ms (5000) ;

}

Dependencies
» SysTick

Functions

delay_init
Initialize Delay driver.
void delay init(

void *const hw

)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 192

ASF4 API Reference Manual

Delay Driver

Parameters

hw Type: void *const

The pointer to hardware instance

Returns
Type: void

14.6.2 delay_us
Perform delay in us.

void delay us(
const uintl6 _t us

)

This function performs delay for the given amount of microseconds.

Parameters

us Type: const uint16_t
The amount delay in us

Returns

Type: void

14.6.3 delay_ms
Perform delay in ms.

void delay ms (
const uintl6_t ms

)

This function performs delay for the given amount of milliseconds.

Parameters

ms Type: const uint16_t
The amount delay in ms

Returns

Type: void

14.6.4 delay_get_version
Retrieve the current driver version.

uint32 t delay get version(
void

)

Returns
Type: uint32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 193

ASF4 API Reference Manual

Delay Driver

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 194

15.

15.1

15.2

15.3

15.4

15.5

ASF4 APl Reference Manual
Digital Glue Logic

Digital Glue Logic

This custom logic driver offers a way to initialize on-chip programmable logic units, so that a specific logic
box is built. Then this "box" can be connected to an internal or external circuit to perform the logic
operations.

Summary of the API's Functional Features

The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
« Enabling and disabling digital glue logic

Summary of Configuration Options

Most custom logic parameters are configured in START. Many of these parameters are used by the
15.6.1 custom_logic_init function when initializing the driver and underlying hardware (for example,
CCL).

Driver Implementation Description
The implementation is simple in this driver and most custom logic parameters are static configuration.

Example of Usage

The following shows a simple example of using the custom logic driver. The custom logic driver must
have been initialized by 15.6.1 custom_logic_init. This initialization will configure the operation of the
hardware programmable logic instance.

/**

* Example of using DIGITAL GLUE LOGIC O.
*/

void DIGITAL GLUE LOGIC 0 example (void)

{

custom logic enable();
/* Customer logic now works. */

Dependencies
* Programmable logic control units, such as Configurable Custom Logic (CCL)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 195

15.6

15.6.1

15.6.2

15.6.3

15.6.4

ASF4 API Reference Manual

Digital Glue Logic

Functions

custom_logic_init
Initialize the custom logic hardware.
static int32_t custom logic_init(

void

)

Returns
Type: int32_t

Initialization operation status

custom_logic_deinit
Disable and reset the custom logic hardware.

static void custom logic_deinit(
void

)

Returns
Type: void

custom_logic_enable
Enable the custom logic hardware.
static int32 t custom logic enable (

void

)

Returns
Type: int32_t

Initialization operation status

custom_logic_disable
Disable the custom logic hardware.

static void custom logic_disable (
void

)

Returns
Type: void

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 196

16.

16.1

16.1.1

16.1.2

16.1.3
16.1.3.1

16.1.3.2

16.1.4
16.1.4.1

ASF4 API Reference Manual
Ethernet MAC Driver

Ethernet MAC Driver

The Ethernet MAC driver implements a 10/100 Mbps Ethernet MAC compatible with the IEEE 802.3
standard.

Ethernet Asynchronous Driver

The Ethernet MAC driver implements a 10/100 Mbps Ethernet MAC compatible with the IEEE 802.3
standard. It co-works with the thirdparty TCP/IP stacks. E.g., Lwip, Cyclone IP stack.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Enabling/disabling
» Data transfer: transmission, reception
* Enabling/disabling Interrupt
* Notifications about transfer completion and frame received via callbacks
* Address Filter for Specific 48-bit Addresses and Type ID
* Address Filter for unicast and multicast Addresses
* Reading/writing PHY registers

Dependencies
* MAC capable hardware compatible with the IEEE 802.3 standard

Structs
mac_async_callbacks Struct
MAC callbacks.

Members

receive

transmit

mac_async_descriptor Struct
MAC descriptor.

Members

dev MAC HPL device descriptor
cb MAC Callback handlers
Typedefs

mac_async_cb_t typedef
typedef void(* mac_async_cb_t) (struct mac_async_descriptor *const descr)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 197

16.1.4.2

16.1.5
16.1.5.1

16.1.5.2

ASF4 API Reference Manual
Ethernet MAC Driver

MAC callback type.

Parameters

descr Direction: in

A MAC descriptor

mac_cb typedef
typedef void(* mac_cb) (struct mac_async_descriptor *const descr)

Functions

mac_async_init
Initialize the MAC driver.

int32 t mac _async init(
struct mac_async descriptor *const descr,
void *const dev

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

A MAC descriptor to init.

hw Hardware instance pointer.
Returns
Type: int32_t

Operation status.
ERR_NONE Success.

mac_async_deinit
Deinitialize the MAC driver.

int32 t mac_async_deinit(
struct mac_async descriptor *const descr

)

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

A MAC descriptor to deinitialize.

Returns
Type: int32_t

Operation status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 198

16.1.5.3

16.1.5.4

16.1.5.5

ASF4 API Reference Manual
Ethernet MAC Driver

ERR_NONE Success.

mac_async_enable
Enable the MAC.

int32 t mac async enable (
struct mac_async descriptor *const descr

)

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor.

Returns
Type: int32_t

Operation status.

ERR_NONE Success.

mac_async_disable
Disable the MAC.

int32 t mac_async disable(
struct mac_async descriptor *const descr

)

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor

Returns
Type: int32_t

Operation status.

ERR_NONE Success.

mac_async_write
Write raw data to MAC.

int32 t mac_async_write(
struct mac_async descriptor *const descr,
uint8_t * buf,
uint32_t len

)

Write the raw data to the MAC that will be transmitted

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 199

16.1.5.6

16.1.5.7

ASF4 API Reference Manual
Ethernet MAC Driver

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const
Pointer to the HAL MAC descriptor.

buf Type: uint8_t*
Pointer to the data buffer.

len Type: uint32_t
Length of the data buffer.

Returns
Type: int32_t

Operation status.

ERR_NONE Success.

mac_async_read
Read raw data from MAC.

uint32 t mac async read(
struct mac_async descriptor *const descr,
uint8 t * buf,
uint32_t len

)

Read received raw data from MAC

Parameters
descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const
Pointer to the HAL MAC descriptor.
buffer Pointer to the data buffer. If the pointer is NULL, then the frame will be discarded.

length The max. length of the data buffer to be read. If the length is zero, then the frame will be discard

Returns
Type: uint32_t

Number of bytes that received

mac_async_read_len
Get next valid package length.
uint32 t mac async _read len(

struct mac_async descriptor *const descr

)

Get next valid package length from the MAC. The application can use this function to fetch the length of
the next package, malloc a buffer with this length, and then invoke mac_async_read to read out the
package data.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 200

ASF4 API Reference Manual
Ethernet MAC Driver

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor.

Returns
Type: uint32_t

The number of bytes in the next package that can be read.

16.1.5.8 mac_async_enable_irq
Enable the MAC IRQ.

void mac_async_enable irg(
struct mac_async descriptor *const descr

)

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor

Returns
Type: void

16.1.5.9 mac_async_disable_irq
Disable the MAC IRQ.

void mac_async _disable irg(
struct mac_async descriptor *const descr

)

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor

Returns
Type: void

16.1.5.10 mac_async_register_callback
Register the MAC callback function.

int32 t mac_async_register callback(
struct mac_async _descriptor *const descr,
const enum mac_async cb type type,
const FUNC PTR func

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 201

ASF4 API Reference Manual
Ethernet MAC Driver

Pointer to the HAL MAC descriptor.

type Type: const enum mac_async_cb_type

Callback function type.

func Type: const 40.3.2.1 FUNC_PTR typedef

A callback function. Passing NULL will de-register any registered callback.

Returns
Type: int32_t

Operation status.

ERR_NONE Success.

16.1.5.11 mac_async_set_filter
Set MAC filter.

int32 t mac async set filter(
struct mac_async descriptor *const descr,
uint8 t index,
struct mac_async filter * filter

)

Set MAC filter. Ethernet frames matching the filter, will be received.

Parameters
descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const
Pointer to the HAL MAC descriptor.
index Type: uint8 t
MAC filter index. Start from 0. The maximum value depends on the hardware specifications.

filter Type: struct mac_async_filter *

Pointer to the filter descriptor.

Returns
Type: int32_t

Operation status.

ERR_NONE Success.

16.1.5.12 mac_async_set_filter_ex
Set MAC filter (expanded).

int32 t mac async set filter ex(
struct mac_async_descriptor *const descr,
uint8 t mac

)

Set MAC filter. The Ethernet frames matching the filter, will be received.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 202

ASF4 API Reference Manual
Ethernet MAC Driver

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor

mac Type: uint8_t
MAC address

Returns
Type: int32_t

Operation status.

ERR_NONE Success.

16.1.5.13 mac_async_write_phy_reg
Write PHY register.

int32_t mac_async_write phy reg(
struct mac_async descriptor *const descr,
uintlé t addr,
uintlé t reg,
uintlé t val

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor.

addr Type: uint16_t
PHY address.
reg Type: uint16_t

Register address.

val Type: uint16_t

Register value.

Returns
Type: int32_t

Operation status.
ERR_NONE Success.

16.1.5.14 mac_async_read_phy_reg
Read PHY register.
int32 t mac_async_read phy reg(

struct mac_async_descriptor *const descr,
uintlé t addr,

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 203

ASF4 API Reference Manual
Ethernet MAC Driver

uintlé t reg,
uintlée_t * val

Parameters

descr Type: struct 16.1.3.2 mac_async_descriptor Struct *const

Pointer to the HAL MAC descriptor.

addr Type: uint16_t
PHY address.
reg Type: uint16_t

Register address.

val Type: uint16_t *

Register value.

Returns
Type: int32_t

Operation status.

ERR_NONE Success.

16.1.5.15 mac_async_get_version
Get the MAC driver version.

uint32 t mac async get version(
void

)

Returns
Type: uint32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 204

17.

171

1711

17.1.2

17.2

17.3

ASF4 API Reference Manual

Event System Driver

Event System Driver

The Event system driver allows to configure the event system of an MCU.

Event System Basics and Best Practice

The Event system allows autonomous, low-latency, and configurable communication between
peripherals.

Communication is made without CPU intervention and without consuming system resources such as bus
or RAM bandwidth. This reduces the load on the CPU and system resources, compared to a traditional
interrupt-based system.

The Event system consists of several channels, which route the internal events from generators to users.
Each event generator can be selected as source for multiple channels, but a channel cannot be set to
use multiple event generators at the same time.

Several peripherals can be configured to generate and/or respond to signals known as events. The exact
condition to generate an event, or the action taken upon receiving an event, is specific to each peripheral.
Peripherals that respond to events are event users, peripherals that generate events are called event
generators. A peripheral can have one or more event generators and can have one or more event users.

Event Channels

The Event module in each device consists of several channels, which can be freely linked to an event
generator (i.e. a peripheral within the device that is capable of generating events). Each channel can be
individually configured to select the generator peripheral, signal path, and edge detection applied to the
input event signal, before being passed to any event user(s).

Event channels can support multiple users within the device in a standardized manner. When an Event
User is linked to an Event Channel, the channel will automatically handshake with all attached users to
ensure that all modules correctly receive and acknowledge the event.

Event Users

Event Users are able to subscribe to an Event Channel, once it has been configured. Each Event User
consists of a fixed connection to one of the peripherals within the device (for example, an ADC module, or
Timer module) and is capable of being connected to a single Event Channel.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Enable and disable the generator and user for a given channel

Summary of Configuration Options

Below is a list of the main Event parameters that can be configured in START. All of these are used by the
17.7.1 event_system_init function when initializing the driver and underlying hardware.

+ Select clock source for each Event channel

» Select Event parameters for each channel

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 205

17.4

17.5

17.6

17.7

17.71

17.7.2

ASF4 API Reference Manual

Event System Driver

+ Edge detection
* Path selection
+ Event generator
* Interrupt setting for Event, etc.
* Event channel selection for peripheral users

Driver Implementation Description

All Event configuration is static and configured in START. Event API functions can be used to enable or
disable a specific generator or user for a given channel.

Example of Usage

Refer example in 13.2 DAC Asynchronous Driver of using the RTC period 0 event to trigger DAC
convention.

Dependencies
* Event peripheral and its related clocks
» Related peripheral generator and user, such as RTC, ADC, DAC, etc.

Functions

event_system_init
Initialize event system.

int32 t event system init(
void

)

Returns
Type: int32_t

Initialization status.

event_system_deinit
Deinitialize event system.

int32 t event system deinit(
void

)

Returns
Type: int32_t

De-initialization status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 206

ASF4 API Reference Manual

Event System Driver

17.7.3 event_system_enable_user
Enable event reception by the given user from the given channel.
int32 t event system enable user(

const uintlé6_t user,
const uintl6_t channel

Parameters
user Type: const uint16_t
A user to enable
channel Type: const uint16_t
A channel the user is assigned to
Returns
Type: int32_t

Status of operation.

17.7.4 event_system_disable_user
Disable event reception by the given user from the given channel.
int32 t event system disable user(

const uintlé6_t user,
const uintl6_t channel

Parameters
user Type: const uint16_t
A user to disable
channel Type: const uint16_t
A channel the user is assigned to
Returns
Type: int32_t

Status of operation.

17.7.5 event_system_enable_generator

Enable event generation by the given generator for the given channel.

int32 t event system enable generator (
const uintl6_t generator,
const uintl6_t channel

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 207

17.7.6

17.7.7

ASF4 API Reference Manual

Event System Driver

Parameters
generator Type: const uint16_t
A generator to disable
channel Type: const uint16_t
A channel the generator is assigned to
Returns
Type: int32_t

Status of operation.

event_system_disable_generator

Disable event generation by the given generator for the given channel.

int32 t event system disable generator(
const uintl6_t generator,
const uintl6 t channel

Parameters
generator Type: const uint16_t
A generator to disable
channel Type: const uint16_t
A channel the generator is assigned to
Returns
Type: int32_t

Status of operation.

event_system_get_version
Retrieve the current driver version.

uint32 t event system get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 208

18.

18.1

18.2

18.3

ASF4 API Reference Manual

External Bus Driver

External Bus Driver

The External Bus Interface (EBI) connects external memory and peripheral devices such as static
memory and SDRAM, so that they can be accessed via reading or writing to their address spaces.

Summary of the API's Functional Features
No special API is provided for this driver, just accessing the external memory via their address space.

The configured EBI parameters in Atmel START are automatically initialized via atmel_start_init() in
main.c.

Summary of Configuration Options

Depend on device, all EBI parameters can be configured in START, such as pin signals, chip select, and
bus timing etc.

Example of Usage

The following shows a simple example of access external memory. The EBI parameters must be
configured correctly according to hardware in START. The EBI driver must have been initialized by
atmel_start_init(). This initialization will configure the operation of the hardware EBI instance.

/** Memory base address for EBI access example */
#warning no external memory enabled, please check!
static uint32 t MEM BASE([1];
/*
* Example of accessing external bus memory
%/
void EXTERNAL BUS 0 example (void)
{
volatile uint32 t *pu32
volatile uintl6 t *pulé6
volatile uint8 t * pu8
/* Backup one WORD */
uint32 t bak = ext bus read u32((void *)pu32);
/* Write and verify BYTE */
*pu8 = 0xAA;

(uint32_t *)MEM BASE;
(uintl6_t *)MEM BASE;
(uint8 t *)MEM BASE;

if (*pu8 != 0xAA) {
/* Error ! */

while (1)

}
*pu8 = 0x55;

if (*pu8 != 0x55) {
/* Error ! */

while (1)

}
/* Write and verify HALF WORD */
*pul6 = OxAAAA;

if (*pulé != OxAAAR) {
/* Error | */
while (1)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 209

ASF4 API Reference Manual

External Bus Driver

}

*pule = 0x5555;

if (*pule != 0x5555) {
/* Error ! */
while (1)

’

}
/* Write and verify WORD */
*pu32 = 0xAAAA5555;

if (*pu32 !'= O0xAAAA5555) {
/* Error ! */

while (1)

}
*pu32 = O0xL5A5A55AA;

if (*pu32 !'= 0x5A5A55AA) ({
/* Error ! */

while (1)

}
/* Restore one WORD */
_ext bus write u32((void *)pu32, bak);

18.4 Dependencies
« External bus interface

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 210

19.

19.1

19.2

19.3

19.4

ASF4 API Reference Manual
External IRQ Driver

External IRQ Driver

The External Interrupt driver allows external pins to be configured as interrupt lines. Each interrupt line
can be individually masked and generate an interrupt on rising, falling, or both edges, or on high or low
levels. Some of the external pins can also be configured to wake up the device from sleep modes where
all clocks have been disabled.

External IRQ Basics and Best Practice
The driver can be used for such application:
» Generate an interrupt on rising, falling or both edges, or on high or low levels

Summary of the API's Functional Features
* Initialize and deinitialize the driver and associated hardware
* Hookup callback handler on external pin interrupt
* Enable or disable interrupt on external pin

Summary of Configuration Options

Below is a list of the main External Interrupt parameters that can be configured in START. Many of these
parameters are used by the 19.7.1 ext_irq_init function when initializing the driver and underlying
hardware.

* Select external pin signal for each interrupt line
» Select interrupt detection type for a pin (rising, falling, or both edges etc.)
» Select if pin interrupt will wake up the device

Example of Usage
The following shows a simple example of registering a callback on an external pin interrupt.

The External Interrupt driver must have been initialized by 19.7.1 ext_irg_init. This initialization will
configure the operation of the hardware External Interrupt instance.

static void button on PAl6 pressed(void)

{

}

/**

* Example of using EXTERNAL IRQ 0

*/
void EXTERNAL IRQ 0 example (void)

{

ext irqg register (PIN PAl6, button on PAl6 pressed);

}

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 211

ASF4 API Reference Manual
External IRQ Driver

19.5 Dependencies
« External Interrupt Controller and its related 1/O lines and clocks

19.6 Typedefs

19.6.1 ext_irq_cb_t typedef
typedef void(* ext_irq_cb_t) (void)

External IRQ callback type.

19.7 Functions

19.71 ext_irg_init
Initialize external IRQ component, if any.

int32 t ext irg init(
void

)

Returns
Type: int32_t

Initialization status.

