
 Rev. 8207L-AT42-05/12

Atmel QTouch Library

User Guide

Supports QTouch® and QMatrix® acquisition for Keys, Sliders
and Rotors

8207L-AT42-05/12 2

Rev. 8207L-AT42-05/12

Table of Contents
TABLE OF CONTENTS ..2
1 PREFACE ..8
2 INTRODUCTION ...9
3 OVERVIEW .. 10
4 ABBREVIATIONS AND DEFINITIONS ... 11

4.1 DEFINITIONS ... 11
5 GENERIC QTOUCH LIBRARIES ... 12

5.1 INTRODUCTION ... 12
5.2 ACQUISITION METHODS ... 13

5.2.1 QTouch acquisition method ... 13
5.2.1.1 Sensor schematics for a QTouch acquisition method design .. 14

5.2.2 QMatrix acquisition method .. 14
5.2.3 Sensor schematics for a QMatrix acquisition method design .. 15

5.3 GLOBAL SETTINGS COMMON TO ALL SENSORS OF A SPECIFIC ACQUISITION METHOD 15
5.3.1 Recalibration Threshold .. 16
5.3.2 Detect Integration .. 16
5.3.3 Drift Hold Time ... 16
5.3.4 Maximum ON Duration ... 17
5.3.5 Positive / Negative Drift .. 17
5.3.6 Positive Recalibration Delay ... 18

5.4 SENSOR SPECIFIC SETTINGS .. 18
5.4.1 Detect threshold ... 18
5.4.2 Hysteresis... 18
5.4.3 Position Resolution .. 19
5.4.4 Position Hysteresis .. 19
5.4.5 Adjacent Key Suppression (AKS) ... 20

5.5 USING THE SENSORS ... 20
5.5.1 Avoiding Cross-talk ... 20
5.5.2 Multiple measurements .. 20
5.5.3 Guard Channel .. 21

5.6 QTOUCH API AND USAGE .. 22
5.6.1 QTouch Library API .. 22
5.6.2 touch_api.h - public header file ... 22
5.6.3 Type Definitions and enumerations used in the library ... 22

5.6.3.1 Typedefs ... 22
5.6.3.2 Enumerations ... 22

5.6.3.2.1 sensor_type_t.. 22
5.6.3.2.2 aks_group_t .. 23
5.6.3.2.3 channel_t .. 23
5.6.3.2.4 hysteresis_t ... 23
5.6.3.2.5 resolution_t ... 24
5.6.3.2.6 recal_threshold_t .. 24

5.6.4 Data structures .. 25
5.6.4.1 qt_touch_status_t .. 25
5.6.4.2 qt_touch_lib_config_data_t .. 25
5.6.4.3 qt_touch_lib_measure_data_t ... 26
5.6.4.4 qt_burst_lengths ... 26
5.6.4.5 tag_sensor_t ... 27
5.6.4.6 qt_lib_siginfo_t .. 27

5.6.5 Public Functions .. 28

3

5.6.5.1 qt_set_parameters ... 28
5.6.5.2 qt_enable_key .. 29
5.6.5.3 qt_enable_rotor .. 29
5.6.5.4 qt_enable_slider ... 30
5.6.5.5 qt_init_sensing ... 30
5.6.5.6 qt_measure_sensors .. 31
5.6.5.7 qt_calibrate_sensing ... 31
5.6.5.8 qt_reset_sensing ... 32
5.6.5.9 qt_get_sensor_delta .. 32
5.6.5.10 qt_get_library_sig .. 32

5.6.6 Sequence of Operations and Using the API ... 33
5.6.6.1 Channel Numbering ... 33

5.6.6.1.1 Channel numbering when using QTouch acquisition method .. 33
5.6.6.1.2 Channel numbering when using QMatrix acquisition method ... 39

5.6.6.2 Sensor Numbering .. 41
5.6.6.3 Filtering Signal Measurements ... 42
5.6.6.4 Allocating unused Port Pins for User Application .. 43
5.6.6.5 Disabling and Enabling of Pull-up for AVR devices.. 44

5.6.7 Constraints... 44
5.6.7.1 QTouch acquisition method constraints ... 44
5.6.7.2 QMatrix acquisition method constraints ... 45
5.6.7.3 Design Guidelines for QMatrix acquisition method systems ... 46

5.6.8 Frequency of operation (Vs) Charge cycle/dwell cycle times: .. 46
5.6.9 Interrupts ... 47
5.6.10 Integrating QTouch libraries in your application ... 48

5.6.10.1 Directory structure of the library files .. 48
5.6.10.2 Integrating QTouch acquisition method libraries in your application .. 50

5.6.10.2.1 Example for 8bit AVR ... 52
5.6.10.2.2 Example for ATSAM ... 54
5.6.10.2.3 Checklist of items for integrating QTouch acquisition method libraries 55

5.6.10.3 Integrating QMatrix acquisition method libraries in your application ... 55
5.6.10.3.1 Example for 8bit AVR ... 55
5.6.10.3.2 Example for 32bit AVR ... 62
5.6.10.3.3 Checklist of items for integrating QMatrix Capacitive sensing libraries 66

5.6.10.4 Common checklist items .. 66
5.6.10.4.1 Configuring the stack size for the application .. 66

5.6.11 Example project files ... 67
5.6.11.1 Using the Sample projects ... 68
5.6.11.2 Example applications for QTouch acquisition method libraries .. 68

5.6.11.2.1 Selecting the right configuration .. 68
5.6.11.2.2 Changing the settings to match your device ... 69
5.6.11.2.3 Changing the library configuration parameters .. 70
5.6.11.2.4 Using the example projects .. 72

5.6.11.3 Example applications for QMatrix acquisition method libraries .. 73
5.6.11.3.1 Selecting the right configuration .. 73
5.6.11.3.2 Changing the library configuration parameters .. 74
5.6.11.3.3 Using the example projects .. 75

5.6.11.4 Adjusting the Stack size when using IAR IDE .. 76
5.6.11.5 Optimization levels .. 76
5.6.11.6 Debug Support in Example applications .. 77

5.6.11.6.1 Debug Support in the sample applications for EVK2080 and QT600 boards 77
5.6.11.6.2 How to turn on the debug option .. 77
5.6.11.6.3 Debug Interface if USB Bridge board is not available ... 78

5.7 LIBRARY VARIANTS ... 79
5.7.1 QTouch Acquisition method library variants... 79

5.7.1.1 Introduction .. 79
5.7.1.2 Support for different compiler tool chains.. 79
5.7.1.3 QTouch Acquisition method library naming conventions .. 79

5.7.1.3.1 Naming convention for libraries to be used with GCC tool chain .. 79
5.7.1.3.2 Naming convention for libraries to be used with IAR Embedded Workbench 80

5.7.1.4 QTouch acquisition method library variants .. 80

8207L-AT42-05/12 4

5.7.1.5 Port combinations supported for SNS and SNSK pin configurations ... 81
5.7.1.5.1 Tips on pin assignments for the sensor design using one pair of SNS/SNSK ports 81
5.7.1.5.2 Port combinations supported for two port pair SNS and SNSK pin configurations 83

5.7.1.6 Sample applications and Memory requirements for QTouch acquisition method libraries 84
5.7.2 QMatrix acquisition method library variants .. 84

5.7.2.1 Introduction .. 84
5.7.2.2 Support for different compiler tool chains.. 84
5.7.2.3 QMatrix Acquisition method library naming conventions ... 84
5.7.2.4 QMatrix acquisition method library variants .. 87

5.7.2.4.1 Devices supported for QMatrix Acquisition ... 87
5.8 PIN CONFIGURATION FOR QTOUCH LIBRARIES ... 87

5.8.1 Pin Configuration for QTouch Acquisition Method .. 87
5.8.1.1 Rules for configurable SNS-SNSK Mask Generation .. 88

5.8.1.1.1 Example for 8 channel interport mask Calculation with one port pair 89
5.8.1.1.2 Example for 8 channel intraport mask Calculation with two port pairs 90
5.8.1.1.3 Example for 12 channel intraport-interport mask Calculation with two port pairs 91
5.8.1.1.4 Example for 16 channel intreport-interport mask Calculation with two port pairs 92

5.8.1.2 How to Use QTouch Studio For Pin Configurability ... 93
5.8.2 Pin Configuration for QMatrix Acquisition Method .. 101

5.8.2.1 Configuration Rules: .. 101
5.8.2.2 How to use QTouch Studio for Pin Configurability: .. 102

5.9 MISRA COMPLIANCE REPORT ... 109
5.9.1 What is covered ... 110
5.9.2 Target Environment ... 110
5.9.3 Deviations from MISRA C Standards .. 110

5.9.3.1 QTouch acquisition method libraries ... 110
5.9.3.2 QMatrix acquisition method libraries ... 111

5.10 KNOWN ISSUES ... 111
5.11 CHECKLIST ... 112

6 DEVICE SPECIFIC LIBRARIES ... 113
6.1 INTRODUCTION ... 113
6.2 DEVICES SUPPORTED .. 113
6.3 QTOUCH LIBRARY FOR AT32UC3L DEVICES .. 113

6.3.1 Salient Features of QTouch Library for UC3L .. 113
6.3.1.1 QMatrix method sensor .. 113
6.3.1.2 QTouch method sensor ... 113
6.3.1.3 Autonomous QTouch sensor .. 114
6.3.1.4 Additional Features .. 114

6.3.2 Device variants supported for UC3L ... 114
6.3.3 Development tool support for UC3L ... 114

Table 8 Development tool support for UC3L QTouch Library ... 114
6.3.4 Overview of QTouch Library API for UC3L ... 115

Figure 35 Overview diagram of QTouch Library for UC3L ... 115
6.3.5 Acquisition method support for UC3L ... 116

Table 9 Acquisition method specific API .. 116
6.3.6 API State machine for UC3L ... 116

Figure 36 State Diagram of QTouch Library for UC3L .. 117
6.3.7 QMatrix method sensor operation for UC3L ... 117

6.3.7.1 QMatrix method pin selection for UC3L.. 117
Table 10 QMatrix Resistive drive pin option .. 118

6.3.7.2 QMatrix method Schematic for UC3L ... 118
6.3.7.2.1 Internal Discharge mode .. 118
6.3.7.2.2 External Discharge mode ... 119
6.3.7.2.3 SMP Discharge Mode .. 119
6.3.7.2.4 VDIVEN Voltage Divider Enable option ... 119
6.3.7.2.5 SYNC pin option .. 119
Figure 37 QMatrix method schematic ... 120

6.3.7.3 QMatrix method hardware resource requirement for UC3L .. 121
6.3.7.4 QMatrix method Channel and Sensor numbering for UC3L .. 121

5

Figure 38 QMatrix channel numbering for UC3L ... 121
6.3.7.5 QMatrix method API Flow for UC3L .. 121

Figure 39 QMatrix API Flow diagram for UC3L .. 122
6.3.7.6 QMatrix method Disable and Re-enable Sensor for UC3L .. 124

6.3.8 QTouch Group A/B method sensor operation for UC3L ... 124
6.3.8.1 QTouch Group A/B method pin selection for UC3L.. 124

Table 11 QTouch Resistive drive pin option ... 125
6.3.8.2 QTouch Group A/B method Schematic for UC3L ... 125

6.3.8.2.1 Resistive Drive option .. 125
6.3.8.2.2 SYNC pin option .. 125
Figure 40 QTouch Group A/B and Autonomous QTouch schematic arrangement 126

6.3.8.3 QTouch Group A/B method hardware resource requirement for UC3L .. 126
6.3.8.4 QTouch Group A/B method Channel and Sensor numbering for UC3L .. 127

Figure 41 QTouch method Channel/Sensor numbering... 127
Figure 42 QTouch method Channel/Sensor numbering when Group A and B are used together 127

6.3.8.5 QTouch Group A/B method API Flow for UC3L .. 128
Figure 43 QTouch method API Flow diagram .. 129

6.3.8.6 QTouch Group A/B method Disable and Re-enable Sensor for UC3L .. 130
6.3.9 Autonomous QTouch sensor operation for UC3L ... 130

6.3.9.1 Autonomous QTouch Sensor pin selection for UC3L .. 130
6.3.9.2 Autonomous QTouch sensor Schematic for UC3L .. 130
6.3.9.3 Autonomous QTouch method hardware resource requirement for UC3L 130

Table 12 Sleep mode support for Autonomous QTouch ... 130
6.3.9.4 Autonomous QTouch Sensor API Flow for UC3L .. 131

Figure 44 Autonomous QTouch API Flow diagram .. 131
6.3.9.5 Autonomous QTouch method Enable and Disable Sensor for UC3L .. 131

6.3.10 Raw acquisition mode support for UC3L .. 132
Figure 45 Raw acquisition mode API Flow diagram ... 132

6.3.11 Library Configuration parameters for UC3L .. 133
Table 13 QTouch Library for UC3L Configuration parameters .. 133

6.3.12 Example projects for QTouch Library for UC3L ... 134
6.3.12.1 Example Project usage ... 134

Figure 46 GNU Example project usage with AVR32 Studio .. 134
Figure 47 IAR Example project usage with IAR Embedded Workbench for AVR32 134

6.3.12.2 QMatrix Example Project .. 135
6.3.12.3 QTouch Group A Example Project .. 135
6.3.12.4 Autonomous QTouch Example Project ... 135

6.3.13 Code and Data Memory requirements for UC3L .. 136
6.3.13.1 QMatrix method memory requirement .. 136

Table 14 Typical Code and Data memory for Standalone QMatrix operation ... 136
6.3.13.2 QTouch Group A/B method memory requirement .. 136

Table 15 Typical Code and Data memory for Standalone QTouch Group A/B operation 137
6.3.13.3 Autonomous QTouch memory requirement .. 137

Table 16 Minimum Code and Data for Standalone Autonomous QTouch sensor 137
6.3.14 Public header files of QTouch Library for UC3L .. 137
6.3.15 Type Definitions and enumerations used in the library ... 137

6.3.15.1 Typedefs .. 137
6.3.15.1.1 touch_acq_status_t ... 138
6.3.15.1.2 touch_qt_grp_t ... 138

6.3.15.2 Enumerations ... 138
6.3.15.2.1 touch_ret_t.. 139
6.3.15.2.2 touch_lib_state_t .. 139
6.3.15.2.3 touch_acq_mode_t ... 140
6.3.15.2.4 sensor_type_t .. 140
6.3.15.2.5 aks_group_t .. 140
6.3.15.2.6 hysteresis_t ... 140
6.3.15.2.7 recal_threshold_t .. 141
6.3.15.2.8 resolution_t ... 141
6.3.15.2.9 at_status_change_t ... 142
6.3.15.2.10 x_pin_options_t .. 142
6.3.15.2.11 y_pin_options_t .. 142

8207L-AT42-05/12 6

6.3.15.2.12 qt_pin_options_t ... 142
6.3.15.2.13 general_pin_options_t .. 142

6.3.16 Data structures .. 143
6.3.16.1 sensor_t .. 143
6.3.16.2 touch_global_param_t ... 143
6.3.16.3 touch_filter_data_t ... 144
6.3.16.4 touch_measure_data_t ... 144
6.3.16.5 touch_qm_param_t .. 144
6.3.16.6 touch_at_param_t .. 145
6.3.16.7 touch_qt_param_t .. 146
6.3.16.8 touch_at_status .. 146
6.3.16.9 touch_qm_dma_t ... 146
6.3.16.10 touch_qm_pin_t ... 146
6.3.16.11 touch_at_pin_t ... 147
6.3.16.12 touch_qt_pin_t ... 147
6.3.16.13 touch_qm_reg_t ... 148
6.3.16.14 touch_at_reg_t ... 149
6.3.16.15 touch_qt_reg_t ... 149
6.3.16.16 touch_qm_config_t .. 149
6.3.16.17 touch_at_config_t .. 150
6.3.16.18 touch_qt_config_t .. 151
6.3.16.19 touch_general_config_t.. 151
6.3.16.20 touch_config_t ... 152
6.3.16.21 touch_info_t ... 152

6.3.17 Public Functions of QTouch Library for UC3L... 152
6.3.17.1 QMatrix API .. 152

6.3.17.1.1 touch_qm_sensors_init ... 152
6.3.17.1.2 touch_qm_sensor_config .. 153
6.3.17.1.3 touch_qm_sensor_update_config ... 154
6.3.17.1.4 touch_qm_sensor_get_config ... 154
6.3.17.1.5 touch_qm_channel_udpate_burstlen .. 154
6.3.17.1.6 touch_qm_update_global_param .. 155
6.3.17.1.7 touch_qm_get_global_param ... 155
6.3.17.1.8 touch_qm_sensors_calibrate ... 155
6.3.17.1.9 touch_qm_sensors_start_acquisition .. 156
6.3.17.1.10 touch_qm_get_libinfo .. 156
6.3.17.1.11 touch_qm_sensor_get_delta ... 157

6.3.17.2 QTouch Group A and QTouch Group B API .. 157
6.3.17.2.1 touch_qt_sensors_init ... 157
6.3.17.2.2 touch_qt_sensor_config .. 158
6.3.17.2.3 touch_qt_sensor_update_config ... 158
6.3.17.2.4 touch_qt_sensor_get_config ... 159
6.3.17.2.5 touch_qt_update_global_param.. 159
6.3.17.2.6 touch_qt_get_global_param ... 159
6.3.17.2.7 touch_qt_sensors_calibrate ... 160
6.3.17.2.8 touch_qt_sensors_start_acquisition .. 160
6.3.17.2.9 touch_qt _sensor_ disable... 161
6.3.17.2.10 touch_qt _sensor_ reenable .. 161
6.3.17.2.11 touch_qt_get_libinfo .. 162
6.3.17.2.12 touch_qt_sensor_get_delta ... 162

6.3.18 Autonomous touch API .. 162
6.3.18.1.1 touch_at_sensor_init ... 162
6.3.18.1.2 touch_at_sensor_enable .. 163
6.3.18.1.3 touch_at_sensor_disable ... 163
6.3.18.1.4 touch_at_sensor_update_config ... 163
6.3.18.1.5 touch_at_sensor_get_config ... 164
6.3.18.1.6 touch_at_get_libinfo ... 164

6.3.18.2 Common API ... 164
6.3.18.2.1 touch_event_dispatcher .. 164
6.3.18.2.2 touch_deinit .. 164

6.3.19 Integrating QTouch libraries for AT32UC3L in your application 165
6.3.20 MISRA Compliance Report of QTouch Library for UC3L .. 165

7

6.3.21 What is covered ... 165
6.3.22 Target Environment ... 165
6.3.23 Deviations from MISRA C Standards .. 165
6.3.24 Known Issues with QTouch Library for UC3L .. 166

6.4 QTOUCH LIBRARY FOR ATTINY20 DEVICE .. 167
6.4.1 Salient Features of QTouch Library for ATtiny20 ... 167

6.4.1.1 QTouch method sensor ... 167
6.4.2 Compiler tool chain support for ATtiny20 ... 167

Table 17 Compiler tool chains support for ATtiny20 QTouch Library ... 167
6.4.3 Overview of QTouch Library for ATtiny20 .. 167

Figure 48 Schematic overview of QTouch on Tiny20 ... 168
6.4.4 API Flow diagram for ATtiny20 .. 168

Figure 49 Linker configuration options for Tiny20 ... 168
Figure 50 QTouch method for Tiny20 API Flow diagram .. 169

6.4.5 QTouch Library configuration parameters for ATtiny20 .. 169
Table 18 QTouch Library for ATtiny20 Configuration parameters ... 170

6.4.6 QTouch Library ATtiny20 Example projects ... 171
6.4.7 QTouch Library ATtiny20 code and data memory requirements .. 171

Table 19 QTouch Library for ATtiny20 Memory requirements .. 171
6.5 QTOUCH LIBRARY FOR ATTINY40 DEVICE .. 172

6.5.1 Salient Features of QTouch Library for ATtiny40 ... 172
6.5.1.1 QTouch method sensor ... 172

6.5.2 Compiler tool chain support for ATtiny40 ... 173
Table 20 Compiler tool chains support for ATtiny40 QTouch Library ... 173

6.5.3 Overview of QTouch Library for ATtiny40 .. 173
Figure 51 Schematic overview of QTouch on Tiny40 ... 173

6.5.4 API Flow diagram for ATtiny40 .. 174
Figure 52 QTouch method for Tiny40 API Flow diagram .. 175

6.5.5 QTouch Library configuration parameters for ATtiny40 .. 175
Table 21 QTouch Library for ATtiny40 Configuration parameters ... 176

6.5.6 QTouch Library ATtiny40 Example projects ... 177
6.5.7 QTouch Library ATtiny40 code and data memory requirements .. 177

Table 22 QTouch Library for ATtiny40 Memory requirements .. 177
6.5.8 Interrupt Handling in QTouch ADC .. 177

7 GENERIC QTOUCH LIBRARIES FOR 2K DEVICES ... 178
7.1 INTRODUCTION ... 178
7.2 DEVICES SUPPORTED .. 178
7.3 SALIENT FEATURES OF QTOUCH LIBRARY FOR 2K DEVICES.. 178
7.4 LIBRARY VARIANTS ... 178
7.5 QTOUCH API FOR 2K DEVICES AND USAGE... 178

7.5.1 touch_api_2kdevice.h - public header file ... 178
7.5.2 Sequence of Operations and Using the API ... 179

7.5.2.1 Channel Numbering ... 179
7.5.2.1.1 Channel numbering when routing SNS and SNSK pins to different ports 179
7.5.2.1.2 Channel numbering when routing SNS and SNSK pins to the same port 180

7.5.2.2 Rules For Configuring SNS and SNSK masks for 2K Devices .. 180
7.5.2.2.1 Configuring SNS and SNSK masks in case of Interport: ... 180
7.5.2.2.2 Configuring SNS and SNSK masks in case of Intraport: ... 181

7.5.3 Integrating QTouch libraries for 2K Devices in your application....................................... 181
7.6 MISRA COMPLIANCE REPORT ... 182

7.6.1 What is covered ... 182
7.6.2 Target Environment ... 182
7.6.3 Deviations from MISRA C Standards .. 182

7.6.3.1 QTouch acquisition method libraries for 2K devices ... 182
8 REVISION HISTORY .. 183
DISCLAIMER ... 185

8207L-AT42-05/12 8

1 Preface
This manual contains information that enables customers to implement capacitive touch solutions
on ATMEL AVR® microcontrollers and ARM®-based AT91SAM microcontrollers using ATMEL
QTouch libraries. This guide is a functional description of the library software, its programming
interface and it also describes its use on the supported reference systems.

Use of this software is bound by the Software License Agreement included with the Library. This
user guide is applicable for Atmel QTouch® Library 5.0 .

Related documents from ATMEL
Documents related to QTouch capacitive sensing solutions from ATMEL are

• TS2080A/B data sheet.
• QT600 users guide
• Release Notes for ATMEL QTouch libraries.
• A library selection excel workbook that is used for the selection of the appropriate library

variant from the package available under in the install directory. The default location is
C:\Program Files\Atmel\Atmel_QTouch_Libraries_5.x\

• Capacitive touch sensor design guide
http://www.atmel.com/dyn/resources/prod_documents/doc10620.pdf .

If you need Assistance
For assistance with QTouch capacitive sensing software libraries and related issues, contact your
local ATMEL sales representative or send an email to touch@atmel.com for AVR libraries and
at91support@atmel.com for SAM libraries.

http://www.atmel.com/dyn/resources/prod_documents/doc10620.pdf�
mailto:touch@atmel.com�
mailto:at91support@atmel.com�

9

2 Introduction
ATMEL QTouch Library is a royalty free software library (available for GCC and IAR compiler tool
chains) for developing touch applications on standard AVR and SAM microcontrollers. Customers
can link the library into their applications in order to provide touch sensing capability in their
projects. The Library can be used to develop single chip solutions for control applications which
have touch sensing capabilities, or to develop standalone touch sensing solutions which interface
with other host or control devices.

Features of ATMEL QTouch Library include

• Capacitive touch sensing using patented charge-transfer signal acquisition for robust
sensing.

• Support for a wide range of 8- and 32-bit AVRs.
• Support for 32-bit ARM microcontrollers.
• Support for 8-bit tiny AVRs having flash of 2K bytes.
• Support both QTouch and QMatrix acquisition methods and autonomous touch for UC3L.
• Support up to 64 touch sense channels for generic libraries and up to 136 channels for

UC3L libraries.
• Flexible choice of touch sensing functionality (keys, sliders, wheels) in a variety of

combinations.
• Includes Adjacent Key Suppression® (AKS®) technology for the unambiguous detection of

key events.
• Support for both IAR and GCC compiler tool chains.
• A comparison of various features and parameters between QTouch Libraries for Generic

8-bit and 32-bit AVRs as well as Device Specific Libraries is provided in the table below.

Feature Comparison between Generic QTouch Libraries and Device Specific Libraries
Parameter/Func
tionality

Generic
Libraries,
Tiny_Meg
a_Xmega

Tiny 2K
Libraries

Tiny20
Libraries

Tiny40
Libraries

Generic
Libraries,
32 Bit
AVR

UC3L
Libraries

ATSAM
Libraries

Technology QTouch,
QMatrix

QTouch QTouch-
ADC

QTouch-
ADC

QTouch,
QMatrix

QTouch,
QMatrix

QTouch

Rotors/Sliders
Support

Yes No No No Yes Yes Yes

Filter Callback Yes Yes No Yes Yes Yes Yes

Library Status
Flags

Yes Yes No Yes(Only
Burst Again
Flag)

Yes Yes Yes

Library
Signature

Yes No No No Yes Yes Yes

Calibrate
Sensing

Yes Yes (Only
burst_again
flag)

No Yes Yes Yes Yes

Reset Sensing Yes Yes No Yes Yes Yes Yes

Sensor Deltas Yes Yes No Yes Yes Yes Yes

Maximum AKS
Groups

7 7 1 7 7 7 7

8207L-AT42-05/12 10

Maximum
Channels, QT

16 4 5 12 32 17 32

Maximum
Rotors/Sliders,
QT

4 0 0 0 8 8

Maximum
Channels, QM

64 0 0 0 64 64 0

Maximum
Rotors/Sliders,
QM

8 0 0 0 8 0

Autonomous
Touch

No No No No No Yes No

Sensor
Reconfiguratio
n

Yes Yes No No Yes Yes Yes

Frequency
Hopping SS
Enabled

Always If
POWER
OPTIMIZA
TION = 0

Never Never Always Programma
ble

Always

Delay Cycles
Parameter

QT_DELAY
_CLCYES
(QT
Values: 1 to
255
QM Values:
1,2,3,4,5,10
,25,50)

QT_DELAY
_CLCYES
(Value: 1 to
255)

DEF_CHA
RGE_SHA
RE_DELAY
(Value: 1 to
255)

DEF_QT_C
HARGE_S
HARE_DEL
AY
(Value: 1 to
255)

QT_DELAY
_CYCLES
(QT Values
: 1 to 255
QM Values:
1,2,3,4,5,10
,25,50)

xx_CHLEN,
xx_SELEN
(QT/QM
Value: 3 to
255)

QT_DELAY
_CLCYES
(Value: 3 to
255)

Debug Interface
Enable Macro

_DEBUG_I
NTERFAC
E_

None NDEBUG _DEBUG_
QTOUCH_
STUDIO_

_DEBUG_I
NTERFAC
E_

DEF_TOU
CH_QDEB
UG_ENAB
LE

_DEBUG_I
NTERFAC
E_

This user guide describes the content, design and use of the QTouch Libraries. This should be
read in conjunction with all of the applicable documents listed below

• Device datasheet for the selected ATMEL device used for touch sensing.
• Data sheet for the selected evaluation board.
• A library selection guide that is used for the selection of the appropriate library from the

released package. Default path:
C:\ Program Files\Atmel\Atmel_QTouch_Libaries_5.x\Library_Selection_Guide.xls

The intended readers of this document are engineers, who use the QTouch Library on ATMEL
microcontrollers to realize capacitive touch sensing solutions.

3 Overview
This chapter gives a brief introduction to each of the chapters that make up this document

1. Preface
2. Introduction: Provides an introduction to the scope and use of the QTouch Library.
3. Overview: This chapter
4. Abbreviations and Definitions: Provides a description of the abbreviations and

definitions used in this document
5. Generic QTouch Libraries: Provides an overview of the QTouch libraries and the

different acquisition methods for generic ATMEL devices.
6. Device Specific Libraries: Provides an overview of the QTouch libraries and the

different acquisition methods for ATMEL devices specific for touch sensing.
7. Revision History: Provides a revision history of this document

11

4 Abbreviations and Definitions

4.1 Definitions
• AVR: refers to a device(s) in the tinyAVR®, megaAVR®, XMEGA™ and UC3

microcontroller family.

• ARM: refers to a device in the ATSAM ARM® basedmicrocontroller family.

• ATMEL QTouch Library: The combination of libraries for both touch sensing acquisition
methods (QTouch and QMatrix).

• QTouch Technology: A type of capacitive touch sensing technology using self
capacitance - each channel has only one electrode.

• QMatrix Technology: A type of capacitive touch sensing technology using mutual
capacitance – each channel has an drive electrode (X) and an receive electrode (Y).

• Sensor: A channel or group of channels used to form a touch sensor. Sensors are of 3
types (keys, rotors or sliders).

• KEY: a single channel forms a single KEY type sensor, also known as a BUTTON

• ROTOR, also known as a WHEEL, a group of channels forms a ROTOR sensor to detect
angular position of touch.

o A Rotor is composed of 3 channels for a QTouch acquisition method.

o A Rotor can be composed of 3 to 8 channels for QMatrix acquisition method.

• SLIDER, a group of channels forms a SLIDER sensor to detect the linear position of
touch.

o A Slider is composed of 3 channels for a QTouch acquisition method.

o A Slider can be composed of 3 to 8 channels for QMatrix acquisition method.

• AKS: Adjacent Key Suppression. See Section 5.4.5

• SNS PIN: Sense line for capacitive measurement using the QTouch Technology -
connected to Cs.

• SNSK PIN: Sense Key line for capacitive measurement using the QTouch Technology -
connected to channel electrode through Rs.

• X Line: The drive electrode (or drive line) used for QMatrix Technology.

• Y Line: The receive electrode (or receive line) used for QMatrix Technology.

• Port Pair: A combination of SNS port and SNSK port to which sensors are connected for
QTouch technology. The SNS and SNSK ports used in a port pair can be located in the
same AVR Port (8 pins for 4 sensors), or they may be in different 2 different AVR Ports
(8+8 pins for 8 sensors).

• Charge Cycle Period: It is the width of the charging pulse applied to the channel
capacitor.

• Dwell Cycle: In a QMatrix acquisition method, the duration in which charge coupled from
X to Y is captured.

• Acquisition: A single capacitive measurement process.

• Electrode: Electrodes are typically areas of copper on a printed circuit board but can also
be areas of clear conductive indium tin oxide (ITO) on a glass or plastic touch screen.

8207L-AT42-05/12 12

• Intra-port: A configuration for QTouch acquisition method libraries, when the sensor SNS
and SNSK pins are available on the same port.

• Inter-port: A configuration for QTouch acquisition method libraries, when the sensor SNS
and SNSK pins are available on distinct ports.

5 Generic QTouch Libraries

5.1 Introduction
ATMEL QTouch provides a simple to use solution to realize touch sensing solutions on a range of
supported ATMEL AVR Microcontrollers. The QTouch libraries provide support for both QTouch
and QMatrix acquisition methods.

Touch sensing using QMatrix or QTouch acquisition methods can be added to an application by
linking the appropriate ATMEL QTouch Library for the AVR Microcontroller and using a simple set
of API to define the touch channels and sensors and then calling the touch sensing API’s
periodically (or based on application needs) to retrieve the channel information and determine
touch sensor states.

Figure 5-1 shows a typical configuration of channels when using an AVR and using the ATMEL
QTouch Library. The ATMEL QTouch Library has been added to a host application running on an
AVR microcontroller. The sample configuration illustrates using the library that supports eight
touch channels numbered 0 to 7. The sensors are configured in the following order,

• Sensor 0 on channels 0 to 2 have been configured as a rotor sensor.
• Sensor 1 on channels 3 to 5 have been configured as a slider sensor.
• Sensor 2 on channel 6 is configured as key sensor.
• Sensor 3 on channel 7 is configured as key sensor.

The host application uses the QTouch Library API’s to configure these channels and sensors,
and to initiate detection of a touch using capacitive measurements.

channel 0

channel 1

channel 2

channel 3

channel 4

channel 5

channel 6

channel 7

Atmel QTouch
Library

Host
Application

sensor0

sensor1

sensor2

sensor3

Figure 5-1 : Typical interface of the ATMEL QTouch library with the host application.

The QTouch libraries use minimal resources of the microcontroller. The sampling of the sensors
is controlled by the QTouch library, while the sampling period is controlled by the application
(possibly using timers, sleep periods, varying the CPU clock, external events like interrupts or
communications, etc).

13

5.2 Acquisition Methods
There are two methods available for touch acquisition namely

1. QTouch acquisition method.
2. QMatrix acquisition method.

Libraries for AVR microcontrollers include both acquisition methods. Libraries for ATSAM
microcontrollers include only QTouch acquisition method.

5.2.1 QTouch acquisition method
The QTouch acquisition method charges an electrode of unknown capacitance to a known
potential. The resulting charge is transferred into a measurement capacitor (Cs). The cycle is
repeated until the voltage across Cs reaches a voltage Vih. The signal level is the number of
charge transfer cycles it took to reach that voltage. Placing a finger on the touch surface
introduces external capacitance that increases the amount of charge transferred each cycle,
reducing the total number of cycles required for Cs to reach the voltage. When the signal level
(number of cycles) goes below the present threshold, then the sensor is reported to be in
detected.

QTouch acquisition method sensors can drive single or multiple keys. Where multiple keys are
used, each key can be set for an individual sensitivity level. Keys of different sizes and shapes
can be used to meet both functional and aesthetic requirements.

NOTE: It is recommended to keep the size of the keys larger than 6mmx6mm to ensure reliable
and robust measurements, although actual key design requirements also depend on panel
thickness and material. Refer to the ATMEL Capacitive touch sensor design guide for details.

QTouch acquisition method can be used in two ways

• normal touch contact (i.e. when pressing buttons on a panel), and
• high sensitivity proximity mode (i.e. when a panel lights up before you actually contact it).

Figure 5-2 : QTouch Acquisition

QTouch circuits offers high signal-to-noise ratio, very good low power performance, and the
easiest sensor layout.

8207L-AT42-05/12 14

5.2.1.1 Sensor schematics for a QTouch acquisition method design

Electrode

Microcontroller
Used for touch

application

PB1

PC1

SNSK

SNS

Sampling
capacitor

Rs

Cs

Rs- 1k
Cs- 22nF

Port requirements:
SNS: generic I/O pin
SNSK: generic I/O pin

Rs- Series resistor, Cs – Sample capacitor, PB1- PortB bit1, and PC1- PortC bit1

Typical
values:

Figure 5-3 : Schematics for a QTouch acquisition method design

5.2.2 QMatrix acquisition method
QMatrix devices detect touch using a scanned passive matrix of electrode sets. A single QMatrix
device can drive a large number of keys, enabling a very low cost-per-key to be achieved.

Figure 5-4 : QMatrix Acquisition method

15

QMatrix uses a pair of sensing electrodes for each channel. One is an emitting electrode into
which a charge consisting of logic pulses is driven in burst mode. The other is a receive electrode
that couples to the emitter via the overlying panel dielectric. When a finger touches the panel the
field coupling is changed, and touch is detected. The drive electrode (or drive line) used for
QMatrix charge transfer is labeled as the X line. The receiver electrode (or receive line) used for
QMatrix charge transfer is labeled as the Y line.

QMatrix circuits offer good immunity to moisture films, extreme levels of temperature stability,
superb low power characteristics, and small IC package sizes for a given key count.

5.2.3 Sensor schematics for a QMatrix acquisition method design

Atmel MCU

X0

...

Xn

Y0A

...

YmA

...

Y0B

YmB

SMP

Vref

RX0

RXn

RY0

RYm

CS0 CSm

RYB0 RYBm

Sensor
0,0

Sensor
n,0

Sensor
n,m

Sensor
0,m

Sensors,
X,Y

Typical values:
RX: 1k
RY: 1k
CS: 4.7nF
RYB: 470k

Port-pin count =
n + (2 * m) + 2

n – number of X lines
m – number of Y lines

Port requirements:
X: Configurable I/O pin
YA:Configurable I/O pin (*)
YB: ADC port (*)
SMP: Configurable I/O pin
Vref: AIN0 (Comparator)

(*): The port I/O pin should
be in consecutive order

Figure 5-5 : Schematics for a QMatrix acquisition method design

5.3 Global settings common to all sensors of a specific
acquisition method

The touch sensing using QTouch library could be fine tuned by using a number of configurable
settings. This section explains the settings that are common to all sensors of a specific acquisition
method like QMatrix or QTouch.

8207L-AT42-05/12 16

For example, if recalibration threshold (one of the global settings) of QMatrix acquisition method
is set as 1, all QMatrix sensors will have recalibration threshold of 1.

5.3.1 Recalibration Threshold
Recalibration threshold is the level above which automatic recalibration occurs. Recalibration
threshold is expressed as a percentage of the detection threshold setting. This setting is an
enumerated value and its settings are as follows:

• Setting of 0 = 100% of detect threshold (RECAL_100)
• Setting of 1 = 50% of detect threshold (RECAL_50)
• Setting of 2 = 25% of detect threshold (RECAL_25)
• Setting of 3 = 12.5% of detect threshold (RECAL_12_5)
• Setting of 4 = 6.25% of detect threshold (RECAL_6_25)

However, an absolute value of 4 is the hard limit for this setting. For example, if the detection
threshold is say, 40 and the Recalibration threshold value is set to 4. This implies an absolute
value of 2 (40 * 6.25% = 2.5), but this is hard limited to 4.

Setting Variable name Data

Type
Unit Min Max Typical

Recalibration threshold qt_recal_threshold uint8_t Enum 4 Detect
threshold

1

5.3.2 Detect Integration
The QTouch Library features a detect integration mechanism, which acts to confirm detection in a
robust fashion. The detect integrator (DI) acts as a simple signal filter to suppress false detections
caused by spurious events like electrical noise.

A counter is incremented each time the sensor delta has exceeded its threshold and stayed there
for a specific number of acquisitions, without going below the threshold levels. When this counter
reaches a preset limit (the DI value) the sensor is finally declared to be touched. If on any
acquisition the delta is not seen to exceed the threshold level, the counter is cleared and the
process has to start from the beginning. The DI process is applicable to a ‘release’ (going out of
detect) event as well.

For example, if the DI value is 10, then the device has to exceed its threshold and stay there for
10 acquisitions in succession without going below the threshold level, before the sensor is
declared to be touched.

Setting Variable

name
Data Type Unit Min Max Typical

D
I

qt_
di

uint8_
t

Cycle
s

0 25
5

4

5.3.3 Drift Hold Time
Drift Hold Time (DHT) is used to restrict drift on all sensors while one or more sensors are
activated. It defines the length of time the drift is halted after a key detection.

17

This feature is useful in cases of high density keypads where touching a key or floating a finger
over the keypad would cause untouched keys to drift, and therefore create a sensitivity shift, and
ultimately inhibit any touch detection.

Setting Variable name Data Type Unit Min Max Typical
Drift hold time qt_drift_hold_time uint8_t 200 ms 1 255 20 (4s)

5.3.4 Maximum ON Duration
If an object unintentionally contacts a sensor resulting in a touch detection for a prolonged interval
it is usually desirable to recalibrate the sensor in order to restore its function, perhaps after a time
delay of some seconds.

The Maximum on Duration timer monitors such detections; if detection exceeds the timer’s
settings, the sensor is automatically recalibrated. After a recalibration has taken place, the
affected sensor once again functions normally even if it still in contact with the foreign object.

Max on duration can be disabled by setting it to zero (infinite timeout) in which case the channel
never recalibrates during a continuous detection (but the host could still command it).

Setting Variable name Data Type Unit Min Max Typical

Maximum ON Duration qt_max_on_duration uint8_t 200 ms 0 255 30 (6s)

5.3.5 Positive / Negative Drift
Drift in a general sense means adjusting reference level (of a sensor) to allow compensation for
temperature (or other factor) effect on physical sensor characteristics. Decreasing reference level
for such compensation is called Negative drift & increasing reference level is called Positive drift.
Specifically, the drift compensation should be set to compensate faster for increasing signals than
for decreasing signals.

Signals can drift because of changes in physical sensor characteristics over time and
temperature. It is crucial that such drift be compensated for; otherwise false detections and
sensitivity shifts can occur.

Drift compensation occurs only while there is no detection in effect. Once a finger is sensed, the
drift compensation mechanism ceases since the signal is legitimately detecting an object. Drift
compensation works only when the signal in question has not crossed the ‘Detect threshold’ level.

The drift compensation mechanism can be asymmetric; it can be made to occur in one direction
faster than it does in the other simply by changing the appropriate setup parameters.

Signal values of a sensor tend to decrease when an object (touch) is approaching it or a
characteristic change of sensor over time and temperature. Decreasing signals should not be
compensated for quickly, as an approaching finger could be compensated for partially or entirely
before even touching the channel (negative drift).

However, an object over the channel which does not cause detection, and for which the sensor
has already made full allowance (over some period of time), could suddenly be removed leaving
the sensor with an artificially suppressed reference level and thus become insensitive to touch. In
the latter case, the sensor should compensate for the object’s removal by raising the reference
level relatively quickly (positive drift).

8207L-AT42-05/12 18

Setting Variable name Data Type Unit Min Max Typical
Negative Drift qt_neg_drift_rate uint8_t 200 ms 1 127 20 (4s)
Positive Drift qt_pos_drift_rate uint8_t 200 ms 1 127 5 (1s)

5.3.6 Positive Recalibration Delay

If any key is found to have a significant drop in signal delta, (on the negative side), it is deemed to
be an error condition. If this condition persists for more than the positive recalibration delay, i.e.,
qt_pos_recal_delay period, then an automatic recalibration is carried out.

A counter is incremented each time the sensor delta is equal to the positive recalibration
threshold and stayed there for a specific number of acquisitions. When this counter reaches a
preset limit (the PRD value) the sensor is finally recalibrated. If on any acquisition the delta is
seen to be greater than the positive recalibration threshold level, the counter is cleared and the
positive drifting is performed.

For example, if the PRD value is 10, then the delta has to drop below the recalibration threshold
and stay there for 10 acquisitions in succession without going below the threshold level, before
the sensor is declared to be recalibrated.

Setting Variable name Data Type Unit Min Max Typical
Positive
Recalibration
Delay

qt_pos_recal_delay uint8_t cycles 1 255 3

5.4 Sensor specific settings
Apart from global settings as mentioned in the section above, touch sensing using QTouch library
could also be fine tuned by more number of configurable settings.

This section explains the settings that are specific to each sensor. For example, sensor 0 can
have a detect threshold (one of the sensor specific setting) that is different from sensor 1.

5.4.1 Detect threshold
A sensor’s negative (detect) threshold defines how much its signal must drop below its reference
level to qualify as a potential touch detect. The final detection confirmation must however satisfy
the Detect Integrator (DI) limit. Larger threshold values desensitize sensors since the signal must
change more (i.e. requires larger touch) in order to exceed the threshold level. Conversely, lower
threshold levels make sensors more sensitive.

Threshold setting depends on the amount of signal swing that occurs when a sensor is touched.
Thicker front panels or smaller electrodes usually have smaller signal swing on touch, thus
require lower threshold levels.

Setting Variable name Data Type Unit Min Max Typical
Threshold threshold uint8_t counts 3 255 10 – 20

5.4.2 Hysteresis
This setting is sensor detection hysteresis value. It is expressed as a percentage of the sensor
detection threshold setting. Once a sensor goes into detect its threshold level is reduced (by the

19

hysteresis value) in order to avoid the sensor dither in and out of detect if the signal level is close
to original threshold level.

• Setting of 0 = 50% of detect threshold value (HYST_50)
• Setting of 1 = 25% of detect threshold value (HYST_25)
• Setting of 2 = 12.5% of detect threshold value (HYST_12_5)
• Setting of 3 = 6.25% of detect threshold value (HYST_6_25)

Setting Variable name Data Type Unit Min Max Typical
Hysteresis detect_hysteresis uint8_t (2 bits) Enum HYST_6_25 HYST_50 HYST_6_25

5.4.3 Position Resolution
The rotor or slider needs the position resolution (angle resolution in case of rotor and linear
resolution in case of slider) to be set. Resolution is the number of bits needed to report the
position of rotor or slider. It can have values from 2bits to 8 bits.

Setting Variable
name

Data
Type

Unit Min Reported
position

Max Reported
position

Typica
l

Position
Resoluti
on

position_
resolution

uint8_t
(3 bits)

- 2 bits

0 – 3 8 bits 0-255 8

5.4.4 Position Hysteresis
In case of QMatrix, the rotor or slider needs the position hysteresis (angle hysteresis in case of
rotor and linear hysteresis in case of slider) to be set. It is the number of positions the user has to
move back, before touch position is reported when the direction of scrolling is changed and
during the first scrolling after the touch down.

Hysteresis can range from 0 (1 position) to 7 (8 positions). The hysteresis is carried out at 8 bits
resolution internally and scaled to desired resolution; therefore at resolutions lower than 8 bits
there might be a difference of 1 reported position from the hysteresis setting, depending on where
the touch is detected.

At lower resolutions, where skipping of the reported positions is observed, hysteresis can be set
to 0 (1 position). At Higher resolutions (6 ..8bits) , it would be recommended to have a hysteresis
of at least 2 positions or more.

NOTE:
It is not valid to have a hysteresis value more than the available bit positions in the resolution.
Ex: do not have a hysteresis value of 5 positions with a resolution of 2 bits (4 positions).

Setting Variable name Data Type Unit Min Max Typical
Position
Hysteresis

position_hysteresis uint8_t (3 bits) - 0 7 3

NOTE:
Position hysteresis is not valid (unused) in case of QTouch acquisition method libraries.

8207L-AT42-05/12 20

5.4.5 Adjacent Key Suppression (AKS)
In designs where the sensors are close together or set for high sensitivity, multiple sensors might
report detect simultaneously if touch is near them. To allow applications to determine the
intended single touch, the touch library provides the user the ability to configure a certain number
of sensors in an AKS group.

When a group of sensors are in the same AKS group, then only the first strongest sensor will
report detection. The sensor reporting detection will continue to report detection even if another
sensor’s delta becomes stronger. The sensor stays in detect until its delta falls below its detection
threshold, and then if any more sensors in the AKS group are still in detect then the strongest will
report detection. So at any given time only one sensor from each AKS group will be reported to
be in detect.

