c\ MICROCHIP

MPLAB® Harmony Help - Volume IV
- MPLAB Harmony Framework
Reference

MPLAB Harmony Integrated Software Framework v1.11

© 2013-2017 Microchip Technology Inc. All rights reserved.

Volume IV: MPLAB Harmony Framework

Volume IV: MPLAB Harmony Framework Reference

This volume provides API reference information for the framework libraries included in your installation of MPLAB Harmony.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Volume IV: MPLAB Harmony Framework Framework Overview Introduction

Framework Overview

This section provides an overview of the MPLAB Harmony Framework.

Introduction
This section introduces the overview to the API reference for the MPLAB Harmony Framework.

Description

The MPLAB Harmony development platform and ecosystem is based on a layered framework of interoperable library modules. Library modules,
except for the stateless peripheral libraries (PLIBs), are active and normally implement one or more independent, but cooperative state machines.
These state machines service requests made by the application or other “client” modules through a set of interface (or API) functions. Different
library modules serve different purposes: from core system services, to drivers for peripheral devices, to middleware layers supporting
communication protocols and software capabilities.

This volume is a programmer reference that details the interfaces to the libraries that make up MPLAB Harmony and explains how to use the
libraries individually to accomplish the tasks for which they were designed.

For more introductory information that (1) explains how MPLAB Harmony generally works and (2) describes how to develop MPLAB Harmony
libraries and applications, refer to the following volumes.

Volume [: Getting Started With MPLAB Harmony

This volume introduces MPLAB Harmony in detail. The section What is MPLAB Harmony? is particularly designed for those who are completely
new to MPLAB Harmony.

Volume Ill: MPLAB Harmony Development

This volume provides information on how to develop MPLAB Harmony compatible libraries and applications. The following sections in particular
will help you to gain a better understanding of how MPLAB Harmony library modules work.

Key Concepts

This section describes a number of concepts that are key to understanding how the MPLAB Harmony framework operates, including fundamental
concepts of modularity, relationships between library clients, interfaces, instances and implementations, as well as information about MPLAB
Harmony's state-machine programming model and blocking guidelines.

MPLAB Harmony Compatibility Guide

This section lists and describes the requirements to develop a module that is compatible with MPLAB Harmony.
MPLAB Harmony Driver Development Guide

This section describes how to develop device drivers for MPLAB Harmony.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 3

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Bluetooth Stack Licensing

Bluetooth Stack Library Help

This section provides information on the PIC32 Bluetooth Stack Library that is available in MPLAB Harmony.
Description

The PIC32 Bluetooth Stack Library consists of two distinct libraries:

* PIC32 Bluetooth Basic Stack Library - this library provides "Core" Bluetooth functionality, which was previously referred to as "SPP-only"
* PIC32 Bluetooth Audio Stack Library - this library, which must be purchased, provides audio features

The PIC32 Bluetooth Stack Library is provided in binary form with associated APIs to enable connection, control and data to and from
Bluetooth-enabled devices with PIC32 microcontrollers.

Introduction
Describes the PIC32 Bluetooth Stack Library.

Description

»¢ Important! The PIC32 Bluetooth Stack Library is created under license from Searan LLC, and uses the dotstack™ framework. This
library has been qualified for use and a QDID is available from the Bluetooth SIG. More information about the qualification
process can be found in the "PIC32 Bluetooth Audio Development Kit Reference Guide" (DS70005140), which is available
from the Microchip website: www.microchip.com.

The PIC32 Bluetooth Stack Library is available only in binary format. When a license is acquired it may be for SPP (data)
only, or with access to SBC or AAC decoders. The different licenses come with a number of specific applications. For more
information on the license options please see http://www.microchip.com/pic32btsuites.

PIC32 Bluetooth Stack Library

This library provides all of the functionality of the Bluetooth Stack interfaces including profiles and protocols at the lower levels. These are utilized
in a number of demonstration applications used in the PIC32 Bluetooth Audio Development Kit. Specific demonstrations to illustrate the various
connection options, data and audio communications and control interfaces are available for purchase. Please refer to the Microchip Premium
MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for more information. This library interface is provided in the
C language.

This library provides all of the functionality of the Bluetooth Stack interfaces including profiles and protocols at the lower levels. These are utilized
in a number of demonstration applications used in the PIC32 Bluetooth Audio Development Kit, PIC32 Bluetooth Starter Kit and PIC32MZ EC
Starter Kit development board attached to Multimedia Expansion Board Il (MEB II).

PIC32 Bluetooth Audio Stack Library

2 Note: The PIC32 Bluetooth Audio Stack Library is a Premium product, and is not included in the standard release of MPLAB Harmony
and must be purchased. For information on purchasing the Premium PIC32 Bluetooth Audio Stack Library, please refer to the
MPLAB Harmony Premium Products page by visiting:

http://www.microchip.com/pagehandler/en-us/devtools/mplabharmony/home.html

This library provides full functionality of the PIC32 Bluetooth Stack Library that includes Serial Port Profile (SPP) and Audio protocols and profiles
such as AVDTP, AVCTP, A2DP, and AVRCP. The library interface is provided in the C language.

The PIC32 Bluetooth Audio Stack Library is a premium product and is not included in the standard release of MPLAB Harmony and must be
purchased separately. For information on purchasing the premium PIC32 Bluetooth Audio Stack Library, please refer to the Microchip Premium
MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio).

This library provides all of the functionality of the Bluetooth Stack interfaces including profiles and protocols at the lower levels. These are utilized
in a number of demonstration applications used in the PIC32 Bluetooth Audio Development Kit, PIC32 Bluetooth Starter Kit and PIC32MZ EC
Starter Kit development board attached to Multimedia Expansion Board Il (MEB II).

Demonstrations
Refer to PIC32 Bluetooth Stack Library Demonstrations for information on the demonstrations that are available for the PIC32 Bluetooth Stack
Library. In addition, other specific demonstrations to illustrate the various connection options, data and audio communications and control
interfaces are available for purchase. Please refer to the Microchip Premium MPLAB Harmony Audio web page
(www.microchip.com/pic32harmonypremiumaudio) for more information.

Bluetooth Stack Licensing

This section describes how to license the stack.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 4

http://www.microchip.com
http://www.microchip.com/pic32btsuites
http://www.microchip.com/pagehandler/en-us/devtools/mplabharmony/home.html

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Using the Library

Description

The license to the stack must be procured from Microchip, and it is specific to the Microchip PIC32 microcontroller architecture. Some licenses
require a one-time fee conveyed when a customer purchases the demonstration applications for the PIC32 Bluetooth Audio Development Kit (P/N
DV320032).

USB I/F

oW

Bluetooth

There are four potential options in the license, each with the benefits of the previous.

SPP (data only) - This is a special version of the library available to carry data only. The decoder options have been removed in this case. The
license is available for Microchip PIC products, but is free of charge. Special demonstrations and the library for this product can be found under
the SPP section by visiting http://www.microchip.com/pic32btsuites.

SBC Decoder - This Bluetooth license also grants the user the ability to use the baseline audio SBC decoder, which is provided as a separate
library. The demonstrations include stand-alone Bluetooth audio streaming using this decoder, and other applications which combine the use of
USB and Bluetooth audio.

AAC Decoder - This Bluetooth license also grants the user the ability to use the audio AAC decoder if a connected devices supports this form
of streaming. For devices that only support SBC, the SBC decoder is also included. All demonstrations of the (1) license are included. In
addition, new demonstrations are included that make specific use of the AAC decoder both with and without USB options.

Break-in Feature with SBC Decoder - The break-in feature enables multi-connection support and a "Party mode" where multiple handset
devices can take turns sharing the Bluetooth connection to stream SBC audio. This also supports the single connection SBC audio streaming in
SPP.

2 Note: All licenses are available through Microchip direct. More details on the specific application demonstrations can be found in the

"PIC32 Bluetooth Audio Development Kit Reference Guide" (DS70005140). Visit http://www.microchip.com/pic32btsuites for the
available demonstrations and licensing options.

Using the Library

This topic describes the basic architecture of the PIC32 Bluetooth Stack Library and provides information and examples on its use.

Description

The interface to the Bluetooth stack is driven by a number of header files. The stack header files form a collection of APIs for each protocol and
profile of the Bluetooth stack. These files can be found within the following MPLAB Harmony directory, which is included when you license the
stack and the example applications that are provided:

<instal | _di r>/framework/ bl uet oot h/ cdbt for the PIC32 Bluetooth Basic Stack
<instal |l _dir>/framework/ bl uet oot h/ prem unf audi o/ cdbt for the PIC32 Bluetooth Audio Stack

The following two figures illustrate the Bluetooth Stacks.

PIC32 Bluetooth Basic Stack

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 5

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DV320032
http://www.microchip.com/pic32btsuites
http://www.microchip.com/pic32btsuites

Volume IV: MPLAB Harmony Framework

Bluetooth Stack Library Help

The "Profile" determines what I Application Layer

the device is, and what it can do

1 |
Service Discovery "
Profiles e " Serial Port
Application Profile profile (SPP)
(SDAP)
_______ — — T ——————— e
T 1
Service Discovery Radio Frequency
Protocol (SDP) Communication
(RFCOMM)
Protocols I T
Logic Link Control and Adaptation Protocol (L2CAP)
| Host Controller Interface (HCI)
Controller l
Interface l Link Management Protocol (LMP)
I Baseband Link Controller (BLC)
Radio / Biuetootn® \
Module

%\@) l‘/’ Radio ‘-...

PIC32 Bluetooth Audio Stack

Application Layer |
s g Service Discovery
Profiles Advanced Audio Distribution Profile (A2DP) Application Profile Serial Port
Audio/Video Remote Control Profile (AVRCP) (SDAP) Profile (SPP)
Audio/Video Distribution Transport Protocol (AVDTP) Service Discovery Rca‘;’: nf;:?““."cy
Audio/Video Control Transport Protocol (AVCTP) Protocol (SDP) (RFCOM“M";’"
Protocols [[
Logic Link Control and Adaptation Protocol (L2CAP) I
| Host Controller Interface (HCI) |
Controller |
Interface | Link Management Protocol (LMP) |
| Baseband Link Controller (BLC) |
Rad®¢ =< T _ T -0 07"
Module Bluetooth™
i

Library Overview

Provides information on the APIs provided in the library.

Description

Using the Library

The library interface routines are divided into various sub-sections, which address one of the profiles or the overall operation of the PIC32
Bluetooth Stack Library.

Library
Interface
Section

Bluetooth
Support

A2DP
AVCTP
AVDTP
AVRCP
GAP
HCI

© 2013-2017 Microchip Technology Inc.

Description

Contains functions for basic Bluetooth support.

Contains functions for the Advanced Audio Distribution Profile (see Note).
Contains functions for the Audio/Video Control Transport Protocol (see Note).
Contains functions for the Audio/Video Distribution Transport Protocol (see Note).
Contains functions for the Audio/Video Remote Control Profile (see Note).
Contains functions for the Generic Access Profile.

Contains functions for the Host Controller Interface.

MPLAB Harmony v1.11

Volume IV: MPLAB Harmony Framework

L2CAP
RFCOMM
SBC Decoder
SDP

SPP

SSP

Misc.

Utility

|2 Note:

Bluetooth Stack Library Help Configuring the Library

Contains functions for the Logical Link Control and Adaptation Protocol.

Contains functions for the RF Communication Lower Layer.

Contains functions for the SBC Decoder

Contains functions for the Service Discovery Protocol.

Contains functions for the Serial Port Profile.

Contains functions for Secure Simple Pairing.

Contains miscellaneous functions not noted elsewhere in the stack.

Contains functions that support the stack functions.

The PIC32 Bluetooth Audio Stack is an extension of the PIC32 Bluetooth Basic Stack and provides the additional features to
support audio. The following sections cover the audio features of the PIC32 Bluetooth Stack.

AVDTP Functions

AVDTP Data Types and Constants
AVCTP Functions

AVCTP Data Types and Constants
A2DP Functions

A2DP Data Types and Constants
AVRCP Functions

AVRCP Data Types and Constants

Configuring the Library

This topic provides information on configuring the library.

AVCTP Configuration Macros

Name
__AVCTP_CONFIG_H
AVCTP_ALLOCATE_BUFFERS_RAM_SIZE_VAR « defgroup avctp_config Configuration

AVCTP_ALLOCATE_BUFFERS_VARS

AVCTP_MAX_CHANNELS

AVCTP_MAX_TRANSPORT_CHANNELS

© 2013-2017 Microchip Technology Inc.

Description
This is macro __ AVCTP_CONFIG_H.

¢ ingroup avctp

*

¢ This module describes parameters used to configure AVCTP layer.

« dotstack is customized using a configuration file. The configuration file
tailors the dotstack to the application being built. It has to have the
structure shown below.

* code #include "cdbt/bt/bt_std.h"

/I HCI, L2CAP and SDP must always be present

/I HCI configuration parameters #define HCI_MAX_CMD_BUFFERS ...
#define HCI_MAX_DATA_BUFFERS ... #define
HCI_MAX_HCI_CONNECTIONS ... #define HCI_RX_BUFFER_LEN ...
#define HCI_TX_BUFFER_LEN ... #define HCI_L2CAP_BUFFER_LEN
... #define HCI_MAX_CMD_PARAM_LEN ...

/I L2ZCAP configuration parameters #define L2ZCAP_MAX_CMD_BUFFERS
... #define L2CAP_MAX_FRAME_BUFFERS ... #define
L2CAP_MAX_PSMS ... #define L2ZCAP_MAX_CHANNELS ...

/I SDP... more

brief Maximum number of message buffers ingroup avctp_config

details This parameter defines the maximum number of buffer available for
sending message.

brief Maximum number of AVCTP channels ingroup avctp_config

details This parameter defines the maximum number of channels a local
device can have with remote devices.

brief Maximum number of AVCTP transports ingroup avctp_config

details This parameter defines the maximum number of transports a local
device can have with remote devices. This value should not exceed
AVCTP_MAX_CHANNELS.

MPLAB Harmony v1.11 7

Volume IV: MPLAB Harmony Framework

AVDTP Configuration Macros

Name

AVDTP_ALLOCATE_BUFFERS_FUNCTION
AVDTP_ALLOCATE_BUFFERS_RAM_SIZE_VAR

AVDTP_ALLOCATE_BUFFERS_VARS
AVDTP_CMD_ABORT
AVDTP_CMD_CLOSE
AVDTP_CMD_DISCOVER
AVDTP_CMD_GET_CAPABILITIES
AVDTP_CMD_GET_CONFIGURATION
AVDTP_CMD_OPEN
AVDTP_CMD_RECONFIGURE
AVDTP_CMD_SECURITY_CONTROL
AVDTP_CMD_SET_CONFIGURATION
AVDTP_CMD_START
AVDTP_CMD_SUSPEND

AVDTP_CODEC_CONFIG_BUFFER_LEN

AVDTP_MAX_CMD_BUFFERS

AVDTP_MAX_CMD_PARAM_LEN

AVDTP_MAX_REMOTE_DEVICES

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help

Description
This is macro AVDTP_ALLOCATE_BUFFERS_FUNCTION.

« defgroup avdtp_config Configuration
« ingroup avdtp

*

« This module describes parameters used to configure AVDTP layer.

« dotstack is customized using a configuration file. The configuration file
tailors the dotstack to the application being built. It has to have the
structure shown below.

* code #include "cdbt/bt/bt_std.h"

/I HCI, L2CAP and SDP must always be present

/I HCI configuration parameters #define HCI_MAX_CMD_BUFFERS ...
#define HCI_MAX_DATA_BUFFERS ... #define
HCI_MAX_HCI_CONNECTIONS ... #define HCI_RX_BUFFER_LEN ...
#define HCI_TX_BUFFER_LEN ... #define HCI_L2CAP_BUFFER_LEN
... #define HCI_MAX_CMD_PARAM_LEN ...

/I L2CAP configuration parameters #define L2ZCAP_MAX_CMD_BUFFERS
... #define L2CAP_MAX_FRAME_BUFFERS ... #define
L2CAP_MAX_PSMS ... #define L2ZCAP_MAX_CHANNELS ...

/I SDP... more
This is macro AVDTP_ALLOCATE_BUFFERS_VARS.
This is macro AVDTP_CMD_ABORT.
This is macro AVDTP_CMD_CLOSE.
This is macro AVDTP_CMD_DISCOVER.
This is macro AVDTP_CMD_GET_CAPABILITIES.
This is macro AVDTP_CMD_GET_CONFIGURATION.
This is macro AVDTP_CMD_OPEN.
This is macro AVDTP_CMD_RECONFIGURE.
This is macro AVDTP_CMD_SECURITY_CONTROL.
This is macro AVDTP_CMD_SET_CONFIGURATION.
This is macro AVDTP_CMD_START.
This is macro AVDTP_CMD_SUSPEND.
brief Size of the buffer used to store codec specific configuration. ingroup

avdtp_config

details Each codec uses unique configuration which can take different amount
of memory. This parameter defines the size of the buffer for storing codec's
configuration. The value of 16 is sufficient for SBC, AAC and MPEG1,2. If
vendor specific codec is to be used this value may need to increased.

brief Maximum number of command buffers. ingroup avdtp_config

details This parameter defines the number of buffers reserved for sending
commands to a remote device over its control channel. Each channel uses its
own buffers so the total number of buffers is
AVDTP_MAX_REMOTE_DEVICES * AVDTP_MAX_CMD_BUFFERS. The
minimum value is 1. The maximum value is 255. 2 is usually sufficient.

brief Maximum length of control command parameters ingroup avdtp_config
details This parameter defines the maximum length of all command
parameters. The value should not exceed AVDTP_MAX_TX_BUFFER_LEN -
2 (command header).

brief Maximum number of remote devices a local device can be connected to
ingroup avdtp_config

details This parameter defines the number of remote devices a local device
can have simultaneous connections to (i.e. control channels). This value
should not exceed AVDTP_MAX_STREAMS. For each remote device AVDTP
creates one control channel regardless of the number of streams between the
local and the remote devices. Assuming that the local devices wants to have
only one channel with each remote device and if
AVDTP_MAX_REMOTE_DEVICES > AVDTP_MAX_STREAMS all memory
reserved for devices in excess of AVDTP_MAX_STREAMS will be wasted.
The minimum value is... more

MPLAB Harmony v1.11

Configuring the Library

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

AVDTP_MAX_SEP brief Maximum number of SEPs that can be exposed by a local device ingroup
avdtp_config

details This parameter defines the number of SEPs an application can expose
to remote devices. The minimum value is 1. The maximum value is 255.

AVDTP_MAX_STREAMS brief Maximum number of streams that can be exposed by a local device
ingroup avdtp_config
details This parameter defines the number of streams an application can open
between local and remote devices. This value can be different from
AVDTP_MAX_SEP but should not exceed it. Since each SEP can only be
used once the local device can only have as much streams as there are SEPs.
If AVDTP_MAX_STREAMS > AVDTP_MAX_SEP all memory reserved for
streams in excess of AVDTP_MAX_SEP will be wasted. The minimum value is
1. The maximum value is 255.

AVDTP_MAX_TRANSPORT_CHANNELS brief Maximum number of transport channels. ingroup avdtp_config

details Depending on the SEP capabilities (multiplexing, recovery, reporting)
each stream may need up to 3 transport channels. E.g., if multiplexing is not
supported and recovery and reporting are supported a stream will use 3
transport channels - 1 for media transport session, 1 for recovery transport
session and 1 for reporting transport session. If multiplexing is not supported
and only reporting is supported the stream will use 2 transport channels - 1 for
media transport session and 1 for reporting transport session. If multiplexing is
supported the stream will need only... more

AVDTP_MAX_TX_BUFFER_LEN brief Size of the transmit buffer. ingroup avdtp_config
details This parameter defines the size of the buffer used to send AVDTP
control commands to L2CAP layer. Each control channel has it own buffer so
the total amount of memory allocated for these buffers is
AVDTP_MAX_TX_BUFFER_LEN) * AVDTP_MAX_REMOTE_DEVICES. The
minimum value is 1. The maximum value is 255. The value of 32 is usually

sufficient.
AVRCP Configuration Macros
Name Description
__AVRCP_CONFIG_H This is macro __ AVRCP_CONFIG_H.

AVRCP_ALLOCATE_BUFFERS_RAM_SIZE_VAR + defgroup avrcp_config Configuration
* ingroup avrcp

*

* This module describes parameters used to configure AVRCP layer.

» dotstack is customized using a configuration file. The configuration file
tailors the dotstack to the application being built. It has to have the
structure shown below.

* code #include "cdbt/bt/bt_std.h"
/I HCI, L2CAP and SDP must always be present

/I HCI configuration parameters #define HCI_MAX_CMD_BUFFERS ...
#define HCI_MAX_DATA_BUFFERS ... #define
HCI_MAX_HCI_CONNECTIONS ... #define HCI_RX_BUFFER_LEN ...
#define HCI_TX_BUFFER_LEN ... #define HCI_L2CAP_BUFFER_LEN
... #define HCI_MAX_CMD_PARAM_LEN ...

/I L2CAP configuration parameters #define LZCAP_MAX_CMD_BUFFERS
... #define L2CAP_MAX_FRAME_BUFFERS ... #define
L2CAP_MAX_PSMS ... #define L2ZCAP_MAX_CHANNELS ...

// SDP... more
AVRCP_ALLOCATE_BUFFERS_VARS This is macro AVRCP_ALLOCATE_BUFFERS_VARS.
AVRCP_CMD_TIMEOUT brief Command timeout ingroup avrcp_config

details This parameter defines the amount of time in milliseconds AVRCP
waits for a response to a request. If not defined the default value of 10000 (10
secconds) is used.