-1 External IRQ module is already initialized

0 The initialization is completed successfully
19.7.2 ext_irg_deinit

Deinitialize external IRQ, if any.

int32 t ext irq deinit(
void

)

Returns
Type: int32_t

De-initialization status.

-1 External IRQ module is already deinitialized

0 The de-initialization is completed successfully
19.7.3 ext_irq_register

Register callback for the given external interrupt.

int32 t ext irqg register(
const uint32 t pin,
ext irg cb t cb

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 212

19.7.4

19.7.5

ASF4 API Reference Manual

External IRQ Driver

Parameters
pin Type: const uint32_t

Pin to enable external IRQ on

cb Type: 19.6.1 ext_irq_cb_t typedef

Callback function

Returns
Type: int32_t

Registration status.

-1 Passed parameters were invalid

0 The callback registration is completed successfully
ext_irq_enable

Enable external IRQ.

int32 t ext irqg enable(
const uint32 t pin

)

Parameters
pin Type: const uint32_t
Pin to enable external IRQ on
Returns
Type: int32_t

Enabling status.
-1 Passed parameters were invalid
0 The enabling is completed successfully

ext_irq_disable
Disable external IRQ.

int32 t ext irq disable(
const uint32 t pin

)

Parameters

pin Type: const uint32_t

Pin to enable external IRQ on

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 213

19.7.6

ASF4 API Reference Manual
External IRQ Driver

Returns
Type: int32_t

Disabling status.

-1 Passed parameters were invalid

0 The disabling is completed successfully

ext_irg_get_version
Retrieve the current driver version.

uint32 t ext irg get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 214

20.

20.1

20.2

20.3

20.4

ASF4 API Reference Manual

Flash Driver

Flash Driver

Flash is a re-programmable memory that retains program and data storage even with the power off.

The user can write or read several bytes from any valid address in a flash.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Writing/Reading bytes
* Locking/Unlocking/Erasing pages
* Get page size and total pages information
* Notifications about errors or being ready for a new command

Summary of Configuration Options
Depend on device, few flash parameters can be configured in START.

Driver Implementation Description

As to the erase/lock/unlock command, the input parameter of an address should be a byte address
aligned with the page start, otherwise, the command will fail to be executed. At the meantime, the number
of pages that can be locked or unlocked at once depends on the region size of the flash. The user can
get the real number from the function return value, which can be different for the different devices.

Example of Usage

The following shows a simple example of using the Flash. The Flash driver must have been initialized by
20.9.1 flash_init. This initialization will configure the operation of the hardware Flash instance.

The example writes one page size of data into flash and read it back.

static uint8 t src data[l28];
static uint8 t chk data[128];
/) ** - -
* Example of using FLASH 0 to read and write buffer.
)
void FLASH 0 example (void)
{
uint32 t page size;
uintlé t i;
/* Init source data */
page size = flash get page size (&FLASH 0);
for (1 = 0; 1 < page _size; i++) {
src_data[i] = i;
}
/* Write data to flash */
flash write(&FLASH 0, 0x3200, src_data, page size);
/* Read data from flash */
flash read(&FLASH 0, 0x3200, chk data, page size);

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 215

20.5

20.6

20.6.1

20.6.2

20.7

20.7.1

20.8

20.8.1

ASF4 API Reference Manual

Flash Driver

Dependencies
* Non-Volatile Memory (NVM) peripheral and clocks

Structs

flash_callbacks Struct
FLASH HAL callbacks.

Members
cb_ready Callback invoked when ready to accept a new command
cb_error Callback invoked when error occurs

flash_descriptor Struct
FLASH HAL driver struct for asynchronous access.

Members

dev Pointer to FLASH device instance
callbacks Callbacks for asynchronous transfer
Enums

flash_cb_type Enum

FLASH_CB_READY Callback type for ready to accept a new command
FLASH_CB_ERROR Callback type for error

FLASH_CB_N

Typedefs

flash_cb_t typedef
typedef void(* flash_cb _t) (struct flash_descriptor *const descr)

Prototype of callback on FLASH.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 216

ASF4 API Reference Manual

Flash Driver

20.9 Functions

20.9.1 flash_init
Initialize the FLASH HAL instance and hardware for callback mode.
int32 t flash init(
struct flash descriptor * flash,

void *const hw

)

Initialize FLASH HAL with interrupt mode (uses callbacks).

Parameters

flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

hw Type: void *const
Pointer to the hardware base.

Returns

Type: int32_t

Initialize status.

20.9.2 flash_deinit
Deinitialize the FLASH HAL instance.

int32_t flash deinit(
struct flash descriptor * flash

)

Abort transfer, disable and reset FLASH, and deinitialize software.

Parameters

flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

Returns

Type: int32_t

Deinitialze status.

20.9.3 flash_write
Writes a number of bytes to a page in the internal Flash.

int32 t flash write(
struct flash descriptor * flash,
uint32_t dst_addr,
uint8 t * buffer,
uint32 t length

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 217

ASF4 API Reference Manual

Flash Driver

Parameters

flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

dst_addr Type: uint32_t

Destination bytes address to write into flash

buffer Type: uint8_t*

Pointer to a buffer where the content will be written to the flash

length Type: uint32_t

Number of bytes to write

Returns
Type: int32_t

Write status.

20.9.4 flash_append
Appends a number of bytes to a page in the internal Flash.

int32 t flash append(
struct flash descriptor * flash,
uint32 t dst_addr,
uint8 t * buffer,
uint32_t length
)

This functions never erases the flash before writing.

Parameters
flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.
dst_addr Type: uint32_t
Destination bytes address to write to flash
buffer Type: uint8_t*
Pointer to a buffer with data to write to flash
length Type: uint32_t
Number of bytes to append
Returns
Type: int32_t

Append status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 218

20.9.5

20.9.6

ASF4 API Reference Manual

Flash Driver

flash_read
Reads a number of bytes to a page in the internal Flash.

int32 t flash read(
struct flash descriptor * flash,
uint32 t src addr,
uint8 t * buffer,
uint32_t length

Parameters

flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

src_addr Type: uint32_t

Source bytes address to read from flash

buffer Type: uint8_t*

Pointer to a buffer where the content of the read pages will be stored

length Type: uint32_t

Number of bytes to read

Returns
Type: int32_t

Read status.

flash_register_callback
Register a function as FLASH transfer completion callback.

int32_t flash_register_ callback(
struct flash descriptor * flash,
const enum flash cb type type,
flash cb_t func

Parameters

flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

type Type: const enum 20.7.1 flash_cb_type Enum
Callback type (20.7.1 flash_cb_type Enum).

func Type: 20.8.1 flash_cb_t typedef

Pointer to callback function.

Returns
Type: int32_t

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 219

ASF4 API Reference Manual

Flash Driver

0

-1

20.9.7 flash_lock

Success

Error

Execute lock in the internal flash.

int32 t flash lock(
struct flash descriptor * flash,
const uint32 t dst_addr,
const uint32 t page nums

Parameters

flash

dst_addr

page_nums

Returns
Type: int32_t

Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

Type: const uint32_t
Destination bytes address aligned with page start to be locked
Type: const uint32_t

Number of pages to be locked

Real locked numbers of pages.

20.9.8 flash_unlock

Execute unlock in the internal flash.

int32_t flash_unlock(
struct flash descriptor * flash,
const uint32 t dst_addr,
const uint32_t page_nums

Parameters

flash

dst_addr

page_nums

Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

Type: const uint32_t

Destination bytes address aligned with page start to be unlocked

Type: const uint32_t

Number of pages to be unlocked

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 220

ASF4 API Reference Manual

Flash Driver

Returns
Type: int32_t

Real unlocked numbers of pages.

20.9.9 flash_erase
Execute erase in the internal flash.

int32_t flash_erase(
struct flash descriptor * flash,
const uint32 t dst_addr,
const uint32_t page_nums

Parameters
flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.
dst_addr Type: const uint32_t
Destination bytes address aligned with page start to be erased
page_nums Type: const uint32_t
Number of pages to be erased
Returns
Type: int32_t
0 Success
-1 Error

20.9.10 flash_get_page_size
Get the flash page size.
uint32 t flash get page size(

struct flash descriptor * flash
)

Parameters

flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance

Returns

Type: uint32_t

The flash page size

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 221

20.9.11

20.9.12

ASF4 API Reference Manual

Flash Driver

flash_get_total_pages
Get the number of flash page.
uint32 t flash get total pages(

struct flash descriptor * flash
)

Parameters

flash Type: struct 20.6.2 flash_descriptor Struct *
Pointer to the HAL FLASH instance.

Returns

Type: uint32_t
The flash total page numbers

flash_get_version
Retrieve the current driver version.

uint32 t flash get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 222

21.

211

21.2

21.21

21.2.2

21.2.3

ASF4 API Reference Manual

Frequency Meter Drivers

Frequency Meter Drivers

This Frequency Meter (FREQM) driver provides an interface for measure the frequency of a clock by
comparing it to a known reference clock.

The following driver variants are available:

* 21.3 Frequency Meter Synchronous Driver: The driver supports polling for hardware changes,
functionality is synchronous to the main clock of the MCU.

* 21.2 Frequency Meter Asynchronous Driver: The driver supports a callback handler for the IRQ
caused by hardware state changes. Functionality is asynchronous to the main clock of the MCU.

Frequency Meter Basics and Best Practice

The Frequency Meter driver provides means to measure the frequency or the period of the input clock
signal.

The driver uses a direct method of frequency measurement, that means it counts the amount of low-to-
high transitions in the input signal during a period of time. The lower the measured frequency, the longer
the measurement period should be for higher accuracy.

Frequency Meter Asynchronous Driver

In Frequency Meter (FREQM) asynchronous driver, a callback function can be registered in the driver by
the application and triggered when measurement is done to let the application know the result.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Enable or disable Frequency Meter
* Set measurement parameter (measure period, frequency or period measurement)
* Hookup callback handlers on frequency measurement done
» Start frequency measurement

Summary of Configuration Options
Below is a list of the main FREQM parameters that can be configured in START. Many of these
parameters are used by the 21.2.9.1 freqmeter_async_init function when initializing the driver and
underlying hardware.

* Clock to be measured

* Reference clock

* Number of reference clock cycles (measure period)

Driver Implementation Description

The driver uses a ring buffer to store the results of measurements. When the done interrupt is raised, the
result is stored in the ring buffer at the next free location. When the ring buffer is full, the next sample will
overwrite the oldest sample in the ring buffer.

To read the results from the ring buffer, the function 21.2.9.9 freqmeter_async_read is used. This function
reads the number of measurement results asked for from the ring buffer, starting from the oldest byte. If

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 223

ASF4 API Reference Manual

Frequency Meter Drivers

the number of bytes asked for are more than currently available in the ring buffer, the number of available
bytes is read. The 21.2.9.9 fregmeter_async_read function returns the actual number of bytes read from
the buffer back to the caller. If the number of bytes asked for is less than the available bytes in the ring
buffer, the remaining bytes will be kept until a new call to 21.2.9.9 fregmeter_async_read or it's
overwritten because the ring buffer is full.

21.2.4 Example of Usage

The following shows a simple example of using the FREQM. The FREQM must have been initialized by
4.2.9.1 ac_async_init. This initialization will configure the operation of the FREQM, such as clock to be
measured, reference clock, etc.

The example registers a callback function for measurement ready and enables FREQM, finally starts a
frequency measurement.

static void fregmeter cb (const struct fregmeter async descriptor *const des
cr)
{
uint32 t value;
fregmeter async read (&FREQUENCY METER 0, &value, 1);
fregmeter async start (§FREQUENCY METER O0);
}
void FREQUENCY METER 0 example (void)

{

fregmeter async register callback (&FREQUENCY METER 0O, FREQMETER ASYNC M
EASUREMENT DONE, fregmeter cb);
fregmeter async enable (§FREQUENCY METER O0) ;
fregmeter async start (§FREQUENCY METER O0);

21.2.5 Dependencies
* FREQM peripheral and its related I/O lines and clocks
* NVIC must be configured so that FREQM interrupt requests are periodically serviced.

21.2.6 Structs

21.2.6.1 fregmeter_async_callbacks Struct
Frequency meter callbacks.
Members

done

21.2.6.2 fregmeter_async_descriptor Struct
Asynchronous frequency meter descriptor.
Members

period

param

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 224

21.2.7
21.2.71

21.2.8
21.2.81

21.2.9
21.2.91

ASF4 API Reference Manual

Frequency Meter Drivers

device
cbs

measures

Enums
fregmeter_async_callback_type Enum

FREQMETER_ASYNC_MEASUREMENT_DONE

Typedefs

fregmeter_cb_t typedef
typedef void(* fregmeter_cb_t) (const struct freqmeter_async_descriptor *const descr)

Frequency meter callback type.

Functions

fregmeter_async_init
Initialize frequency meter.

int32 t fregmeter async init(
struct fregmeter async descriptor *const descr,
void *const hw,
uint8 t *const buffer,
const uintl6 t buffer length

Parameters

descr Type: struct 21.2.6.2 freqmeter_async_descriptor Struct *const
The pointer to the frequency meter descriptor

hw Type: void *const
The pointer to the hardware instance

buffer Type: uint8_t *const

A buffer to keep the measured values

buffer_length Type: const uint16_t
The length of the buffer above

Returns
Type: int32_t

Initialization status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 225

21.2.9.2

21.2.9.3

21.294

ASF4 API Reference Manual

Frequency Meter Drivers

fregmeter_async_deinit
Deinitialize frequency meter.

int32 t fregmeter async deinit (
struct fregmeter async descriptor *const descr

)

Parameters

descr Type: struct 21.2.6.2 fregmeter_async_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

De-initialization status.

fregmeter_async_enable
Enable frequency meter.

int32 t fregmeter async enable (
struct fregmeter async descriptor *const descr

)

Parameters

descr Type: struct 21.2.6.2 fregmeter_async_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

Enabling status.

fregmeter_async_disable
Disable frequency meter.

int32 t fregmeter async disable(
struct fregmeter async descriptor *const descr

)

Parameters

descr Type: struct 21.2.6.2 fregmeter_async_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

Disabling status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 226

21.2.9.5

21.2.9.6

21.2.9.7

ASF4 API Reference Manual

Frequency Meter Drivers

fregmeter_async_start
Start frequency meter.

int32 t fregmeter async start(
struct fregmeter async descriptor *const descr

)

Parameters

descr Type: struct 21.2.6.2 fregmeter_async_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

Starting status.

fregmeter_async_register_callback
Register frequency meter callback.

int32 t fregmeter async register callback(
struct fregmeter async descriptor *const descr,
const enum fregmeter async callback type type,
fregmeter cb t cb

Parameters

descr Type: struct 21.2.6.2 fregmeter_async_descriptor Struct *const
A frequency meter descriptor

type Type: const enum 21.2.7.1 fregmeter_async_callback type Enum
Callback type

cb Type: 21.2.8.1 fregmeter_cb_t typedef

A callback function

Returns
Type: int32_t

The status of callback assignment.

-1 Passed parameters were invalid or the interface is not initialized

0 Acallback is registered successfully

fregmeter_async_set_measurement_period
Set period of measurement.
int32 t fregmeter async set measurement period(

struct fregmeter async descriptor *const descr,
const uint32 t period

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 227

21.2.9.8

21.2.9.9

ASF4 API Reference Manual

Frequency Meter Drivers

Parameters

descr Type: struct 21.2.6.2 freqmeter_async_descriptor Struct *const

The pointer to the frequency meter descriptor

period Type: const uint32_t

Period in microseconds

Returns
Type: int32_t

Status for the period setting

fregmeter_async_set_measurement_parameter
Set the parameter to measure.

int32 t fregmeter async set measurement parameter (
struct fregmeter async descriptor *const descr,
const enum fregmeter parameter parameter

Parameters

descr Type: struct 21.2.6.2 freqmeter_async_descriptor Struct *const
The pointer to the frequency meter descriptor

parameter Type: const enum freqmeter_parameter
The signal parameter to measure

Returns

Type: int32_t

Status for parameter setting

fregmeter_async_read
Read values from the frequency meter.

int32 t fregmeter async read(
struct fregmeter async descriptor *const descr,
uint32 t *const data,
const uintl6_t length

Parameters

descr Type: struct 21.2.6.2 fregmeter_async_descriptor Struct *const

The pointer to the frequency meter descriptor

data Type: uint32_t *const

The point to the data buffer to write data to

length Type: const uint16_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 228

ASF4 API Reference Manual

Frequency Meter Drivers

The amount of measurements to read

Returns
Type: int32_t

Amount of bytes read

21.2.9.10 fregmeter_async_flush_rx_buffer

21.29.11

21.3

21.31

Flush frequency meter ring buffer.

int32 t fregmeter async flush rx buffer(
struct fregmeter async descriptor *const descr

)

Parameters
descr Type: struct 21.2.6.2 fregmeter_async_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

ERR_NONE

freqmeter_async_get_version
Retrieve the current driver version.

uint32_t fregmeter_ async_get version(
void

)

Returns
Type: uint32_t

Current driver version.

Frequency Meter Synchronous Driver

The functions in Frequency Meter (FREQM) synchronous driver will block (i.e. not return) until the
operation is done.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Enable or disable Frequency Meter
* Set measurement parameter (measure period, frequency or period measurement)
* Read measurement results

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 229

21.3.2

2133

21.34

21.3.5

21.3.6

21.3.6.1

21.3.7

21.3.71

ASF4 API Reference Manual

Frequency Meter Drivers

Summary of Configuration Options

Below is a list of the main FREQM parameters that can be configured in START. Many of these
parameters are used by the 21.3.7.1 freqmeter_sync_init function when initializing the driver and
underlying hardware.

* Clock to be measured
* Reference clock
* Number of reference clock cycles (measure period)

Driver Implementation Description
After FREQM hardware initialization, the measure result can get by 21.3.7.7 freqmeter_sync_read.

Example of Usage

The following shows a simple example of using the FREQM. The FREQM must have been initialized by
21.3.7.1 fregmeter_sync _init. This initialization will configure the operation of the FREQM, such as clock
to be measured, reference clock, etc.

The example enables FREQM, and finally starts to read measurement results.

void FREQUENCY METER 0 example (void)
{

uint32 t value;
fregmeter sync_enable (§FREQUENCY METER O0);
fregmeter sync read (&FREQUENCY METER 0, &value, 1);

Dependencies
 FREQM peripheral and its related I/O lines and clocks
Structs

freqmeter_sync_descriptor Struct
Synchronous frequency meter descriptor.