The library provides the ability to configure any sensor to be included in any one of the Adjacent
Key Suppression Groups (AKS Group).

Setting Variable name Data Type Unit Min Max Typical
AKS Group aks_group uint8_t (3 bits) Enum 0 (off) 7 0 (off)

5.5 Using the Sensors
5.5.1 Avoiding Cross-talk
In ATMEL QTouch library variants that use QTouch acquisition technology, adjacent sensors are
not measured at the same time. This prevents interference due to cross-talk between adjacent
channels, but at the same time some sensor configurations take longer to measure than others.
For example, if an 8-channel device is configured to support 8 keys, then the library will measure
the keys on channels 0, 2, 4, and 6 parallely, followed by keys on channels 1, 3, 5, and 7. If the
same device is configured, say, to support 4 keys, putting them either on all the odd channels or
on all the even channels means that they can all be measured simultaneously.

This means the library calls are faster, and the device can use less power. So, it is recommended
that the appropriate channel numbers are used when using less than the maximum number of
channels available for the device to ensure optimum performance. In a similar sense for faster
execution and reduced power consumption, it is also advisable to use intra-port sensor
configuration instead of inter-port sensor configuration while using 4 channels on the same port.

5.5.2 Multiple measurements
The library will not automatically perform multiple measurements on a sensor (Ex: To resolve for
instance Detect Integration or recalibration.). The user is given the option to perform the
measurement multiple times if certain conditions are met. This will enable the user to implement
the time critical code thereby making the qt_measure_sensors() a non-blocking API .The host
application has to perform multiple measurements, based on the need. The global flag
QTLIB_BURST_AGAIN indicating that multiple measurements are needed is passed to the user.
This is BIT8 of the return value from the qt_measure_sensors() API. The main_<devicename>.c
has the example usage to perform multiple measurements.

If QTLIB_BURST_AGAIN = 1, multiple measurements are needed to

 To compensate for drift
 Resolve re-calibration
 Resolve calibration.
 Resolve detect integration.

21

If QTLIB_BURST_AGAIN = 0, multiple measurements are not needed and the user can execute
the host application code. Apart from QTLIB_BURST_AGAIN, various flags are provided to the
user to perform the multiple measurements based on the need of the host application to act to
specific situation. Description of the these flags can be found in the section5.6.5.6

Note: To maintain robustness and timing of the touch sensing measurement, it is recommended
that the user calls the qt_measure_sensors() immediately if the flag QT_BURST_AGAIN=1.
However, the user is allowed to run time- critical section (not more than few instructions) of the
host application comprising on the touch sensing timing.

5.5.3 Guard Channel

Guard channel in Qtouch Acquisition Method allows one key to be configured as a guard channel
to help prevent false detection. Guard channel keys should be more sensitive than the other keys
(physically bigger or larger Cs).To enable key as guard channel, the designated key is connected
to a sensor pad which detects the presence of touch and overrides any output from the other
keys using the AKS feature.

The key can be configured to have a guard channel function by adjusting a number of
independent settings. The Guard channel is designed so that it is likely to be activated unless a
key is accurately touched.

The guard channel sensor must be set up so that it is slightly more sensitive than the keys that it
surrounds. The exact amount of increase depends on the application and is best determined by
experimentation.
There are three methods of increasing the sensor sensitivity that can be used in combination:

1. Increasing the size of the sensor.
2. Increasing the value of the Sample Capacitor (Cs).
3. Adjust the detection threshold for the sensor.

The sensor size and capacitor values should be altered to establish the base sensitivity for the
sensor. Once these values have been established, the detection threshold can be used to fine
tune the sensor.

MCU with
SNS and
SNSK
Pins

8207L-AT42-05/12 22

The Above figure illustrates how a Guard sensor/key is to be visualized.It has six keys and five
keys are surrounded by a Guard Channel.

Please refer QTAN0031 for further information on Guard Channel.
http://www.atmel.com/dyn/resources/prod_documents/QTAN0031(2).pdf

5.6 QTouch API and Usage
The Atmel QTouch library provides support for many devices. This chapter explains the touch
library for such devices without any hardware support.

5.6.1 QTouch Library API
This section describes the QTouch library Application Programming Interface (API) for touch
sensing using QTouch and QMatrix acquisition methods.

Using the API, Touch sensors and the associated channels can be defined. Once touch sensing
has been initiated by the user, the host application can use the API to make touch measurements
and determine the status of the sensors.

5.6.2 touch_api.h - public header file
The touch_api.h header file is the public header file which needs to be included in users
application and it has the type definitions and function prototypes of the API’s listed in sections
5.6.3 , 5.6.4 and 5.6.5

The touch_api.h header file is located in the library distribution in the following directory.

• ..\Atmel_QTouch_Libraries_5.x\Generic_QTouch_Libraries\include

5.6.3 Type Definitions and enumerations used in the library

5.6.3.1 Typedefs

This section lists the type definitions used in the library.
Typedef Notes
uint8_t unsigned 8-bit integer
int8_t signed 8-bit integer
uint16_t unsigned 16-bit integer
int16_t signed 16-bit integer
uint32_t unsigned 32-bit integer
threshold_t unsigned 8-bit integer

 used for setting a sensor detection threshold

5.6.3.2 Enumerations

This section lists the enumerations used in the QTouch Library.

5.6.3.2.1 sensor_type_t
Enumeration sensor_type_t
Use Define the type of the sensor

Values Comment
SENSOR_TYPE_UNASSIGNED Channel is not assigned to any sensor
SENSOR_TYPE_KEY Sensor is of type KEY
SENSOR_TYPE_ROTOR Sensor is of type ROTOR

23

SENSOR_TYPE_SLIDER Sensor is of type SLIDER

5.6.3.2.2 aks_group_t
Enumeration aks_group_t
Use Defines the Adjacent Key Suppression (AKS) groups each sensor may be

associated with (see section 5.3.4 Maximum ON Duration)

AKS is selectable by the system designer
7 AKS groups are supported by the library

Values Comment
NO_AKS_GROUP NO AKS group selected for the sensor
AKS_GROUP_1 AKS Group number 1
AKS_GROUP_2 AKS Group number 2
AKS_GROUP_3 AKS Group number 3
AKS_GROUP_4 AKS Group number 4
AKS_GROUP_5 AKS Group number 5
AKS_GROUP_6 AKS Group number 6
AKS_GROUP_7 AKS Group number 7

5.6.3.2.3 channel_t
Enumeration channel_t
Use The channel numbers used in the library.

When using the QTouch acquisition method, the channel numbers have a one
to one mapping to the pin numbers of the port being used.

When using the QMatrix acquisition method, the channel numbers are ordered
in a matrix sequence

Values Comment
CHANNEL_0 Channel number : 0
CHANNEL_1 Channel number : 1
CHANNEL_2 Channel number : 2
CHANNEL_3 Channel number : 3
..... Channel number: ..
Upto CHANNEL (N-1) Channel number N-1 : for an N Channel library

The maximum number of channels supported is dependent on the library variant. Possible values
of N are as listed below
Acquisition method Device type Possible values of N

(Maximum number of channels)
QTouch acquisition 8-bit 4,8,16

32-bit 8, 16, 32
QMatrix Acquisition 8-bit 8,16,32,64

5.6.3.2.4 hysteresis_t
Enumeration Hysteresis_t
Use Defines the sensor detection hysteresis value. This is expressed as a

percentage of the sensor detection threshold.

This is configurable per sensor.

HYST_x = hysteresis value is x percent of detection threshold value (rounded

8207L-AT42-05/12 24

down).
Note that a minimum value of 2 is used as a hard limit. Example: if detection
threshold = 20, then:
HYST_50 = 10 (50 percent of 20)
HYST_25 = 5 (25 percent of 20)
HYST_12_5 = 2 (12.5 percent of 20)
HYST_6_25 = 2 (6.25 percent of 20 = 1, but set to the hard limit of 2)

5.6.3.2.5 resolution_t

Enumeration resolution_t
Use For rotors and sliders, the resolution of the reported angle or position.

RES_x_BIT = rotor/slider reports x-bit values.
Example: if slider resolution is RES_7_BIT, then reported positions are in the
range 0…127.

Values Comment
RES_1_BIT 1 bit resolution : reported positions range 0 – 1
RES_2_BIT 2 bit resolution : reported positions range 0 – 3
RES_3_BIT 3 bit resolution : reported positions range 0 – 7
RES_4_BIT 4 bit resolution : reported positions range 0 – 15
RES_5_BIT 5 bit resolution : reported positions range 0 – 31
RES_6_BIT 6 bit resolution : reported positions range 0 – 63
RES_7_BIT 7 bit resolution : reported positions range 0 – 127
RES_8_BIT 8 bit resolution : reported positions range 0 – 255

5.6.3.2.6 recal_threshold_t
Enumeration recal_threshold_t
Use A sensor recalibration threshold. This is expressed as a percentage of the

sensor detection threshold.

This is for automatic recovery from false conditions, such as a calibration while
sensors were touched, or a significant step change in power supply voltage.
If the false condition persists the library will recalibrate according to the settings
of the recalibration threshold.

This setting is applicable to all the configured sensors.

Usage :
RECAL_x = recalibration threshold is x percent of detection threshold value
(rounded down).
Note: a minimum value of 4 is used.
Example: if detection threshold = 40, then:
RECAL_100 = 40 (100 percent of 40)
RECAL_50 = 20 (50 percent of 40)
RECAL_25 = 10 (25 percent of 40)
RECAL_12_5 = 5 (12.5 percent of 40)
RECAL_6_25 = 4 (6.25 percent of 40 = 2, but value is limited to 4)

Values Comment

Values Comment
HYST_50 50% Hysteresis
HYST_25 25% Hysteresis
HYST_12_5 12.5% Hysteresis
HYST_6_25 6.25% Hysteresis

25

RECAL_100 100% recalibration threshold
RECAL_50 50% recalibration threshold
RECAL_25 25% recalibration threshold
RECAL_12_5 12.5% recalibration threshold
RECAL_6_25 6.25% recalibration threshold

5.6.4 Data structures
This section lists the data structures that hold sensor status, settings, and diagnostics information

5.6.4.1 qt_touch_status_t

Structure qt_touch_status_t
Input / Output Output from the Library
Use Holds the status (On/ Off) of the sensors and the linear and angular positions

of sliders and rotors respectively

Fields Comment

sensor_states[] For Sensor, the sensor_states. Bit “n” = state of nth sensor :
Bit Value 0 - indicates the sensor is not in detect
Bit Value 1 - indicates the sensor is in detect

rotor_slider_values[] Rotors angles or slider positions if rotors and sliders are used. These
values are valid when sensor states shows that the corresponding rotor or
slider is in detect

The macro that can get the sensor state when the sensor number is provided can be something
as below:

#define GET_SENSOR_STATE(SENSOR_NUMBER)
 qt_measure_data.qt_touch_status.sensor_states[(SENSOR_NUMBER/8)] &
(1 << (SENSOR_NUMBER % 8))

The host application can use this macro to act accordingly, the following example shows how to
toggle a IO pin (PD2) based on the sensor0 state.(Set PD2 if sensor0 is in detect, and clear PD2
if sensor0 is not in detect)

Ex: /*Set pin PD2 direction as output*/

DDRD |= (1u << PORTD2);

if (GET_SENSOR_STATE(0) !=0)

{ PORTD |= (1u << PORTD2); /* Set PORTD2 */

}

else {

 PORTD &= ~(1u << PORTD2); /* Clear PORTD2 */

}

5.6.4.2 qt_touch_lib_config_data_t

Structure qt_touch_lib_config_data_t
Input / Output Input to the library

8207L-AT42-05/12 26

Use Global Configuration data settings for the library.

Fields Type Comment
qt_recal_threshold recal_threshold_t Sensor recalibration threshold. Default: RECAL_50 (recalibration

threshold = 50 percent of detection threshold. Refer to section
5.3.1 Recalibration Threshold more details

qt_di uint8_t Sensor detect integration (DI) limit. Default value: 4. Refer to
section 5.3.2 Detect Integration for more details

qt_drift_hold_time uint8_t Sensor drift hold time in units of 200 ms. Default value: 20 (20 x
200 ms = 4s), that is hold off drifting for 4 seconds after leaving
detect. Refer to section 5.3.3 Drift Hold Time for more details

qt_max_on_duration uint8_t Sensor maximum on duration in units of 200 ms. For example:
150 = recalibrate after 30s (150 x 200 ms). 0 = recalibration
disabled Default value: 0 (recalibration disabled). Refer to
section 5.3.4 Maximum ON Duration for more details.

qt_neg_drift_rate uint8_t Sensor negative drift rate in units of 200 ms. Default value: 20
(20 x 200 ms = 4s per LSB). Refer to section 5.3.5 Positive /
Negative Drift for more details

qt_pos_drift_rate uint8_t Sensor positive drift rate in units of 200 ms. Default value: 5 (5 x
200 ms = 1s per LSB). Refer to section 5.3.5 Positive / Negative
Drift for more details

qt_pos_recal_delay uint8_t Sensor positive recalibration delay. Default: 3. Refer to section
5.3.6 for more details.

The measurement limit for touch sensing using QTouch acquisition method is hard coded as
8192.

The QTouch library exports a variable of this type so that the user can specify the threshold
parameters for the library. The API qt_set_parameters() should be called to apply the parameters
specified.

extern qt_touch_lib_config_data_t qt_config_data;

5.6.4.3 qt_touch_lib_measure_data_t

Structure qt_touch_lib_measure_data_t
Input / Output Output from the library
Use Data structure which holds the sensor and channel states and values.

Fields Type Comment
channel_signals uint16_t The measured signal on each channel.
channel_references uint16_t The reference signal for each channel.
qt_touch_status qt_touch_status_t The state and position of the configured sensors

The QTouch library exports a variable of this type which can be accessed to retrieve the touch
status of all the sensors.

extern qt_touch_lib_measure_data_t qt_measure_data;

5.6.4.4 qt_burst_lengths

Structure qt_burst_lengths
Input / Output Input to the library
Use NOTE: Applicable only to the QMatrix acquisition method libraries

This data structure is used to specify the burst lengths for each of the QMatrix
channels

27

Fields Type Comment
qt_burst_lengths[] uint8_t The burst length for each of the QMatrix channel in units of pulses. Default

value: 64 pulses.
These values can be configured for each channel individually.

The signal gain for each sensor is controlled by circuit parameters as well as the burst length.
The burst length is simply the number of times the charge-transfer (‘QT’) process is performed on
a given sensor. Each QT process is simply the pulsing of an X line once, with a corresponding Y
line enabled to capture the resulting charge passed through the sensor’s capacitance Cx.

The QMatrix acquisition method library exports a variable of this type which can be accessed to
set the burst length for each of the QMatrix channels

extern uint8_t qt_burst_lengths[QT_NUM_CHANNELS];

5.6.4.5 tag_sensor_t

Structure tag_sensor_t
Input / Output Output from the library
Use Data structure which holds the internal sensor state variables used by the

library.

Fields Type Comment
State uint8_t internal sensor state
general_counter uint8_t general purpose counter: used for calibration, drifting, etc
ndil_counter uint8_t drift Integration counter
Threshold uint8_t sensor detection threshold. Refer to section 5.4.1 Detect threshold for more

details
type_aks_pos_hyst uint8_t holds information for sensor type, AKS group, positive recalibration flag, and

hysteresis value
Bit fields Use
B1 : B0 Hysteresis. Refer to section 5.4.2 Hysteresis for more

details
B2 positive recalibration flag
B5:B3 AKS group. Refer to section 5.4.5 for more details
B7:B6 sensor type

from_channel uint8_t starting channel number for sensor
to_channel uint8_t ending channel number for sensor
Index uint8_t index for array of rotor/slider values

5.6.4.6 qt_lib_siginfo_t

Structure qt_lib_siginfo_t
Input / Output Output from the library
Use Data structure which holds the information about the library variant and its

version information.

qt_lib_siginfo_t structure definition for a QTouch acquisition method library variant
Fields Type Comment
library_version uint16_t Holds the library version information.

Bit fields Use
B3 : B0 Patch version of the library
B7 : B4 Minor version of the library
B15:B8 Major version of the library

8207L-AT42-05/12 28

lib_sig_lword uint16_t Holds the general information about the library
Bit fields Use
B1 : B0 Library Type :

00 : QTouch acquisition method
01 : QMatrix acquisition method

B2 Compiler tool chain used
0 – GCC
1 – IAR

B9 : B3 Maximum number of channels
supported by the library

B10 0 – Library supports only keys
1 – Library supports keys and
rotors

B15 : B11 Maximum number of rotors and
sliders supported by the library

lib_sig_hword uint16_t Reserved

qt_lib_siginfo_t structure definitions for a QMatrix acquisition method library variant
Fields Type Comment
library_version uint16_t Holds the library version information.

Bit fields Use
B3 : B0 Patch version of the library
B7 : B4 Minor version of the library
B15:B8 Major version of the library

lib_sig_lword uint16_t Holds the general information about the library
Bit fields Use
B1 : B0 Library Type :

00 : QTouch acquisition method
01 : QMatrix acquisition method

B2 Compiler tool chain used
0 – GCC
1 – IAR

B9 : B3 Maximum number of channels
supported by the library

B10 0 – Library supports only keys
1 – Library supports keys and
rotors

B15 : B11 Maximum number of rotors and
sliders supported by the library

lib_sig_hword uint16_t Holds information about the X and Y lines for a QMatrix library variant
Bit fields Use
B4 : B0 Number of X Lines
B8 : B5 Number of Y Lines
B9 0

5.6.5 Public Functions
This section lists the public functions available in the QTouch libraries and its usage.

5.6.5.1 qt_set_parameters

This function is used to initialize the global configuration settings in the variable
qt_config_data of the QTouch and QMatrix acquisition method libraries.

void qt_set_parameters (void)

29

Arguments Type Comment
Void - This function will initialize the parameters required by the library to default values .But

the default values can be changed by the user by modifying the global threshold
values as defined in qt_touch_lib_config_data_t . See section 0 for details.

NOTE:
• This function can be called any time to apply the threshold parameters of the library as

specified by modifying the global data structure qt_config_data exported by the library.

5.6.5.2 qt_enable_key

This function is used to configure a channel as a key.

void qt_enable_key (
 channel_t channel ,
 aks_group_t aks_group ,
 threshold_t detect_threshold ,
 hysteresis_t detect_hysteresis
)

Arguments Type Comment
Channel channel_t Specifies the channel number to be configured for use as a “key”
aks_group aks_group Specifies the aks group associated with the sensor being configured as

“key”
detect_threshold threshold_t Specifies the detect threshold for the sensor
detect_hysteresis hysteresis_t Specifies the detection hysteresis for the sensor

5.6.5.3 qt_enable_rotor

This function is used to configure a set of channels as a rotor.

void qt_enable_rotor (
 channel_t from_channel ,
 channel_t to_channel ,
 aks_group_t aks_group ,
 threshold_t detect_threshold ,
 hysterisis_t detect_hysterisis ,
 resoulution_t angle_resolution ,
 uint8_t angle_hysterisis
)

Arguments Type Comment
from_channel Channel_t Specifies the starting channel number to be configured for use as a “Rotor”
to_channel Channel_t Specifies the end channel number to be configured for use as a “Rotor”
aks_group aks_group Specifies the aks group associated with the sensor being configured as

“ROTOR”
detect_threshold threshold_t Specifies the detect threshold for the sensor
detect_hysterisis hysterisis_t Specifies the detection hysteresis for the sensor
angle_resolution resolution_t Specifies the resolution of the reported angle value
angle_hysterisis uint8_t Specifies the hysteresis of the reported angle value

NOTE:
• A “Rotor” sensor requires contiguous channel numbers.
• The rotor / slider number depends on the order in which the rotor or sliders are enabled.

The first rotor or slider enabled will use “rotor_slider_values[0]”, the second will use
“rotor_slider_values[1]”, and so on. The reported rotor value is valid when the rotor is
reported as being in detect.

8207L-AT42-05/12 30

• In case of QMatrix acquisition method library, the from_channel and to_channel can be
between 3 to 8 channel numbers apart (i.e. it can support 3 to 8 channel rotors).

• In case of QTouch acquisition method library, the from_channel and to_channel can be 3
channels apart (i.e. can support only 3 channel rotors).

5.6.5.4 qt_enable_slider

This function is used to configure a set of channels as a rotor.

void qt_enable_slider (
 channel_t from_channel ,
 channel_t to_channel ,
 aks_group_t aks_group ,
 threshold_t detect_threshold ,
 hysterisis_t detect_hysterisis ,
 resolution_t position_resolution ,
 uint8_t position_hysteresis
)

Arguments Type Comment
from_channel Channel_t Specifies the starting channel number to be configured for use as a

“Slider”
to_channel Channel_t Specifies the end channel number to be configured for use as a “Slider”
aks_group aks_group Specifies the aks group associated with the sensor being configured as

“Slider”
detect_threshold threshold_t Specifies the detect threshold for the sensor
detect_hysterisis hysterisis_t Specifies the detection hysteresis for the sensor
position_resolution resolution_t Specifies the resolution of the reported position value
position_hysterisis uint8_t Specifies the hysteresis of the reported position value

NOTE:
• A “Slider” sensor requires a contiguous numbers of channels.
• The rotor / slider number depends on the order in which the rotor or sliders are enabled.

The first rotor or slider enabled will use “rotor_slider_values[0]”, the second will use.
“rotor_slider_values[1]”, and so on. The reported rotor value is valid when the slider is
reported as being in detect.

• In case of QMatrix acquisition method library, the from_channel and to_channel can be
between 3 to 8 channels apart (i.e. it can support 3 to 8 channel sliders).

• In case of QTouch acquisition method library, the from_channel and to_channel can be 3
channels apart (i.e. can support only 3 channel sliders).

5.6.5.5 qt_init_sensing

This function is used to initialize the touch sensing for all enabled channels. All required sensors
should be configured before calling this function.

void qt_init_sensing (void)

Arguments Type Comment
Void - -

NOTE:
• All sensors must be configured (using qt_enable_key, qt_enable_rotor or

qt_enable_slider) before calling this function.
• This functions initializes all the configured sensors, performs calibration.

31

5.6.5.6 qt_measure_sensors

This function performs a capacitive measurement on all enabled sensors. The measured signals
for each sensor are then processed to check for user touches, releases, changes in rotor angle
and changes in slider position.

unit16_t qt_measure_sensors(uint16_t current_time_ms)

Arguments Type Comment
current_time_ms uint16 The current time in milliseconds

Return
Value

Comment

uint16_t Returns the status of the Library as a combination of the following bit fields.
Return value Bit

definition
Comments

QTLIB_NO_ACTIVITY 0x0000 No activity detected on any of the
sensors

QTLIB_IN_DETECT 0x0001 At least one sensor is in detect
QTLIB_STATUS_CHANGE 0x0002 At least one sensor has changed

ON/OFF state since the last call to
qt_measure_sensor()

QTLIB_ROTOR_SLIDER_POS_CHANGE 0x0004 At least one rotor/slider has changed
position since the last call to
qt_measure_sensors()

QTLIB_CHANNEL_REF_CHANGE 0x0008 At least one reference value has
changed since last call to
qt_measure_sensors()

QTLIB_BURST_AGAIN 0x0100 Flag to indicate Multiple measurements
needed.

QTLIB_RESOLVE_CAL 0x0200 Multiple measurements needed to
resolve calibration. Call
qt_measure_sensors() once again.

QTLIB_RESOLVE_FILTERIN 0x0400 Multiple measurements needed to
resolve filtering. Call
qt_measure_sensors() once again.

QTLIB_RESOLVE_DI 0x0800 Multiple measurements needed to
resolve detect integration. Call
qt_measure_sensors() once again.

QTLIB_RESOLVE_POS_RECAL 0x1000 Multiple measurements needed to
resolve positive recalibration. Call
qt_measure_sensors() once again.

NOTE:
• All sensors must be configured (using qt_enable_key or qt_enable_rotor or

qt_enable_slider) and initialized by calling qt_init_sensing before calling this function.

5.6.5.7 qt_calibrate_sensing

This function forces a recalibration of all enabled sensors.

void qt_calibrate_sensing(void)

Arguments Type Comment
Void - -

8207L-AT42-05/12 32

NOTE:
• Recalibration may be useful if, for example, it is desired to globally recalibrate all sensors

on a change in application operating mode.
• This function must be called only when the sensors have been configured and initialized.

5.6.5.8 qt_reset_sensing

This function disables all sensors and resets all configuration settings (for example, “qt_di”) to
their default values.

void qt_reset_sensing(void)

Arguments Type Comment
Void - -

NOTE:

• This may be useful if it is desired to dynamically reconfigure sensing. After calling this
function, any required sensors must be re-enabled, filter callback needs to be re-
initialized, and “qt_init_sensing()” must be called before “qt_measure_sensors()” is called
again.

• In case of QMatrix, the burst lengths for all channels are set to zero.

5.6.5.9 qt_get_sensor_delta

This function returns the delta value for a given channel.

int16_t qt_get_sensor_delta(uint8_t sensor_number)

Arguments Type Comment
sensor_number unit8_t sensor id for which the delta is required

Return type Comment
int16_t The delta value of the sensor specified

NOTE:

• All sensors must be configured (using qt_enable_key or qt_enable_rotor or
qt_enable_slider) and initialized by calling qt_init_sensing before calling this function.

5.6.5.10 qt_get_library_sig

This function is used to retrieve the library version and signature from the library.

void qt_get_library_sig(qt_lib_siginfo_t *lib_sig_ptr)

Arguments Type Comment
lib_sig_ptr qt_lib_siginfo_t * Pointer to the structure which needs to be

updated with the library signature
information

NOTE:

• The function qt_measure_sensors() should have been called at least once prior to calling
this function.

33

5.6.6 Sequence of Operations and Using the API
Figure 6 illustrates the sequence of operations required to be performed to add touch to an end
application. By using the simple API’s as illustrated in the sequence flowchart, the user can add
touch sensing in his design.

5.6.6.1 Channel Numbering

5.6.6.1.1 Channel numbering when using QTouch acquisition method
QTouch acquisition method libraries require 2 GPIO pins per channel. QTouch libraries can be
configured to use 1 to 16 channels requiring 2 to 32 pins respectively. There are two options
provided for connecting the SNS and SNSK pins.

1. The SNS and SNSK pins are connected to separate ports. (i.e. Interport)

2. The SNS and SNSK pins are connected to the same port. (i.e. Intraport)

The following list provides a look at various combinations supported by various 8bit AVR
libraries released for each device.

When pin configurability is not used:

• 4-channel library – supports up to 4 channels using 4 consecutive pins on different SNS
and SNSK ports (or) supports up to 4 channels using 8 consecutive pins on the same
port used for both SNS and SNSK lines. This library requires 1 or 2 ports.

• 8-channel library – supports up to 8 channels using 8 consecutive pins on different SNS
and SNSK ports (or) supports up to 8 channels using 16 pins spread over two ports (SNS
and SNSK are on alternate pins) with SNS1 and SNSK1 pins on the first port and SNS2
and SNSK2 pins on the second port. This library requires 2 ports.

• 12-channel library (available only for 8bit AVR devices) – supports up to 12 channels out
of which, 8 channels with 8 consecutive pins for SNS1 and SNSK1 are available on
different ports and the other 4 channels with 8 consecutive pins available on the same
port for both SNS and SNSK lines. This library requires a total of 3 ports.

• 16-channel library – supports up to 16 channels out of which, 8 channels with 8
consecutive pins for SNS1 and SNSK1 are available on different ports and the other 8
channels with 8 consecutive pins are available on a different pair of SNS2 and SNSK2
ports. This library requires a total of 4 ports.

When pin configurability is used:

• 4-channel library – supports up to 4 channels using any 4 pins on different SNS and
SNSK ports (or) supports up to 4 channels using pins on the same port used for both
SNS and SNSK lines. This library requires 1 or 2 ports.

• 8-channel library – supports up to 8 channels using 8 pins on different SNS and SNSK
ports (or) supports up to 8 channels using pins spread over two ports (SNS and SNSK
are on alternate pins) with SNS1 and SNSK1 pins on the first port and SNS2 and SNSK2
pins on the second port. This library requires 2 ports.

• 12-channel library (available only for 8bit AVR devices) – supports up to 12 channels out
of which, 8 channels with 8 pins for SNS1 and SNSK1 are available on different ports and
the other 4 channels with 8 pins available on the same port for both SNS and SNSK
lines. This library requires a total of 3 ports.

• 16-channel library – supports up to 16 channels out of which, 8 channels with 8 pins for
SNS1 and SNSK1 are available on different ports and the other 8 channels with 8 pins
are available on a different pair of SNS2 and SNSK2 ports. This library requires a total of
4 ports.

8207L-AT42-05/12 34

Note:

 When a library supports 4 channels using 8 consecutive pins on the same port, the SNS and
SNSK pins are allocated alternately. This is valid for all the libraries mentioned above.

 Usage of intraport configuration requires more code memory than the interport configuration.
The values mentioned in the Library_selection_Guide.xls are for interport configurations. The
memory consumption for intra-port will be higher to the values mentioned in the
Library_selection_Guide.xls

 The configurations on pin configurability should be used in conjunction with the rules for
assigning the pins that are described in section 5.8.2

For UC3 and ATSAM libraries, an n- channel library supports up to n channels using n
consecutive pins on different SNS and SNSK ports (or) supports up to n/2 channels using (n)
consecutive pins on the same port used for both SNS and SNSK lines. This library requires 1 or 2
UC3 or ATSAM ports. In addition to this, for the ATSAM libraries the pins can be configured on 3
ports based on the configuration selected.

NOTE:
Some of the devices in UC3 family has ports having more than 32 pins or less than 32

pins.In those devices, the mapping is given as below:
GPIO Port0 -> A
GPIO Port1 -> B
GPIO Port2 -> C
GPIO Port3 -> X

Example SNS=A and SNSK=X, So channel 0 will be (SNS0 = GPIO0_Pin0 and SNSK0 =
GPIO3_Pin0).
Similarly,Example SNS=X and SNSK=X, So channel 0 will be (SNS0 = GPIO3_Pin0 and SNSK0
= GPIO3_Pin1).

35

qt_reset_sensing()

qt_enable_xxx()

qt_init_sensing()

qt_set_parameters()

init_timer_isr()

check qt_touch_status

The host application (optionally) calls “qt_reset_sensing()”
to reset all channels and touch sensing parameters to their
default states. This step is only required if the host wants to
dynamically reconfigure the library at runtime

The host application calls “qt_enable_key()”, “qt_enable_rotor()”
and/or “qt_enable_slider()” as required to configure the touch
sensors

The host application qt_set_parameters() to initialize the threshold
parameters for the library. If the user needs to change the thresholds,
edit the global data structure qt_config_data prior to calling this API

The host application periodically calls
“qt_measure_sensors()” to make capacitive measurements.

check the global status variable “qt_touch_status” to see if any
sensors are in detect, and the angle or position of any enabled
rotors or sliders

The host application initializes the timer module required for
capacitive measurement

The host application calls qt_init_sensing() to calibrate all the
configured channels and prepare the sensors for capacitive
measurement

qt_measure_sensors()

Is
QTLIB_BURST_A

GAIN=1

No

Yes

Time-critical host
application code

Check if multiple measurements are needed or not:
To resolve calibration

To resolve DI
To resolve positive recalibration

To compensate for drift

Non-Time critical host application code

Part of host application
 which cannot wait till multiple

measurements are complete (should
be as minimal as possible)

Host application which can be executed after
the completion of multiple measurements

for all the channels

Figure 5-6: Sequence of operations to add Touch capability

8207L-AT42-05/12 36

5.6.6.1.1.1 Channel numbering when routing SNS and SNSK pins to different ports
Figure 5-7 illustrates a sample QTouch capacitive sensing solution which uses four ports (two
port pairs) on a device for routing the SNS and SNSK lines required.

When SNS and SNSK pins are available on different ports, the channel numbering follows the pin
numbering in the ports selected, when pin configurability is not used.

• The channel numbers follow the pin numbers starting with the LSB (pin 0 is channel 0
and pin 7 is channel 7).

• When a library on corresponding device is configured to use more than two ports for SNS
and SNSK pins, the channel numbers in the second set of SNS/SNSK port pair continue
from the preceding pair as illustrated in Figure 5-7(pin 0 of next port pair is channel 8 and
pin 7 of the next port pair is channel 15).

• Support for more than one pair of SNS and SNSK ports are not available for UC3™
devices.

• SNS pins within a single port and SNSK pins within another single port can only be used
as channels for slider/rotor. Slider/Rotor channels cannot share SNS/SNSK pins on
different ports.

• Since the channel numbers are fixed to the pins of the SNS and SNSK ports, if the
design calls for use of a subset of the pins available in the SNS and SNSK ports, the user
has to skip the channel numbers of the unused SNS and SNSK pins.

o For example, on a 8 channel configuration using a single pair of SNS and SNSK
ports, if pin 2 is not used for touch sensing (on both SNS and SNSK ports),
channel number 2 is unavailable and care should be taken while configuring the
channels and sensors to avoid using this channel.

37

channel 0

channel 1

channel 2

channel 3

channel 4

channel 5

channel 6

channel 7

sensor0

sensor1

sensor2

sensor3

Port A

 All SNSK pins
 terminated
on this port

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

Port B

 All SNS pins
 terminated
on this port

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

channel 0

channel 1

channel 2

channel 3

channel 4

channel 5

channel 6

channel 7

channel 8

channel 9

channel 10

channel 11

channel 12

channel 13

channel 14

channel 15

sensor4

sensor5

sensor6

sensor7

Port C

 All SNSK pins
 terminated
on this port

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

Port D

 All SNS pins
 terminated
on this port

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Pin 7

channel 8

channel 9

channel 10

channel 11

channel 12

channel 13

channel 14

channel 15

SNS – SNSK
Port Pair one

SNS – SNSK
Port Pair two

Figure 5-7 : channel numbering for QTouch acquisition method when the SNS and SNSK
pins are connected to different ports.

5.6.6.1.1.2 Channel numbering when routing SNS and SNSK pins to different ports with

pin configurability
When SNS and SNSK pins are available on different ports, the channel numbering
follows the pin numbering in the ports selected based on SNS_array and SNSK_array
bits enabled.The pins which needs to be used for touch should be provided in the Pin
Configurator Wizard in QTouch Studio and the pin configurator Wizard tool will generate
the SNS_array and SNSK_array masks and channel numbering will be based on which
pins are enabled for touch in consecutive way.Below is an example to illustrate the same:

Example:

8207L-AT42-05/12 38

SNS and SNSK pins are configured with few rules keeping in mind as illustrated in
section
Pins A0 ,A1,A4 and A6 of PORT A are SNS pins and pins B2,B3,B5,B7 are SNSK pins of
PORT B.
Channel 0 will be forming a SNS-SNSK pair as A0B2.
Channel 1 will be forming a SNS-SNSK pair as A1B3
Channel 2 will be forming a SNS-SNSK pair as A4B5
Channel 3 will be forming a SNS-SNSK pair as A6B7.

The channel numbering is not dependent on the pin numbering.

5.6.6.1.1.3 Channel numbering when routing SNS and SNSK pins to the same port
When SNS and SNSK pins are connected to the same port, the even pin numbers will be used as
SNS pins and the odd pins will be used as the SNSK pins.

• The number of channels supported will be limited 4 channels for an 8-bit device and 16
channels for a 32-bit device (e.g. UC3).

• For e.g., for a 4 channel configuration where the SNS and SNSK pins are connected to
Port B, the port pins 0&1 are used for channel 0.

• The channel number is derived from the position of the pins used for SNS and SNSK
lines for any channel.

channel number = floor([SNS(or SNSK) pin number] / 2)

o For e.g., pins 4 and 5 are connected to a SNS/SNSK pair and the channel number
associated with the SNS/SNSK pin is 2.

channel 0

sensor1

sensor2

Port A

 All
SNSK
and

SNS pins
terminated

on the same port

Pin 0

Pin 1

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6
Pin 7

SNSK pin

SNS pin

SNSK pin

SNS pin

SNSK pin

SNS pin

SNSK pin

SNS pin

channel 1

channel 2

channel 3

Figure 5-8 : Channel numbering for QTouch acquisition method when the SNS and SNSK
pins are connected to the same port

5.6.6.1.1.4 Channel numbering when routing SNS and SNSK pins to the same port with

pin configurability

When SNS and SNSK pins are connected to the same port, different pins can be used as SNS
and SNSK pins.But SNS and SNSK pins are configured with few rules keeping in mind as
illustrated in section

Example:
Pins A0 ,A3 and A5 of PORT A are SNS pins and pins A2,A4,A7 are SNSK pins of PORT
A.
Channel 0 will be forming a SNS-SNSK pair as A0A2.

39

Channel 1 will be forming a SNS-SNSK pair as A3A4
Channel 2 will be forming a SNS-SNSK pair as A5A7.

The channel numbering is not dependent on the pin numbering.

5.6.6.1.2 Channel numbering when using QMatrix acquisition method

Figure 5-9 illustrates a QMatrix capacitive sensing solution which uses 4 X lines and 4 Y lines
thereby providing a 16 channel solution.

Note:

1. All channels selected for a specific rotor or slider should be on a single Y line.

2. The choice of ports for X and Y lines is left to the user to based on the availability of the
pins available in the particular device selected. Please refer to the section 5.8.2 for more
details configuring of touch sensing pins for QMatrix.

The channel numbering for QMatrix configuration follows a matrix pattern with the channel
numbers starting from 0 for the matrix intersection (X0Y0) and increasing along the X lines for a
given Y line (Channel 1 is X1Y0) and then moving on to the row number 0 for the next column.
Table 1 lists the possible channel numbers and the associated X/Y line associations for the
different configurations of QMatrix library variants.

A group of channels form a sensor and the sensor numbering is determined by the order in which
the user defines the association of channels and uses them as a sensor.

The channel numbering is fixed for a specific library variant based on the number of X and Y lines
used whereas the sensor numbering is determined at the time of usage based on the order in
which the user defines the association of the channels to create a sensor.

Ch 0
X0

X3

X2

X1

Y0 Y3Y2Y1

QMatrix Channels
QMatrix also supports such rotor/slider configuration.
The channels selected for a Rotor / Slider MUST be on a single YA/YB line.

KEY

ROTOR/SLIDER

Ch 1

Ch 2

Ch 3

Ch 4

Ch 5

Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 11

Ch 12

Ch 13

Ch 14

Ch 15

Figure 5-9: Channel Numbering for QMatrix acquisition method libraries

8207L-AT42-05/12 40

Table 1 : Channel numbers for QMatrix configurations
Line label 4

channel
configur
ation
(4 x 1)

8
channel
configurat
ion
(4 x 2)

16
channel
Configura
tion
(8 x 2)

16
channel
Configura
tion
(4 x 4)

32
channel
configurat
ion
(8 x 4)

56
channel
configurat
ion
(8 x 7)

64
channel
configurat
ion
(8 x 8)

Channel 0 X0Y0 X0Y0 X0Y0 X0Y0 X0Y0 X0Y0 X0Y0
Channel 1 X1Y0 X1Y0 X1Y0 X1Y0 X1Y0 X1Y0 X1Y0
Channel 2 X2Y0 X2Y0 X2Y0 X2Y0 X2Y0 X2Y0 X2Y0
Channel 3 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0
Channel 4 N/A X0Y1 X4Y0 X0Y1 X4Y0 X4Y0 X4Y0
Channel 5 N/A X1Y1 X5Y0 X1Y1 X5Y0 X5Y0 X5Y0
Channel 6 N/A X2Y1 X6Y0 X2Y1 X6Y0 X6Y0 X6Y0
Channel 7 N/A X3Y1 X7Y0 X3Y1 X7Y0 X7Y0 X7Y0
Channel 8 N/A N/A X0Y1 X0Y2 X0Y1 X0Y1 X0Y1
Channel 9 N/A N/A X1Y1 X1Y2 X1Y1 X1Y1 X1Y1
Channel 10 N/A N/A X2Y1 X2Y2 X2Y1 X2Y1 X2Y1
Channel 11 N/A N/A X3Y1 X3Y2 X3Y1 X3Y1 X3Y1
Channel 12 N/A N/A X4Y1 X0Y3 X4Y1 X4Y1 X4Y1
Channel 13 N/A N/A X5Y1 X1Y3 X5Y1 X5Y1 X5Y1
Channel 14 N/A N/A X6Y1 X2Y3 X6Y1 X6Y1 X6Y1
Channel 15 N/A N/A X7Y1 X3Y3 X7Y1 X7Y1 X7Y1
Channel 16 N/A N/A N/A N/A X0Y2 X0Y2 X0Y2
Channel 17 N/A N/A N/A N/A X1Y2 X1Y2 X1Y2
Channel 18 N/A N/A N/A N/A X2Y2 X2Y2 X2Y2
Channel 19 N/A N/A N/A N/A X3Y2 X3Y2 X3Y2
Channel 20 N/A N/A N/A N/A X4Y2 X4Y2 X4Y2
Channel 21 N/A N/A N/A N/A X5Y2 X5Y2 X5Y2
Channel 22 N/A N/A N/A N/A X6Y2 X6Y2 X6Y2
Channel 23 N/A N/A N/A N/A X7Y2 X7Y2 X7Y2
Channel 24 N/A N/A N/A N/A X0Y3 X0Y3 X0Y3
Channel 25 N/A N/A N/A N/A X1Y3 X1Y3 X1Y3
Channel 26 N/A N/A N/A N/A X2Y3 X2Y3 X2Y3
Channel 27 N/A N/A N/A N/A X3Y3 X3Y3 X3Y3
Channel 28 N/A N/A N/A N/A X4Y3 X4Y3 X4Y3
Channel 29 N/A N/A N/A N/A X5Y3 X5Y3 X5Y3
Channel 30 N/A N/A N/A N/A X6Y3 X6Y3 X6Y3
Channel 31 N/A N/A N/A N/A X7Y3 X7Y3 X7Y3
Channel 32 N/A N/A N/A N/A N/A X0Y4 X0Y4
Channel 33 N/A N/A N/A N/A N/A X1Y4 X1Y4
Channel 34 N/A N/A N/A N/A N/A X2Y4 X2Y4
Channel 35 N/A N/A N/A N/A N/A X3Y4 X3Y4
Channel 36 N/A N/A N/A N/A N/A X4Y4 X4Y4
Channel 37 N/A N/A N/A N/A N/A X5Y4 X5Y4
Channel 38 N/A N/A N/A N/A N/A X6Y4 X6Y4
Channel 39 N/A N/A N/A N/A N/A X7Y4 X7Y4
Channel 40 N/A N/A N/A N/A N/A X0Y5 X0Y5
Channel 41 N/A N/A N/A N/A N/A X1Y5 X1Y5
Channel 42 N/A N/A N/A N/A N/A X2Y5 X2Y5
Channel 43 N/A N/A N/A N/A N/A X3Y5 X3Y5
Channel 44 N/A N/A N/A N/A N/A X4Y5 X4Y5
Channel 45 N/A N/A N/A N/A N/A X5Y5 X5Y5
Channel 46 N/A N/A N/A N/A N/A X6Y5 X6Y5
Channel 47 N/A N/A N/A N/A N/A X7Y5 X7Y5
Channel 48 N/A N/A N/A N/A N/A X0Y6 X0Y6
Channel 49 N/A N/A N/A N/A N/A X1Y6 X1Y6
Channel 50 N/A N/A N/A N/A N/A X2Y6 X2Y6
Channel 51 N/A N/A N/A N/A N/A X3Y6 X3Y6

41

Channel 52 N/A N/A N/A N/A N/A X4Y6 X4Y6
Channel 53 N/A N/A N/A N/A N/A X5Y6 X5Y6
Channel 54 N/A N/A N/A N/A N/A X6Y6 X6Y6
Channel 55 N/A N/A N/A N/A N/A X7Y6 X7Y6
Channel 56 N/A N/A N/A N/A N/A N/A X0Y7
Channel 57 N/A N/A N/A N/A N/A N/A X1Y7
Channel 58 N/A N/A N/A N/A N/A N/A X2Y7
Channel 59 N/A N/A N/A N/A N/A N/A X3Y7
Channel 60 N/A N/A N/A N/A N/A N/A X4Y7
Channel 61 N/A N/A N/A N/A N/A N/A X5Y7
Channel 62 N/A N/A N/A N/A N/A N/A X6Y7
Channel 63 N/A N/A N/A N/A N/A N/A X7Y7

5.6.6.2 Sensor Numbering

The ordering and numbering of sensors is related to the order in which the sensors are enabled.
This is independent of the acquisition method (QMatrix or QTouch acquisition method libraries).

For example, consider this code snippet:
….

/* enable slider */
qt_enable_slider (CHANNEL_0, CHANNEL_2, AKS_GROUP_1, 16,
HYST_6_25, RES_8_BIT, 0);

/* enable rotor */
qt_enable_rotor (CHANNEL_3, CHANNEL_5, AKS_GROUP_1, 16, HYST_6_25,
RES_8_BIT, 0);

/* enable keys */
qt_enable_key (CHANNEL_6, AKS_GROUP_2, 10, HYST_6_25);
qt_enable_key (CHANNEL_7, AKS_GROUP_2, 10, HYST_6_25);

In the case above, the slider on channels 0 to 2 will be sensor 0, the rotor on channels 3-to-5 is
sensor 1 and the keys on channels 6 and 7 are sensor numbers 3 and 4 respectively.

When the touch status is reported or queried, the corresponding sensor positions and status
indicate the touch status. For example, the slider is in detect if “qt_measure_data.
qt_touch_status.sensor_states” bit position 0 is set. Similarly, the rotor on channels 3 to 5 is
sensor 1, and the keys on channels 6 and 7 are sensors 2 and 3 respectively.
However, the code could be re-arranged as follows to give a different sensor numbering.

/* enable rotor */
qt_enable_rotor (CHANNEL_3, CHANNEL_5, NO_AKS_GROUP, 16,
HYST_6_25, RES_8_BIT, 0);

/* enable keys */
qt_enable_key (CHANNEL_6, AKS_GROUP_2, 10, HYST_6_25);
qt_enable_key (CHANNEL_7, AKS_GROUP_2, 10, HYST_6_25);

 /* enable slider */
qt_enable_slider (CHANNEL_0, CHANNEL_2, NO_AKS_GROUP, 16,
HYST_6_25, RES_8_BIT, 0);

Now, the rotor is sensor 0, the keys are sensors 1 and 2, and the slider is sensor 3.

8207L-AT42-05/12 42

So, the order in which the user enables the sensors is the order in which the sensors are
numbered. Depending on the user requirements, the sensors can be configured in the preferred
order.
NOTE: In case of QMatrix, the channels on the Unused X lines (or) unused Y lines should be
ignored and not to be used as arguments in this API.

Ex: If the host application needs only 24 channels , there are two possible options.