AVRCP_MAX_CHANNELS brief Maximum number of remote devices a local device can be connected to
ingroup avrcp_config
details This parameter defines the number of remote devices a local device
can have simultaneous connections to (i.e. channels). This value should not
exceed AVCTP_MAX_CHANNELS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 9

Volume IV: MPLAB Harmony Framework

AVRCP_MAX_CMD_BUFFERS

AVRCP_MAX_CMD_PARAM_LEN

AVRCP_MAX_DEVICE_NAME_LEN

AVRCP_MAX_SEARCH_RESULTS

Bluetooth Support Configuration Macros

Name
ATT_ALLOCATE_BUFFERS
ATT_CLIENT_ALLOCATE_BUFFERS
FTP_ALLOCATE_BUFFERS
GATT_CLIENT_ALLOCATE_BUFFERS
HCI_ALLOCATE_BUFFERS
HFP_ALLOCATE_BUFFERS
HID_ALLOCATE_BUFFERS
HSP_AG_ALLOCATE_BUFFERS
HSP_ALLOCATE_BUFFERS
IAP_ALLOCATE_BUFFERS
IAP_BT_ALLOCATE_BUFFERS
IAP2_ALLOCATE_BUFFERS
L2CAP_ALLOCATE_BUFFERS
OBEX_ALLOCATE_BUFFERS
PBAP_ALLOCATE_BUFFERS
RFCOMM_ALLOCATE_BUFFERS
SDP_ALLOCATE_BUFFERS
SMP_ALLOCATE_BUFFERS
SPP_ALLOCATE_BUFFERS
BT_ENABLE_BLE
BT_INCLUDE_RFCOMM
BT_LOG_LEVEL_MAX
BT_LOG_LEVEL_MIN

__ BT_APP_CONFIG_H
BT_INCLUDE_IAP
BT_INCLUDE_IAP2
IAP_BT_MAX_TRANSPORTS
IAP_MAX_SESSIONS
IAP_RX_BUFFER_SIZE
IAP2_MAX_PACKET_SIZE
IAP2_MAX_SESSIONS

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ O ¢ ¢ ¢ ¢ ¢ o O 0| <

HCI Configuration Macros

Name
BT_ENABLE_SCO

BT_HCI_EVT_AUTHENTICATION_COMPLETE_HANDLER

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help

Configuring the Library

brief Maximum number of command buffers. ingroup avrcp_config

details This parameter defines the number of buffers reserved for sending
commands to a remote device over its control channel. Each channel uses its
own buffers so the total number of buffers is AVRCP_MAX_CHANNELS *
AVRCP_MAX_CMD_BUFFERS. The minimum value is 1. The maximum
value is 255. If not define one buffer for each channel is reserved.

brief Maximum length of command parameters ingroup avrcp_config

details This parameter defines the maximum length of all command
parameters. If not defined the default value of 512 is used.

brief Maximum length of device name ingroup avrcp_config

details This parameter defines the size of the buffer used to store device's
name while searching for nearby targets with bt_avrcp_find_targets. If the
name of the device is longer than AVRCP_MAX_DEVICE_NAME_LEN itis
truncated to AVRCP_MAX_DEVICE_NAME_LEN. If not defined the default

value of 20 is used.

brief Maximum number of devices to find ingroup avrcp_config

details This parameter defines the maximum number of devices
bt_avrcp_find_targets can find. If not defined the default value of 7 is used.

Description

This is function ATT_ALLOCATE_BUFFERS.
This is function ATT_CLIENT_ALLOCATE_BUFFERS.
This is function FTP_ALLOCATE_BUFFERS.
This is function GATT_CLIENT_ALLOCATE_BUFFERS.
This is function HCI_ALLOCATE_BUFFERS.

This is function HFP_ALLOCATE_BUFFERS.
This is function HID_ALLOCATE_BUFFERS.

This is function HSP_AG_ALLOCATE_BUFFERS.
This is function HSP_ALLOCATE_BUFFERS.
This is function IAP_ALLOCATE_BUFFERS.

This is function IAP_BT_ALLOCATE_BUFFERS.
This is function IAP2_ALLOCATE_BUFFERS.
This is function L2ZCAP_ALLOCATE_BUFFERS.
This is function OBEX_ALLOCATE_BUFFERS.
This is function PBAP_ALLOCATE_BUFFERS.
This is function RFCOMM_ALLOCATE_BUFFERS.
This is function SDP_ALLOCATE_BUFFERS.
This is function SMP_ALLOCATE_BUFFERS.
This is function SPP_ALLOCATE_BUFFERS.
This is macro BT_ENABLE_BLE.

This is macro BT_INCLUDE_RFCOMM.

This is macro BT_LOG_LEVEL_MAX.

This is macro BT_LOG_LEVEL_MIN.

This is macro __BT_APP_CONFIG_H.

This is macro BT_INCLUDE_IAP.

This is macro BT_INCLUDE_IAP2.

This is macro IAP_BT_MAX_TRANSPORTS.
This is macro IAP_MAX_SESSIONS.

This is macro IAP_RX_BUFFER_SIZE.

This is macro IAP2_MAX_PACKET_SIZE.

This is macro IAP2_MAX_SESSIONS.

Description
This is macro BT_ENABLE_SCO.
This is macro

BT_HCI_EVT_AUTHENTICATION_COMPLETE_HANDLE

R.

MPLAB Harmony v1.11

10

Volume IV: MPLAB Harmony Framework

BT_HCI_EVT_CONNECTION_COMPLETE_HANDLER

BT_HCI_EVT_CONNECTION_REQUEST_HANDLER

BT_HCI_EVT_ENCRYPTION_CHANGE_HANDLER

BT_HCI_EVT_EXTENDED_INQUIRY_RESULT_HANDLER

BT_HCI_EVT_INQUIRY_COMPLETE_HANDLER

BT_HCI_EVT_INQUIRY_RESULT_HANDLER

BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI_HANDLER

BT_HCI_EVT_LINK_KEY_NOTIFICATION_HANDLER

BT_HCI_EVT_LINK_KEY_REQUEST_HANDLER

BT_HCI_EVT_MODE_CHANGE_HANDLER
BT _HCI_EVT_PIN_CODE_REQUEST HANDLER

BT_HCI_EVT_REMOTE_NAME_REQUEST _COMPLETE_HANDLER

BT_HCI_EVT_ROLE_CHANGE_HANDLER

BT_HCI_EVT_SYNCH_CONNECTION_COMPLETE_HANDLER

BT_LE_EVT_HANDLER
BT_SSP_EVT_HANDLER
HCI_ALLOCATE_BUFFERS_FUNCTION
HCI_ALLOCATE_BUFFERS_RAM_SIZE_VAR

HCI_ALLOCATE_BUFFERS_VARS
HCI_DECLARE_LE_CONN_STATES
HCI_DECLARE_LE_CTRL_STATE
HCI_ENABLE_CTRL_TO_HOST FLOW_CONTROL

HCI_INIT_LE_CONN_STATES
HCI_INIT_LE_CTRL_STATE
HCI_INIT_SCO_HANDLERS
HCI_INIT_SSP_HANDLERS
HCI_L2CAP_BUFFER_LEN
HCI_SIZEOF_LE_CONN_STATES
HCI_SIZEOF_LE_CTRL_STATE
HCI_TX_BUFFER_LEN
__HCI_CONFIG_EVENT_HANDLERS_H
__HCI_CONFIG_H
HCI_MAX_CONNECT_ATTEMPTS

Bluetooth Stack Library Help

Configuring the Library

This is macro
BT_HCI_EVT_CONNECTION_COMPLETE_HANDLER.

This is macro
BT_HCI_EVT_CONNECTION_REQUEST_HANDLER.

This is macro
BT_HCI_EVT_ENCRYPTION_CHANGE_HANDLER.

This is macro
BT_HCI_EVT_EXTENDED_INQUIRY_RESULT_HANDLE
R.

This is macro
BT_HCI_EVT_INQUIRY_COMPLETE_HANDLER.

This is macro
BT_HCI_EVT_INQUIRY_RESULT_HANDLER.

This is macro
BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI_HANDLE
R.

This is macro
BT_HCI_EVT_LINK_KEY_NOTIFICATION_HANDLER.

This is macro
BT_HCI_EVT_LINK_KEY_REQUEST_HANDLER.

This is macro BT_HCI_EVT_MODE_CHANGE_HANDLER.

This is macro
BT_HCI_EVT_PIN_CODE_REQUEST_HANDLER.

This is macro
BT_HCI_EVT_REMOTE_NAME_REQUEST_COMPLETE_
HANDLER.

This is macro BT_HCI_EVT_ROLE_CHANGE_HANDLER.

This is macro
BT_HCI_EVT_SYNCH_CONNECTION_COMPLETE_HAN
DLER.

This is macro BT_LE_EVT_HANDLER.
This is macro BT_SSP_EVT_HANDLER.
This is macro HCI_ALLOCATE_BUFFERS_FUNCTION.

This is macro
HCI_ALLOCATE_BUFFERS_RAM_SIZE_VAR.

This is macro HCI_ALLOCATE_BUFFERS_VARS.
This is macro HCI_DECLARE_LE_CONN_STATES.
This is macro HCI_DECLARE_LE_CTRL_STATE.

This is macro
HCI_ENABLE_CTRL_TO_HOST_FLOW_CONTROL.

This is macro HCI_INIT_LE_CONN_STATES.
This is macro HCI_INIT_LE_CTRL_STATE.

This is macro HCI_INIT_SCO_HANDLERS.

This is macro HCI_INIT_SSP_HANDLERS.

This is macro HCI_L2CAP_BUFFER_LEN.

This is macro HCI_SIZEOF_LE_CONN_STATES.
This is macro HCI_SIZEOF_LE_CTRL_STATE.
This is macro HCI_TX_BUFFER_LEN.

This is macro __HCI_CONFIG_EVENT_HANDLERS_H.
This is macro __HCI_CONFIG_H.

This is macro HCI_MAX_CONNECT_ATTEMPTS.

L2CAP Configuration Macros

Name

L2CAP_ALLOCATE_BUFFERS_FUNCTION
L2CAP_ALLOCATE_BUFFERS_RAM_SIZE_VAR This is macro L2CAP_ALLOCATE_BUFFERS_RAM_SIZE_VAR.

L2CAP_ALLOCATE_BUFFERS_VARS
L2CAP_FIXED_CHANNELS_DECL

© 2013-2017 Microchip Technology Inc.

Description
This is macro L2ZCAP_ALLOCATE_BUFFERS_FUNCTION.

This is macro L2ZCAP_ALLOCATE_BUFFERS_VARS.
This is macro L2ZCAP_FIXED_CHANNELS_DECL.

MPLAB Harmony v1.11

11

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

L2CAP_HCI_PACKET_TYPE

« brief L2CAP_HCI_PACKET_TYPE.
* ingroup btconfig

» details Defines a set of packets that link manager is allowed to use when
calling bt_I2cap_connect.

* The default value is to enable all packet types.
enable all packet types

L2CAP_HCI_PAGE_SCAN_REPETITION_MODE | brief L2CAP_HCI_PAGE_SCAN_REPETITION_MODE. ingroup btconfig

L2CAP_HCI_ROLE_SWITCH

L2CAP_IDLE_CONNECTION_TIMEOUT
PACK_CONFIG_REQUEST
PACK_CONFIG_RESPONSE
PACK_CONN_REQUEST
PACK_CONN_RESPONSE
PACK_DCONN_REQUEST
PACK_DCONN_RESPONSE
PACK_INFO_REQUEST
PACK_INFO_RESPONSE
PROCESS_CONFIG_REQ
PROCESS_CONFIG_RES
PROCESS_CONN_REQ
PROCESS_CONN_RES
PROCESS_DCONN_REQ
PROCESS_DCONN_RES
PROCESS_INFO_REQ
PROCESS_INFO_RES
READ_CONFIG_REQUEST
READ_CONFIG_RESPONSE
READ_CONN_REQUEST
READ_CONN_RESPONSE
READ_DCONN_REQUEST
READ_DCONN_RESPONSE
READ_INFO_REQUEST
READ_INFO_RESPONSE
__L2CAP_CONFIG_H
__L2CAP_CONFIG_HANDLERS_H
L2CAP_DECL_ERETR_FUNCTIONS
L2CAP_MAX_FIXED_CHANNELS

RFCOMM Configuration Macros

Name
RFCOMM_ALLOCATE_BUFFERS_FUNCTION

details Defines a default value of the page scan repetition mode when calling
bt_I2cap_connect. Must be set to one of the following values:
HCI_PAGE_SCAN_REPETITION_MODE_RO
HCI_PAGE_SCAN_REPETITION_MODE_R1
HCI_PAGE_SCAN_REPETITION_MODE_R2

The default value is HCI_PAGE_SCAN_REPETITION_MODE_RO.

brief L2ZCAP_HCI_ROLE_SWITCH. ingroup btconfig

details Defines a default value of the role switch parameter when calling
bt_I2cap_connect. Must be set to one of the following values:
HCI_ROLE_SWITCH_ALLOW HCI_ROLE_SWITCH_DISALLOW The default
value is to allow the role switch.

seconds

This is macro PACK_CONFIG_REQUEST.

This is macro PACK_CONFIG_RESPONSE.
This is macro PACK_CONN_REQUEST.

This is macro PACK_CONN_RESPONSE.

This is macro PACK_DCONN_REQUEST.

This is macro PACK_DCONN_RESPONSE.

This is macro PACK_INFO_REQUEST.

This is macro PACK_INFO_RESPONSE.

This is macro PROCESS_CONFIG_REQ.

This is macro PROCESS_CONFIG_RES.

This is macro PROCESS_CONN_REQ.

This is macro PROCESS_CONN_RES.

This is macro PROCESS_DCONN_REQ.

This is macro PROCESS_DCONN_RES.

This is macro PROCESS_INFO_REQ.

This is macro PROCESS_INFO_RES.

This is macro READ_CONFIG_REQUEST.

This is macro READ_CONFIG_RESPONSE.
This is macro READ_CONN_REQUEST.

This is macro READ_CONN_RESPONSE.

This is macro READ_DCONN_REQUEST.

This is macro READ_DCONN_RESPONSE.

This is macro READ_INFO_REQUEST.

This is macro READ_INFO_RESPONSE.

This is macro __L2CAP_CONFIG_H.

This is macro __L2CAP_CONFIG_HANDLERS_H.
This is macro L2CAP_DECL_ERETR_FUNCTIONS.
This is macro L2CAP_MAX_FIXED_CHANNELS.

Description
This is macro RFCOMM_ALLOCATE_BUFFERS_FUNCTION.

RFCOMM_ALLOCATE_BUFFERS_RAM_SIZE_VAR This is macro RFCOMM_ALLOCATE_BUFFERS_RAM_SIZE_VAR.

RFCOMM_ALLOCATE_BUFFERS_VARS
RFCOMM_BUFFER_SIZE

This is macro RFCOMM_ALLOCATE_BUFFERS_VARS.
This is macro RFCOMM_BUFFER_SIZE.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 12

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

RFCOMM_ENABLE_MULTIDEVICE_CHANNELS brief Enable multi-device server channels. ingroup rfcomm_config
details Normally each server channel can be used only once. l.e. if
device A connected to channel 1, device B cannot connect to channel
1 until device A disconnects. With this option it is possible to make
channels accept connections from several devices at the same time.
l.e., if RFCOMM_ENABLE_MULTIDEVICE_CHANNELS is TRUE both
device A and device B can connect to channel 1 at the same time.

RFCOMM_INFO_LEN brief Maximum size of the data portion of a UIH frame. ingroup
rfcomm_config
details This parameter defines the maximum size of the data portion of
a UIH frame. If CFC is used the actual length of the data portion will be
1 byte less. This value must be less than or equal to
HCI_L2CAP_BUFFER_LEN - RFCOMM_FRAME_HEADER_LEN -
L2CAP_HEADER_LEN.

RFCOMM_LOCAL_CREDIT brief The number of receive buffers. ingroup rfcomm_config
details This parameter defines the number of received UIH frames that
can be stored on the local device. The flow control mechanism used in
RFCOMM ensures that the remote side of the link always knows how
many free buffers left on the local device. When the number of free
buffers reaches 0, the transmitter stops sending data frames until the
receiver frees some buffers. The RFCOMM layer does not actually
allocate space for buffers. It uses RFCOMM_LOCAL_CREDIT to keep
track of free buffers and report them to the remote side. Actual
memory... more

RFCOMM_MAX_CMD_BUFFERS brief Maximum number of command buffers. ingroup rfcomm_config
details This parameter defines the maximum number of commands
that can be sent at the same time. It is usually enough to reserve 2
buffers for each DLC excluding control DLC. Therefore, this value can
be defined as rn #define RFCOMM_MAX_CMD_BUFFERS
(RFCOMM_MAX_DLCS - 1) * 2

RFCOMM_MAX_DLCS brief Maximum number of DLCs ingroup rfcomm_config
details This parameter defines the maximum number of DLCs on each
session. This value should be at least 2 because each session uses
one DLC to convey multiplexer control messages. All other DLCs are
used to emulate serial ports.

RFCOMM_MAX_SERVER_CHANNELS brief Maximum number of Server channels ingroup rfcomm_config

details This parameter defines the maximum number of server
channels exposed by the local device. This value should not exceed
RFCOMM_MAX_DLCS - 1.

RFCOMM_MAX_SESSIONS brief Maximum number of remote devices a local device can be
connected to ingroup rfcomm_config

details This parameter defines the maximum number of remote devices
a local device can have simultaneous connections to. This value
should not exceed HCI_MAX_HCI_CONNECTIONS.

__ RFCOMM_CONFIG_H This is macro __ RFCOMM_CONFIG_H.

RFCOMM_LOCAL_CREDIT_SEND_THRESHOLD_DECL This is macro
RFCOMM_LOCAL_CREDIT_SEND_THRESHOLD_DECL.

SDP Configuration Macros

Name Description
SDP_ALLOCATE_BUFFERS_RAM_SIZE_VAR defgroup sdp_config Configuration
* ingroup sdp

*

» This module describes parameters used to configure SDP.

» dotstack is customized using a configuration file. The configuration file
tailors the dotstack to the application being built. It has to have the structure
shown below.

* code #include "cdbt/bt/bt_std.h"

/I HCI and L2CAP must always be present // SDP is required only if stack is
running in dual mode. This is the default mode. // To run the stack in single
mode (i.e. only BLE is supported) a BT_BLE_SINGLE_MODE symbol //
must be defined: // #define BT_BLE_SINGLE_MODE

/I HCI configuration parameters #define... more
SDP_ALLOCATE_BUFFERS_VARS This is macro SDP_ALLOCATE_BUFFERS_VARS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 13

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

SDP_MAX_ATTRIBUTE_RESULT_LEN brief Maximum number of attributes to find ingroup sdp_config

details This parameter defines the maximum number of attributes withing a
service record the SDP server will return to the client.

SDP_MAX_PDU_BUFFERS brief Maximum number of SDP server PDU buffers. ingroup sdp_config

details This parameter defines the maximum number of responses the SDP
server can send at the same time.

SDP_MAX_SEARCH_RESULT_LEN brief Maximum number of service records to find. ingroup sdp_config

details This parameter defines the maximum number of service records the SDP
server will return to the client.

__SDP_CONFIG_H This is macro__SDP_CONFIG_H.

SPP Configuration Macros

Name Description

SPP_ALLOCATE_BUFFERS_RAM_SIZE_VAR This is macro SPP_ALLOCATE_BUFFERS_RAM_SIZE_VAR.
SPP_ALLOCATE_BUFFERS_VARS This is macro SPP_ALLOCATE_BUFFERS_VARS.
SPP_DECLARE_FRAME_BUFFERS This is macro SPP_DECLARE_FRAME_BUFFERS.
SPP_DISABLE_BUFFERING This is macro SPP_DISABLE_BUFFERING.
SPP_FRAME_BUFFERS_RAM_SIZE This is macro SPP_FRAME_BUFFERS_RAM_SIZE.
SPP_FRAME_BUFFERS_SIZE This is macro SPP_FRAME_BUFFERS_SIZE.
SPP_MAX_PORTS brief Maximum number of SPP ports. ingroup spp_config

details This parameter defines the maximum number of SPP port that can be
open between the local and remote devices. If
RFCOMM_ENABLE_MULTIDEVICE_CHANNELS is FALSE (default) this value
should be equal to RFCOMM_MAX_SERVER_CHANNELS. If
RFCOMM_ENABLE_MULTIDEVICE_CHANNELS is TRUE this value should be
between RFCOMM_MAX_SERVER_CHANNELS and
RFCOMM_MAX_SERVER_CHANNELS * RFCOMM_MAX_SESSIONS.

__SPP_CONFIG_H This is macro __SPP_CONFIG_H.

Description

Each major function, protocol and prototype within the library has a configuration header file. Generally these are not modified to utilize the PIC32
Bluetooth Stack with the demonstrations provided. The configuration files for each function are found in the

<instal | _dir>/framework/ bl uet oot h/ cdbt directory for the PIC32 Bluetooth Basic Stack. The configuration is located in

<sub-di rectory>_confi g. h for that particular function.

In the overall application a number of library controls are exposed to the user. These functions can be found in user _confi g. h in the application
folder provided. The user of these configurations is referenced in the "PIC32 Bluetooth Audio Development Kit Reference Guide" (DS70005140),
which is available from the Microchip website (www.microchip.com).

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 14

http://www.microchip.com

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

~ Samsung
x/(

Bluetooth Support Configuration Macros

ATT_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
ATT_ALLOCATE_BUFFERS() ;

Description
This is function ATT_ALLOCATE_BUFFERS.

ATT_CLIENT_ALLOCATE_BUFFERS Function
File
bt_oem_config.h

C
ATT_CLI ENT_ALLOCATE_BUFFERS() ;

Description
This is function ATT_CLIENT_ALLOCATE_BUFFERS.

FTP_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
FTP_ALLOCATE_BUFFERS() ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Samsung

Configuring the Library

15

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

Description
This is function FTP_ALLOCATE_BUFFERS.

GATT_CLIENT_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
GATT_CLI ENT_ALLOCATE_BUFFERS() ;

Description
This is function GATT_CLIENT_ALLOCATE_BUFFERS.

HCI_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
HCl _ALLOCATE_BUFFERS() ;

Description
This is function HCI_ALLOCATE_BUFFERS.

HFP_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
HFP_ALLOCATE_BUFFERS() ;

Description
This is function HFP_ALLOCATE_BUFFERS.

HID_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
HI D_ALLOCATE_BUFFERS() ;

Description
This is function HID_ALLOCATE_BUFFERS.

HSP_AG_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
HSP_AG ALLOCATE_BUFFERS() ;

Description
This is function HSP_AG_ALLOCATE_BUFFERS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

16

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

HSP_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
HSP_ALLOCATE_BUFFERS() ;

Description
This is function HSP_ALLOCATE_BUFFERS.

IAP_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
| AP_ALLOCATE_BUFFERS()

Description
This is function IAP_ALLOCATE_BUFFERS.

IAP_BT_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
| AP_BT_ALLOCATE_BUFFERS() ;

Description
This is function IAP_BT_ALLOCATE_BUFFERS.

IAP2_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
| AP2_ALLOCATE_BUFFERS() ;

Description
This is function IAP2_ALLOCATE_BUFFERS.

L2CAP_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
L2CAP_ALLOCATE_BUFFERS() ;

Description
This is function L2ZCAP_ALLOCATE_BUFFERS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

17

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

OBEX_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
OBEX_ALLOCATE_BUFFERS() ;

Description
This is function OBEX_ALLOCATE_BUFFERS.

PBAP_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
PBAP_ALLOCATE_BUFFERS() ;

Description
This is function PBAP_ALLOCATE_BUFFERS.

RFCOMM_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
RFCOMM ALLOCATE_BUFFERS() ;

Description
This is function RFCOMM_ALLOCATE_BUFFERS.