Members

period
param

device

Functions

fregmeter_sync_init
Initialize the frequency meter.
int32 t fregmeter sync init(

struct fregmeter sync descriptor *const descr,
void *const hw

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 230

ASF4 API Reference Manual

Frequency Meter Drivers

Parameters

descr Type: struct 21.3.6.1 fregmeter_sync_descriptor Struct *const

The pointer to the frequency meter descriptor

hw Type: void *const

The pointer to the hardware instance

Returns
Type: int32_t

Initialization status.

21.3.7.2 fregmeter_sync_deinit
Deinitialize the frequency meter.

int32 t fregmeter sync deinit(
struct fregmeter sync descriptor *const descr

)

Parameters

descr Type: struct 21.3.6.1 freqmeter_sync_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

De-initialization status.

21.3.7.3 fregmeter_sync_enable
Enable the frequency meter.

int32 t fregmeter sync enable(
struct fregmeter sync descriptor *const descr

)

Parameters

descr Type: struct 21.3.6.1 freqmeter_sync_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

Enabling status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 231

ASF4 API Reference Manual

Frequency Meter Drivers

21.3.7.4 fregmeter_sync_disable
Disable the frequency meter.

int32 t fregmeter sync disable(
struct fregmeter sync descriptor *const descr

)

Parameters

descr Type: struct 21.3.6.1 fregmeter_sync_descriptor Struct *const

The pointer to the frequency meter descriptor

Returns
Type: int32_t

Disabling status.

21.3.7.5 freqmeter_sync_set_measurement_period
Set period of measurement.

int32 t fregmeter sync set measurement period (
struct fregmeter sync descriptor *const descr,
const uint32 t period

Parameters

descr Type: struct 21.3.6.1 fregmeter_sync_descriptor Struct *const

The pointer to the frequency meter descriptor

period Type: const uint32_t

Period in microseconds

Returns
Type: int32_t

Status for period setting

21.3.7.6 fregmeter_sync_set_measurement_parameter
Set the parameter to measure.
int32 t fregmeter sync set measurement parameter (

struct fregmeter sync descriptor *const descr,
const enum fregmeter parameter parameter

Parameters

descr Type: struct 21.3.6.1 fregmeter_sync_descriptor Struct *const
The pointer to the frequency meter descriptor

parameter Type: const enum freqmeter_parameter

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 232

ASF4 API Reference Manual

Frequency Meter Drivers

Signal parameter to measure

Returns
Type: int32_t

Status for the parameter setting

21.3.7.7 freqmeter_sync_read
Read values from the frequency meter.

int32 t fregmeter sync read(
struct fregmeter sync descriptor *const descr,
uint32 t *const data,
const uintl6_t length

Parameters

descr Type: struct 21.3.6.1 fregmeter_sync_descriptor Struct *const

The pointer to the frequency meter descriptor

data Type: uint32_t *const

The point to the data buffer to write data to

length Type: const uint16_t

The amount of measurements to read

Returns
Type: int32_t

Amount of bytes to read

21.3.7.8 fregmeter_sync_get_version
Retrieve the current driver version.

uint32 t fregmeter sync_get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 233

22,

221

22.2

22.3

22.4

ASF4 API Reference Manual
Graphic LCD Driver

Graphic LCD Driver

A LCD Controller typically consists of logic for transferring LCD image data from an external display buffer
to an LCD module. The Graphic LCD driver is designed to provide basic interface for LCD Controller, like
initialization and de-initialization, enabling and disabling. And some common interface used to work with
thirdpart graphic library like SEGGER emWin and Microchip Graphic library. So for most use cases, the
Graphic LCD driver should works with a graphic library.

Summary of the API's Functional Features

The API provides functions to:
* Initializing and deinitializing the driver and associated hardware
* Enabling and Disabling
» Interface for thirdpart graphic library.

Summary of Configuration Options
Depend on device, LCD controller parameters can be configured in START.

Driver Implementation Description

The driver supply some API for working with thirdpart graphic library. And the range of layer parameter for
the API depends on device. The driver supports to operate display layer by given layer index.

Example of Usage

The following shows a simple example of using the Graphic LCD. The Graphic driver must have been
initialized fristly. This initialization configures the hardware LCD controller instance.

The example sets the base layer to visible on LCD Display. The framebuffer(fb) was allocated by
application, normally in SDRAM memory area. And the size of the framebuffer is depend on LCD size and
bpp size (Bits per pixel) which defined in LCD's configurations. For example if LCD size is 480 * 320, and
bpp is 32bits. Then the framebuffer size is 480 * 320 * 4bytes.

/**

* Example of using Graphic LCD to set backgroup layer visible.

* \param[in] fb Pointer to framebuffer
v
void LCD 0 example (void *fb)
{
/* Enable LCD Controller */
lcd enable () ;
/* Set Layer 0 (backgroup layer) framebuffer */
lcd show (0, fb);
/* Set layer 0 (backgroup layer) to visible */
lcd set visible (0, 1);

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 234

22.5

22.6

22.6.1

22.7

22.71

22.7.2

22.7.3

ASF4 API Reference Manual

Graphic LCD Driver

Dependencies
* LCD Controller peripheral, clock and singals.

Defines

HAL_LCD_DRIVER_VERSION
#define HAL_LCD_DRIVER_VERSION() 0x00000001u

Driver version.

Functions

lcd_init
Initialize LCD.

static int32 t lcd _init(
void

)

This function initializes the LCD.
Returns

Type: int32_t

Initialization status.

lcd_deinit

De-initialize LCD.

static int32 t lcd deinit(
void

)
This function de-initializes the LCD.
Returns
Type: int32_t

De-initialization status.

lcd_enable
Enable LCD.

static int32 t lcd enable(
void

)

This function enable LCD.

Returns
Type: int32_t

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 235

22.7.4

22.7.5

22.7.6

ASF4 API Reference Manual

Graphic LCD Driver

Enabling status.

lcd_disable
Disable LCD.

static int32 t lcd disable(
void

)

This function disable LCD.

Returns
Type: int32_t

Disabling status.

lcd_set_lut_entry
Setup color lookup table entry.

static int32 t lcd_set lut_entry(
uint8 t layer,
uint8 t index,
uint32_t val

)

This function set color lookup table entry by given layer.

Parameters
layer Type: uint8_t
Index of layer, O for base layer.
index Type: uint8_t
Lookup table index.
val Type: uint32_t
7:0 Blue, 15:8 Green, 23:16 Red, 31:24 Alpha.
Returns
Type: int32_t
Set status.

lcd_set_alpha
Set the required layer alpha value.
static int32 t lcd set alpha(
uint8_t layer,

uint8_t val

)

This function set the required layer alpha value.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 236

22.7.7

22.7.8

ASF4 API Reference Manual
Graphic LCD Driver

Parameters
layer Type: uint8_t

Index of layer, O for base layer.
val Type: uint8_t

Alpha value to be used. 255 for transparent and 0 for opaque.

Returns
Type: int32_t

Set status.

lcd_set_position
Set the required layer position.

static int32 t lcd set position(
uint8 t layer,
int32 t x,
int32 t y

)

This function set the required layer position.

Parameters
layer Type: uint8_t
Index of layer, O for base layer.
X Type: int32_t
Physical X-position to be used to set up the layer position.
y Type: int32_t

Physical Y-position to be used to set up the layer position.

Returns
Type: int32_t

Set status.

lcd_set_size
Set the required layer size.

static int32 t lcd set size(
uint8 t layer,
int32 t x,
int32 t y

)

This function set the required layer size.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 237

ASF4 API Reference Manual
Graphic LCD Driver

Parameters
layer Type: uint8_t
Index of layer, O for base layer.
X Type: int32_t
Physical X-position to be used to set up the layer size.
y Type: int32_t

Physical Y-position to be used to set up the layer size.

Returns
Type: int32_t

Set status.

22.7.9 lcd_set_visible
Set the required layer visible or invisible.
static int32 t lcd set visible(
uint8 t layer,

int8_t on

)

This function set the required layer visible or invisible.

Parameters
layer Type: uint8_t
Index of layer, 0 for base layer.
on Type: int8_t
1 if layer should be visible, 0 for invisible.
Returns
Type: int32_t
Set status.

22.7.10 lcd_show
Set framebuffer for the required layer.

static int32 t lcd show(
uint8 t layer,
void * fb

)

This function set the framebuffer pointer for the required layer.

Parameters

layer Type: uint8_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 238

22.7.11

22.712

ASF4 API Reference Manual

Graphic LCD Driver

Index of layer.
fb Type: void *

Pointer to framebuffer.

Returns
Type: int32_t

Set status.

lcd_show_streams
Set YUV framebuffer for the required layer.

static int32 t lcd show_streams (
uint8 t layer,
void * fbl,
void * fb2,
void * fb3
)

This function set the YUV framebuffer pointer for the required layer.

Parameters
layer Type: uint8_t
Index of layer.
fb1 Type: void *
Pointer to framebuffer of Y.

fb2 Type: void *

Pointer to framebuffer of U or UV, NULL if no used.

fb3 Type: void *

Pointer to framebuffer of V, NULL if no used.

Returns
Type: int32_t

Set status.

lcd_get_version
Retrieve the current driver version.

static uint32 t lcd get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 239

23.

231

23.2

23.3

23.4

ASF4 API Reference Manual

Graphics Processing Unit Driver(2D)

Graphics Processing Unit Driver(2D)

Graphics Processing Unit(GPU) manipulates and alters the contents of the frame buffer in system RAM
or DRAM memory to accelerate the generation of images for eventual pixel display. Hardware
acceleration is brought to numerous 2-D applications, such as graphic user interfaces (menus, objects,
etc.), touch screen user interfaces, Flash animation and gaming among others.

Summary of the API's Functional Features

The API provides functions to:
* Initializing and de-initializing the driver and associated hardware
* Enabling and Disabling
» Register Interrupt Callback function

* Invoke GPU instruction(FILL, COPY, BLEND) to manipulate and alters the contents of the frame
buffer.

Summary of Configuration Options
Depend on the device, GPU parameters can be configured in START.

Driver Implementation Description

The driver support FILL, COPY, BLEND GPU instruction to manipulates and alters the contents of the
frame buffer. Those functions are asynchronous, an application can call the gpu_register_callback
function to register a callback function. The callback function will be invoked when one GPU operation
finished or an error occurs.

Example of Usage

The following shows an example of using the Graphic Processing Unit. The GPU driver must have been
initialized firstly. This initialization configures the hardware Graphic Processing Unit instance.

This example will invoke a FILL instruction to fill an area (10x10 pixel) with BLUE color(ARGB format
0x000000FF).

include <utils.h>
/* Frame buffer for 10x10 pixel, ARGB 32bit format */
COMPILER ALIGNED(4) uint32 t framebuffer[100];
/* Indicate end of execute instruction */
volatile uint8 t gpu end = 0;
void gpu cb(uint8 t state)
{
gpu_end = state;
}
/**
* Example of using GPU to fill a frame buffer with color.
*/
void GPU_example (void)
{
struct gpu buffer dst;

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 240

23.5

23.6

23.6.1

23.7

23.71

ASF4 API Reference Manual

Graphics Processing Unit Driver(2D)

struct gpu rectangle rect;
uint32 t i;

gpu_enable (ringbuffer, 0x40);
gpu_register callback(gpu callback);
dst.width = 10;

dst.height = 10;

dst.fmt = GPU ARGB8888;
dst.addr = framebuffer;
rect.x = 0;

rect.y = 0;

rect.width = 10;

rect.height = 10;

gpu fill (&dst, &rect, GPU COLOR(0,0,0,0xFF)) ;
/* Wait for instruction process finished */

while (gpu_end == 0) {
}i

/* Check if all data in framebuffer was set to 0x000000FF */

for (1 = 0; 1 < 100; i ++) {
if (((uint32 t *) framebuffer) [1i]
/* Error happened */
while (1) {};
}
}
/* Success */
return;

Dependencies
* 2D Graphic Engine peripheral.

Defines

HAL_GPU_ASYNC_DRIVER_VERSION
#define HAL_GPU_ASYNC_DRIVER_VERSION() 0x00000001u

Driver version.

Functions

gpu_async_init
Initialize GPU.

static int32 t gpu async init(
void

)

This function initializes the GPU.

Returns
Type: int32_t

Initialization status.

!= 0x000000FF) {

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 241

ASF4 API Reference Manual

Graphics Processing Unit Driver(2D)

23.7.2 gpu_async_deinit
De-initialize GPU.
static int32 t gpu_async_deinit(

void

)

This function de-initializes the gpu.

Returns
Type: int32_t

De-initialization status.

23.7.3 gpu_async_enable
Enable GPU.

static int32 t gpu async enable (
void

)

This function enable GPU.

Returns
Type: int32_t

Enabling status.

23.7.4 gpu_async_disable
Disable GPU.

static int32_t gpu_async_disable (
void

)

This function disable GPU.

Returns
Type: int32_t

Disabling status.

23.7.5 gpu_async_fill
FILL a frame-buffer with color.

static int32 t gpu_async_ fill(
struct gpu buffer * dst,
struct gpu rectangle * rect,
gpu_color t color

)

This function FILL a destination-filled area with color. This function is asynchronous, application can call
23.7.8 gpu_async_register_callback function to register a callback function. The callback function will be
invoked when GPU operation finished.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 242

ASF4 API Reference Manual

Graphics Processing Unit Driver(2D)

Parameters

dst Type: struct gpu_buffer *

Pointer to the destination-filled area buffer.

rect Type: struct gpu_rectangle *

Pointer to the destination-filled area rectangle.

color Type: gpu_color_t

A 32-bit ARGB color resized to the area pixel format.

Returns
Type: int32_t

Operation status.

ERR_BUSY A GPU Operation still in processing.

23.7.6 gpu_async_copy
COPY from a frame-buffer to another.

static int32 t gpu_async_copy (
struct gpu buffer * dst,
struct gpu rectangle * dst rect,
struct gpu buffer * src,
struct gpu rectangle * src rect

)

This function COPY a frame-buffer to a destination frame-buffer. This function is asynchronous,
application can call 23.7.8 gpu_async_register_callback function to register a callback function. The
callback function will be invoked when GPU operation finished.

Parameters
dst Type: struct gpu_buffer *

Pointer to the destination area buffer.
dst_rect Type: struct gpu_rectangle *

Pointer to the destination area rectangle.
src Type: struct gpu_buffer *

Pointer to the source area buffer.
src_rect Type: struct gpu_rectangle *

Pointer to the source area rectangle.
Returns
Type: int32_t

Operation status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 243

ASF4 API Reference Manual

Graphics Processing Unit Driver(2D)

ERR_BUSY A GPU Operation still in processing.

23.7.7 gpu_async_blend
Blend foreground and background to a destination frame-buffer.

static int32 t gpu async blend(
struct gpu buffer * dst,
struct gpu rectangle * dst rect,
struct gpu buffer * fg,
struct gpu_rectangle * fg rect,
struct gpu buffer * bg,
struct gpu rectangle * bg rect,
enum gpu_blend blend

)

This function BLEND a foreground frame-buffer and a background frame-buffer to a destination frame-
buffer. This function is asynchronous, application can call 23.7.8 gpu_async_register_callback function to
register a callback function. The callback function will be invoked when GPU operation finished.

Parameters
dst Type: struct gpu_buffer *
Pointer to the destination area buffer.
dst_rect Type: struct gpu_rectangle *
Pointer to the destination area rectangle.
fg Type: struct gpu_buffer *
Pointer to the foreground area buffer.
fg_rect Type: struct gpu_rectangle *
Pointer to the foreground area rectangle.
bg Type: struct gpu_buffer *
Pointer to the background area buffer.
bg_rect Type: struct gpu_rectangle *
Pointer to the background area rectangle.
blend Type: enum gpu_blend
Blend function.
Returns
Type: int32_t

Operation status.

ERR_BUSY A GPU Operation still in processing.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 244

ASF4 API Reference Manual

Graphics Processing Unit Driver(2D)

23.7.8 gpu_async_register_callback
Register GPU callback.

static int32 t gpu_async_register callback(
gpu _cb t cb
)

Parameters

cb Type: gpu_cb _t

A callback function, passing NULL will de-register.

Returns
Type: int32_t

The status of callback assignment.

23.7.9 gpu_async_get_version
Retrieve the current driver version.

static uint32 t gpu async_get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 245

ASF4 API Reference Manual
Hash Algorithm Driver

24. Hash Algorithm Driver

The Secure Hash Algorithm (SHA) is a family of cryptographic hash functions published by the National
Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS).
SHA is useful in the generation and verification of digital signatures and message authentication codes,
and in the generation of random numbers (bits).

The driver supports the SHA-1/224/256 mode for data hash.

241 SHA Synchronous Driver

The driver supports the SHA-1/224/256 mode for data hash.

2411 Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Enabling and Disabling
* Compute SHA-1/224/256 message digest

24.1.2 Driver Implementation Description

24.1.2.1 Limitations

The sha_context struct must align for some devices, it depends if the array that holding message digest
required to align, for example, SAMV71 must align 128 bytes.

24.1.3 Dependencies
* The SHA capable hardware

24.1.4 Structs

24.1.41 sha_sync_descriptor Struct

Members

dev SHA HPL device descriptor

24.1.5 Functions

24.1.5.1 sha_sync_init
Initialize the SHA Descriptor.

int32_t sha_sync_init(
struct sha sync descriptor * descr,
void *const hw

Parameters

desc The SHA descriptor to be initialized

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 246

24.1.5.2

24.1.5.3

24.1.54

ASF4 API Reference Manual

Hash Algorithm Driver

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

sha_sync_deinit
Deinitialize SHA Descriptor.

int32 t sha_sync deinit(
struct sha sync descriptor * desc

)

Parameters

desc Type: struct 24.1.4.1 sha_sync_descriptor Struct *
The SHA descriptor to be deinitialized

Returns
Type: int32_t

De-initialization status.

sha_sync_enable
Enable SHA.

int32 t sha sync enable(
struct sha sync descriptor * desc

)

Parameters

desc Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

Returns
Type: int32_t

Enabling status.

sha_sync_disable
Disable SHA.

int32 t sha sync disable(
struct sha sync descriptor * desc

)

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 247

ASF4 APl Reference Manual
Hash Algorithm Driver

Parameters

desc Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

Returns
Type: int32_t

Disabling status.