1. In 32 (8x4 configuration), if X6 and X7 are unused, channel6, channel7,
channel14, channel15, channel 22, channel23, channel30, channel 31
cannot be used

2. In 32 (8x4 configuration), if Y3 is unused, channe24, channel25,
channel26, channel27, channel 28, channel29, channel30, channel 31
cannot be used

5.6.6.3 Filtering Signal Measurements

The ATMEL QTouch Library API provides a function pointer called “qt_filter_callback”. The user
can use this hook to apply filter functions to the measured signal values.

If the pointer is non-NULL, the library calls the function after library has made capacitive channel
measurements, but before the library has processed the channel information and determining the
sensor states.

ch
an

ne
l 0

ch
an

ne
l 1

ch
an

ne
l 2

ch
an

ne
l 3

ch
an

ne
l 4

ch
an

ne
l 5

ch
an

ne
l 6

ch
an

ne
l 7

QTouch/QMatrix Channel Acquisition Method

optional qt_filter_callback() function

channel_signals[]

modified channel_signals[]

post-processing

modified channel_signals[]

qt_touch_status.sensor_states[]
qt_touch_status_rotor_slider_values[]

Figure 5-10 : Block diagram to represent usage of filter callback function

Example: Averaging the Last Four Signal Values
1. Add a static variable in the main module:

43

/* filter for channel signals */
static uint16_t filter[QT_NUM_CHANNELS][4];

2. Add a filter function prototype to the main module:
/* example signal filtering function */
static void filter_data_mean_4(void);

 3. When configuring the ATMEL QTouch library, set the callback function pointer:

/* set callback function */
qt_filter_callback = filter_data_mean_4;

 4. Add the filter function:
void filter_data_mean_4(void)
{
uint8_t i;
/*
* Shift previously stored channel signal data.
* Store new channel signal data.
* Set library channel signal data = mean of last 4 values.
*/

for(i = 0u; i < QT_NUM_CHANNELS; i++)

{
filter[i][0] = filter[i][1];
filter[i][1] = filter[i][2];
filter[i][2] = filter[i][3];
filter[i][3] = qt_measure_data.channel_signals[i];
qt_measure_data.channel_signals[i] = ((filter[i][0] +
filter[i][1] +
filter[i][2] +
filter[i][3]) / 4u);
}

}

The signal values processed by the ATMEL QTouch Library are now the mean of the last four
actual signal values.

5.6.6.4 Allocating unused Port Pins for User Application

The GPIO pins within a port that are not used for QTouch or QMatrix acquisition methods can be
used for user application. The usage of pins for QTouch is based on the channels that are being
configured while enabling the sensors (keys/rotors/sliders).

The example below configuring 4 keys, a rotor and a slider shows how the pin configurability is
achieved by configuring the sensor channels. The code snippet configures a specific 10 channels
of a 16 channel library based on the GPIO port pins available for QTouch™.

Port Configuration:

 #define SNSK1 C
 #define SNS1 D
 #define SNSK2 A
 #define SNS2 B

Channel/Pin Configuration:
 /* enable a key on channel 0 */
 qt_enable_key(CHANNEL_0, AKS_GROUP_2, 10u, HYST_6_25);

8207L-AT42-05/12 44

 /* enable a slider on channels 2 to 4 */
 qt_enable_slider(CHANNEL_2, CHANNEL_4, AKS_GROUP_1, 16u, HYST_6_25,
RES_8_BIT, 0u);

 /* enable a key on channel 6 */
 qt_enable_key(CHANNEL_6, AKS_GROUP_2, 10u, HYST_6_25);

 /* enable a key on channel 7 */
 qt_enable_key(CHANNEL_7, AKS_GROUP_2, 10u, HYST_6_25);

 /* enable a rotor on channels 12 to14 */
 qt_enable_rotor(CHANNEL_12, CHANNEL_14, AKS_GROUP_1, 16u,
HYST_6_25, RES_8_BIT, 0u);

 /* enable a key on channel 15 */
 qt_enable_key(CHANNEL_15, AKS_GROUP_2, 10u, HYST_6_25);

The channel numbers 0,2,3,4,6,7 are allocated to pins 0,2,3,4,6,7 of (D,C) port pair respectively.
Pins 1 and 5 of ports C and D can be used for user application. Similarly the channel numbers
12,13,14,15 are allocated to pins 4,5,6,7 of (B,A) port pair respectively. Pins 1, 2, 3 and 4 of ports
B and A are again unused by the QTouch library and can be used for user application.

5.6.6.5 Disabling and Enabling of Pull-up for AVR devices

The Pull-up circuit available (in AVR devices) for each GPIO pin has to be disabled before
QTouch acquisition is performed. For tinyAVR and megaAVR devices the Pull-up circuit for all
GPIO port pins are enabled and disabled together. When user needs to configure the pins that
are not used by QTouch library for his application, he may enable the Pull-up circuit after QTouch
measurements are performed and disable them before the touch acquisition starts once again (as
shown in the code snippet below).

 /* Disable pull-ups for all pins */
MCUCR |= (1u << PUD); //MCUCR_PUD = 1u;

/* perform QTouch measurements */
qt_measure_sensors (current_time_ms_touch);

/* Enable pull-ups for all pins */

 MCUCR &= ~ (1u << PUD); //MCUCR_PUD = 0u;

For XMEGA devices the Pull-up circuit for each individual GPIO port pins can be configured
individually, by writing to the PINnCTRL register of the ports being used.

5.6.7 Constraints

5.6.7.1 QTouch acquisition method constraints

QTouch acquisition method libraries are available for different port combinations.

Some of the key constraints while configuring the sensors are

• Rotors/sliders have to be connected on three adjacent channels. (e.g. (1,2,3) or (3,4,5)
…) within the same port. Possible combinations are (0,1,2), (1,2,3) for a configuration
which supports 4 channels. Possible combinations (0,1,2), (1,2,3), (2,3,4), (3,4,5), (4,5,6),
(5,6,7) for a configuration which supports 8 channels.

45

• If two port pairs are used for the design, all the channels for a sensor have to be
connected on a single port pair. Combining channels from multiple ports is not possible
when designing sensors. e.g. It is not possible to have a rotor with channel numbers (
7,8,9) on a 16 channel library variant which uses two port-pairs.

Note: The above constraints are explained with respect to 8bit AVR. The same could be extended
to 32bit AVR and ATSAM for 32 channel libraries where each port has 32 pins.

5.6.7.2 QMatrix acquisition method constraints

QMatrix acquisition method libraries are available for a set of AVRs The library variants can be
configured to have port and pin assignments for X, Ya, Yb and SMP. Please refer to section 5.8.2
for port-pin configurability.

Some of the key constraints are

• The QMatrix acquisition method libraries internally use TIMER1 for the operation,
TIMER1 will not be available for critical sections of the code where the library is called.
But resources are available to the host application when the normal user’s application is
running.

• In case of XMEGA™ devices, the resources are used internal to the library and hence
cannot be used by the host application

o Timer/Counter 1 on PORTC (TCC1)
o Analog Comparator on PORTA (ACA)
o Event System Channel0 (EVSYS_CH0)

• The sensor channel number and the relation with X and Y lines strictly follows from the
table provided in the section Table 1.

• A rotor /slider sensor can be configured with 3 to 8 channels per rotor or slider depending
on the requirement of the application subject to the total number of channels available in
the library variant selected as listed below.

Number of
channels

X x Y Maximum Channels per ROTOR_SLIDER

4 4 x 1 4
8 4 x 2 4
16 4 x 4 4
16 8 x 2 8
32 8 x 4 8
56 8 x 7 8
64 8 x 8 8

• For example, 16 channel libraries with 4X and 4Y lines supports maximum of 4 channels

per Rotor/Slider. But, a 16 channel with 8X and 2Y lines supports maximum of 8
channels per Rotor/Slider.

• If the lines of the Drive and Receive electrode (X lines or the Y lines) share the same
lines with the JTAG, JTAG needs to be disabled. Please check the data sheet to ensure
that there are no conflicts between the X/Y lines and JTAG lines used for the device.

• YB line for a particular device cannot be changed and it has to be the configured to be
the ADC port of the selected device.

• The AIN0 pin of the device needs to be connected to the GND.
• In case of XMEGA devices, the reference pin for input to analog comparator is Pin7 of

PORTA with all the combinations of libraries supported. Hence, this needs to be
connected to GND

• Proper grounding should be taken care when the controller board and touch sensing
board are different.

8207L-AT42-05/12 46

• The channels used for an individual rotor or slider should all be on the same Y line.
• The maximum number of Rotors / Sliders supported by the QMatrix acquisition method

depends on the configuration. Refer to the Library_Selection_Guide.xls for details.
• Vcc should be kept at 4.5V or lower for reliable operation

5.6.7.3 Design Guidelines for QMatrix acquisition method systems

AVR Microcontrollers can use a number of clock sources, ranging from high precision external
crystals to less accurate resonators down to simple external RC circuits. Most AVR devices also
come with integrated RC oscillators. This provides a system clock source without additional cost
or board space. When using internal RC oscillators some considerations need to be taken. The
accuracy i.e. frequency of CMOS RC oscillators will vary slightly from device to device due to
process variance.

QMatrix acquisition method uses an internal timer to measure the discharge time of a capacitor,
and any frequency variation or fluctuation in the RC Oscillator will thus show up as a variance in
the measurement data. The application should for this reason be designed and tuned to allow for
such variance in the internal RC oscillator frequency. For most AVR microcontrollers, the rated
accuracy of the internal RC oscillator is 2%, and to have some headroom and guarantee a robust
and stable system, the designer should aim to follow these design rules:

 Reference Value should be in the 150-300 range
 Typical delta when touched should be at least 10% of the Reference Value
 Recommended threshold should be at least 5% of the reference value and at least 50%

of the typical delta (Higher value gives better robustness)
 Hysteresis should be as high as possible in noisy systems (50%)
 DI should be set to at least 4

If the design of the system does not comply with the rules above, special attention should be
taken when testing it to make sure that the design meets the desired performance. In systems
with big signal values and small deltas (i.e. less than 10%) it is recommended to either change
component values to conform to the 10% delta rule, or change to a higher precision clock source.

QTouch Studio is the preferred tool when checking and validating any QTouch Designs.

5.6.8 Frequency of operation (Vs) Charge cycle/dwell cycle times:
The library needs different charge / dwell cycles based on the operation and design. The
charge/dwell cycles are determined by the QT_DELAY_CYCLES parameter defined by the user.
The recommended range of charge/dwell cycle times that the user must select based on the
operating clock frequency of the Microcontroller is provided in the table below.

Fine tuning of the QT_DELAY_CYCLES to match the sensor design may be done by monitoring
the reference levels, and finding the charge/dwell time where the reference level has reached
>99% of maximum reference value seen. For QTouch acquisition method, the reference value will
decrease as the QT_DELAY_CYCLES is increased. For QMatrix acquisition method, the
reference value will increase with increase in QT_DELAY_CYCLES. If the cycle time is not
optimum, the design may experience temperature sensitivity.

Possible values:
The following table lists the possible values of QT_DELAY_CYCLES for both QTouch and
QMatrix acquisition method libraries.

Acquisition method Possible values

47

QTouch Any value from 1- 255 for 8bit AVR
3,4,5,10,25,50 for UC3 and ATSAM
libraries

QMatrix 1,2,3,4,5,10,25,50

Example:
When operating at 4 MHz, 1~10 cycle charge times are recommended (0.125us to 1.25us).

Table 2 : Frequency of operation
Frequency of

Microcontroller
(MHz))

microcontroller Cycle time
(us)

Suitable Charge Cycle times (or)
Suitable Dwell Cycle times
(us)

1 1 1 to 2 cycles (1us to 2us)
2 0.5 1 to 5 cycles (0.5us to 2.5us)

4 0.25 1 to 10 cycles (0.25us to 2.5us)
8 0.125 1 to 10 cycles (0.125us to 1.25us)

10 0.1 2 to 25 cycles (0.2us to 2.5us)
16 0.0625 2 to 25 cycles (0.125us to 1.5625us)

20 0.05 3 to 50 cycles (0.15us to 2.5us)
48 0.02083 5~50 cycles (0.104us to 1.04us)

>48 <0.02083 5 to < 50 (up to 255 cycles for 8bit AVR)

Note:

• For UC3 and ATSAM devices, 1 & 2 charge cycle delay times are not supported.

If the microcontroller is only used for Touch detection then running at the lowest frequency
possible for the desired touch response may provide the best power and EMC performance. If it
is also used for other functions then running at a higher frequency may be necessary. In some
power critical applications it may be worth switching the frequency on the fly, such as lowering the
frequency during touch detect API instead of using long cycle times, and then switching to a
higher frequency for non-touch code. It is necessary to carefully design timer operation when
change frequencies.

5.6.9 Interrupts
This section illustrates the usage of interrupts during qt_measure_sensors call.

The library disables interrupts for time-critical periods during touch sensing. These periods are
generally only a few cycles long, and so host application interrupts should remain responsive
during touch sensing. However, any interrupt service routines (ISRs) during touch sensing should
be as short as possible to avoid affecting the touch measurements or the application
responsiveness.

Interrupts are disabled once for each signal count/burst pulse and this is typically 65 instruction
cycles when Delay cycles (QT_DELAY_CYCLE=1).
The number of times interrupts are disabled during one measurement will depend on signal count
of a channel as well as the number of channels and port configuration like interport (SNS and
SNSK on different port)/intraport (SNS and SNSK on same port).

Example:

4 channel intraport case:
Channel0 is formed by PA0 and PA1 pin with signal count 300.
Channel1 is formed by PA2 and PA3 pin with signal count 200.
Channel2 is formed by PA4 and PA5 pin with signal count 250

8207L-AT42-05/12 48

Channel3 is formed by PA6 and PA7 pin with signal count 150
In the above case, the no of times interrupts disabled will be 300 (maximum signal count) as all
four channels burst together in case of intraport.

4 channel interport case:
Channel0 is formed by PA0 and PB0 pin with signal count 300.
Channel1 is formed by PA1 and PB1 pin with signal count 200.
Channel2 is formed by PA2 and PB2 pin with signal count 250
Channel3 is formed by PA3 and PB3 pin with signal count 150

In the above case, as bursting happens in odd and even pairs, so maximum signal counts in case
of both even and odd channels will be taken. Maximum signal count out of even channels
channel0 and channel2 is 300 and maximum signal count out of odd channels channel1 and
channel3 is 250.So total number of times interrupts disabled will be (300 + 250 = 550).

The recommended maximum ISR execution time is 1msec.If ISR time exceeds 1 ms then it may
result in charge leakage which will further lead to rise in signal value. Noise observed in the signal
value will increase. The 1msec ISR limit applies to the total time spent in an ISR during one
acquisition period, and applies only to QTouch and QMatrix. One acquisition period is the time to
complete one burst sequence. This will be the time required to do the 300 pulses situation in the
first example above. In the second example above the 1msec limitation applies to the 300 and
then the 250 pulses; 1msec of total ISR can occur during the 300 and another 1msec ISR can
occur during the 250. This is all about self discharge happening while doing a burst. In the
example below it would be perfectly OK to have a 1msec ISR happening every 5 msec.
If the ISR load is constant and synced with the acquisition (meaning the ISR takes a constant
amount of time and executes in the same amount of time during each burst sequence), the signal
will not suffer at all since the self discharge will be the same every time the acquisition is run. If
there is a strong variation in the total ISR execution time during acquisition this will appear as
noise in the signal due to the variable self discharge of the sample cap.

 The time to execute one measurement will depend on various parameters like sampling
capacitor, operating voltage, and different software parameters like QT_DELAY_CYCLES, CPU
frequency.
For single button with below parameters
Sampling Capacitor = 10 nf
CPU Freq= 4 MHZ
VCC= 5V
QT_DELAY_CYCLES=1
Qtouch takes around 2.6 msec for one channel.

Please note that none of the API functions should be called from a user interrupt.

5.6.10 Integrating QTouch libraries in your application
This section illustrates the key steps required in integrating the QTouch library in your application.

5.6.10.1 Directory structure of the library files

The QTouch library directory structure is as listed below

What Where Comments
Root
installation

Default directory is
C:\Program
Files\Atmel\Atmel_QTouch_Libraries_5.x\Generic_QTouch_Libraries

This is the default
directory path but the user
can install the directory in
desired location.

Header file ..\include touch_api.h is located in
this

49

directory.touch_api_2kdev
ic.h for 2K devices support
is also added in this
directory

Configurati
on and

assembler
routines

for
acquisition

QTouch acquisition
method libraries

8-bit
devices

..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QTouch\co
mmon_files

qt_asm_avr.h
qt_asm_tiny_mega.S
qt_asm_xmega.S
qt_asm_avr_config_2kdev
ice.h
qt_asm_tiny_mega_2kdev
ice.S

UC3 Not needed for UC3 devices

ATSAM Not needed for ATSAM devices

QMatrix acquisition
method libraries

8-bit
devices

..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\co
mmon_files

qm_asm_avr.h
qm_asm_tiny_mega.S
qm_asm_m8535_m16.S
qm_asm_xmega.S
qm_asm_tiny_mega_m64
_v3g4_avr51g1.S

UC3 ..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries\32bit_AV
R\UC3\QMatrix\common_files

touch_config.h
touch_qm_config32_asse
mbler.h
qm_asm_uc3c_gcc.x
qm_asm_uc3c_iar.s82

Library
files

QTouch acquisition
method libraries

8-bit
devices

..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QTouch\lib
rary_files

All libraries (.r90 for IAR
and .a for GCC) for the
supported 8 bit devices
are in this location.
Also r82 libraries for AVR
32 bit devices are also
here

UC3 ..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\32bit_AVR\UC3\QTouch\library_files

ATSAM ..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AT91SAM\SAM3\QTouch\library_file
s
..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AT91SAM\SAM4\QTouch\library_file
s

QMatrix acquisition
method libraries

8-bit
devices

..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\lib
rary_files

UC3 ..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries\32bit_AV
R\UC3\QMatrix\library_files

Example
Projects

QTouch acquisition
method libraries

8-bit
devices

..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QTouch\ex
ample_projects

All example projects using
the libraries above (IAR
and GCC) for the
supported devices are in

8207L-AT42-05/12 50

UC3 ..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\32bit_AVR\UC3\QTouch\example_pr
ojects

this location

ATSAM ..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries\AT91SA
M\SAM3\QTouch\example_projects
..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries\AT91SA
M\SAM4\QTouch\example_projects\S
AM4S_XPLAINED_DEMO_APPLICA
TION1

QMatrix acquisition
method libraries

8-bit
devices

..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\ex
ample_projects

UC3 ..\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries\32bit_AV
R\UC3\QMatrix\example_projects

5.6.10.2 Integrating QTouch acquisition method libraries in your application

The following steps illustrate how to add QTouch acquisition method support in your application.

1) QTouch acquisition method library variants are offered for IAR and AVR Studio/GCC tool
chains. First step is to select the compiler tool chain to be used based on the code and
data memory requirements. The list of supported compiler tool chains can be found in
5.7.1.2.
Use the library selection guide (C:\ Program Files\Atmel\Atmel_QTouch_Libaries_5.x\
Library_Selection_Guide.xls) to select the QTouch acquisition method library variant
required for the device.

a. There are specific library variants distributed for each microcontroller. You would
need the following parameters to identify the right library variant to be used in
your application

i. The microcontroller to be used for the application.
ii. The acquisition method to be used for the application.
iii. The number of channels you need for the application.
iv. Whether Rotor and/or Slider support required in the application.
v. The number of rotors and/or slider needed for the application.

b. There are specific variants of the library which is pre-built with a specific
configuration set supported. Use the library selection guide (C:\ Program
Files\Atmel\ Atmel_QTouch_Libaries_5.x\Library_Selection_Guide.xls) to find the
sample project using the QTouch acquisition method library variant.

2) Define the constants and symbol names required
a. The next step is to define certain constants and symbols required in the host

application files where the touch API is going to be used.
b. The constant/symbol names are as listed in the table below.
c. The constant/symbol definitions can be placed in the touch_config.h file. The

user may modify these defined values based on the requirements.

Table 3 : Constant and symbol name definitions required to use the QTouch acquisition
method libraries
Symbol / Constant name Range of values Comments

QTOUCH This macro has to be defined in
order to use QTouch libraries.

51

SNS1 & SNSK1 Refer to library selection guide. To be used if only single
port pair is needed for the
design.

SNS1 – SNSK1
&
SNS2 – SNSK2

 Refer to library selection guide. To be used if two port pairs
are needed for the design.

_SNS1_SNSK1_SAME_PORT_ Comment/uncomment define To be enabled if the same
port is used for SNSK1 and
SNS1 pins for QTouch. If
SNSK1 and SNS1 pins are
on different ports then this
definition is not required.

_SNS2_SNSK2_SAME_PORT_ Comment/uncomment define To be enabled if the same
port is used for SNSK2 and
SNS2 pins for QTouch. If
SNSK1 and SNS1 pins are
on different ports then this
definition is not required.

QT_NUM_CHANNELS 4, 8, 12, 16 for tinyAVR,
megaAVR and XMEGA device
libraries and 8, 16, 32 for UC3
device libraries.

_ROTOR_SLIDER_ Rotor / slider can be added to
the design, if this macro is
enabled.

A library with rotor / slider
functionality already
available needs to be
selected if this macro is to
be enabled.

QT_DELAY_CYCLES 1 to 255 Please refer to section
5.6.8.

_POWER_OPTIMIZATION_
(Required only for ATtiny and ATmega
libraries. ATxmega and UC3 libraries by
default optimized for power without any
limitations)

0 or 1 Used to reduce the power
consumed by the library.
When power optimization is
enabled the unused pins,
within a port used for
QTouch, may not be usable
for interrupt driven
applications. Spread
spectrum noise reduction is
also disabled when power
optimization is enabled.

_TOUCH_ARM_ To be defined when using
ATSAM libraries

For ATSAM libraries only.

QTOUCH_STUDIO_MASKS This macro needs to be defined
if QTouch Studio Pin
Configurator Wizard.is used to
generate the SNS and SNSK
masks.

Please refer to section 5.8.1

_STATIC_PORT_PIN_CONF_ This macro needs to be defined
only in case of 4 and 8 channel
libraries with interport
configuration and pin
configurability.

Please refer to section 5.8.1

4) Using QTouch API’s in your application to add touch functionality

8207L-AT42-05/12 52

a. The clock, host application and other peripherals needed by the host application
needs to be initialized.

b. In your application, create, initialize and configure the sensors.
i. The APIs of interest are qt_enable_key/rotor/slider().see sections 5.6.5.2,

5.6.5.3 and 5.6.5.4.
c. The channel configuration parameters need to be set by calling the

qt_set_parameters() (see section 5.6.5.1.
d. Once the sensors are configured, qt_init_sensing() has to be called to trigger the

initialization of the sensors with the configuration defined in steps above.
d. Provide timing for the QTouch libraries to operate. i,e the QTouch libraries do not

use any timer resources of the microcontroller. The Host application has to
provide the required timing and also call the API’s at the appropriate intervals to
perform touch sense detect operations.

NOTE: The ATSAM example applications provided with the libraries illustrate the
usage for the evaluation kits supported by the library. Please refer to the main.c files
for reference.

5) Adding the necessary source files
The following files are to be added along with the touch library and user application
before compilation:

• ATtiny, ATmega devices - touch_api.h, qt_asm_avr.h, touch_config.h and
qt_asm_tiny_mega.S

• ATxmega devices - touch_api.h, qt_asm_avr.h, touch_config.h and
qt_asm_xmega.S

• UC3 devices – touch_api.h
• ATSAM devices - touch_api.h and touch_qt_config.h

6) General application notes
• The clock, host application and other peripherals needed by the host application

needs to be initialized.
• Ensure that there are no conflicts between the resources used by the touch

library and the host application.
• Ensure that the stack size for your application is adjusted to factor in the stack

depth required for the operation of the touch libraries.

5.6.10.2.1 Example for 8bit AVR
The example below will explain in detail the steps to follow for library selection.

Criteria Selection Notes
Microcontroller ATMega1280
IDE and compiler tool chain
used AVR STUDIO® IDE

and GNU compiler

The GCC compiled variant of the libraries for the
device selected needs to be used.

Number of Keys required
for the application

3 Each key requires 1 QTouch acquisition channel

Rotors and sliders required Yes
Number of Rotors and
Sliders required

3 Each rotor / slider will require 3 channels.

Number of Channels
required for the application
(should be the sum of all
channels required for all the
keys ,rotors and sliders
used in the design)

12 3 Keys + (3 rotors x 3 channels per rotor/slider)
 12 channels

Charge cycle time required
for the design

1 cycle Assuming the device is configured with a clock
frequency of 4Mhz

Number of ports needed 3 ports This is determined based on the number of
channels required and the routing required for the
channels SNS and SNSK pins to the ports
For this design, 24 pins are required and we need

53

3 ports to support the sensors.
Choice of ports available
for the design

SNS/
SNSK
Pair1
ports

SNS1 Port
: A

The choice of ports for the port pairs is limited and
can be found in the section 5.7.1.5

SNSK1 Port
: A

SNS/
SNSK
Pair 2
ports

SNS2 Port
: B

SNSK2 Port
: C

Is there a need for reduced
power consumption (and
reduced execution time)?

POWER
OPTIMIZATION_ = 1

Enabling _POWER_OPTIMIZATION_ will lead to
a 40% reduction in power consumed by the
library, but at the expense of reduced external
noise immunity. When power optimization is
enabled, the unused pins within a port used for
QTouch, may not be usable for interrupt driven
applications. This option is available only for
ATtiny and ATmega devices.

SNS1 and SNSK1 pins use
the same port.

_SNS1_SNSK1_SAME
PORT

The _SNS1_SNSK1_SAME_PORT_ symbol
needs to be defined as port A is used for both
SNS1 and SNSK1 pins.

Given the above requirements for the applications, the first step is to select the right library
variant required.

Step 1: Selecting the right library variant

Referring to the library selection guide, we see that there are a few variants of libraries supported
for ATmega1280. Since the application requires 12 channels and rotor slider support, one has to
select a library variant which supports at least 12 channels or more along with 3 Rotors/Sliders.
Hence we select the 12 channel library variant for GCC complier which supports the required
number of sensors/channels. This works out to be libavr51g1_12qt_k_3rs.a

Step 2: Defining the constants / symbols in the project space
In the host application file (say main.c), define the following constants and symbols

#define QTOUCH_
#define QT_NUM_CHANNELS 12
#define SNSK1 A
#define SNS1 A
#define SNSK2 B
#define SNS2 C
#define QT_DELAY_CYCLES 1
#define _POWER_OPTIMIZATION_ 1
#define _SNS1_SNSK1_SAME_PORT_
NOTE: The above definitions are available in touch_config.h file. Alternatively, you can
define these in your IDE’s project options or have them defined in a separate header file.

Step 3: Usage of library API’s

Now, you can use the touch API’s to create, initialize and perform touch sensing. Please refer to
the sample applications in section 5.6.11.2 for reference. These sample applications illustrate the
usage of the API’s and the sequence of operation.

Step 4: Adding necessary source files for compilation

8207L-AT42-05/12 54

The source files needed for compiling your application along with the touch library are
touch_api.h, touch_config.h and qt_asm_tiny_mega.S.

5.6.10.2.2 Example for ATSAM
The example below will explain in detail the steps to follow for library selection.

Criteria Selection Notes
Microcontroller AT91SAM3S
IDE and compiler tool chain used IAR Workbench and GNU compiler The GCC compiled

variant of the libraries for
the device selected needs
to be used.

Number of Keys required for the
application

3 Each key requires 1
QTouch acquisition
channel

Rotors and sliders required Yes
Number of Rotors and Sliders required 3 Each rotor / slider will

require 3 channels.
Number of Channels required for the
application (should be the sum of all
channels required for all the keys ,rotors
and sliders used in the design)

12 3 Keys + (3 rotors x 3
channels per rotor/slider)
 12 channels

Charge cycle time required for the design 5 cycles Assuming the device is
configured with a clock
frequency of 48Mhz

Number of SNS/SNSK port pairs needed 2 pairs This is determined based
on the free PIO of the
board

Choice of ports available for the design SNS/SNSK
Pair1 port

SNS1 Port: A The choice of ports for
the port pairs is limited
and can be found in the
section 5.7.1.5 SNSK1 Port: A

SNS/SNSK
Pair 2 port

SNS2 Port: B

SNSK2 Port: B

Given the above requirements for the applications, the first step is to select the right library
variant required.

Step 1: Selecting the right library variant

Referring to the library selection guide, we see that there are a few variants of libraries supported
for AT91SAM3S. One library is for IAR and the other is for GNU. If we want to use IAR
Workbench, we use the library name: libsam3s-32qt-k-8rs-iar.a.

Step 2: Defining the constants / symbols in the project space
In IAR, change preprocessor options by adding the good defines:

_TOUCH_ARM_
QTOUCH
SNS1=B
SNSK1=B
SNS2=A
SNSK2=A
QT_NUM_CHANNELS=32
_ROTOR_SLIDER_
QT_DELAY_CYCLES=10

55

_SNS1_SNSK1_SAME_PORT_
_SNS2_SNSK2_SAME_PORT_

Step3: Usage of library API’s

Now, you can use the touch API’s to create, initialize and perform touch sensing.

5.6.10.2.3 Checklist of items for integrating QTouch acquisition method libraries
The following is a checklist of items which needs to be ensured when integrating QTouch
acquisition method libraries

 The clock prescaler register (e.g. CLKPR, XDIV) needs to be configured correctly based
on the device selected. Some devices have clock frequency selection based on fuses. It
has to be ensured the fuses are set correctly in such cases.

 It is recommended to disable PULL-UP resistor on all port pins used for touch sensing on
the device selected (e.g. PUD bit in MCUCR, SFIOR for a few of the tinyAVR and
megaAVR devices Please refer to the Data sheet of the selected device).

 The 16 bit timer in each device has been used for performing touch measurements
periodically. The datasheet for all the devices have to be checked to ensure that the
correct timer peripheral and its registers are used (file: main.c).

 The interrupt vector macro may also change from device to device and this needs to be
verified in the datasheet for the device used.

 Check if the timer is configured correctly to support the measurement period needed (e.g.
25msec or 50 msec).

 The sample applications for the evaluation kits and supported devices illustrate the
proper initialization sequence and usage of the timer resources (file: main.c). Please use
this as a reference for your application design.

The host application must provide the current time to the library. This information is passed to the
library as an argument to the function qt_measure_sensors()”. This is used for time-based library
operations such as drift compensation.

5.6.10.3 Integrating QMatrix acquisition method libraries in your application

5.6.10.3.1 Example for 8bit AVR

Based on the application design needs, the user needs to select the right library variant and the
configuration to be used along with the variant. This section illustrates the steps required to select
the right QMatrix acquisition method library variant and configuration for your application. QMatrix
acquisition method library Variants are offered for IAR and AVR-GCC tool chains. First step is to
select the compiler tool chain for which the libraries are required. The list of supported compiler
tool chains can be found in section 5.7.2.2

There are specific library variants distributed for each microcontroller. For your design, you would
need the following information to select the correct library variant

a. Device to be used for the design
b. The number of touch sensing channels needed by the application – Then identify the

Maximum number of channels required for the design that are supported by the library.
c. Number of X lines to be used in the design

a. The ports on which your design permits to have the X lines
b. The X lines can be spread on a maximum of three ports, the more ports used the

more is the code memory requirement by the library.
d. Number of Y lines to be used in the design

a. The port-pins ports on which your design permits to have the Y lines

8207L-AT42-05/12 56

e. Do you need support for Rotors and/or Sliders in your design
a. If yes, how many rotors/sliders would be needed?
b. Based on a) above, identify the maximum number of rotors sliders that the library

supports
f. Which compiler platform you intend to use to integrate the libraries – IAR or AVR -GCC

Follow the steps listed below to arrive at the right library variant

1) Select the device from the list of supported devices listed in 5.7.2.4.1
2) Select the right library variant for the device selected from the selection guide available

in
C:\ Program Files\Atmel\Atmel_QTouch_Libaries_5.x\Library_Selection_Guide.xls
Each variant supports

a. a specific number of channels,
b. Supports a specific configuration of X x Y matrix pins (eg 4 x 2 for 4 - X pins & 2

- Y pins)
c. has support for Rotor / Slider (either supported or not)
d. support is available for IAR and/or GCC compiler tool chain
e. support for specific number of rotors sliders.

3) Define the constants and symbol names required
a. The next step is to define certain constants and symbols required in the host

application files where the touch API is going to be used. These values are
derived from the parameters defined in step 2 for your application

b. The constant/symbol names are as listed in the table below
c. The constant/symbol definitions can be placed in any of the following

i. In the user’s ‘C’ file prior to include touch_api.h in the file
ii. Modifying the defines in a touch_config.h available in the project folder

57

Table 4 :List of configurable parameters for touch library usage.

Symbol / Constant
name

Range of values Comments

QMATRIX Symbol defined to indicate
QMatrix acquisition method is
required

Define this symbol to indicate QMatrix
acquisition method is required

QT_NUM_CHANNELS The number of channels the
library supports.(Possible
values:4,8,16,32,56,64).
Note: 56 channel for only
ATxmega Devices.

Value should be same as the number of
channels that the library supports

NUM_X_LINES The number of X lines the
library supports.(Possible
values:4,8)

Value should be same as the number of X
lines that the library supports. Refer to
library selection guide

NUM_Y_LINES The number of Y lines the
library supports.(Possible
values:1,2,4,7,8)
Note: 7 Y-lines for only
ATxmega Devices)

Value should be same as the number of Y
lines that the library supports. Refer to
library selection guide

_ROTOR_SLIDER_ Symbol defined if Rotor and/or
slider is required

Needs to be added in case user needs to
configure ROTOR/SLIDER
Needs to be removed for ALL KEYS
configuration

QT_MAX_NUM_ROTO
RS_SLIDERS

Maximum number of
rotors/sliders the library
supports(possible
values:0,2,4,8)

Subject to support for rotors/sliders in the
library selected.

QT_DELAY_CYCLES Possible values
:1,2,3,4,5,10,25,50

Please refer to section 5.6.8

NUM_X_PORTS Number of ports on which the
X lines needs to be spread.
(Possible values 1,2,3)

Maximum number of ports that the X lines
can spread is 3.
Note: Code memory required increases
with the increase in NUM_X_PORTS

PORT_X_1 First IO port for configuring the
X lines.Any IO port available
with the device.

Drive electrode for touch sensing using
QMatrix acquisition
Valid when NUM_X_PORTS =1,2,3

PORT_NUM_1 1 Please donot edit this macro
Valid when NUM_X_PORTS =1,2,3

PORT_X_2 Second IO port for configuring
the X lines. Any IO port
available with the device.

Drive electrode for touch sensing using
QMatrix acquisition
Valid when NUM_X_PORTS =2,3

PORT_NUM_2 2 Please donot edit this macro
Valid when NUM_X_PORTS =2,3

PORT_X_3 Third IO port for configuring
the X lines. Any IO port
available with the device.

Drive electrode for touch sensing using
QMatrix acquisition
Valid when NUM_X_PORTS =3

PORT_NUM_3 3 Please donot edit this macro
Valid when NUM_X_PORTS =3

PORT_YA Any IO port available with the
device.

Receive electrode for touch sensing using
QMatrix acquisition

PORT_YB ADC port available for the
device.

Receive electrode for touch sensing using
QMatrix acquisition

PORT_SMP Any IO port available with the
device.

Port of the Sampling pin for touch sensing
using QMatrix acquisition

SMP_PIN Any IO port available with the
device.

Sampling pin for touch sensing using
QMatrix acquisition

ATXMEGA Symbol defined if an ATxmega
Device is used for QMatrix
sensing technology

Needs to be added if the device to be
supported is ATxmegaxxxx

8207L-AT42-05/12 58

SHARED_YAYB Possible values:
0 or 1.

#define SHARED_YAYB 1 in case YA and
YB are on same port else 0.

Once you have selected the right library variant and configuration parameters for the application,
follow the steps outlined below to integrate the library variant in your application.

4) Fill in the arrays x_line_info_t x_line_info[NUM_X_LINES] y_line_info_t
ya_line_info[NUM_Y_LINES] and y_line_info_t yb_line_info[NUM_Y_LINES] using the
pin configuration wizard provided by the QTouch Studio.

5) Copy the library variant that was selected in step one to your project’s working directory
or update your project to point to the library selected.
Include the “touch_api.h” header file and assembler source file from the QTouch library in
your application. The touch_api.h can be found in the release package at C:\Program
Files\Atmel\Atmel_QTouch_Libraries_5.x\ Generic_QTouch_Libraries
\AVR_Tiny_Mega_XMega\QMatrix\common_files. The assembler files mentioned below
could be found at the location C:\Program Files\Atmel\Atmel_QTouch_Libraries_5.x\
Generic_QTouch_Libraries \AVR_Tiny_Mega_XMega\QMatrix\common_ files

a. qm_asm_tiny_mega.S in case of ATtiny and ATmega devices.
b. qm_asm_xmega.S in case of ATxmega devices.
c. qm_asm_m8535_m16.S in case of ATmega8535 and ATmega16 devices.

6) Initialize/create and use the touch api’s in your application

a. In your application, create, initialize and configure the sensors.
a. The APIs of interest are qt_enable_key/rotor/slider().see sections 5.6.5.2,

5.6.5.3 and 5.6.5.4
b. configure the global configuration parameters valid for all the sensors in the

library
c. Provide timing for the QTouch libraries to operate. i,e. the QTouch libraries do

not use any timer resources of the microcontroller. The Host application has to
provide the required timing and also call the API’s at the appropriate intervals to
perform touch sense detect operations

7) General application notes
a. The clock, host application and other peripherals needed by the host application

needs to be initialized.
b. The QMatrix acquisition method libraries internally use TIMER1 for their

operation.
c. Ensure that there are no conflicts between the resources used by the touch

library and the host application
d. Ensure that the stack size is adjusted to factor in the stack depth required for the

operation of the touch libraries.

5.6.10.3.1.1 Example

The example below will explain in detail the steps to follow for library selection.

Criteria Selection Notes

Microcontroller ATTiny88 List of supported devices can be

found at

Library_Selection_Guide.xls

Number of

channels required

for the application

6 number channels available for a

Tiny88 is listed in

Library_Selection_Guide.xls

Number of X lines Based on the number of channels, Since 3 X- lines (6 channels) are

59

needed since 8 channels is needed, 4 X lines

are supported.

NUM_X_LINES is 4

used, Do not initialize 4th element

in x_line_info[NUM_X_LINES].

Hence channel6, channel7 need

not be used.

Number of Y lines

needed

Based on the number of channels,

since 8 channels is needed, 2 Y lines

are supported

NUM_Y_LINES is 2.

Rotors and sliders

required and

Number of

ROTOR/SLIDERS

Yes

2

Library variants supported for

ATTiny88 is listed in the

Library_Selection_Guide.xls

X_LINES on pins

as below(4-X lines)

X0- B0, X1- D2,X3

– B7, X4 – B5

FILL_OUT_X_LINE_INFO(1,0),

FILL_OUT_X_LINE_INFO(2,2),

FILL_OUT_X_LINE_INFO(1,7),

Main file has to be edited based

on the configuration. Refer to

section 5.8.2.1 . Refer channel

numbering from the

section5.6.6.1.2

 Or

This can be filled from the output

of the pin configurator tool in

QTouch Studio. Please refer to

section 5.8.2

Y_LINES on pins

as below (2 Y-

Lines)

Y0A- D0, Y0B- C1,

Y1A-D5, Y1B-C4,

FILL_OUT_YA_LINE_INFO(0),

FILL_OUT_YA_LINE_INFO(5),

FILL_OUT_YB_LINE_INFO(1),

FILL_OUT_YB_LINE_INFO(4),

Main file has to be edited based

on the configuration. Refer to

section 5.8.2.1

 Or

This can be filled from the output

of the pin configurator tool in

QTouch Studio. Please refer to

section 5.8.2

NUM_X_PORTS 2 Since X lines are spread on a

multiple(2) ports: PORTB, PORTD

Compiler tool chain IAR Supported compiler tool chains

listed in 5.7.2.2

Choice of ports

available for the

design

PORT_X_1 = B

PORT_X_2 = D

Any pins that are not conflicting

with the host application and

follow the configuration supported

by library can be used.

YA Line on PORTD

YB Line on PORTC

8207L-AT42-05/12 60

SMP Pin on PORTD pin 7 Or

This can be filled from the output

of the pin configurator tool in

QTouch Studio. Please refer to

section 5.8.2

QT_DELAY_CYCLES of 4

Choice of Shared

Ya and Yb on same

port

SHARED_YAYB This should be defined as 0 if YA

and YB not shared on same port

else 1 if shared on same port.

Given the above requirements for the applications, the first step is to select the right library
variant required.

Step 1:
Select the Device that suits the requirements based on the touch sensing channels needed from
the library selection guide available at C:\ Program Files\Atmel\ Atmel_QTouch_Libaries_5.x\
Library_Selection_Guide.xls

Step 2:
From the Library_selection_Guide.xls list,, we see that there are a few variants of libraries
supported for AT Tiny device. Since the application requires 6 channels and rotor slider support,
one has to select a library variant which supports at least 6 channels or more. Hence we select
the 8 channel library which supports the required Port combination and the delay cycle preferred
which works out to be the variant

• libv1g1s1_8qm_4x_2y_krs_2rs.r90

Step 3:
Defining the constants / symbols in the project space or modifying in touch_config.h
In the host application file (say main.c), define the following constants and symbols

#define _QMATRIX_
#define QT_NUM_CHANNELS 8
#define NUM_X_LINES 4
#define NUM_Y_LINES 2
#define NUM_X_PORTS 2
#define PORT_X_1 B
#define PORT_NUM_1 1
#define PORT_X_2 D
#define PORT_NUM_2 2
#define PORT_YA D
#define PORT_YB C
#define PORT_SMP D
#define SMP_PIN 7
#define QT_DELAY_CYCLES 4
#define ROTOR_SLIDER_
#define QT_MAX_NUM_ROTORS_SLIDERS 2
#define SHARED_YAYB 0
NOTE: The above definitions are available in touch_config.h file. Alternatively, you can
define these in your IDE’s project options or have them defined in a separate header file.

Note:
1. Some of these macro’s can be taken from the output of the Pin configurator tool from

QTouch Studio. Refer to section 5.8.2

61

2. These can also be modified in the touch_config.h, after defining the _QMATRIX_ in the
project space.

3. In case XMEGA device is used for QMatrix the symbol __ATXMEGA_ has to be included
in the Project space along with the symbols mentioned above.

Step 4:
Filling Arrays in the main.c file
According to the pin availability for the touch sensing, initialize the arrays in the main.c file as
below:

x_line_info_t x_line_info[NUM_X_LINES]= {
 FILL_OUT_X_LINE_INFO(1,0u),
 FILL_OUT_X_LINE_INFO(2,2u),
 FILL_OUT_X_LINE_INFO(1,7u),
};

y_line_info_t ya_line_info[NUM_Y_LINES]= {
 FILL_OUT_YA_LINE_INFO(0u),
 FILL_OUT_YA_LINE_INFO(5u),
};
y_line_info_t yb_line_info[NUM_Y_LINES]= {
 FILL_OUT_YB_LINE_INFO(0u),
 FILL_OUT_YB_LINE_INFO(5u),
};

Note:

1. This part of the snippet can be taken from the output of the Pin configurator tool from
QTouch Studio.

Step 5:
Usage of libraries
Now, you can use the touch API’s to create, initialize and perform touch sensing. Please refer to
the sample applications in section 5.6.11.3 for reference. These sample applications illustrate the
usage of the API’s and the sequence of operation

5.6.10.3.1.2 Resources used by QMatrix acquisition method libraries

The following additional resources are used by the QMatrix acquisition method libraries.

• One Analog Comparator
• One internal Timer (Usually Timer1 depending on the availability on particular

microcontroller)
• One ADC Multiplexer(The critical section of the touch sensing library disables the use of

ADC as conversion unit and enables the same ADC as a multiplexer, but the user can
use the ADC for conversion in rest of his application code)

• The ADCMUX is used by the library during the touch sensing acquisition, however it is
restored with the value from host application before exiting the qt_measure_sensors().
Such that the ADC is available to the host application for conversion.

In case of XMega devices, the resources are used internal to the library and hence cannot be
used by the host application

8207L-AT42-05/12 62

o Analog Comparator0 on PORTA (AC0 on PORTA)
o Timer/Counter1 on PORTC (TCC1)
o Event System Channel0 (EVSYS_CH0)

5.6.10.3.2 Example for 32bit AVR

Based on the application design, the user needs to select the right library variant and the
configuration to be used along with the variant. This section illustrates the steps required to select
the right QMatrix acquisition method library variant and configuration for your application.

For your design, you would need the following information to select the correct library variant

a. Device to be used for the design(only AT32UC3C0512 supported)
b. The number of touch sensing channels needed by the application – Then identify the

Maximum number of channels required for the design that are supported by the library.
c. Number of X lines to be used in the design

a. The port on which your design permits to have the X lines
b. The X lines can be spread on a single port.

d. Number of Y lines to be used in the design
c. The port-pins ports on which your design permits to have the Y lines

e. Do you need support for Rotors and/or Sliders in your design
d. If yes, how many rotors/sliders would be needed?
e. Based on a) above, identify the maximum number of rotors sliders that the library

supports
f. Which compiler platform you intend to use to integrate the libraries – IAR or AVR -GCC

After selecting the right library variant, following steps are to be performed

1) Define the constants and symbol names required

a. The next step is to define certain constants and symbols required in the host
application files where the touch API is going to be used. These values are
derived from the parameters defined in step 2 for your application

b. The constant/symbol names are as listed in the table below
c. The constant/symbol definitions can be placed in any of the following

iii. In the user’s ‘C’ file prior to include touch_api.h in the file
iv. Defined user’s project options.
v. Modify the defines in a touch_config.h

Symbol / Constant
name

Range of values Comments

QMATRIX Symbol defined to indicate
QMatrix acquisition method
is required

Define this symbol to indicate QMatrix
acquisition method is required

QT_NUM_CHANNEL
S

The number of channels
the library supports.(
Possible
values:4,8,16,24,32,64).

Value should be same as the number
of channels that the library supports

NUM_X_LINES The number of X lines the
library supports.(Possible
values:4,8)

Value should be same as the number
of X lines that the library supports.
Refer to library selection guide

NUM_Y_LINES The number of Y lines the
library supports.(Possible
values:1,2,3,4,8)

Value should be same as the number
of Y lines that the library supports.
Refer to library selection guide

_ROTOR_SLIDER_ Symbol defined if Rotor Needs to be added in case user

63

and/or slider is required needs to configure ROTOR/SLIDER
Needs to be removed for ALL KEYS
configuration

QT_MAX_NUM_ROT
ORS_SLIDERS

Maximum number of
rotors/sliders the library
supports(possible
values:0,2,3,4,8)

Subject to support for rotors/sliders in
the library selected.