SDP_ALLOCATE_BUFFERS Function
File

bt_oem_config.h

C
SDP_ALLOCATE_BUFFERS() ;

Description
This is function SDP_ALLOCATE_BUFFERS.

SMP_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
SMP_ALLOCATE_BUFFERS() ;

Description
This is function SMP_ALLOCATE_BUFFERS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 18

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

SPP_ALLOCATE_BUFFERS Function

File
bt_oem_config.h

C
SPP_ALLOCATE_BUFFERS() ;

Description
This is function SPP_ALLOCATE_BUFFERS.

BT _ENABLE_BLE Macro
File

bt_oem_config.h

C
#def i ne BT_ENABLE BLE

Description
This is macro BT_ENABLE_BLE.

BT_INCLUDE_RFCOMM Macro

File
bt_oem_config.h

C
#define BT_| NCLUDE_RFCOWM

Description
This is macro BT_INCLUDE_RFCOMM.

BT LOG_LEVEL_MAX Macro
File

bt_oem_config.h

C
#def i ne BT_LOG LEVEL_MAX BT_LOG LEVEL_OFF

Description
This is macro BT_LOG_LEVEL_MAX.

BT_LOG_LEVEL_MIN Macro

File
bt_oem_config.h

C
#define BT_LOG LEVEL_ M N BT_LOG LEVEL

Description
This is macro BT_LOG_LEVEL_MIN.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 19

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

_ BT_APP_CONFIG_H Macro

File
bt_oem_config.h

C
#define _ BT APP_CONFI G H

Description
This is macro __BT_APP_CONFIG_H.

BT _INCLUDE_IAP Macro
File

bt_oem_config.h

C
#def i ne BT_| NCLUDE_| AP

Description
This is macro BT_INCLUDE_IAP.

BT_INCLUDE_IAP2 Macro

File
bt_oem_config.h

C
#define BT_I NCLUDE_| AP2

Description
This is macro BT_INCLUDE_IAP2.

IAP_BT_MAX_TRANSPORTS Macro
File

bt_oem_config.h

C
#define | AP_BT_MAX_TRANSPORTS | APEA MAX_SESSI ONS

Description
This is macro IAP_BT_MAX_TRANSPORTS.

IAP_MAX_SESSIONS Macro

File
bt_oem_config.h

C
#define | AP_MAX_SESSI ONS | APEA MAX_SESSI ONS

Description
This is macro IAP_MAX_SESSIONS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

20

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

IAP_RX_BUFFER_SIZE Macro

File
bt_oem_config.h

C
#define | AP_RX_BUFFER Sl ZE | APEA MAX_PACKET_SI ZE

Description
This is macro IAP_RX_BUFFER_SIZE.

IAP2_MAX_PACKET_SIZE Macro
File

bt_oem_config.h

C
#def i ne | AP2_MAX_PACKET_SI ZE | APEA_MAX_PACKET_SI ZE

Description
This is macro IAP2_MAX_PACKET_SIZE.

IAP2_MAX_SESSIONS Macro

File
bt_oem_config.h

C
#define | AP2_MAX_SESSI ONS | APEA MAX_SESSI ONS

Description
This is macro IAP2_MAX_SESSIONS.

AVCTP Configuration Macros

__AVCTP_CONFIG_H Macro
File

avctp_config.h

C
#define __ AVCTP_CONFI G H

Description
This is macro __AVCTP_CONFIG_H.

AVCTP_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro
File

avctp_config.h

C
#define AVCTP_ALLOCATE BUFFERS RAM Sl ZE_VAR

Description

« defgroup avctp_config Configuration

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

21

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

e ingroup avctp

* This module describes parameters used to configure AVCTP layer.

» dotstack is customized using a configuration file. The configuration file tailors the dotstack to the application being built. It has to have the
structure shown below.

* code #include "cdbt/bt/bt_std.h"
/Il HCI, L2CAP and SDP must always be present

/I HCI configuration parameters #define HCI_MAX_CMD_BUFFERS ... #define HCI_MAX_DATA_BUFFERS ... #define
HCI_MAX_HCI_CONNECTIONS ... #define HC|_RX_BUFFER_LEN ... #define HCI_TX_BUFFER_LEN ... #define HCI_L2CAP_BUFFER_LEN
... #define HCI_MAX_CMD_PARAM_LEN ...

/I L2CAP configuration parameters #define L2ZCAP_MAX_CMD_BUFFERS ... #define L2ZCAP_MAX_FRAME_BUFFERS ... #define
L2CAP_MAX_PSMS ... #define L2CAP_MAX_CHANNELS ...

/I SDP configuration parameters #define SDP_MAX_SEARCH_RESULT_LEN ... #define SDP_MAX_ATTRIBUTE_RESULT_LEN ...

/I Depending on protocols and profiles used below goes configuration parameters // for each used module. E.g., to use and configure AVRCP, //
the following values must be defined:

#define BT_INCLUDE_AVCTP // tells dotstack to compile in AVCTP support #define AVCTP_MAX_CHANNELS ... #define
AVCTP_MAX_TRANSPORT_CHANNELS ... #define AVCTP_MAX_RX_MESSAGE_LEN ... #define AVCTP_MAX_MESSAGE_BUFFERS ...

#include "cdbt/bt/bt_oem_config.h"
endcode

AVCTP_ALLOCATE_BUFFERS_VARS Macro

File
avctp_config.h
C
#def i ne AVCTP_ALLOCATE_BUFFERS_VARS \
bt _avct p_channel _t _avct p_channel s[AVCTP_MAX_CHANNELS] ; \
const bt_byte _avct p_max_channel s = AVCTP_MAX_CHANNELS; \
bt _avctp_transport _t _avct p_transport s[AVCTP_MAX_TRANSPORT_CHANNELS] ; \
const bt_byte _avctp_max_transports = AVCTP_MAX_TRANSPORT_CHANNELS; \
const bt_uint _avctp_max_rx_nessage_|l en = AVCTP_MAX_RX_MESSAGE_LEN; \
bt _byte _avct p_rx_buf fers[(AVCTP_VAX_RX_MESSAGE_LEN) *
(AVCTP_MAX_TRANSPORT_CHANNELS)]; \
bt _buffer_header _t _avct p_nmessage_buf f er _header s[(AVCTP_MAX_MESSAGE BUFFERS) *
(AVCTP_MAX_TRANSPORT_CHANNELS)] ; \
bt _avct p_nessage_t _avct p_message_buf f er s[(AVCTP_NMAX_MESSAGE_BUFFERS) *
(AVCTP_NMAX_TRANSPORT_CHANNELS)] ; \
const bt_byte _avct p_max_nessage_buffers = AVCTP_MAX_MESSAGE_BUFFERS; \
\
AVCTP_ALLCCATE_BUFFERS_RAM SI ZE_VAR \
Description

brief Maximum number of message buffers ingroup avctp_config
details This parameter defines the maximum number of buffer available for sending message.

AVCTP_MAX_CHANNELS Macro

File

C

avctp_config.h

#def i ne AVCTP_MAX_CHANNELS

Description

brief Maximum number of AVCTP channels ingroup avctp_config
details This parameter defines the maximum number of channels a local device can have with remote devices.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 22

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

AVCTP_MAX_TRANSPORT_CHANNELS Macro

File

C

avctp_config.h

#define AVCTP_MAX_TRANSPORT CHANNELS

Description

brief Maximum number of AVCTP transports ingroup avctp_config

details This parameter defines the maximum number of transports a local device can have with remote devices. This value should not exceed
AVCTP_MAX_CHANNELS.

AVDTP Configuration Macros

AVDTP_ALLOCATE_BUFFERS_FUNCTION Macro

File
avdtp_config.h
C
#defi ne AVDTP_ALLOCATE_BUFFERS_FUNCTI ON \
void _bt_avdtp_all ocate_buffers(void) \
{ \
j IR
Description

This is macro AVDTP_ALLOCATE_BUFFERS_FUNCTION.

AVDTP_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro

File

C

avdtp_config.h

#define AVDTP_ALLOCATE BUFFERS RAM Sl ZE_VAR

Description

« defgroup avdtp_config Configuration
e ingroup avdtp

*

» This module describes parameters used to configure AVDTP layer.

*

» dotstack is customized using a configuration file. The configuration file tailors the dotstack to the application being built. It has to have the
structure shown below.

* code #include "cdbt/bt/bt_std.h"

/I HCI, L2CAP and SDP must always be present

/I HCI configuration parameters #define HCI_MAX_CMD_BUFFERS ... #define HCI_MAX_DATA_BUFFERS ... #define
HCI_MAX_HCI_CONNECTIONS ... #define HC|_RX_BUFFER_LEN ... #define HCI_TX_BUFFER_LEN ... #define HCI_L2CAP_BUFFER_LEN
... #define HCI_MAX_CMD_PARAM_LEN ...

/I L2CAP configuration parameters #define L2ZCAP_MAX_CMD_BUFFERS ... #define L2ZCAP_MAX_FRAME_BUFFERS ... #define
L2CAP_MAX_PSMS ... #define L2ZCAP_MAX_CHANNELS ...

/I SDP configuration parameters #define SDP_MAX_SEARCH_RESULT_LEN ... #define SDP_MAX_ATTRIBUTE_RESULT_LEN ...

/I Depending on protocols and profiles used below goes configuration parameters // for each used module. E.g., to use and configure AVDTP &
A2DP (this one does not need configuration), // the following values must be defined:

#define BT_INCLUDE_AVDTP // tells dotstack to compile in AVDTP support #define AVDTP_MAX_SEP ... #define AVDTP_MAX_STREAMS ...

#define AVDTP_MAX_REMOTE_DEVICES ... #define AVDTP_MAX_CMD_BUFFERS ... #define AVDTP_MAX_TRANSPORT_CHANNELS ...
#define AVDTP_MAX_TX_BUFFER_LEN ... #define AVDTP_MAX_CMD_PARAM_LEN ... #define AVDTP_CODEC_CONFIG_BUFFER_LEN

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 23

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

#include "cdbt/bt/bt_oem_config.h"
endcode

AVDTP_ALLOCATE_BUFFERS_VARS Macro

File
avdtp_config.h
C
#defi ne AVDTP_ALLOCATE_BUFFERS_VARS \
bt _avdt p_sep_t _avdt p_seps[AVDTP_NMAX_SEP] ; \
const bt_byte _avdt p_max_seps = AVDTP_MAX_SEP; \
bt _avdtp_streamt _avdt p_streans[AVDTP_MAX_STREAMES] ; \
const bt_byte _avdt p_max_streans = AVDTP_MAX_STREAMS; \
bt _avdt p_control _channel _t _avdt p_control _channel s[AYDTP_NMAX_REMOTE_DEVI CES] ; \
const bt_byte _avdt p_max_control _channel s = AVDTP_MAX_REMOTE_DEVI CES; \
const bt_byte _avdtp_nmax_t x_buffer_I en = AVDTP_MAX_TX_BUFFER _LEN; \
bt _byte _avdt p_t x_buf fers[(AVDTP_MAX_TX_BUFFER LEN) *
(AVDTP_NMAX_REMOTE_DEVI CES)]; \
bt _avdt p_transport_channel _t _avdt p_transport_channel s[AVDTP_MAX_TRANSPORT_CHANNELS] ; \
const bt_byte _avdt p_max_transport _channel s = AVDTP_MAX_TRANSPORT_CHANNELS; \
bt _buf fer _header _t _avdt p_cnd_buf f er _header s[(AVDTP_NMAX_CMD_BUFFERS) *
(AVDTP_MAX_REMOTE_DEVI CES)] ; \
bt _avdtp_control _cnd_t _avdt p_cnd_buf f er s[(AVDTP_MAX_CMD_BUFFERS) *
(AVDTP_MAX_REMOTE_DEVI CES)] ; \
const bt_byte _avdt p_max_cnd_buf fers = AVDTP_MAX_CMD_BUFFERS; \
bt _byte _avdt p_cnd_par am buf f er s[(AVDTP_MAX_CVD_BUFFERS) *
(AVDTP_MAX_REMOTE_DEVI CES) * (AVDTP_MAX_CNMD_PARAM LEN)]; \
const bt_uint _avdt p_nmax_cnd_param | en = AVDTP_MAX_CVD_PARAM LEN, \
bt _byte _avdt p_codec_cfg_buffers[(AVDTP_MAX STREAMS) * 2 *
(AVDTP_CODEC_CONFI G_ BUFFER _LEN)] ; \
const bt_byte _avdt p_nmax_codec_config_buffer_len =
AVDTP_CODEC_CONFI G_BUFFER_LEN; \
bt _buf f er _header _t _avdt p_sep_cfg_buf fer_header s[(AVDTP_MAX_STREAMS) * 2]; \
bt _avdt p_sep_capabilities_t _avdt p_sep_cfg_buffers[(AVDTP_MAX_STREAMS) * 2]; \
bt _avdtp_sep_capabilities_t _avdtp_rcv_sep_caps; \
bt _byte _avdtp_rcv_sep_codec_cf g_buffer[(AVDTP_CODEC CONFI G BUFFER LEN)];
\
bt _byte _avdtp_listen_sep_buffers[(AVDTP_MAX_STREAMS) * (AVDTP_MAX_SEP)];
\
bt _byte _avdt p_| 2cap_nedi a_packet _buf f er[HCl _L2CAP_BUFFER_LEN -
L2CAP_HEADER LEN] ; \
\
AVDTP_ALLCCATE_BUFFERS_RAM SI ZE_VAR \
Description

This is macro AVDTP_ALLOCATE_BUFFERS_VARS.

AVDTP_CMD_ABORT Macro

File
avdtp_control.h

C
#def i ne AVDTP_CMD_ABORT 10

Description
This is macro AVDTP_CMD_ABORT.

AVDTP_CMD_CLOSE Macro
File

avdtp_control.h

C
#define AVDTP_CMD CLCSE 8

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 24

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

Description
This is macro AVDTP_CMD_CLOSE.

AVDTP_CMD_DISCOVER Macro
File

avdtp_control.h

C
#def i ne AVDTP_CMD_DI SCOVER 1

Description
This is macro AVDTP_CMD_DISCOVER.

AVDTP_CMD_GET_CAPABILITIES Macro

File
avdtp_control.h

C
#define AVDTP_CVD_GET_CAPABI LI TIES 2

Description
This is macro AVDTP_CMD_GET_CAPABILITIES.

AVDTP_CMD_GET_CONFIGURATION Macro
File

avdtp_control.h

C
#def i ne AVDTP_CMD_CGET_CONFI GURATI ON 4

Description
This is macro AVDTP_CMD_GET_CONFIGURATION.

AVDTP_CMD_OPEN Macro

File
avdtp_control.h

C
#define AVDTP_CVD_OPEN 6

Description
This is macro AVDTP_CMD_OPEN.

AVDTP_CMD_RECONFIGURE Macro
File

avdtp_control.h

C
#def i ne AVDTP_CMVD_RECONFI GURE 5

Description
This is macro AVDTP_CMD_RECONFIGURE.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 25

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

AVDTP_CMD_SECURITY_CONTROL Macro

File
avdtp_control.h

C
#define AVDTP_CMD_SECURI TY_CONTROL 11

Description
This is macro AVDTP_CMD_SECURITY_CONTROL.

AVDTP_CMD_SET_CONFIGURATION Macro
File

avdtp_control.h

C
#def i ne AVDTP_CMD_SET_CONFI GURATI ON 3

Description
This is macro AVDTP_CMD_SET_CONFIGURATION.

AVDTP_CMD_START Macro

File
avdtp_control.h

C
#define AVDTP_CMD_START 7

Description
This is macro AVDTP_CMD_START.

AVDTP_CMD_SUSPEND Macro
File

avdtp_control.h

C
#def i ne AVDTP_CMVD_SUSPEND 9

Description
This is macro AVDTP_CMD_SUSPEND.

AVDTP_CODEC_CONFIG_BUFFER_LEN Macro
File
avdtp_config.h

C
#define AVDTP_CODEC_CONFI G BUFFER LEN 16

Description

brief Size of the buffer used to store codec specific configuration. ingroup avdtp_config

Configuring the Library

details Each codec uses unique configuration which can take different amount of memory. This parameter defines the size of the buffer for storing
codec's configuration. The value of 16 is sufficient for SBC, AAC and MPEG1,2. If vendor specific codec is to be used this value may need to

increased.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

26

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

AVDTP_MAX_CMD_BUFFERS Macro
File

avdtp_config.h
C

#def i ne AVDTP_MAX_CMD_BUFFERS
Description

brief Maximum number of command buffers. ingroup avdtp_config

details This parameter defines the number of buffers reserved for sending commands to a remote device over its control channel. Each channel
uses its own buffers so the total number of buffers is AVDTP_MAX_REMOTE_DEVICES * AVDTP_MAX_CMD_BUFFERS. The minimum value is
1. The maximum value is 255. 2 is usually sufficient.

AVDTP_MAX_CMD_PARAM_LEN Macro
File
avdtp_config.h
C
#define AVDTP_MAX_CVD_PARAM LEN (AVDTP_MAX_TX BUFFER _LEN - 2)
Description

brief Maximum length of control command parameters ingroup avdtp_config

details This parameter defines the maximum length of all command parameters. The value should not exceed AVDTP_MAX_TX_BUFFER_LEN -
2 (command header).

AVDTP_MAX_REMOTE_DEVICES Macro
File

avdtp_config.h
C

#define AVDTP_MAX_REMOTE_DEVI CES
Description

brief Maximum number of remote devices a local device can be connected to ingroup avdtp_config

details This parameter defines the number of remote devices a local device can have simultaneous connections to (i.e. control channels). This
value should not exceed AVDTP_MAX_STREAMS. For each remote device AVDTP creates one control channel regardless of the number of
streams between the local and the remote devices. Assuming that the local devices wants to have only one channel with each remote device and
if AVDTP_MAX_REMOTE_DEVICES > AVDTP_MAX_STREAMS all memory reserved for devices in excess of AVDTP_MAX_STREAMS will be
wasted. The minimum value is 1. The maximum value is 255.

AVDTP_MAX_SEP Macro
File

avdtp_config.h
C

#defi ne AVDTP_MAX_SEP

Description

brief Maximum number of SEPs that can be exposed by a local device ingroup avdtp_config

details This parameter defines the number of SEPs an application can expose to remote devices. The minimum value is 1. The maximum value is
255.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 27

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

AVDTP_MAX_STREAMS Macro
File
avdtp_config.h

C
#define AVDTP_MAX_STREAMS

Description

brief Maximum number of streams that can be exposed by a local device ingroup avdtp_config

details This parameter defines the number of streams an application can open between local and remote devices. This value can be different from
AVDTP_MAX_SEP but should not exceed it. Since each SEP can only be used once the local device can only have as much streams as there are
SEPs. If AVDTP_MAX_STREAMS > AVDTP_MAX_SEP all memory reserved for streams in excess of AVDTP_MAX_SEP will be wasted. The
minimum value is 1. The maximum value is 255.

AVDTP_MAX_TRANSPORT_CHANNELS Macro
File
avdtp_config.h

C
#def i ne AVDTP_MAX_TRANSPORT_CHANNELS

Description

brief Maximum number of transport channels. ingroup avdtp_config

details Depending on the SEP capabilities (multiplexing, recovery, reporting) each stream may need up to 3 transport channels. E.g., if
multiplexing is not supported and recovery and reporting are supported a stream will use 3 transport channels - 1 for media transport session, 1 for
recovery transport session and 1 for reporting transport session. If multiplexing is not supported and only reporting is supported the stream will use
2 transport channels - 1 for media transport session and 1 for reporting transport session. If multiplexing is supported the stream will need only 1
transport channel for all supported transport session. With multiplexing even different streams can share the same transport channel. dotstack
currently does not support multiplexing, recovery and reporting. So each stream needs its own transport channel for it media transport session.
Hence, AVDTP_MAX_TRANSPORT_CHANNELS must be equal to AVDTP_MAX_STREAMS

AVDTP_MAX_TX BUFFER_LEN Macro
File
avdtp_config.h

C
#def i ne AVDTP_MAX_TX_BUFFER_LEN 32

Description

brief Size of the transmit buffer. ingroup avdtp_config

details This parameter defines the size of the buffer used to send AVDTP control commands to L2CAP layer. Each control channel has it own
buffer so the total amount of memory allocated for these buffers is AVDTP_MAX_TX_BUFFER_LEN) * AVDTP_MAX_REMOTE_DEVICES. The
minimum value is 1. The maximum value is 255. The value of 32 is usually sufficient.

AVRCP Configuration Macros

__AVRCP_CONFIG_H Macro
File

avrcp_config.h

C
#define _ AVRCP_CONFI G H

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 28

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

Description

This is macro __ AVRCP_CONFIG_H.

AVRCP_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro

File

C

avrcp_config.h

#def i ne AVRCP_ALLOCATE_BUFFERS_RAM S| ZE_VAR

Description

« defgroup avrcp_config Configuration
* ingroup avrcp

*

* This module describes parameters used to configure AVRCP layer.
*

« dotstack is customized using a configuration file. The configuration file tailors the dotstack to the application being built. It has to have the
structure shown below.

* code #include "cdbt/bt/bt_std.h"

/I HCI, L2CAP and SDP must always be present

/I HCI configuration parameters #define HCI_MAX_CMD_BUFFERS ... #define HCI_MAX_DATA_BUFFERS ... #define
HCI_MAX_HCI_CONNECTIONS ... #define HCI_RX_BUFFER_LEN ... #define HCI_TX_BUFFER_LEN ... #define HCI_L2CAP_BUFFER_LEN
... #define HCI_MAX_CMD_PARAM_LEN ...

/I L2CAP configuration parameters #define L2ZCAP_MAX_CMD_BUFFERS ... #define L2ZCAP_MAX_FRAME_BUFFERS ... #define
L2CAP_MAX_PSMS ... #define L2ZCAP_MAX_CHANNELS ...

/I SDP configuration parameters #define SDP_MAX_SEARCH_RESULT_LEN ... #define SDP_MAX_ATTRIBUTE_RESULT_LEN ...

/I Depending on protocols and profiles used below goes configuration parameters // for each used module. E.g., to use and configure AVRCP, //
the following values must be defined:

#define BT_INCLUDE_AVCTP // tells dotstack to compile in AVCTP support #define AVCTP_MAX_CHANNELS ... #define
AVCTP_MAX_TRANSPORT_CHANNELS ... #define AVCTP_MAX_RX_MESSAGE_LEN ... #define AVCTP_MAX_MESSAGE_BUFFERS ...