24.1.5.5 sha_sync_sha1l_start
SHA-1 start.

int32 t sha_sync _shal start(
struct sha sync descriptor * descr,
struct sha context * ctx

Parameters

descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

ctx Type: struct sha_context *

SHA context structure

Returns
Type: int32_t

Start status.

24.1.5.6 sha_sync_sha256_start
SHA-256/224 start.

int32 t sha_sync sha256_ start(
struct sha sync descriptor * descr,
struct sha context * ctx,
bool is224

Parameters

descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

ctx Type: struct sha_context *

SHA context structure

is224 Type: bool
If true, use SHA-224

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 248

ASF4 APl Reference Manual
Hash Algorithm Driver

Returns
Type: int32_t

Start status.

24.1.5.7 sha_sync_sha1_update
SHA-1 input update.

int32 t sha sync _shal update(
struct sha sync descriptor * descr,
const uint8 t * input,
uint32 t length

Parameters

descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

input Type: const uint8_t *
Buffer holding the input data

length Type: uint32_t
Byte length of the input data

Returns

Type: int32_t

Update status.

24.1.5.8 sha_sync_sha256_update
SHA-256/224 input update.

int32_t sha_sync _sha256_update (
struct sha sync descriptor * descr,
const uint8 t * input,
uint32_t length

Parameters

descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

input Type: const uint8_t *
Buffer holding the input data

length Type: uint32_t
Byte length of the input data

Returns

Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 249

ASF4 APl Reference Manual
Hash Algorithm Driver

Update status.

24.1.5.9 sha_sync_sha1_finish
SHA-1 finish.
int32 t sha sync shal finish(

struct sha sync descriptor * descr,
uint8 t output

Parameters

descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

output Type: uint8_t
SHA digest data

Returns

Type: int32_t

Finish status.

24.1.5.10 sha_sync_sha256_finish
SHA-256/224 finish.
int32 t sha sync sha256 finish(

struct sha sync descriptor * descr,
uint8_t output

Parameters

descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor

output Type: uint8_t
SHA digest data

Returns

Type: int32_t

Finish status.

24.1.5.11 sha_sync_sha1_compute
SHA-1 compute digest.

int32 t sha sync shal compute (
struct sha sync descriptor * descr,
struct sha context * ctx,
const uint8 t * input,
uint32 t length,
uint8 t output

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 250

ASF4 APl Reference Manual
Hash Algorithm Driver

Parameters
descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor
ctx Type: struct sha_context *
SHA context structure
input Type: const uint8_t *
Buffer holding the input data
length Type: uint32_t
Byte length of the input data
output Type: uint8_t
SHA digest data
Returns
Type: int32_t

Compute status.

24.1.5.12 sha_sync_sha256_compute
SHA-256/224 compute digest.

int32 t sha sync sha256 compute (
struct sha sync descriptor * descr,
struct sha context * ctx,
bool is224,
const uint8 t * input,
uint32 t length,
uint8 t output

Parameters
descr Type: struct 24.1.4.1 sha_sync_descriptor Struct *
SHA descriptor
ctx Type: struct sha_context *
SHA context structure
is224 Type: bool
If true, use SHA-224
input Type: const uint8_t *
Buffer holding the input data
length Type: uint32_t

Byte length of the input data

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 251

ASF4 API Reference Manual

Hash Algorithm Driver

output Type: uint8_t
SHA digest data

Returns

Type: int32_t

Compute status.

24.1.5.13 sha_sync_get_version

Retrieve the current driver version.

uint32_t sha sync get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 252

ASF4 API Reference Manual

Helper Drivers

25. Helper Drivers

The following helper functions are available:
« 25.1 Atomic Driver
e 25.3 Init Driver
* 25.2 1/O Driver
 25.4 Reset Driver
255 Sleep Driver

251 Atomic Driver

25.1.1 Defines

25.1.1.1 CRITICAL_SECTION_ENTER
#define CRITICAL_SECTION_ENTER() {volatile hal_atomic_t __atomic;
atomic_enter_critical(&__atomic);

Helper macro for entering critical sections.

This macro is recommended to be used instead of a direct call hal_enterCritical() function to enter critical
sections. No semicolon is required after the macro.

25.1.1.2 CRITICAL_SECTION_LEAVE
#define CRITICAL_SECTION_LEAVE() atomic_leave_critical(&__atomic);}

Helper macro for leaving critical sections.

This macro is recommended to be used instead of a direct call hal_leaveCiritical() function to leave critical
sections. No semicolon is required after the macro.

251.2 Typedefs

25.1.2.1 hal_atomic_t typedef
typedef uint32_t hal_atomic_t

Type for the register holding global interrupt enable flag.

25.1.3 Functions

25.1.3.1 atomic_enter_critical
Disable interrupts, enter critical section.

void atomic_enter critical(
hal atomic_t volatile * atomic

)

Disables global interrupts. Supports nested critical sections, so that global interrupts are only re-enabled
upon leaving the outermost nested critical section.

Parameters

atomic Type: 25.1.2.1 hal_atomic_t typedef volatile *

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 253

25.1.3.2

25.1.3.3

25.2

25.21
25211

ASF4 API Reference Manual

Helper Drivers

The pointer to a variable to store the value of global interrupt enable flag

Returns
Type: void

atomic_leave_critical
Exit atomic section.

void atomic leave critical(
hal atomic_t volatile * atomic

)

Enables global interrupts. Supports nested critical sections, so that global interrupts are only re-enabled
upon leaving the outermost nested critical section.
Parameters

atomic Type: 25.1.2.1 hal_atomic_t typedef volatile *

The pointer to a variable, which stores the latest stored value of the global interrupt enable flag

Returns
Type: void

atomic_get_version
Retrieve the current driver version.

uint32 t atomic get version(
void

)

Returns
Type: uint32_t

Current driver version.

I/O Driver

Structs
io_descriptor Struct
I/O descriptor.
Members

write

read The write function pointer.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 254

25.2.2
25.2.21

25.2.2.2

25.2.3
25.2.31

25.2.3.2

ASF4 API Reference Manual

Helper Drivers

Typedefs

io_write_t typedef
typedef int32_t(* io_write_t) (struct io_descriptor *const io_descr, const uint8_t *const buf, const uint16_t
length)

I/O write function pointer type.

io_read_t typedef
typedef int32_t(* io_read_t) (struct io_descriptor *const io_descr, uint8_t *const buf, const uint16_t length)

I/O read function pointer type.

Functions

io_write
I/O write interface.

int32 t io write(
struct io descriptor *const io descr,
const uint8 t *const buf,
const uintl6_t length

)

This function writes up to 1ength of bytes to a given I/O descriptor. It returns the number of bytes
actually write.

Parameters
descr An I/O descriptor to write
buf Type: const uint8_t *const
The buffer pointer to story the write data
length Type: const uint16_t
The number of bytes to write
Returns
Type: int32_t

The number of bytes written

io_read
I/O read interface.

int32 t io read(
struct io descriptor *const io descr,
uint8_t *const buf,
const uintlé6_t length

)

This function reads up to 1ength bytes from a given I/O descriptor, and stores it in the buffer pointed to
by buf. It returns the number of bytes actually read.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 255

25.3

25.31
25.3.11

25.3.1.2

25.4

ASF4 API Reference Manual

Helper Drivers

Parameters
descr An I/O descriptor to read
buf Type: uint8_t *const
The buffer pointer to story the read data
length Type: const uint16_t
The number of bytes to read
Returns
Type: int32_t

The number of bytes actually read. This number can be less than the requested length. E.g., in a driver
that uses ring buffer for reception, it may depend on the availability of data in the ring buffer.

Init Driver

Functions

init_mcu
Initialize the hardware abstraction layer.
static void init_mcu(

void

)

This function calls the various initialization functions. Currently the following initialization functions are
supported:

» System clock initialization

Returns
Type: void

init_get_version
Retrieve the current driver version.

uint32 t init get version(
void

)
Returns

Type: uint32_t

Current driver version.

Reset Driver

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 256

2541
25411

254.1.2

25413

25.5

25.51
25.5.1.1

ASF4 API Reference Manual

Helper Drivers

Functions

reset_mcu
Reset the MCU.

void reset mcu(
void

)

Returns
Type: void

get_reset_reason
Retrieve the reset reason.

enum reset reason get reset reason(
void

)

Retrieves the reset reason of the last MCU reset.

Returns
Type: enum reset_reason

An enum value indicating the reason of the last reset.

reset_get_version
Retrieve the current driver version.

uint32 t reset get version(
void

)
Returns

Type: uint32_t

Current driver version.

Sleep Driver

Functions

sleep

Set the sleep mode of the device and put the MCU to sleep.

int sleep(
const uint8 t mode

)

For an overview of which systems are disabled in sleep for the different sleep modes, see the data sheet.

Parameters

mode Type: const uint8_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 257

ASF4 API Reference Manual

Helper Drivers

Sleep mode to use

Returns
Type: int

The status of a sleep request

-1 The requested sleep mode was invalid or not available

0 The operation completed successfully, returned after leaving the sleep

25.5.1.2 sleep_get_version
Retrieve the current driver version.

uint32 t sleep get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 258

26.

26.1

26.2

ASF4 API Reference Manual
12C Drivers

12C Drivers

Three driver variants are available for the 12C Master: Synchronous, Asynchronous, and RTOS.

* 26.4 12C Master Synchronous Driver: The driver supports polling for hardware changes. The
functionality is synchronous to the main clock of the MCU.

e 26.2 12C Master Asynchronous Driver: The driver supports a callback handler for the IRQ caused
by hardware state changes. The functionality is asynchronous to the main clock of the MCU.

* 26.3 12C Master RTOS Driver: The driver supports a Real-Time operating system, i.e. is thread
safe.

Two driver variants are available for the 12C Slave: Synchronous and Asynchronous.

* 26.6 12C Slave Synchronous Driver: The driver supports polling for hardware changes. The
functionality is synchronous to the main clock of the MCU.

* 26.5 12C Slave Asynchronous Driver: The driver supports a callback handler for the IRQ caused by
hardware state changes. The functionality is asynchronous to the main clock of the MCU.

12C Basics and Best Practice

I2C (Inter-Integrated Circuit) is a two-wire serial interface normally used for on-board low-speed
bidirectional communication between controllers and peripherals. The master device is responsible for
initiating and controlling all transfers on the 12C bus. Only one master device can be active on the 12C bus
at the time, but the master role can be transferred between devices on the same 12C bus. 12C uses only
two bidirectional open-drain lines, normally designated SDA (Serial Data Line) and SCL (Serial Clock
Line), with pull up resistors.

12C Master Asynchronous Driver

In Inter-Integrated Circuit (12C) master asynchronous driver, a callback function can be registered in the
driver by the application and triggered when the transfer done. It provides an interface to read/write the
data from/to the slave device.

The stop condition is automatically controlled by the driver if the I/O write and read functions are used,
but can be manually controlled by using the 26.2.10.10 i2c_m_async_transfer function.

Often a master accesses different information in the slave by accessing different registers in the slave.
This is done by first sending a message to the target slave containing the register address, followed by a
repeated start condition (no stop condition in between) ending with transferring register data. This
scheme is supported by the 26.2.10.8 i2c_m_async_cmd_write and 26.2.10.9 i2c_m_async_cmd_read
function, but limited to 8-bit register addresses.

Transfer callbacks are executed at the end of a full transfer, that is, when a complete message with
address is either sent or read from the slave. When the 26.2.10.10 i2c_m_async_transfer function is
used the TX and RX callbacks are triggered regardless if a stop condition is generated at the end of the
message.

The TX and RX callbacks are reused for the cmd functions and are triggered at the end of a full register
write or read, that is, after the register address has been written to the slave and data has been
transferred to or from the master.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 259

26.2.1

26.2.2

26.2.3

26.2.3.1

26.2.4

ASF4 API Reference Manual
12C Drivers

The error callback is executed as soon as an error is detected, the error situation can both be detected
while processing an interrupt or detected by the hardware which may trigger a special error interrupt. In
situations where errors are detected by the software, there will be a slight delay from the error occurs until
the error callback is triggered due to software processing.

I2C Modes (standard mode/fastmode+/highspeed mode) can only be selected in START. If the SCL
frequency (baudrate) has changed run-time, make sure to stick within the SCL clock frequency range
supported by the selected mode. The requested SCL clock frequency is not validated by the 26.2.10.5
i2c_m_async_set_baudrate function against the selected 12C mode.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Register I/O descriptor
* Enable or disable 12C master
* Hookup callback handlers on TX complete, RX complete, or error events
+ Set the address of slave device
* Read/Write message to/from the slave

Summary of Configuration Options
Below is a list of the main 12C master parameters that can be configured in START. Many of these
parameters are used by the 26.2.10.1 i2c_m_async_init function when initializing the driver and
underlying hardware. Most of the initial values can be overridden and changed runtime by calling the
appropriate API functions, such as 26.2.10.5 i2c_m_async_set_baudrate.

* Set|2C bus clock speed

. Which clock source is used

Driver Implementation Description

After 12C hardware initialization, the 26.2.10.13 i2c_m_async_get_io_descriptor function is needed to
register an 1/O descriptor. Then enable the 12C hardware, and use the 26.2.10.4
i2c_m_async_register_callback to register callback function for RX/TX complete. After that, the
application needs to set the slave address by the 26.2.10.3 i2c_m_async_set_slaveaddr function. At the
end, start the read/write operation.

Limitations
* System Management Bus (SMBus) not supported
* Power Management Bus (PMBus) not supported

* The register value for the requested 12C speed is calculated and placed in the correct register, but
not validated if it works correctly with the clock/prescaler settings used for the module. To validate
the 12C speed setting use the formula found in the configuration file for the module. Selectable
speed is automatically limited within the speed range defined by the 12C mode selected

Example of Usage
The following shows a simple example of using the 12C master. The 12C master must have been
initialized by 26.2.10.1 i2c_m_async_init. This initialization will configure the operation of the 12C master.

The example registers an I/O descriptor and enables the hardware. Then it registers a callback for TX
complete, sets the slave address, finally starts a writing operation.

static uint8 t I2C 0 example str[12] = "Hello World!";

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 260

ASF4 API Reference Manual
12C Drivers

void I2C 0 tx complete(struct i2c m async desc *const 1i2c)
{
}
void I2C 0 example (void)
{
struct io descriptor *I2C 0 io;
i2c_m _async _get io descriptor (&I2C 0, &I2C 0 io);
i2c_m _async_enable (&I2C 0);

i2c_m async register callback(&I2C 0, I2C M ASYNC TX COMPLETE, (FUNC_PT
R)I2C 0 tx complete);
i2c_m _async_set slaveaddr (&I2C 0, 0x12, I2C M SEVEN);
io write(I2C 0 io, I2C 0 example str, 12);

26.2.5 Dependencies
* The I2C master peripheral and its related I/O lines and clocks
» The NVIC must be configured so that 12C interrupt requests are periodically serviced

26.2.6 Structs

26.2.6.1 i2c_m_async_status Struct

I2C status.

Members

flags Status flags

left The number of characters left in the message buffer

26.2.6.2 i2c_m_async_callback Struct
I2C master callback pointers structure.

Members
error
tx_complete
rx_complete

26.2.6.3 i2c_m_async_desc Struct
I2C descriptor structure, embed i2c_device & i2¢c_interface.

Members
device
io
i2c_cb

slave_addr

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 261

ASF4 API Reference Manual
12C Drivers

26.2.7 Defines

26.2.7.1 12C_M_MAX_RETRY
#define 12C_M_MAX_RETRY() 1

26.2.8 Enums
26.2.8.1 i2c_m_async_callback_type Enum

I2C_M_ASYNC_ERROR
I2C_M_ASYNC_TX_COMPLETE
I2C_M_ASYNC_RX_COMPLETE

26.2.9 Typedefs

26.2.9.1 i2c_complete_cb_t typedef
typedef void(* i2c_complete_cb_t) (struct i2c_m_async_desc *const i2c)
The 12C master callback function type for completion of RX or TX.

26.2.9.2 i2c_error_cb_t typedef
typedef void(* i2c_error_cb_t) (structi2c_m_async_desc *const i2c, int32_t error)

The 12C master callback function type for error.

26.2.10 Functions

26.2.10.1 i2c_m_async_init
Initialize the asynchronous 12C master interface.

int32 t i2c_m async_init(
struct i2c m async desc *const i2c,
void *const hw

)

This function initializes the given 12C descriptor to be used as asynchronous 12C master interface
descriptor. It checks if the given hardware is not initialized and if the given hardware is permitted to be
initialized.
Parameters
i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C
hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 262

ASF4 API Reference Manual
12C Drivers

26.2.10.2 i2c_m_async_deinit
Deinitialize asynchronous 12C master interface.

int32 t i2c m async_deinit(
struct i2c m async_desc *const i2c

)

This function deinitializes the given asynchronous 12C master descriptor. It checks if the given hardware
is initialized and if the given hardware is permitted to be deinitialized.

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

De-initialization status.
-1 The passed parameters were invalid or the interface is already deinitialized

0 The de-initialization is completed successfully

26.2.10.3 i2c_m_async_set_slaveaddr
Set the slave device address.

int32_t i2c_m_async_set_slaveaddr (
struct i2c m async desc *const i2c,
intlé_t addr,
int32_t addr_len

)

This function sets the next transfer target slave 12C device address. It takes no effect to an already
started access.

Parameters
i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C
addr Type: int16_t

The slave address to access

addr_len Type: int32_t
The slave address length, can be 12C_M_TEN or 12C_M_SEVEN

Returns
Type: int32_t

Masked slave address. The mask is maximum a 10-bit address, and the 10th bit set if 10-bit address is
used

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 263

ASF4 API Reference Manual
12C Drivers

26.2.10.4 i2c_m_async_register_callback
Register callback function.

int32 t i2c_m async_register callback(
struct i2c m async_desc *const i2c,
enum i2c m async callback type type,
FUNC_PTR func

)

This function registers one callback function to the 12C master device specified by the given descriptor

Parameters
i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C
type Type: enum 26.2.8.1 i2c_m_async_callback_type Enum

Type of a callback to set

func Type: 40.3.2.1 FUNC_PTR typedef

Callback function pointer

Returns
Type: int32_t

Callback setting status
-1 The passed parameters were invalid

0 The callback set is completed successfully

26.2.10.5 i2c_m_async_set_baudrate
Set baudrate.

int32 t i2c m async set baudrate(
struct i2c _m _async_desc *const iZ2c,
uint32 t clkrate,
uint32 t baudrate

)

This function sets the 12C master device to a specified baudrate. It only takes effect when the hardware is

disabled.
Parameters
i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const
An 12C master descriptor, which is used to communicate through 12C
clkrate Type: uint32_t

Unused parameter, should always be 0

baudrate Type: uint32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 264

ASF4 API Reference Manual
12C Drivers

The baudrate value set to master

Returns
Type: int32_t

The status whether successfully set the baudrate
-1 The passed parameters were invalid or the device is already enabled
0 The baudrate set is completed successfully
26.2.10.6 i2c_m_async_enable
Async version of enable hardware.

int32 t i2c m async enable (
struct i2c m async_desc *const i2c

)

This function enables the 12C master device and then waits for this enabling operation to be done.