QT_DELAY_CYCLES Possible values
:1,2,3,4,5,10,25,50

Please refer to section 5.6.8

PORT_X_1 First IO port for configuring
the X lines.Any IO port
available with the device.

Drive electrode for touch sensing
using QMatrix acquisition

PORT_YA Any IO port available with
the device.

Receive electrode for touch sensing
using QMatrix acquisition

PORT_YB Analog Comparator port
available for the device.

Receive electrode for touch sensing
using QMatrix acquisition

PORT_SMP Any IO port available with
the device.

Port of the Sampling pin for touch
sensing using QMatrix acquisition

SMP_PIN Any IO port available with
the device.

Sampling pin for touch sensing using
QMatrix acquisition

Once you have selected the right library variant and configuration parameters for the application,
follow the steps outlined below to integrate the library variant in your application.

1) Fill in the arrays x_line_info_t x_line_info[NUM_X_LINES] y_line_info_t
ya_line_info[NUM_Y_LINES] and y_line_info_t yb_line_info[NUM_Y_LINES] as given in
main.c file.

Filling Arrays in the main.c file
According to the pin availability for the touch sensing, initialize the arrays in the main.c
file as below:

x_line_info_t x_line_info[NUM_X_LINES]= {
 FILL_OUT_X_LINE_INFO(1,0u),
 FILL_OUT_X_LINE_INFO(1,2u),
 FILL_OUT_X_LINE_INFO(1,7u),
 FILL_OUT_X_LINE_INFO(1,15u),
};

First argument of FILL_OUT_X_LINE_INFO should always be 1 as X port is only on one
port.Second arguments denotes the pins on that particular port.

y_line_info_t ya_line_info[NUM_Y_LINES]= {
 FILL_OUT_YA_LINE_INFO(0u),
 FILL_OUT_YA_LINE_INFO(5u),
};

y_line_info_t yb_line_info[NUM_Y_LINES]= {
 FILL_OUT_YB_LINE_INFO(7u),
 FILL_OUT_YB_LINE_INFO(22u),
};

Yb lines are one of the inputs of the Analog Comparators.

8207L-AT42-05/12 64

2) Copy the library variant that was selected in step 1 to your project’s working directory or
update your project to point to the library selected.
Include the “touch_api.h” header file and assembler source file from the QTouch library in
your application. The touch_api.h can be found in the release package at C:\Program
Files\Atmel\Atmel_QTouch_Libraries_5.x\Generic_QTouch_Libraries\include. The
assembler files mentioned below could be found at the location C:\Program
Files\Atmel\Atmel_QTouch_Libraries_5.x\Generic_QTouch_Libraries\32bit_AVR\UC3\Q
Matrix\common_files

e. qm_asm_uc3c_gcc.x in case of GCC compiler
f. qm_asm_uc3c_iar.s82 in case of IAR compiler.

3) Initialize/create and use the touch api’s in your application

d. In your application, create, initialize and configure the sensors.
a. The APIs of interest are qt_enable_key/rotor/slider().see sections 5.6.5.2,

5.6.5.3 and 5.6.5.4
e. configure the global configuration parameters valid for all the sensors in the

library
f. Provide timing for the QTouch libraries to operate. i,e. the QTouch libraries do

not use any timer resources of the microcontroller. The Host application has to
provide the required timing and also call the API’s at the appropriate intervals to
perform touch sense detect operations

4) General application notes
g. The clock, host application and other peripherals needed by the host application

needs to be initialized.
h. The QMatrix acquisition method libraries for 32 Bit devices internally use TIMER0

with channel0 for their operation.
i. Ensure that there are no conflicts between the resources used by the touch

library and the host application

5.6.10.3.2.1 Resources used by QMatrix acquisition method libraries for 32 Bit device

Devices supported by 32 Bit Qmatrix Acquisition libraries are:

1. AT32UC3C0512

The following additional resources are used by the QMatrix acquisition method libraries.

• Four Analog Comparator
• One internal Timer (Timer0 with channel0)
• Two Analog Comparator Interface ACIFA0/1.
• Event System Channel 16 is used.

The device has two Analog comparator interfaces ACIFA0 and ACIFA1 .Each interface
provides the flexibility to configure two analog comparators ACA and ACB comparators..UC3C
has Four Comparators (AC0A , AC1A , AC0B , AC1B), So there are 10 Possible Yb lines as
given in table below.

User has flexibility to configure maximum 8 Yb lines for maximum 64 channel libraries.Below
table states the Yblines which can be configured

Yb LInes of the Four Port A

65

Analog Comparators Pins

AC0AN0(AC0A Comparator) PA22

AC0AN1(AC0A Comparator) PA27

AC0BP0(AC0A Comparator) PA23

AC1AN0(AC1A Comparator) PA13

AC1AN1(AC1A Comparator) PA07

AC1BP0(AC1A Comparator) PA14

AC0BN0(AC0B Comparator) PA21

AC0BN1(AC0B Comparator) PA29

AC1BN0(AC1B Comparator) PA15

AC1BN1(AC1B Comparator) PA09

These Yb lines are the negative input pins of the analog comparator.To use the library, the below
table shows the lines which are externally grounded for Proper Qmatrix operation

Positive Input Pins of the Four
Analog Comparators

Port A
Pins

AC0AP0(AC0A Comparator) PA20

AC0BP1(AC0B Comparator) PA28

AC1AP0(AC1A Comparator) PA12

AC1BP1(AC1B Comparator) PA08

If only one comparator is used , then the corresponding pin of that comparator is properly
externally grounded.Above table shows the Analog comparator usage and the corresponding
lines which needs to be grounded.

The Port pin configurability is provided in the library to select any port for Ya or X lines.The
Port for Yb lines is fixed which is PORTA as these lines are inputs of the Analog comparators
which are fixed pins of PORTA.

X,YA,YB,SMP
Configurations

Ports on UC3C
PORTA PORTB PORTC PORTD

X Yes Yes Yes Yes
YA Yes Yes Yes Yes
YB Yes(only few

pins of PortA
can be
configured as
Yb Lines)

No No No

SMP Yes Yes Yes Yes

8207L-AT42-05/12 66

The configurability is provided to select X,SMP and YA lines on Same Port ,X,SMP and
YB lines on same port.
Number of X ports should be 1 means the X lines should be connected to a single port.

Note: YA and YB cannot be on the same port.
 SMP Pin should be less than equal to 19th pin of any Port.

5.6.10.3.3 Checklist of items for integrating QMatrix Capacitive sensing libraries
When integrating QMatrix acquisition method libraries, ensure the following

 Check that the CLKPR register is available for the selected device. If not remove the
CLKPR statements.

 Ensure that the configuration for the QMatrix is done in touch_config.h and the arrays of
the x_line_info and y_line info are filled as indicated section 5.8.2

 MCUCR register is available and if so disable pullups
 Check if the timer registers and bit fields used are correct and change them if necessary.
 The above settings can be modified by the user by changing the API’s that are available

to the user. The API’s include
o qt_set_parameters ()

 The host application must provide the current time.
This information is passed to the library as an argument to the function
qt_measure_sensors()”. This is used for time-based library operations such as drift
compensation.

 The GPIO internal pull-ups must be disabled for all port pins used for touch sensing when
calling the library.
For 8-bit AVR devices, this can be done by

b. Setting the “PUD” bit in the “MCUCR” register or
c. Setting the “PUD” bit in the “SFIOR” register.

• Setting the JTD bit in the “MCUCR” register to disable JTAG Interface in MCU (if
available). This can be done only when the JTAG lines are in conflict with the desired
touch sensing lines.

• The library must be called often enough to provide a reasonable response time to user
touches. The typical time to call the library is from 25 ms to 50 ms.

• Care should be taken while using the ADC conversion logic and QMatrix library such that
the host application waits for approximately 1msec before actually calling the
qt_measure_sensors() API depending upon the ADC clock.

5.6.10.4 Common checklist items

5.6.10.4.1 Configuring the stack size for the application
The stack requirements for the QTouch library should be accounted for and the stack size
adjusted in the user’s project for proper operation of the software when using the IAR IDE. This
section lists the stack usage for the different variants of the QTouch and QMatrix acquisition
method libraries applicable to the IAR compiler tool chain.

Note: When using the IAR IDE / compiler tool chain, the map file generated for the application will
list total CSTACK & RSTACK requirements. Please adjust the total CSTACK and RSTACK
values in the IAR project options to be greater than the values listed in the map file. Refer to
section 5.6.11.4 which illustrates how to change the settings in IAR IDE.

Table 5 : Stack requirements of the QTouch capacitive sensing libraries when using IAR IDE
projects

67

QTouch Acquisition method Libraries : Stack usage for IAR compiler tool chain

Configuration CSTACK size RSTACK size

Single port pair - only keys (4 / 8 channels) 0x30 0x28
Single port pair – keys/ rotors/ sliders (4/8 channel) 0x40 0x2C

Two port pairs - only keys keys (16 channel) 0x50 0x28

Two port pairs – keys/ rotors/ sliders (16 channel) 0x60 0x2C

Table 6 : Stack requirements of the QMatrix capacitive sensing libraries when using IAR IDE
projects

QMatrix Acquisition method Libraries : Stack usage for IAR compiler tool chain

Number of
channels

Configuration CSTACK size RSTACK size

4 ONLY KEYS 0x20 0x20
4 KEYS/ROTOR/SLIDER 0x30 0x20

8 ONLY KEYS 0x25 0x20
8 KEYS/ROTOR/SLIDER 0x35 0x20

16 ONLY KEYS 0x30 0x20
16 KEYS/ROTOR/SLIDER 0x40 0x20

32 ONLY KEYS 0x35 0x25
32 KEYS/ROTOR/SLIDER 0x45 0x25

56 ONLY KEYS 0x45 0x25
56 KEYS/ROTOR/SLIDER 0x55 0x25

64 ONLY KEYS 0x45 0x25
64 KEYS/ROTOR/SLIDER 0x55 0x25

5.6.11 Example project files
The QTouch library is shipped with various example projects to illustrate the usage of the touch
API’s to add touch sensing to an application across various devices

Sample applications are also provided for the following kits
1 TS2080A, QT600_ATtiny88_QT8, QT600_ATxmega128a1_QT16 : QTouch Technology

evaluation Kits
2 TS2080B, QT600_ATmega324_QM64 : QMatrix Technology evaluation Kits

Note: Example projects must be built in the installed folder, and if moved/copied elsewhere then
paths must be edited appropriately.

8207L-AT42-05/12 68

5.6.11.1 Using the Sample projects

The sample applications are shipped with the complete set of files required to configure, build and
download the application for both IAR-workbench and AVR Studio IDE.

Since more than one device may use the same library (applicable for QTouch acquisition method
libraries), example project files and applications have been provided only for select devices which
use these libraries.

5.6.11.2 Example applications for QTouch acquisition method libraries

5.6.11.2.1 Selecting the right configuration
Each example project for a device can support multiple configurations (i.e a. keys only, b. with
rotors and sliders c.16 channel etc…). The configuration sets determine the configuration options
for using the library and also the right library variant to link with the project.

The configuration sets for IAR IDE are named according to the convention listed below
Configuration set for IAR IDE
Naming convention : <vP>g<Q>_<CH>qt_k_<RS>rs

Field
Name

Values Comments

vP v1, v3, xmega, uc3a,
uc3b, uc3c

VersionP of the core AVR device supported by this library variant

Q 1 to 6 GroupQ of the core AVR device supported by this library variant
CH 4, 8, 12, 16, 32 Total number of channels supported by each library.
RS 1, 2, 3, 4, 8

Total number of rotors / sliders supported for the respective channel
counts mentioned in previous row.

The configuration sets for AVR Studio IDE are named according to the convention listed below
Configuration set for AVR Studio IDE
<avrP>g<Q>_<CH>qt_k_<RS>rs
Field
Name

Values Comments

avrP avr25, avr4, avr 51, avr5,
xmega, uc3a, uc3b, uc3c

VersionP of the core AVR device supported by this library
variant

Q 1 to 6 GroupQ of the core AVR device supported by this library
variant

CH 4, 8, 12, 16, 32 Total number of channels supported by each library.
RS 1, 2, 3, 4, 8

Total number of rotors / sliders supported for the respective
channel counts mentioned in previous row.

Depending on your need, you need to select the right configuration required and build the project.

69

Figure 5-11: Selecting the right configuration in the QTouch acquisition method example

applications in IAR –IDE

Figure 5-12 : Selecting the right configuration in QTouch acquisition method example
applications in AVR-6 IDE

5.6.11.2.2 Changing the settings to match your device
5.6.11.2.2.1 Processor settings
Once you have selected the appropriate example project and the configuration, you need to
ensure that the settings in the project are configured to reflect the correct device. The settings
include

• Device type (CPU type) for the project

8207L-AT42-05/12 70

Figure 5-13 : Changing the processor settings for the examples in IAR IDE

Figure 5-14 : Changing the processor settings for the examples in AVR-Studio 6

5.6.11.2.3 Changing the library configuration parameters

The configuration parameters required for the library are specified in the touch_config.h file of the
examples under the custom user configuration section. Please refer to the example projects
provided with the QTouch libraries release for more information. The mandatory constants to be
defined are as listed below.

71

Symbol / Constant name Range of values Comments
QTOUCH This macro has to be

defined in order to use
QTouch libraries.

SNS & SNSK Section 5.7.1.5 provides
details on the range of
values allowed.

To be used if only single port pair is
needed for the design

SNS1 – SNSK1 & SNS2 –
SNSK2

Section 5.7.1.5.2 has
details on the range of
values allowed

To be used if two port pairs are needed for
the design

QT_NUM_CHANNELS 4, 8, 12, 16 for tinyAVR,
megaAVR and XMEGA
device libraries and 8, 16,
32 for UC3 device libraries.

_ROTOR_SLIDER_ Rotor / slider can be added
to the design, if this symbol
is defined

A library with rotor / slider functionality
already available needs to be selected if
this macro is to be enabled

_DEBUG_INTERFACE_ The debug interface code in
the example application will
be enabled if this macro is
enabled.

This will enable the application to output
QTouch measurement values to GPIO
pins, which can be used by a USB bridge
to view the output on Hawkeye or QTouch
Studio. This feature is currently supported
by EVK/TS 2080A and QT600 boards.

QT_DELAY_CYCLES 1 to 255 Please refer to section
QTOUCH_STUDIO_MASKS This macro needs to be

defined if QTouch Studio
Pin Configurator Wizard.is
used to generate the SNS
and SNSK masks.

Please refer to section 5.8.1

_STATIC_PORT_PIN_CONF_ This macro needs to be
defined only in case of 4
and 8 channel libraries with
interport configuration and
pin configurability.

Please refer to section 5.8.1

8207L-AT42-05/12 72

Figure 5-15 : Specifying the QTouch acquisition method library configuration parameters

for QTouch example projects

5.6.11.2.4 Using the example projects
The sample applications are shipped with the complete set of files required to configure, build,
execute and test the application for both IAR-workbench and AVR Studio IDEs.

The sample applications are provided for the evaluation kits and a few configurations for select
devices. The user can use the sample applications as a reference or baseline to configure
different configurations. Please ensure to change the configuration settings in the project options
to match the device selected.

To change the configuration settings of the sample applications,

1. Select the configuration from the list of configurations available.

2. If the user wishes to have a new name for the configuration to be used, a new
configuration can be added to the project.

3. If a different variant of the library needs to be used, remove the existing library in that
particular configuration and add the library variant that you require. Please refer to
5.7.1.4 for details on the different library variants. Update the linker options to specify
the library to be linked.

4. Specify the tunable configuration parameters for the project as illustrated in sections
5.6.11.2.2 and 5.6.11.2.3.

73

5.6.11.3 Example applications for QMatrix acquisition method libraries

The QMatrix acquisition method libraries include example projects for some of the supported
devices. Example projects for both IAR IDE and AVR Studio IDE along with example applications
are provided for select devices using the QMatrix acquisition libraries. These sample applications
demonstrate the usage of the touch API’s to add touch sensing to an application. Refer to the
library selection guide for details on the example projects and sample applications supported for
the release.

5.6.11.3.1 Selecting the right configuration
The sample applications are built to support a maximum channel support configuration available
for that particular device for both IAR & AVR IDEs.

Internally there are two configurations for each device.

• ALL KEYS configuration : Supports only keys
• KEYS/ROTORS/SLIDERS configuration : Supports keys or rotors or sliders

concurrently
These configurations enable a set of stored options and a specific library to be selected in order
to build application using the specific library.

Figure 5-16 : Selecting the right configuration in the QMatrix acquisition method example

applications in IAR –IDE

8207L-AT42-05/12 74

Figure 5-17 : Selecting the right configuration in the QMatrix acquisition method example

applications in AVR Studio IDE

5.6.11.3.2 Changing the library configuration parameters
The configuration parameters required for the library are specified in the touch_config.h file of the
examples. Please refer to the example projects provided with the QTouch libraries release for
more information.

75

Figure 5-18 : Specifying QMatrix acquisition library parameters in touch_config.h for
QMatrix projects

5.6.11.3.3 Using the example projects

The sample applications are shipped with the complete set of files required to configure, build,
execute and test the application for both IAR-workbench and AVR Studio IDEs.

The sample applications are provided for the evaluation kits and a few configurations for select
devices.

The user can use the sample applications as a reference or baseline to configure different
configurations. Please ensure to change the configuration settings in the project options to match
the device selected

To change the configuration settings of the sample applications,

1) Select the configuration from the list of configurations available as shown in section
5.6.11.3.1

2) If the user wishes to have a new name for the configuration to be used, a new
configuration can be added to the project

3) If a different variant of the library needs to be used, remove the existing library in that
particular configuration and add the library variant that you require. Please refer to library

8207L-AT42-05/12 76

selection guide for details on the different library variants. Update the linker options to
specify the library to be linked

4) Specify the tunable configuration parameters for the project as illustrated in 5.6.11.3.2
5) For QMatrix on XMEGA devices, please check if the pre-processor symbol _ATXMEGA_

is added in the project space or not.

5.6.11.4 Adjusting the Stack size when using IAR IDE

The example projects for IAR IDE, the CSTACK and RSTACK values are configured to account
for the requirements of the QTouch libraries and the included main.c file which illustrates the
usage of the touch API.

• Adjust the CSTACK and RSTACK values appropriately based on additional software
integrated or added to the examples.

Figure 5-19 : Modifying the stack size in IAR IDE

5.6.11.5 Optimization levels

The default configuration settings in sample projects which ship with the library are set to the
highest level of optimization for IAR and GCC variants of the libraries. The user might be required
to change this setting for debugging purposes

• In case of IAR, The optimizations tab in project configuration options specifies High.
• In case of GCC, the libraries are compiled with the –Os which signifies that the

Optimization for generating the library is maximum.

77

Figure 5-20 : Specifying the optimization level in IAR IDE

5.6.11.6 Debug Support in Example applications

The EVK2080 and QT600 applications provide output debug information on standard GPIO pins
through the USB Bridge IC to PC software for display by AVR QTouch Studio. Similarly for
ATMEL devices that are not supported through EVK or QT600 kits, the output measurement
values can be viewed through AVR QTouch Studio using the same QDebug protocol and QT600
USB bridge.

If a QT600 bridge is not available, please refer to section 5.6.11.6.3 for more information on
observing the output touch measurement data without the use of a USB bridge or AVR QTouch
Studio.

5.6.11.6.1 Debug Support in the sample applications for EVK2080 and QT600 boards
The sample applications provided for the EVK2080 boards, QT600 boards and the other example
projects output debug information which is captured by a USB bridge chip and then routed to the
QTouch Studio for display.

Note:

The port and pins assigned for the QDebug protocol with the example projects are arbitrary and
have to be changed based on the project configuration chosen and pin availability.

A separate App note is available on the Atmel website (in QTouch libraries webpage) explaining
the QT600 debug protocol.

5.6.11.6.2 How to turn on the debug option
In the project options, the symbol definition _DEBUG_INTERFACE_ is used to enable reporting
the debug data. You can enable the debug interface by enabling the debug macro in
touch_config.h file.

8207L-AT42-05/12 78

 Figure 5-21 : Enabling and configuring the Debug Support

5.6.11.6.3 Debug Interface if USB Bridge board is not available
For the sample applications using the devices that are not supported on EVK2080 and QT600 the
debug interface code is not provided. This is because a separate USB bridge board is required to
read the data and display it on QTouch studio. However in this case the output touch
measurement data can still be viewed using the IAR or AVR Studio IDE when running the code in
debug mode using debug wire or emulator.

extern qt_touch_lib_measure_data_t qt_measure_data;

The qt_measure_data global variable contains the output touch measurement data. Refer to
section 5.6.4.3 for more information on the data type.

For GCC generated libraries the output touch measurement data can be observed on the watch
window through the pointer pqt_measure_data.

qt_touch_lib_measure_data_t *pqt_measure_data = &qt_measure_data;

79

5.7 Library Variants

5.7.1 QTouch Acquisition method library variants

5.7.1.1 Introduction

Variants of the ATMEL QTouch Library based on QTouch Technology are available for a range of
ATMEL Microcontrollers. This section lists the different variants available. By following a simple
series of steps, the user can identify the right library variant to use in his application.

5.7.1.2 Support for different compiler tool chains

The QTouch acquisition method libraries are supported for the following compiler tool chains.

Table 7 Compiler tool chains supported for QTouch acquisition method libraries

Tool Version

IAR Compiler for 8bit AVR 6.10.0

IAR Embedded Workbench for AVR 6.10
Atmel Studio 6.0.x

IAR Compiler 32bit AVR 4.10.1

GCC – GNU Toolchain for AVR 8bit 3.4.0.1028

GCC – GCC Toolchain AVR 32bit 3.4.0.1028

IAR Embedded Workbench for ARM 6.30

GCC for ARM Sourcery G++ Lite for ARM EABI
V 2011.3.0.42

5.7.1.3 QTouch Acquisition method library naming conventions

The libraries are named according the convention listed below

5.7.1.3.1 Naming convention for libraries to be used with GCC tool chain
lib<coreP>g1_<CH>qt_k_<RS>rs.a

Field
name

Possible
values

Comments

coreP avr25
avr 35
avr 4

avr 51
avr 5

avrxmega2
avrxmega3
avrxmega4
avrxmega5
avrxmega6
avrxmega7

uc3a
uc3b
uc3c

sam3s
sam3u

VersionP of the core for AVR/ATSAM devices supported by this library variant
for tinyAVR and megaAVR devices.

8207L-AT42-05/12 80

sam3n
sam4s

CH 4, 8, 12, 16,
32

Total number of channels supported by each library.

RS 1, 2, 3, 4, 8

Total number of rotors / sliders supported for the respective channel counts
mentioned in previous row.

For example, the library variant “libavr25g1_8qt_k_2rs.a” supports the following configuration

• Device : tinyAVR or megaAVR device belonging to core version avr25

• Belongs to a set of devices of group 1 supported by this library

• Support a maximum of 8 channels

• Supports a maximum of up to 2 rotors / sliders.

5.7.1.3.2 Naming convention for libraries to be used with IAR Embedded Workbench
The libraries are named according the naming convention listed below

lib<coreP>g<Q>_<CH>qt_k_<RS>rs.r90

Field
name

Possible
values

Comments

coreP v1
v3

v3xmsf
v3xm
v4xm
v5xm
v6xm
uc3a
uc3b
uc3c

sam3s
sam3u
sam3n

VersionP of the for AVR/ATSAM devices supported by this library variant
variant for tinyAVR and megaAVR devices.

Q 1 to 3 GroupQ of the core AVR device supported by this library variant
CH 4, 8, 12, 16,

32
Total number of channels supported by each library.

RS 1, 2, 3, 4, 8

Total number of rotors / sliders supported for the respective channel counts
mentioned in previous row.

For example, the library variant “libv3g2_4qt_k_1rs.r90” supports the following configuration

• Device : tinyAVR or megaAVR device belonging to core version v3

• Belongs to a set of devices of group 2 supported by this library

• Supports a maximum of 4 channels

• Supports 1 rotor/slider

5.7.1.4 QTouch acquisition method library variants

 lists the different QTouch acquisition method library variants supported for AVRs. Use this table
to select the correct library variant to be used in your application. Each row in the table below
indicates

• the corresponding Ports available for SNS and SNSK pins
• Compilers used for generating the libraries
• The library names to be selected for the requirements

Note: The libraries that are supported as listed in the table are only supported provided the
device memory requirements are also satisfied.

81

Naming convention of the library
<ch> Maximum channels supported by the library.

Device Range

tinyAVR, megaAVR, XMEGA 4,8,12,16

UC3 8,16,32

ATSAM 32

<RS> Maximum number of rotor / sliders supported

NOTE:

• For 8-bit devices, ports which have less than 8 pins cannot be used by the QTouch
acquisition method libraries. Check the data sheet to determine the number of pins
supported for each port

5.7.1.5 Port combinations supported for SNS and SNSK pin configurations

For the list of all ports supported for each device please refer to the library selection guide. There
are no limitations for AVR devices (8bit and 32 bit) on the combination of SNS and SNSK port to
be used from QTouch libraries 4.0 release onwards.

For ATSAM devices the one port pair combinations supported are given below in the table.

One port pair supported combinations for
ATSAM

AA, BB, CC, AB, BA, AC, CA, BC, CB

5.7.1.5.1 Tips on pin assignments for the sensor design using one pair of SNS/SNSK
ports

This section lists tips on selecting the pin assignments when using a single port pair for the SNS
and SNSK Pins.

Design choice for the sensor Example Port configuration with pin assignments

SNSK & SNS pins are on different
ports, number of channels = 4

• If the SNS1(C) and SNSK1(B) pins are on two different ports, the
user should mount the sensors onto the corresponding pins such
as (PC0,PB0), (PC1,PB1), (PC2,PB2) and (PC3,PB3), when pin
configurability is not used.

• In case of pin configurability, sensors should be mounted on the
pins as selected based on rules illustrated in section 5.8.1

SNSK & SNS pins are on different
ports, number of channels = 8

• If the SNS1(C) and SNSK1(B) pins are on two different ports, the
user should mount the sensors onto the corresponding pins such
as (PC0,PB0), (PC1,PB1), (PC2,PB2) and so on, When pin
configurability is not used.

• When using pin configurability, sensors should be mounted on the
pins as selected based on rules illustrated in section 5.8.1

• When pin configurability is not used, channel 0 will be on (PC0,
PB0) pins, channel 1 will be on (PC1, PB1) pins and so on up to
channel 7 will be on (PC7, PB7) pins.

• When using pin configurability, channel should be assigned as
given in section 5.6.6.1.1.2

8207L-AT42-05/12 82

•

SNSK & SNS pins are on different
ports, number of channels = 32
when using UC3 device

• If the SNS1(B) and SNSK1(A) pins are on two different ports, the
user should mount the sensors onto the corresponding pins such
as (PB0,PA0), (PB1,PA1), (PB2,PA2)..

• In this case channel 0 will be on (PB0, PA0) pins, channel 1 will be
on (PB1, PA1) pins and so on up to channel 31 will be on (PB31,
PA31) pins.

SNSK & SNS pins are on the
same port, number of channels =
2

• If the use of SNS1(A) and SNSK1(A) pins are on the same port,
the user should always have the configuration (PA0, PA1) & (PA2,
PA3). In this case channel 0 will be on (PA0, PA1) pins; channel 1
will be on (PA2, PA3) pins. The even pins of the port are used as
SNS1 pins and odd pins of the port are used as SNSK1 pins

• When pin configurability is used, sensors should be mounted on
the pins as selected as per the rules illustrated in section 5.8.1 and
channels should be assigned as given in section 5.6.6.1.1.4

SNSK & SNS pins are on the
same port, number of channels =
4

• If the use of SNS1(A) and SNSK1(A) pins are on the same port,
the user should always have the configuration (PA0, PA1), (PA2,
PA3), (PA4, PA5) & (PA6, PA7). In this case channel 0 will be on
(PA0, PA1) pins, channel 1 will be on (PA2, PA3) pins and so on
up to channel 4 will be on (PA6, PA7) pins. The even pins of the
port are used as SNS1 pins and odd pins of the port are used as
SNSK1 pins, when pin configurability is not being used.

• When using pin configurability, sensors should be mounted on the
pins as selected as per the rules illustrated in section 5.8.1 and
channels should be assigned as given in section 5.6.6.1.1.4

SNSK & SNS pins are on the
same port, number of channels =
16

(Available only for UC3 devices if
more than 4 channels are to be
used on a single port. For
tinyAVR, megaAVR, XMEGA
devices up to 8 channels with
SNS and SNSK on same ports
refer to section 5.7.1.5.2)

• This configuration is available only for UC3 library variants.

• In the use of SNS(A) and SNSK(A) pins are on the same port, the
user should always have the configuration (PA0, PA1), (PA2,
PA3), (PA4, PA5) & so on. In this case channel 0 will be on (PA0,
PA1) pins, channel 1 will be on (PA2, PA3) pins and so on up to
channel 15 will be on (PA30, PA31) pins. The even pins of the port
are used as SNS pins and odd pins of the port are used as SNSK
pins

SNSK & SNS pins are on the
same port, number of channels =
16

(Available only for SAM devices)

• If the use of SNS(A) and SNSK(A) pins are on the same port, the
user should always have the configuration (PA0, PA1), (PA2,
PA3), (PA4, PA5), (PA6, PA7) and so on.

• In this case channel 0 will be on (PA0, PA1) pins, channel 1 will be
on (PA2, PA3) pins and so on up to channel 15 will be on (PA30,
PA31) pins.

• The even pins of the port are used as SNS pins and odd pins of
the port are used as SNSK pins

83

5.7.1.5.2 Port combinations supported for two port pair SNS and SNSK pin
configurations

For the list of all ports supported for each device please refer to the library selection guide. There
are no limitations on the combination of SNS and SNSK port to be used from QTouch libraries 4.0
release onwards.

For ATSAM devices the total two port pairs supported combinations are given below in the table.

Two port pairs supported combinations for
ATSAM

AA_BB, BB_AA, AA_CC, CC_AA, BB_CC,
CC_BB, AA_BC, AA_CB, BB_AC, BB_CA,
CC_BA, CC_AB

5.7.1.5.2.1 Tips on pin assignments for the sensor design using two pairs of SNS / SNSK

ports
This section lists tips on selecting the pin assignments when using a single port pair for the SNS
and SNSK Pins.

Design choice for the sensor Example Port configuration with pin assignments

SNSK1-SNS1 & SNSK2-SNS2 pins
are all on different ports, number of
channels = 16

(Use the 16channel library in this
case. Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

• E. g. SNS1(D), SNSK1(B) & SNS2(C), SNSK2(A)
• Recommended configuration: (PD0, PB0), (PD1, PB1),..(PD7,

PB7), (PC0,PA0).. to (PC7, PA7). In this case channel 0 will be
on (PD0, PB0) pins, channel 1 will be on (PD1, PB1) pins,
channel 8 will be on (PC0, PA0), channel 9 will be on (PC1,
PA1) and so on up to channel 15 will be on (PC7, PA7) pins.

• However, the user can mount the sensors on pins as selected
as per the rules illustrated in section 5.8.1 and channels
should be assigned as given in section 5.6.6.1.1.2

SNSK1-SNS1 are on same port &
SNSK2-SNS2 pins are on same port,
number of channels = 8

(Use the 8channel library in this case.
Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

• E.g. SNS1(K), SNSK1(K) & SNS2(H), SNSK2(H) on same
ports,

• Recommended configuration: In case Pin configurability is not
used, (PK0, PK1), (PK2, PK3),..(PK6, PK7), (PH0,PH1).. to
(PH6, PH7).In this case channel 0 will be on (PK0, PK1) pins,
channel 1 will be on (PK2, PK3) pins, channel 4 will be on
(PH0, PH1), channel 5 will be on (PH2, PH3) and so on up to
channel 7 will be on (PH6, PH7) pins. The even pins of the port
are used as SNS pins and odd pins of the port are used as
SNSK pins.

• When pin configurability is used, sensors should be mounted
on the pins as selected as per the rules illustrated in section
5.8.1 and channels should be assigned as given in section
5.6.6.1.1.2

SNSK1-SNS1 are on different ports &
SNSK2-SNS2 pins are on same port,
number of channels = 12

(Use the 12channel library in this
case. Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

• E.g. SNS1(H), SNSK1(F) on different ports & SNS2(E),
SNSK2(E) on same ports.

• Recommended configuration : In case Pin configurability is not
used, (PH0, PF0), (PH1, PF1),..(PH7, PF7), (PE0,PE1).. to
(PE6, PE7). In this case channel 0 will be on (PH0, PF0) pins,
channel 1 will be on (PH1, PF1) pins... channel 8 will be on
(PE0,PE1), channel 9 will be on (PE2,PE3) and so on up to
channel 11 will be on (PH6, PH7) pins. The even pins of the
port E are used as SNS pins and odd pins of the port E are
used as SNSK pins.

• When pin configurability is used, sensors should be mounted
on the pins as selected as per rules illustrated in section 5.8.1
and channels should be assigned as given in section

8207L-AT42-05/12 84

5.6.6.1.1.2 and section 5.6.6.1.1.4
SNSK1-SNS1 are on same port &
SNSK2-SNS2 pins are on different
ports, number of channels = 12

(Use the 12channel library in this
case. Ensure the port definitions for
SNS1,SNSK1,SNS2,SNSK2 are all in
place)

• E.g. SNS1(G), SNSK1(G) on different ports & SNS2(B),
SNSK2(D) on same ports

• Recommended configuration: In case Pin configurability is not
used, (PG0, PG1), (PG2, PG3),..(PG6, PG7), (PB0,PD0)... to
(PB7, PD7). In this case channel 0 will be on (PG0, PG1) pins,
channel 1 will be on (PG2, PG3) pins... channel 3 will be on
(PG6, PG7), channel 4 will be on (PB0,PD0) and so on up to
channel 11 will be on (PB7, PD7) pins. The even pins of the
port G are used as SNS pins and odd pins of the port G are
used as SNSK pins

• When pin configurability is used, sensors should be mounted
on the pins as selected as per rules illustrated in section 5.8.1
and channels should be assigned as given in section
5.6.6.1.1.2 and section 5.6.6.1.1.4

5.7.1.6 Sample applications and Memory requirements for QTouch acquisition method
libraries

Refer to the library selection guide for memory requirements for each of the libraries supported in
the release.

5.7.2 QMatrix acquisition method library variants

5.7.2.1 Introduction

Variants of the ATMEL QTouch Library based on Matrix™ acquisition technology are available for
a range of ATMEL Microcontrollers. Refer to the library selection guide (C:\ Program Files\Atmel\
Atmel_QTouch_Libaries_5.x\Library_Selection_Guide.xls) for the list of devices currently
supported for QMatrix.

5.7.2.2 Support for different compiler tool chains

The QMatrix acquisition method libraries are supported for the following compiler tool chains.

Tool Version
IAR Compiler 6.10
IAR Embedded Workbench 6.10
Atmel Studio 6 6.0.x
GCC – GNU Toolchain for AVR 3.4.0.1028
IAR Compiler 32bit AVR 4.10.1
GCC – GNU Toolchain for AVR32 3.4.0.1028

 5.7.2.3 QMatrix Acquisition method library naming conventions

The libraries are named according the naming convention listed below

Tool Chain Naming convention

GCC Tool Chain lib<D>_<NC>qm_<NX>x_<NY>y_<CFG>_<NRS>rs.a

IAR –EWAR lib<D>_<NC>qm_<NX>x_<NY>y_<CFG>_<NRS>rs.r90

85

Field
name

Possible values Comments

D Common for IAR & GCC:
ATtiny167,
ATmega128rfa1,
ATmega8535
Specific to IAR:
v1g1s0 (ATtiny44,
 ATtiny84)
v1g1s1 (ATtiny48,
 ATtiny88)
v1g1s2(ATtiny461,
 ATtiny861)
ATmega16a
v1g2s1 (ATmega48PA,
 ATmega88PA)
v3xmsf (ATxmega16A4,
 ATxmega16D4,
 ATxmega32A4,
 ATxmega32D4)
v3xm (ATxmega64A3)
v4xm(ATxmega64A1)
v5xm(ATxmega128A3,
 ATxmega192A3,
 ATxmega256A3,
 ATxmega256A3B)
v6xm(ATxmega128A1)
 v3g3 (ATmega165P,
 ATmega325P,
 ATmega645,
 ATmega164p,
 ATmega324p,
 ATmega324pa,
 ATmega644p,
 ATmega168p,
 ATmega328p,
 AT90CAN32,
 AT90CAN64
)
v3g5 (AT90CAN128,
 AT90USB1286,
 AT90USB1287,
 ATmega1280,
 ATmega1281
)
v3g6 (AT90USB162
)
v3g7 (AT90USB646,

Indicates the device / core group name in short form.

For XMEGA Devices, Core groups are taken which
follows
As below for both GCC and IAR

 Supported XMEGA Devices
ATxmega16A4,
ATxmega16D4,
ATxmega32A4,
ATxmega32D4,
ATxmega64A1
ATxmega128A1
ATxmega64A3
ATxmega128A3,
ATxmega192A3,
ATxmega256A3,
ATxmega256A3B)

8207L-AT42-05/12 86

 AT90USB647
)
Specific to GCC:
avr25g1s0 (ATtiny44,
 ATtiny84)
avr25g1s1 (ATtiny48,
 ATtiny88)
avr25g1s2(ATtiny461,
 ATtiny861)
ATmega16
avr4g1s1 (ATmega48P,
 ATmega88P)
avr5g4 (AT90USB646,
 AT90USB647
)
avr5g6 (AT90USB162
)
avrxmega2 (ATxmega16A4,
 ATxmega16D4,
 ATxmega32D4)
avrxmega3 (ATxmega32A4)
avrxmega4 (ATxmega64A3)
avrxmega5(ATxmega64A1)
avrxmega6(ATxmega128A3,
 ATxmega192A3,
 ATxmega256A3,
 ATxmega256A3B)
avrxmega7(ATxmega128A1)
avr5g3 (ATmega165P,
 ATmega325P,
 ATmega645,
 ATmega164p,
 ATmega324p,
 ATmega324p,
 ATmega644p,
 ATmega168p,
 ATmega328p,
 AT90CAN32,
 AT90CAN64
)
avr51g2 (AT90CAN128,
 AT90USB1286,
 AT90USB1287,
 ATmega1280,
 ATmega1281
)
AT32UC3C0512

NC 4,8,16,24,32,56,64 Indicates the maximum number of channels that the

87

library supports
56 (8 x 7) support only for ATXmega Devices.
24((8 x 3) support only for 32 Bit Devices.

NX 4,8 Indicates the number of X-Lines that the library needs
for supporting the listed number of channels.
The X lines on a PORT always start with Least
Significant Bit of the PORT.

 Ex: #define PORT_X_1 B in case of a 4x2
QMatrix library means

 X0,X1,X2,X3 are on PB0,PB1,PB2,PB3

NY 1,2,3,4,7,8 Indicates the number of Y-Lines that the library needs
for supporting the listed number of channels
NY=7 support only for ATXmega Devices
NY=3 support only for 32Bit Devices

CFG k
krs

k – library variant supports only keys
krs – library variant supports keys, Rotors and Sliders

NRS 0,1,2,3,4,8 Maximum number of rotor sliders that the library
supports.
NRS=3 support only for 32Bit Devices

The table below provides a few examples of the naming convention.

Example Library name Configuration supported
libavr51g2_8qm_4x_2y_krs_2rs.a • Compiler tool chain : GCC

• Device : ATMega164P
• 8 Channels
• 4 X lines
• 2 Y lines
• Supports Keys, Rotors and Sliders (krs)
• 2 Rotors and Sliders

libavr25g1s1_16qm_8x_2y_k_0rs.r90 • Compiler tool chain : IAR
• Device : ATTiny88
• 16 Channels
• 8 X lines
• 2 Y lines
• Supports only keys (k)
• 0 Rotors and Sliders

5.7.2.4 QMatrix acquisition method library variants

5.7.2.4.1 Devices supported for QMatrix Acquisition
Refer to the Library_selection_guide.xls for the list of devices supported for QMatrix for this
release.

5.8 PIN Configuration for QTouch Libraries

5.8.1 Pin Configuration for QTouch Acquisition Method
Pin configurability for QTouch acquisition method is provided for 8Bit AVR’s. QTouch
acquisition method libraries can be used to configure SNS and SNSK on any pins of the
port. But few rules should be followed while assigning the SNS and SNSK on particular
pins. These rules are internal to the library. But QTouch Studio –Pin Configuration Wizard

8207L-AT42-05/12 88

can be used to assign SNS and SNSK on the pins and rules are internally taken care in the
QTouch Studio Pin Configuration Wizard.

By default, for 4 and 8 channel QTouch acquisition libraries, the channel numbering follows
the pin number of the port.

To use the pin configurability, enable the macro _STATIC_PORT_PIN_CONF_ in the
project options or define the macro in the touch_config.h file.

To use the pin configurability feature, the SNS_array and SNSK_array masks are exported
for the user, which needs to be initialized. These SNS_array and SNSK_array masks can
be taken from the QTouch Studio Pin Configuration Wizard and can be copied at
appropriate place in the main.c file as explained in the example projects provided.

QTOUCH_STUDIO_MASKS macro is used for providing pin configurability feature for
QTouch Acquisition method libraries.

In case the macro QTOUCH_STUDIO_MASKS enabled in project space,
SNS_array and SNSK_array takes values that are supplied by the user in main.c files.
This will reduce the code memory foot print of the library.

In case the macro QTOUCH_STUDIO_MASKS is not enabled in project space,
SNS_array and SNSK_array are calculated internal to the library according to the
configured sensors.

Note:
1. Port pin configurability is enabled for the following configurations,

4- channel intraport configuration

8-channel intraport configuration

12-channel configuration

16- channel configuration

2. In case, the user wants to use the pin configurability for the other supported
configurations, (4- channel interport and 8-channel interport), the user has to enable the
macro _STATIC_PORT_PIN_CONF_ in his project space.

5.8.1.1 Rules for configurable SNS-SNSK Mask Generation

 X X X

 SNS1=PORTA

PORT PAIR 1 Ch2 Ch1 Ch0

 X X X

 SNSK1=PORTB

89

 X X X

 SNS2=PORTC

PORT PAIR 2 Ch5 Ch4 Ch3

 X X X

 SNSK2=PORTD

1. The channel numbers are allocated based on enabled SNS pins starting from LSBit of
port 1(SNS1) and ending with MSBit of port 2(SNS2).

2. The number of SNS pins in a port pair should be equal to the SNSK pins in the same port
pair so it can form a pair.

3. The first SNS port pin should always be mapped to the first SNSK port pin in any port
pair. Similarly the second SNS port pin should always be mapped to second SNSK pin
and so on.

4. Even sensors with in a port pair should be placed in one mask and odd sensors with-in a
port pair should be placed in the second mask. In case of interport, first channel should
always start with odd masks and then even masks is filled .

5. All the three channels for ROTORS and SLIDERS should be placed within the same
mask. And should be in the same port pair.

6. Keys on adjacent channels should be placed on different masks.

7. For 8 channel case when 2 ports are enabled, the pins for the 8 channels can be spread
on the 2 ports. The pin configuration is done based on the rules mentioned above.

8. For 16 channel case when 2 ports are enabled, all the pins for the 16 channels are
allocated among the pins of the 2 ports.

5.8.1.1.1 Example for 8 channel interport mask Calculation with one port pair

 X X X

 SNS1=PORTA

 Ch2 Ch1 Ch0

X X X

 SNSK1=PORTB

This example is for interport 8 channel library with only one port pair used.
Channel0 is A0B2,Channel1 is A3B5 and Channel2 is A6B7 are enabled for the 8
channel library.
The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules
mentioned above.
In this case, the SNS_array and SNSK_array values will be as mentioned below:

8207L-AT42-05/12 90

 SNS_array[0][0]=0x41; (SNS even mask for port pair 1)

 SNS_array[0][1]=0x08; (SNS odd mask for port pair 1)

 SNS_array[1][0]=0x00; (SNS even mask for port pair 2)

 SNS_array[1][1]=0x00; (SNS odd mask for port pair 2)

 SNSK_array[0][0]=0x84; (SNSK even mask for port pair 1)

 SNSK_array[0][1]=0x20; (SNSK odd mask for port pair 1)

 SNSK_array[1][0]=0x00; (SNSK even mask for port pair 2)

 SNSK_array[1][1]=0x00; (SNSK odd mask for port pair 2)

As there is no second port pair used for this, so that’s why SNS_array[1][0],
SNS_array[1][1], SNSK_array[0][1] and SNSK_array[1][1] are having value zero.

5.8.1.1.2 Example for 8 channel intraport mask Calculation with two port pairs

 X X X

 SNS1=PORTA

 Ch2 Ch1 Ch0

X X X

 SNSK1=PORTA

 X X X

 SNS2=PORTB

 Ch5 Ch4 Ch3

 X X X

 SNSK2=PORTB

This example is for intraport 8 channel library with two port pair used.
Channel0 is A1A3,Channel1 is A4A5 and Channel2 is A6A7 are enabled in the first port
pair. Channel3 is B1B2,Channel4 is B3B4 and Channel5 is B5B6 are enabled in the
second port pair.

The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules
mentioned above.
In this case, the SNS_array and SNSK_array values will be as mentioned below:

91

 SNS_array[0][0]=0x52; (SNS even mask for port pair 1)

 SNS_array[0][1]=0x00; (SNS odd mask for port pair 1)

 SNS_array[1][0]=0x2a; (SNS even mask for port pair 2)

 SNS_array[1][1]=0x00; (SNS odd mask for port pair 2)

 SNSK_array[0][0]=0xa8; (SNSK even mask for port pair 1)

 SNSK_array[0][1]=0x00; (SNSK odd mask for port pair 1)

 SNSK_array[1][0]=0x54; (SNSK even mask for port pair 2)

 SNSK_array[1][1]=0x00; (SNSK odd mask for port pair 2)

In case of Intraport, odd SNS_array and SNSK_array masks are always zero.So that’s
why SNS_array[0][1] ,SNS_array[1][1], SNSK_array[0][1] and SNSK_array[1][1] are zero
for both the port pairs.

5.8.1.1.3 Example for 12 channel intraport-interport mask Calculation with two port
pairs

 X X X

 SNS1=PORTA

 Ch2 Ch1 Ch0

X X X

 SNSK1=PORTA

 X X X

 SNS2=PORTB

 Ch5 Ch4 Ch3

 X X X

 SNSK2=PORTD

This example is for intraport-interport 12 channel library with two port pair used.
Channel0 is A1A3,Channel1 is A4A5 and Channel2 is A6A7 are enabled in the first port
pair. Channel3 is B1D2,Channel4 is B3D4 and Channel5 is B5D6 are enabled in the
second port pair.