#define BT_INCLUDE_AVRCP // tells dotstack to compile in AVRCP support #define AVRCP_MAX_CHANNELS ... #define
AVRCP_MAX_CMD_BUFFERS ... #define AVRCP_MAX_CMD_PARAM_LEN ... #define AVRCP_MAX_SEARCH_RESULTS ... #define
AVRCP_MAX_DEVICE_NAME_LEN ... #define AVRCP_CMD_TIMEOUT ...

#include "cdbt/bt/bt_oem_config.h"
endcode

AVRCP_ALLOCATE_BUFFERS_VARS Macro

File

C

avrcp_config.h

#def i ne AVRCP_ALLOCATE_BUFFERS_VARS \

bt _avrcp_channel _t _avrcp_channel s[AVRCP_MAX_CHANNELS] ; \

const bt_byte _avrcp_max_channel s = AVRCP_MAX_CHANNELS; \

\

bt _buffer_header_t _avrcp_cnd_buffer_headers[(AVRCP_MAX_CVD_BUFFERS) * (AVRCP_MAX_ CHANNELS)]; \

bt _av_conmmand_t _avrcp_cnd_buf f er s| (AVRCP_MAX_CVD _BUFFERS) * (AVRCP_NAX_CHANNELS)] ; \

const bt_byte _avrcp_max_cnd_buf fers = AVRCP_MAX_CMD_BUFFERS; \

bt _byte _avrcp_cnd_param buf f er s[(AVRCP_VAX_CMD_BUFFERS) * (AVRCP_NMAX_CMD_PARAM LEN) *
(AVRCP_NMAX_CHANNELS)] ; \

const bt_int _avrcp_max_cnd_param | en = AVRCP_NMAX_CNVD_PARAM LEN, \

const bt_byte _avrcp_max_search_results = AVRCP_MAX_SEARCH RESULTS; \

bt _avrcp_device_t _avrcp_devi ces_buf f er [AVRCP_MAX_SEARCH RESULTS] ; \

const bt_byte _avrcp_nmax_devi ce_nane_| en = AVRCP_NMAX_DEVI CE_NAME_LEN, \

bt _byte _avrcp_devi ce_nane_buf f er s[(AVRCP_MAX_SEARCH RESULTS) * (AVRCP_NAX_DEVI CE_NAME_LEN
+1)]; \

const bt_byte _avrcp_cnd_tineout = (AVRCP_CVD TI MEQUT) / 100; \

\

void (*_bt_avrcp_response_sent _handl er) (bt _avrcp_ngr_t* ngr, bt_avctp_evt_response_sent_t* evt_param =
AVRCP_RESPONSE_SENT_HANDLER; \

void (*_bt_avrcp_command_handl er) (bt _avrcp_ngr_t* ngr, bt_avctp_evt_command_received_t* evt_param =

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 29

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

AVRCP_COWAND_HANDLER; \

void (*_bt_avrcp_command_sent _handl er) (bt _avrcp_mgr_t* mgr, bt_avctp_evt_command_sent _t* evt_param =
AVRCP_COMVAND_SENT_HANDLER; \

void (*_bt_avrcp_response_handl er) (bt_avrcp_nmgr_t* ngr, bt_avctp_evt_response_received t* evt_paran) =
AVRCP_RESPONSE_HANDLER,; \

\

AVRCP_ALLOCATE_BUFFERS_RAM S| ZE_VAR \

Description
This is macro AVRCP_ALLOCATE_BUFFERS_VARS.

AVRCP_CMD_TIMEOUT Macro
File

avrcp_config.h
C

#def i ne AVRCP_CMVD_TI MEQUT 10000

Description

brief Command timeout ingroup avrcp_config

details This parameter defines the amount of time in milliseconds AVRCP waits for a response to a request. If not defined the default value of
10000 (10 secconds) is used.

AVRCP_MAX_CHANNELS Macro
File

avrcp_config.h
C

#def i ne AVRCP_MAX_ CHANNELS

Description

brief Maximum number of remote devices a local device can be connected to ingroup avrcp_config

details This parameter defines the number of remote devices a local device can have simultaneous connections to (i.e. channels). This value
should not exceed AVCTP_MAX_CHANNELS.

AVRCP_MAX_CMD_BUFFERS Macro
File

avrcp_config.h
C

#def i ne AVRCP_MAX_CMD_BUFFERS 1

Description

brief Maximum number of command buffers. ingroup avrcp_config

details This parameter defines the number of buffers reserved for sending commands to a remote device over its control channel. Each channel
uses its own buffers so the total number of buffers is AVRCP_MAX_CHANNELS * AVRCP_MAX_CMD_BUFFERS. The minimum value is 1. The
maximum value is 255. If not define one buffer for each channel is reserved.

AVRCP_MAX_CMD_PARAM_LEN Macro

File
avrcp_config.h

C
#define AVRCP_MAX_CMD_PARAM LEN 512

Description

brief Maximum length of command parameters ingroup avrcp_config

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 30

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

details This parameter defines the maximum length of all command parameters. If not defined the default value of 512 is used.

AVRCP_MAX_DEVICE_NAME_LEN Macro
File
avrcp_config.h

C
#def i ne AVRCP_MAX_DEVI CE_NAME_LEN 20

Description

brief Maximum length of device name ingroup avrcp_config

details This parameter defines the size of the buffer used to store device's name while searching for nearby targets with bt_avrcp_find_targets. If
the name of the device is longer than AVRCP_MAX_DEVICE_NAME_LEN it is truncated to AVRCP_MAX_DEVICE_NAME_LEN. If not defined
the default value of 20 is used.

AVRCP_MAX_SEARCH_RESULTS Macro

File
avrcp_config.h

C
#define AVRCP_MAX_SEARCH_RESULTS 7

Description

brief Maximum number of devices to find ingroup avrcp_config
details This parameter defines the maximum number of devices bt_avrcp_find_targets can find. If not defined the default value of 7 is used.

HCI Configuration Macros

BT_ENABLE_SCO Macro
File
hci_config.h

C
#define BT_ENABLE_SCO BT_FALSE

Description
This is macro BT_ENABLE_SCO.

BT _HCI_EVT_AUTHENTICATION_COMPLETE_HANDLER Macro
File

hci_config_event_handlers.h

C
#define BT_HCI _EVT_AUTHENTI CATI ON_COVPLETE_HANDLER bt _hci _evt _def aul t _handl er

Description
This is macro BT_HCI_EVT_AUTHENTICATION_COMPLETE_HANDLER.

BT_HCI_EVT_CONNECTION_COMPLETE_HANDLER Macro

File

hci_config_event_handlers.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 31

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

C
#define BT_HCI _EVT_CONNECTI ON_COVPLETE_HANDLER bt _hci _evt_def aul t _handl er

Description
This is macro BT_HCI_EVT_CONNECTION_COMPLETE_HANDLER.

BT_HCI_EVT_CONNECTION_REQUEST_HANDLER Macro

File
hci_config_event_handlers.h

C
#define BT_HCI _EVT_CONNECTI ON_REQUEST_HANDLER bt _hci _evt _defaul t _handl er

Description
This is macro BT_HCI_EVT_CONNECTION_REQUEST_HANDLER.

BT _HCI_EVT_ENCRYPTION_CHANGE_HANDLER Macro
File

hci_config_event_handlers.h

C
#define BT_HCI _EVT_ENCRYPTI ON_CHANGE _HANDLER bt _hci _evt _encrypti on_change_handl er

Description
This is macro BT_HCI_EVT_ENCRYPTION_CHANGE_HANDLER.

BT_HCI_EVT_EXTENDED_INQUIRY_RESULT_HANDLER Macro

File
hci_config_event_handlers.h

C
#define BT_HCI _EVT_EXTENDED | NQUI RY_RESULT _HANDLER bt _hci _evt _defaul t _handl er

Description
This is macro BT_HCI_EVT_EXTENDED_INQUIRY_RESULT_HANDLER.

BT _HCI_EVT_INQUIRY_COMPLETE_HANDLER Macro
File

hci_config_event_handlers.h

C
#define BT_HCI _EVT_I NQUI RY_COWLETE_HANDLER bt _hci _evt _def aul t _handl er

Description
This is macro BT_HCI_EVT_INQUIRY_COMPLETE_HANDLER.

BT_HCI_EVT_INQUIRY_RESULT_HANDLER Macro

File
hci_config_event_handlers.h

C
#define BT_HCI _EVT_|I NQUI RY_RESULT_HANDLER bt _hci _evt _defaul t _handl er

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 32

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

Description
This is macro BT_HCI_EVT_INQUIRY_RESULT_HANDLER.

BT _HCI_EVT_INQUIRY_RESULT WITH_RSSI_HANDLER Macro
File

hci_config_event_handlers.h

C
#define BT_HCI _EVT_I NQUI RY_RESULT_W TH_RSSI _HANDLER bt _hci _evt _def aul t _handl er

Description
This is macro BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI_HANDLER.

BT_HCI_EVT_LINK_KEY_NOTIFICATION_HANDLER Macro

File
hci_config_event_handlers.h

C
#define BT_HCI _EVT_LI NK_KEY_NOTI FI CATI ON_HANDLER bt _hci _evt _defaul t _handl er

Description
This is macro BT_HCI_EVT_LINK_KEY_NOTIFICATION_HANDLER.

BT HCI EVT LINK_KEY_REQUEST HANDLER Macro
File

hci_config_event_handlers.h

C
#define BT_HCI _EVT_LI NK_KEY_REQUEST_HANDLER bt _hci _evt _default _handl er

Description
This is macro BT_HCI_EVT_LINK_KEY_REQUEST_HANDLER.

BT_HCI_EVT_MODE_CHANGE_HANDLER Macro

File
hci_config_event_handlers.h

C
#define BT_HCI _EVT_MODE _CHANGE HANDLER bt _hci _evt _defaul t _handl er

Description
This is macro BT_HCI_EVT_MODE_CHANGE_HANDLER.

BT HCI_EVT_PIN_CODE_REQUEST HANDLER Macro
File

hci_config_event_handlers.h

C
#define BT_HCI _EVT_PI N_CODE_REQUEST_HANDLER bt _hci _evt _default _handl er

Description
This is macro BT_HCI_EVT_PIN_CODE_REQUEST_HANDLER.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 33

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

BT_HCI_EVT_REMOTE_NAME_REQUEST_COMPLETE_HANDLER Macro

File
hci_config_event_handlers.h

C

#define BT_HCI _EVT_REMOTE_NAVE _REQUEST_COWVPLETE_HANDLER bt _hci _evt _def aul t _handl er

Description
This is macro BT_HCI_EVT_REMOTE_NAME_REQUEST_COMPLETE_HANDLER.

BT HCI_EVT _ROLE_CHANGE_HANDLER Macro
File

hci_config_event_handlers.h

C

#define BT_HCI _EVT_ROLE CHANGE HANDLER bt _hci _evt _defaul t _handl er

Description
This is macro BT_HCI_EVT_ROLE_CHANGE_HANDLER.

BT_HCI_EVT_SYNCH_CONNECTION_COMPLETE_HANDLER Macro

File
hci_config_event_handlers.h

C

#define BT_HCI _EVT_SYNCH CONNECTI ON_COVPLETE_HANDLER bt _hci _evt_defaul t _handl er

Description
This is macro BT_HCI_EVT_SYNCH_CONNECTION_COMPLETE_HANDLER.

BT LE_EVT _HANDLER Macro
File

hci_config_event_handlers.h

C
#define BT_LE_EVT_HANDLER bt _hci _evt _defaul t _handl er

Description
This is macro BT_LE_EVT_HANDLER.

BT_SSP_EVT_HANDLER Macro

File
hci_config_event_handlers.h

C
#define BT_SSP_EVT_HANDLER bt _hci _evt_defaul t _handl er

Description
This is macro BT_SSP_EVT_HANDLER.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

34

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

HCI_ALLOCATE_BUFFERS_FUNCTION Macro

Configuring the Library

File
hci_config.h
C
#def i ne HCl _ALLOCATE_BUFFERS_FUNCTI ON \
void _hci _all ocate_buffers(void) \
{ \
bt _byte i; \
_phci _ctrl->connections = _hci_connecti ons; \
_zero_nenory(_hci _connections, sizeof(bt_hci_conn_state_t) * HC _MAX HCl _CONNECTI ONS) ; \
for (i = 0; i < HC _MAX_HCI _CONNECTI ONS; i ++) \
{ \
_hci _connections[i].recv_data = & conn_state_recv_buffers[i * (HC _L2CAP_BUFFER LEN)]; \
HCI _I NIl T_LE_CONN_STATES; \
} \
HCl _I NI T_SCO_HANDLERS \
HCI _I NI T_SSP_HANDLERS \
HCl _I NI T_LE_CTRL_STATE \
P
Description
This is macro HCI_ALLOCATE_BUFFERS_FUNCTION.
HCI_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro
File
hci_config.h
C
#def i ne HCl _ALLOCATE_BUFFERS_RAM SI ZE_VAR
Description
This is macro HCI_ALLOCATE_BUFFERS_RAM_SIZE_VAR.
HCI_ALLOCATE_BUFFERS_VARS Macro
File
hci_config.h
C
#def i ne HCl _ALLOCATE_BUFFERS_VARS \
bt _buffer_header_t _hci _cmd_buffer_header s[HCl _MAX_CMVD_BUFFERS] ; \
bt _hci _command_t _hci _cnd_buf f er s[HCl _MAX_CVD_BUFFERS] ; \
const bt_byte _hci _max_cmd_buffers = HCl _MAX_CVD BUFFERS; \
bt _byte _hci _cnd_par am buf f er s[HCl _MAX_CVD_BUFFERS * HCl _MAX_CMD_PARAM LEN] ; \
const bt_byte _hci _max_cnd_param | en = HCl _MAX_CVD_PARAM LEN,
\
bt _buffer_header_t _hci_send_data_buffer_header s[HCl _MAX_DATA_ BUFFERS] ;
bt _hci _data_t _hci _send_dat a_buf f er s| HCl _MAX_DATA BUFFERS] ; \
const bt_byte _hci _max_data_buffers = HCl _MAX_DATA BUFFERS; \
\
bt _hci _conn_state_t _hci _connecti ons[HCl _MAX_HCl _CONNECTI ONS] ; \
const bt_byte _hci _max_hci _connections = HCl _MAX _HCI _CONNECTI ONS;
\
bt _byte _recv_buffer[HC _RX BUFFER_LEN; \
bt _byte _send_buf fer[HCl _TX BUFFER_LEN; \
const bt_uint _hci _rcv_buffer_l en = HCl _RX BUFFER_LEN, \
const bt _uint _hci _tx_buffer_len = HCl _TX BUFFER_LEN, \
\
bt _byte _conn_state_recv_buffers[(HC _L2CAP_BUFFER _LEN) * (HCl _MAX_HClI _CONNECTI ONS)]; \
const bt _uint _hci _I 2cap_buffer_l en = HCl _L2CAP_BUFFER _LEN; \
\
const bt_bool _hci _enabl e_ctrl _to_host _flow control = HCl _ENABLE_CTRL_TO HOST_FLOW CONTROL; \

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

35

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help
\
const bt_byte _hci _max_connect _attenpts = HCl _MAX_CONNECT_ATTEMPTS;
\
const bt _bool _hci _enabl e_sco = BT_ENABLE_SCQ, \
void (*_hci_recv_sco_data_packet _fp) (bt_byte* pbuf); \
\
void (*_bt _ssp_init)(void); \
void (*_bt_ssp_evt_handl er) (bt _hci _event _t* evt); \
\
void (*_bt _hci_le_init)(bt_hci _le_ctrl_state t* le_ctrl_state); \

HCl DECLARE_LE_CONN STATES \

HCl _DECLARE_LE _CTRL_STATE \

\

HCl _ALLOCATE_BUFFERS RAM SI ZE VAR \

Description
This is macro HCI_ALLOCATE_BUFFERS_VARS.

HCI_DECLARE_LE_CONN_STATES Macro
File
hci_config.h

C
#define HCl _DECLARE_LE CONN_STATES

Description
This is macro HCI_DECLARE_LE_CONN_STATES.

HCI_DECLARE_LE_CTRL_STATE Macro
File
hci_config.h

C
#define HCl DECLARE_LE CTRL_STATE

Description
This is macro HCI_DECLARE_LE_CTRL_STATE.

HCI_ENABLE_CTRL_TO_HOST_FLOW_CONTROL Macro
File
hci_config.h

C
#define HCl _ENABLE_CTRL_TO HOST_FLOW CONTROL BT_FALSE

Description
This is macro HCI_ENABLE_CTRL_TO_HOST_FLOW_CONTROL.

HCI_INIT_LE_CONN_STATES Macro
File
hci_config.h

C

#define HCl _I NI T_LE_CONN_STATES \
_hci _connections[i].le_conn_state = NULL;

Description
This is macro HCI_INIT_LE_CONN_STATES.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

36

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

HCI_INIT_LE_CTRL_STATE Macro
File
hci_config.h

C

#define HCl I NI T_LE_CTRL_STATE \
_bt_hci _le_init = NULL;

Description
This is macro HCI_INIT_LE_CTRL_STATE.

HCI_INIT_SCO_HANDLERS Macro
File
hci_config.h

C

#define HCl I NI T_SCO HANDLERS \
_hci _recv_sco_data_packet _fp = NULL;

Description
This is macro HCI_INIT_SCO_HANDLERS.

HCI_INIT_SSP_HANDLERS Macro

File
hci_config.h
C
#define HCl _I NI T_SSP_HANDLERS \
_bt _ssp_evt_handl er = NULL; \
_bt_ssp_init = NULL;
Description

This is macro HCI_INIT_SSP_HANDLERS.

HCI_L2CAP_BUFFER_LEN Macro

File
hci_config.h
C

#define HCl _L2CAP_BUFFER LEN (HCI _RX_BUFFER LEN - HCl _ACL_DATA HEADER LEN -

Description
This is macro HCI_L2CAP_BUFFER_LEN.

HCI_SIZEOF_LE_CONN_STATES Macro

File
hci_config.h

C
#def i ne HCl _SI ZEOF_LE_CONN_STATES 0

Description
This is macro HCI_SIZEOF_LE_CONN_STATES.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

HCl _TRANSPORT_HEADER LEN)

37

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

HCI_SIZEOF_LE_CTRL_STATE Macro
File
hci_config.h

C
#define HCl _SI ZEOF_LE_CTRL_STATE 0

Description
This is macro HCI_SIZEOF_LE_CTRL_STATE.

HCI_TX_BUFFER_LEN Macro
File

hci_config.h

C
#def i ne HCOl _TX_BUFFER LEN HCl _RX_BUFFER_LEN

Description
This is macro HCI_TX_BUFFER_LEN.

__HCI_CONFIG_EVENT_HANDLERS_H Macro

File
hci_config_event_handlers.h

C
#define __HCl _CONFI G_EVENT HANDLERS H

Description
This is macro __HCI_CONFIG_EVENT_HANDLERS_H.

__HCI_CONFIG_H Macro
File

hci_config.h

C
#define _ HO _CONFI G H

Description
This is macro __HCI_CONFIG_H.

HCI_MAX_CONNECT_ATTEMPTS Macro

File
hci_config.h

C
#define HCl _MAX_CONNECT ATTEMPTS 4

Description
This is macro HCI_MAX_CONNECT_ATTEMPTS.

L2CAP Configuration Macros

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

38

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

L2CAP_ALLOCATE_BUFFERS_FUNCTION Macro

File
|2cap_config.h
C
#define L2CAP_ALLOCATE_BUFFERS_FUNCTI ON \
void _I|2cap_al | ocate_buffers() \
{ \
bt _byte i; \
_l 2cap_hci _connect _packet _type = L2CAP_HClI _PACKET_TYPE; \
_l 2cap_hci _page_scan_repetiti on_npde = L2CAP_HCl _PAGE_SCAN_REPETI TI ON_MODE; \
_l2cap_hci _rol e_switch = L2CAP_HCl _ROLE_SW TCH, \
_l2cap_idl e_hci _connection_tineout = L2CAP_| DLE_CONNECTI ON_TI MEQUT; \
\
_zero_nenory(_| 2cap_psns, sizeof (bt_|2cap_psmt) * (L2CAP_MAX PSMs) * (L2CAP_MAX_MANAGERS));
_zero_nenory(_l 2cap_channel s, sizeof (bt _|2cap_channel _t) * (L2CAP_MAX_ CHANNELS) *
(L2CAP_NMAX_MANAGERS)) ; \
if (_l2cap_channel s_ext) \
_zero_nenory(_l 2cap_channel s_ext, sizeof (bt_I2cap_channel _ext_t) * (L2CAP_MAX_ CHANNELS) *
(L2CAP_NMAX_NMANAGERS)) ; \

if (_I2cap_nax_fixed_channel s) \

Configuring the Library

_zero_nenory(_l 2cap_fi xed_channel s, sizeof (bt_|2cap_fixed_channel _t) *

_l 2cap_nmax_fi xed_channel s); \
\
for (i = 0; i < L2CAP_MAX_MANAGERS; i ++) \
{ \
_mgrs[i]._psns = & | 2cap_psms[i * L2CAP_NMAX_PSMS] ;

\

_ngrs[i]._channels = & | 2cap_channel s[i * (L2CAP_MAX_CHANNELS)]; \
bt _init_buffer_ngr(& ngrs[i].connect_parans_ngr, L2CAP_NMAX_ CHANNELS,
si zeof (bt _I 2cap_connect _parans_t), & |2cap_connect _parans_header s[(L2CAP_NMAX_CHANNELS) * i],

& | 2cap_connect _par ans[(L2CAP_MAX_CHANNELS) * i]); \
\
if (_l2cap_channel s_ext) \
{ \
int j; \

\
for (j = 0; j < L2CAP_MAX_CHANNELS; | ++) \

{ \
}
} \
if (_I2cap_nax_fixed_channel s) \
_mgrs[i]._fixed_channels = & | 2cap_fi xed_channel s[i
}
} \
Description

This is macro L2ZCAP_ALLOCATE_BUFFERS_FUNCTION.

L2CAP_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro
File
|2cap_config.h

C
#define L2CAP_ALLOCATE BUFFERS RAM Sl ZE_VAR

Description
This is macro L2CAP_ALLOCATE_BUFFERS_RAM_SIZE_VAR.