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

The status whether successfully enabled
-1 The passed parameters were invalid or the device enable failed
0 The hardware enabling is completed successfully
26.2.10.7 i2c_m_async_disable
Async version of disable hardware.

int32_t i2c_m_async_disable(
struct i2c m async _desc *const i2c

)

This function disables the 12C master device and then waits for this disabling operation to be done.

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

The status whether successfully disabled

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 265

ASF4 API Reference Manual
12C Drivers

-1 The passed parameters were invalid or the device disable failed

0 The hardware disabling is completed successfully

26.2.10.8 i2c_m_async_cmd_write
Async version of the write command to 12C slave.

int32 t i2c m async_cmd write(
struct i2c m async desc *const iZ2c,
uint8 t regq,
uint8 t value

)

This function will write the value to a specified register in the 12C slave device, and then return before the
last sub-operation is done.

The sequence of this routine is sta->address(write)->ack->reg address->ack->resta->address(write)-
>ack->reg value->nack->stt

Parameters
i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const
An 12C master descriptor, which is used to communicate through 12C
reg Type: uint8_t
The internal address/register of the 12C slave device
value Type: uint8 t

The value write to the 12C slave device

Returns
Type: int32_t

The status whether successfully write to the device
<0 The passed parameters were invalid or write fail

0 Writing to register is completed successfully

26.2.10.9 i2c_m_async_cmd_read
Async version of read register value from the 12C slave.

int32 t i2c m async_cmd read(
struct i2c _m _async_desc *const iZ2c,
uint8 t reg,
uint8_t * value

)

This function will read a byte value from a specified reg in the 12C slave device and then return before the
last sub-operation is done.

The sequence of this routine is sta->address(write)->ack->reg address->ack->resta->address(read)->ack-
>reg value->nack->stt

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 266

ASF4 API Reference Manual
12C Drivers

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C
reg Type: uint8_t
The internal address/register of the 12C slave device

value Type: uint8 t*

The value read from the 12C slave device

Returns
Type: int32_t

The status whether successfully read from the device
<0 The passed parameters were invalid or read fail

0 Reading from register is completed successfully

26.2.10.10 i2c_m_async_transfer
Async version of transfer message to/from 12C slave.

int32 t i2c_m async_transfer(
struct i2c m async_desc *const i2c,
struct 1i2c m msg * msg

)

This function will transfer a message between the 12C slave and the master. This function will not wait for
the transfer to complete.

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C
msg Type: struct _i2c_m_msg*

An i2c_m_msg struct

Returns
Type: int32_t

The status of the operation
0 Operation completed successfully

<0 Operation failed

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 267

ASF4 API Reference Manual
12C Drivers

26.2.10.11 i2c_m_async_send_stop
Generate stop condition on the 12C bus.

int32 t i2c m async_send stop(
struct i2c m async desc *const i2c

)

This function will generate a stop condition on the 12C bus

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

Operation status
0 Operation executed successfully

<0 Operation failed

26.2.10.12 i2c_m_async_get_status
Returns the status during the transfer.

int32 t i2c m async_get status(
struct i2c m async desc *const iZ2c,
struct i2c m async_status * stat

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An i2c descriptor which is used to communicate through 12C

stat Type: struct 26.2.6.1 i2c_m_async_status Struct *

Pointer to the detailed status descriptor, set to NULL

Returns
Type: int32_t

Status of transfer
0 No error detected

<0 Error code

26.2.10.13 i2c_m_async_get_io_descriptor
Return I/O descriptor for this 12C instance.

int32 t i2c m async_get io descriptor(
struct i2c m async desc *const iZ2c,

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 268

ASF4 API Reference Manual
12C Drivers

struct io_descriptor ** io

)

This function will return an /O instance for this 12C driver instance

Parameters

i2c Type: struct 26.2.6.3 i2c_m_async_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

io Type: struct 25.2.1.1 io_descriptor Struct **

A pointer to an I/O descriptor pointer type

Returns

Type: int32_t

Error code

0 No error detected
<0 Error code

26.2.10.14 i2c_m_get_version

26.3

Retrieve the current driver version.

uint32 t i2c m get version(
void

)

Returns
Type: uint32_t

Current driver version.

12C Master RTOS Driver

The driver is intended to use 12C master functions in a Real-Time operating system, i.e. is thread safe.

The stop condition is automatically controlled by the driver if the 1/0 write and read functions are used,
but can be manually controlled by using the 26.3.7.7 i2c_m_os_transfer function.

The transfer functions of the 12C Master RTOS driver are optimized for RTOS support. When data
transfer is in progress, the transfer functions use semaphore to block the current task or thread until the
transfer end. So the transfer functions do not work without RTOS, the transfer functions must be called in
an RTOS task or thread.

During data transfer, the 12C transfer process is not protected, so that a more flexible way can be chosen
in the application.

I2C Modes (standard mode/fastmode+/highspeed mode) can only be selected in START. If the SCL
frequency (baudrate) has changed run-time, make sure to stick within the SCL clock frequency range
supported by the selected mode. The requested SCL clock frequency is not validated by the 26.3.7.4
i2c_m_os_set baudrate function against the selected 12C mode.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 269

ASF4 API Reference Manual
12C Drivers

26.3.1 Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Register I/O descriptor
* Enable or disable I2C master
* Hookup callback handlers on TX complete, RX complete, and error events
» Set the address of the slave device
* Read/Write message to/from the slave

26.3.2 Summary of Configuration Options
Below is a list of the main 12C master parameters that can be configured in START. Many of these
parameters are used by the 26.3.7.1 i2c_m_os_init function when initializing the driver and underlying
hardware. Most of the initial values can be overridden and changed runtime by calling the appropriate API
functions, such as 26.3.7.4 i2c_m_os_set baudrate.

» Set12C bus clock speed
* Which clock source is used

26.3.3 Driver Implementation Description
After 12C hardware initialization, the 26.3.7.9 i2c_m_os_get_io function is needed to register an /O
descriptor. Then the application needs to set the slave address by the 26.3.7.3 i2c_m_os_set_slaveaddr
function. At the end, start the read/write operation.

26.3.3.1 Limitations
» System Management Bus (SMBus) is not supported
* Power Management Bus (PMBus) is not supported

» The register value for the requested 12C speed is calculated and placed in the correct register, but
not validated if it works correctly with the clock/prescaler settings used for the module. To validate
the 12C speed setting use the formula found in the configuration file for the module. Selectable
speed is automatically limited within the speed range defined by the 12C mode selected

26.3.4 Example of Usage

The following shows a simple example of using the 12C master. The I12C master must have been
initialized by 26.3.7.1 i2c_m_os_init. This initialization will configure the operation of the 12C master.

The example registers an 1/O descriptor and sets the slave address, and finally starts a writing operation.

The example creates an I12C master example task. In the task, it registers an 1/0 descriptor for an 12C
instance, then sets the slave address. Here we assume that the 12C device is a 0AT30TSE temperature
sensor on an 1/01 Xplained Pro connected to an Xplained board. Write the data to the slave device, and
the RTOS task scheduler starts to read the data from the slave device.

/**
* Example task of using I2C 0 to echo using the I/O abstraction.

* Assume the I2C device is AT30TSE temp sensor on IOl Xplained Pro connect
ed to
* XPlained board.
*/
void I2C example task(void *p)
{

struct io descriptor *io;

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 270

ASF4 API Reference Manual

12C Drivers
uintlé t data;
uint8 t buf([2];
(void)p;

i2c_ m os get io(&I2C 0, &io);

/* Address of the temp sensor. */

i2c_ m os_set slaveaddr (&I2C 0, 0x4f, 0);
/* Set configuration to use 12-bit temperature */
buf[0] = 1;

buf[1] 3 << 5;

io write(&I2C 0.io, buf, 2);

/* Set to temperature register. */
buf[0] = 0;

io write(&I2C 0.io, buf, 1);

for (;i) |

if (io->read(io, (uint8 t *)&data, 2) == 2) {
/* read OK, handle data. */;
} else {

/* error. */;
}
}
}
#define TASK TRANSFER STACK SIZE (256/
sizeof (portSTACK TYPE))

#define TASK TRANSFER STACK PRIORITY (tSkIDLE_PRIORITY + 0)
static TaskHandle t xCreatedTransferTask;
static void task transfer create(void)
{
/* Create the task that handles the CLI. */

if (xTaskCreate (I2C example task, "transfer", TASK TRANSFER STACK SIZE,
NULL,
TASK TRANSFER STACK PRIORITY, &xCreatedTransferTask) !
= pdPASS) {
while (1) {;
}
}
1
static void tasks run(void)
{
vTaskStartScheduler () ;
}
int main (void)
{
/* Initializes MCU, drivers and middleware */
atmel start init();
task transfer create();
tasks run();
/* Replace with your application code */
while (1) {
}

26.3.5 Dependencies
* The I2C master peripheral and its related I/O lines and clocks
» The NVIC must be configured so that 12C interrupt requests are periodically serviced
« RTOS

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 271

ASF4 API Reference Manual
12C Drivers

26.3.6 Structs

26.3.6.1 i2c_m_os_desc Struct
I2C descriptor structure, embed i2c_device & i2¢c_interface.

Members
device

io
xfer_sem
slave_addr

error

26.3.7 Functions

26.3.7.1 i2c_m_os_init
Initialize 12C master interface.

int32 t i2c m os init(
struct i2c m os desc *const i2c,
void *const hw

)

This function initializes the given 12C descriptor to be used as an RTOS 12C master interface descriptor. It
checks if the given hardware is not initialized and if the given hardware is permitted to be initialized.

Parameters

i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const
An 12C master descriptor, which is used to communicate
hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.
-1 The passed parameters were invalid or already initialized

0 The initialization is completed successfully

26.3.7.2 i2c_m_os_deinit
Deinitialize 12C master interface.
int32 t i2c m os deinit(

struct i2c m os desc *const i2c

)

This function deinitializes the given RTOS 12C master descriptor. It checks if the given hardware is
initialized and if the given hardware is permitted to be deinitialized.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 272

26.3.7.3

26.3.74

ASF4 API Reference Manual
12C Drivers

Parameters

i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

De-initialization status.

-1 The passed parameters were invalid or the interface is already deinitialized

0 The de-initialization is completed successfully

i2c_m_os_set_slaveaddr
Set the slave device address.

int32 t i2c m os set slaveaddr (
struct i2c m os desc *const i2c,
intlé_t addr,
int32 t addr_len

)

This function sets the next transfer target slave 12C device address. It takes no effect to any already
started access.

Parameters
i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C
addr Type: int16_t

The slave address to access

addr_len Type: int32_t
The slave address length, can be I2C_M_TEN or 12C_M_SEVEN

Returns
Type: int32_t

Masked slave address, the mask is a maximum 10-bit address, and the 10th bit is set if a 10-bit address
is used

i2c_m_os_set_baudrate
Set baudrate.

int32 t i2c_m os_set baudrate(
struct i2c m os_desc *const i2c,
uint32_t clkrate,
uint32 t baudrate

)

This function sets the 12C master device to a specified baudrate, and it only takes effect when the
hardware is disabled

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 273

26.3.7.5

26.3.7.6

ASF4 API Reference Manual

12C Drivers
Parameters
i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const
An 12C master descriptor, which is used to communicate through 12C
clkrate Type: uint32_t

Unused parameter, should always be 0

baudrate Type: uint32_t

The baudrate value set to master

Returns
Type: int32_t

The status whether successfully set the baudrate

-1 The passed parameters were invalid or the device is already enabled

0 The baudrate set is completed successfully

i2c_m_os_enable
Enable hardware.

int32 t i2c_m os_enable(
struct i2c m os_desc *const i2c

)

This function enables the 12C master device and then waits for this enabling operation to be done

Parameters

i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

The status whether successfully enable the device

-1 The passed parameters were invalid or the device enable failed

0 The hardware enabling is completed successfully

i2c_m_os_disable
Disable hardware.

int32 t i2c m os disable(
struct i2c m os desc *const i2c

)

This function disables the 12C master device and then waits for this disabling operation to be done

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 274

26.3.7.7

26.3.7.8

ASF4 API Reference Manual
12C Drivers

Parameters

i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

The status whether successfully disable the device
-1 The passed parameters were invalid or the device disable failed

0 The hardware disabling is completed successfully

i2c_m_os_transfer
Async version of transfer message to/from 12C slave.

int32 t i2c m os_transfer(
struct i2c m os desc *const i2c,
struct i2c m msg * msg,
int n

)
This function will transfer messages between the 12C slave and the master. The function will wait for the
transfer to complete.
Parameters
i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const
An [2C master descriptor, which is used to communicate through 12C
msg Type: struct _i2c_m_msg *
An _i2c_m_msg struct array
n Type: int

The number of msgs in the array

Returns
Type: int32_t

The status of the operation

0 Operation completed successfully

<0 Operation failed

i2c_m_os_send_stop
Generate stop condition on the 12C bus.
int32 t i2c m os_send stop(

struct i2c_m_os_desc *const i2c

)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 275

ASF4 API Reference Manual
12C Drivers

This function will generate a stop condition on the 12C bus

Parameters

i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

Returns
Type: int32_t

Operation status
0 Operation executed successfully
<0 Operation failed
26.3.7.9 i2c_m_os_get_io
Return /O descriptor for this I12C instance.

static int32 t i2c m os get io(
struct i2c m os desc *const i2c,
struct io descriptor ** io

)

This function will return a 1/O instance for this 12C driver instance

Parameters

i2c Type: struct 26.3.6.1 i2c_m_os_desc Struct *const

An 12C master descriptor, which is used to communicate through 12C

io Type: struct 25.2.1.1 io_descriptor Struct **

A pointer to an I/O descriptor pointer type

Returns

Type: int32_t

Error code

0 No error detected
<0 Error code

26.3.7.10 i2c_m_get_version
Retrieve the current driver version.
uint32 t i2c m get version(

void

)

Returns
Type: uint32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 276

ASF4 API Reference Manual
12C Drivers

Current driver version.

26.4 12C Master Synchronous Driver

The functions in the Inter-Integrated Circuit (12C) Master synchronous driver provide an interface to read/
write the data from/to the slave device.

The stop condition is automatically controlled by the driver if the 1/0 write and read functions are used,
but can be manually controlled by using the 26.4.8.9 i2c_m_sync_transfer function.

Often a master accesses different information in the slave by accessing different registers in the slave.
This is done by first sending a message to the target slave containing the register address, followed by a
repeated start condition (no stop condition in between) ending with transferring the register data. This
scheme is supported by the 26.4.8.7 i2c_m_sync_cmd_write and 26.4.8.8 i2c_m_sync_cmd_read
function, but limited to 8-bit register addresses.

I2C Modes (standard mode/fastmode+/highspeed mode) can only be selected in START. If the SCL
frequency (baudrate) has changed run-time, make sure to stick within the SCL clock frequency range
supported by the selected mode. The requested SCL clock frequency is not validated by the 26.4.8.4
i2c_m_sync_set_baudrate function against the selected 12C mode.

26.4.1 Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Register I/O descriptor
* Enable or disable the 12C master
» Set the address of the slave device
* Read/Write message to/from the slave

26.4.2 Summary of Configuration Options

Below is a list of the main 12C master parameters that can be configured in START. Many of these
parameters are used by the 26.4.8.1 i2c_m_sync_init function when initializing the driver and underlying
hardware. Most of the initial values can be overridden and changed runtime by calling the appropriate API
functions, such as 26.4.8.4 i2c_m_sync_set baudrate.

* Set12C bus clock speed
* Which clock source is used

26.4.3 Driver Implementation Description

After the 12C hardware initialization, the 26.4.8.11 i2c_m_sync_get_io_descriptor function is needed to
register an 1/O descriptor. Then enable the 12C hardware, and use the 26.4.8.3
i2c_m_sync_set_slaveaddr function to set the slave address. At the end, start the read/write operation.

26.4.4 Example of Usage
The following shows a simple example of using the 12C master. The 12C master must have been
initialized by 26.4.8.1 i2c_m_sync_init. This initialization will configure the operation of the 12C master.
26.4.4.1 Limitations
* System Management Bus (SMBus) is not supported
* Power Management Bus (PMBus) is not supported

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 277

26.4.5

26.4.6
26.4.6.1

26.4.7

26.4.71

26.4.8
26.4.8.1

ASF4 API Reference Manual
12C Drivers

» The register value for the requested 12C speed is calculated and placed in the correct register, but
not validated if it works correctly with the clock/prescaler settings used for the module. To validate
the 12C speed setting use the formula found in the configuration file for the module. Selectable
speed is automatically limited within the speed range defined by the 12C mode selected

The example enables the I12C master, and finally starts a writing operation to the slave.

void I2C 0 example (void)

{ struct io descriptor *I2C 0 io; i2c_m sync_get io descriptor (&I2C 0
, &I2C 0 1i0); i2c m sync enable (&I2C 0); i2c m sync set slaveaddr (&I2
C 0, 0x12, I2C M SEVEN); io write(I2C 0 io, (uint8 t *)"Hello World!", 1
2);}

Dependencies
* The I2C master peripheral and its related 1/O lines and clocks
Structs
i2c_m_sync_desc Struct
I2C descriptor structure, embed i2c_device & i2¢c_interface.
Members
device
io
slave_addr
Defines

[2C_M_MAX_RETRY
#define 12C_M_MAX_RETRY() 1

Functions

i2c_m_sync_init
Initialize synchronous 12C interface.

int32 t i2c m sync_init(
struct i2c m sync desc * i2c,
void * hw

)

This function initializes the given 1/O descriptor to be used as a synchronous 12C interface descriptor. It
checks if the given hardware is not initialized and if the given hardware is permitted to be initialized.