The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules
mentioned above.
In this case, the SNS_array and SNSK_array values will be as mentioned below:

8207L-AT42-05/12 92

 SNS_array[0][0]=0x52; (SNS even mask for port pair 1)

 SNS_array[0][1]=0x00; (SNS odd mask for port pair 1)

 SNS_array[1][0]=0x22; (SNS even mask for port pair 2)

 SNS_array[1][1]=0x08; (SNS odd mask for port pair 2)

 SNSK_array[0][0]=0xa8; (SNSK even mask for port pair 1)

 SNSK_array[0][1]=0x00; (SNSK odd mask for port pair 1)

 SNSK_array[1][0]=0x44; (SNSK even mask for port pair 2)

 SNSK_array[1][1]=0x10; (SNSK odd mask for port pair 2)

As the first port pair is intraport, so that’s why SNS_array[0][1] and SNSK_array[0][1] are
zero as odd masks are always zero in case of Intraport.

5.8.1.1.4 Example for 16 channel intreport-interport mask Calculation with two port
pairs

 X X X

 SNS1=PORTA

PORT PAIR 1 Ch2 Ch1 Ch0

 X X X

 SNSK1=PORTB

 X X X

 SNS2=PORTC

PORT PAIR 2 Ch5 Ch4 Ch3

 X X X

 SNSK2=PORTD

This example is for interport-interport 16 channel library with two port pair used.
Channel0 is A2B0,Channel1 is A4B3 and Channel2 is A5B6 are enabled in the first port
pair. Channel3 is C1D2,Channel4 is C3D3 and Channel5 is C5D4 are enabled in the
second port pair.

The SNS_array and SNSK_array masks are calculated by the Qtouch Studio with rules
mentioned above.

93

In this case, the SNS_array and SNSK_array values will be as mentioned below:

 SNS_array[0][0]=0x24; (SNS even mask for port pair 1)

 SNS_array[0][1]=0x10; (SNS odd mask for port pair 1)

 SNS_array[1][0]=0x22; (SNS even mask for port pair 2)

 SNS_array[1][1]=0x08; (SNS odd mask for port pair 2)

 SNSK_array[0][0]=0x41; (SNSK even mask for port pair 1)

 SNSK_array[0][1]=0x08; (SNSK odd mask for port pair 1)

 SNSK_array[1][0]=0x14; (SNSK even mask for port pair 2)

 SNSK_array[1][1]=0x08; (SNSK odd mask for port pair 2)

5.8.1.2 How to Use QTouch Studio For Pin Configurability

Note: The Qtouch Composer is available for few select set of devices.But user can use Qtouch
Studio 4.4 for the devices which are not supported in Qtouch Composer.

The following steps describe the details on how to use pin configurability for QTouch
Acquisition method:

1. Open AVR QTouch Studio .Enable the Design Mode Radio button on the left hand side of
the screen.

Figure 5-22 Selecting the Design mode in the AVR QTouch Studio

1. Go to File Menu option and click New Design.

8207L-AT42-05/12 94

Figure 5-23 Selecting the New Design in the AVR QTouch Studio

2. In the Create New Design Window, give the Project name and Kit Technology (QTouch in
this case) and and Number of sensors (Keys/Rotors/Sliders) and click Create Design.

Figure 5-24: Creating New Design in the AVR QTouch Studio

3. After Creating Design, the new screen pops up which shows all the sensors which have
been created.

95

Figure 5-25: New Design Sensors in the AVR QTouch Studio virtual kit

4. Now Go to Tools->Pin Configuration Wizard.Pin configuration

Figure 5-26: Selecting the pin configuration wizard for theDesign

5. Pin configuration Window will pop up with the information on the usage of the tool.

Click Next to proceed to the configuration.

8207L-AT42-05/12 96

Figure 5-27: : Start page of the wizard

6. Select the MCU and click Next as shown below.

97

Figure 5-28: Selecting the MCU for the New Design

7. Select the SNS and SNSK ports needs for the design and click Next.

Figure 5-29: Selecting SNS and SNSK ports in the New Design

8207L-AT42-05/12 98

8. Select the pins used for the design and click Next

If there is error in the selection of the pins (Ex: conflictin pins used), a red marker will be
appear and the user cannot proceed to next step in configuration until the user has done the
correct pin selection.

Now once the selection is done without errors, Click Next

Figure 5-30: Selecting the SNS and SNSK Port Pins in the new Design(With Error)

99

Figure 5-31: Selecting the SNS and SNSK Port Pins in the new Design(Without Error)

Once the pins are selected, Pin Wizard will provide the summary report .Check whether details
are correct as specified.Click Next

Figure 5-32: Summary report

8207L-AT42-05/12 100

Figure 5-33: Code Generation tab in Pin Configuration wizard

9. In the New Window Screen, the code is shown on the
screen.QTOUCH_STUDIO_MASKS needs to be enabled in the project option or in
touch_ config.h file. And in the main.c file, this code SNS_array and SNSK_array needs
to be copied from here and put under QTOUCH_STUDIO_MASKS macro as shown
below in the main.c file:

#ifdef QTOUCH_STUDIO_MASKS

 SNS_array[0][0]=0x09;

 SNS_array[0][1]=0x22;

 SNS_array[1][0]=0x00;

 SNS_array[1][1]=0x00;

 SNSK_array[0][0]=0x14;

 SNSK_array[0][1]=0x88;

 SNSK_array[1][0]=0x00;

 SNSK_array[1][1]=0x00;

#endif

Note:

1. To use 4 and 8 channel libraries(interport case) for pin configurability ,
_STATIC_PORT_PIN_CONF_ macro needs to be enabled in the touch_config.h file.

101

2. QTOUCH_STUDIO_MASKS needs to be enabled if using pin configurability .If not enabled
then, static pin mapping will work same as in the earlier versions of the libraries

5.8.2 Pin Configuration for QMatrix Acquisition Method
The QMatrix acquisition method libraries needs to be used after configuring X and YA and
YB lines on IO pins of the port as described in the configuration rules described in the
section below. The QTouch Studio Pin Configurator Wizard can be used to assign X, YA,
YB, SMP lines on the pins and rules are internally taken care in the Qtouch Studio Pin
Configurator Wizard.

The snippets can be taken from the QTouch Studio Pin Configurator Wizard and copied to
appropriate places in the main.c and touch_ config.h files in the example projects provided.

5.8.2.1 Configuration Rules:

1. The X lines can be configured on different ports up to a maximum of 3 ports

Ex: NUM_X_PORTS = 3 (maximum value supported). However the possible values
are NUM_X_PORTS = 1 or NUM_X_PORTS = 2 or NUM_X_PORTS = 3

2. The X lines can be configured on the three different ports.

3. The X lines can be configured on any pins of the ports selected above

 Ex: X0 on PB2, X1 on PD5, X2 on PE0, X3 on PD1(when NUM_X_LINES= 4),
Provided that these pins do not conflict with the other pins for touch sensing or with the
host application usage.

4. The Y lines can be configured on the any of the pins of the ports selected

Ex: Any pins on the PORT_YA and PORT_YB selected.

Suppose, PORT_YA is D, and PORT_YB is C

Since, pin 5 and pin 1 PORTD are already used for X lines(X1, X3), the user can select
any of the remaining pins for Y0A lines. Suppose that Y0 is on pin2 and Y1 is on pin6

Hence, Y0A – PD2, Y0B – PC2, Y1A – PD6, Y1B – PC6,

5. All the Qmatrix usage Pins X lines,YA lines, YB lines and SMP line can be on same
port.Both YA and YB lines can share the same port. And the YA and YB need not be on
same corresponding pins of the ports.The Macro SHARED_YAYB should be defined as 1
if YA and YB are on same port else should be defined as 0.

6. The PORT_YB is fixed for each device and should be same as the PORT on which the
ADC input pins are available.

7. The SMP pin can be configured on any of the IO PORT pins available.

Ex: PORT_SMP = D

 SMP_PIN = 7 as this pin is not being used by touch sensing.

Note:

 Please take care that the touch sensing pins do not conflict with other IO pins used by host
application

8207L-AT42-05/12 102

5.8.2.2 How to use QTouch Studio for Pin Configurability:

Note: The Qtouch Composer is available for few select set of devices.But user can use Qtouch
Studio 4.4 for the devices which are not supported in Qtouch Composer. Also YA,YB shared on
same port feature is available in Qtouch Composer and not available in Qtouch Studio
4.4.Please refer section 5.6.10.3

The following steps describe the details on how to use pin configurability for QMatix
Acquisition method:

1. Open AVR Qtouch Studio .Enable the Design Mode Radio button on the left hand
side of the screen..

Figure 5-34: Selecting the Design mode in the AVR QTouch Studio

2. Go to File Menu option and click New Design

103

Figure 5-35: Selecting New Design

3. In the Create New Design Window, give the Project name and Kit Technology
(QMatrix in this case) and Number of sensors (Keys/Rotors/Sliders) and click Create
Design.

Figure 5-36 Creating New Design in the AVR QTouch Studio

8207L-AT42-05/12 104

After Creating Design , the new design mode shows the virtual kit view with sensors that
have been created in some order.

Figure 5-37: New Design Sensors in the AVR QTouch Studio

4. Now Go to Tools->Pin Configuration Wizard as shown below.

Figure 5-38: Selecting the pin configuration wizard

5. Pin configuration Window will pop up with the information on the usage of the tool.

Click Next to proceed.

105

Figure 5-39: Start window of the configuration wizard

6. .Select the MCU and click Next as shown below.

Figure 5-40: MCU selection window from the configuration wizard.

7. Select the Channels needed for the design from the list provided and click Next.

8207L-AT42-05/12 106

If 6 channels are needed, the next immediate value that suits the design needs to be
selected. Ie., 8 channels (4 x 2) configuration.

Figure 5-41: Selecting channels and configuration in the New Design

8. Select the pins used for the design and click Next.

If there is error in the selection of the pins (Ex: conflictin pins used), a red marker will be
appear and the user cannot proceed to next step in configuration until the user has done the
correct pin selection.

Now once the selection is done without errors, Click Next.

107

Figure 5-42: Selecting the X,YA,YB,SMP Pins in the new Design with errors.

Figure 5-43: Selecting the X,YA,YB,SMP Pins in the new Design without errors.

Once the pins are selected, Pin Wizard will provide the summary report .Check whether details
are correct as specified.Click Next.

8207L-AT42-05/12 108

If there are some errors that are found in the summary report, the user can click “back” button
and modify the changes needed.

Figure 5-44: Summary report

Figure 5-45: Code Generation tab in Pin Configuration wizard

9. The code is shown in the New Window Screen.

Note: Use FILL_OUT_YA_LINE_INFO and FILL_OUT_YB_LINE_INFO code instead of

109

FILL_OUT_Y_LINE_INFO as now YA and YB can be shared on same port.

The code can be copied using the “copy code” and pasted in the main.c and touch_config
.h file,

a. In touch _config.h,

 Copy the following header definitions as part of the preprocessor directives in
the project space or in the beginning of the file

#define NUM_X_PORTS 2

#define PORT_X_1 B

#define PORT_X_2 D

#define PORT_YA D

#define PORT_YB C

#define SMP_PORT D

#define SMP_PIN 7

#define SHARED_YAYB 0

b. In main.c ,

Copy the code as below

 x_line_info_t x_line_info[NUM_X_LINES]= {

FILL_OUT_X_LINE_INFO(1,1);

FILL_OUT_X_LINE_INFO(2,2);

FILL_OUT_X_LINE_INFO(1,3);

FILL_OUT_X_LINE_INFO(2,0);

 };

 y_line_info_t ya_line_info[NUM_Y_LINES]= {

FILL_OUT_YA_LINE_INFO(1);

FILL_OUT_YA_LINE_INFO(3);

 };

 y_line_info_t yb_line_info[NUM_Y_LINES]= {

FILL_OUT_YB_LINE_INFO(1);

FILL_OUT_YB_LINE_INFO(3);

 };

Note: If YA,YB shared on same port feature is needed , then apart from the above Macros
#define SHARED_YAYB needs to be enabled as 1.

5.9 MISRA Compliance Report
This section lists the compliance and deviations for MISRA standards of coding practice for the
QTouch and QMatrix acquisition method libraries.

8207L-AT42-05/12 110

5.9.1 What is covered
The QTouch and QMatrix acquisition method libraries adhere to the MISRA standards. The
additional reference code provided in the form of sample applications is not guaranteed to be
MISRA compliant.

5.9.2 Target Environment
Development Environment IAR Embedded Workbench
MISRA Checking software The MISRA C Compliance has been performed for the library

using MISRA C 2004 Rules in IAR Workbench development
environment.

MISRA Rule set applied MISRAC 2004 Rule Set

5.9.3 Deviations from MISRA C Standards

5.9.3.1 QTouch acquisition method libraries

The QTouch acquisition method libraries were subject to the above mentioned MISRA
compliance rules. The following exceptions have not been fixed as they are required for the
implementation of the library.

Applicable
Release

QTouch libraries version
5.0

Rule No Rule Description Exception noted / How it is addressed
1.1 Rule states that all code

shall conform to ISO 9899
standard C, with no
extensions permitted.

This Rule is not supported as the library
implementation requires IAR extensions like
__interrupt. These intrinsic functions relate to
device hardware functionality, and cannot
practically be avoided.

10.1 Rule states that implicit
conversion from Underlying
long to unsigned long

The library uses macros to combine symbol
definitions to form a unique expanded symbol
name and in this, the usage of unsigned qualifiers
for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

10.6 This Rule says that a 'U'
suffix shall be applied to all
constants of 'unsigned' type

The library uses macros to combine symbol
definitions to form a unique expanded symbol
name and in this, the usage of unsigned qualifiers
for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

14.4 Rule states that go-to
statement should not be
used.

The library uses conditional jump instructions to
reduce the code footprint at a few locations and
this is localized to small snippets of code. Hence
this rule is not supported.

19.10

Rule states that In the
definition of a function-like
macro, each instance of a
parameter shall be enclosed
in parenthesis

There is one instance where the library breaks this
rule where two macro definitions are combined to
form a different symbol name. Usage of
parenthesis cannot be used in this scenario.

19.12 Rule states that there shall
be at most one occurrence
of the # or ## preprocessor
operator in a single macro
definition

There is one instance in the library where this rule
is violated where the library concatenates two
macro definitions to arrive at a different definition.

111

5.9.3.2 QMatrix acquisition method libraries

The QMatrix acquisition method software was subject to the above mentioned MISRA compliance
rules. The following exceptions have not been fixed as they are required for the implementation of
the library.

Applicable
release

QTouch libraries ver 5.0

Rule No Rule Description Exceptions Reason

1.1 Rule states that all code
shall conform to ISO 9899
standard C, with no
extensions permitted.

This Rule is not supported as the library
implementation requires IAR extensions like
__interrupt. These intrinsic functions relates to
device hardware functionality, and cannot
practically be avoided

10.1 Rule states that Illegal
implicit conversion from
Underlying long to unsigned
long

The library uses macros to combine symbol
definitions to form a unique expanded symbol
name and in this, the usage of unsigned qualifiers
for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

10.6 This Rule says that a 'U'
suffix shall be applied to all
constants of 'unsigned' type

The library uses macros to combine symbol
definitions to form a unique expanded symbol
name and in this, the usage of unsigned qualifiers
for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

19.10

Rule states that In the
definition of a function-like
macro, each instance of a
parameter shall be enclosed
in parenthesis

There is one instance where the library breaks this
rule where two macro definitions are combined to
form a different symbol name. Usage of
parenthesis cannot be used in this scenario.

19.12 Rule states that there shall
be at most one occurrence
of the # or ## preprocessor
operator in a single macro
definition

There is one instance in the library where this rule
is violated where the library concatenates two
macro definitions to arrive at a different definition.

5.10 Known Issues
Issue Cause Remedy / workaround

Buiding QTouch Libraries Release 5.0 with
WinAVR Compiler results in Linker Error.
(Skipping Library libavrxxx.a, File not found).

QTouch Libraries
Release 5.0 are
build with Atmel
Studio6 Native
Toolchain Flavor.

Always use Native Toolchain Flavor
(Advanced Tab in Project properties)
setting in Atmel Studio6 for Building
QTouch Library Release.

The GCC example projects for QMatrix does not
compile the delay cycles
(QT_DELAY_CYCLES) above a value of 5
because of the preprocessor expansions.

 Recommended to remove UL from
the preprocessor constants and in
the chain of macros used for
QT_DELAY_CYCLES. Valid for
QT_DELAY_CYCLES = 5,10,25,50.

Compiling QT600 project files throws These variables are available in

8207L-AT42-05/12 112

unused variable warning. the debug protocol for future use.

When using IAR workbench for ATSAM to
integrate the touch libraries, the linker
would generate a warning indicating:

Warning[Lp005]: placement includes a mix
of sections with content (example "ro data
section .data_init in xfiles.o(dl7M_tl_if.a)")
and sections without content (example "rw
data section .data in xfiles.o(dl7M_tl_if.a)")

Warning[Lp006]: placement includes a mix
of writable sections (example "rw data
section .data in xfiles.o(dl7M_tl_if.a)") and
non-writable sections (example "ro data
section .data_init in xfiles.o(dl7M_tl_if.a)")

This is because
we link the
library in RW
data section.

5.11 Checklist
This section lists troubleshooting tips and common configuration tips.

Symptom Cause Action

Sensors do not go into detect or
have unknown results

Multiplexing pins
used by QTouch
libraries in your
design

Check the Pins used for QTouch or
QMatrix acquisition methods do not
overlap with the applications usage
of the ports

Signal values report arbitrary
values Stray capacitance

Check the sensor design and
minimize stray capacitance
interference in your design

Waveforms of charging /
discharging of channels do not
show up properly in oscilloscopes

JTAG ICE connected
to the board

Try disconnecting the JTAG ICE
completely from the kit

When using the example
applications, the debug values for
some of the channels does not
display appropriate values

JTAG Pins are
enabled in the target.

JTAG Pins are explicitly needs to
be disabled in the main.c file
 /* disable JTAG pins */
 MCUCR |= (1u << JTD);
 MCUCR |= (1u << JTD)

113

6 Device Specific Libraries

6.1 Introduction
This section provides an overview of the usage of Device specific QTouch Libraries. Device
Specific Libraries have been provided for special devices, which are not covered as part of
Generic Libraries.

6.2 Devices supported
The following devices are covered by the Device Specific QTouch Libraries.

1. AT32UC3L0, AT32UCL3U/L4U family devices.

2. ATtiny10, ATtiny20 and ATtiny40 devices.

6.3 QTouch Library for AT32UC3L devices
ATMEL QTouch Library for UC3L can be used for embedding capacitive touch buttons, sliders
and wheels functionality into UC3L application. The QTouch Library for UC3L uses the Capacitive
Touch Module (CAT) that senses touch on external capacitive touch sensors.

This Section describes the QTouch Library Application Programming Interface (API) for QMatrix
and QTouch method acquisition using the AT32UC3L devices.

6.3.1 Salient Features of QTouch Library for UC3L

6.3.1.1 QMatrix method sensor

• N Touch Channels formed by an X by Y matrix require (X+2Y+1) physical pins (when
using internal discharge mode), N=X*Y. Please refer Figure 37 for pin requirements in
different modes.

• 1 to 136 Touch Channels can be configured.

• Max X Lines = 17, Max Y Lines = 8.

• Button is formed using 1 Touch Channel.

• Slider is formed using 3 to 8 Touch Channels.

• Wheel is formed using 3 to 8 Touch Channels.

6.3.1.2 QTouch method sensor

• 2 Physical pins per Touch Channel.

• QTouch Sensors can be divided into two groups Group A and Group B.

• Each QTouch group can be configured with different properties.

• 1 to 17 Touch Channels can be configured.

• Button is formed using 1 Touch Channel.

• Slider is formed using 3 Touch Channels.

8207L-AT42-05/12 114

• Wheel is formed using 3 Touch Channels.

6.3.1.3 Autonomous QTouch sensor

• A Single QTouch sensor that is capable of detecting touch or proximity without CPU
intervention.

• Allows proximity or activation detection in low-power sleep modes.

6.3.1.4 Additional Features

• Standalone QMatrix, QTouch Group A/B or Autonomous QTouch operation.

• Support for operation of two or more methods at the same time.

o Scenario 1: QMatrix and Autonomous QTouch method at the same time.

o Scenario 2: QTouch Group A, QTouch Group B & Autonomous QTouch at the
same time.

o Scenario 3: QMatrix, QTouch Group A/B and Autonomous QTouch at the same
time.

• Disable/Re-enable Sensors at any given time for reduced power consumption.

• Raw data acquisition mode without any post-processing of data.

• External synchronization to reduce 50 or 60 Hz mains interference.

• Spread spectrum sensor drive capability.

• QTouch Studio-Touch Analyzer support to fine tune touch implementation.

• IAR and GCC Tool chain support.

• MISRA Compliant, MISRAC 2004 Rule Set.

• Single Library for QMatrix, QTouch Group A/B and Autonomous QTouch methods.

6.3.2 Device variants supported for UC3L
Below is the list of different devices in AT32UC3L family that is supported by the QTouch library.

1. AT32UC3L016, AT32UC3L032, AT32UC3L064

2. ATUC64L3U, ATUC128L3U, ATUC256L3U (Studio 6 Support only.)

3. ATUC64L4U, ATUC128L4U, ATUC256L4U (Studio 6 Support only.)

For capacitive touch sensing module related information Refer to, “Capacitive touch module
(CAT)” of the datasheet.

6.3.3 Development tool support for UC3L
The QTouch libraries for AT32UC3L devices are supported for the following development tools.

Tool Version

IAR Embedded Workbench for Atmel AVR32.
IAR32 Compiler. 4.1

Atmel Studio 6. GCC Compiler 6.0
Table 8 Development tool support for UC3L QTouch Library

115

6.3.4 Overview of QTouch Library API for UC3L
The diagram below captures the high level arrangement of the QTouch Library for UC3L API.

The QTouch Library for UC3L API can be used for Sensor configuration, Sensor Acquisition
parameter setting and Sensor Enable/Disable operations. Based on this input Sensor
configuration, the QTouch Library takes care of the initialization, configuration and acquisition
data capture operations using the CAT module. The UC3L CAT module interfaces with the
external capacitive touch sensors and is capable of performing QTouch and QMatrix method
acquisition. For an Overview of QMatrix and QTouch Capacitive Touch acquisition, refer Section
5.2.

The raw acquisition data from the CAT module is processed by the QTouch Library. The
Adjacent Key Suppression (AKS), Detect Integration mechanism, Drift compensation and
Automatic Recalibration components of the Touch Library aid in providing a robust Touch
performance. Once the raw acquisition data is processed, the individual Sensor Status and
Wheel/Slider position information is provided to the user by means of a measurement complete
callback operation.

Figure 35 Overview diagram of QTouch Library for UC3L

8207L-AT42-05/12 116

6.3.5 Acquisition method support for UC3L
With the QTouch Library for UC3L, it is possible for a user to configure the following types of
Sensors.

• QMatrix method sensors.

• QTouch Group A method sensors.

• QTouch Group B method sensors.

• Autonomous QTouch sensor.

The QTouch Library for UC3L API has been arranged such that it is possible for the user
application either to use any of the above method Standalone or two or more methods combined
together. The Table below captures the different API available under each method. For normal
operation, it is only required to use the Regular API set for each method. By using only the
Regular API set, it is possible to achieve reduced code memory usage when using the QTouch
Library. The Helper API is provided for added flexibility to the user application.

Acquisition method Regular API Helper API

QMatrix method API

touch_qm_sensors_init
touch_qm_sensor_config
touch_qm_sensors_calibrate
touch_qm_sensors_start_acquisition
touch_event_dispatcher

touch_qm_sensor_update_config
touch_qm_sensor_get_config
touch_qm_channel_update_burstlen
touch_qm_update_global_param
touch_qm_get_global_param
touch_qm_get_libinfo
touch_qm_sensor_get_delta
touch_deinit

QTouch Group A/B
method API

(The first parameter to the
QTouch API, allows to
distinguish between QTouch
Group A and QTouch Group
B.)

touch_qt_sensors_init
touch_qt_sensor_config
touch_qt_sensors_calibrate
touch_qt_sensors_start_acquisition
touch_event_dispatcher

touch_qt_sensor_update_config
touch_qt_sensor_get_config
touch_qt_update_global_param
touch_qt_get_global_param
touch_qt_get_libinfo
touch_qt_sensor_get_delta
touch_qt _sensor_disable
touch_qt _sensor_reenable
touch_deinit

Autonomous QTouch API touch_at_sensor_init
touch_at_sensor_enable
touch_at_sensor_disable

touch_at_sensor_update_config
touch_at_sensor_get_config
touch_at_get_libinfo
touch_deinit

Table 9 Acquisition method specific API

6.3.6 API State machine for UC3L
The QTouch Library State machine diagram captures the different library States, Events that are
allowed in each State and Event transition from one State to the other. The QTouch Library
maintains the States of QMatrix, QTouch Group A and QTouch Group B methods independently.
This means that QMatrix can be in a state that is different from the state of QTouch Group A or B
and vice versa.

117

For the case of Autonomous QTouch, only the TOUCH_STATE_NULL and TOUCH_STATE_INIT
states apply in the State diagram.

• The touch_at_sensor_init event causes a transition from TOUCH_STATE_NULL to
TOUCH_STATE_INIT.

• The touch_deinit event causes a transition from TOUCH_STATE_INIT to
TOUCH_STATE_NULL.

Figure 36 State Diagram of QTouch Library for UC3L

6.3.7 QMatrix method sensor operation for UC3L

6.3.7.1 QMatrix method pin selection for UC3L

Please refer AT32UC3L datasheet Table 28-2 Pin Selection Guide and Table 3-1 GPIO
Controller Function multiplexing, for mapping between the QMatrix method pin name and the
GPIO pin. It is possible to configure a maximum of 17 X Lines and 8 Y-Yk pairs. The X Line X8
(PA16) cannot be used for the QMatrix method as it is required to use this pin for the ACREFN
function.

The CAT module provides an option to enable a nominal output resistance of 1kOhm on specific
CAT module pins during the burst phase. The Table below captures the different QMatrix method
pin wherein a Resistive Drive can be optionally enabled. The rows marked with Grey indicate
that Resistive Drive option is not available on that pin. By carefully choosing the QMatrix method

TOUCH_
STATE_INIT

TOUCH_
STATE_ NULL

TOUCH_
STATE_
READY

TOUCH_
STATE_BUSY

touch_xx_sensors_init

touch_xx_sensors_calibrate

touch_xx_sensor_config
touch_xx_sensor_get_config
touch_xx_get_global_param
touch_xx_get_libinfo

touch_xx_sensor_update_config
touch_xx_sensor_get_config
touch_xx_update_global_param
touch_xx_get_global_param
touch_xx_get_sensor_delta
touch_xx_get_libinfo

touch_xx_get_libinfo

QTouch Library for UC3L State Diagram

TOUCH_
STATE_

CALIBRATE

touch_deinit

touch_deinit

touch_deinit

touch_qm_channel_udpate_burstlen
touch_qt_sensor_disable
touch_qt_sensor_reenable

touch_qm_channel_udpate_burstlen
touch_qt_sensor_disable
touch_qt_sensor_reenable
touch_xx_sensor_update_config
touch_xx_sensor_get_config
touch_xx_update_global_param
touch_xx_get_global_param
touch_xx_get_libinfo

touch_xx_sensors_calibrate

touch_xx_sensors_start_acquisition

measure_complete_callback
(provide measured data and
touch status)

touch_deinit

xx = qm, qt
Sensor state machine for QMatrix
and QTouch GroupA/B

8207L-AT42-05/12 118

X and Yk pins wherein Resistive Drive can be enabled, saving on external components is
possible.

Section 6.3.1.1 provides detail on the number of Pin and Touch channels required for different
QMatrix method sensor. The hardware arrangement for Wheel or Slider must be such that all
Touch channels corresponding to the Wheel or Slider belong to the same Yk Line.

Also, Section 6.3.11 indicates the various Pin Configuration options for the QTouch Library that
can be used to specify a user defined configuration.

CAT Module Pin Name QMatrix method Pin Name

CSA0 X0
CSB0 X1
CSA1 Y0
CSB1 YK0
CSA2 X2
CSB2 X3
CSA3 Y1
CSB3 YK1
CSA4 X4
CSB4 X5
CSA5 Y2
CSB5 YK2
CSA6 X6
CSB6 X7
CSA7 Y3
CSB7 YK3
CSA8 X8
CSB8 X9
CSA9 Y4
CSB9 YK4
CSA10 X10
CSB10 X11
CSA11 Y5
CSB11 YK5
CSA12 X12
CSB12 X13
CSA13 Y6
CSB13 YK6
CSA14 X14
CSB14 X15
CSA15 Y7
CSB15 YK7
CSA16 X16
CSB16 X17

Table 10 QMatrix Resistive drive pin option

(The rows marked with Grey indicate that Resistive Drive option is not available on that pin)

6.3.7.2 QMatrix method Schematic for UC3L

6.3.7.2.1 Internal Discharge mode

The CAT module provides an internal discharge arrangement for QMatrix method. When this
arrangement is used along with the Resistive drive capability, minimal external component is
required as shown in the case A of Figure 27. When the Resistive drive is option is not enabled,
it is recommended to use 1kOhm resistors on X and Yk Lines external to the UC3L device. This
hardware arrangement is shown in case B.

119

6.3.7.2.2 External Discharge mode
When the External Discharge arrangement is used, a logic-level (DIS) pin is connected to an
external resistor (Rdis) that can be used to control the discharge of the Capacitors. A typical
value for Rdis is 100 kOhm. This value of Rdis will give a discharge current of approximately
1.1V/(100 kOhm) = 11 microAmp. The case C shows this arrangement. The Resistive drive
option on the X and Yk lines can be optionally enabled or disabled with this arrangement. When
the Resistive drive is option is not enabled, it is recommended to use 1kOhm resistors on X and
Yk Lines external to the UC3L device.

6.3.7.2.3 SMP Discharge Mode
When the SMP Discharge mode arrangement is used, a logic-level (SMP) pin is connected to the
capacitors through external high value resistors for the discharge of the capacitors. The case D
shows this arrangement. The Resistive drive option on the X and Yk lines can be optionally
enabled or disabled with this arrangement. When the Resistive drive is option is not enabled, it is
recommended to use 1kOhm resistors on X and Yk Lines external to the UC3L device.

6.3.7.2.4 VDIVEN Voltage Divider Enable option
The VDIV pin provides an option to make ACREFN a small positive voltage if required. The VDIV
pin is driven when the analog comparators are in use, and this signal can be used along with a
voltage divider arrangement to create a small positive offset on the ACREFN pin. The VDIVEN
option can be used optionally with any of the QMatrix modes discussed in the previous sections.
Typical values for Ra and Rb are Ra=8200 ohm and Rb = 50 ohm. Assuming a 3.3V I/O supply,
this will shift the comparator threshold by 3.3V*(Rb/(Ra+Rb)) which is 20 mV. The VDIVEN pin
option usage in the Internal Discharge mode scenario is shown in case E.

6.3.7.2.5 SYNC pin option
In order to prevent interference from the 50 or 60 Hz mains line the CAT can optionally trigger
QMatrix acquisition on the external SYNC input signal. The SYNC signal should be derived from
the mains line and the acquisition will trigger on a falling edge of this signal. The SYNC pin
option can be used with any of the QMatrix modes discussed in the previous sections. The
SYNC pin usage in the Internal Discharge mode scenario is shown in case F.

For QMatrix method SMP, DIS, VDIV and SYNC pin options discussed in this Section, Refer to
Section 6.3.15.2.13.

8207L-AT42-05/12 120

Figure 37 QMatrix method schematic

 Atmel
 AT32UC3L

 Atmel
 AT32UC3L

 Atmel
 AT32UC3L

 Atmel
 AT32UC3L

 Atmel
 AT32UC3L

 Atmel
 AT32UC3L

Sensors
X, Y

CS0CAT
Module

ACIFB-
ACREFN

YmA

Y0A

Xn

X2

Sensor
n, 0

Sensor
0, m

Sensor
n, m

Sensor
0, 0

CSm

YmB

Y0B
Typical Values:
CS:4.7nF

n - number of X Lines
m - number of Y Lines

I/O Pin requirements:
X: QMatrix method X Line
YA: QMatrix method Yk Line
YB: QMatrix method Y Line
ACIFB-ACREFN: PA16 I/O pin

...

...

 A. QMatrix Internal Discharge mode arrangement.
 Resistive drive enabled on X and Yk Lines

Sensors
X, Y

CS0
CAT
Module

ACIFB-
ACREFN

YmA

Y0A

Xn
RXn

X0
RX0

Sensor
n, 0

Sensor
0, m

Sensor
n, m

Sensor
0, 0

CSm

YmB

Y0B

RXn

RX0

...

...

...

 B. QMatrix Internal Discharge mode arrangement.
 Resistive drive disabled on X and Yk Lines

Sensors
X, Y

CS0CAT
Module

ACIFB-
ACREFN

YmA

Y0A

Xn

X2

Sensor
n, 0

Sensor
0, m

Sensor
n, m

Sensor
0, 0

CSm

YmB

Y0B

DIS

...

Rdis

 C. QMatrix External Discharge mode arrangement.
 Resistive drive enabled on X and Yk Lines

...

Sensors
X, Y

CS0
CAT
Module

ACIFB-
ACREFN

YmA

Y0A

Xn
RXn

X0
RX0

Sensor
n, 0

Sensor
0, m

Sensor
n, m

Sensor
0, 0

CSm

YmB

Y0B

RXn

RX0

RYBmRYB0

SMP

...

...

...

 D. QMatrix SMP Discharge mode arrangement.
 Resistive drive disabled on X and Yk Lines

Sensors
X, Y

CS0
CAT
Module

ACIFB-
ACREFN

YmA

Y0A

Xn

X2

Sensor
n, 0

Sensor
0, m

Sensor
n, m

Sensor
0, 0

CSm

YmB

Y0B

...

...

VDIVEN

Ra

Rb

 E. QMatrix Internal Discharge mode arrangement
 with Volage Divider option enabled.
 Resistive drive enabled on X and Yk Lines Sensors

X, Y

CS0
CAT
Module

ACIFB-
ACREFN

YmA

Y0A

Xn

X2

Sensor
n, 0

Sensor
0, m

Sensor
n, m

Sensor
0, 0

CSm

YmB

Y0B

...

...

SYNC Synchronize
signal

 F. QMatrix Internal Discharge mode arrangement
 with External Sync option enabled.
 Resistive drive enabled on X and Yk Lines

Typical Values:
CS:4.7nF
RX: 1kOhm

n - number of X Lines
m - number of Y Lines

I/O Pin requirements:
X: QMatrix method X Line
YA: QMatrix method Yk Line
YB: QMatrix method Y Line
ACIFB-ACREFN: PA16 I/O pin

Typical Values:
CS:4.7nF
Rdis: 100kOhm

n - number of X Lines
m - number of Y Lines

I/O Pin requirements:
X: QMatrix method X Line
YA: QMatrix method Yk Line
YB: QMatrix method Y Line
DIS: CAT-DIS IO pin
ACIFB-ACREFN: PA16 I/O pin

Typical Values:
CS:4.7nF
RX: 1kOhm
RYB: 1kOhm

n - number of X Lines
m - number of Y Lines

I/O Pin requirements:
X: QMatrix method X Line
YA: QMatrix method Yk Line
YB: QMatrix method Y Line
SMP: CAT-SMP IO pin
ACIFB-ACREFN: PA16 I/O pin

Typical Values:
CS:4.7nF
Ra: 16500 Ohm
Rb: 50 Ohm

n - number of X Lines
m - number of Y Lines

I/O Pin requirements:
X: QMatrix method X Line
YA: QMatrix method Yk Line
YB: QMatrix method Y Line
VDIVEN: CAT-VDIVEN IO pin
ACIFB-ACREFN: PA16 I/O pin

Typical Values:
CS:4.7nF

n - number of X Lines
m - number of Y Lines

I/O Pin requirements:
X: QMatrix method X Line
YA: QMatrix method Yk Line
YB: QMatrix method Y Line
SYNC: CAT-SYNC IO pin
ACIFB-ACREFN: PA16 I/O pin

121

6.3.7.3 QMatrix method hardware resource requirement for UC3L

The clock for the CAT module, CLK_CAT, is generated by the Power Manager (PM). This clock is
turned on by default, and can be enabled and disabled in the PM. The user must ensure that
CLK_CAT is enabled before initializing the QTouch Library.

QMatrix operations also require the CAT generic clock, GCLK_CAT. This generic clock is
generated by the System Control Interface (SCIF), and is shared between the CAT and the
Analog Comparator Interface. The user must ensure that the GCLK_CAT is enabled in the SCIF
before using QMatrix functionality. For proper QMatrix operation, the frequency of GCLK_CAT
must be less than one fourth the frequency of CLK_CAT.

For QMatrix operation, the Analog comparators channels are used (using the ACIFB interface)
depending on the Y Lines enabled. See Note 4 in Section 6.3.7.4.

The QMatrix method acquisition using the CAT module requires two Peripheral DMA channels
that must be provided by the application.

6.3.7.4 QMatrix method Channel and Sensor numbering for UC3L

Sensor

4

Sensor
3

Sensor

2

Sensor
1

Ch 0
X0

X3

X2

X1

Yk0 Yk3Yk2Yk1
KEY

ROTOR/
SLIDER

Ch 1

Ch 2

Ch 3

Ch 4

Ch 5

Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 11

Ch 12

Ch 13

Ch 14

Ch 15

Se
ns

or
 0

Se
ns

or
 5

Se
ns

or
 6

Figure 38 QMatrix channel numbering for UC3L

The above figure represents a typical 4 X 4 matrix of QMatrix sensor arrangement along with the
channel numbers. The Channel numbering starts with Channel 0 (Ch0) and increase sequentially
from Ch0 to Ch15. Similarly the Sensor numbering starts with Sensor 0. The Channel number
signifies the order in which the QTouch Library stores the acquisition data in the memory.

Note: The touch_qm_sensor_config API must follow the above Channel and Sensor numbering
when configuring the Sensors.

6.3.7.5 QMatrix method API Flow for UC3L

For the QMatrix operation, the CAT_CLK and GCLK_CAT clocks must be setup appropriately as
a first step. The QMatrix and Common configuration parameters in the touch_config_at32uc3l.h
configuration must then be set up.

8207L-AT42-05/12 122

Figure 39 QMatrix API Flow diagram for UC3L

touch_qm_sensors_init()

Configure multiple
QMatrix sensors

Using the init_clock() in main.c and clock.c files,
Set the CAT_CLK Clock to appropriate value.
Set the GCLK_CAT Clock to appropriate value.

touch_qm_sensors_config()

Using the touch_config_at32uc3l.h configuration file,
Set DEF_TOUCH_QMATRIX = 1.
Set all QM_xx and TOUCH_xx macros to appropriate values.
(This includes 2 peripheral DMA Channels required for QMatrix operation.)

In the main.c file,
Set appropriate qm_burst_length[] values corresponding to all Touch channels .
Set the desired measurement_period_ms for Touch measurement.

touch_qm_sensors_calibrate()

touch_event_dispatcher()

touch_qm_sensors_start_
acquisition(NORMAL_ACQ_MODE)

Call in loop

time_to_
measure_touch

filter_callback(), if enabled

measure_complete_callback(),
measured data and Touch Status

Host Application code

123

The burst length values of each Touch channel must be specified using the qm_burst_length[]
array in the main.c file. The burst length must be specified in the same order of Touch Channel
numbering.

The touch_qm_sensors_init API initializes the QTouch Library as well as the CAT module and
does the QMatrix method specific pin, register and Global Sensor configuration. The
touch_qm_sensor_config API is used to configure individual sensor. The Sensor specific
configuration parameter can be provided as input to this API.

The touch_qm_sensors_calibrate API is used to calibrate all the configured sensors thereby
preparing the sensors for acquisition. The touch_qm_sensors_start_acquisition API initiates a
QMatrix method measurement on all the configured Sensors. This API takes the peripheral DMA
channels as an input. When a filter_callback function is enabled, the touch_event_dispatcher
function calls the filter_callback function as soon as the raw acquisition data from the Sensors is
available. The user can now optionally apply any filtering routine on the raw acquisition data
before the QTouch Library does any processing on this data. (For an overview of Filter callback
usage, refer Section 5.6.6.4 Example code). Once the QTouch Library has finished processing
the acquisition data from Sensors, the touch_event_dispatcher function calls the
measure_complete_callback function indicating the end of a single Touch measurement
operation. The measure_complete_callback provides the measured data and Touch status
information. The measured data is available in the same order of Touch Channel numbering.

Note 1: The Host Application code can execute once a QMatrix acquisition is initiated with the
touch_qm_sensors_start_acqusition API. Care must be taken in the Host Application such that
the touch_event_dispatcher function is called frequently in order to process the acquired data.
For a single Touch measurement operation (between a touch_qm_sensors_start_acquisition API
call and the measure_complete_callback function being called), the touch_event_dispatcher
function may execute multiple times in order to resolve the Touch status of Sensors. Failing to
call the touch_event_dispatcher frequently can adversely impact the Touch Sensitivity.

Note 2: Once the Touch Library has been initialized for QMatrix method using the
touch_qm_sensors_init API, a new qm_burst_length[x] value of a Touch channel must be
updated only using the touch_qm_channel_update_burstlen API. It is recommended to have
qm_burst_length array as global variable as the Touch Library updates this array when the
touch_qm_channel_update_burstlen API is called.

Note 3: QMatrix burst length setting recommendation.

For a given X Line, the burst length value of ALL enabled Y Lines MUST be the same or set to
0x01(disabled). For example, the burst length value corresponding to (X0,Y1),(X0,Y2)...(X0,Yn)
must be the same. In case of a scenario, wherein it is required to have a different a burst length,
then the following option can be tried out - Enable the 1k ohm drive resistors on all the enabled Y
lines by setting the corresponding bit in the CSARES register.

Note 4: For QMatrix operation, the Analog comparators channels are used (using the ACIFB
interface) depending on the Y Lines enabled. For example, when Y lines Y2 and Y7 are enabled
the Analog comparator channels 2 and 7 are used by the CAT module for QMatrix operation.
The user can uses the rest of the Analog comparator channels in the main application. The
QTouch Library enables the ACIFB using the Control register (if not already enabled by the main
application) when the touch_qm_sensors_init API is called.

8207L-AT42-05/12 124

6.3.7.6 QMatrix method Disable and Re-enable Sensor for UC3L

The touch_qm_channel_update_burstlen API can be used for Disabling and Re-enabling of
QMatrix Sensors. In order to Disable a sensor, the QMatrix burst length value of all the Touch
Channels corresponding to the Sensor must be set to 1. For Example, when a Wheel or Slider is
composed of 4 Touch Channels, the touch_qm_channel_update_burstlen API should be used to
set the burst length of all the 4 Touch Channels to 1. For the case of a Button,
touch_qm_channel_update_burstlen API should be used to set burst length of the corresponding
single Touch Channel of the Button to 1. Similarly, when re-enabling a Sensor, appropriate burst
length must be set to all the Touch channels corresponding to the Sensor.

When a QMatrix Sensor is Disabled or re-enabled, it is mandatory to force Calibration on all
Sensors. The Calibration of all Sensors is done using the touch_qm_sensors_calibrate API.

Note: When disabling a Wheel or Slider, care must be taken to set the burst length of all the
Touch channels corresponding to the Wheel or Slider to 1. If any of the Touch channels are
missed out, it may result in undesired behavior of the Wheel or Slider. Similarly when re-enabling
a Wheel or Slider, burst length of all the Touch channels corresponding to the Wheel or Slider
must be set to an appropriate value. If any of the Touch Channels are left disabled with a burst
length value 1, it may result in undesired behavior of Wheel or Slider.

6.3.8 QTouch Group A/B method sensor operation for UC3L

6.3.8.1 QTouch Group A/B method pin selection for UC3L

Please refer AT32UC3L datasheet Table 28-2 Pin Selection Guide and Table 3-1 GPIO
Controller Function multiplexing, for mapping between the QTouch method pin name
(SNS/SNSK) and the GPIO pin. The CAT module provides an option to enable a nominal output
resistance of 1kOhm on specific CAT module pins during the burst phase. The Table below
captures the different QTouch method pin wherein a Resistive Drive can be optionally enabled.
The rows marked with Grey indicate that Resistive Drive option is not available on that pin. By
carefully choosing the QTouch method SNSK pins wherein Resistive Drive can be enabled,
saving on external components is possible. Section 6.3.1.2 provides detail on the number of Pin
and Touch channels required for different QTouch method sensor. Also, Section 6.3.11 indicates
the various Pin Configuration options for the QTouch Library that can be used to specify a user
defined configuration.

125

CAT Module Pin Name QTouch method Pin Name
CSA0 SNS0
CSB0 SNSK0
CSA1 SNS1
CSB1 SNSK1
CSA2 SNS2
CSB2 SNSK2
CSA3 SNS3
CSB3 SNSK3
CSA4 SNS4
CSB4 SNSK4
CSA5 SNS5
CSB5 SNSK5
CSA6 SNS6
CSB6 SNSK6
CSA7 SNS7
CSB7 SNSK7
CSA8 SNS8
CSB8 SNSK8
CSA9 SNS9
CSB9 SNSK9
CSA10 SNS10
CSB10 SNSK10
CSA11 SNS11
CSB11 SNSK11
CSA12 SNS12
CSB12 SNSK12
CSA13 SNS13
CSB13 SNSK13
CSA14 SNS14
CSB14 SNSK14
CSA15 SNS15
CSB15 SNSK15
CSA16 SNS16
CSB16 SNSK16

Table 11 QTouch Resistive drive pin option

(The rows marked with Grey indicate that Resistive Drive option is not available on that pin.)

6.3.8.2 QTouch Group A/B method Schematic for UC3L

6.3.8.2.1 Resistive Drive option
The cases A and B of the Figure provide the schematic arrangement of QTouch Group A/B and
Autonomous QTouch Sensors. In option A, Resistive drive is enabled on SNSK line. In case B,
Resistive drive is disabled on the SNSK line and in this case, it is recommended to use 1kOhm
resistors on SNSK Line external to the UC3L device.

6.3.8.2.2 SYNC pin option
In order to prevent interference from the 50 or 60 Hz mains line the CAT can optionally trigger
QTouch Group A/B and Autonomous QTouch acquisition on the external SYNC input signal. The
SYNC signal should be derived from the mains line and the acquisition will trigger on a falling
edge of this signal. The SYNC pin usage in the Internal Discharge mode scenario is shown in
case C. For QTouch method SYNC pin options Refer to Section 6.3.15.2.13.