L2CAP_ALLOCATE_BUFFERS_VARS Macro

File
|2cap_config.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

_mgrs[i]._channels[j].ext = & | 2cap_channel s_ext[i * (L2CAP_MAX_CHANNELS) + j];
\

* | 2cap_max_fi xed_channel s];

\

\

\

39

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

C
#def i ne L2CAP_ALLOCATE_BUFFERS_VARS \

bt _buffer_header_t _|2cap_cnd_buffer_headers[L2CAP_VMAX_CMD_BUFFERS] ; \
bt | 2cap_command_t | 2cap_cnd_buffers[L2CAP_MAX CMD_BUFFERS] ; \
const bt_byte _l2cap_max_cnd_buf fers = L2CAP_MAX_CMVMD_BUFFERS; \
\
bt | 2cap_psm t | 2cap_psns[L2CAP_MAX_PSMB * L2CAP_NMAX_MANAGERS] ; \
const bt_byte | 2cap_max_psns = L2CAP_NMAX_PSMS; \
bt _| 2cap_channel _t _| 2cap_channel s[(L2CAP_NMAX_CHANNELS) * L2CAP_NMAX_NANAGERS] ; \
const bt_byte _| 2cap_max_channel s = L2CAP_MAX_CHANNELS; \
\
bt _ui nt _l 2cap_hci _connect _packet _type; \
bt _byte _l 2cap_hci _page_scan_repetition_node; \
bt _byte _l 2cap_hci _rol e_swi tch; \
bt _| ong _l2cap_i dl e_hci _connection_ti meout; \
\
bt _buffer _header t _|2cap_connect_parans_headers[(L2CAP_MAX_CHANNELS) * (L2CAP_NAX_MANAGERS)]; \
bt _| 2cap_connect _parans_t _| 2cap_connect _par ans[(L2CAP_NMAX_CHANNELS) * (L2CAP_MAX_MANAGERS)]; \
\
L2CAP_DECL_ERETR_FUNCTI ONS \
\
L2CAP_FI XED_CHANNELS_ DECL \
\
L2CAP_ALLOCATE_BUFFERS_RAM Sl ZE_VAR \

Description

This is macro L2ZCAP_ALLOCATE_BUFFERS_VARS.

L2CAP_FIXED_CHANNELS_DECL Macro

File
I2cap_config.h
C
#defi ne L2CAP_FI XED_CHANNELS DECL \
bt _| 2cap_fi xed_channel _t _| 2cap_fi xed_channel s_buf f er [L2CAP_MAX_FI XED_CHANNELS *
L2CAP_NAX_MANAGERS] ; \
bt | 2cap_fi xed_channel _t* _|2cap_fixed_channels = & | 2cap_fi xed_channel s_buffer[0]; \
bt _byte _|2cap_nmax_fixed_channel s = L2CAP_NMAX_FI XED_CHANNELS;
Description

This is macro L2CAP_FIXED_CHANNELS_DECL.

L2CAP_HCI_PACKET_TYPE Macro

File
|2cap_config.h

C

#def i ne L2CAP_HCl _PACKET_TYPE \
HC! _BB_PACKET_TYPE DML | \
HCI _BB_PACKET _TYPE DHL | \
HCI _BB_PACKET _TYPE_DVB | \
HCl _BB_PACKET _TYPE DH3 | \
HCl _BB_PACKET _TYPE DM6 | \
HCl _BB_PACKET_TYPE_DH5

Description

« brief L2CAP_HCI_PACKET_TYPE.

* ingroup btconfig

*

» details Defines a set of packets that link manager is allowed to use when calling bt_I2cap_connect.
* The default value is to enable all packet types.

enable all packet types

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 40

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

L2CAP_HCI_PAGE_SCAN_REPETITION_MODE Macro
File
|2cap_config.h

C
#define L2CAP_HCI _PAGE_SCAN REPETI TI ON_MODE HCl _PAGE_SCAN_REPETI TI ON_MODE_RO

Description

brief L2CAP_HCI_PAGE_SCAN_REPETITION_MODE. ingroup btconfig

details Defines a default value of the page scan repetition mode when calling bt_I2cap_connect. Must be set to one of the following values:
HCI_PAGE_SCAN_REPETITION_MODE_RO HCI_PAGE_SCAN_REPETITION_MODE_R1 HCI_PAGE_SCAN_REPETITION_MODE_R2

The default value is HCI_PAGE_SCAN_REPETITION_MODE_RO.

L2CAP_HCI_ROLE_SWITCH Macro
File
|2cap_config.h

C
#def i ne L2CAP_HCI _ROLE_SW TCH HCl _ROLE_SW TCH ALLOW

Description

brief L2ZCAP_HCI_ROLE_SWITCH. ingroup btconfig

details Defines a default value of the role switch parameter when calling bt_I2cap_connect. Must be set to one of the following values:
HCI_ROLE_SWITCH_ALLOW HCI_ROLE_SWITCH_DISALLOW The default value is to allow the role switch.

L2CAP_IDLE_CONNECTION_TIMEOUT Macro
File
|2cap_config.h

C
#define L2CAP_I DLE_CONNECTI ON_TI MEQUT 5 /* seconds */

Description

seconds

PACK_CONFIG_REQUEST Macro

File
|2cap_config_handlers.h

C
#def i ne PACK_CONFI G_REQUEST NULL

Description
This is macro PACK_CONFIG_REQUEST.

PACK_CONFIG_RESPONSE Macro
File

I12cap_config_handlers.h

C
#def i ne PACK_CONFI G_RESPONSE NULL

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

41

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

Description
This is macro PACK_CONFIG_RESPONSE.

PACK_CONN_REQUEST Macro
File

I12cap_config_handlers.h

C
#def i ne PACK_CONN_REQUEST NULL

Description
This is macro PACK_CONN_REQUEST.

PACK_CONN_RESPONSE Macro

File
|2cap_config_handlers.h

C
#defi ne PACK_CONN_RESPONSE NULL

Description
This is macro PACK_CONN_RESPONSE.

PACK_DCONN_REQUEST Macro
File

I2cap_config_handlers.h

C
#def i ne PACK_DCONN_REQUEST NULL

Description
This is macro PACK_DCONN_REQUEST.

PACK_DCONN_RESPONSE Macro

File
|2cap_config_handlers.h

C
#define PACK_DCONN_RESPONSE NULL

Description
This is macro PACK_DCONN_RESPONSE.

PACK_INFO_REQUEST Macro
File

I12cap_config_handlers.h

C
#def i ne PACK_| NFO_REQUEST NULL

Description
This is macro PACK_INFO_REQUEST.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

42

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

PACK_INFO_RESPONSE Macro

File
|2cap_config_handlers.h

C
#def i ne PACK_| NFO_RESPONSE NULL

Description
This is macro PACK_INFO_RESPONSE.

PROCESS_CONFIG_REQ Macro
File

I2cap_config_handlers.h

C
#defi ne PROCESS_CONFI G_REQ _process_unknown_req

Description
This is macro PROCESS_CONFIG_REQ.

PROCESS_CONFIG_RES Macro

File
|2cap_config_handlers.h

C
#def i ne PROCESS_CONFI G_RES _process_unknown_res

Description
This is macro PROCESS_CONFIG_RES.

PROCESS_CONN_REQ Macro
File

I2cap_config_handlers.h

C
#defi ne PROCESS_CONN_REQ _process_unknown_req

Description
This is macro PROCESS_CONN_REQ.

PROCESS_CONN_RES Macro

File
|2cap_config_handlers.h

C
#defi ne PROCESS_CONN_RES _process_unknown_res

Description
This is macro PROCESS_CONN_RES.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

43

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

PROCESS_DCONN_REQ Macro

File
|2cap_config_handlers.h

C
#def i ne PROCESS_DCONN_REQ _process_unknown_r eq

Description
This is macro PROCESS_DCONN_REQ.

PROCESS_DCONN_RES Macro
File

I2cap_config_handlers.h

C
#defi ne PROCESS_DCONN_RES _process_unknown_res

Description
This is macro PROCESS_DCONN_RES.

PROCESS_INFO_REQ Macro

File
|2cap_config_handlers.h

C
#defi ne PROCESS_I NFO_REQ _process_unknown_req

Description
This is macro PROCESS_INFO_REQ.

PROCESS_INFO_RES Macro
File

I2cap_config_handlers.h

C
#defi ne PROCESS_| NFO RES _process_unknown_res

Description
This is macro PROCESS_INFO_RES.

READ_CONFIG_REQUEST Macro

File
|2cap_config_handlers.h

C
#define READ_CONFI G REQUEST NULL

Description
This is macro READ_CONFIG_REQUEST.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

44

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

READ_CONFIG_RESPONSE Macro

File
|2cap_config_handlers.h

C
#def i ne READ_CONFI G_RESPONSE NULL

Description
This is macro READ_CONFIG_RESPONSE.

READ_CONN_REQUEST Macro
File

I2cap_config_handlers.h

C
#def i ne READ_CONN_REQUEST NULL

Description
This is macro READ_CONN_REQUEST.

READ_CONN_RESPONSE Macro

File
|2cap_config_handlers.h

C
#define READ_CONN_RESPONSE NULL

Description
This is macro READ_CONN_RESPONSE.

READ_DCONN_REQUEST Macro
File

I2cap_config_handlers.h

C
#def i ne READ_DCONN_REQUEST NULL

Description
This is macro READ_DCONN_REQUEST.

READ_DCONN_RESPONSE Macro

File
|2cap_config_handlers.h

C
#def i ne READ_DCONN_RESPONSE NULL

Description
This is macro READ_DCONN_RESPONSE.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

45

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

READ_INFO_REQUEST Macro

File

C

|2cap_config_handlers.h

#define READ | NFO REQUEST NULL

Description

This is macro READ_INFO_REQUEST.

READ_INFO_RESPONSE Macro

File

C

I2cap_config_handlers.h

#def i ne READ_| NFO_RESPONSE NULL

Description

This is macro READ_INFO_RESPONSE.

_ L2CAP_CONFIG_H Macro

File

C

|2cap_config.h

#define __ L2CAP_CONFI G H

Description

This is macro __L2CAP_CONFIG_H.

__L2CAP_CONFIG_HANDLERS_H Macro

File

C

I2cap_config_handlers.h

#define _ L2CAP_CONFI G HANDLERS H

Description

This is macro __L2CAP_CONFIG_HANDLERS_H.

L2CAP_DECL_ERETR_FUNCTIONS Macro

File

C

|2cap_config.h

#def i ne L2CAP_DECL_ERETR_FUNCTI ONS \

bt | 2cap_channel _ext _t* _|2cap_channel s_ext = NULL; \

\

void (*_l2cap_eretr_recv_fp)(bt_l2cap_nmgr_p prgr, bt_|2cap_channel _t* pch, bt_byte* pdata, bt_int
I en) = NULL; \

bt _bool (*_l2cap_eretr_send_data_fp)(bt_I|2cap_channel _t* pch, bt_byte* data, bt_int Ien,

bt | 2cap_send_dat a_cal | back_fp cb, void* cb_paran) = NULL; \
bt _bool (*_l2cap_eretr_send_smart_data_fp) (bt _I 2cap_channel _t* pch, bt_packet _t* packet, bt_int
I en, bt_|2cap_send_data_cal |l back_fp cb, void* cb_param = NULL; \

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 46

Volume IV: MPLAB Harmony Framework

bt _bool (*_l2cap_eretr_handle_xmit_event fp)(bt_I|2cap_xmt_event_paramt* paran

Bluetooth Stack Library Help

void (*_I2cap_eretr_pack_config_request_fp)(bt_I2cap_channel _t* channel,
buffer_len, bt_int* offset) = NULL;

Description

This is macro L2CAP_DECL_ERETR_FUNCTIONS.

L2CAP_MAX_FIXED_CHANNELS Macro

File

C

|2cap_config.h

#def i ne L2CAP_MAX_FI XED_CHANNELS 0

Description
This is macro L2CAP_MAX_FIXED_CHANNELS.

RFCOMM Configuration Macros

RFCOMM_ALLOCATE_BUFFERS_FUNCTION Macro

File

C

rfcomm_config.h

#def i ne RFCOVM ALLOCATE_BUFFERS_FUNCTI ON \
void _rfcomm.all ocate_buffers(void) \

{ \
} \

Description
This is macro RFCOMM_ALLOCATE_BUFFERS_FUNCTION.

RFCOMM_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro

File

C

rfcomm_config.h

#defi ne RFCOMM ALLOCATE BUFFERS RAM S| ZE_VAR

Description

This is macro RFCOMM_ALLOCATE_BUFFERS_RAM_SIZE_VAR.

RFCOMM_ALLOCATE_BUFFERS_VARS Macro

File

C

© 2013-2017 Microchip Technology Inc.

rfcomm_config.h

#defi ne RFCOMM _ALLOCATE_BUFFERS_VARS \

const bt_byte
bt _rfcommdl c_t

bt _rfconm session_t _rfconm sessi ons[RFCOVM MAX_SESSI ONS] ; \
_rfcomm nmax_sessi ons = RFCOVM _MAX_SESSI ONS; \
_rfcomm dl cs[(RFCOVMM MAX_DLCS) * (RFCOVM MAX_SESSI ONS)] ;
_rfcomm nmax_dl cs = RFCOVW _MAX_DLCS; \

const bt_byte

bt _rfcomm server_channel _t _rfconmm channel s[(RFCOVW _MAX_SERVER_CHANNELS) * (RFCOVM MAX_ SESSI ONS)];

const bt_byte
const bt_uint
const bt_uint
bt _buf f er _header _t

_rfcomm max_channel s = RFCOVM_NMAX_SERVER CHANNELS; \

_rfconm pdu_size = (RFCOWL._|I NFO _LEN) + (RFCOVM FRAME_HEADER LEN);
rfcomm.info|len = RFCOW. | NFO_LEN; \

_rfconmm cnd_buf f er _header s| RFCOVW_MAX_CVD_BUFFERS] ; \

MPLAB Harmony v1.11

\

NULL;
bt _byte* buffer,

\

\

Configuring the Library

a7

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

bt _rfcomm conmand_t _rfconm cnd_buf f er s[RFCOVW _MAX_CVD_BUFFERS] ; \

const bt_byte _rfcomm max_cnd_buf fers = RFCOVWM MAX_CMVD_BUFFERS; \

const bt_byte _rfcomm.local credit = RFCOW LOCAL_CREDI T; \

const bt_bool _rfcomm enabl e_nul ti devi ce_channel s = RFCOVM ENABLE_MJLTI DEVI CE_CHANNELS; \

RFCOWM LOCAL_CREDI T_SEND THRESHOLD DECL \
RFCOWM ALLOCATE_BUFFERS RAM Sl ZE VAR \

Description
This is macro RFCOMM_ALLOCATE_BUFFERS_VARS.

RFCOMM_BUFFER_SIZE Macro
File
rfcomm_config.h
C
#def i ne RFCOMM BUFFER S| ZE (RFCOMM | NFO LEN)
Description
This is macro RFCOMM_BUFFER_SIZE.

RFCOMM_ENABLE_MULTIDEVICE_CHANNELS Macro
File

rfcomm_config.h
C

#defi ne RFCOVM ENABLE_MULTI DEVI CE_CHANNELS BT _TRUE
Description

brief Enable multi-device server channels. ingroup rfcomm_config

details Normally each server channel can be used only once. |.e. if device A connected to channel 1, device B cannot connect to channel 1 until
device A disconnects. With this option it is possible to make channels accept connections from several devices at the same time. l.e., if
RFCOMM_ENABLE_MULTIDEVICE_CHANNELS is TRUE both device A and device B can connect to channel 1 at the same time.

RFCOMM_INFO_LEN Macro
File

rfcomm_config.h
C

#define RFCOMM | NFO_LEN
Description

brief Maximum size of the data portion of a UIH frame. ingroup rfcomm_config

details This parameter defines the maximum size of the data portion of a UIH frame. If CFC is used the actual length of the data portion will be 1
byte less. This value must be less than or equal to HCI_L2CAP_BUFFER_LEN - RFCOMM_FRAME_HEADER_LEN - L2CAP_HEADER_LEN.

RFCOMM_LOCAL_CREDIT Macro
File
rfcomm_config.h

C
#defi ne RFCOVM LOCAL_CREDI T
Description

brief The number of receive buffers. ingroup rfcomm_config

details This parameter defines the number of received UIH frames that can be stored on the local device. The flow control mechanism used in
RFCOMM ensures that the remote side of the link always knows how many free buffers left on the local device. When the number of free buffers

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 48

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

reaches 0, the transmitter stops sending data frames until the receiver frees some buffers. The RFCOMM layer does not actually allocate space
for buffers. It uses RFCOMM_LOCAL_CREDIT to keep track of free buffers and report them to the remote side. Actual memory allocation is done
in SPP layer.

RFCOMM_MAX_CMD_BUFFERS Macro
File

rfcomm_config.h
C

#def i ne RFCOMM MAX_CMD_BUFFERS
Description

brief Maximum number of command buffers. ingroup rfcomm_config

details This parameter defines the maximum number of commands that can be sent at the same time. It is usually enough to reserve 2 buffers for
each DLC excluding control DLC. Therefore, this value can be defined as rn #define RFCOMM_MAX_CMD_BUFFERS (RFCOMM_MAX_DLCS -
1)*2

RFCOMM_MAX_DLCS Macro
File

rfcomm_config.h
C

#defi ne RFCOW _MAX DLCS
Description

brief Maximum number of DLCs ingroup rfcomm_config

details This parameter defines the maximum number of DLCs on each session. This value should be at least 2 because each session uses one
DLC to convey multiplexer control messages. All other DLCs are used to emulate serial ports.

RFCOMM_MAX_SERVER_CHANNELS Macro
File

rfcomm_config.h
C

#def i ne RFCOVM_MAX_SERVER CHANNELS

Description

brief Maximum number of Server channels ingroup rfcomm_config

details This parameter defines the maximum number of server channels exposed by the local device. This value should not exceed
RFCOMM_MAX_DLCS - 1.

RFCOMM_MAX_SESSIONS Macro
File
rfcomm_config.h

C
#def i ne RFCOMM_MAX_SESSI ONS
Description

brief Maximum number of remote devices a local device can be connected to ingroup rfcomm_config

details This parameter defines the maximum number of remote devices a local device can have simultaneous connections to. This value should
not exceed HCI_MAX_HCI_CONNECTIONS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 49

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

_ RFCOMM_CONFIG_H Macro
File
rfcomm_config.h

C
#define __ RFCOWM CONFI G H

Description
This is macro _ RFCOMM_CONFIG_H.

RFCOMM_LOCAL_CREDIT_SEND_THRESHOLD_DECL Macro
File
rfcomm_config.h

C
#defi ne RFCOW LOCAL_CREDI T_SEND THRESHOLD DECL const bt_byte _rfcomm.|ocal _credit_send_threshold = 1;

Description
This is macro RFCOMM_LOCAL_CREDIT_SEND_THRESHOLD_DECL.

SDP Configuration Macros

SDP_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro

File
sdp_config.h

C
#define SDP_ALLOCATE_BUFFERS_RAM S| ZE_VAR

Description

« defgroup sdp_config Configuration
e ingroup sdp

*

e This module describes parameters used to configure SDP.

*

» dotstack is customized using a configuration file. The configuration file tailors the dotstack to the application being built. It has to have the
structure shown below.

* code #include "cdbt/bt/bt_std.h"

/I HCI and L2CAP must always be present // SDP is required only if stack is running in dual mode. This is the default mode. // To run the stack in
single mode (i.e. only BLE is supported) a BT_BLE_SINGLE_MODE symbol // must be defined: // #define BT_BLE_SINGLE_MODE

/I HCI configuration parameters #define HCI_MAX_CMD_BUFFERS ... #define HCI_MAX_DATA_BUFFERS ... #define
HCI_MAX_HCI_CONNECTIONS ... #define HC|_RX_BUFFER_LEN ... #define HCI_TX_BUFFER_LEN ... #define HCI_L2CAP_BUFFER_LEN
... #define HCI_MAX_CMD_PARAM_LEN ...

/I L2CAP configuration parameters #define L2ZCAP_MAX_CMD_BUFFERS ... #define L2ZCAP_MAX_FRAME_BUFFERS ... #define
L2CAP_MAX_PSMS ... #define L2ZCAP_MAX_CHANNELS ...

/I SDP configuration parameters #define SDP_MAX_SEARCH_RESULT_LEN ... #define SDP_MAX_ATTRIBUTE_RESULT_LEN ...
#include "cdbt/bt/bt_oem_config.h"
endcode

SDP_ALLOCATE_BUFFERS_VARS Macro

File
sdp_config.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 50

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Configuring the Library

C
#def i ne SDP_ALLOCATE_BUFFERS_VARS \
bt _buf fer _header _t _sdp_packet _buf f er _header s[SDP_MAX_PDU_BUFFERS] ; \
bt _sdp_packet _t _sdp_packet _buffers[SDP_MAX_PDU_BUFFERS] ; \
const bt_byte _sdp_nax_buf fers = SDP_MAX_PDU_BUFFERS; \
bt _buf f er _header _t _sdp_client_packet _buffer_header s[SDP_MAX PDU BUFFERS] ; \
bt _sdp_packet _t _sdp_client_packet _buffers[SDP_MAX PDU BUFFERS] ; \
const bt_byte _sdp_client_nmax_buffers = SDP_MAX_PDU_BUFFERS; \
const bt _uint _sdp_nax_search_result_| en = SDP_MAX_SEARCH RESULT_LEN; \
const bt_uint _sdp_nex_attribute_result_|len = SDP_MAX_ATTRI BUTE_RESULT_LEN, \
bt _sr_handl e_t _sdp_found_sr_lists_buffers[SDP_MAX TRANSACTI ONS *
SDP_MAX_SEARCH RESULT_LEN]; \
bt _sdp_found_attr_|ist_t _sdp_found_attr_Ilists_buffers[SDP_MAX_TRANSACTI ONS *
SDP_MAX_SEARCH RESULT_LEN] ; \
bt byt e* _sdp_found_attr_list_buffers[SDP_MAX TRANSACTI ONS *
SDP_MAX_SEARCH RESULT_LEN * SDP_MAX ATTRI BUTE_RESULT_LEN]; \
\
bt _buffer_mgr_t _sdp_tran_buffer_ngr2; \
bt _buf f er _header _t _sdp_tran_buffer_header s2[SDP_MAX_TRANSACTI ONS] ; \
bt _sdp_transaction_t _sdp_tran_buf fers2[SDP_MAX_TRANSACTI ONS] ; \
\
bt _buffer_ngr_t _sdp_service_tran_buffer_nogr; \
bt _buffer_header _t _sdp_service_tran_buffer_headers[SDP_MAX_TRANSACTI ONS] ; \
bt _sdp_service_transaction_t _sdp_service_tran_buffers[SDP_MAX_TRANSACTI ONS] ; \
\
bt _bool (*_sdp_start_fp)(bt_I2cap_nmgr_p | 2cap_ngr, const bt_byte* sdp_db, bt_uint
sdp_db_l en) = &bt _sdp_start; \
SDP_ALLOCATE_BUFFERS_RAM S| ZE VAR \
Description

This is macro SDP_ALLOCATE_BUFFERS_VARS.

SDP_MAX_ATTRIBUTE_RESULT_LEN Macro
File
sdp_config.h

C
#define SDP_MAX ATTRI BUTE_RESULT LEN

Description

brief Maximum number of attributes to find ingroup sdp_config
details This parameter defines the maximum number of attributes withing a service record the SDP server will return to the client.