Parameters
i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *

An 12C descriptor, which is used to communicate through 12C
hw Type: void *

The pointer to hardware instance

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 278

26.4.8.2

26.4.8.3

ASF4 API Reference Manual
12C Drivers

Returns
Type: int32_t

Initialization status.

-1 The passed parameters were invalid or the interface is already initialized
0 The initialization is completed successfully

i2c_m_sync_deinit

Deinitialize 12C interface.

int32 t i2c m sync deinit(
struct i2c m sync_desc * i2c

)
This function deinitializes the given I/O descriptor. It checks if the given hardware is initialized and if the
given hardware is permitted to be deinitialized.
Parameters

i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *

An 12C descriptor, which is used to communicate through 12C

Returns
Type: int32_t

Uninitialization status.

-1 The passed parameters were invalid or the interface is already deinitialized

0 The de-initialization is completed successfully

i2c_m_sync_set_slaveaddr
Set the slave device address.

int32 t i2c m sync_set slaveaddr (
struct i2c m sync desc * i2c,
intlé t addr,
int32 t addr_ len

)

This function sets the next transfer target slave 12C device address. It takes no effect to any already
started access.

Parameters
i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *

An 12C descriptor, which is used to communicate through 12C
addr Type: int16_t

The slave address to access

addr_len Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 279

ASF4 API Reference Manual
12C Drivers

The slave address length, can be 12C_M_TEN or 12C_M_SEVEN

Returns
Type: int32_t

Masked slave address. The mask is a maximum 10-bit address, and 10th bit is set if a 10-bit address is
used

26.4.8.4 i2c_m_sync_set_baudrate
Set baudrate.

int32 t i2c_m sync_set baudrate(
struct i2c m sync _desc * i2c,
uint32_t clkrate,
uint32_t baudrate

)

This function sets the 12C device to the specified baudrate. It only takes effect when the hardware is

disabled.
Parameters
i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *
An 12C descriptor, which is used to communicate through 12C
clkrate Type: uint32_t

Unused parameter. Should always be 0

baudrate Type: uint32_t

The baudrate value set to master

Returns
Type: int32_t

Whether successfully set the baudrate

-1 The passed parameters were invalid or the device is already enabled

0 The baudrate set is completed successfully

26.4.8.5 i2c_m_sync_enable
Sync version of enable hardware.

int32 t i2c_m sync_enable (
struct i2c m sync _desc * i2c

)

This function enables the 12C device, and then waits for this enabling operation to be done

Parameters

i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 280

26.4.8.6

26.4.8.7

ASF4 API Reference Manual
12C Drivers

An 12C descriptor, which is used to communicate through 12C

Returns
Type: int32_t

Whether successfully enable the device

-1 The passed parameters were invalid or the device enable failed
0 The hardware enabling is completed successfully
i2c_m_sync_disable

Sync version of disable hardware.

int32 t i2c _m sync_disable(
struct i2c m sync desc * i2c

)

This function disables the 12C device and then waits for this disabling operation to be done

Parameters

i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *

An 12C descriptor, which is used to communicate through 12C

Returns
Type: int32_t

Whether successfully disable the device

-1 The passed parameters were invalid or the device disable failed

0 The hardware disabling is completed successfully

i2c_m_sync_cmd_write
Sync version of write command to 12C slave.

int32_t i2c_m _sync_cmd write(
struct i2c m sync desc * i2c,
uint8 t regq,
uint8_t * buffer,
uint8 t length

)

This function will write the value to a specified register in the 12C slave device and then wait for this
operation to be done.

The sequence of this routine is sta->address(write)->ack->reg address->ack->resta->address(write)-
>ack->reg value->nack->stt

Parameters

i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 281

ASF4 API Reference Manual
12C Drivers

An 12C descriptor, which is used to communicate through 12C
reg Type: uint8_t

The internal address/register of the 12C slave device
buffer Type: uint8_t*

The buffer holding data to write to the 12C slave device
length Type: uint8_t

The length (in bytes) to write to the 12C slave device

Returns
Type: int32_t

Whether successfully write to the device
<0 The passed parameters were invalid or write fail

0 Writing to register is completed successfully

26.4.8.8 i2c_m_sync_cmd_read
Sync version of read register value from 12C slave.

int32 t i2c m sync _cmd read(
struct i2c_m sync_desc * i2c,
uint8 t regq,
uint8 t * buffer,
uint8 t length

)

This function will read a byte value from a specified register in the 12C slave device and then wait for this
operation to be done.

The sequence of this routine is sta->address(write)->ack->reg address->ack->resta->address(read)->ack-
>reg value->nack->stt
Parameters
i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *

An 12C descriptor, which is used to communicate through 12C
reg Type: uint8_t

The internal address/register of the 12C slave device
buffer Type: uint8_t*

The buffer to hold the read data from the 12C slave device
length Type: uint8_t

The length (in bytes) to read from the 12C slave device

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 282

ASF4 API Reference Manual
12C Drivers

Returns
Type: int32_t

Whether successfully read from the device
<0 The passed parameters were invalid or read fail

0 Reading from register is completed successfully

26.4.8.9 i2c_m_sync_transfer
Sync version of transfer message to/from the 12C slave.

int32 t i2c_m sync_transfer(
struct i2c_m sync desc *const i2c,
struct 1i2c m msg * msg

)

This function will transfer a message between the 12C slave and the master. This function will wait for the
operation to be done.

Parameters

i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *const

An 12C descriptor, which is used to communicate through 12C
msg Type: struct _i2c_ m_msg *

An i2c_m_msg struct

Returns
Type: int32_t

The status of the operation
0 Operation completed successfully

<0 Operation failed

26.4.8.10 i2c_m_sync_send_stop
Sync version of send stop condition on the i2¢c bus.

int32 t i2c m sync send stop(
struct i2c m sync_desc *const i2c

)

This function will create a stop condition on the i2c bus to release the bus

Parameters

i2c Type: struct 26.4.6.1 i2c_m_sync_desc Struct *const

An 12C descriptor, which is used to communicate through 12C

Returns
Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 283

ASF4 API Reference Manual
12C Drivers

The status of the operation

0 Operation completed successfully

<0 Operation failed

26.4.8.11 i2c_m_sync_get_io_descriptor

Return /O descriptor for this I12C instance.

int32 t i2c_m sync_get io descriptor(
struct i2c m sync desc *const i2c,

struct io descriptor ** io

)

This function will return a 1/O instance for this |2C driver instance

Parameters

i2c_m_sync_desc An 12C descriptor, which is used to communicate through 12C
io_descriptor A pointer to an I/O descriptor pointer type

Returns

Type: int32_t

Error code

0 No error detected

<0 Error code

26.4.8.12 i2c_m_sync_get_version
Retrieve the current driver version.

uint32 t i2c m sync get version(
void

)

Returns
Type: uint32_t

Current driver version.

26.5 12C Slave Asynchronous Driver

In Inter-Integrated Circuit (12C) slave asynchronous driver, a callback function can be registered in the
driver by the application and triggered when the transfer is done. The driver 25.2.3.2 io_read/io_write()
function will attempt to read/write the data from/to the master device.

I2C Modes (standard mode/fastmode+/highspeed mode) can only be selected in START. Make sure that
the selected speed mode is within the expected SCL clock frequency range of the i2¢ bus.

The error callback is executed as soon as an error is detected by the hardware.

© 2018 Microchip Technology Inc.

User Guide DS50002633B-page 284

26.5.1

26.5.2

26.5.3

26.5.3.1

26.5.4

ASF4 API Reference Manual
12C Drivers

The RX callback is invoked each time a byte is received by an 12C slave device, the byte is put into the
ring buffer prior to the callback calling. Received data can be read out in the callback via the 1/0 read
function.

The TX pending callback is invoked when a master device requests data from a slave device via sending
slave device address with R/W bit set to one. A slave device can send data to a master device via the 1/O
write function.

The TX callback is invoked at the end of buffer transfer caused by a call to the 1/O write function.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Register the I/O descriptor
* Enable or disable the 12C slave
* Hookup callback handlers on TX complete, RX complete, or error events
* Set the address of the slave device
» Read/Write message to/from the master

Summary of Configuration Options

Below is a list of the main 12C slave parameters that can be configured in START. Many of these
parameters are used by the 26.5.9.1 i2c_s_async_init function when initializing the driver and underlying
hardware. Most of the initial values can be overridden.

¢« Set 12C slave device address
* Which clock source is used

Driver Implementation Description

After the 12C hardware initialization, the 26.5.9.7 i2c_s_async_get_io_descriptor function is needed to
register an 1/O descriptor. Then use 26.5.9.4 i2c_s_async_register_callback to register the callback
function for RX/TX complete, and enable the 12C hardware. At the end, start the read/write operation.

Limitations
* System Management Bus (SMBus) is not supported
* Power Management Bus (PMBus) is not supported
» During the write operation the buffer content should not be changed before the transfer is complete

Example of Usage

The following shows a simple example of using the 12C slave. The 12C slave must have been initialized
by 26.5.9.1 i2c_s_async_init. This initialization will configure the operation of the 12C slave.

The example registers an I/O descriptor and enables the hardware. Then it registers a callback for RX
complete, and finally starts a reading operation.

static struct io descriptor *io;

static void I2C 0 rx complete (const struct i2c_s async _descriptor *const de
scr)
{
uint8 t c;
io read(io, é&c, 1);

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 285

26.5.5

26.5.6
26.5.6.1

26.5.6.2

26.5.7
26.5.7.1

ASF4 API Reference Manual

12C Drivers

void I2C 0 example (void)
{

i2c_s async _get io descriptor (&I2C O,

&io) ;

i2c_s async register callback(&I2C 0, I2C S RX COMPLETE, I2C 0 rx compl

ete);
i2c_s_async_enable (&I2C 0);

Dependencies

* The I2C slave peripheral and its related I/O lines and clocks

* The NVIC must be configured so that 12C interrupt requests are periodically serviced

Structs

i2c_s_async_callbacks Struct
i2c callback pointers structure

Members
error
tx_pending
tx
rx

i2c_s_async_descriptor Struct
I2C slave descriptor structure.

Members

device

io

cbs

rx

tx_buffer
tx_buffer_length

tx_por

Enums
i2c_s_async_callback_type Enum
12C_S_ERROR
12C_S_TX_PENDING
12C_S_TX_COMPLETE
12C_S_RX_COMPLETE

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 286

26.5.8
26.5.8.1

26.5.9
26.5.9.1

26.5.9.2

ASF4 API Reference Manual
12C Drivers

Typedefs

i2c_s_async_cb_t typedef
typedef void(* i2c_s_async_cb_t) (const struct i2c_s_async_descriptor *const descr)

I2C slave callback function type.

Functions

i2c_s_async_init
Initialize asynchronous 12C slave interface.

int32 t i2c_s async_init(
struct i2c s async descriptor *const descr,
void *const hw,
uint8 t *const rx buffer,
const uintl6_t rx buffer length
)

This function initializes the given 12C descriptor to be used as asynchronous 12C slave interface
descriptor. It checks if the given hardware is not initialized and if it is permitted to be initialized.

Parameters
descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const
An 12C slave descriptor which is used to communicate through 12C
hw Type: void *const
The pointer to hardware instance
rx_buffer Type: uint8_t *const

An RX buffer

rx_buffer_length Type: const uint16_t
The length of the buffer above

Returns
Type: int32_t

Initialization status.

i2c_s_async_deinit
Deinitialize asynchronous 12C slave interface.

int32_t i2c_s_async_deinit (
struct i2c_s async_descriptor *const descr

)

This function deinitializes the given asynchronous 12C slave descriptor. It checks if the given hardware is
initialized and if it is permitted to be deinitialized.

Parameters

descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 287

26.5.9.3

26.5.9.4

ASF4 API Reference Manual
12C Drivers

An 12C slave descriptor which is used to communicate through 12C

Returns
Type: int32_t

De-initialization status.

i2c_s_async_set_addr
Set the device address.

int32 t i2c s async_set addr(
struct i2c_s async_descriptor *const descr,
const uintlé t addr

)

This function sets the 12C slave device address.

Parameters

descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An I12C slave descriptor which is used to communicate through 12C

address An address

Returns
Type: int32_t

Status of address setting.

i2c_s_async_register_callback
Register callback function.

int32 t i2c_s async_register callback(
struct i2c s async descriptor *const descr,
const enum i2c_s_async_callback type type,
i2c_s_async_cb_t func

)

This function registers callback functions to the 12C slave device specified by the given descriptor

Parameters
descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C slave descriptor which is used to communicate through 12C
type Type: const enum 26.5.7.1 i2c_s_async_callback_type Enum

Type of a callback to set

func Type: 26.5.8.1 i2c_s_async_cb_t typedef

Callback function pointer

Returns
Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 288

26.5.9.5

26.5.9.6

26.5.9.7

ASF4 API Reference Manual

12C Drivers

Callback setting status.
-1 Passed parameters were invalid

0 The callback set is completed successfully

i2c_s_async_enable
Enable I12C slave communication.

int32 t i2c_ s async enable(
struct i2c_s _async_descriptor *const descr

)

This function enables the 12C slave device

Parameters

descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C slave descriptor which is used to communicate through 12C

Returns
Type: int32_t

Enabling status.

i2c_s_async_disable
Disable 12C slave communication.

int32 t i2c s async disable(
struct i2c_s_async_descriptor *const descr

)

This function disables the 12C slave device

Parameters

descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C slave descriptor which is used to communicate through 12C

Returns
Type: int32_t

Disabling status

i2c_s_async_get_io_descriptor
Retrieve |/O descriptor.
int32 t i2c s async get io descriptor(
struct i2c_s async_descriptor *const descr,

struct io descriptor ** io

)

This function returns a I/0 instance for the given 12C slave driver instance

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 289

ASF4 API Reference Manual
12C Drivers

Parameters
descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const
An 12C slave descriptor which is used to communicate through 12C

io Type: struct 25.2.1.1 io_descriptor Struct **
A pointer to an 1/0O descriptor pointer type

Returns
Type: int32_t

I/O retrieving status.

26.5.9.8 i2c_s_async_get_bytes_received
Retrieve the number of received bytes in the buffer.

int32 t i2c s async get bytes received(
const struct i2c_s _async_descriptor *const descr

)

This function retrieves the number of received bytes which were not read out

Parameters

descr Type: const struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C slave descriptor which is used to communicate through

Returns
Type: int32_t

The amount of bytes received

26.5.9.9 i2c_s_async_get_bytes_sent
Retrieve the number of bytes sent.

int32 t i2c s async _get bytes sent(
const struct i2c_s async_descriptor *const descr

)

This function retrieves the number of sent bytes for the last write operation

Parameters

descr Type: const struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C slave descriptor which is used to communicate through

Returns
Type: int32_t

The amount of bytes sent

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 290

ASF4 API Reference Manual
12C Drivers

26.5.9.10 i2c_s_async_flush_rx_buffer
Flush received data.

int32 t i2c_s async_flush rx buffer(
struct i2c_s async_descriptor *const descr

)

This function flushes all received data

Parameters

descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C slave descriptor which is used to communicate through

Returns
Type: int32_t

The status of data flushing

26.5.9.11 i2c_s_async_abort_tx
Abort sending.

int32 t i2c_s async_abort tx(
struct i2c_s async_descriptor *const descr

)

This function aborts data sending

Parameters

descr Type: struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C slave descriptor which is used to communicate through

Returns
Type: int32_t

The amount of bytes received

26.5.9.12 i2c_s_async_get_status
Retrieve the current interface status.

int32 t i2c_s async_get status(
const struct i2c_s async descriptor *const descr,
i2c_s status t *const status

Parameters

descr Type: const struct 26.5.6.2 i2c_s_async_descriptor Struct *const

An 12C descriptor which is used to communicate via USART

status Type: i2c_s_status_t *const

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 291

ASF4 API Reference Manual
12C Drivers

The state of 12C slave

Returns
Type: int32_t

The status of the 12C status retrieving.

26.5.9.13 i2c_s_async_get_version
Retrieve the current driver version.
uint32 t i2c s async _get version(

void

)

Returns
Type: uint32_t

Current driver version.

26.6 12C Slave Synchronous Driver

The functions in the Inter-Integrated Circuit (12C) Slave synchronous driver provides an interface to read/
write the data from/to the master device. The functions will be blocked until the operation is done.

I2C Modes (standard mode/fastmode+/highspeed mode) can only be selected in START.

26.6.1 Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Register the 1/0O descriptor
» Set the address of the slave device
* Enable or disable the 12C slave
* Read/Write message to/from the master

26.6.2 Summary of Configuration Options

Below is a list of the main 12C slave parameters that can be configured in START. Many of these
parameters are used by the 26.6.7.1 i2c_s_sync_init function when initializing the driver and underlying
hardware. Most of the initial values can be overridden.

. Set the 12C slave device address
* Which clock source is used

26.6.3 Driver Implementation Description

After the 12C hardware initialization, the 26.6.7.6 i2c_s_sync_get_io_descriptor function is needed to
register an 1/O descriptor. Then use the 26.6.7.3 i2c_s_sync_set addr function to set the slave address
and enable the 12C hardware. At the end, start the read/write operation.

26.6.3.1 Limitations
* System Management Bus (SMBus) is not supported
* Power Management Bus (PMBus) is not supported

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 292

26.6.4

26.6.5

26.6.6
26.6.6.1

26.6.7
26.6.7.1

ASF4 API Reference Manual
12C Drivers

Example of Usage

The following shows a simple example of using the 12C slave. The 12C slave must have been initialized
by 26.6.7.1 i2c_s_sync_init. This initialization will configure the operation of the 12C slave.