8207L-AT42-05/12 126

Figure 40 QTouch Group A/B and Autonomous QTouch schematic arrangement

6.3.8.3 QTouch Group A/B method hardware resource requirement for UC3L

The clock for the CAT module, CLK_CAT, is generated by the Power Manager (PM). This clock is
turned on by default, and can be enabled and disabled in the PM. The user must ensure that
CLK_CAT is enabled before initializing the QTouch Library.

The QTouch method acquisition using the CAT module requires one Peripheral DMA channel
that must be provided by the application.

 Atmel
 AT32UC3L

CAT
Module

 A. QTouch Group A/B and Autonomous QTouch arrangement.
 Resistive drive enabled on SNSK Line.

Sensor

Cs

Typical Values:
Cs: 22nF

Pin requirements:
SNS: CAT QTouch method I/O pin
SNSK: CAT QTouch method I/O pin

SNSK

SNS

 Atmel
 AT32UC3L

CAT
Module

Sensor

Cs

Typical Values:
Cs: 22nF

Pin requirements:
SNS: CAT QTouch method I/O pin
SNSK: CAT QTouch method I/O pin
SYNC: CAT-SYNC I/O pin

SNSK

SNS

 C. QTouch Group A/B and Autonomous QTouch arrangement.
 Resistive drive enabled on SNSK Line.
 External Synchronization enabled.

Sync
signal

SYNC

 Atmel
 AT32UC3L

CAT
Module

Sensor

Cs

Typical Values:
Cs: 22nF, Rs:1kOhm

Pin requirements:
SNS: CAT QTouch method I/O pin
SNSK: CAT QTouch method I/O pin

SNSK

SNS

Rs

 B. QTouch Group A/B and Autonomous QTouch arrangement.
 Resistive drive disabled on SNSK Line.

127

6.3.8.4 QTouch Group A/B method Channel and Sensor numbering for UC3L

Figure 41 QTouch method Channel/Sensor numbering

The above Figure represents an example 4 Channel QTouch sensor arrangement along with the
channel numbers. The Channel numbering starts with the lowest SNS-SNSK QTouch method
pair number (SNS2-SNSK2 being the least in this case) and increases as the SNS-SNSK pair
number increases. Similarly the Sensor numbering starts with Sensor 0. The Channel number
signifies the order in which the QTouch Library stores the acquisition data in the memory.

Figure 42 QTouch method Channel/Sensor numbering when Group A and B are used
together

When both QTouch Group A and QTouch Group B method are used at the same time, the SNS-
SNSK pairs associated with the individual group alone must be taken into consideration when
determining the Channel number.

Note: The touch_qt_sensor_config API must follow the above Channel and Sensor numbering
when configuring the Sensors.

channel 0

Sensor 0

Sensor 1

ATMEL
AT32UC3L

SNSK2

SNS2

SNSK3

SNS3

SNSK5

SNS5

SNSK9

SNS9

channel 1

channel 2

channel 3

QTouch Grp A Channel 0

QTouch Grp A
Sensor 0

QTouch Grp B
Sensor 0

ATMEL
AT32UC3L

SNSK2

SNS2

SNSK3

SNS3

SNSK5

SNS5

SNSK6

SNS6

QTouch Grp A
Sensor 1

SNSK7

SNS7

SNSK9

SNS9
QTouch Grp B

Sensor 1

QTouch Grp A Channel 1

QTouch Grp A Channel 2

QTouch Grp B Channel 0

QTouch Grp A Channel 3

QTouch Grp B Channel 1

8207L-AT42-05/12 128

6.3.8.5 QTouch Group A/B method API Flow for UC3L

For the QTouch operation, the CAT_CLK must be setup appropriately as a first step. Depending
on QTouch Group that need to be used, the QTouch Group A, QTouch Group B and Common
configuration parameters in the touch_config_at32uc3l.h configuration must then be set up.

The first input argument to the QTouch API, TOUCH_QT_GRP_A or TOUCH_QT_GRP_B
indicates if the QTouch API must perform the necessary operation on Group A Sensors or Group
B Sensors. The touch_qt_sensors_init API initializes the QTouch Library as well as the CAT
module and does the QTouch method specific pin, register and Global Sensor configuration. The
touch_qt_sensor_config API is used to configure individual sensor. The Sensor specific
configuration parameter can be provided as input to this API.

The touch_qt_sensors_calibrate API is used to calibrate all the configured sensors thereby
preparing the sensors for acquisition. The touch_qt_sensors_start_acquisition API initiates a
QTouch method measurement on all the configured Sensors (corresponding to the input Touch
Group A or B). This API takes the peripheral DMA channels as an input. When a filter_callback
function is enabled, the touch_event_dispatcher function calls the filter_callback function as soon
as the raw acquisition data from the Sensors is available. The user can now optionally apply any
filtering routine on the raw acquisition data before the QTouch Library does any processing on
this data. (For an overview of Filter callback usage, refer Section 5.6.6.4 Example code). Once
the QTouch Library has finished processing the acquisition data from Sensors, the
touch_event_dispatcher function calls the measure_complete_callback function indicating the end
of a single Touch measurement operation. The measure_complete_callback provides the
measured data and Touch status information. The measured data is available in the same order
of Touch Channel numbering. Separate Filter and Measure complete callback functions must be
provided for Group A and Group B Sensors.

Note: The Host Application code can execute once a QTouch acquisition is initiated with the
touch_qt_sensors_start_acqusition API. Care must be taken in the Host Application such that the
touch_event_dispatcher function is called frequently in order to process the acquired data. For a
single Touch measurement operation (between a touch_qt_sensors_start_acquisition API call
and the measure_complete_callback function being called), the touch_event_dispatcher function
may execute multiple times in order to resolve the Touch status of Sensors. Failing to call the
touch_event_dispatcher frequently can adversely impact the Touch Sensitivity.

129

Figure 43 QTouch method API Flow diagram

touch_qt_sensors_init()

Configure multiple
QTouch sensors

Using the init_clock() in main.c and clock.c files,
Set the CAT_CLK Clock to appropriate value.

touch_qt_sensors_config()

Using the touch_config_at32uc3l.h configuration file,
Set DEF_TOUCH_QTOUCH_GRP_A = 1, if QTouch Group A is to be used.
Set DEF_TOUCH_QTOUCH_GRP_B = 1, if QTouch Group B is to be used.
Set all QTA_xx (if Group A is enabled) to appropriate values.
Set all QTB_xx (if Group B is enabled) to appropriate values.
Set all TOUCH_xx macros to appropriate values.
(This includes 1 peripheral DMA Channels required for QTouch operation.)

In the main.c file,
Set the desired measurement_period_ms for Touch measurement.

The API Sequence below must be repeated for Group A and Group B when both the
Groups are used at the same time. The first argument to the API
TOUCH_QT_GRP_A or TOUCH_QT_GRP_B distinguishes between Group A and
Group B operations. Separate Filter and Measurement complete callback functions
must be provided for Group A and Group B Sensors.

touch_qt_sensors_calibrate()

touch_event_dispatcher()

touch_qt_sensors_start_
acquisition(NORMAL_ACQ_MODE)

Call in loop

time_to_
measure_touch

filter_callback(), if enabled

measure_complete_callback(),
measured data and Touch Status

Host Application code

8207L-AT42-05/12 130

6.3.8.6 QTouch Group A/B method Disable and Re-enable Sensor for UC3L

The touch_qt_sensor_disable and touch_qt_sensor_reenable API can be used for Disabling and
Re-enabling of QTouch Group A and Group B Sensors. In order to Disable or re-enable a
sensor, the API must be called with the corresponding sensor_id. Disabling a Sensor disables
the measurement process on all the Touch Channels corresponding to Sensor.

When a QTouch Sensor is Disabled or re-enabled, it is mandatory to force Calibration on all
Sensors. The Calibration of all Sensors is done using the touch_qt_sensors_calibrate API.

6.3.9 Autonomous QTouch sensor operation for UC3L

6.3.9.1 Autonomous QTouch Sensor pin selection for UC3L

The Autonomous QTouch Sensor pin selection is similar to selection of pin for QTouch Group A/B
as indicated in Section 6.3.8.1. Any one SNS-SNSK pair between SNS0-SNSK0 and SNS16-
SNSK16 can be chosen to function as an Autonomous QTouch sensor.

6.3.9.2 Autonomous QTouch sensor Schematic for UC3L

The Autonomous QTouch Sensor Sensor schematic is similar QTouch schematic as indicated in
Section 6.3.8.2.

6.3.9.3 Autonomous QTouch method hardware resource requirement for UC3L

The clock for the CAT module, CLK_CAT, is generated by the Power Manager (PM). This clock is
turned on by default, and can be enabled and disabled in the PM. The user must ensure that
CLK_CAT is enabled before initializing the QTouch Library for Autonomous QTouch.

For the Autonomous QTouch Sensor, the complete detection algorithm is implemented within the
CAT module. This allows detection of proximity or touch without CPU intervention. Since the
Autonomous QTouch Sensor operates without software interaction, this Sensor can be used to
wakeup from sleep modes when activated. The Autonomous QTouch Status change interrupt
can be used to wakeup from any of the Sleep modes shown in the Table. The ‘Static’ Sleep
mode being the deepest possible Sleep mode from which a wake up from Sleep is possible using
the Autonomous QTouch. Both an IN_TOUCH status change and OUT_OF_TOUCH status
change indication is available when using Autonomous QTouch.

The Autonomous QTouch method acquisition using the CAT module does not require any
Peripheral DMA channel for operation.

Sleep
Mode CPU HSB PBA,B

GCLK
Clock

sources Osc32 RCSYS BOD &
Bandgap

Voltage
Regulator

Idle Stop Run Run Run Run Run On Full power

Frozen Stop Stop Run Run Run Run On Full power

Standby Stop Stop Stop Run Run Run On Full power

Stop Stop Stop Stop Stop Run Run On Low power

DeepStop Stop Stop Stop Stop Run Run Off Low power

Static Stop Stop Stop Stop Run Stop Off Low power

Table 12 Sleep mode support for Autonomous QTouch

131

6.3.9.4 Autonomous QTouch Sensor API Flow for UC3L

For the Autonomous QTouch operation, the CAT_CLK must be setup appropriately as a first step.
The Autonomous QTouch and Common configuration parameters in the touch_config_at32uc3l.h
configuration must then be set up.

The touch_at_sensors_init API initializes the QTouch Library as well as the CAT module for the
Autonomous QTouch sensor related pin, register and Global Sensor configuration. The
Autonomous QTouch Sensor can be enabled at any time by the Host Application. Once the
Autonomous QTouch Sensor is enabled, the CAT module performs measurements on this sensor
continuously to detect a Touch Status. When an IN_TOUCH or OUT_OF_TOUCH status is
detected, the QTouch Library calls the touch_at_status_change_interrupt_callback function to
indicate the status to the Host application. It is possible to enable and disable Autonomous
QTouch sensor multiple times in the Host application by using the touch_at_sensor_enable and
touch_at_sensor_disable API.

Figure 44 Autonomous QTouch API Flow diagram

6.3.9.5 Autonomous QTouch method Enable and Disable Sensor for UC3L

The touch_at_sensor_enable and touch_at_sensor_disable API can be used for Enabling and
Disabling and the Autonomous QTouch Sensor. Once the Autonomous QTouch sensor is
enabled, the CAT module performs continuous Touch Measurements on the Sensor in order to
detect the Touch Status.

touch_at_sensor_init()

Using the init_clock() in main.c and clock.c files,
Set the CAT_CLK Clock to appropriate value.

touch_at_sensor_enable()

Using the touch_config_at32uc3l.h configuration file,
Set DEF_TOUCH_AUTONOMOUS_QTOUCH = 1.
Set all AT_xx and TOUCH_xx macros to appropriate values.

touch_at_status_change_interrupt_callback(),
Autonomous QTouch Status

touch_at_sensor_disable()

Disable Autonomous
QTouch Sensor if required

The callback is called as long
as Autonomous QTouch

sensor is not disabled

Re-enable Autonomous
QTouch Sensor if required

8207L-AT42-05/12 132

6.3.10 Raw acquisition mode support for UC3L
The QTouch Library Raw acquisition mode can be used with QMatrix, QTouch Group A and
QTouch Group B methods. When raw data acquisition mode is used, once the raw acquisition
data is available from the CAT module for all the sensors, the measure_complete_callback
function is immediately called with acquisition data (channel_signals). The channel_references,
sensor_states and rotor_slider_values data are not updated by the Touch Library in this mode.

Figure 45 Raw acquisition mode API Flow diagram

touch_xx_sensors_init()

Configure multiple
sensors

touch_xx_sensors_config()

touch_xx_sensors_calibrate()

touch_event_dispatcher()

touch_xx_sensors_start_
acquisition(RAW_ACQ_MODE)

Call in loop

time_to_
measure_touch

measure_complete_callback(),
Raw acquisition data.

Host Application code

133

6.3.11 Library Configuration parameters for UC3L
The QTouch Library for UC3L provides a single configuration header file touch_config_at32uc3l.h
file for setting the various configuration parameters for each method. The different configuration
parameters corresponding to QMatrix, QTouch Group A/B and Autononmous QTouch sensors
are listed in the Table below.

Paramete
r

QMatrix QTouch Group A/B
Autonomous

QTouch

Sensor
Configuration

QM_NUM_X_LINES
QM_NUM_Y_LINES
QM_NUM_SENSORS
QM_NUM_ROTORS_SLIDERS

QTx_NUM_SENSORS
QTx_NUM_ROTORS_SLIDERS

None

Pin
Configuration

QM_X_PINS_SELECTED
QM_Y_PAIRS_SELECTED
QM_SMP_DIS_PIN_OPTION
QM_VDIV_PIN_OPTION

QTx_SP_SELECTED

AT_SP_SELECTED

Clock and
Register
Configuration

QM_GCLK_CAT_DIV
QM_CAT_CLK_DIV
QM_CHLEN
QM_SELEN
QM_CXDILEN
QM_DILEN
QM_DISHIFT
QM_MAX_ACQ_COUNT
QM_CONSEN
QM_INTREFSEL
QM_INTVREFSEL
QM_ENABLE_SPREAD_SPECTRU
M
QM_ENABLE_EXTERNAL_SYNC
QM_SYNC_TIM

QTx_CAT_CLK_DIV
QTx_CHLEN
QTx_SELEN
QTx_DILEN
QTx_DISHIFT
QTx_MAX_ACQ_COUNT
QTx_ENABLE_SPREAD_SPECTRU
M
QTx_ENABLE_EXTERNAL_SYNC

AT_CAT_CLK_DIV
AT_CHLEN
AT_SELEN
AT_DILEN
AT_DISHIFT
AT_MAX_ACQ_COUN
T
AT_ENABLE_SPREAD
_ SPECTRUM
AT_ENABLE_
EXTERNAL_SYNC
AT_FILTER
AT_OUTSENS
AT_SENSE
AT_PTHR
AT_PDRIFT
AT_NDRIFT

Peripheral
DMA
Channel
Configuration

QM_DMA_CHANNEL_0
QM_DMA_CHANNEL_1

QTx_DMA_CHANNEL_0 None

Global
acquisition
parameter
Configuration

QM_DI
QM_NEG_DRIFT_RATE
QM_POS_DRIFT_RATE
QM_MAX_ON_DURATION
QM_DRIFT_HOLD_TIME
QM_POS_ RECAL_DELAY
QM_RECAL_THRESHOLD

QTx_DI
QTx_NEG_DRIFT_RATE
QTx_POS_DRIFT_RATE
QTx_MAX_ON_DURATION
QTx_DRIFT_HOLD_TIME
QTx_ POS_RECAL_DELAY
QTx_RECAL_THRESHOLD

None

Callback
Function
Configuration

QM_FILTER_CALLBACK QTx_FILTER_CALLBACK None

Common
Configuration
Options

TOUCH_SYNC_PIN_OPTION, TOUCH_SPREAD_SPECTRUM_MAX_DEV,
TOUCH_CSARES, TOUCH_CSBRES

Table 13 QTouch Library for UC3L Configuration parameters

8207L-AT42-05/12 134

For an overview of the Global acquisition configuration parameters and Sensor specific
parameters, refer Section 5.3 and Section 5.4. The detailed information on other parameters is
available in the configuration header file. For QMatrix method Design guidelines regarding
Sensor parameters refer Section 5.6.7.3.

6.3.12 Example projects for QTouch Library for UC3L

6.3.12.1 Example Project usage

The GNU Example projects can be used along with Atmel Studio 6.

Figure 46 GNU Example project usage with AVR32 Studio

The IAR Example Projects can be used with IAR Embedded Workbench for AVR32 v4.1

Figure 47 IAR Example project usage with IAR Embedded Workbench for AVR32

135

6.3.12.2 QMatrix Example Project

The QMatrix method GNU and IAR Example projects can be found in the following path.

\Device_Specific_Libraries\32bit_AVR\UCxx\example_projects\uc3l_gnu_qm_ek_example and

\Device_Specific_Libraries\32bit_AVR\UCxx\example_projects\uc3l_iar_qm_ek_example

The QMatrix Example projects demonstrate the QMatrix operation on the UC3L Evaluation Kit
(Rev 2). QMatrix SMP discharge mode hardware arrangement is used for the UC3L Evaluation
Kit with 6 X Lines and 2 Y Lines. Using the 12 Touch Channels (6x2), 6 Touch Sensors are
formed that include a Rotor (that uses six Touch Channels) and 5 keys (each using one Touch
channel).

The Example projects demonstrate the QMatrix measured data and Touch Status usage using
the LED Demo application. The onboard LED0, LED1, LED2 and LED3 are set when the Touch
Position of the Rotor position varies from 0 to 255. By Touching the up key (^), left key (<),
play/pause key (>/||) and right key (>), the LED0, LED1, LED2 and LED3 can be individually
cleared. When the down key (v) is touched, it clears all LEDs.

Additionally QMatrix Example projects are also available for QT600 and STK600 boards.

6.3.12.3 QTouch Group A Example Project

The QTouch Group A method GNU and IAR Example projects can be found in the following path.

\Device_Specific_Libraries\32bit_AVR\UCxx\example_projects\uc3l_gnu_qt_grp_a_example and

\Device_Specific_Libraries\32bit_AVR\UCxx\example_projects\uc3l_iar_qt_grp_a_example

The QTouch Group A Example projects demonstrate the QTouch method API usage with a
Rotor, Slider and two keys Sensor configuration.

6.3.12.4 Autonomous QTouch Example Project

The Autonomous QTouch Sensor GNU and IAR Example projects can be found in the following
path.

\Device_Specific_Libraries\32bit_AVR\UCxx\example_projects\
uc3l_gnu_autonomous_qt_example and

\Device_Specific_Libraries\32bit_AVR\UCxx\example_projects\
uc3l_iar_autonomous_qt_example

The Autonomous QTouch Example projects demonstrate the Autonomous QTouch Sensor API
usage. The Example projects also demonstrate wake up from Sleep mode using the
Asynchronous Timer peripheral event.

Note 1: The Example Projects also support relaying the Touch Sensor debug information to the
“QTouch Studio – Touch Analyzer” PC Software. The QTouch Studio can also be used for
setting the Sensor and Global configuration parameters of the QTouch Library at run-time.

The QTouch Studio can be downloaded from the following path.

The QDebug two-way debug protocol used by the Example project to communicate (transmit or
receive touch debug data) with the QTouch Studio can be found in the following installation path.

http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702

\Device_Specific_Libraries\32bit_AVR\UCxx\qdebug

http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702�

8207L-AT42-05/12 136

• For the UC3L Evaluation kit (uc3l_xx_qm_ek_example Example project) to connect with
the QTouch Studio using the USB interface, the UC3B MCU on the UC3L Evaluation kit
must be Flashed with ISP and Program binaries. The procedure to flash the binaries is
available in the readme note in the following path.

\Device_Specific_Libraries\32bit_AVR\UC3L\example_projects\uc3l_gnu_qm_ek_exampl
e\ uc3b\readme.txt or

\Device_Specific_Libraries\32bit_AVR\UC3L\example_projects\uc3l_iar_qm_ek_example
\ uc3b\readme.txt

• For the case of QTouch Group A and Autonomous QTouch Example projects, the
‘QT600-USB Bridge’ board can be use to capture the QDebug debug data in the QTouch
Studio.

Note 2: In order to flash the generated elf binary file for GNU and IAR, the following command
can be used from the Command Line.

avr32program --part UC3L064 program -finternal@0x80000000 -e --run -R -cint
uc3l_gnu_qm_ek_example.elf

6.3.13 Code and Data Memory requirements for UC3L

6.3.13.1 QMatrix method memory requirement

The Table below captures the Typical Code & Data Memory requirement for the QTouch Library
when QMatrix method is used standalone.

In addition to the Data memory captured in the Table, the QMatrix method requires additional
Data Memory that must be provided to the Touch Library for storing the Signals, References,
Sensor information and Touch status. This data memory is provided by the Host Application to
the QTouch Library as QMatrix data block. The size of this Data memory block depends on the
Number of Sensors and the Number of Wheel or Slider configured. The
PRIV_QM_DATA_BLK_SIZE macro in touch_api_at32uc3l.h calculates the size of this data
memory block. For example, for the UC3L Evaluation kit Rev2 that has 6 Sensors including 1
Wheel and 5 Buttons, the QMatrix data block memory size is 236 bytes.

Library Typical Code
with Keys Only

Typical Code when
one or more

Wheel/Sliders is
used

Typical
Data

Memory

libuc3l-qtouch-iar.r82 5882 7296 278
libuc3l-qtouch-gnu.a 6228 8080 278

Table 14 Typical Code and Data memory for Standalone QMatrix operation

Note: This Typical Code memory usage is achieved when only QMatrix Regular API is used in
the application. Usage of QMatrix Helper API would consume additional Code memory. Also,
the Code and Data memory indicated in the Table do not account for Example QMatrix
application.

6.3.13.2 QTouch Group A/B method memory requirement

The Table below captures the Typical Code & Data Memory requirement for the QTouch Library
when QTouch Group A or QTouch Group B Sensor is used standalone. (Additional Data memory
will be required when both Group A and Group B are used at the same time.)

In addition to the Data memory captured in the Table, the QTouch Group A/B method requires
additional Data Memory that must be provided to the Touch Library for storing the Signals,

137

References, Sensor information and Touch status. This data memory is provided by the Host
Application to the QTouch Library as QTouch data block. The size of this Data memory block
depends on the Number of Sensors and the Number of Wheel or Slider configured. Refer
PRIV_QTx_DATA_BLK_SIZE macro in touch_api_at32uc3l.h. For example, when 6 Sensors are
used that include 1 Wheel, 1 Slider and 2 Button, the QTouch GroupA/B data block memory size
is 184 bytes.

 Library Typical Code
with Keys Only

Typical Code when
one or more

Wheel/Sliders is
used

Typical
Data

Memory

libuc3l-qtouch-iar.r82 5198 6450 358
libuc3l-qtouch-gnu.a 5290 6774 358

Table 15 Typical Code and Data memory for Standalone QTouch Group A/B operation

Note: This Typical Code memory usage is achieved when only the QTouch Group A/B Regular
API is used in the application. Usage of QTouch Group A/B Helper API would consume
additional Code memory. Also, the Code and Data memory indicated in the Table do not account
for Example QTouch application.

6.3.13.3 Autonomous QTouch memory requirement

The Table below captures the Typical Code & Data Memory requirement for the QTouch Library
when Autonomous Touch Sensor is used standalone.

 Library Typical Code with
Keys Only

Typical Data
Memory

libuc3l-qtouch-iar.r82 1184 22
libuc3l-qtouch-gnu.a 966 16

Table 16 Minimum Code and Data for Standalone Autonomous QTouch sensor

Note: This Typical Code memory usage is achieved when only the Autonomous QTouch Regular
API is used in the application. Usage of Autonomous QTouch Helper API would consume
additional Code memory. Also, the Code and Data memory indicated in the Table do not account
for Example Autonomous QTouch application.

6.3.14 Public header files of QTouch Library for UC3L
Following are the public header files which need to be included in user’s application and these
have the type definitions and function prototypes of the APIs listed in the following sections

1. touch_api_at32uc3l.h - QTouch Library API and Data structures file.

2. touch_config_at32uc3l.h - QTouch Library configuration file.

6.3.15 Type Definitions and enumerations used in the library

6.3.15.1 Typedefs

This section lists the type definitions used in the library.
Typedef Notes
uint8_t unsigned 8-bit integer.
int8_t signed 8 bit integer.
uint16_t unsigned 16-bit integer.
int16_t signed 16-bit integer.

8207L-AT42-05/12 138

uint32_t unsigned 32 bit integer.
int32_t signed 32 bit integer.
channel_t unsigned 8 bit integer that represents the channel number, starts from 0.
threshold_t unsigned 8 bit integer to set sensor detection threshold.
sensor_id_t unsigned 8 bit integer that represents the sensor ID, starts from 0.
touch_time_t unsigned 16 bit integer that represents current time maintained by the

library.
touch_bl_t unsigned 8 bit integer that represents the burst length of a QMatrix

channel.
touch_delta_t signed 16 bit integer that represents the delta value of a channel.
touch_acq_status_t unsigned 16 bit Status of Touch measurement.
touch_qt_grp_t unsigned 8 bit QTouch Group type.
touch_qt_dma_t unsigned 8 bit QTouch Group A/ Group B DMA channel type..

6.3.15.1.1 touch_acq_status_t
uint16_t touch_acq_status_t
Use Indicates the result of the last acquisition & processing for a specific touch

acquisition method.

Values Bitmask Comment
TOUCH_NO_ACTIVITY 0x0000u No Touch activity.

TOUCH_IN_DETECT 0x0001u At least one Touch channel is in detect.

TOUCH_STATUS_CHANGE 0x0002u Status change in at least one channel.

TOUCH_ROTOR_SLIDER_POS_CHANGE 0x0004u At least one rotor or slider has changed
position.

TOUCH_CHANNEL_REF_CHANGE 0x0008u Reference values of at least one of the
channel has changed.

TOUCH_BURST_AGAIN 0x0100u Indicates that reburst is required to
resolve Filtering or Calibration state.

TOUCH_RESOLVE_CAL 0x0200u Indicates that reburst is needed to
resolve Calibration.

TOUCH_RESOLVE_FILTERIN 0x0400u Indicates that reburst is needed to
resolve Filtering.

TOUCH_RESOLVE_DI 0x0800u Indicates that reburst is needed to
resolve Detect Integration.

TOUCH_RESOLVE_POS_RECAL 0x1000u Indicates that reburst is needed to
resolve Recalibration.

6.3.15.1.2 touch_qt_grp_t

uint8_t touch_qt_grp_t
Use QTouch Group type.

Values Value Comment
TOUCH_QT_GRP_A 0u QTouch Group A.
TOUCH_QT_GRP_B 1u QTouch Group B.

6.3.15.2 Enumerations

This section lists the enumerations used in the QTouch Library.

139

6.3.15.2.1 touch_ret_t

Enumeration touch_ret_t
Use Indicates the Touch Library error code.

Values Comment
TOUCH_SUCCESS Successful completion of operation.
TOUCH_ACQ_INCOMPLETE Touch Library is busy with pending previous

Touch measurement.
TOUCH_INVALID_INPUT_PARAM Invalid input parameter.
TOUCH_INVALID_LIB_STATE Operation not allowed in the current Touch

Library state.
TOUCH_INVALID_QM_CONFIG_PARAM Invalid QMatrix config input parameter.
TOUCH_INVALID_AT_CONFIG_PARAM Invalid Autonomous Touch config input

parameter.
TOUCH_INVALID_QT_CONFIG_PARAM Invalid QTouch config input parameter.
TOUCH_INVALID_GENERAL_CONFIG_PARAM Invalid General config input parameter.
TOUCH_INVALID_QM_NUM_X_LINES Mismatch between number of X lines

specified as QM_NUM_X_LINES and
number of X lines enabled in QMatrix pin
configuration touch_qm_pin_t x_lines.

TOUCH_INVALID_QM_NUM_Y_LINES Mismatch between number of Y lines
specified as QM_NUM_Y_LINES and
number of Y lines enabled in QMatrix pin
configuration touch_qm_pin_t y_yk_lines.

TOUCH_INVALID_QM_NUM_SENSORS Number of Sensors specified is greater than
(Number of X Lines * Number of Y Lines).

TOUCH_INVALID_MAXDEV_VALUE Spread spectrum MAXDEV value should not
exceed (2*DIV + 1).

TOUCH_INVALID_RECAL_THRESHOLD Invalid Recalibration threshold input value.
TOUCH_INVALID_CHANNEL_NUM Channel number parameter exceeded total

number of channels configured.
TOUCH_INVALID_SENSOR_TYPE Invalid sensor type. Sensor type can NOT be

SENSOR_TYPE_UNASSIGNED.
TOUCH_INVALID_SENSOR_ID Invalid Sensor number parameter.
TOUCH_INVALID_DMA_PARAM DMA Channel numbers are out of range.
TOUCH_FAILURE_ANALOG_COMP Analog comparator configuration error.
TOUCH_INVALID_RS_NUM Number of Rotor/Sliders set as 0, when trying

to configure a rotor/slider.

6.3.15.2.2 touch_lib_state_t
Enumeration touch_lib_state_t
Use Indicates the current state of the library with respect to a specific acquisition

method

Values Comment
TOUCH_LIB_STATE_NULL Library is not yet initialized for the specific acquisition

method
TOUCH_LIB_STATE_INIT Library is initialized, sensor configuration and calibration is

not yet done.
TOUCH_LIB_STATE_READY Library is ready for a new acquisition in the specific method
TOUCH_LIB_STATE_CALIBRATE Library requires re-calibration before acquisition can be

8207L-AT42-05/12 140

done for the specific acquisition method
TOUCH_LIB_STATE_BUSY Library is busy with acquisition & processing for the specific

acquisition method

6.3.15.2.3 touch_acq_mode_t
Enumeration touch_acq_mode_t
Use Touch library acquisition mode type.

Values Comment
RAW_ACQ_MODE When Raw acquisition mode is used, the measure_complete_callback

function is called immediately once fresh values of Signals are
available. In this mode, the Touch Library does not do any processing
on the Signals. So, the references, Sensor states or Rotor/Slider
position values are not updated in this mode.

NORMAL_ACQ_MODE When Nomal acquisition mode is used, the
measure_complete_callback function is called only after the Touch
Library completes processing of the Signal values obtained. The
References, Sensor states and Rotor/Slider position values are
updated in this mode.

6.3.15.2.4 sensor_type_t

Enumeration sensor_type_t
Use Define the type of the sensor

Values Comment
SENSOR_TYPE_UNASSIGNED Channel is not assigned to any sensor
SENSOR_TYPE_KEY Sensor is a key
SENSOR_TYPE_ROTOR Sensor is a rotor
SENSOR_TYPE_SLIDER Sensor is a slider

6.3.15.2.5 aks_group_t
Enumeration aks_group_t
Use Defines the Adjacent Key Suppression (AKS) groups that each sensor may be

associated with

AKS™ is selectable by the system designer
7 AKS groups are supported by the library

Values Comment
NO_AKS_GROUP No AKS group is selected for the sensor
AKS_GROUP_1 AKS Group number 1
AKS_GROUP_2 AKS Group number 2
AKS_GROUP_3 AKS Group number 3
AKS_GROUP_4 AKS Group number 4
AKS_GROUP_5 AKS Group number 5
AKS_GROUP_6 AKS Group number 6
AKS_GROUP_7 AKS Group number 7

6.3.15.2.6 hysteresis_t
Enumeration Hysteresis_t
Use Defines the sensor detection hysteresis value. This is expressed as a

percentage of the sensor detection threshold.

141

This is configurable per sensor.

HYST_x = hysteresis value is x percent of detection threshold value (rounded
down).
Note that a minimum value of 2 is used as a hard limit. Example: if detection
threshold = 20, then:
HYST_50 = 10 (50 percent of 20)
HYST_25 = 5 (25 percent of 20)
HYST_12_5 = 2 (12.5 percent of 20)
HYST_6_25 = 2 (6.25 percent of 20 = 1, but set to the hard limit of 2)

Values Comment
HYST_50 50% Hysteresis
HYST_25 25% Hysteresis
HYST_12_5 12.5% Hysteresis
HYST_6_25 6.25% Hysteresis

6.3.15.2.7 recal_threshold_t
Enumeration recal_threshold_t
Use A sensor recalibration threshold. This is expressed as a percentage of the

sensor detection threshold.

This is for automatic recovery from false conditions, such as a calibration while
sensors were touched, or a significant step change in power supply voltage.
If the false condition persists the library will recalibrate according to the settings
of the recalibration threshold.

This setting is applicable to all the configured sensors.

Usage :
RECAL_x = recalibration threshold is x percent of detection threshold value
(rounded down).
Note: a minimum value of 4 is used.
Example: if detection threshold = 40, then:
RECAL_100 = 40 (100 percent of 40)
RECAL_50 = 20 (50 percent of 40)
RECAL_25 = 10 (25 percent of 40)
RECAL_12_5 = 5 (12.5 percent of 40)
RECAL_6_25 = 4 (6.25 percent of 40 = 2, but value is limited to 4)

Values Comment
RECAL_100 100% recalibration threshold
RECAL_50 50% recalibration threshold
RECAL_25 25% recalibration threshold
RECAL_12_5 12.5% recalibration threshold
RECAL_6_25 6.25% recalibration threshold

6.3.15.2.8 resolution_t
Enumeration resolution_t
Use For rotors and sliders, the resolution of the reported angle or position.

RES_x_BIT = rotor/slider reports x-bit values.
Example: if slider resolution is RES_7_BIT, then reported positions are in the
range 0..127.

8207L-AT42-05/12 142

Values Comment
RES_1_BIT 1 bit resolution : reported positions range 0 – 1
RES_2_BIT 2 bit resolution : reported positions range 0 – 3
RES_3_BIT 3 bit resolution : reported positions range 0 – 7
RES_4_BIT 4 bit resolution : reported positions range 0 – 15
RES_5_BIT 5 bit resolution : reported positions range 0 – 31
RES_6_BIT 6 bit resolution : reported positions range 0 – 63
RES_7_BIT 7 bit resolution : reported positions range 0 – 127
RES_8_BIT 8 bit resolution : reported positions range 0 – 255

6.3.15.2.9 at_status_change_t
Enumeration at_status_change_t
Use Indicates the current status of autonomous QTouch sensor

Values Comment
OUT_OF_TOUCH Currently the autonomous QTouch channel is out of touch
IN_TOUCH Currently the autonomous QTouch channel is in detect

6.3.15.2.10 x_pin_options_t
Enumeration x_pin_options_t
Use Options for various pins to be assigned as X lines in QMatrix

Values Comment
Xn Use Pin Xn for QMatrix, n ranges from 0 to 17.

Note: X8 pin must NOT be used as X Line and it is recommended to be used as
ACREFN pin for QMatrix.

6.3.15.2.11 y_pin_options_t
Enumeration y_pin_options_t
Use Options for various pins to be assigned as Y lines in QMatrix

Values Comment
Yn_YKn Use Pin Yn & YKn for QMatrix, n ranges from 0 to 7

6.3.15.2.12 qt_pin_options_t

Enumeration qt_pin_options_t
Use Options for various pins to be assigned as Sense pair for Autonomous QTouch,

QTouch Group A and QTouch Group B acquisition methods.

Values Comment
SPn Use Sense Pair ‘n’ , n ranges from 0 to 16.

6.3.15.2.13 general_pin_options_t
Enumeration general_pin_options_t
Use Options of various pins to be used for SMP, Discharge, SYNC & VDIV.

Values Comment
USE_NO_PIN No Pin is to be assigned for this purpose

143

USE_PIN_PA12_AS_SMP Use Pin PA12 as SMP for QMatrix
USE_PIN_PA13_AS_SMP Use Pin PA13 as SMP for QMatrix

USE_PIN_PA14_AS_SMP Use Pin PA14 as SMP for QMatrix

USE_PIN_PA17_AS_SMP Use Pin PA17 as SMP for QMatrix

USE_PIN_PA21_AS_SMP Use Pin PA21 as SMP for QMatrix

USE_PIN_PA22_AS_SMP Use Pin PA22 as SMP for QMatrix

USE_PIN_PA17_AS_DIS Use Pin PA17 as Discharge current control for QMatrix

USE_PIN_PB11_AS_VDIV Use Pin PB11 as Voltage divider enable (VDIVEN) for QMatrix

USE_PIN_PA15_AS_SYNC Use Pin PA15 as external synchronization input signal (SYNC)

USE_PIN_PA18_AS_SYNC Use Pin PA18 as external synchronization input signal (SYNC)

USE_PIN_PA19_AS_SYNC Use Pin PA19 as external synchronization input signal (SYNC)

USE_PIN_PB08_AS_SYNC Use Pin PB08 as external synchronization input signal (SYNC)

USE_PIN_PB12_AS_SYNC Use Pin PB12 as external synchronization input signal (SYNC)

6.3.16 Data structures
This section lists the data structures that hold sensor status, settings, and diagnostics
information.

6.3.16.1 sensor_t

structure sensor_t
Input / Output Output from the library
Use Data structure which holds the sensor state variables used by the library.

Fields Type Comment
state uint8_t internal sensor state
general_counter uint8_t general purpose counter: used for calibration, drifting, etc
ndil_counter uint8_t drift Integration counter
threshold uint8_t sensor detection threshold
type_aks_pos_hyst uint8_t holds information for sensor type, AKS group, positive

recalibration flag, and hysteresis value
Bit fields Use
B1 : B0 Hysteresis
B2 positive recalibration flag
B5:B3 AKS group
B7:B6 sensor type

from_channel uint8_t starting channel number for sensor
to_channel uint8_t ending channel number for sensor
Index uint8_t index for array of rotor/slider values

6.3.16.2 touch_global_param_t

structure touch_global_param_t
Input / Output Input to the Library
Use Holds the sensor acquisition parameters for a specific acquisition method

Fields Type Comment
di uint8_t Sensor detect integration (DI) limit.

8207L-AT42-05/12 144

neg_drift_rate uint8_t Sensor negative drift rate in units of 200 ms.
pos_drift_rate uint8_t Sensor positive drift rate in units of 200 ms.
max_on_duration uint8_t Sensor maximum on duration in units of 200ms.
drift_hold_time uint8_t Sensor drift hold time in units of 200 ms.
pos_recal_delay uint8_t Sensor Positive recalibration delay.
recal_threshold recal_threshold_t Sensor recalibration threshold.
Refer Section 5.3 for Overview of Global configuration parameters.

6.3.16.3 touch_filter_data_t

structure touch_filter_data_t
Input / Output Output from the Library
Use Touch Filter Callback data type.

Fields Type Comment
num_channel_signals uint8_t Length of the measured signal values list.
p_channel_signals uint16_t* Pointer to measured signal values for each channel.

6.3.16.4 touch_measure_data_t

structure touch_measure_data_t
Input / Output Output from the Library
Use This structure provides updated measure data values each time the measure

complete callback function is called.

Fields Type Comment
p_acq_status touch_acq_status_t Acquisition status for the specific acquisition

method.
num_channel_signals uint8_t Length of the measured signal values list
p_channel_signals uint16_t* Pointer to the sequential list of measured

signal values of all channels
num_channel_references uint8_t Length of the measured reference values list.
p_channel_references uint16_t* Pointer to the sequential list of reference

values of all channels
num_sensor_states uint8_t Number of sensor state bytes.
p_sensor_states uint8_t* Pointer to the sequential list of touch status of

all sensors
num_rotor_slider_values uint8_t Length of the Rotor and Slider position values list.
p_rotor_slider_values uint8_t* Pointer to the sequential list of position of all

rotors & sliders
num_sensors uint8_t Length of the sensors data list.
p_sensor sensor_t* Pointer to the sequential list of data of all

sensors.

6.3.16.5 touch_qm_param_t

structure touch_qm_param_t
Input / Output Passed as input to touch_qm_sensor_update_config API & got as output from

touch_qm_sensor_get_config API
Use Data structure which holds the configuration parameters for a specific QMatrix

sensor

145

Fields Type Comment
aks_group aks_group_t AKS group to which the sensor belong.
detect_threshold threshold_t Detection threshold for the sensor
detect_hysteresis hysteresis_t Detect hysteresis for the sensor.
position_resolution resolution_t Resolution required for the sensor.
position_hysteresis uint8_t Position hysteresis for the sensor

6.3.16.6 touch_at_param_t

structure touch_at_param_t
Input / Output Passed as input to touch_at_sensor_update_config API & got as output from

touch_at_sensor_get_config API
Use Data structure which holds the configuration parameters for the autonomous

QTouch sensor

Structure field Type Corresponds to the device

register
Register Field

filter uint8 t ATCFG2 FILTER
outsens uint8 t ATCFG2 OUTSENS
sense uint8 t ATCFG2 SENSE
pthr uint8 t ATCFG3 PTHR
pdrift uint8 t ATCFG3 PDRIFT
ndrift uint8 t ATCFG3 NDRIFT

Refer Section 5.3 for an overview of FILTER (Detect Integration), PTHR (Positive Recalibration
threshold), PDRIFT (Positive Drift rate) and NDRIFT (Negative Drift rate).

OUTSENS - Autonomous Touch Out-of-Touch Sensitivity.

For the autonomous QTouch sensor, specifies how sensitive the out-of-touch detector should be.
When the sensor is not touched, the Autonomous Touch Current count register is same as the
Autonomous Touch Base count register. When the sensor is touched the Autonomous Touch
Current count register decreases. When using the Autonomous QTouch in proximity mode, the
Autonomous Touch Base count register decreases as we move towards proximity of the sensor.
The OUTSENS value can be arrived at by watching the CAT Autonomous Touch Base Count
Register(at memory location 0xFFFF686Cu) and Autonomous Touch Current Count Register(at
memory location 0xFFFF6870u) during a sensor touch/proximity and not in touch/proximity. A
smaller difference between the Autonomous Touch Base count and Autonomous Touch Current
count register can be chosen as the OUTSENS value. Range: 0u to 255u.

SENSE - Autonomous Touch Sensitivity.

For the autonomous QTouch sensor, specifies how sensitive the touch detector should be.
When the sensor is not touched, the Autonomous Touch Current count register is same as the
Autonomous Touch Base count register. When the sensor is touched the Autonomous Touch
Current count register decreases. When using the Autonomous QTouch in proximity mode, the
Autonomous Touch Base count register decreases as we move towards proximity of the sensor.
The SENSE value can be arrived at by watching the CAT Autonomous Touch Base Count
Register(at memory location 0xFFFF686Cu) and Autonomous Touch Current Count Register(at
memory location 0xFFFF6870u) during a sensor touch/proximity and not in touch/proximity. A
larger difference between the Autonomous Touch Base count and Autonomous Touch Current
count register can be chosen as the SENSE value. Range: 0u to 255u.

8207L-AT42-05/12 146

6.3.16.7 touch_qt_param_t

structure touch_qt_param_t
Input / Output Passed as input to touch_qt_sensor_update_config API & got as output from

touch_qt_sensor_get_config API
Use Data structure which holds the status parameters for the QTouch Group A or

Group B sensor.

Fields Type Comment
aks_group aks_group_t AKS group to which the sensor belong.
detect_threshold threshold_t Detection threshold for the sensor
detect_hysteresis hysteresis_t Detect hysteresis for the sensor.
position_resolution resolution_t Resolution required for the sensor.

6.3.16.8 touch_at_status

structure touch_at_status
Input / Output Output structure received as part of the Autonomous QTouch Interrupt callback

function.
Use Data structure which holds the status parameters for the autonomous QTouch

sensor.

Structure
field

Type Comment

status change at status change t Autonomous QTouch Status change.
base_count uint16_t The base count currently stored by the autonomous touch

sensor. This is useful for autonomous touch debugging
purposes.

current_count uint16_t The current count acquired by the autonomous touch
sensor. This is useful for autonomous touch debugging
purposes.

6.3.16.9 touch_qm_dma_t

structure touch_qm_dma_t
Input / Output Input to the touch_qm_sensors_start_acquisition() API.
Use Data structure which holds the DMA channel information for touch acquisition

data transfer

Fields Type Comment
dma_ch1 uint8_t Indicates the DMA channel 1. Can take values from 0 – 11, but should not

be same as dma_ch2
dma_ch2 uint8_t Indicates the DMA channel 2. Can take values from 0 – 11, but should not

be same as dma_ch1

6.3.16.10 touch_qm_pin_t

structure touch_qm_pin_t
Input / Output Input to the library
Use Data structure which holds the Pin configuration information for QMatrix

147

Fields Type Comment
x_lines uint32_t Bitmask that indicates the selected X pins for QMatrix. If bit n is set, Xn is

enabled for QMatrix; n can be 0 to 17. Any other bits set are ignored. Note:
For QMatrix operation, X8 is not available as it must be used for ACREFN
function.

Bit 18
-
31

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

X
Line

- X
17

X
16

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

y_yk_lin
es

uint8_t Bitmask that indicates the selected Y pins for QMatrix. If bit n is set, Yn &
Ykn is enabled for QMatrix; n can be 0 to 7.

Bit 7 6 5 4 3 2 1 0

Y
Line

Y7 &
YK7

Y6 &
YK6

Y5 &
YK5

Y4 &
YK4

Y3 &
YK3

Y2 &
YK2

Y1 &
YK1

Y0 &
YK0

smp_di
s_pin

general
_pin_op
tions_t

Specify one of the following

USE_NO_PIN
USE_PIN_PA12_AS_SMP
USE_PIN_PA13_AS_SMP
USE_PIN_PA14_AS_SMP
USE_PIN_PA17_AS_SMP
USE_PIN_PA21_AS_SMP
USE_PIN_PA22_AS_SMP
USE_PIN_PA17_AS_DIS

vdiv_pi
n

general
_pin_op
tions_t

Specify either USE_NO_PIN or USE_PIN_PB11_AS_VDIV

6.3.16.11 touch_at_pin_t

structure touch_at_pin_t
Input / Output Input to the library
Use Data structure which holds the Pin configuration for Autonomous QTouch

sensor

Fields Type Comment
atsp uint8_t Sense pair to be used for autonomous QTouch detection. Choose any one

sense pair from SP0 to SP16 using the qt_pin_options_t enum.

For example, if atsp is set as SP7, Sense pair 7 (CSA7, CSB7) will be assigned
for autonomous QTouch detection

6.3.16.12 touch_qt_pin_t

structure touch_at_pin_t
Input / Output Input to the library
Use Data structure which holds the Pin configuration for QTouch sensor.