SDP_MAX_PDU_BUFFERS Macro
File
sdp_config.h

C
#def i ne SDP_MAX_PDU_BUFFERS

Description

brief Maximum number of SDP server PDU buffers. ingroup sdp_config
details This parameter defines the maximum number of responses the SDP server can send at the same time.

SDP_MAX_SEARCH_RESULT_LEN Macro

File
sdp_config.h

C
#define SDP_MAX_SEARCH RESULT_LEN

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 51

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

Description

brief Maximum number of service records to find. ingroup sdp_config

details This parameter defines the maximum number of service records the SDP server will return to the client.

__SDP_CONFIG_H Macro

File
sdp_config.h

C
#define __SDP_CONFI G H

Description
This is macro __SDP_CONFIG_H.

SPP Configuration Macros

SPP_ALLOCATE_BUFFERS_RAM_SIZE_VAR Macro
File
spp_config.h

C
#def i ne SPP_ALLOCATE_BUFFERS _RAM S| ZE_VAR

Description
This is macro SPP_ALLOCATE_BUFFERS_RAM_SIZE_VAR.

SPP_ALLOCATE_BUFFERS_VARS Macro

File
spp_config.h
C
#defi ne SPP_ALLOCATE_BUFFERS_VARS \
bt _spp_port _t _spp_ports[SPP_MAX_PORTS] ; \
const bt_byte _spp_nmax_ports = SPP_NMAX_PORTS; \
const bt_byte _spp_di sabl e_buffering = SPP_DI SABLE_BUFFERI NG,
SPP_DECLARE_FRAME_BUFFERS \
SPP_ALLOCATE BUFFERS_RAM S| ZE VAR \
Description

This is macro SPP_ALLOCATE_BUFFERS_VARS.

SPP_DECLARE_FRAME_BUFFERS Macro

File
spp_config.h
C
#def i ne SPP_DECLARE_FRAME_BUFFERS \
bt byt e* _spp_frame_buffers = NULL; \
bt _int* _spp_frame_len = NULL;
Description

This is macro SPP_DECLARE_FRAME_BUFFERS.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Configuring the Library

52

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help

SPP_DISABLE_BUFFERING Macro
File
spp_config.h

C
#def i ne SPP_DI SABLE_BUFFERI NG 1

Description
This is macro SPP_DISABLE_BUFFERING.

SPP_FRAME_BUFFERS_RAM_SIZE Macro
File
spp_config.h

C
#def i ne SPP_FRAME_BUFFERS_RAM S| ZE 0

Description
This is macro SPP_FRAME_BUFFERS_RAM_SIZE.

SPP_FRAME_BUFFERS_SIZE Macro
File
spp_config.h

C
#define SPP_FRAME_BUFFERS_SI ZE

Description
This is macro SPP_FRAME_BUFFERS_SIZE.

SPP_MAX_PORTS Macro
File
spp_config.h

C
#def i ne SPP_MAX_PORTS

Description

brief Maximum number of SPP ports. ingroup spp_config

details This parameter defines the maximum number of SPP port that can be open between the local and remote devices. If

Building the Library

RFCOMM_ENABLE_MULTIDEVICE_CHANNELS is FALSE (default) this value should be equal to RFCOMM_MAX_SERVER_CHANNELS. If
RFCOMM_ENABLE_MULTIDEVICE_CHANNELS is TRUE this value should be between RFCOMM_MAX_SERVER_CHANNELS and

RFCOMM_MAX_SERVER_CHANNELS * RFCOMM_MAX_SESSIONS.

__SPP_CONFIG_H Macro
File
spp_config.h

C
#define _ SPP_CONFI G H

Description
This is macro __SPP_CONFIG_H.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

53

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

Building the Library

The library is provided in binary form only, and comes prebuilt when you receive the applications that carry the Bluetooth license.

Library Interface

A2DP Data Types and Constants

Name
> _bt_a2dp_aac_config_t
G _bt_a2dp_event_u
b _bt_a2dp_evt_open_and_start_stream_completed_s
b _bt_a2dp_mgr_t
» _bt_a2dp_mpeg_config_t
G _bt_a2dp_sbc_config_t
P _bt_a2dp_sbc_packet_info_t

bt_a2dp_aac_config_t
bt_a2dp_event_t
bt_a2dp_evt_open_and_start_stream_completed_t

bt_a2dp_find_server_callback_fp

bt_a2dp_mgr_callback_fp

Description
This is type bt_a2dp_aac_config_t.

brief Parameter to an application callback. ingroup a2dp

details This union is used to pass event specific data to the A2DP
consumer. Which member of the union points to a valid structure

depends on the event reported to the consumer. In general, each
event has a corresponding member in the union.

brief Parameter to
A2DP_EVT_OPEN_AND_START_STREAM_COMPLETED event
ingroup a2dp

details A pointer to this structure is passed to the A2DP
application callback as a valid member of the bt_a2dp_event_t
union - bt_a2dp_event_t::open_and_start_stream_completed -
when A2DP completed a "open & start stream” request.

brief A2DP manager. ingroup a2dp

details A structure that glues all pieces together. There is only one
instance of this structure allocated by dotstack. A pointer to the
instance can be get with ::bt_a2dp_get_mgr.

This is type bt_a2dp_mpeg_config_t.
This is type bt_a2dp_sbc_config_t.

This is type bt_a2dp_sbc_packet_info_t.
This is type bt_a2dp_aac_config_t.

This is type bt_a2dp_event _t.

brief Parameter to
A2DP_EVT_OPEN_AND_START_STREAM_COMPLETED event
ingroup a2dp

details A pointer to this structure is passed to the A2DP
application callback as a valid member of the bt_a2dp_event_t
union - bt_a2dp_event_t::open_and_start_stream_completed -
when A2DP completed a "open & start stream” request.

brief Notify the application of the result of searching for a remote
A2DP entity (sourse or sink) ingroup a2dp

details This function is called by the A2DP layer when searching
for an A2DP entity on a remote device has completed.

param supported_features Features supported by a remote A2DP
entity. param found ¢ TRUE if an A2DP entity has been found on
the remote device. c FALSE otherwise. param param pointer to
arbitrary data passed to the bt_a2dp_find_source() or
bt_a2dp_find_sink function through its c callback_param
parameter.

brief A2DP application callback. ingroup a2dp

details In order to be notified of various events a consumer of the
A2DP layer has to register a callback function. The stack will call
that function whenever a new event has been generated.

param mgr A2DP manager.

param evt A2DP event. The event can be one of the following
values: @arg A2DP_EVT_CTRL_CHANNEL_CONNECTED:
Control channel connected. @arg
A2DP_EVT_CTRL_CHANNEL_DISCONNECTED: Control
channel disconnected. @arg
A2DP_EVT_CTRL_CONNECTION_FAILED: Control channel
connection failed (generated only if control connection has been
initiated by the local device). @arg
A2DP_EVT_DISCOVER_COMPLETED: Local device completed
discovering remote SEPs. @arg
A2DP_EVT_GET_SEP_CAPABILITIES_COMPLETED: Local...
more

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 54

Volume IV: MPLAB Harmony Framework

© 2013-2017 Microchip Technology Inc.

bt_a2dp_mgr_t

bt_a2dp_mpeg_config_t
bt_a2dp_sbc_config_t
bt_a2dp_sbc_packet_info_t
__A2DP_CODEC_AAC_H
__A2DP_CODEC_MPEG_H
__A2DP_CODEC_SBC_H

__A2DP_H

__A2DP_PRIVATE_H
A2DP_EVT_ABORT_STREAM_COMPLETED

A2DP_EVT_ABORT_STREAM_REQUESTED
A2DP_EVT_CLOSE_STREAM_COMPLETED
A2DP_EVT_CLOSE_STREAM_REQUESTED
A2DP_EVT_CTRL_CHANNEL_CONNECTED
A2DP_EVT_CTRL_CHANNEL_DISCONNECTED
A2DP_EVT_CTRL_CONNECTION_FAILED
A2DP_EVT_DISCOVER_SEP_COMPLETED

A2DP_EVT_GET_SEP_CAPABILITIES_COMPLETED

A2DP_EVT_GET_STREAM_CONFIGURATION_COMPLETED

A2DP_EVT_MEDIA_PACKET RECEIVED
A2DP_EVT_MEDIA_PACKET_SEND_FAILED
A2DP_EVT_MEDIA_PACKET_SENT

A2DP_EVT_NOTHING
A2DP_EVT_OPEN_AND_START_STREAM_COMPLETED

A2DP_EVT_OPEN_STREAM_COMPLETED
A2DP_EVT_OPEN_STREAM_REQUESTED

A2DP_EVT_RECONFIGURE_STREAM_COMPLETED

A2DP_EVT_RECONFIGURE_STREAM_REQUESTED
A2DP_EVT_SEP_CAPABILITIES RECEIVED
A2DP_EVT_SEP_INFO_RECEIVED

A2DP_EVT_SET_STREAM_CONFIGURATION_COMPLETED

A2DP_EVT_SET_STREAM_CONFIGURATION_REQUESTED
A2DP_EVT_START_STREAM_COMPLETED

A2DP_EVT_START_STREAM_REQUESTED

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

This is type bt_a2dp_mgr_t.

This is type bt_a2dp_mpeg_config_t.

This is type bt_a2dp_sbc_config_t.

This is type bt_a2dp_sbc_packet_info_t.
This is macro __A2DP_CODEC_AAC_H.
This is macro __A2DP_CODEC_MPEG_H.
This is macro __A2DP_CODEC_SBC_H.
This is macro __A2DP_H.

This is macro ___A2DP_PRIVATE_H.

< This event is generated when a local device received a
response (either positive or negative) to a "abort stream"” request.

< This event is generated when a local device received "abort
stream" request.

< This event is generated when a local device received a
response (either positive or negative) to a “close stream” request.

< This event is generated when a local device received "close
stream" request.

< This event is generated when a control channel between two
AVDTP entities has been established.

< This event is generated when a control channel between two
AVDTP entities has been terminated.

< This event is generated when a local device failed to create a
control channel between two AVDTP entities.

< This event is generated when a local device received a
response (either positive or negative) to a "discover" request.

< This event is generated when a local device received a
response (either positive or negative) to a "get SEP capabilities”
request.

< This event is generated when a local device received a
response (either positive or negative) to a "get stream
configuration" request.

< This event is generated when a local device received a media
packet.

< This event is generated when a local device failed to send a
media packet.

< This event is generated when a local device sent a media
packet.

This is macro A2DP_EVT_NOTHING.

< This event is generated when a local device completed "open
and start" request.

< This event is generated when a local device received a
response (either positive or negative) to a "open stream" request.

< This event is generated when a local device received "open
stream" request.

< This event is generated when a local device received a
response (either positive or negative) to a "change stream
configuration” request.

< This event is generated when a local device received "change
stream configuration” request.

< This event is generated when a local device received a positive
response to a "get SEP capabilities" request.

< This event is generated for each SEP contained in a positive
response to a "discover" request.

< This event is generated when a local device received a
response (either positive or negative) to a "set stream
configuration" request.

< This event is generated when a local device received "set
stream configuration" request.

< This event is generated when a local device received a
response (either positive or negative) to a "start stream" request.

< This event is generated when a local device received "start
stream" request.

55

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

A2DP_EVT_STREAM_ABORTED

A2DP_EVT_STREAM_CLOSED

A2DP_EVT_STREAM_CONFIGURATION_RECEIVED

A2DP_EVT_STREAM_CONFIGURED

A2DP_EVT_STREAM_OPENED

A2DP_EVT_STREAM_RECONFIGURED

A2DP_EVT_STREAM_SECURITY_CONTROL_COMPLETED

A2DP_EVT_STREAM_STARTED

A2DP_EVT_STREAM_SUSPENDED

A2DP_EVT_SUSPEND_STREAM_COMPLETED

A2DP_EVT_SUSPEND_STREAM_REQUESTED

A2DP_MANAGER_STATE_CONNECTING
A2DP_MANAGER_STATE_IDLE
A2DP_SINK_FEATURE_AMPLIFIER
A2DP_SINK_FEATURE_HEADPHONE
A2DP_SINK_FEATURE_RECORDER
A2DP_SINK_FEATURE_SPEAKER
A2DP_SOURCE_FEATURE_MICROPHONE
A2DP_SOURCE_FEATURE_MIXER
A2DP_SOURCE_FEATURE_PLAYER
A2DP_SOURCE_FEATURE_TUNER
AAC_CHANNELS_1

AAC_CHANNELS_2

AAC_CHANNELS_ALL
AAC_OBJECT_TYPE_MPEG_2_LC
AAC_OBJECT TYPE_MPEG_4 LC
AAC_OBJECT_TYPE_MPEG_4_LTP
AAC_OBJECT_TYPE_MPEG_4_SCALABLE
AAC_SAMPLING_FREQUENCY_11025
AAC_SAMPLING_FREQUENCY_12000

< This event is generated when a local device has successfully
aborted a stream. < This event follows the
A2DP_EVT_ABORT_STREAM_REQUESTED if the upper layer
has accepted it. < This event is not generated if stream abortion
was initiated by the local device.

< This event is generated when a local device has successfully
closed a stream. < This event follows the
A2DP_EVT_CLOSE_STREAM_REQUESTED if the upper layer
has accepted it. < This event is not generated if stream closing
was initiated by the local device.

< This event is generated when a local device received a positive
response to a "get stream configuration" request.

< This event is generated when a local device has successfully
configured a stream. < This event follows the
A2DP_EVT_SET_STREAM_CONFIGURATION_REQUESTED if
the upper layer has accepted it. < This event is not generated if
stream configuration was initiated by the local device.

< This event is generated when a local device has successfully
opened a stream. < This event follows the
A2DP_EVT_OPEN_STREAM_REQUESTED if the upper layer
has accepted it. < This event is not generated if stream opening
was initiated by the local device.

< This event is generated when a local device has successfully
reconfigured a stream. < This event follows the
A2DP_EVT_RECONFIGURE_STREAM_REQUESTED if the
upper layer has accepted it. < This event is not generated if
stream reconfiguration was initiated by the local device.

< This event is generated when a local device received a
response (either positive or negative) to a "exchange content
protection control data" request.

< This event is generated when a local device has successfully
started a stream. < This event follows the
A2DP_EVT_START_STREAM_REQUESTED if the upper layer
has accepted it. < This event is not generated if stream starting
was initiated by the local device.

< This event is generated when a local device has successfully
suspended a stream. < This event follows the
A2DP_EVT_SUSPEND_STREAM_REQUESTED if the upper
layer has accepted it. < This event is not generated if stream
suspension was initiated by the local device.

< This event is generated when a local device received a
response (either positive or negative) to a "suspend stream”
request.

< This event is generated when a local device received "suspend
stream" request.

This is macro A2DP_MANAGER_STATE_CONNECTING.
This is macro A2DP_MANAGER_STATE_IDLE.

< Amplifier

< Headphone

< Recorder

< Speaker

< Mic

< Mixer

< Player

< Tuner

This is macro AAC_CHANNELS_1.

This is macro AAC_CHANNELS_2.

This is macro AAC_CHANNELS_ALL.

This is macro AAC_OBJECT_TYPE_MPEG_2_LC.

This is macro AAC_OBJECT_TYPE_MPEG_4_LC.

This is macro AAC_OBJECT_TYPE_MPEG_4_LTP.

This is macro AAC_OBJECT_TYPE_MPEG_4_SCALABLE.
This is macro AAC_SAMPLING_FREQUENCY_11025.
This is macro AAC_SAMPLING_FREQUENCY_12000.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 56

Volume IV: MPLAB Harmony Framework

AAC_SAMPLING_FREQUENCY_16000
AAC_SAMPLING_FREQUENCY_22050
AAC_SAMPLING_FREQUENCY_24000
AAC_SAMPLING_FREQUENCY_32000
AAC_SAMPLING_FREQUENCY_44100
AAC_SAMPLING_FREQUENCY_48000
AAC_SAMPLING_FREQUENCY_64000
AAC_SAMPLING_FREQUENCY_8000
AAC_SAMPLING_FREQUENCY_88200
AAC_SAMPLING_FREQUENCY_96000
AAC_SAMPLING_FREQUENCY_ALL
AAC_VBR_NOT_SUPPORTED
AAC_VBR_SUPPORTED
bt_a2dp_abort_stream

bt_a2dp_add_media_rx_buffer

bt_a2dp_add_media_tx_buffer

bt_a2dp_call_codec
bt_a2dp_cancel_listen

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

This is macro AAC_SAMPLING_FREQUENCY_16000.
This is macro AAC_SAMPLING_FREQUENCY_22050.
This is macro AAC_SAMPLING_FREQUENCY_24000.
This is macro AAC_SAMPLING_FREQUENCY_32000.
This is macro AAC_SAMPLING_FREQUENCY_44100.
This is macro AAC_SAMPLING_FREQUENCY_48000.
This is macro AAC_SAMPLING_FREQUENCY_64000.
This is macro AAC_SAMPLING_FREQUENCY_8000.
This is macro AAC_SAMPLING_FREQUENCY_88200.
This is macro AAC_SAMPLING_FREQUENCY_96000.
This is macro AAC_SAMPLING_FREQUENCY_ALL.
This is macro AAC_VBR_NOT_SUPPORTED.

This is macro AAC_VBR_SUPPORTED.

brief Suspend a stream. ingroup a2dp

details This function tries to suspend a stream by sending a
request to the remote party. The stream can be in any state state
except AVDTP_STREAM_STATE_IDLE. As a result of this
operation the A2DP_EVT_ABORT_STREAM_COMPLETED
event will be generated. This operation cannot be rejected. The p
evt_param.abort_stream_requested.err_code is always ==
AVDTP_ERROR_SUCCESS.

param mgr A2DP manager. param strm_handle Stream handle.
return li ¢ TRUE if the function succeeds, i.e. the actual request
has been sent to the remote party. li c FALSE otherwise. No
events will be generated.

brief Add a media packet buffer to a receive queue ingroup a2dp
details The consumer of A2DP is responsible for allocating and
supplying A2DP with buffers used to store received packets.
A2DP itself only has a queue for storing pointers to buffers
supplied by the consumer. When a packet comes in A2DP finds
the first buffer large enough to hold the received packet, copies
the packet to the buffer and generates a
A2DP_EVT_MEDIA_PACKET_RECEIVED event. The consumer
then has to process the data in the buffer and return it back to the
queue. If there is no buffers in the queue... more

brief Add a media packet buffer to a send queue ingroup a2dp
details When the consumer of A2DP wants to send a packet to a
remote device it calls this function. The function adds the packet
to a queue and tells A2DP that it has something to send. The
packet will be send as soon as the stream goes to
A2DP_STREAM_STATE_STREAMING state. When the packet
has been successfully sent a
A2DP_EVT_MEDIA_PACKET_SENT is generated. Otherwise a
A2DP_EVT_MEDIA_PACKET_SEND_FAILED is generated.
Regardless of the event generated the consumer can re-use the
buffer as A2DP has removed it from the queue and gave up...
more

This is macro bt_a2dp_call_codec.

brief Cancel listening for incoming connections. ingroup a2dp
details This function removes a SEP from a list of SEPS which a
stream can use for incoming requests.

param mgr A2DP manager. param strm_handle Stream handle.
param sep_id Local SEP ID.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

MPLAB Harmony v1.11 57

Volume IV: MPLAB Harmony Framework

bt_a2dp_close_stream

bt_a2dp_connect

bt_a2dp_connect_ex

bt_a2dp_create_stream

bt_a2dp_destroy_stream

bt_a2dp_disconnect

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Close a stream. ingroup a2dp

details This function tries to close a stream by sending a request
to the remote party. The stream has to be in
AVDTP_STREAM_STATE_OPEN or
AVDTP_STREAM_STATE_STREAMING state. As a result of this
operation the A2DP_EVT_CLOSE_STREAM_COMPLETED
event will be generated. If the stream has been closed the p
evt_param.bt_avdtp_evt_close_stream_completed_t.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise, if the remote device for
any reason cannot or does not wish to close the stream, the p
evt_param.bt_avdtp_evt_close_stream_completed_t.err_code ==
the error code sent by the remote.

param mgr A2DP manager. param strm_handle Stream handle.
return li ¢ TRUE if the function succeeds,... more

brief Connect to a remote device. ingroup a2dp

details This function opens a control channel connection to a
remote device specified by the p remote_addr. If connection
cannot be initiated for some reason, for example, there is not
enough resources, it returns FALSE and not events are
generated. Otherwise the result of an attempt to connect to the
remote device is reported via the AVDTP callback. The events
generated will either be
A2DP_EVT_CTRL_CHANNEL_CONNECTED or
A2DP_EVT_CTRL_CHANNEL_CONNECTION_FAILED.

param mgr A2DP manager. param remote_addr The address of a
remote device.

return li ¢ TRUE if connection establishment has been started. li ¢
FALSE... more

brief Connect to a remote device. ingroup a2dp

details This function opens a control channel connection to a
remote device specified by the p remote_addr. If connection
cannot be initiated for some reason, for example, there is not
enough resources, it returns FALSE and not events are
generated. Otherwise the result of an attempt to connect to the
remote device is reported via the AVDTP callback. The events
generated will either be
A2DP_EVT_CTRL_CHANNEL_CONNECTED or
A2DP_EVT_CTRL_CHANNEL_CONNECTION_FAILED.

param mgr A2DP manager. param remote_addr The address of a
remote device. param acl_config ACL link configuration. This can
be a combination of the following... more

brief Create a stream. ingroup a2dp

details This function allocates memory for storing stream's data
and assigns a stream handle. The stream handle is used to
manipulate the stream - open, close, configure, suspend, abort.
param mgr A2DP manager.

return li ¢ Stream handle if the function succeeds. li ¢ 0 otherwise.

brief Destroy a stream. ingroup a2dp

details This function frees memory used by the stream. The
stream has to exist and be in the "idle" state for this function to
succeed. l.e. the stream has to be closed or aborted before this
function can be called.

param mgr A2DP manager. param strm_handle Stream handle.
return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

brief Disconnect from a remote device. ingroup a2dp

details This function closes a control and transport channels on all
streams associated with the remote device specified by the p
remote_addr. As a result of this operation the following events will
be generated: @arg A2DP_EVT_MEDIA_PACKET_RECEIVED:
if a stream's receive queue is not empty this event is generated
for each buffer with bt_media_packet_t::data_len set to 0 @arg
A2DP_EVT_MEDIA_PACKET_SENT: if a stream's send queue is
not empty this event is generated for each buffer with
bt_media_packet_t::data_len set to 0 @arg
A2DP_EVT_STREAM_CLOSED: this event is generate if a
stream is in... more