The example enables the 12C slave, and finally starts a reading operation to the master.

void I2C 0 example (void)

{ struct io descriptor *io; uint8 t es i2c_s_sync_ge
t io descriptor (&I2C 0, &io); i2c_s sync_set addr (&I2C 0, 1); i2c_s_s
ync_enable (&I2C 0); io read(io, é&c, 1);}

Dependencies
* The I2C slave peripheral and its related I/O lines and clocks
Structs
i2c_s_sync_descriptor Struct
I2C slave descriptor structure.
Members
device
io
Functions

i2c_s_sync_init
Initialize synchronous 12C slave interface.

int32 t i2c_s sync_init(
struct i2c_s_sync_descriptor *const descr,
void * hw

)

This function initializes the given 12C descriptor to be used as synchronous 12C slave interface descriptor.
It checks if the given hardware is not initialized and if it is permitted to be initialized.
Parameters
descr Type: struct 26.6.6.1 i2c_s_sync_descriptor Struct *const
An 12C slave descriptor which is used to communicate through 12C
hw Type: void *

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 293

26.6.7.2

26.6.7.3

26.6.7.4

ASF4 API Reference Manual
12C Drivers

i2c_s_sync_deinit
Deinitialize synchronous I12C slave interface.

int32 t i2c_s sync_deinit(
struct i2c_s sync_descriptor *const descr

)

This function deinitializes the given synchronous 12C slave descriptor. It checks if the given hardware is
initialized and if it is permitted to be deinitialized.

Parameters

descr Type: struct 26.6.6.1 i2c_s_sync_descriptor Struct *const

An 12C slave descriptor which is used to communicate through 12C

Returns
Type: int32_t

De-initialization status.

i2c_s_sync_set_addr
Set the device address.

int32 t i2c_s sync_set addr(
struct i2c_s_sync_descriptor *const descr,
const uintlé t address

)

This function sets the 12C slave device address.

Parameters
descr Type: struct 26.6.6.1 i2c_s_sync_descriptor Struct *const
An I12C slave descriptor which is used to communicate through 12C

address Type: const uint16_t

An address

Returns
Type: int32_t

Status of the address setting.

i2c_s_sync_enable
Enable I12C slave communication.

int32 t i2c s sync_enable(
struct i2c_s sync descriptor *const descr

)

This function enables the 12C slave device

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 294

26.6.7.5

26.6.7.6

ASF4 API Reference Manual
12C Drivers

Parameters

descr Type: struct 26.6.6.1 i2c_s_sync_descriptor Struct *const

An 12C slave descriptor which is used to communicate through 12C

Returns
Type: int32_t

Enabling status.

i2c_s_sync_disable
Disable 12C slave communication.

int32 t i2c_s sync_disable(
struct i2c_s sync_descriptor *const descr

)

This function disables the 12C slave device

Parameters

descr Type: struct 26.6.6.1 i2c_s_sync_descriptor Struct *const

An 12C slave descriptor which is used to communicate through 12C

Returns
Type: int32_t

Disabling status.

i2c_s_sync_get_io_descriptor
Retrieve I/0O descriptor.

int32 t i2c_s sync_get io_descriptor(
struct i2c_s sync descriptor *const descr,
struct io descriptor ** io

)

This function returns a I/O instance for the given 12C slave driver instance

Parameters
descr Type: struct 26.6.6.1 i2c_s_sync_descriptor Struct *const

An 12C slave descriptor which is used to communicate through 12C

io Type: struct 25.2.1.1 io_descriptor Struct **

A pointer to an 1/O descriptor pointer type

Returns
Type: int32_t

I/O retrieving status.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 295

26.6.7.7

26.6.7.8

ASF4 API Reference Manual

12C Drivers

i2c_s_sync_get_status

Retrieve the current interface status.

int32 t i2c_s sync_get status(

const struct i2c_s sync descriptor *const descr,

i2c_s_status_t *const status

Parameters

descr Type: const struct 26.6.6.1 i2¢c_s_sync_descriptor Struct *const

An i2c descriptor which is used to communicate via USART

status Type: i2c_s_status_t *const

The state of 12C slave

Returns
Type: int32_t

The status of 12C status retrieving.
i2c_s_sync_get_version

Retrieve the current driver version.

uint32 t i2c s _sync_get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 296

27.

271

2711

27.1.2

2713
27.1.31

271.4

27.1.41

ASF4 API Reference Manual

12S Controller Driver

12S Controller Driver

The following driver variant is available:

* 27.1 128 Controller Synchronous Driver: The driver supports polling for hardware changes,
functionality is synchronous to the main clock of the MCU.

I12S Controller Synchronous Driver

The Inter-IC Sound (12S) module provides a bidirectional, synchronous, and digital audio link for
transferring the PCM audio data. The I12S bus has separate clock signals for lower jitter than typical serial
buses. When the 12S module is in controller mode it will only provide control signals (MCK, SCK, and FS)
on the 12S bus, the data transfer will happen between the separate 12S Transmitter and 12S Receiver
slave modules on the same bus.

It's used to generate continuous 12S compatible clock and control signals for 12S slaves such like audio
codecs to use.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Enable or disable the I2S controller hardware
* Change clock and control signals settings, including:
» Serial Clock (SCK) generation
* Word Select (WS)/Frame Select (FS) generation

Dependencies
* The I2S master/controller capable hardware

Structs

i2s_c_sync_desc Struct

Members

dev HPL device instance for 12S Controller.

Enums
i2s_c_iface Enum
12S_C_IFACE_0 I2S controller interface 0.

12S_C_IFACE_1 I2S controller interface 1.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 297

27.1.5
27.1.51

27.1.5.2

27.1.5.3

ASF4 API Reference Manual

12S Controller Driver

Functions

i2s_c_sync_init
Initialize the 12S Controller.

int32 t i2s c sync_init(
struct i2s_c_sync_desc * iZs,
const void * hw,
const enum i2s c_iface iface

Parameters
i2s Type: struct 27.1.3.1 i2s_c_sync_desc Struct *

Pointer to the 12S Controller instance.
hw Type: const void *
Pointer to the hardware base.

iface Type: const enum 27.1.4.1 i2s_c_iface Enum

The 12S interface used.

Returns
Type: int32_t

Operation status.

0 Success.

<0 Error.

i2s_c_sync_deinit
Deinitialize the 12S Controller.

void i12s_c_sync_deinit (
struct i2s_c_sync_desc * iZ2s

)

Parameters

i2s Type: struct 27.1.3.1 i2s_c_sync_desc Struct *

Pointer to the 12S Controller instance.

Returns
Type: void

i2s_c_sync_enable

Enable the 12S Controller.

int32 t i2s_c_sync_enable (
struct i2s c sync desc * i2s

)

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 298

271.54

27.1.5.5

ASF4 API Reference Manual

12S Controller Driver

Parameters

i2s Type: struct 27.1.3.1 i2s_c_sync_desc Struct *

Pointer to the 12S Controller instance.

Returns
Type: int32_t

Operation status.
0 Success.
<0 Error.

i2s_c_sync_disable
Disable the 12S Controller.

void i2s c sync disable(
struct i2s_c_sync_desc * iZ2s
)

Parameters

i2s Type: struct 27.1.3.1 i2s_c_sync_desc Struct *

Pointer to the 12S Controller instance.

Returns

Type: void

i2s_c_sync_set_ws_length

Set the Word Select pulse Length of the 12S Controller.

int32 t i2s _c_sync_set ws_length(
struct i2s c _sync desc * iZ2s,
const uintl6_t n_sck

)

Note that it works only when the 12S Controller is disabled.

Parameters

i2s Type: struct 27.1.3.1 i2s_c_sync_desc Struct *

Pointer to the 12S Controller instance.

n_sck Type: const uint16_t

Describes how many SCK bits generates a Word Select pulse.

Returns
Type: int32_t

Operation status.

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 299

27.1.5.6

27.1.5.7

ASF4 API Reference Manual

12S Controller Driver

0 Success.

<0 Error.

i2s_c_sync_set_sck_div
Set the SCK division from MCK.

int32 t i2s c_sync_set sck div(
struct i2s c sync desc * i2s,
const uint32 t n mck

)

Note that it works only when the 12S Controller is disabled.

Parameters

i2s Type: struct 27.1.3.1 i2s_c_sync_desc Struct *

Pointer to the 12S Controller instance.

n_mck Type: const uint32_t

Describes how many MCK bits generates a SCK clock.

Returns
Type: int32_t

Operation status.
0 Success.
<0 Error.

i2s_c_sync_get_version
Retrieve the current driver version.

uint32 t i2s c sync_get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 300

28.

28.1

28.1.1

28.1.2

28.1.3
28.1.31

ASF4 API Reference Manual
MCI Drivers

MCI Drivers

The MCI (Multimedia Card / Memory Card Interface) driver are commonly used in an application for
reading and writing SD/MMC/SDIO type card.

The following driver variants are available:

» 28.2 MCI Synchronous Driver: The driver supports polling for hardware changes, functionality is
synchronous to the main clock of the MCU.

* 28.1 MCI RTOS Driver: The driver supports a Real-Time operating system, i.e. is thread safe.

MCI RTOS Driver

The MCI (Multimedia Card / Memory Card Interface) RTOS driver is used for a high level stack
implementation, which supports the MultiMedia Card (MMC) Specification V4.3, the SD Memory Card
Specification V2.0, and the SDIO V2.0 specification.

The read/write functions of MCI RTOS driver are optimized for RTOS support. When data transfer is in
progress, the read/write functions use semaphore to block the current task or thread until transfer end.
That is, the read/write functions will not work without RTOS support, the read/write functions should only
be called in a RTOS task or thread.

During data read/write, the MCI read/write process is not protected, so that a more flexible way can be
chosen in application.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Device selection/de-selection
* Send command on the selected slot
* Data transfer: reading, writing

Dependencies
* Multimedia Card / Memory Card Interface capable hardware
+ RTOS

Structs

mci_os_desc Struct
mci descriptor structure

Members

dev

xfer_sem MCI transfer semphore

error MCI transfer status, 0:no error

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 301

28.1.4
28.1.41

28.1.4.2

28.1.4.3

ASF4 API Reference Manual

MCI Drivers

Functions

mci_os_init
Initialize MCI low level driver.

int32 t mci os init(
struct mci_os desc *const desc,
void *const hw

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

hw Type: void *const

Mci hardware instance

Returns
Type: int32_t

Operation status.

0 Success.

<0 Error code.
mci_os_deinit
Deinitialize MCI low level driver.

int32 t mci os deinit(
struct mci_os _desc *const desc
)

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

Returns
Type: int32_t

Operation status.

0 Success.

<0 Error code.

mci_os_select_device
Select a device and initialize it.

int32 t mci os_select device(
struct mci os desc *const desc,

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 302

ASF4 API Reference Manual
MCI Drivers

uint8 t slot,
uint32 t clock,
uint8 t bus width,
bool high speed

Parameters
desc Type: struct 28.1.3.1 mci_os_desc Struct *const
Mci os descriptor
slot Type: uint8_t
Selected slot
clock Type: uint32_t
Maximum clock to use (Hz)
bus_width Type: uint8_t
Bus width to use (1, 4 or 8)
high_speed Type: bool
true, to enable high speed mode
Returns
Type: int32_t

Operation status.
0 Success.

<0 Error code.

28.1.4.4 mci_os_deselect_device
Deselect a device by an assigned slot.

int32 t mci os deselect device(
struct mci_os _desc *const desc,
uint8 t slot

Parameters
desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

slot Type: uint8_t

Selected slot

Returns
Type: int32_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 303

28.1.4.5

28.1.4.6

28.1.4.7

ASF4 API Reference Manual

MCI Drivers

Operation status.
0 Success.

<0 Error code.

mci_os_get_bus_width
Get the maximum bus width of a device by a selected slot.

uint8 t mci os get bus width(
struct mci_os_desc *const desc,
uint8 t slot

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

slot Type: uint8_t

Selected slot

Returns
Type: uint8_t

bus width.
mci_os_is_high_speed_capable

Get the high speed capability of the device.

bool mci os is high speed capable (
struct mci_os_desc *const desc

)

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

Returns
Type: bool

true, if the high speed is supported.
mci_os_send_init_sequence

Send 74 clock cycles on the line.

void mci os send init sequence (
struct mci_os_desc *const desc

)

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 304

28.1.4.8

28.1.4.9

ASF4 API Reference Manual

MCI Drivers

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

Returns
Type: void

mci_os_send_cmd
Send a command on the selected slot.

bool mci os send cmd (
struct mci_os desc *const desc,
uint32 t cmd,
uint32_t arg

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor
cmd Type: uint32_t

Command definition
arg Type: uint32_t

Argument of the command

Returns
Type: bool

true if success, otherwise false

mci_os_get_response
Get 32 bits response of the last command.

uint32 t mci os_get response (
struct mci os desc *const desc

)

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

Returns
Type: uint32_t

32 bits response.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 305

ASF4 API Reference Manual
MCI Drivers

28.1.4.10 mci_os_get_response_128
Get 128 bits response of the last command.
void mci_os_get response 128 (

struct mci_os desc *const desc,
uint8 t * response

Parameters
desc Type: struct 28.1.3.1 mci_os_desc Struct *const
Mci os descriptor
response Type: uint8_t *
Pointer on the array to fill with the 128 bits response.
Returns
Type: void

28.1.4.11 mci_os_adtc_start
Send an ADTC command on the selected slot An ADTC (Addressed Data Transfer Commands)
command is used for read/write access..

bool mci os_adtc_start(
struct mci_os desc *const desc,
uint32 t cmd,
uint32 t arg,
uintlé t block size,
uintlé_t nb _block,
bool access block

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const
Mci os descriptor

cmd Type: uint32_t
Command definition.

arg Type: uint32_t

Argument of the command.

block_size Type: uint16_t

Block size used for the transfer.

nb_block Type: uint16_t

Total number of block for this transfer

access_block Type: bool

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 306

ASF4 API Reference Manual
MCI Drivers

if true, the x_read_blocks() and x_write_blocks() functions must be used after this
function. If false, the mci_read_word() and mci_write_word() functions must be used
after this function.

Returns
Type: bool

true if success, otherwise false

28.1.4.12 mci_os_adtc_stop
Send a command to stop an ADTC command on the selected slot.

bool mci os_adtc_stop(
struct mci os desc *const desc,
uint32 t cmd,
uint32 t arg

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor
cmd Type: uint32_t

Command definition
arg Type: uint32_t

Argument of the command

Returns
Type: bool

true if success, otherwise false

28.1.4.13 mci_os_read_bytes
Read a word on the line.

bool mci os read bytes(
struct mci os desc *const desc,
uint32 t * value

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

value Type: uint32_t*

Pointer on a word to fill.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 307

ASF4 API Reference Manual
MCI Drivers

Returns
Type: bool

true if success, otherwise false

28.1.4.14 mci_os_write_bytes
Write a word on the line.

bool mci os write bytes(
struct mci_os_desc *const desc,
uint32 t value

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

value Type: uint32_t
Word to send

Returns
Type: bool

true if success, otherwise false

28.1.4.15 mci_os_start_read_blocks

Start a read blocks transfer on the line Note: The driver will use the DMA available to speed up the
transfer.

bool mci os start read blocks (
struct mci_os desc *const desc,
void * dst,
uintlé t nb block

Parameters
desc Type: struct 28.1.3.1 mci_os_desc Struct *const
Mci os descriptor
dst Type: void *
Pointer on the buffer to fill
nb_block Type: uint16_t
Number of block to transfer
Returns
Type: bool

true if started, otherwise false

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 308

ASF4 API Reference Manual
MCI Drivers

28.1.4.16 mci_os_start_write_blocks

Start a write blocks transfer on the line Note: The driver will use the DMA available to speed up the
transfer.

bool mci os start write blocks(
struct mci os desc *const desc,
const void * src,
uintlé_t nb block

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const
Mci os descriptor

src Type: const void *
Pointer on the buffer to send

nb_block Type: uint16_t
Number of block to transfer

Returns

Type: bool

true if started, otherwise false

28.1.4.17 mci_os_wait_end_of_read_blocks
Wait the end of transfer initiated by mci_start_read_blocks()

bool mci os wait end of read blocks(
struct mci os desc *const desc

)

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

Returns
Type: bool

true if success, otherwise false

28.1.4.18 mci_os_wait_end_of_write_blocks
Wait the end of transfer initiated by mci_start_write_blocks()
bool mci os wait end of write blocks(

struct mci os desc *const desc
)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 309

ASF4 API Reference Manual
MCI Drivers

Parameters

desc Type: struct 28.1.3.1 mci_os_desc Struct *const

Mci os descriptor

Returns
Type: bool

true if success, otherwise false

28.1.4.19 mci_os_get_version
Retrieve the current driver version.

uint32 t mci_os_get version(
void

)

Returns
Type: uint32_t

Current driver version.

28.2 MCI Synchronous Driver

The MCI (Multimedia Card / Memory Card Interface) synchronous driver is used for a high level stack
implementation, which supports the MultiMedia Card (MMC) Specification V4.3, the SD Memory Card
Specification V2.0, and the SDIO V2.0 specification.

28.21 Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
» Device selection/de-selection
* Send command on the selected slot
» Data transfer: reading, writing

28.2.2 Dependencies
* Multimedia Card / Memory Card Interface capable hardware

28.2.3 Structs

28.2.3.1 mci_sync_desc Struct
MCI descriptor structure.

Members

device

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 310

ASF4 API Reference Manual
MCI Drivers

28.2.4 Functions

28.2.41 mci_sync_init
Initialize MCI low level driver.

int32 t mci sync init(
struct mci_sync desc * mci,
void * hw

Returns
Type: int32_t

Operation status.
0 Success.

<0 Error code.

28.2.4.2 mci_sync_deinit
Deinitialize MCI low level driver.
int32 t mci_sync _deinit(

struct mci sync desc * mci

)

Returns
Type: int32_t

Operation status.

0 Success.

<0 Error code.

28.2.4.3 mci_sync_select_device
Select a device and initialize it.

int32 t mci sync select device(
struct mci_sync desc * mci,
uint8 t slot,
uint32 t clock,
uint8 t bus width,
bool high speed

Parameters
slot Type: uint8_t
Selected slot
clock Type: uint32_t
Maximum clock to use (Hz)
bus_width Type: uint8_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 311

ASF4 API Reference Manual
MCI Drivers

Bus width to use (1, 4, or 8)

high_speed Type: bool

True, to enable high speed mode

Returns
Type: int32_t

Operation status.