Fiel
ds

Type Comment

8207L-AT42-05/12 148

sp uint3
2_t

Bit n indicates Sense Pair SP[n] is selected. Choose sense pairs from SP0 to
SP16.

Bit 1
7-
3
1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP
n

- X1
6

X1
5

X1
4

X1
3

X1
2

X1
1

X1
0

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

6.3.16.13 touch_qm_reg_t

structure touch_qm_reg_t
Input / Output Input to the library
Use Data structure which holds the Register configuration information for QMatrix

This structure contains the data fields that correspond to specific fields in different registers. For a
more detailed explanation of the register fields, refer to the device datasheet.

For example, CHLEN field of MCCFG0 is 8 bits wide (bit 8-15 of MGCFG0 register). The user
needs to set values from 0 to 255 (0xFF) in the chlen field of this structure. The library will take
care of writing this to the appropriate bit position of MCCFG0 register.

Fields Type Corresponds to Register Register Field
div uint16 t MGCFG0 DIV
chlen uint8 t MGCFG0 CHLEN
selen uint8 t MGCFG0 SELEN
dishift uint8 t MGCFG1 DISHIFT
sync uint8 t MGCFG1 SYNC
spread uint8 t MGCFG1 SPREAD
dilen uint8 t MGCFG1 DILEN
max uint16 t MGCFG1 MAX
acctrl uint8 t MGCFG2 ACCTRL
consen uint8 t MGCFG2 CONSEN
cxdilen uint8 t MGCFG2 CXDILEN
synctim uint16 t MGCFG2 SYNCTIM
fsources uint8 t DICS FSOURCES
glen uint8 t DICS GLEN
intvrefsel uint8 t DICS INTVREFSEL
Intrefsel uint8 t DICS INTREFSEL
trim uint8 t DICS TRIM
sources uint8 t DICS SOURCES
shival0 uint16 t ACSHI0 SHIVAL
shival1 uint16 t ACSHI1 SHIVAL
shival2 uint16 t ACSHI2 SHIVAL
shival3 uint16 t ACSHI3 SHIVAL
shival4 uint16 t ACSHI4 SHIVAL
shival5 uint16 t ACSHI5 SHIVAL
shival6 uint16 t ACSHI6 SHIVAL
shival7 uint16 t ACSHI7 SHIVAL

149

6.3.16.14 touch_at_reg_t

structure touch_at_reg_t
Input / Output Input to the library
Use Data structure which holds the Register configuration information for

Autonomous QTouch

This structure contains the data fields that correspond to specific fields in different registers. For a
more detailed explanation of the register fields, refer to the device datasheet.

For example, DISHIFT field of ATCFG1 is 2 bits wide (bit 28-29 of ATCFG1 register). The user
needs to set values from 0 to 3 in the dishift field of this structure. The library will take care of
writing this to the appropriate bit position of ATCFG1 register.

Fields Type Corresponds to Register Register Field
div uint16 t ATCFG0 DIV
chlen uint8 t ATCFG0 CHLEN
selen uint8 t ATCFG0 SELEN
dishift uint8 t ATCFG1 DISHIFT
sync uint8 t ATCFG1 SYNC
spread uint8 t ATCFG1 SPREAD
dilen uint8 t ATCFG1 DILEN
max uint16 t ATCFG1 MAX
at_param touch_at_param_t Autonomous Touch Sensor

parameters corresponding to
ATCFG2 and ATCFG3.

FILTER, OUTSENS,
SENSE, PTHR,
PDRIFT, NDRIFT

6.3.16.15 touch_qt_reg_t

structure touch_qt_reg_t
Input / Output Input to the library
Use Data structure which holds the Register configuration information for QTouch

Group A/B.

Fields Type Corresponds to Register Register Field
div uint16 t TGxCFG0 DIV
chlen uint8 t TGxCFG0 CHLEN
selen uint8 t TGxCFG0 SELEN
dishift uint8 t TGxCFG1 DISHIFT
sync uint8 t TGxCFG1 SYNC
spread uint8 t TGxCFG1 SPREAD
dilen uint8 t TGxCFG1 DILEN
max uint16 t TGxCFG1 MAX

6.3.16.16 touch_qm_config_t

structure touch_qm_config_t
Input / Output Input to the library
Use Data structure which holds all configuration information pertaining to QMatrix

Fields Type Comment
num_channels uint8_t Indicates the number of QMatrix channels

required by the user

8207L-AT42-05/12 150

num_sensors uint8_t Indicates the number of QMatrix sensors
required by the user.

num_rotors_and_slider
s

uint8_t Indicates the number of QMatrix rotors /
sliders required by the user.

num_x_lines uint8_t Number of QMatrix X lines required by the
user.

num_y_lines uint8_t Number of QMatrix Y lines required by the
user.

num_x_sp uint8_t Number of X sense pairs used. This is a
private variable to the Touch library. The user
must provide
PRIV_QM_NUM_X_SENSE_PAIRS for this
input field.

bl_write_count uint8_t Burst length write count. This is a private
variable to the Touch library. The user must
provide the
PRIV_QM_BURST_LENGTH_WRITE_COUN
T macro for this input field.

pin touch_qm_pin_t Holds the QMatrix Pin configuration
information as filled by the user.

reg touch_qm_reg_t Holds the QMatrix register configuration
information as filled by the user.

global_param touch_global_param_
t

Holds the global parameters for QMatrix as
filled by the user.

p_data_blk uint8_t* Pointer to the data block allocated by the user
buffer_size uint16_t Size of the data block pointed to by

p_data_blk. The user must provide the
PRIV_QM_DATA_BLK_SIZE macro for this
input field.

p_burst_length uint8_t* Pointer to an array of 8-bit Burst lengths,
where each 8-bit value correspond to the burst
length of each channel starting from channel 0
to number of channels.

filter_callback Pointer to a function Pointer to callback function that will be called
before processing the signals

6.3.16.17 touch_at_config_t

structure touch_at_config_t
Input / Output Input to the library
Use Data structure which holds the configuration parameters & register values for

autonomous QTouch acquisition

Fields Type Comment
pin touch_at_pin_t Holds the autonomous QTouch

configuration information as filled by the
user.

reg touch_at_reg_t Holds the autonomous QTouch register
configuration information as filled by the
user.

touch_at_status_change_callback Pointer to a
function

Pointer to callback function that will be
called by the library whenever there is a
touch status change in the autonomous
QTouch sensor

151

6.3.16.18 touch_qt_config_t

structure touch_qm_config_t
Input / Output Input to the library
Use Data structure which holds all configuration information pertaining to QMatrix

Fields Type Comment
num_channels uint8_t Indicates the number of QTouch Group A/B

channels required by the user
num_sensors uint8_t Indicates the number of QTouch Group A/B

sensors required by the user.
num_rotors_and_sliders uint8_t Indicates the number of QTouch Group A/B

rotors / sliders required by the user.
pin touch_qt_pin_t Holds the QTouch Group A/B Pin

configuration information as filled by the user.
reg touch_qt_reg_t Holds the QTouch Group A/B register

configuration information as filled by the user.
global_param touch_global_param_t Holds the global parameters for QTouch

Group A/B as filled by the user.
p_data_blk uint8_t* Pointer to the data block allocated by the user
buffer_size uint16_t Size of the data block pointed to by

p_data_blk. The user must provide the
PRIV_QTA_DATA_BLK_SIZE or
PRIV_QTB_DATA_BLK_SIZE macro for this
input field.

filter_callback Pointer to a function Pointer to callback function that will be called
before processing the signals

6.3.16.19 touch_general_config_t

structure touch_general_config_t
Input / Output Input to the library
Use Data structure which holds the configuration parameters & register values

common to all acquisition methods.

Fields Type Comment
sync_pin general_pin_options_t Specify one of the following values indicating the pin to be

assigned as SYNC pin. Refer to the device datasheet for
more details.

USE_NO_PIN
USE_PIN_PA15_AS_SYNC
USE_PIN_PA18_AS_SYNC
USE_PIN_PA19_AS_SYNC
USE_PIN_PB08_AS_SYNC
USE_PIN_PB12_AS_SYNC

maxdev uint8_t Corresponds to MAXDEV field of SSCFG register that
indicates the maximum deviation when spread spectrum is
enabled.

Ensure that maxdev is always less than or equal to (2*div +
1).
div represents div field in touch_qm_reg_t & touch_at_reg_t
structures.

8207L-AT42-05/12 152

csares uint32_t Corresponds to RES field of CSARES register.
csbres uint32_t Corresponds to RES field of CSBRES register.

6.3.16.20 touch_config_t

structure touch_config_t
Input / Output Input to the library
Use Pointer to this structure is passed as input to touch_qm_sensors_init &

touch_at_sensor_init APIs

Fields Type Comment
p_qm_config touch_qm_config_t* Pointer to the QMatrix configuration structure.
p_at_config touch_at_config_t* Pointer to the autonomous QTouch configuration

structure.
p_qta_config touch_qt_config_t* Pointer to the QTouch Group A configuration

structure.
p_qtb_config touch_qt_config_t* Pointer to the QTouch Group B configuration

structure.
p_general_config touch_general_config_t* Pointer to the general configuration structure.

6.3.16.21 touch_info_t

structure touch_info_t
Input / Output Output from the library
Use Pointer to this structure is passed as input to touch_qm_get_libinfo &

touch_at_get_libinfo APIs

Fields Type Comment
num_channels_in_use uint8_t Number of channels in use
num_sensors_in_use uint8_t Number of sensors in use
num_rotors_sliders_in_use uint8_t Number of rotor/sliders in use
max_channels_per_rotor_slider uint8_t Maximum number of channels per rotor/slider

allowed by the library
hw_version uint32_t CAT module hardware revision as per VERSION

register in CAT module.
fw_version uint16_t QTouch Library version with MSB indicating the

major version & LSB indicating the minor version.

6.3.17 Public Functions of QTouch Library for UC3L
This section lists the public functions available in the QTouch™ libraries for AT32UC3L devices.

6.3.17.1 QMatrix API
This section lists the functions that are specific to QMatrix method of acquisition.

6.3.17.1.1 touch_qm_sensors_init

touch_ret_t touch_qm_sensors_init (touch_config_t *p_touch_config)

Arguments Type Comment
p_touch_config touch_config_t* Pointer to Touch Library input configuration structure. The

touch_qm_config_t and touch_general_config_t members of
the Structure should be non-NULL.

153

• This API initializes the Touch library for QMatrix method acquisition. This API has to be
called before calling any other QMatrix API.

• Based on the input parameters, the CAT module is initialized with QMatrix method Pin

and Register configuration.

• The Analog comparators necessary for QMatrix operation are initialized by this API.

• Both p_qm_config & p_general_config members of the input configuration structure must
point to valid configuration data.

• The General configuration data provided by the p_general_config pointer is common to
both QMatrix, QTouch Group A, QTouch Group B and Autonomous Touch sensors.

6.3.17.1.2 touch_qm_sensor_config

touch_ret_t touch_qm_sensor_config(
sensor_type_t sensor_type,

 channel_t from_channel,
 channel_t to_channel,
 aks_group_t aks_group,
 threshold_t detect_threshold,
 hysteresis_t detect_hysteresis,
 resolution_t position_resolution,
 uint8_t position_hysteresis,
 sensor_id_t *p_sensor_id)

Arguments Type Comment
sensor_type sensor_type_t Specifies sensor type – SENSOR_TYPE_KEY or

SENSOR_TYPE_ROTOR or
SENSOR_TYPE_SLIDER.

The SENSOR_TYPE_UNASSIGNED enum is not a valid
input to this API.

from_channel channel_t Start channel of the Sensor (rotor, slider or key).
to_channel channel_t End channel of the Sensor (rotor, slider or key). For a key,

the start and end channels must be the same.
aks_group aks_group_t AKS group of this sensor.
detect_threshold threshold_t Touch Detect threshold level for Sensor.
detect_hysteresis hysteresis_t Value for detection hysteresis.
position_resolution resolution_t Position resolution when configuring rotor / slider
position_hysteresis uint8_t Position hysteresis when configuring rotor / slider
p_sensor_id sensor_id_t* The Sensor ID is updated by the Touch Library upon

successful sensor configuration. The Sensor ID starts with
0.

• This API configures a single QMatrix Key, Rotor or Slider.

• The user must provide all the sensor specific settings as input to this API.

• Rotor / Slider sensor will occupy contiguous channels from from_channel to to_channel.

8207L-AT42-05/12 154

• For QMatrix acquisition method, 3 to 8 Touch channels per rotor / slider are supported.
Keys are always formed using 1 Touch channel.

6.3.17.1.3 touch_qm_sensor_update_config

touch_ret_t touch_qm_sensor_update_config(

sensor_id_t sensor_id,
 touch_qm_param_t *p_touch_sensor_param)

Arguments Type Comment
sensor_id sensor_id_t Sensor ID for which the configuration

needs to be updated.
p_touch_sensor_param touch_qm_param_t* Pointer to the user sensor configuration

structure.

• This API updates the configuration of a QMatrix sensor with values different from the
ones initialized by the touch_qm_sensor_config API. If the sensor was not configured
already, the API will return error.

• The user must populate the structure pointed by p_touch_sensor_param with required

settings before calling this API.

6.3.17.1.4 touch_qm_sensor_get_config

touch_ret_t touch_qm_sensor_get_config(
sensor_id_t sensor_id,

 touch_qm_param_t *p_touch_sensor_param)

Arguments Type Comment
sensor_id sensor_id_t Sensor ID for which the configuration

needs to be updated.
p_touch_sensor_param touch_sensor_param_t* Pointer to the user sensor configuration

structure.

• This API copies the current configuration of a QMatrix sensor into the user configuration
structure.

6.3.17.1.5 touch_qm_channel_udpate_burstlen

touch_ret_t touch_qm_channel_udpate _burstlen(

channel_t channel,
 touch_bl_t qm_burst_length)

Arguments Type Comment
channel uint8_t Channel number for which the burst length is to be set.
qm_burst_length touch_bl_t QMatrix burst length. The burst length value can be 1 to

255. A value of 1 can be used to disable bursting on
a given channel.

• This API updates the burst length of the specified QMatrix channel

• This API can also be used to disable Touch measurement on a Sensor.

155

• In order to disable a Sensor, the burst length value of all the channels corresponding to

the Sensor must be set to 1. A Sensor can then be re-enabled by setting the appropriate
burst length for all channels using this API.

Note: When disabling a sensor care must be taken such that all channels of the Sensor
are set to 1. If any of the channels are missed out, it will result in undesired behavior of
the Sensor. Similarly when re-enabling a Sensor, if one or more channels are left
disabled with a burst length value of 1, it will result in undesired behavior of the Sensor.

• The touch_qm_sensors_calibrate API needs to be called whenever burst length is

updated for one or more channels before starting a new Touch measurement using the
touch_qm_sensors_start_acquisition API.

6.3.17.1.6 touch_qm_update_global_param

touch_ret_t touch_qm_update_global_param(touch_global_param_t *p_global_param)

Arguments Type Comment
p_global_param touch_global_param_t Pointer to user global parameters structure for

QMatrix.

• This API can be used to update the QMatrix global parameters, with values different from
the ones initialized using touch_qm_sensors_init API.

6.3.17.1.7 touch_qm_get_global_param

touch_ret_t touch_qm_get_global_param(touch_global_param_t *p_global_param)

Arguments Type Comment
p_global_param touch_global_param_t Pointer to user global parameters structure for

QMatrix.

• This API can be called to retrieve the QMatrix global parameters.

6.3.17.1.8 touch_qm_sensors_calibrate

touch_ret_t touch_qm_sensors_calibrate(void)
Arguments Type Comment
Void -

• This API can be used to calibrate all configured Sensors.

• Calibration of all Sensors must be performed when –

o All the Sensors have been configured using touch_sensor_config API after
initialization of the Touch Library.

o A sensor or a group of Sensors have been disabled or re-enabled.

8207L-AT42-05/12 156

6.3.17.1.9 touch_qm_sensors_start_acquisition

touch_ret_t touch_qm_sensors_start_acquisition(
 touch_time_t current_time_ms,

 touch_qm_dma_t *p_touch_dma,
 touch_acq_mode_t qm_acq_mode,
void (*measure_complete_callback)(touch_measure_data_t *p_measure_data))

Arguments Type Comment
current_time_ms touch_time_t Current time in ms
p_touch_dma touch_qm_dma_t* DMA channels to be

used for transfer to burst
length & acquisition
count

qm_acq_mode touch_acq_mode_t Specify whether Normal
acquisition mode or
Raw acquisition mode
should be done.

void
(*measure_complete_callback)(
void)

void
(*measure_complete_callback)(
touch_measure_data_t
*p_measure_data)

QMatrix Measure
complete callback
function pointer

• This API initiates a capacitive measurement on all enabled QMatrix sensors.

• When normal acquisition mode is used, once the Touch measurement is completed on all

the QMatrix sensors, before processing the raw acquisition data (channel_signals), a
filter_callback function is optionally called by the Touch Library.

• Once the filter_callback is completed, the signal values will be processed by the Touch

Library. The measure_complete_callback function is then called with touch data
(channel_signals, channel_references, sensor_states, sensors structure) as well as the
Touch Status (sensor_states) and Rotor/Slider position (rotor_slider_values).

• The touch_event_dispatcher API needs to be called as frequently as possible for the

Touch Library to process the raw acquisition data.

• When raw data acquisition mode is used, once the raw acquisition data is available from
the CAT module for all the sensors, the measure_complete_callback function is
immediately called with acquisition data (channel_signals). The channel_references,
sensor_states and rotor_slider_values data are not updated by the Touch Library in this
mode.

• This API will return error if a Touch measurement is already in progress.

• Two peripheral DMA channels must be provided using p_touch_dma for QMatrix

operation.

6.3.17.1.10 touch_qm_get_libinfo

touch_ret_t touch_qm_get_libinfo(touch_info_t *p_touch_info)

Arguments Type Comment
p_
touch_info

touch_info_t* User passes the memory address at which the library information
is to be stored by the library.

157

• The touch_info_t structure is filled by the library with information like number of QMatrix
channels, number of QMatrix sensors, number of QMatrix rotors/slider, CAT hardware
version, and library version.

• The QMatrix number of channels, sensors and rotors/slider indicate the total number of

channels, sensors and rotor/slider in use irrespective of Touch measured being disabled
or enabled. (Disabling and Re-enabling of a Sensor using the
touch_qm_sensor_upate_burstlen API does not alter these values).

6.3.17.1.11 touch_qm_sensor_get_delta

touch_ret_t touch_qm_sensor_get_delta(

sensor_id_t sensor_id,
touch_delta_t *p_delta)

Arguments Type Comment
sensor_id sensor_id_t Sensor ID for which the delta needs to be retrieved.
p_delta touch_delta_t* Pointer to Delta variable, that will be update by the Touch Library

• This API retrieves the delta information associated with a specific QMatrix sensor. Delta
is the difference between the current signal value and reference value.

• The user must provide the sensor ID whose delta is sought along with a valid pointer to a

Delta variable.

• The API updates the delta variable associated with the requested sensor.

6.3.17.2 QTouch Group A and QTouch Group B API
This section lists the functions that are specific to QTouch Group A/B method of acquisition.

6.3.17.2.1 touch_qt_sensors_init

touch_ret_t touch_qt_sensors_init (touch_qt_grp_t touch_qt_grp,
 touch_config_t *p_touch_config)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be performed on Group A

Sensors or Group B Sensors.
p_touch_config touch_config_t* Pointer to Touch Library input configuration structure. The

p_qta_config/p_qtb_config (based on whether Group A is
used or Group B is used) and p_general_config members of
the Structure should be non-NULL.

• This API initializes the Touch library for QTouch Group A or QTouch Group B method
acquisition. This API has to be called before calling any other QTouch API.

• Based on the input parameters, the CAT module is initialized with QTouch method Pin

and Register configuration.

• The p_qta_config/p_qta_config (based on whether Group A is used or Group B is used)
and p_general_config members of the input configuration structure must point to valid
configuration data.

8207L-AT42-05/12 158

• The General configuration data provided by the p_general_config pointer is common to
both QMatrix, QTouch Group A, QTouch Group B and Autonomous Touch sensors.

6.3.17.2.2 touch_qt_sensor_config

touch_ret_t touch_qt_sensor_config(touch_qt_grp_t touch_qt_grp,
sensor_type_t sensor_type,

 channel_t from_channel,
 channel_t to_channel,
 aks_group_t aks_group,
 threshold_t detect_threshold,
 hysteresis_t detect_hysteresis,
 resolution_t position_resolution
 sensor_id_t *p_sensor_id)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be performed on Group A

Sensors or Group B Sensors.
sensor_type sensor_type_t Specifies sensor type – SENSOR_TYPE_KEY or

SENSOR_TYPE_ROTOR or
SENSOR_TYPE_SLIDER.

The SENSOR_TYPE_UNASSIGNED enum is not a valid
input to this API.

from_channel channel_t Start channel of the Sensor (rotor, slider or key).
to_channel channel_t End channel of the Sensor (rotor, slider or key). For a

key, the start and end channels must be the same.
aks_group aks_group_t AKS group of this sensor.
detect_threshold threshold_t Touch Detect threshold level for Sensor.
detect_hysteresis hysteresis_t Value for detection hysteresis.
position_resolution resolution_t Position resolution when configuring rotor / slider
p_sensor_id sensor_id_t* The Sensor ID is updated by the Touch Library upon

successful sensor configuration. The Sensor ID starts with
0.

• This API configures a single QTouch Key, Rotor or Slider.

• The user must provide all the sensor specific settings as input to this API.

• Rotor / Slider sensor will occupy contiguous channels from from_channel to to_channel.

• For QTouch acquisition method, 3 Touch channels per rotor / slider are supported. Keys

are always formed using 1 Touch channel.

6.3.17.2.3 touch_qt_sensor_update_config

touch_ret_t touch_qt_sensor_update_config(touch_qt_grp_t touch_qt_grp,
sensor_id_t sensor_id,

 touch_qt_param_t *p_touch_sensor_param)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be

performed on Group A Sensors or
Group B Sensors.

159

sensor_id sensor_id_t Sensor ID for which the configuration
needs to be updated.

p_touch_sensor_param touch_qt_param_t * Pointer to the user sensor configuration
structure.

• This API updates the configuration of a QTouch sensor with values different from the
ones initialized by the touch_qt_sensor_config API. If the sensor was not configured
already, the API will return error.

• The user must populate the structure pointed by p_touch_sensor_param with required

settings before calling this API.

6.3.17.2.4 touch_qt_sensor_get_config

touch_ret_t touch_qt_sensor_get_config(touch_qt_grp_t touch_qt_grp,
sensor_id_t sensor_id,

 touch_qt_param_t *p_touch_sensor_param)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be

performed on Group A Sensors or
Group B Sensors.

sensor_id sensor_id_t Sensor ID for which the configuration
needs to be updated.

p_touch_sensor_param touch_qt_param_t* Pointer to the user sensor configuration
structure.

• This API copies the current configuration of a QTouch sensor into the user configuration
structure.

6.3.17.2.5 touch_qt_update_global_param

touch_ret_t touch_qt_update_global_param(touch_qt_grp_t touch_qt_grp,
 touch_global_param_t *p_global_param)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be performed on Group A

Sensors or Group B Sensors.
p_global_param touch_global_param_t Pointer to user global parameters structure for

QTouch Group A/B.

• This API can be used to update the QTouch A or QTouch B global parameters, with
values different from the ones initialized using touch_qt_sensors_init API.

6.3.17.2.6 touch_qt_get_global_param

touch_ret_t touch_qt_get_global_param(touch_qt_grp_t touch_qt_grp,
 touch_global_param_t *p_global_param)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be performed on Group A

Sensors or Group B Sensors.

8207L-AT42-05/12 160

p_global_param touch_global_param_t Pointer to user global parameters structure for
QTouch Group A/B.

• This API can be called to retrieve the QTouch Group A or Group B global parameters.

6.3.17.2.7 touch_qt_sensors_calibrate

touch_ret_t touch_qt_sensors_calibrate(touch_qt_grp_t touch_qt_grp)
Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be

performed on Group A Sensors or
Group B Sensors.

• This API can be used to calibrate all configured Sensors.

• Calibration of all Sensors must be performed when –

o All the Sensors have been configured using touch_sensor_config API after
initialization of the Touch Library.

o A sensor or a group of Sensors have been disabled or re-enabled.

6.3.17.2.8 touch_qt_sensors_start_acquisition

touch_ret_t touch_qt_sensors_start_acquisition(touch_qt_grp_t touch_qt_grp,

 touch_time_t current_time_ms,
 touch_qt_dma_t *p_touch_dma,
 touch_acq_mode_t qt_acq_mode,
void (*measure_complete_callback)(touch_measure_data_t *p_measure_data))

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation

is to be performed on
Group A Sensors or
Group B Sensors.

current_time_ms touch_time_t Current time in ms
p_touch_dma touch_qt_dma_t* DMA channels to be

used for transfer to burst
length & acquisition
count

qt_acq_mode touch_acq_mode_t Specify whether Normal
acquisition mode or
Raw acquisition mode
should be done.

void
(*measure_complete_callback)(
void)

void
(*measure_complete_callback)(
touch_measure_data_t
*p_measure_data)

QTouch Group A or
Group B Measure
complete callback
function pointer

• This API initiates a capacitive measurement on all enabled QTouch Group A or Group B
sensors depending on the touch_qt_grp specified.

161

• When normal acquisition mode is used, once the Touch measurement is completed on all
the QTouch sensors, before processing the raw acquisition data (channel_signals), a
filter_callback function is optionally called by the Touch Library.

• Once the filter_callback is completed, the signal values will be processed by the Touch

Library. The measure_complete_callback function is then called with touch data
(channel_signals, channel_references, sensor_states, sensors structure) as well as the
Touch Status (sensor_states) and Rotor/Slider position (rotor_slider_values).

• The touch_event_dispatcher API needs to be called as frequently as possible for the

Touch Library to process the raw acquisition data.

• When raw data acquisition mode is used, once the raw acquisition data is available from
the CAT module for all the sensors, the measure_complete_callback function is
immediately called with acquisition data (channel_signals). The channel_references,
sensor_states and rotor_slider_values data are not updated by the Touch Library in this
mode.

• This API will return error if a Touch measurement is already in progress.

• One peripheral DMA channels must be provided using p_touch_dma for QTouch

operation.

6.3.17.2.9 touch_qt _sensor_ disable

touch_ret_t touch_qt_ sensor_disable(touch_qt_grp_t touch_qt_grp,
 sensor_id_t sensor_id)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be performed on Group A Sensors

or Group B Sensors.
sensor_id sensor_id_t Sensor ID of the Sensor to be disabled.

• This API can be used to disable Touch measurement on a QTouch Sensor.

• The touch_qt_sensors_calibrate API needs to be called whenever one or more Sensors
are disabled before starting a new Touch measurement using the
touch_qt_sensors_start_acquisition API.

• Note: Care must be taken such that a valid Sensor ID corresponding to a QTouch Group

A sensor or QTouch Group B Sensor is provided.

6.3.17.2.10 touch_qt _sensor_ reenable

touch_ret_t touch_qt _sensor_reenable(touch_qt_grp_t touch_qt_grp,
 sensor_id_t sensor_id)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be performed on Group A Sensors

or Group B Sensors.
sensor_id sensor_id_t Sensor ID of the Sensor to be disabled.

• This API can be used to reenable a disabled QTouch Sensor.

8207L-AT42-05/12 162

• The touch_qt_sensors_calibrate API needs to be called whenever one or more Sensors
are reenabled before starting a new Touch measurement using the
touch_qt_sensors_start_acquisition API.

• Note: Care must be taken such that a valid Sensor ID corresponding to a QTouch Group

A sensor or QTouch Group B Sensor is provided.

6.3.17.2.11 touch_qt_get_libinfo

touch_ret_t touch_qt_get_libinfo(touch_qt_grp_t touch_qt_grp,
 touch_info_t *p_touch_info)

Arguments Type Comment
touch_qt_grp touch_qt_grp_t Specify if the operation is to be performed on Group A Sensors

or Group B Sensors.
p_
touch_info

touch_info_t* User passes the memory address at which the library
information is to be stored by the library.

• The touch_info_t structure is filled by the library with the Group specific (based on
touch_qt_grp input) information like number of QTouch channels, number of QTouch
sensors, number of QTouch rotors/slider, CAT hardware version, and library version.

• The QTouch number of channels, sensors and rotors/slider indicate the total number of

channels, sensors and rotor/slider in use irrespective of Touch measured being disabled
or enabled. (Disabling and Re-enabling of a Sensor using the touch_qt_sensor_disable
and touch_qt_sensor_reenable API does not alter these values).

6.3.17.2.12 touch_qt_sensor_get_delta

touch_ret_t touch_qt_sensor_get_delta(touch_qt_grp_t touch_qt_grp,

sensor_id_t sensor_id,
touch_delta_t *p_delta)

Arguments Type Comment
sensor_id sensor_id_t Sensor ID for which the delta needs to be retrieved.
p_delta touch_delta_t* Pointer to Delta variable, that will be update by the Touch Library

• This API retrieves the delta information associated with a specific QTouch sensor. Delta
is the difference between the current signal value and reference value.

• The user must provide the sensor ID whose delta is sought along with a valid pointer to a

Delta variable.

• The API updates the delta variable associated with the requested sensor.

6.3.18 Autonomous touch API
This section lists the functions that are specific to Autonomous QTouch sensor.

6.3.18.1.1 touch_at_sensor_init

touch_ret_t touch_at_sensor_init(touch_config_t *p_touch_config)

163

Arguments Type Comment
p_touch_config touch_config_t* Pointer to Touch Library input configuration structure. The

p_at_config and p_general_config members of the input
configuration structure must be non-NULL.

• This API initializes the touch library Autonomous touch sensor. This API has to be called
before calling any other Autonomous touch API function.

• Based on the input parameters, the CAT module is initialized with Autonomous Sensor

Pin and Register configuration.

• The General configuration data provided by the p_general_config pointer is common to
both QMatrix, QTouch Group A, QTouch Group B and Autonomous Touch sensors.

6.3.18.1.2 touch_at_sensor_enable

touch_ret_t touch_at_sensor_enable(void)

Arguments Type Comment
void
(*touch_at_status_change_interrupt_
callback) (touch_at_status
*p_at_status)

void
(*touch_at_status_change_interrupt
_callback) (touch_at_status
*p_at_status)

Autonomous
QTouch Callback
function.

• This API enables the autonomous touch sensor and initiates continuous Touch
measurement on the Autonomous QTouch sensor.

• When there is a change in the autonomous QTouch sensor status, the callback function

as specified in touch_at_status_change_interrupt_callback will be called. The callback
function lets the user know whether the autonomous QTouch sensor is currently in touch
or out of touch.

Note that this callback function will be called from an interrupt service routine. Hence it is
recommended to have as minimal code as possible in the callback function.

• This API should be called only after touch_at_sensor_init API is called.

6.3.18.1.3 touch_at_sensor_disable

touch_ret_t touch_at_sensor_disable(void)

Arguments Type Comment
void -

• This API disables the Touch measurement on the Autonomous QTouch sensor. The
status change callback function is not called when the Sensor is disabled.

6.3.18.1.4 touch_at_sensor_update_config

touch_ret_t touch_at_sensor_update_config(touch_at_param_t *p_at_param)

Arguments Type Comment

8207L-AT42-05/12 164

p_at_param touch_at_param_t* Pointer to autonomous QTouch sensor configuration
structure.

• This API updates the configuration of autonomous QTouch sensor with a setting that is
different from the one configured by calling touch_at_sensor_init API.

• The user must populate the structure pointed by p_at_param with required settings

before calling this API.

6.3.18.1.5 touch_at_sensor_get_config

touch_ret_t touch_at_sensor_get_config(touch_at_param_t *p_at_param)

Arguments Type Comment
p_at_param touch_at_param_t* Pointer to autonomous QTouch sensor configuration

structure.

• This API retrieves the current configuration of the autonomous QTouch sensor.

6.3.18.1.6 touch_at_get_libinfo
touch_ret_t touch_at_get_libinfo(touch_info_t *p_touch_info)

Arguments Type Comment
p_touch_info touch_info_t* User passes the memory address at which the library information

is to be updated.

• The touch_info_t structure is filled by the library with information on the number of

autonomous QTouch channels (Fixed value of 1), number of autonomous QTouch
sensors (Fixed value of 1), number of autonomous QTouch rotors/slider (Fixed value of
0), CAT hardware version and library version.

6.3.18.2 Common API

This section lists the functions that are common to QMatrix, QTouch Group A/B and Autonomous
QTouch acquisition methods.

6.3.18.2.1 touch_event_dispatcher
void touch_event_dispatcher (void)

Arguments Type Comment
Void -

• This API needs to be called by the user application to allow the library to process the raw
acquisition data from the sensors.

• Once touch_qm_sensors_start_acquisition is called, touch_event_dispatcher API needs

to be called as frequently as possible by the Host application.

• The signals_callback and measure_complete_callback functions are called from the
touch_event_dispatcher API context.

6.3.18.2.2 touch_deinit

void touch_deinit (void)

165

Arguments Type Comment
void -

• This API can be used to de-initalize the Touch Library and disable the CAT module.

• Calling this API de-initializes the Touch Library for Sensors corresponding to all methods
of acquisition (QMatrix, QTouch Group A, QTouch Group B and Autonomous QTouch).

6.3.19 Integrating QTouch libraries for AT32UC3L in your application
This section illustrates the key steps required in integrating the QTouch™ library in your
application.

a. For your design, you would need the following information to select the correct library
variant

• Device to be used for the design – Current library supports AT32UC3L064,
AT32UC3L032, AT32UC3L016 device variants.

• Compiler platform you intend to use to integrate the libraries.
b. Copy the library variant that was selected in step one to your project’s working directory

or update your project to point to the library selected.
c. Include touch_api_at32uc3l.h & touch_config_at32uc3l.h header files of the QTouch™

library in your application. The header files can be found in the library installation folder.
d. Initialize/create and use the Touch APIs in your application

• Set the various configuration options using the touch_config_at32uc3l.h file.
• Initialize and configure the sensors in the Host application.
• The Host application also has to provide the required timing so as to perform

Touch measurement at regular intervals.
e. General application notes

• Ensure that there are no conflicts between the resources used by the Touch
library and the host application

• Ensure that the stack size is adjusted to factor in the stack depth required for the
operation of the touch libraries.

6.3.20 MISRA Compliance Report of QTouch Library for UC3L
This section lists the compliance and deviations for MISRA standards of coding practice for the
UC3L QTouch libraries.

6.3.21 What is covered
The MISRA compliance covers the QTouch library for AT32UC3L devices. The Example projects
and associated code provided is not guaranteed to be MISRA compliant.

6.3.22 Target Environment
Development Environment IAR Embedded Workbench for Atmel AVR32
MISRA Checking software The MISRA C Compliance has been performed for the library

using MISRA C 2004 Rules in IAR Workbench for Atmel AVR32
MISRA Rule set applied MISRAC 2004 Rule Set, All including advisory

6.3.23 Deviations from MISRA C Standards
The QTouch library was subjected to the above mentioned MISRA compliance rules. The
following table lists the exceptions in the AT32UC3L QTouch library source code and also
provides explanation for these exceptions.

8207L-AT42-05/12 166

Apart from these, there were many exceptions in the standard header files supplied by the tool
chain and those are not captured here.

Rule Rule Description Advisory/
Required

Exception noted / How it is
addressed

1.1 All code shall conform to ISO 9899
standard C, with no extensions
permitted.

Required This Rule is not supported as the
library implementation requires IAR
extensions like __interrupt. These
intrinsic functions relate to device
hardware functionality, and cannot
practically be avoided.

5.4 A tag name shall be a unique
identifier

Required This is violated as for the reason that
enumerated types are mixed with
other types. This is caused by
integers being assigned to
enumerated types in some places to
save code space

6.3 The basic types of char, int, short,
long, float, and double should not
be used, but specific-length
equivalents should be typedef'd for
the specific compiler, and these
type names used in the code

Advisory The type bool supported by the
compiler violate this rule.

10.3 The value of a complex expression
of integer type shall only be cast to
a type that is not wider and of the
same signedness as the
underlying type of the expression

Required This is required in the code to do
align some pointers in the data block
memory. Cannot be avoided.

11.3 A cast should not be done
between a pointer type and an
integral type

Advisory This is required in the code to do
align some pointers in the data block
memory. Cannot be avoided.

17.4 Array indexing shall be the only
allowed form of pointer arithmetic

Required Pointer increment has been done in
some places for sequential access of
signals, references, etc.

19.13 The # and ## preprocessor
operators should not be used

Advisory This is required for implementation of
a macro for ease of use &
abstraction

6.3.24 Known Issues with QTouch Library for UC3L
• When the IAR Example Project is build, the IAR32 compiler reports the following Warning

- Warning[Pe047]: incompatible redefinition of macro "AVR32_PM_PPCR_MASK"
(declared at line 607 of "C:\Program Files\IAR Systems\Embedded C:\Program Files\IAR
Systems\Embedded Workbench 5.6\avr32\INC\avr32\pm_400.h 467 Workbench
5.6\avr32\INC\avr32/uc3l064.h").

In order to avoid this, this warning (Pe047) has been disabled using the Diagnostics
option in the IAR32 Project.

167

6.4 QTouch Library for ATtiny20 device
ATMEL QTouch Library for ATtiny20 can be used for embedding capacitive touch buttons
functionality into ATtiny20 device application.

This Section describes the QTouch Library Application Programming API and Configuration
interface for QTouch method acquisition using the ATtiny20 devices.

6.4.1 Salient Features of QTouch Library for ATtiny20

6.4.1.1 QTouch method sensor

• 1 Physical pin per Touch Button.

• 1 to 5 Touch Buttons can be configured.

• Individual Sensor Threshold, Sensor Hysteresis and Sensor Global acquisition
parameters can be configured.

• Adjacent Key Supression (AKS) support.

• QTouch Studio support for Touch data analysis.

• ‘C’ Programming interface for easy inclusion of User application.

6.4.2 Compiler tool chain support for ATtiny20
The QTouch libraries for ATtiny20 devices are supported for the following compiler tool chains.

Tool Version

IAR Embedded Workbench for Atmel AVR.
IAR Compiler. 5.5

Table 17 Compiler tool chains support for ATtiny20 QTouch Library

6.4.3 Overview of QTouch Library for ATtiny20
For an overview of QTouch method based capacitive touch acquisition, refer Section 5.2.1
QTouch Acquistion method.

The QTouch Library for ATtiny20 device allows for Sensor configuration and Sensor Acquisition
parameter setting. Based on the input Sensor configuration, the QTouch Library takes care of the
capacitive touch acquisition data capture operations on the external capacitive touch sensors.
The captured Touch Data and Touch Button ON/OFF Status information is then available for user
application.

The diagram below indicates a Typical Sensor arrangement using the Tiny20 device. The
QTouch Library uses the ATtiny20 ADC Module to peform capacitive Touch measurements. The
ADC module must be enabled by the Host Application and configured in Free running mode for
QTouch Library to function correctly. The PA0 pin must be configured as Output pin and should
be in HIGH state before the qt_measure_sensors API is called. Port pins PA1 to PA7 can be
used to support upto 5 Touch Buttons. The Touch Buttons must be connected to sequential Port
pins. However, it is not necessary to start the first Touch Button on Port pin PA1. For Example,
when 3 Touch Buttons are required, they can by connected to pins PA5, PA6 and PA7.

The Sensor numbering is always in the increasing order of Port pin.

8207L-AT42-05/12 168

Figure 48 Schematic overview of QTouch on Tiny20

6.4.4 API Flow diagram for ATtiny20
For the QTouch Libraries, the timing information is provided by the Host Application by updating
the ‘time_current_ms’ variable in the Timer ISR. The QTouch Library uses this variable to
calculate the necessary timing for Max ON Duration, Drift and Recalibration functionality. Before
using the QTouch Libraries, the Timer ISR must be configured appropriately. Also, the Timer
Interrupt is used to update the ‘time_to_measure_touch’ variable inorder to start a capacitive
touch measurement. It is recommended to call qt_measure_sensors within 100ms each time to
avoid error in QTouch Library timing.

The touch_config_tiny20.h configuration header file can be used to set the desired number of
Touch Sensors (Buttons) as well as individual sensor Threshold, Hysteresis and Recalibration
parameters. The Sensor Global Configuration parameters must be specified using the IAR Linker
define options.

Figure 49 Linker configuration options for Tiny20

ATtiny20

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

1Kohm

1Kohm

1Kohm

1Kohm

1Kohm

Touch Button 1

Touch Button 2

Touch Button 3

Touch Button 4

Touch Button 5

VCC

No Connection

GND

169

Figure 50 QTouch method for Tiny20 API Flow diagram

6.4.5 QTouch Library configuration parameters for ATtiny20
The Table below describes the various configuration parameters corresponding to the ATtiny20.

qt_init_sensing()

Setup the desired device clock using the init_system() in main.c
Using the init_timer(), setup the Timer ISR such that the Timer Interrupt occurs every
20ms . Enable the ADC and configure in Free running mode.

Using the touch_config_tiny20.h configuration file,
1. Set the desired number of Sensors.
2. Set the Individual sensor Threshold, Hysteresis, Recalibration Threshold and Delay
cycle values.
3. Set the desired Sensor Global acquisition parameters using the
IAR Project->Linker options.
4. The DEF_QT_ADC_CHANNEL_START_INDEX Linker option can be used to set
the starting ADC Channel.

Add any Host Application
(a Sample LED application is available with the Tin20 EK IAR Example project).

qt_measure_sensors()

Call in loop

time_to_
measure_touch

Measured data and Touch Status

Host Application code

8207L-AT42-05/12 170

Parameter Description

DEF_QT_QDEBUG_ENABLE
Enable/Disable QDebug debug data communication to QTouch
Studio.

DEF_QT_NUM_SENSORS QTouch number of Sensors. Range: 1u to 5u.

DEF_QT_SENSOR_0_THRESHOLD,
DEF_QT_SENSOR_1_THRESHOLD,
DEF_QT_SENSOR_2_THRESHOLD,
DEF_QT_SENSOR_3_THRESHOLD,
DEF_QT_SENSOR_4_THRESHOLD

Sensor detection threshold value.
Range: 1u to 255u.

DEF_QT_SENSOR_0_HYSTERESIS,
DEF_QT_SENSOR_1_HYSTERESIS,
DEF_QT_SENSOR_2_HYSTERESIS,
DEF_QT_SENSOR_3_HYSTERESIS,
DEF_QT_SENSOR_4_HYSTERESIS

Sensor detection hysteresis value. Refer hysteresis_t in
touch_api_tiny20.h
HYST_50 = (50% of Sensor detection threshold value)
HYST_25 = (25% of Sensor detection threshold value)
HYST_12_5 = (12.5% of Sensor detection threshold value)
HYST_6_25 = (6.25%, but value is hardlimited to 2)

DEF_QT_SENSOR_0_RECAL_THRESHOLD,
DEF_QT_SENSOR_1_RECAL_THRESHOLD,
DEF_QT_SENSOR_2_RECAL_THRESHOLD,
DEF_QT_SENSOR_3_RECAL_THRESHOLD,
DEF_QT_SENSOR_4_RECAL_THRESHOLD

Sensor recalibration threshold value. Refer recal_threshold_t in
touch_api_tiny20.h
RECAL_100 = (100% of Sensor detection threshold value)
RECAL_50 = (50% of Sensor detection threshold value)
RECAL_25 = (25% of Sensor detection threshold value)
RECAL_12_5 = (12.5% of Sensor detection threshold value)
RECAL_6_25 = (6.25%, but value is hardlimited to 4)

DEF_QT_DELAY_CYCLES
Delay cycles that determine the capacitance charge transfer time.
Range: 1, 2, 4, 8 or 10 internal System Clock cycles.

DEF_QT_ADC_CHANNEL_START_INDEX ADC Channel starting index. Range: 1u to 7u.

DEF_QT_AKS_ENABLE Enable/Disable Adjacent Key suppression (AKS) on all channels.

DEF_QT_DI
Sensor detect integration (DI) limit.Range: 0u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_NEG_DRIFT_RATE*(See Note 1)
Sensor negative drift rate. Units: 100ms, Range: 1u to 127u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_POS_DRIFT_RATE*(See Note 1)
Sensor positive drift rate. Units: 100ms, Range: 1u to 127u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_MAX_ON_DURATION
Sensor maximum on duration. Units: 100ms, Range: 0u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_DRIFT_HOLD_TIME
Sensor drift hold time. Units: 100ms, Range: 1u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_POS_RECAL_DELAY
Positive Recalibration delay. Range: 1u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_NUM_SENSORS_SYM
QTouch number of Sensors Symbol for QTouch Library.
MUST be the same as DEF_QT_NUM_SENSORS.

DEF_QT_BURST_LENGTH

Specifies the no:of burst sequence required for a sensor. Multiple
burst for adjusting sensitivity by increasing the resolution of the Signal
measured.Use higher value for increasing sensitivity.
Values: 1u, 4u and 16u, 32u. With a setting of 32u, the Touch
Response time would be sluggish.

DEF_CHARGE_SHARE_DELAY
Defines the Charging Share Delay time as an additional Number of
CPU Cycles delay to be introduced during the Charge transfer.
Values:0 to 255.

Table 18 QTouch Library for ATtiny20 Configuration parameters

171

Note1:

For the case of ATtiny20 devices, a ‘touch’ causes the Signal value measured on the Sensor to
increase above the Sensor Reference value (In the case of Generic Library devices, a ‘touch’
causes the Signal value to decrease below the Reference value).

However, the Negative drift rate and Positive drift rate functionality for the case of Tiny20 devices
shall be consistent with the Generic Library case.

So, it is recommended to have a ‘Slower’ Negative Drift rate (4 seconds is the default setting) and
a ‘Faster’ Positive Drift rate (1 second is the default setting) for the Tiny20 device.

6.4.6 QTouch Library ATtiny20 Example projects
The QTouch method IAR Example project for the Tiny20 Evaluation Kit can be found in the
following path.

\Device_Specific_Libraries\8bit_AVR\AVR_Tiny_Mega_XMega\ATtiny20\
tiny20_ek_iar_qt_example

The Example projects demonstrate the 5 button sensor configuration with a Sample LED
application. The Example projects also support QDebug data transfer to QTouch Studio – Touch
Analyzer PC Application.

It is possible to configure the number of Sensors in the Example project from 1 to 5 for testing on
the ATtiny20 Evaluation kit.

6.4.7 QTouch Library ATtiny20 code and data memory requirements
The code and data memory requirements for QTouch Library for ATtiny20 devices is captured in
the Table below. The Table indicates these values for the standalone library and not for the
entire Example Project application.