MPLAB Harmony v1.11 58

Volume IV: MPLAB Harmony Framework

bt_a2dp_discover

bt_a2dp_find_codec

bt_a2dp_get_capabilities

bt_a2dp_get_hci_connection

bt_a2dp_get stream_codec_config

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Discover SEPs on a remote device. ingroup a2dp

details This function asks the remote device to send a list of all
available SEPs. As a result of this operation the following events
will be generated: @arg A2DP_EVT_SEP_INFO_RECEIVED: this
event is generated for every SEP received from the remote
device. the p evt_param.sep_info_received contains SEP
information. @arg A2DP_EVT_DISCOVER_COMPLETED: this
event is generated after the last
A2DP_EVT_SEP_INFO_RECEIVED if the remote accepted the
request and the p evt_param.discover_completed.err_code ==
AVDTP_ERROR_SUCCESS. if the remote rejected the request
the p evt_param.discover_completed.err_code == the error code
sent by the remote.

param mgr A2DP... more

brief Find a codec ingroup a2dp

details A2DP in theory can support any type of codec. Each
codec uses its own format for exchanging capabilities and
configuration information. In order to make our implementation do
not care about these formats we use a simple way of telling
AVDTP how to parse and serialize codec's configuration. The
consumer of A2DP has to register a callback function (one per
codec type) for each codec it wishes to support. That callback has
to perform two function. The first one is to read the configuration
received from the remote device and store it in... more

brief Get remote SEP capabilities. ingroup a2dp

details This function asks the remote device to send capabilities
of a SEP specified by the p seid_acp. As a result of this operation
the following events will be generated: @arg
A2DP_EVT_SEP_CAPABILITIES_RECEIVED: this event is
generated if the remote device accepted the request. the p
evt_param.sep_capabilities_received contains SEP capabilities.
@arg A2DP_EVT_GET_SEP_CAPABILITIES_COMPLETED: this
event is generated right after
A2DP_EVT_SEP_CAPABILITIES_RECEIVED if the remote
accepted the request the p
evt_param.get_sep_capabilities_completed.err_code ==
AVDTP_ERROR_SUCCESS. if the remote rejected the request
the p evt_param.get_sep_capabilities_completed.err_code == the
error code sent by the remote.

param mgr A2DP manager.... more

brief Get HCI connection for a stream ingroup a2dp

details This function returns a pointer to a structure that describes
an HCI connection a stream is open on. The return value can be
used to call various function from the HCI layer. For example, if
an app wants to force disconnection from a remote device it can
call ::bt_hci_disconnect.

param mgr A2DP manager. param strm_handle Stream handle.
return li ¢ Pointer to a structure that describes an HCI connection
if the function succeeds. li ¢ NULL otherwise. The function fails
only if a stream specified by the p... more

brief Get the configuration of the codec currently used with the
stream. ingroup a2dp

details This function returns a pointer to a structure that contains
configuration of the codec currently used with the stream. The
structure returned depends on the codec. The dotstack defines
structures only for SBC, MPEG-1,2 and MPEG-2,4 AAC codecs:
@arg SBC: bt_a2dp_shc_config_t (defined in a2dp_sbc_codec.h)
@arg MPEG-1,2: bt_a2dp_mpeg_config_t (defined in
a2dp_mpeg_codec.h) @arg MPEG-2,4 AAC:
bt_a2dp_aac_config_t (defined in a2dp_aac_codec.h)

param mgr A2DP manager. param strm_handle Stream handle.
return li The codec's configuration if strm_handle specifies a valid
stream and the stream is in one of the following... more

MPLAB Harmony v1.11 59

Volume IV: MPLAB Harmony Framework

bt_a2dp_get_stream_codec_type

bt_a2dp_get_stream_local_sep_id

bt_a2dp_get_stream_remote_address

bt_a2dp_get_stream_remote_sep_id

bt_a2dp_get_stream_state

bt_a2dp_listen

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Get the type of the codec currently used with the stream.
ingroup a2dp

details This function returns the type of the codec currently used
with the stream.

param mgr A2DP manager. param strm_handle Stream handle.
return @arg The type of the codec if strm_handle specifies a valid
stream and the stream is in one of the following states:
AVDTP_STREAM_STATE_CONFIGURED
AVDTP_STREAM_STATE_OPEN
AVDTP_STREAM_STATE_STREAMING

@arg The result will be one of the following values:
AVDTP_CODEC_TYPE_SBC: SBC
AVDTP_CODEC_TYPE_MPEG1_2_AUDIO: MPEG-1,2 (used in
MP3 files) AVDTP_CODEC_TYPE_MPEG2_4_AAC: MPEG-2,4
AAC (used in Apple products) AVDTP_CODEC_TYPE_ATRAC:
ATRAC (used in Sony products)
AVDTP_CODEC_TYPE_NON_A2DP: Non-A2DP... more

brief Get stream's local SEP ID. ingroup a2dp

details This function returns the ID of the local SEP associated
with the stream.

param mgr A2DP manager. param strm_handle Stream handle.
return li The ID of the local SEP if strm_handle specifies a valid
stream. li O otherwise.

brief Get stream's remote BT address. ingroup a2dp

details This function returns the address of the remote device
associated with the stream.

param mgr A2DP manager. param strm_handle Stream handle.
return li The address of the remote device if strm_handle specifies
a valid stream. li NULL otherwise.

brief Get stream's remote SEP ID. ingroup a2dp

details This function returns the ID of the remote SEP associated
with the stream.

param mgr A2DP manager. param strm_handle Stream handle.
return li The ID of the remote SEP if strm_handle specifies a valid
stream. li O otherwise.

brief Get local stream state. ingroup a2dp

details This function returns local state of a stream specified by
the p strm_handle. No request is sent to the remote party.
param mgr A2DP manager. param strm_handle Stream handle.
return The state of the stream. The result will be one of the
following values: @arg AVDTP_STREAM_STATE_IDLE: The
stream is idle. This can mean two things. The stream specified by
p strm_handle does not exist or the stream is closed. @arg
AVDTP_STREAM_OPENING_TRANSPORT_CHANNELS: The
stream is opening transport channels. @arg
AVDTP_STREAM_CLOSING_TRANSPORT_CHANNELS: The
stream is closing transport channels. @arg
AVDTP_STREAM_STATE_CONFIGURED: The... more

brief Listen for incoming connections. ingroup a2dp

details This function tells a stream that it can use a particular SEP
to accept incoming requests to open it. The SEP can be
associated with multiple streams but used with only one. The
stream has to be closed before the SEP can be used with another
stream. For outgoing connections this is not needed. Any SEP
can be used with any stream given that the SEP is not already in
use by another stream.

param mgr A2DP manager. param strm_handle Stream handle.
param sep_id Local SEP ID.

return li ¢ TRUE if... more

MPLAB Harmony v1.11 60

Volume IV: MPLAB Harmony Framework

bt_a2dp_reconfigure_stream

bt_a2dp_register_sink

bt_a2dp_register_source

bt_a2dp_remove_media_rx_buffer

bt_a2dp_remove_media_tx_buffer

bt_a2dp_start_stream

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Reconfigure stream. ingroup a2dp

details This function tries to change the stream's configuration.
For this function to succeed the stream has to be open. As a
result of this operation the
A2DP_EVT_STREAM_RECONFIGURE_COMPLETED event will
be generated. If reconfiguration was a success the p
evt_param.stream_reconfigure_completed.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise the p
evt_param.stream_reconfigure_completed.err_code == the error
code sent by the remote.

param mgr A2DP manager. param strm_handle Stream handle.
param caps New stream configuration.

return li ¢ TRUE if the function succeeds, i.e. the actual request
has been sent to the remote party. li c FALSE otherwise. No
events will be... more

brief Register a Sink SEP with the local A2DP manager. ingroup
a2dp

details This function is used to add a sink SEP to a list of SEPs
supported by the local A2DP entity.

param mgr A2DP manager. param caps The capabilities of a SEP.
return li ¢ ID of a SEP if the function succeeds. li ¢ FALSE
otherwise.

brief Register a Source SEP with the local A2DP manager.
ingroup a2dp

details This function is used to add a source SEP to a list of SEPs
supported by the local A2DP entity.

param mgr A2DP manager. param caps The capabilities of a SEP.
return li ¢ ID of a SEP if the function succeeds. li ¢ FALSE
otherwise.

brief Remove a media packet buffer from a receive queue ingroup
a2dp

details The consumer of A2DP is responsible for allocating and
supplying A2DP with buffers used to store received packets.
A2DP itself only has a queue for storing pointers to buffers
supplied by the consumer. When a packet comes in A2DP finds
the first buffer large enough to hold the received packet, copies
the packet to the buffer and generates a
A2DP_EVT_MEDIA_PACKET_RECEIVED event. The consumer
then has to process the data in the buffer and return it back to the
queue. If there is no buffers in the queue... more

brief Remove a media packet buffer from a send queue ingroup
a2dp

details When the consumer of A2DP wants to send a packet to a
remote device it calls bt_avdtp_add_media_tx_buffer function.
The function adds the packet to a queue and tells A2DP that it
has something to send. The packet will be send as soon as the
stream goes to A2DP_STREAM_STATE_STREAMING state. The
consumer has a chance to remove a packet from the queue
before it has been sent to a remote device by calling
:bt_a2dp_remove_media_tx_buffer.

param mgr A2DP manager. param strm_handle Stream handle.
param buffer Pointer to a structure... more

brief Start a stream. ingroup a2dp

details This function tries to start a stream by sending a request to
the remote party. The stream has to be in
AVDTP_STREAM_STATE_OPEN state. The stream goes to this
state as a result of successful configuration or suspension (both
can be initiated by either party). As a result of this operation the
A2DP_EVT_START_STREAM_COMPLETED event will be
generated. If the stream has been open the p
evt_param.start_stream_requested.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise, if the remote device for
any reason cannot or does not wish to start the stream, the p
evt_param.start_stream_requested.err_code == the error code
sent... more

MPLAB Harmony v1.11 61

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

bt_a2dp_suspend_stream

MPEG_BITRATE_0000
MPEG_BITRATE_0001
MPEG_BITRATE_0010
MPEG_BITRATE_0011
MPEG_BITRATE_0100
MPEG_BITRATE_0101
MPEG_BITRATE_0110
MPEG_BITRATE_0111
MPEG_BITRATE_1000
MPEG_BITRATE_1001
MPEG_BITRATE_1010
MPEG_BITRATE_1011
MPEG_BITRATE_1100
MPEG_BITRATE_1101
MPEG_BITRATE_1110
MPEG_BITRATE_ALL
MPEG_CHANNEL_MODE_ALL
MPEG_CHANNEL_MODE_DUAL_CHANNEL
MPEG_CHANNEL_MODE_JOINT_STEREO
MPEG_CHANNEL_MODE_MONO
MPEG_CHANNEL_MODE_STEREO
MPEG_CRC_PROTECTION_NOT_SUPPORTED
MPEG_CRC_PROTECTION_SUPPORTED
MPEG_LAYER_1

MPEG_LAYER 2

MPEG_LAYER_3

MPEG_LAYER_ALL

MPEG_MPF_1

MPEG_MPF_2
MPEG_SAMPLING_FREQUENCY_16000
MPEG_SAMPLING_FREQUENCY_22050
MPEG_SAMPLING_FREQUENCY_24000
MPEG_SAMPLING_FREQUENCY_32000
MPEG_SAMPLING_FREQUENCY_44100
MPEG_SAMPLING_FREQUENCY_48000
MPEG_SAMPLING_FREQUENCY_ALL
MPEG_VBR_NOT_SUPPORTED
MPEG_VBR_SUPPORTED
SBC_ALLOCATION_METHOD_ALL
SBC_ALLOCATION_METHOD_LOUDNESS
SBC_ALLOCATION_METHOD_SNR
SBC_BLOCK_LENGTH_12
SBC_BLOCK_LENGTH_16
SBC_BLOCK_LENGTH_4

brief Suspend a stream. ingroup a2dp

details This function tries to suspend a stream by sending a
request to the remote party. The stream has to be in
AVDTP_STREAM_STATE_STREAMING state. As a result of this
operation the A2DP_EVT_SUSPEND_STREAM_COMPLETED
event will be generated. If the stream has been suspended the p
evt_param.bt_avdtp_evt_suspend_stream_requested_t.err_code
== AVDTP_ERROR_SUCCESS. Otherwise, if the remote device
for any reason cannot or does not wish to suspend the stream,
the p
evt_param.bt_avdtp_evt_suspend_stream_requested_t.err_code
== the error code sent by the remote.

param mgr A2DP manager. param strm_handle Stream handle.
return li ¢ TRUE if the function succeeds, i.e. the... more

This is macro MPEG_BITRATE_0000.

This is macro MPEG_BITRATE_0001.

This is macro MPEG_BITRATE_0010.

This is macro MPEG_BITRATE_0011.

This is macro MPEG_BITRATE_0100.

This is macro MPEG_BITRATE_0101.

This is macro MPEG_BITRATE_0110.

This is macro MPEG_BITRATE_0111.

This is macro MPEG_BITRATE_1000.

This is macro MPEG_BITRATE_1001.

This is macro MPEG_BITRATE_1010.

This is macro MPEG_BITRATE_1011.

This is macro MPEG_BITRATE_1100.

This is macro MPEG_BITRATE_1101.

This is macro MPEG_BITRATE_1110.

This is macro MPEG_BITRATE_ALL.

This is macro MPEG_CHANNEL_MODE_ALL.

This is macro MPEG_CHANNEL_MODE_DUAL_CHANNEL.
This is macro MPEG_CHANNEL_MODE_JOINT_STEREO.
This is macro MPEG_CHANNEL_MODE_MONO.

This is macro MPEG_CHANNEL_MODE_STEREO.

This is macro MPEG_CRC_PROTECTION_NOT_SUPPORTED.
This is macro MPEG_CRC_PROTECTION_SUPPORTED.
This is macro MPEG_LAYER_1.

This is macro MPEG_LAYER_2.

This is macro MPEG_LAYER_3.

This is macro MPEG_LAYER_ALL.

This is macro MPEG_MPF_1.

This is macro MPEG_MPF_2.

This is macro MPEG_SAMPLING_FREQUENCY_16000.
This is macro MPEG_SAMPLING_FREQUENCY_22050.
This is macro MPEG_SAMPLING_FREQUENCY_24000.
This is macro MPEG_SAMPLING_FREQUENCY_32000.
This is macro MPEG_SAMPLING_FREQUENCY_44100.
This is macro MPEG_SAMPLING_FREQUENCY_48000.
This is macro MPEG_SAMPLING_FREQUENCY_ALL.
This is macro MPEG_VBR_NOT_SUPPORTED.

This is macro MPEG_VBR_SUPPORTED.

This is macro SBC_ALLOCATION_METHOD_ALL.

This is macro SBC_ALLOCATION_METHOD_LOUDNESS.
This is macro SBC_ALLOCATION_METHOD_SNR.

This is macro SBC_BLOCK_LENGTH_12.

This is macro SBC_BLOCK_LENGTH_16.

This is macro SBC_BLOCK_LENGTH_4.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 62

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

SBC_BLOCK_LENGTH_8
SBC_BLOCK_LENGTH_ALL
SBC_CHANNEL_MODE_ALL
SBC_CHANNEL_MODE_DUAL_CHANNEL
SBC_CHANNEL_MODE_JOINT_STEREO
SBC_CHANNEL_MODE_MONO
SBC_CHANNEL_MODE_STEREO
SBC_SAMPLING_FREQUENCY_16000
SBC_SAMPLING_FREQUENCY_32000
SBC_SAMPLING_FREQUENCY_44100
SBC_SAMPLING_FREQUENCY_48000
SBC_SAMPLING_FREQUENCY_ALL
SBC_SUBBANDS_4

SBC_SUBBANDS_8
SBC_SUBBANDS_ALL
bt_a2dp_get_all_capabilities

bt_a2dp_get_configuration
bt_a2dp_open_stream
bt_a2dp_clear_media_tx_queue

bt_a2dp_get_stream_config

bt_a2dp_get_stream_direction
bt_a2dp_report_delay

© 2013-2017 Microchip Technology Inc.

This is macro SBC_BLOCK_LENGTH_8.

This is macro SBC_BLOCK_LENGTH_ALL.

This is macro SBC_CHANNEL_MODE_ALL.

This is macro SBC_CHANNEL_MODE_DUAL_CHANNEL.
This is macro SBC_CHANNEL_MODE_JOINT_STEREO.
This is macro SBC_CHANNEL_MODE_MONO.

This is macro SBC_CHANNEL_MODE_STEREO.

This is macro SBC_SAMPLING_FREQUENCY_16000.
This is macro SBC_SAMPLING_FREQUENCY_32000.
This is macro SBC_SAMPLING_FREQUENCY_44100.
This is macro SBC_SAMPLING_FREQUENCY_48000.
This is macro SBC_SAMPLING_FREQUENCY_ALL.
This is macro SBC_SUBBANDS_4.

This is macro SBC_SUBBANDS_8.

This is macro SBC_SUBBANDS_ALL.

brief Get remote SEP capabilities. ingroup a2dp

details This function asks the remote device to send capabilities
of a SEP specified by the p seid_acp. As a result of this operation
the following events will be generated: @arg
A2DP_EVT_SEP_CAPABILITIES_RECEIVED: this event is
generated if the remote device accepted the request. the p
evt_param.sep_capabilities_received contains SEP capabilities.
@arg A2DP_EVT_GET_SEP_CAPABILITIES_COMPLETED: this
event is generated right after
A2DP_EVT_SEP_CAPABILITIES_RECEIVED if the remote
accepted the request the p
evt_param.get_sep_capabilities_completed.err_code ==
AVDTP_ERROR_SUCCESS. if the remote rejected the request
the p evt_param.get_sep_capabilities_completed.err_code == the
error code sent by the remote.

param mgr A2DP manager.... more
This is macro bt_a2dp_get_configuration.
This is macro bt_a2dp_open_stream.

brief Clear send queue ingroup a2dp

details When the consumer of A2DP wants to send a packet to a
remote device it calls bt_avdtp_add_media_tx_buffer function.
The function adds the packet to a queue and tells A2DP that it
has something to send. The packet will be send as soon as the
stream goes to A2DP_STREAM_STATE_STREAMING state. The
consumer can remove all packets from the queue before they
have been sent to a remote device by calling
:bt_a2dp_clear_media_tx_queue.

param mgr A2DP manager. param strm_handle Stream handle.
return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.
The function fails... more

brief Get stream's configuration. ingroup a2dp

details This function returns a pointer to a structure holding
current configuration of the stream.

param mgr A2DP manager. param strm_handle Stream handle.

return li The stream's configuration if strm_handle specifies a valid
stream and the stream is in one of the following state:

AVDTP_STREAM_STATE_CONFIGURED
AVDTP_STREAM_STATE_OPEN
AVDTP_STREAM_STATE_STREAMING

li NULL otherwise.
This is macro bt_a2dp_get_stream_direction.
This is macro bt_a2dp_report_delay.

MPLAB Harmony v1.11 63

Volume IV: MPLAB Harmony Framework

bt_a2dp_set_media_tx_queue_limit

Bluetooth Stack Library Help Library Interface

brief Set limit on the send queue ingroup a2dp

details When the consumer of A2DP wants to send a packet to a
remote device it calls bt_avdtp_add_media_tx_buffer function.
The function adds the packet to a queue and tells A2DP that it
has something to send. The packet will be send as soon as the
stream goes to A2DP_STREAM_STATE_STREAMING state. By
default the send queue can contain unlimited number of packets.
The consumer can set a limit on how many packets are held in
the queue. In this case when new packet is added to the queue
and the length of... more

A2DP_EVT_SET_STREAM_CONFIGURATION This is macro A2DP_EVT_SET_STREAM_CONFIGURATION.

A2DP Functions

Name
¢ _bt_a2dp_avdtp_mgr_callback
¢ bt_a2dp_aac_codec_handler
L] bt_a2dp_find_server
@ bt_a2dp_find_sink
@ bt_a2dp_find_source
¢ bt_a2dp_get_mgr
¢ bt_a2dp_init
¢ bt_a2dp_mpeg_codec_handler
bt_a2dp_open_and_start_stream
¢ bt_a2dp_register_aac_codec

© 2013-2017 Microchip Technology Inc.

Description

This is function _bt_a2dp_avdtp_mgr_callback.
This is function bt_a2dp_aac_codec_handler.
This is function bt_a2dp_find_server.

brief Find sink ingroup a2dp

details This function looks for a sink on a remote device specified by ¢ deviceAddress and, if
found, returns features supported by the sink.

param deviceAddress The address of a remote device. param callback The callback function
that will be called when search has completed. param client_callback The optional callback
function that an application can set if it wants to be notified of state changes of the SDP client.
The c evt parameter of the callback can be one of the following values: li
SDP_CLIENT_STATE_IDLE |li SDP_CLIENT_STATE_CONNECTING li
SDP_CLIENT_STATE_DISCONNECTING li SDP_CLIENT_STATE_CONNECTED

param callback_param A pointer... more

brief Find source ingroup a2dp

details This function looks for a source on a remote device specified by ¢ deviceAddress and,
if found, returns features supported by the source.

param deviceAddress The address of a remote device. param callback The callback function
that will be called when search has completed. param client_callback The optional callback
function that an application can set if it wants to be notified of state changes of the SDP client.
The c evt parameter of the callback can be one of the following values: li
SDP_CLIENT_STATE_IDLE |li SDP_CLIENT_STATE_CONNECTING li
SDP_CLIENT_STATE_DISCONNECTING li SDP_CLIENT_STATE_CONNECTED

param callback_param A pointer... more

brief Return a pointer to an instance of the A2DP manager. ingroup a2dp
details This function returns a pointer to an instance of the A@DP manager. There is only one

instance of the manager allocated by the stack. The pointer is passed as the first parameter to
all A2DP functions.

brief Initialize the A2DP layer. ingroup a2dp

details This function initializes the A2DP layer of the stack. It must be called prior to any other
A2DP function can be called.

This is function bt_a2dp_mpeg_codec_handler.

brief Open & start a stream ingroup a2dp

details Opening a stream involves sending 3 requests to a remote device - "set configuration",
"open stream" and "start stream"”. Each event generates its own event which must be handled
and acted accordingly by the application. To make the use of API easier dotstack combines
all these requests in one request called "open & start stream". dotstack sends necessary
requests in a proper sequence, handles responses and generates only one event
(A2DP_EVT_OPEN_AND_START_STREAM_COMPLETED) at the end. If any of the
individual requests has failed the event's parameter
bt_a2dp_event_t::open_and_start_stream_completed is populated with... more

brief Register default AAC codec ingroup a2dp

details This function adds AAC codec implemented by dotstack to the list of known codecs.
For more information about codecs see description of ::bt_avdtp_register_codec. The only
codec A2DP is mandatory to support is SBC. All other codecs are optional. If an application
wants to use AAC codec it must call this function when it is initializing.

note dotstack codecs do not do actual encoding/decoding. their function is to parse and
serialize codec's configuration.

param mgr A2DP manager.