0 Success.

<0 Error code.
28.2.4.4 mci_sync_deselect_device

Deselect a device by an assigned slot.

int32 t mci sync deselect device(
struct mci sync desc * mci,
uint8 t slot

Parameters

slot Type: uint8_t
Selected slot

Returns

Type: int32_t

Operation status.
0 Success.
<0 Error code.
28.2.4.5 mci_sync_get_bus_width
Get the maximum bus width of a device by a selected slot.

uint8_t mci_sync_get_bus_width (
struct mci sync desc * mci,
uint8 t slot

Parameters

slot Type: uint8_t
Selected slot

Returns

Type: uint8_t

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 312

28.2.4.6

28.24.7

28.2.4.8

28.2.4.9

ASF4 API Reference Manual

MCI Drivers

Bus width.

mci_sync_is_high_speed_capable
Get the high-speed capability of the device.

bool mci sync is high speed capable (
struct mci sync _desc * mci

)

Returns
Type: bool

True, if the high-speed is supported.

mci_sync_send_clock

Send 74 clock cycles on the line. Note: It is required after card plug and before card install.

void mci sync send clock(
struct mci_sync desc * mci

)

Returns
Type: void

mci_sync_send_cmd
Send a command on the selected slot.

bool mci_sync_send cmd (
struct mci_sync desc * mci,
uint32 t cmd,
uint32 t arg

Parameters
cmd Type: uint32_t
Command definition
arg Type: uint32_t
Argument of the command
Returns
Type: bool

True if success, otherwise false

mci_sync_get_response
Get 32-bits response of the last command.

uint32 t mci sync get response (
struct mci sync desc * mci

)

Returns
Type: uint32_t

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 313

ASF4 API Reference Manual
MCI Drivers

32-bits response.

28.2.4.10 mci_sync_get_response_128
Get 128-bits response of the last command.

void mci_sync _get response 128 (
struct mci sync desc * mci,
uint8 t * response

Parameters
response Type: uint8_t*
Pointer on the array to fill with the 128-bits response.
Returns
Type: void

28.2.4.11 mci_sync_adtc_start
Send an ADTC command on the selected slot. An ADTC (Addressed Data Transfer Commands)
command is used for read/write access.

bool mci sync adtc start(
struct mci sync desc * mci,
uint32 t cmd,
uint32_t arg,
uintlé_t block_ size,
uintlé_t nb block,
bool access block

Parameters

cmd Type: uint32_t
Command definition.

arg Type: uint32_t

Argument of the command.

block_size Type: uint16_t

Block size used for the transfer.
nb_block Type: uint16_t
Total number of blocks for this transfer

access_block Type: bool

If true, the x_read_blocks() and x_write_blocks() functions must be used after this
function. If false, the mci_read_word() and mci_write_word() functions must be used
after this function.

Returns
Type: bool

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 314

ASF4 API Reference Manual

MCI Drivers
True if success, otherwise false
28.2.4.12 mci_sync_adtc_stop
Send a command to stop an ADTC command on the selected slot.
bool mci sync_adtc stop(
struct mci sync desc * mci,
uint32 t cmd,
uint32 t arg
)
Parameters
cmd Type: uint32_t
Command definition
arg Type: uint32_t
Argument of the command
Returns
Type: bool
True if success, otherwise false
28.2.4.13 mci_sync_read_word
Read a word on the line.
bool mci sync read word(
struct mci sync desc * mci,
uint32_t * value
)
Parameters
value Type: uint32_t*
Pointer on a word to fill.
Returns
Type: bool
True if success, otherwise false
28.2.4.14 mci_sync_write_word
Write a word on the line.
bool mci sync write word(
struct mci sync desc * mci,
uint32 t value
)
Parameters
value Type: uint32_t
User Guide DS50002633B-page 315

© 2018 Microchip Technology Inc.

ASF4 API Reference Manual
MCI Drivers

Word to send

Returns
Type: bool

True if success, otherwise false

28.2.4.15 mci_sync_start_read_blocks
Start a read blocks transfer on the line.

bool mci sync start read blocks(
struct mci_sync desc * mci,
void * dst,
uintlé t nb block

)

Note: The driver will use the DMA available to speed up the transfer.

Parameters
dst Type: void *
Pointer on the buffer to fill
nb_block Type: uint16_t
Number of block to transfer
Returns
Type: bool

True if started, otherwise false

28.2.4.16 mci_sync_start_write_blocks
Start a write blocks transfer on the line.

bool mci sync start write blocks(
struct mci sync desc * mci,
const void * src,
uintl6é_t nb block

)

Note: The driver will use the DMA available to speed up the transfer.

Parameters
src Type: const void *
Pointer on the buffer to send
nb_block Type: uint16_t
Number of block to transfer
Returns
Type: bool

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 316

ASF4 API Reference Manual
MCI Drivers

True if started, otherwise false

28.2.4.17 mci_sync_wait_end_of_read_blocks
Wait for the end of transfer to be initiated by the mci_start_read_blocks()

bool mci sync wait end of read blocks(
struct mci sync desc * mci

)

Returns
Type: bool

True if success, otherwise false

28.2.4.18 mci_sync_wait_end_of_write_blocks
Wait for the end of transfer to be initiated by the mci_start_write_blocks()

bool mci_sync_wait _end of write blocks(
struct mci_sync desc * mci

)

Returns
Type: bool

True if success, otherwise false

28.2.4.19 mci_sync_get_version
Retrieve the current driver version.

uint32 t mci sync _get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 317

ASF4 API Reference Manual
PAC Driver

29. PAC Driver

The Peripheral Access Controller (PAC) provides write protection for registers of the peripherals.

The user can use periph_lock to enable a selected peripheral's write-protection, and periph_unlock to
disable the selected peripheral's write-protection.

If a peripheral is write-protected, and if a write access is performed, data will not be written.

29.1 Summary of the API's Functional Features
The API provides functions to:
* Lock(enable write-protection)
* Unlock(disable write-protection)
* Get the write-protection state

29.2 Summary of Configuration Options
No PAC parameter needed to be configured in START.

29.3 Driver Implementation Description

29.3.1 Limitations
* Double write-protection or double unprotection may lead to an access error

29.4 Example of Usage
The following shows a simple example of using the PAC to lock GCLK peripheral.

/**
* Lock GCLK.
%
void pac_example (void)
{
bool stat;
periph get lock state(GCLK, é&stat);
if (!stat) {
periph lock (GCLK) ;
}

29.5 Dependencies
* PAC peripheral and clocks

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 318

29.6

29.6.1

29.6.2

29.6.3

ASF4 API Reference Manual
PAC Driver

Functions

periph_lock
Enable write protect for the given hardware module.
static int32 t periph lock(

void *const module

)

Parameters
module Type: void *const
Pointer to the hardware module
Returns
Type: int32_t

periph_unlock
Disable write protect for the given hardware module.
static int32 t periph unlock(

void *const module

)

Parameters
module Type: void *const
Pointer to the hardware module
Returns
Type: int32_t

periph_get_lock_state
Get write protect state for the given hardware module.
static int32 t periph get lock state(

void *const module,
bool *const state

Parameters
module Type: void *const

Pointer to the hardware module
state Type: bool *const

Pointer to write protect state for specified module

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 319

29.6.4

ASF4 API Reference Manual

PAC Driver

Returns
Type: int32_t

pac_get_version
Get PAC driver version.

uint32 t pac get version(
void

)

Returns
Type: uint32_t

© 2018 Microchip Technology Inc.

User Guide

DS50002633B-page 320

30.

30.1

30.2

30.2.1

30.2.2

30.2.3
30.2.3.1

ASF4 API Reference Manual
PWM Driver

PWM Driver

This Pulse Width Modulation (PWM) driver provides an interface for generating PWM waveforms.
The following driver variant is available:

* 30.2 PWM Asynchronous Driver: The driver supports a callback handler for the IRQ caused by
hardware state changes. Functionality is asynchronous to the main clock of the MCU.

PWM Basics and Best Practice

The Pulse-width modulation (PWM) is used to create an analog behavior digitally by controlling the
amount of power transferred to the connected peripheral. This is achieved by controlling the high period
(duty-cycle) of a periodic signal.

The PWM can be used in motor control, ballast, LED, H-bridge, power converters, and other types of
power control applications.

PWM Asynchronous Driver

In the Pulse Width Modulation (PWM) asynchronous driver, a callback function can be registered in the
driver by the application and triggered when errors and one PWM period is done.

The user can change the period or duty cycle whenever PWM is running. The function 30.2.9.6
pwm_set_parameters is used to configure these two parameters. Note that these are raw register values
and the parameter duty_cycle means the period of first half during one cycle, which should be not beyond
the total period value.

In addition, the user can also get multiple PWM channels output from different peripherals at the same
time, which is implemented more flexible by the function pointers.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Hookup callback handlers on errors and one PWM period
¢ Enable or disable the PWM related hardware
* Run-time control of PWM duty-cycle and period

Summary of Configuration Options

Below is a list of the main PWM parameters that can be configured in START. Many of these parameters
are used by the 30.2.9.1 pwm_init function when initializing the driver and underlying hardware.

The PWM waveform duty value
* The PWM waveform period value

Driver Implementation Description

Limitations

The current driver doesn't support the features like recoverable, non-recoverable faults, dithering, and
dead-time insertion.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 321

30.2.4

30.2.5

30.2.6
30.2.6.1

30.2.6.2

30.2.7

30.2.7.1

30.2.8
30.2.8.1

ASF4 API Reference Manual

PWM Driver

Example of Usage
The following shows a simple example of using the PWM. The PWM must have been initialized by
30.2.9.1 pwm_init. This initialization will configure the operation of the related PWM hardware, such as
input pins, period, and duty cycle.

/ * %

* Example of using PWM O.
%/
void PWM 0 example (void)
{
pwm set parameters (&PWM 0, 10000, 5000);
pwm_enable (&PWM 0) ;

}

Dependencies
* The peripheral which can perform waveform generation like frequency generation and pulse-width
modulation, such as Timer/Counter.
* The NVIC must be configured so that the peripheral interrupt requests are periodically serviced

Structs
pwm_callbacks Struct
PWM callbacks.
Members
period
error
pwm_descriptor Struct
PWM descriptor.
Members
device PWM device
pwm_cb PWM callback structure
Enums
pwm_callback_type Enum
PWM_PERIOD_CB
PWM_ERROR_CB
Typedefs
pwm_cb_t typedef

typedef void(* pwm_cb_t) (const struct pwm_descriptor *const descr)

PWM callback type.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 322

ASF4 API Reference Manual
PWM Driver

30.2.9 Functions

30.2.9.1 pwm_init
Initialize the PWM HAL instance and hardware.

int32 t pwm init(
struct pwm descriptor *const descr,
void *const hw,
struct pwm hpl interface *const func

Parameters

descr Type: struct 30.2.6.2 pwm_descriptor Struct *const

Pointer to the HAL PWM descriptor

hw Type: void *const

The pointer to hardware instance

func Type: struct _pwm_hpl_interface *const

The pointer to a set of functions pointers

Returns
Type: int32_t

Operation status.

30.2.9.2 pwm_deinit
Deinitialize the PWM HAL instance and hardware.

int32_t pwm_deinit(
struct pwm descriptor *const descr

)

Parameters

descr Type: struct 30.2.6.2 pwm_descriptor Struct *const

Pointer to the HAL PWM descriptor

Returns
Type: int32_t

Operation status.

30.2.9.3 pwm_enable
PWM output start.

int32_t pwm_enable (
struct pwm descriptor *const descr

)

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 323

30.2.9.4

30.2.9.5

ASF4 API Reference Manual

PWM Driver

Parameters

descr Type: struct 30.2.6.2 pwm_descriptor Struct *const

Pointer to the HAL PWM descriptor

Returns
Type: int32_t

Operation status.

pwm_disable
PWM output stop.

int32 t pwm disable(
struct pwm descriptor *const descr

)

Parameters

descr Type: struct 30.2.6.2 pwm_descriptor Struct *const

Pointer to the HAL PWM descriptor

Returns
Type: int32_t

Operation status.

pwm_register_callback
Register PWM callback.

int32 t pwm_register callback(
struct pwm descriptor *const descr,
enum pwm callback type type,
pwm cb t cb

Parameters

descr Type: struct 30.2.6.2 pwm_descriptor Struct *const
Pointer to the HAL PWM descriptor

type Type: enum 30.2.7.1 pwm_callback_type Enum
Callback type

cb Type: 30.2.8.1 pwm_cb_t typedef

A callback function, passing NULL de-registers callback

Returns
Type: int32_t

Operation status.

© 2018 Microchip Technology Inc. User Guide

DS50002633B-page 324

ASF4 API Reference Manual
PWM Driver

0 Success

-1 Error

30.2.9.6 pwm_set_parameters
Change PWM parameter.

int32 t pwm set parameters(
struct pwm descriptor *const descr,
const pwm period t period,
const pwm period t duty cycle

Parameters

descr Type: struct 30.2.6.2 pwm_descriptor Struct *const
Pointer to the HAL PWM descriptor

period Type: const pwm_period_t
Total period of one PWM cycle

duty_cycle Type: const pwm_period_t
Period of PWM first half during one cycle

Returns

Type: int32_t

Operation status.

30.2.9.7 pwm_get_version
Get PWM driver version.

uint32_t pwm _get version(
void

)

Returns
Type: uint32_t

Current driver version.

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 325

31.

311

31.2

31.21

31.2.2

ASF4 API Reference Manual

Position Decoder Driver

Position Decoder Driver

The Position Decoder (PDEC) driver provides an interface for detection the movement of a motor axis.
The following driver variant is available:

* 31.2 PDEC Asynchronous Driver: The driver supports a callback handler for the IRQ caused by
hardware state changes. Functionality is asynchronous to the main clock of the MCU.

PDEC Basics and Best Practice

Position decoder can be used for a wide range of applications. The driver supports both motor axis
position and window monitor position. The window monitor can be used to monitor the axis position and
compare it to a predefined threshold. The callback function can be registered as overflow interrupt,
direction interrupt, position changed interrupt, and error interrupt. Once the condition happens, the
callback function is invoked to notify the application.

Normally a PDEC operates in QDEC mode. This mode can be used to measure the position, rotation,
and speed of motor, to detect the missing pulse and auto-correction. There are three signal inputs in this
mode. Signal 0 and Signal 1 control logic inputs refer to Phase A and Phase B in the quadrature decoder
direction mode, and to count/direction in the decoder direction mode. The Signal 3 control logic input
refers to the Index, in both quadrature decoder direction and decoder direction mode of the operation.

PDEC Asynchronous Driver

In the Position Decoder (PDEC) asynchronous driver, a callback function can be registered in the driver
by the application, and the callback function will be triggered when axis position changed.

The driver 31.2.8.6 pdec_async_read_position function will attempt to read the required position results
of the axis.

Summary of the API's Functional Features
The API provides functions to:
* Initialize and deinitialize the driver and associated hardware
* Hookup callback handlers on position changed done and IRQ events
* Enable or disable PDEC module
* Read back axis position result

Summary of Configuration Options
Below is a list of the main PDEC parameters that can be configured in START. Many of these parameters
are used by the 5.2.9.1 adc_async_init function when initializing the driver and underlying hardware.

» Select whether phase A, B, or index invert is to be used

» Select whether phase A or B should be swapped

* Which clock source and prescaler the PDEC uses

* Which configuration the PDEC uses

* Which events the PDEC interrupt uses

* Runin Standby or Debug mode

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 326

ASF4 API Reference Manual

Position Decoder Driver

31.2.3 Driver Implementation Description

After PDEC hardware initialization, thee application can register the callback function for axis position
changed and IRQ events by 31.2.8.9 pdec_async_register_callback.

31.2.4 Example of Usage

The following shows a simple example of using the PDEC. The PDEC must have been initialized by
31.2.8.1 pdec_async_init. This initialization will configure the operation of the PDEC, such as input pins,
prescaler value, PDEC configuration, and interrupt configuration, etc.

The example registers a callback function for comparison ready and enables the PDEC, and read back
the result of the axis position changed.

static void position cb POSITION DECODER O (struct pdec async_descriptor *co
nst descr, uint8 t ch)

{

uintl6_ t count;

count = pdec async_ read position(descr, ch);

}

static void irg handler cb POSITION DECODER 0 (struct pdec async descriptor
*const descr,

enum pdec_async_callback type
type, uint8 t ch)

{

}

/**

* Example of using POSITION DECODER O.

*/
void POSITION DECODER 0 example (void)

{

pdec _async_register callback(

&§POSITION DECODER 0, PDEC ASYNC POS_CHANGED CB, (FUNC PTR)position
cb_POSITION DECODER 0) ;

pdec async register callback (&POSITION DECODER 0, PDEC ASYNC IRQ CB, (F
UNC PTR)irg handler cb POSITION DECODER 0);
pdec_async_enable (&POSITION DECODER 0);
}

31.2.5 Dependencies
* The PDEC peripheral and its related 1/O lines and clocks
* The NVIC must be configured so that PDEC interrupt requests are periodically serviced

31.2.6 Structs

31.2.6.1 pdec_async_callbacks Struct
Position Decoder callbacks.

Members

pos_changed

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 327

31.2.6.2

31.2.7
31.2.71

31.2.7.2

31.2.8
31.2.8.1

ASF4 API Reference Manual

Position Decoder Driver

irq_handler

pdec_async_descriptor Struct
Position Decoder descriptor.
Members

device

pdec_async_cb

Typedefs

pdec_async_position_cb_t typedef
typedef void(* pdec_async_position_cb_t) (const struct pdec_async_descriptor *const descr, uint8_t ch)

pdec_async_irq_cb_t typedef
typedef void(* pdec_async_irq_cb_t) (const struct pdec_async_descriptor *const descr, enum
pdec_async_interrupt_type type, uint8_t ch)

Functions

pdec_async_init
Initialize Position Decoder.

int32 t pdec_async_init(
struct pdec async descriptor *const descr,
void *const hw

)

This function initializes the given Position Decoder descriptor. It checks if the given hardware is not
initialized and if the given hardware is permitted to be initialized.

Parameters

descr Type: struct 31.2.6.2 pdec_async_descriptor Struct *const

A Position Decoder descriptor to be initialized

hw Type: void *const

The pointer to hardware instance

Returns
Type: int32_t

Initialization status.
-1 Passed parameters were invalid

0 The initialization is completed successfully

© 2018 Microchip Technology Inc. User Guide DS50002633B-page 328

31.2.8.2

31.2.8.3

31.2.84

ASF4 API Reference Manual

Position Decoder Driver

pdec_async_deinit
Deinitialize Position Decoder.

int32 t pdec_async_deinit(
struct pdec_async_descriptor *const descr

)

This function deinitializes the given Position Decoder descriptor. It checks if the given hardware is
initialized and if the given hardware is permitted to be deinitialized.
Parameters

descr Type: struct 31.2.6.2 pdec_async_descriptor Struct *const

A Position Decoder descriptor to deinitialize

Returns
Type: i