Library Number of
Sensors

Code Memory Data
memory

CStack/RStack

libtiny20-5qt-k-
0rs 5 1231 + 15 bytes

Const data 70
CStack= 0x1C bytes
RStack= 10
(16 bytes) is the
Recommended setting.

libtiny20-5qt-k-
0rs 4 1231 + 12 bytes

Const data 60

CStack= 0x1C bytes
RStack= 10
(16 bytes) is the
Recommended setting.

libtiny20-5qt-k-
0rs 3 1231 + 9 bytes

Const data 50

CStack= 0x1C bytes
RStack= 10
(16 bytes) is the
Recommended setting.

libtiny20-5qt-k-
0rs 2 1231+ 6 bytes

Const data 40

CStack= 0x1C bytes
RStack= 10
(16 bytes) is the
Recommended setting.

libtiny20-5qt-k-
0rs 1 1231 + 3 bytes

Const data 30

CStack= 0x1C bytes
RStack= 10
(16 bytes) is the
Recommended setting.

Table 19 QTouch Library for ATtiny20 Memory requirements

8207L-AT42-05/12 172

Data memory for ATtiny20 QTouch Library include the following.

10. QTouch Library data memory – 19 bytes, allocated inside the Library.

11. channel_signals – 2 bytes per Sensor, allocated in main.c

12. channel_references – 2 bytes per Sensor, allocated in main.c

13. sensor_delta – 2 bytes per Sensor, allocated in main.c

14. sensor_general_counter – 2 bytes per Sensor, allocated in main.c

15. sensor_state – 1 byte per Sensor, allocated in main.c

16. sensor_ndil_counter – 1 byte per Sensor, allocated in main.c

17. sensor_states – 1 byte, allocated in main.c

Const Data memory for ATtiny20 QTouch Library include the following.

1. sensor_threshold, 1 byte per Sensor, allocated in main.c

2. sensor_hyst_threshold, 1 byte per Sensor, allocated in main.c

3. sensor_recal_threshold, 1 byte per Sensor, allocated in main.c

6.5 QTouch Library for ATtiny40 device
ATMEL QTouch Library for ATtiny40 can be used for embedding capacitive touch buttons
functionality into ATtiny40 device application.

This Section describes the QTouch Library Application Programming API and Configuration
interface for QTouch method acquisition using the ATtiny40 devices.

6.5.1 Salient Features of QTouch Library for ATtiny40

6.5.1.1 QTouch method sensor

• One Physical pin per Touch Button.

• 1 to 12 Touch Buttons can be configured.

• Individual Sensor Threshold, Sensor Hysteresis and Sensor Global acquisition
parameters can be configured.

• Signal resolution can be configured.

• Charge Share Delay can be configured.

• Adjacent Key Supression (AKS) support.

• QTouch Studio support for Touch data analysis.

• ‘C’ Programming interface for easy inclusion of User application.

173

6.5.2 Compiler tool chain support for ATtiny40
The QTouch libraries for ATtiny40 devices are supported for the following compiler tool chains.

Tool Version

IAR Embedded Workbench for Atmel AVR.
IAR Compiler. 6.10

Table 20 Compiler tool chains support for ATtiny40 QTouch Library

6.5.3 Overview of QTouch Library for ATtiny40
For an overview of QTouch method based capacitive touch acquisition, refer Section 5.2.1
QTouch Acquistion method.

The QTouch Library for ATtiny40 device allows for Sensor configuration and Sensor Acquisition
parameter setting. Based on the input Sensor configuration, the QTouch Library takes care of the
capacitive touch acquisition data capture operations on the external capacitive touch sensors.
The captured Touch Data and Touch Button ON/OFF Status information is then available for user
application.

The diagram below indicates a Typical Sensor arrangement using the Tiny40 device. For one
channel configuration, two ADC pins are used for acquisition. For number of touch buttons
greater than one, no extra ADC pins are used. Port pins PA0 to PA7 and PB0 to PB3 can be
used to support upto 12 Touch Buttons. The Touch Buttons may be connected anywhere on the
said port pins.

The Sensor numbering is always in the increasing order of Port pin.

Figure 51 Schematic overview of QTouch on Tiny40

ATtiny40

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

1Kohm
Touch Button 1

VCC

GND

Touch Button 0

PB0

PB1

PB2

PB3

1Kohm

1Kohm
Touch Button 3

Touch Button 2

1Kohm
Touch Button 5

Touch Button 4
1Kohm

1Kohm
Touch Button 7

Touch Button 6

1Kohm
Touch Button 9

Touch Button 8
1Kohm

1Kohm
Touch Button 11

Touch Button 10
1Kohm

1Kohm

1Kohm

8207L-AT42-05/12 174

6.5.4 API Flow diagram for ATtiny40
For the QTouch Libraries, the timing information is provided by the Host Application by updating
the ‘time_current_ms’ variable in the Timer ISR. The QTouch Library uses this variable to
calculate the necessary timing for Max ON Duration, Drift and Recalibration functionality. Before
using the QTouch Libraries, the Timer ISR must be configured appropriately. Also, the Timer
Interrupt is used to update the ‘time_to_measure_touch’ variable inorder to start a capacitive
touch measurement.

The touch_config_dp.h configuration header file must be used to set the number of channels
based on the library used. For example, if the library used is a 12 channel library then
QT_NUM_CHANNELS must be specified as 12 in the touch_config_dp.h. This information must
be provided irrespective of the number of channels actually used.

The desired number of touch buttons used can be enabled using the qt_enable_key() routine.
The channel numbers are sequential from Port A through Port B. Also, individual sensor
Threshold, Hysteresis, AKS group and Recalibration parameters can be set using this function
call. The Sensor Global Configuration parameters can also be set by the user by directly
accessing the global configuration data structure.

When developing a Host application for ATtiny40 device, ensure that the ADC prescalar is set in
such a way that it is in the range of 50 KHz to 250 KHz. For example, if the main clock is running
at 8MHz then set the ADC prescalar to 32 or more. This must be done to ensure proper touch
sensing acquisition.

175

Figure 52 QTouch method for Tiny40 API Flow diagram

6.5.5 QTouch Library configuration parameters for ATtiny40
The Table below describes the various configuration parameters corresponding to the ATtiny40
QTouch Library.

8207L-AT42-05/12 176

Parameter Description

DEF_QT_DI
Sensor detect integration (DI) limit.Range: 0u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_NEG_DRIFT_RATE*(See Note 1)
Sensor negative drift rate. Units: 100ms, Range: 1u to 127u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_POS_DRIFT_RATE*(See Note 1)
Sensor positive drift rate. Units: 100ms, Range: 1u to 127u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_MAX_ON_DURATION
Sensor maximum on duration. Units: 100ms, Range: 0u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_DRIFT_HOLD_TIME
Sensor drift hold time. Units: 100ms, Range: 1u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_RECAL_THRESHOLD

• Setting of 0 = 100% of detect threshold
• Setting of 1 = 50% of detect threshold
• Setting of 2 = 25% of detect threshold
• Setting of 3 = 12.5% of detect threshold
• Setting of 4 = 6.25% of detect threshold

Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_POS_RECAL_DELAY
Positive Recalibration delay. Range: 1u to 255u.
Refer Section 5.3 and Section 5.4 for more info.

DEF_QT_PULSE_SCALE

Default value is 0x0 means 1 oversamples and scaling/averaging
factor 1.

Refer Note on using Pulse Scale Value:

DEF_QT_CHARGE_SHARE_DELAY
Charge Share Delay. Range: 1u – 255u. This value needs to be
increased if we use high value of series resistor on sensor pin to
ensure proper charge time.

Table 21 QTouch Library for ATtiny40 Configuration parameters

Note1:

For the case of ATtiny40 devices, a ‘touch’ causes the Signal value measured on the Sensor to
increase above the Sensor Reference value (In the case of Generic Library devices, a ‘touch’
causes the Signal value to decrease below the Reference value).

However, the Negative drift rate and Positive drift rate functionality for the case of Tiny40 devices
shall be consistent with the Generic Library case.

So, it is recommended to have a ‘Slower’ Negative Drift rate (4 seconds is the default setting) and
a ‘Faster’ Positive Drift rate (1 second is the default setting) for the Tiny40 device.

Note on using Pulse Scale Value:

This variable is used to increase the resolution of the signal. qt_pulse_scale variable is available
to change the oversampling and scaling factor.This is available for all the channels and now with
this one should increase the gain for each channel individually.

 Function set_qt_pulse_scale is provided in main.c file for reference which will change the values
of pulse scale variable.

This variable is divided into higher(pulse/oversamples) and lower(scaling/averaging) nibble.The
higher nibble corresponds to number of oversamples and lower nibble corresponds to
scaling/averaging. The Pulse value is the power of 2 number of pulses which will accumulate their
results.The Scale value is the power of 2 number which will divide the accumulated result from
the pulse measurements.

The maximum value of higher nibble possible is 0xA and maximum value of lower nibble is 0xA.

177

Consideration should be taken on the overall effect on timing when setting Pulse values.

A high gain setting will add considerably time taken to acquire all channels.

6.5.6 QTouch Library ATtiny40 Example projects
The QTouch method IAR Example project for the Tiny40 Evaluation Kit can be found in the
following path.

\Device_Specific_Libraries\8bit_AVR\AVR_Tiny_Mega_XMega\ATtiny40\tiny40_qt_example_iar

The Example projects demonstrate the 12 button sensor configuration. The Example projects
also support QDebug data transfer to QTouch Studio – Touch Analyzer PC Application.

It is possible to configure the number of Sensors in the Example project from 1 to 12 for testing
on the ATtiny40 Evaluation kit.

6.5.7 QTouch Library ATtiny40 code and data memory requirements
The code and data memory requirements for QTouch Library for ATtiny40 devices is captured in
the Table below. The Table indicates these values for the standalone library and not for the
entire Example Project application.

Library Number of
Sensors

Code Memory Data
memory

CStack/RStack

libtiny40_4qt_k_0rs 4 2400 149 CStack= 40 bytes

RStack= 24 bytes

libtiny40_8qt_k_0rs 8 2400 193 CStack= 40 bytes

RStack= 24 bytes

libtiny40_12qt_k_0rs 12 2500 235 CStack= 40 bytes

RStack= 24 bytes
Table 22 QTouch Library for ATtiny40 Memory requirements

6.5.8 Interrupt Handling in QTouch ADC
In case of ATtiny40, the Interrupts are disabled for each acquisition sample means once per
charge transfers cycle and typically this is 1184 Instruction cycles.
Depending on number of oversamples and channels, the total number of times the interrupts are
disabled will vary.
Total number of times interrupts disabled = No of oversamples * No of channels.
The Touch measurement will not be affected by longer ISR execution, only the response time will
get affected.
The acquisition time is a lot more predictable since a fixed amount of pulses/oversamples are
used. The time to execute one measurement will depend on various software parameters like no
of oversamples, Charge share delay and CPU Frequency.

For one button to execute with following below parameters, QTouch ADC takes around 0.7
msec.
CPU Freq=4 MHZ, Number of oversamples=1, Charge Share Delay =1.

8207L-AT42-05/12 178

7 Generic QTouch Libraries for 2K Devices

7.1 Introduction
This section provides information about the QTouch library Acquisition Support for Tiny devices
with 2K Flash memory. These libraries have the same API’s as Generic libraries, except for a few
which are not supported.Information about the API’s are provided in touch_api_2kdevice.h file
which is placed at location mentioned in section 5.6.10.1

7.2 Devices supported
The list of different devices that are supported by the QTouch library for 2K devices is given
below:

1. ATtiny2313A

2. ATtiny261A

3. ATtiny24A

4. ATtiny25A

 Complete information is available in Library_Selection_Guide.xls.

7.3 Salient Features of QTouch Library for 2K Devices

• 1 to 4 Touch Buttons can be configured. Supports maximum of 4 Buttons.
• Libraries in variants of 1, 2 and 4 channels are provided.
• 2K device libraries are supported only for IAR.
• Library API’s are same as Generic QTouch libraries.
• Support for more than one pair of SNS and SNSK ports are not available for 2K tiny

devices.

NOTE:

No AKS, no Power Optimization and no pin configurability support in case of 2K device
libraries.
The change information like library status flags which reflects if there is any change in
Reference values, rotor slider position change status flags etc are not part of the 2K device
libraries except burst again flag.

7.4 Library Variants
For Different library variants available for 2K Devices, please refer Library_Selection_Guide.xls

7.5 QTouch API for 2K Devices and Usage
This section describes the different API’s used during touch sensing. Using the API, Touch
sensors and the associated channels can be defined. Once touch sensing has been initiated by
the user, the host application can use the API to make touch measurements and determine the
status of the sensors.Refer section 5.6.6 and Figure 5.6 for API usage

7.5.1 touch_api_2kdevice.h - public header file

179

The touch_api_2kdevice.h header file is the public header file which needs to be included in
user’s application. The type definitions and function prototypes of the API’s listed in sections 5.6.3
, 5.6.4 and 5.6.5

The touch_api_2kdevice.h header file is located in the library distribution in the following
directory.

• ..\Atmel_QTouch_Libraries_5.x\Generic_QTouch_Libraries\include

The constant/symbol definitions can be placed in any of the following.

 Defined user’s project options. All the constants/symbols must be defined for both the
compiler and assembler preprocessing definitions.

 As an alternative, it is also declared in the touch_qt_config_2kdevice.h file. The user
may modify these defined values based on the requirements.

Global settings common to all sensors and sensor specific settings are listed in sections 5.3 and
5.4 respectively

7.5.2 Sequence of Operations and Using the API
Figure 5-6 illustrates the sequence of operations required to be performed to add touch to an end
application. By using the simple API’s as illustrated in the sequence flowchart, the user can add
touch sensing in his design.

7.5.2.1 Channel Numbering

• 1-channel library – supports 1 channel using 1 consecutive pins on different SNS and
SNSK ports (or) supports 1 channel using 2 consecutive pins on the same port used for
both SNS and SNSK lines. This library requires 1 or 2 port.

• 2-channel library – supports up to 2 channels using 2 consecutive pins on different SNS
and SNSK ports (or) supports up to 2 channels using 4 consecutive pins on the same
port used for both SNS and SNSK lines. This library requires 1 or 2 ports.

• 4-channel library – supports up to 4 channels using 4 consecutive pins on different SNS
and SNSK ports (or) supports up to 4 channels using 8 consecutive pins on the same
port used for both SNS and SNSK lines. This library requires 1 or 2 ports.

7.5.2.1.1 Channel numbering when routing SNS and SNSK pins to different ports

When SNS and SNSK pins are available on different ports, the channel numbering follows the pin
numbering in the ports selected.

• The channel numbers follow the pin numbers starting with the LSB (pin 0 is channel 0
and pin 3 is channel 3).

• Since the channel numbers are fixed to the pins of the SNS and SNSK ports, if the
design calls for use of a subset of the pins available in the SNS and SNSK ports, the user
has to skip the channel numbers of the unused SNS and SNSK pins.

For example, on a 4 channel configuration using SNS and SNSK ports, if pin 2 is not
used for touch sensing (on both SNS and SNSK ports), channel number 2 is
unavailable and care should be taken while configuring the channels and sensors to
avoid using this channel. Also, the SNS and SNSK masks are assigned properly as
explained in section 7.5.2.2

8207L-AT42-05/12 180

7.5.2.1.2 Channel numbering when routing SNS and SNSK pins to the same port

When SNS and SNSK pins are connected to the same port, the even pin numbers will be used as
SNS pins and the odd pins will be used as the SNSK pins.

• The number of channels supported will be limited 4 channels

• For e.g., for a 4 channel configuration where the SNS and SNSK pins are connected to
Port B, the port pins 0&1 are used for channel 0.

• The channel number is derived from the position of the pins used for SNS and SNSK
lines for any channel.

channel number = floor([SNS(or SNSK) pin number] / 2)

o For e.g., pins 4 and 5 are connected to a SNS/SNSK pair and the channel number
associated with the SNS/SNSK pin is 2.

7.5.2.2 Rules For Configuring SNS and SNSK masks for 2K Devices

The libraries internally need SNS_array and SNSK_array masks. These masks need to be
defined under Macro QTOUCH_STUDIO_MASKS as per the following rules given below:

1. In case of Interport, SNS_array[0] and SNSK_array[0] mask is used for configuring the
Channel0 and Channel2.And SNS_array[1] and SNSK_array[1] mask is used for configuring the
Channel1 and Channel3.And In case of Intraport SNS_array[0] and SNSK-array[0] are used for
all the four channels configured based on enabled bits in SNS_array[0] and SNSK-array[0].

2. The channel numbers are allocated based on enabled SNS pins starting from LSBBit.

In case of Interport, Keys on adjacent channels should be placed on different masks. Channel0
and Channel1 should be on different SNS/SNSK masks ie channel0 on
SNS_array[0]/SNSK_array[0] and channel1 on SNS_array[1]/ SNSK_array[1].

But in case of Intraport, Keys on adjacent channels should be placed on same masks. Channel0
and Channel2 should be on same mask ie SNS_array[0]/SNSK_array[0] and Channel1 and
Channel3 on SNS_array[1]/ SNSK_array[1].

7.5.2.2.1 Configuring SNS and SNSK masks in case of Interport:

1. Enable the Bit0 in SNS_array[0] and Bit0 in SNSK_array[0] mask when enabling Channel0.
2. Enable the Bit1 in SNS_array[1] and Bit1 in SNSK_array[1] mask when enabling Channel1.
3. Enable the Bit2 in SNS_array[0] and Bit2 in SNSK_array[0] mask when enabling Channel2.
4. Enable the Bit3 in SNS_array[1] and Bit3 in SNSK_array[1] mask when enabling Channel3.

Example 1:
In a 4 channel library, two keys on channel 0 and 3 are enabled.SNS on Port A and SNSK on
Port B .Channel0 will A0B0 and Channel3 will be A3B3.
The SNS and SNSK masks will be
SNS_array[0]=0x01;
SNS_array[1]=0x08;
SNSK_array[0]=0x01;
SNSK_array[1]=0x08;

181

7.5.2.2.2 Configuring SNS and SNSK masks in case of Intraport:

1. Enable the Bit0 in SNS_array[0] and Bit1 in SNSK_array[0] mask when enabling Channel0.
2. Enable the Bit2 in SNS_array[0] and Bit3 in SNSK_array[0] mask when enabling Channel1.
3. Enable the Bit4 in SNS_array[0] and Bit5 in SNSK_array[0] mask when enabling Channel2.
4. Enable the Bit6 in SNS_array[0] and Bit7 in SNSK_array[0] mask when enabling Channel3.

Example 1:
In a 4 channel library, two keys on channel 0 and 3 are enabled.SNS and SNSK on Port B
.Channel0 will B0B1 and Channel3 will be B6B7.
The SNS and SNSK masks will be
SNS_array[0]=0x41;
SNS_array[1]=0x00;
SNSK_array[0]=0x82;
SNSK_array[1]=0x00;

7.5.3 Integrating QTouch libraries for 2K Devices in your application
In order to Integrate QTouch libraries for 2K devices, the constants and symbol names listed in
Table 1 below need to be defined in the user application. These can be defined in either the
compiler/assembler preprocessing definitions or in the touch_t_config_2kdegice.h file. Example
projects are provided for all the four devices supported.Refer 5.6.10.1 for directory structure of all
the files.

Table 1: Constant and symbol name definitions required to use the QTouch
acquisition method libraries for 2K device libraries

Symbol / Constant name Range of values Comments

QTOUCH This macro has to be defined in order to
use QTouch libraries.

SNS & SNSK Refer to library selection guide.

_SNS_SNSK_SAME_PORT_

Comment/uncomment define To be enabled if the
same port is used for
SNSK and SNS pins
for QTouch. If SNSK
and SNS pins are on
different ports then
this definition is not
required.

QT_NUM_CHANNELS 1, 2 and 4 for 2K device libraries.

QT_DELAY_CYCLES 1 to 255 Please refer to section
5.6.8.

QTOUCH_STUDIO_MASKS This macro has to be defined in order to
use QTouch libraries for 2K devices.

SNS_array and
SNSK_array masks
variablesare initialized
under this Macro in
main file.Refer section
7.5.2.2

8207L-AT42-05/12 182

The following files are to be added along with the touch library and user application
before compilation:

• For ATtiny 2K devices - touch_api_2kdevice.h, touch_qt_config_2kdevice.h and
qt_asm_tiny_mega_2kdevice.S

7.6 MISRA Compliance Report
This section lists the compliance and deviations for MISRA standards of coding practice for the
QTouch acquisition method libraries for 2K devices

7.6.1 What is covered
The QTouch acquisition method libraries for 2K devices adhere to the MISRA standards. The
additional reference code provided in the form of sample applications is not guaranteed to be
MISRA compliant.

7.6.2 Target Environment
Development Environment IAR Embedded Workbench
MISRA Checking software The MISRA C Compliance has been performed for the library

using MISRA C 2004 Rules in IAR Workbench development
environment.

MISRA Rule set applied MISRAC 2004 Rule Set

7.6.3 Deviations from MISRA C Standards

7.6.3.1 QTouch acquisition method libraries for 2K devices

The QTouch acquisition method libraries were subject to the above mentioned MISRA
compliance rules. The following exceptions have not been fixed as they are required for the
implementation of the library.

Applicable
Release

QTouch libraries

Rule No Rule Description Exception noted / How it is addressed
1.1 Rule states that all code

shall conform to ISO 9899
standard C, with no
extensions permitted.

This Rule is not supported as the library
implementation requires IAR extensions like
__interrupt. These intrinsic functions relate to
device hardware functionality, and cannot
practically be avoided.

10.1 Rule states that implicit
conversion from Underlying
long to unsigned long

The library uses macros to combine symbol
definitions to form a unique expanded symbol
name and in this, the usage of unsigned qualifiers
for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

10.6 This Rule says that a 'U'
suffix shall be applied to all
constants of 'unsigned' type

The library uses macros to combine symbol
definitions to form a unique expanded symbol
name and in this, the usage of unsigned qualifiers
for numeric constants (e.g. 98u) causes name
mangling. This is the only occurrence of this error
in the library.

14.4 Rule states that go-to
statement should not be

The library uses conditional jump instructions to
reduce the code footprint at a few locations and

183

used. this is localized to small snippets of code. Hence
this rule is not supported.

19.10

Rule states that In the
definition of a function-like
macro, each instance of a
parameter shall be enclosed
in parenthesis

There is one instance where the library breaks this
rule where two macro definitions are combined to
form a different symbol name. Usage of
parenthesis cannot be used in this scenario.

19.12 Rule states that there shall
be at most one occurrence
of the # or ## preprocessor
operator in a single macro
definition

There is one instance in the library where this rule
is violated where the library concatenates two
macro definitions to arrive at a different definition.

8 Revision History
The table below lists the revision history for chapters in the user guide.
QTouch Library User guide Revision History
Date/Version Chapter Change notes
May 2009
Ver2.0

All 2nd release of QTouch library users guide

Sep 2009
Ver. 3.0

All Re-structured user guide with new and expanded sections

Nov 2009
Ver. 3.1

6.3, 6.9, 6.10,
7, 10

• Updated API changes
• Updated new libraries and device support information
• Updated debug interface information supported by the

QTouch libraries
• Updated known issues table

Dec 2009
Ver. 3.2

6.10.4, 7.1.2,
7.1.5, 7.1.6,
10,
7.2.4.2.2,
7.2.4.3.7,
7.2.4.3.2,
7.2.4.3.5,
7.2.4.3.7,

• Added section about configuring unused pins in user
application

• Added more information to some sections to clear
ambiguity

• Updated Memory footprint information for IAR and GCC
compiled QTouch libraries.

• Updated known issues table
• Added the device support, port combinations, memory

requirements
• QMatrix IAR and GCC libraries to support ATmega325P,

ATmega645, and ATtiny167.
• Modified port combinations for the 165P for QMatrix

libraries.
• Few Port combinations added in case of ATmega88

libraries.
Feb 2010
Ver 4.0

All chapters
changed

• A separate library selection guide is provided external to
the user guide. All sections included in the library selection
guide have been removed from the user guide.

• All sections have been updated to account for the improved
configurability of the libraries.

Apr 2010
Ver 4.1

 • Added sections related to Positive Recalibration Delay,
Position Hysteresis, and Position Resolution.

8207L-AT42-05/12 184

• Device support extended for QMatrix for the release has
been added in section 5.7.2.4.1 and 5.7.2.3

• In case of QMatrix, 4 (4x1) channel has been added
wherever needed and in case of ATxmega devices 56
(8x7) channel has been added according to the changes

• QTouch Library for UC3L API Device Specific Libraries
Section has been added.

May 2010
Ver 4.2

 • Qtouch acquisition libraries support will be available for
ATSAM3U and ATSAM3S devices.

• Qdebug protocol support will be extended for all example
projects.

• Analog comparator usage and burst length setting
recommendation Note added for UC3L QMatrix method.

• QMatrix device support added for AT90USB82 / 162 / 646 /
647 / 1286

July 2010
Ver 4.3

Section 5.8,
Section 5.7.2.4

• Device support added for Tiny44/84/461/861
• Added the details on Pin configuration support for both

QTouch and QMatrix libraries.
• Added section related to the usage of the pin configurator

tool on QTouch Studio.(section 5.8)
• Added sections for Tiny20 and Tiny40 Devices.

Jan 2011
Ver 4.3.1

Chapter 7,
Section
5.6.11.2.1,
Section
5.7.11.2.1

• Device support added for QTouch 2K devices
ATtiny2313A/261A/24A/25A.

• Added Chapter 7 on 2K Device libraries.
• QTouch Support added for UC3C family devices.
• QTouch Support added for ATtiny87 device
• Tiny20 code memory requirement section updated.

Aug 2011
Ver 4.4

Chapter 2
Section
5.6.10.3
Section 6.5
Section 5.5.3

• Added Feature Comparison Table
• Section 5.6.10 changed and updated for Support for

QMatrix AT32UC3C0512 Device
• Section 6.5 changed and updated for ATtiny40 libraries
• Section 5.5.3 added for Guard Channel

April 2012
Ver 5.0

Section 6.5.5
Section 6.5.8

• Section 6.5.5 changed and updated for ATtiny40 libraries
• Section 6.5.8 changed and updated for ATtiny40 libraries
• Section 5.6.10.3.1 changed and updated for 8-bit Qmatrix

libraries related to Shared YA/YB.
• Sections 5.6.10.1, 5.6.10.2, 5.7.1.2, 5.7.1.3.1 updated for

sam4s addition

185

Disclaimer

Headquarters International

ATMEL Corporation
2325 Orchard
Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 ATMEL Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium
City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

ATMEL Europe
Le Krebs
8, Rue Jean-Pierre
Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

ATMEL Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
http://www.atmel.com/

Technical Support
AVR Libraries:
touch@atmel.com
SAM Libraries:
at91support@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with ATMEL products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of ATMEL products.
EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL
ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING
TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ATMEL makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to
make changes to specifications and product descriptions at any time without notice. ATMEL does not make any commitment to update
the information contained herein. Unless specifically provided otherwise, ATMEL products are not suitable for, and shall not be used in,
automotive applications. ATMEL’s products are not intended, authorized, or warranted for use as components in applications intended
to support or sustain life.

© 2012 ATMEL Corporation. All rights reserved. ATMEL®, ATMEL logo and combinations thereof, AVR®, AVR
Studio®, megaAVR®, tinyAVR® , QTouch®, QMatrix®, ®, XMEGA®,, and others are registered trademarks, others
are trademarks of ATMEL Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

http://www.atmel.com/�
mailto:touch@atmel.com�
mailto:at91support@atmel.com�
http://www.atmel.com/contacts�
http://www.atmel.com/literature�

	2 Introduction
	3 Overview
	4 Abbreviations and Definitions
	4.1 Definitions

	5 Generic QTouch Libraries
	5.1 Introduction
	5.2 Acquisition Methods
	5.2.1 QTouch acquisition method
	5.2.1.1 Sensor schematics for a QTouch acquisition method design

	5.2.2 QMatrix acquisition method
	5.2.3 Sensor schematics for a QMatrix acquisition method design

	5.3 Global settings common to all sensors of a specific acquisition method
	5.3.1 Recalibration Threshold
	5.3.2 Detect Integration
	5.3.3 Drift Hold Time
	5.3.4 Maximum ON Duration
	5.3.5 Positive / Negative Drift
	5.3.6 Positive Recalibration Delay

	5.4 Sensor specific settings
	5.4.1 Detect threshold
	5.4.2 Hysteresis
	5.4.3 Position Resolution
	5.4.4 Position Hysteresis
	5.4.5 Adjacent Key Suppression (AKS)

	5.5 Using the Sensors
	5.5.1 Avoiding Cross-talk
	5.5.2 Multiple measurements
	5.5.3 Guard Channel

	5.6 QTouch API and Usage
	5.6.1 QTouch Library API
	5.6.2 touch_api.h - public header file
	5.6.3 Type Definitions and enumerations used in the library
	5.6.3.1 Typedefs
	5.6.3.2 Enumerations
	5.6.3.2.1 sensor_type_t
	5.6.3.2.2 aks_group_t
	5.6.3.2.3 channel_t
	5.6.3.2.4 hysteresis_t
	5.6.3.2.5 resolution_t
	5.6.3.2.6 recal_threshold_t

	5.6.4 Data structures
	5.6.4.1 qt_touch_status_t
	5.6.4.2 qt_touch_lib_config_data_t
	5.6.4.3 qt_touch_lib_measure_data_t
	5.6.4.4 qt_burst_lengths
	5.6.4.5 tag_sensor_t
	5.6.4.6 qt_lib_siginfo_t

	5.6.5 Public Functions
	5.6.5.1 qt_set_parameters
	5.6.5.2 qt_enable_key
	5.6.5.3 qt_enable_rotor
	5.6.5.4 qt_enable_slider
	5.6.5.5 qt_init_sensing
	5.6.5.6 qt_measure_sensors
	5.6.5.7 qt_calibrate_sensing
	5.6.5.8 qt_reset_sensing
	5.6.5.9 qt_get_sensor_delta
	5.6.5.10 qt_get_library_sig

	5.6.6 Sequence of Operations and Using the API
	5.6.6.1 Channel Numbering
	5.6.6.1.1 Channel numbering when using QTouch acquisition method
	5.6.6.1.1.1 Channel numbering when routing SNS and SNSK pins to different ports
	5.6.6.1.1.2 Channel numbering when routing SNS and SNSK pins to different ports with pin configurability
	5.6.6.1.1.3 Channel numbering when routing SNS and SNSK pins to the same port
	5.6.6.1.1.4 Channel numbering when routing SNS and SNSK pins to the same port with pin configurability

	5.6.6.1.2 Channel numbering when using QMatrix acquisition method

	5.6.6.2 Sensor Numbering
	5.6.6.3 Filtering Signal Measurements
	5.6.6.4 Allocating unused Port Pins for User Application
	5.6.6.5 Disabling and Enabling of Pull-up for AVR devices

	5.6.7 Constraints
	5.6.7.1 QTouch acquisition method constraints
	5.6.7.2 QMatrix acquisition method constraints
	5.6.7.3 Design Guidelines for QMatrix acquisition method systems

	5.6.8 Frequency of operation (Vs) Charge cycle/dwell cycle times:
	5.6.9 Interrupts
	5.6.10 Integrating QTouch libraries in your application
	5.6.10.1 Directory structure of the library files
	5.6.10.2 Integrating QTouch acquisition method libraries in your application
	5.6.10.2.1 Example for 8bit AVR
	5.6.10.2.2 Example for ATSAM
	5.6.10.2.3 Checklist of items for integrating QTouch acquisition method libraries

	5.6.10.3 Integrating QMatrix acquisition method libraries in your application
	5.6.10.3.1 Example for 8bit AVR
	5.6.10.3.1.1 Example
	5.6.10.3.1.2 Resources used by QMatrix acquisition method libraries

	5.6.10.3.2 Example for 32bit AVR
	5.6.10.3.2.1 Resources used by QMatrix acquisition method libraries for 32 Bit device

	5.6.10.3.3 Checklist of items for integrating QMatrix Capacitive sensing libraries

	5.6.10.4 Common checklist items
	5.6.10.4.1 Configuring the stack size for the application

	5.6.11 Example project files
	5.6.11.1 Using the Sample projects
	5.6.11.2 Example applications for QTouch acquisition method libraries
	5.6.11.2.1 Selecting the right configuration
	5.6.11.2.2 Changing the settings to match your device
	5.6.11.2.2.1 Processor settings

	5.6.11.2.3 Changing the library configuration parameters
	5.6.11.2.4 Using the example projects

	5.6.11.3 Example applications for QMatrix acquisition method libraries
	5.6.11.3.1 Selecting the right configuration
	5.6.11.3.2 Changing the library configuration parameters
	5.6.11.3.3 Using the example projects

	5.6.11.4 Adjusting the Stack size when using IAR IDE
	5.6.11.5 Optimization levels
	5.6.11.6 Debug Support in Example applications
	5.6.11.6.1 Debug Support in the sample applications for EVK2080 and QT600 boards
	5.6.11.6.2 How to turn on the debug option
	5.6.11.6.3 Debug Interface if USB Bridge board is not available

	5.7 Library Variants
	5.7.1 QTouch Acquisition method library variants
	5.7.1.1 Introduction
	5.7.1.2 Support for different compiler tool chains
	5.7.1.3 QTouch Acquisition method library naming conventions
	5.7.1.3.1 Naming convention for libraries to be used with GCC tool chain
	5.7.1.3.2 Naming convention for libraries to be used with IAR Embedded Workbench

	5.7.1.4 QTouch acquisition method library variants
	5.7.1.5 Port combinations supported for SNS and SNSK pin configurations
	5.7.1.5.1 Tips on pin assignments for the sensor design using one pair of SNS/SNSK ports
	5.7.1.5.2 Port combinations supported for two port pair SNS and SNSK pin configurations
	5.7.1.5.2.1 Tips on pin assignments for the sensor design using two pairs of SNS / SNSK ports

	5.7.1.6 Sample applications and Memory requirements for QTouch acquisition method libraries

	5.7.2 QMatrix acquisition method library variants
	5.7.2.1 Introduction
	5.7.2.2 Support for different compiler tool chains
	5.7.2.3 QMatrix Acquisition method library naming conventions
	5.7.2.4 QMatrix acquisition method library variants
	5.7.2.4.1 Devices supported for QMatrix Acquisition

	5.8 PIN Configuration for QTouch Libraries
	5.8.1 Pin Configuration for QTouch Acquisition Method
	5.8.1.1 Rules for configurable SNS-SNSK Mask Generation
	5.8.1.1.1 Example for 8 channel interport mask Calculation with one port pair
	5.8.1.1.2 Example for 8 channel intraport mask Calculation with two port pairs
	5.8.1.1.3 Example for 12 channel intraport-interport mask Calculation with two port pairs
	5.8.1.1.4 Example for 16 channel intreport-interport mask Calculation with two port pairs

	5.8.1.2 How to Use QTouch Studio For Pin Configurability

	5.8.2 Pin Configuration for QMatrix Acquisition Method
	5.8.2.1 Configuration Rules:
	5.8.2.2 How to use QTouch Studio for Pin Configurability:

	5.9 MISRA Compliance Report
	5.9.1 What is covered
	5.9.2 Target Environment
	5.9.3 Deviations from MISRA C Standards
	5.9.3.1 QTouch acquisition method libraries
	5.9.3.2 QMatrix acquisition method libraries

	5.10 Known Issues
	5.11 Checklist

	6 Device Specific Libraries
	6.1 Introduction
	6.2 Devices supported
	6.3 QTouch Library for AT32UC3L devices
	6.3.1 Salient Features of QTouch Library for UC3L
	6.3.1.1 QMatrix method sensor
	6.3.1.2 QTouch method sensor
	6.3.1.3 Autonomous QTouch sensor
	6.3.1.4 Additional Features

	6.3.2 Device variants supported for UC3L
	6.3.3 Development tool support for UC3L
	Table 8 Development tool support for UC3L QTouch Library

	6.3.4 Overview of QTouch Library API for UC3L
	Figure 35 Overview diagram of QTouch Library for UC3L

	6.3.5 Acquisition method support for UC3L
	Table 9 Acquisition method specific API

	6.3.6 API State machine for UC3L
	Figure 36 State Diagram of QTouch Library for UC3L

	6.3.7 QMatrix method sensor operation for UC3L
	6.3.7.1 QMatrix method pin selection for UC3L
	Table 10 QMatrix Resistive drive pin option

	6.3.7.2 QMatrix method Schematic for UC3L
	6.3.7.2.1 Internal Discharge mode
	6.3.7.2.2 External Discharge mode
	6.3.7.2.3 SMP Discharge Mode
	6.3.7.2.4 VDIVEN Voltage Divider Enable option
	6.3.7.2.5 SYNC pin option
	Figure 37 QMatrix method schematic

	6.3.7.3 QMatrix method hardware resource requirement for UC3L
	6.3.7.4 QMatrix method Channel and Sensor numbering for UC3L
	Figure 38 QMatrix channel numbering for UC3L

	6.3.7.5 QMatrix method API Flow for UC3L
	Figure 39 QMatrix API Flow diagram for UC3L

	6.3.7.6 QMatrix method Disable and Re-enable Sensor for UC3L

	6.3.8 QTouch Group A/B method sensor operation for UC3L
	6.3.8.1 QTouch Group A/B method pin selection for UC3L
	Table 11 QTouch Resistive drive pin option

	6.3.8.2 QTouch Group A/B method Schematic for UC3L
	6.3.8.2.1 Resistive Drive option
	6.3.8.2.2 SYNC pin option
	Figure 40 QTouch Group A/B and Autonomous QTouch schematic arrangement

	6.3.8.3 QTouch Group A/B method hardware resource requirement for UC3L
	6.3.8.4 QTouch Group A/B method Channel and Sensor numbering for UC3L
	Figure 41 QTouch method Channel/Sensor numbering
	Figure 42 QTouch method Channel/Sensor numbering when Group A and B are used together

	6.3.8.5 QTouch Group A/B method API Flow for UC3L
	Figure 43 QTouch method API Flow diagram

	6.3.8.6 QTouch Group A/B method Disable and Re-enable Sensor for UC3L

	6.3.9 Autonomous QTouch sensor operation for UC3L
	6.3.9.1 Autonomous QTouch Sensor pin selection for UC3L
	6.3.9.2 Autonomous QTouch sensor Schematic for UC3L
	6.3.9.3 Autonomous QTouch method hardware resource requirement for UC3L
	Table 12 Sleep mode support for Autonomous QTouch

	6.3.9.4 Autonomous QTouch Sensor API Flow for UC3L
	Figure 44 Autonomous QTouch API Flow diagram

	6.3.9.5 Autonomous QTouch method Enable and Disable Sensor for UC3L

	6.3.10 Raw acquisition mode support for UC3L
	Figure 45 Raw acquisition mode API Flow diagram

	6.3.11 Library Configuration parameters for UC3L
	Table 13 QTouch Library for UC3L Configuration parameters

	6.3.12 Example projects for QTouch Library for UC3L
	6.3.12.1 Example Project usage
	Figure 46 GNU Example project usage with AVR32 Studio
	Figure 47 IAR Example project usage with IAR Embedded Workbench for AVR32

	6.3.12.2 QMatrix Example Project
	6.3.12.3 QTouch Group A Example Project
	6.3.12.4 Autonomous QTouch Example Project

	6.3.13 Code and Data Memory requirements for UC3L
	6.3.13.1 QMatrix method memory requirement
	Table 14 Typical Code and Data memory for Standalone QMatrix operation

	6.3.13.2 QTouch Group A/B method memory requirement
	Table 15 Typical Code and Data memory for Standalone QTouch Group A/B operation

	6.3.13.3 Autonomous QTouch memory requirement
	Table 16 Minimum Code and Data for Standalone Autonomous QTouch sensor

	6.3.14 Public header files of QTouch Library for UC3L
	6.3.15 Type Definitions and enumerations used in the library
	6.3.15.1 Typedefs
	6.3.15.1.1 touch_acq_status_t
	6.3.15.1.2 touch_qt_grp_t

	6.3.15.2 Enumerations
	6.3.15.2.1 touch_ret_t
	6.3.15.2.2 touch_lib_state_t
	6.3.15.2.3 touch_acq_mode_t
	6.3.15.2.4 sensor_type_t
	6.3.15.2.5 aks_group_t
	6.3.15.2.6 hysteresis_t
	6.3.15.2.7 recal_threshold_t
	6.3.15.2.8 resolution_t
	6.3.15.2.9 at_status_change_t
	6.3.15.2.10 x_pin_options_t
	6.3.15.2.11 y_pin_options_t
	6.3.15.2.12 qt_pin_options_t
	6.3.15.2.13 general_pin_options_t

	6.3.16 Data structures
	6.3.16.1 sensor_t
	6.3.16.2 touch_global_param_t
	6.3.16.3 touch_filter_data_t
	6.3.16.4 touch_measure_data_t
	6.3.16.5 touch_qm_param_t
	6.3.16.6 touch_at_param_t
	6.3.16.7 touch_qt_param_t
	6.3.16.8 touch_at_status
	6.3.16.9 touch_qm_dma_t
	6.3.16.10 touch_qm_pin_t
	6.3.16.11 touch_at_pin_t
	6.3.16.12 touch_qt_pin_t
	6.3.16.13 touch_qm_reg_t
	6.3.16.14 touch_at_reg_t
	6.3.16.15 touch_qt_reg_t
	6.3.16.16 touch_qm_config_t
	6.3.16.17 touch_at_config_t
	6.3.16.18 touch_qt_config_t
	6.3.16.19 touch_general_config_t
	6.3.16.20 touch_config_t
	6.3.16.21 touch_info_t

	6.3.17 Public Functions of QTouch Library for UC3L
	6.3.17.1.1 touch_qm_sensors_init
	6.3.17.1.2 touch_qm_sensor_config
	6.3.17.1.3 touch_qm_sensor_update_config
	6.3.17.1.4 touch_qm_sensor_get_config
	6.3.17.1.5 touch_qm_channel_udpate_burstlen
	6.3.17.1.6 touch_qm_update_global_param
	6.3.17.1.7 touch_qm_get_global_param
	6.3.17.1.8 touch_qm_sensors_calibrate
	6.3.17.1.9 touch_qm_sensors_start_acquisition
	6.3.17.1.10 touch_qm_get_libinfo
	6.3.17.1.11 touch_qm_sensor_get_delta
	6.3.17.2.1 touch_qt_sensors_init
	6.3.17.2.2 touch_qt_sensor_config
	6.3.17.2.3 touch_qt_sensor_update_config
	6.3.17.2.4 touch_qt_sensor_get_config
	6.3.17.2.5 touch_qt_update_global_param
	6.3.17.2.6 touch_qt_get_global_param
	6.3.17.2.7 touch_qt_sensors_calibrate
	6.3.17.2.8 touch_qt_sensors_start_acquisition
	6.3.17.2.9 touch_qt _sensor_ disable
	6.3.17.2.10 touch_qt _sensor_ reenable
	6.3.17.2.11 touch_qt_get_libinfo
	6.3.17.2.12 touch_qt_sensor_get_delta

	6.3.18 Autonomous touch API
	6.3.18.1.1 touch_at_sensor_init
	6.3.18.1.2 touch_at_sensor_enable
	6.3.18.1.3 touch_at_sensor_disable
	6.3.18.1.4 touch_at_sensor_update_config
	6.3.18.1.5 touch_at_sensor_get_config
	6.3.18.1.6 touch_at_get_libinfo
	6.3.18.2 Common API
	6.3.18.2.1 touch_event_dispatcher
	6.3.18.2.2 touch_deinit

	6.3.19 Integrating QTouch libraries for AT32UC3L in your application
	6.3.20 MISRA Compliance Report of QTouch Library for UC3L
	6.3.21 What is covered
	6.3.22 Target Environment
	6.3.23 Deviations from MISRA C Standards
	6.3.24 Known Issues with QTouch Library for UC3L

	6.4 QTouch Library for ATtiny20 device
	6.4.1 Salient Features of QTouch Library for ATtiny20
	6.4.1.1 QTouch method sensor

	6.4.2 Compiler tool chain support for ATtiny20
	Table 17 Compiler tool chains support for ATtiny20 QTouch Library

	6.4.3 Overview of QTouch Library for ATtiny20
	Figure 48 Schematic overview of QTouch on Tiny20

	6.4.4 API Flow diagram for ATtiny20
	Figure 49 Linker configuration options for Tiny20
	Figure 50 QTouch method for Tiny20 API Flow diagram

	6.4.5 QTouch Library configuration parameters for ATtiny20
	Table 18 QTouch Library for ATtiny20 Configuration parameters

	6.4.6 QTouch Library ATtiny20 Example projects
	6.4.7 QTouch Library ATtiny20 code and data memory requirements
	Table 19 QTouch Library for ATtiny20 Memory requirements

	6.5 QTouch Library for ATtiny40 device
	6.5.1 Salient Features of QTouch Library for ATtiny40
	6.5.1.1 QTouch method sensor

	6.5.2 Compiler tool chain support for ATtiny40
	Table 20 Compiler tool chains support for ATtiny40 QTouch Library

	6.5.3 Overview of QTouch Library for ATtiny40
	Figure 51 Schematic overview of QTouch on Tiny40

	6.5.4 API Flow diagram for ATtiny40
	Figure 52 QTouch method for Tiny40 API Flow diagram

	6.5.5 QTouch Library configuration parameters for ATtiny40
	Table 21 QTouch Library for ATtiny40 Configuration parameters

	6.5.6 QTouch Library ATtiny40 Example projects
	6.5.7 QTouch Library ATtiny40 code and data memory requirements
	Table 22 QTouch Library for ATtiny40 Memory requirements

	6.5.8 Interrupt Handling in QTouch ADC

	7 Generic QTouch Libraries for 2K Devices
	7.1 Introduction
	7.2 Devices supported
	7.3 Salient Features of QTouch Library for 2K Devices
	7.4 Library Variants
	7.5 QTouch API for 2K Devices and Usage
	7.5.1 touch_api_2kdevice.h - public header file
	7.5.2 Sequence of Operations and Using the API
	7.5.2.1 Channel Numbering
	7.5.2.1.1 Channel numbering when routing SNS and SNSK pins to different ports
	7.5.2.1.2 Channel numbering when routing SNS and SNSK pins to the same port

	7.5.2.2 Rules For Configuring SNS and SNSK masks for 2K Devices
	7.5.2.2.1 Configuring SNS and SNSK masks in case of Interport:
	7.5.2.2.2 Configuring SNS and SNSK masks in case of Intraport:

	7.5.3 Integrating QTouch libraries for 2K Devices in your application

	7.6 MISRA Compliance Report
	7.6.1 What is covered
	7.6.2 Target Environment
	7.6.3 Deviations from MISRA C Standards
	7.6.3.1 QTouch acquisition method libraries for 2K devices

	8 Revision History