MPLAB Harmony v1.11 64

Volume IV: MPLAB Harmony Framework

¢ bt_a2dp_register_callback

@ bt_a2dp_register_mpeg_codec

¢ bt_a2dp_sbc_codec_handler
bt_a2dp_start
¢ bt_a2dp_set_configuration

AVCTP Data Types and Constants

Name
b _bt_avctp_channel_t
» _bt_avctp_event_u
» _bt_avctp_evt_channel_connected_t

gﬁi

> _bt_avctp_evt_command_cancelled_t

g{(

L3 _bt_avctp_evt_command_sent_t

© 2013-2017 Microchip Technology Inc.

_bt_avctp_evt_channel_disconnected_t

_bt_avctp_evt_command_received_t

Bluetooth Stack Library Help Library Interface

brief Register a A2DP application callback. ingroup a2dp

details In order to be notified of various events a consumer of the A2DP layer has to register a
callback function. The stack will call this function whenever a new event has been generated
passing the code of the event as the second parameter. The event can be one of the following
values:

@arg A2DP_EVT_CTRL_CHANNEL_CONNECTED: Control channel connected. @arg
A2DP_EVT_CTRL_CHANNEL_DISCONNECTED: Control channel disconnected. @arg
A2DP_EVT_CTRL_CONNECTION_FAILED: Control channel connection failed (generated
only if control connection has been initiated by the local device). @arg
A2DP_EVT_DISCOVER_COMPLETED: Local device completed discovering remote SEPs....
more

brief Register default MPEG codec ingroup a2dp

details This function adds MPEG codec implemented by dotstack to the list of known codecs.
For more information about codecs see description of ::bt_avdtp_register_codec. The only
codec A2DP is mandatory to support is SBC. All other codecs are optional. If an application
wants to use MPEG-1,2 codec it must call this function when it is initializing.

note dotstack codecs do not do actual encoding/decoding. their function is to parse and
serialize codec's configuration.

param mgr A2DP manager.
This is function bt_a2dp_sbc_codec_handler.

brief Start the A2DP layer. ingroup a2dp

details This function makes the A2DP layer ready to accept connection requests from remote
device. To make an outgoing connection calling this function is not required.

param mgr AVDTP manager.

return li ¢ TRUE if the function succeeds. li c FALSE otherwise.

This is function bt_a2dp_set_configuration.

Description

brief AVCTP channel description ingroup avctp
details This structure is used to hold information about an AVCTP
channel.

brief Parameter to an application callback. ingroup avctp

details This union is used to pass event specific data to the AVCTP
consumer. Which member of the union points to a valid structure
depends on the event reported to the consumer. In general, each event
has a corresponding member in the union.

brief Parameter to AVCTP_EVT_CHANNEL_CONNECTED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::channel_connected - when a channel between two
devices has been established.

brief Parameter to AVCTP_EVT_CHANNEL_DISCONNECTED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::channel_disconnected - when a channel between
two devices has been terminated.

brief Parameter to AVCTP_EVT_COMMAND_CANCELLED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::command_cancelled - when sending a command
message has been canceled.

brief Parameter to AVCTP_EVT_COMMAND_RECEIVED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::command_received - when a local device received a
command message.

brief Parameter to AVCTP_EVT_COMMAND_SENT event ingroup
avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::command_sent - when a local device finished
sending a command message.

MPLAB Harmony v1.11 65

Volume IV: MPLAB Harmony Framework

<{\'

gii

e

_bt_avctp_evt_connection_failed_t

_bt_avctp_evt_response_cancelled_t

_bt_avctp_evt_response_received_t

_bt_avctp_evt_response_sent_t

_bt_avctp_message_t

_bt_avctp_mgr_t

_bt_avctp_packet_t
_bt_avctp_transport_t

bt_avctp_channel_t
bt_avctp_event_t

bt_avctp_evt_channel_connected_t

bt_avctp_evt_channel_disconnected_t

bt_avctp_evt_command_cancelled_t

bt_avctp_evt_command_received_t

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Parameter to AVCTP_EVT_CONNECTION_FAILED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::connection_failed - when a channel between two
devices could not be established.

brief Parameter to AVCTP_EVT_RESPONSE_CANCELLED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::response_cancelled - when sending a response
message has been canceled.

brief Parameter to AVCTP_EVT_RESPONSE_RECEIVED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::response_received - when a local device received a
response message.

brief Parameter to AVCTP_EVT_RESPONSE_SENT event ingroup
avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::response_sent - when a local device finished
sending a response message.

brief AVCTP message description ingroup avctp
details This structure is used to hold information about an AVCTP
message.

brief AVCTP manager. ingroup avctp

details A structure that glues all pieces together. There is only one
instance of this structure allocated by dotstack. A pointer to the
instance can be get with ¢ bt_avctp_get_mgr().

This is type bt_avctp_packet_t.

brief AVCTP transport description ingroup avctp
details This structure is used to hold information about an AVCTP
transport.

This is type bt_avctp_channel_t.

brief Parameter to an application callback. ingroup avctp

details This union is used to pass event specific data to the AVCTP
consumer. Which member of the union points to a valid structure
depends on the event reported to the consumer. In general, each event
has a corresponding member in the union.

brief Parameter to AVCTP_EVT_CHANNEL_CONNECTED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::channel_connected - when a channel between two
devices has been established.

brief Parameter to AVCTP_EVT_CHANNEL_DISCONNECTED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::channel_disconnected - when a channel between
two devices has been terminated.

brief Parameter to AVCTP_EVT_COMMAND_CANCELLED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::command_cancelled - when sending a command
message has been canceled.

brief Parameter to AVCTP_EVT_COMMAND_RECEIVED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::command_received - when a local device received a
command message.

MPLAB Harmony v1.11 66

Volume IV: MPLAB Harmony Framework

© 2013-2017 Microchip Technology Inc.

bt_avctp_evt command_sent_t

bt_avctp_evt_connection_failed_t

bt_avctp_evt_response_cancelled_t

bt_avctp_evt_response_received_t

bt_avctp_evt_response_sent_t

bt_avctp_message_t
bt_avctp_mgr_callback_fp

bt_avctp_mgr_t

bt_avctp_packet_t

bt_avctp_transport_t

__AVCTP_H

__ AVCTP_PACKET_H
__AVCTP_PRIVATE_H
AVCTP_CHANNEL_FLAG_LISTENING
AVCTP_CHANNEL_FLAG_SENDING
AVCTP_CHANNEL_STATE_CONNECTED
AVCTP_CHANNEL_STATE_CONNECTING
AVCTP_CHANNEL_STATE_DISCONNECTING
AVCTP_CHANNEL_STATE_FREE
AVCTP_CHANNEL_STATE_IDLE
AVCTP_ERROR_BAD_STATE
AVCTP_ERROR_SUCCESS
AVCTP_EVT_CHANNEL_CONNECTED

Bluetooth Stack Library Help

Library Interface

brief Parameter to AVCTP_EVT_COMMAND_SENT event ingroup
avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::command_sent - when a local device finished
sending a command message.

brief Parameter to AVCTP_EVT_CONNECTION_FAILED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::connection_failed - when a channel between two
devices could not be established.

brief Parameter to AVCTP_EVT_RESPONSE_CANCELLED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::response_cancelled - when sending a response
message has been canceled.

brief Parameter to AVCTP_EVT_RESPONSE_RECEIVED event
ingroup avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::response_received - when a local device received a
response message.

brief Parameter to AVCTP_EVT_RESPONSE_SENT event ingroup
avctp

details A pointer to this structure is passed to the AVCTP application
callback as a valid member of the bt_avctp_event_t union -
bt_avctp_event_t::response_sent - when a local device finished
sending a response message.

This is type bt_avctp_message_t.

brief AVCTP application callback. ingroup avctp

details In order to be notified of various events a consumer of the
AVCTP layer has to register a callback function (done with
bt_avctp_set_callback()). The stack will call that function whenever a
new event has been generated.

param mgr AVCTP manager.

param evt AVCTP event. The event can be one of the following values:
@arg AVCTP_EVT_CHANNEL_CONNECTED Channel connected.
@arg AVCTP_EVT_CHANNEL_DISCONNECTED Channel
disconnected. @arg AVCTP_EVT_CONNECTION_FAILED Channel
connection failed (generated only if connection has been initiated by
the local device).

@arg AVCTP_EVT_COMMAND_RECEIVED Command received.
@arg AVCTP_EVT_RESPONE_RECEIVED Response received.
@arg AVCTP_EVT_COMMAND_SENT Command sent. @arg
AVCTP_EVT_RESPONSE_SENT Response... more

This is type bt_avctp_mgr_t.

This is type bt_avctp_packet_t.

This is type bt_avctp_transport_t.

This is macro __ AVCTP_H.

This is macro __ AVCTP_PACKET_H.

This is macro __AVCTP_PRIVATE_H.

This is macro AVCTP_CHANNEL_FLAG_LISTENING.
This is macro AVCTP_CHANNEL_FLAG_SENDING.

This is macro AVCTP_CHANNEL_STATE_CONNECTED.
This is macro AVCTP_CHANNEL_STATE_CONNECTING.
This is macro AVCTP_CHANNEL_STATE_DISCONNECTING.
This is macro AVCTP_CHANNEL_STATE_FREE.

This is macro AVCTP_CHANNEL_STATE_IDLE.

This is macro AVCTP_ERROR_BAD_STATE.

This is macro AVCTP_ERROR_SUCCESS.

< This event is generated when a channel between two AVCTP entities
has been established.

MPLAB Harmony v1.11 67

Volume IV: MPLAB Harmony Framework

AVCTP_EVT_CHANNEL_DISCONNECTED

AVCTP_EVT_COMMAND_CANCELLED
AVCTP_EVT_COMMAND_RECEIVED
AVCTP_EVT_COMMAND_SENT

AVCTP_EVT_CONNECTION_FAILED

AVCTP_EVT_NOTHING

AVCTP_EVT_RESPONE_RECEIVED
AVCTP_EVT_RESPONSE_CANCELLED
AVCTP_EVT_RESPONSE_SENT

AVCTP_MANAGER_STATE_IDLE
AVCTP_MESSAGE_PACKET_TYPE_CONTINUE
AVCTP_MESSAGE_PACKET_TYPE_END
AVCTP_MESSAGE_PACKET_TYPE_SINGLE
AVCTP_MESSAGE_PACKET_TYPE_START
AVCTP_MESSAGE_TYPE_COMMAND
AVCTP_MESSAGE_TYPE_RESPONSE
AVCTP_TRANSPORT_FLAG_RX_MESSAGE_STARTED

AVCTP_TRANSPORT_FLAG_SENDING
AVCTP_TRANSPORT_STATE_CONNECTED
AVCTP_TRANSPORT_STATE_CONNECTING
AVCTP_TRANSPORT_STATE_DISCONNECTING
AVCTP_TRANSPORT_STATE_FREE
AVCTP_TRANSPORT_STATE_IDLE
AVDTP_MANAGER_FLAG_SENDING_MEDIA_PACKET

AVCTP Functions

Name Description
_bt_avctp_allocate_channel
_bt_avctp_allocate_message
_bt_avctp_allocate_transport
_bt_avctp_find_channel
_bt_avctp_find_transport
_bt_avctp_free_channel
_bt_avctp_free_message
_bt_avctp_free_transport
_bt_avctp_init_message_buffers
_bt_avctp_init_signal
_bt_avctp_l2cap_read_data_callback
_bt_avctp_packet_assembler
_bt_avctp_send_ipid
_bt_avctp_set_signal
_bt_avrcp_init_cmd_buffers
bt_avctp_cancel_command

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ O <

Bluetooth Stack Library Help

Library Interface

< This event is generated when a channel between two AVCTP entities
has been terminated.

< This event is generated when a command has been canceled.
< This event is generated when a local device received a command.

< This event is generated when a local device finished sending a
command.

< This event is generated when a local device failed to create a
channel between two AVCTP entities.

addtogroup avrcp @{
@name Events

details The following is a list of events AVRCP layer generates and can
report to the upper layer when it completes executing an operation
initiated by either local or remote device.

< This event is generated when a local device received a response.
< This event is generated when a response has been canceled.

< This event is generated when a local device finished sending a
response.

This is macro AVCTP_MANAGER_STATE_IDLE.

This is macro AVCTP_MESSAGE_PACKET_TYPE_CONTINUE.
This is macro AVCTP_MESSAGE_PACKET_TYPE_END.

This is macro AVCTP_MESSAGE_PACKET_TYPE_SINGLE.
This is macro AVCTP_MESSAGE_PACKET_TYPE_START.
This is macro AVCTP_MESSAGE_TYPE_COMMAND.

This is macro AVCTP_MESSAGE_TYPE_RESPONSE.

This is macro
AVCTP_TRANSPORT_FLAG_RX_ MESSAGE_STARTED.

This is macro AVCTP_TRANSPORT_FLAG_SENDING.

This is macro AVCTP_TRANSPORT_STATE_CONNECTED.
This is macro AVCTP_TRANSPORT_STATE_CONNECTING.
This is macro AVCTP_TRANSPORT_STATE_DISCONNECTING.
This is macro AVCTP_TRANSPORT_STATE_FREE.

This is macro AVCTP_TRANSPORT_STATE_IDLE.

This is macro
AVDTP_MANAGER_FLAG_SENDING_MEDIA_PACKET.

This is function _bt_avctp_allocate_channel.

This is function _bt_avctp_allocate_message.
This is function _bt_avctp_allocate_transport.
This is function _bt_avctp_find_channel.

This is function _bt_avctp_find_transport.

This is function _bt_avctp_free_channel.

This is function _bt_avctp_free_message.

This is function _bt_avctp_free_transport.

This is function _bt_avctp_init_message_buffers.
This is function _bt_avctp_init_signal.

This is function _bt_avctp_|2cap_read_data_callback.
This is function _bt_avctp_packet_assembler.
This is function _bt_avctp_send_ipid.

This is function _bt_avctp_set_signal.

This is function _bt_avrcp_init_cmd_buffers.

brief Cancel a command message. ingroup avctp

details If a message has not yet been sent to the remote device, it can be canceled (i.e.
removed from send queue) by calling this function.

param channel AVCTP channel. param tran_id Transaction Id. This value is obtained by
calling bt_avctp_send_command.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise. No events will be

generated.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v1.11

68

Volume IV: MPLAB Harmony Framework

¢ bt_avctp_cancel_listen

¢ bt_avctp_cancel_response

¢ bt_avctp_connect

¢ bt_avctp_create_channel

¢ bt_avctp_create_outgoing_channel

@ bt_avctp_destroy channel

¢ bt_avctp_disconnect

¢ bt_avctp_get_channel_remote_address
¢ bt_avctp_get_channel_state

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Cancel listening for incoming connections. ingroup avctp

details This function stops listening for incoming connections on the specified channel.
param channel AVCTP channel.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

brief Cancel a response message. ingroup avctp

details If a message has not yet been sent to the remote device, it can be canceled (i.e.
removed from send queue) by calling this function.

param channel AVCTP channel. param tran_id Transaction Id. This value is obtained by
calling bt_avctp_send_command.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise. No events will be
generated.

brief Connect to a remote device. ingroup avctp

details This function establishes a connection to a remote device specified by the p
remote_address. If connection cannot be initiated for some reason, for example, there is
not enough resources, it returns FALSE and no events are generated. Otherwise the
result of an attempt to connect to the remote device is reported via the AVCTP callback.
The events generated will either be AVCTP_EVT_CHANNEL_CONNECTED or
AVCTP_EVT_CONNECTION_FAILED.

param channel AVCTP channel. param remote_address The address of a remote device.
param acl_config ACL link configuration. This can be a combination of the following
values:... more

brief Allocate AVCTP channel ingroup avctp

details This function allocates a new incoming AVCTP channel. The channel is intended
to be used to accept a connection from a remote device. There can be only one channel
for each combination of ¢ profile_id and ¢ psm.

param mgr AVCTP manager. param profile_id Profile Id param psm The PSM on which
the underlying L2CAP channel will listen and accept incoming connections. param
I2cap_mode Underlying L2ZCAP channel mode. This currently can only be
CMODE_BASIC.

return li A pointer to the new AVCTP channel if the function succeeds. li ¢ NULL otherwise.

brief Allocate AVCTP channel ingroup avctp

details This function allocates a new outgoing AVCTP channel. The channel is intended to
be used to create a connection to a remote device. There can be multiple channels with
the same c profile_id and ¢ psm.

param mgr AVCTP manager. param profile_id Profile Id param psm The PSM on which
the underlying L2CAP channel will listen and accept incoming connections. param
I2cap_mode Underlying L2ZCAP channel mode. This currently can only be
CMODE_BASIC.

return li A pointer to the new AVCTP channel if the function succeeds. li ¢ NULL otherwise.
brief Destroy AVCTP channel. ingroup avctp
details This function frees memory used by the channel. The channel has to exist and be

in the "idle" state for this function to succeed. I.e. the channel has to be disconnected
before this function can be called.

param channel AVCTP channel.
return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

brief Disconnect from a remote device. ingroup avctp

details This function closes a connection to a remote device.

param channel AVCTP channel.

return li ¢ TRUE if disconnection has been started. li c FALSE otherwise. No events will
be generated.

brief Get channel's remote BT address. ingroup avctp

details This function returns the address of the remote device associated with the channel.
param channel AVCTP channel.

return li The address of the remote device if channel is connected. li NULL otherwise.

brief Get channel state ingroup avctp
details This function return current state of the specified channel
param channel AVCTP channel.

return li AVCTP_CHANNEL_STATE_FREE li AVCTP_CHANNEL_STATE_IDLE li
AVCTP_CHANNEL_STATE_CONNECTING li
AVCTP_CHANNEL_STATE_CONNECTED li
AVCTP_CHANNEL_STATE_DISCONNECTING

MPLAB Harmony v1.11 69

Volume IV: MPLAB Harmony Framework

@ bt_avctp_get_hci_connection
@ bt_avctp_get_mgr

¢ bt_avctp_init

¢ bt_avctp_listen

¢ bt_avctp_send_command

¢ bt_avctp_send_response

@ bt_avctp_set_callback

¢ bt_avctp_start

AVDTP Data Types and Constants

Name
P _bt_avdtp_codec_op_decode_t
> _bt_avdtp_codec_op_encode_t
P _bt_avdtp_codec_op_param_u
k<4 _bt_avdtp_codec_op_parse_config_t
» _bt_avdtp_codec_op_parse_packet_t

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Get HCI connection for a channel ingroup avctp

details This function returns a pointer to a structure that describes an HCI connection a
channel is open on. The return value can be used to call various function from the HCI
layer. For example, if an app wants to force disconnection from a remote device it can call
:bt_hci_disconnect.

param channel AVCTP channel.

return li ¢ Pointer to a structure that describes an HCI connection if the function succeeds.
li ¢ NULL otherwise. The function fails only if a channel specified by the p channel
parameter li does... more

brief Return a pointer to an instance of the AVCTP manager. ingroup avctp

details This function returns a pointer to an instance of the AVCTP manager. There is only
one instance of the manager allocated by the stack.

brief Initialize the AVCTP layer. ingroup avctp

details This function initializes the AVCTP layer of the stack. It must be called prior to any
other AVCTP function can be called.

brief Listen for incoming connections. ingroup avctp

details This function enables incoming connections on the specified AVCTP channel.
param channel AVCTP channel.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

brief Send a command message to a remote device. ingroup avctp

details This function sends a command message to a remote device.

param channel AVCTP channel. param data Message body. param data_len Message
body length. param tran_id Pointer to a bt_byte where AVRCP will write transaction id
assigned to the message.

return li ¢ TRUE if the function succeeds. li c FALSE otherwise. No events will be
generated.

brief Send a response message to a remote device. ingroup avctp

details This function sends a response message to a remote device.

param channel AVCTP channel. param tran_id Transaction Id. This value is obtained by
calling bt_avctp_send_command. param data Message body. param data_len Message
body length.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise. No events will be
generated.

brief Register a AVCTP application callback. ingroup avctp

details In order to be notified of various events a consumer of the AVCTP layer has to
register a callback function. The stack will call this function whenever a new event has
been generated passing the code of the event as the second parameter. The event can
be one of the following values: @arg AVCTP_EVT_CHANNEL_CONNECTED Channel
connected. @arg AVCTP_EVT_CHANNEL_DISCONNECTED Channel disconnected.
@arg AVCTP_EVT_CONNECTION_FAILED Channel connection failed (generated only if
connection has been initiated by the local device).

@arg AVCTP_EVT_COMMAND_RECEIVED Command received. @arg
AVCTP_EVT_RESPONE_RECEIVED Response received. @arg
AVCTP_EVT_COMMAND_SENT Command sent. @arg
AVCTP_EVT_RESPONSE_SENT Response... more

This is function bt_avctp_start.

Description
There is currently no use for this structure.
There is currently no use for this structure.

brief Parameter to a codec handler. ingroup avdtp

details This union is used to pass operation specific data to a
codec handler. Which member of the union points to a valid
structure depends on the operation.

brief Parameter to
AVDTP_CODEC_OPCODE_PARSE_CONFIG operation.
ingroup avdtp

details A pointer to this structure is passed to the codec
handler as a valid member of the
bt_avdtp_codec_op_param_t union -
bt_avdtp_codec_op_param_t::parse - when ADVDTP needs
to parse codec's capabilities/configuration received from the
remote device.

There is currently no use for this structure.

MPLAB Harmony v1.11 70

Volume IV: MPLAB Harmony Framework

P _bt_avdtp_codec_op_serialize_config_t
k3 _bt_avdtp_codec _t

P _bt_avdtp_control_channel_t

D _bt_avdtp_control_cmd_t

» _bt_avdtp_ctrl_evt_data_received_t

P _bt_avdtp_event_u

P _bt_avdtp_evt_abort_stream_requested_t
P _bt_avdtp_evt_close_stream_completed_t
k3 _bt_avdtp_evt_close_stream_requested_t
» _bt_avdtp_evt_ctrl_channel_connected_s
D _bt_avdtp_evt_ctrl_channel_disconnected_s
> _bt_avdtp_evt_discover_completed_t

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

brief Parameter to
AVDTP_CODEC_OPCODE_SERIALIZE_CONFIG operation.
ingroup avdtp

detalils A pointer to this structure is passed to the codec
handler as a valid member of the
bt_avdtp_codec_op_param_t union -
bt_avdtp_codec_op_param_t::serialize - when ADVDTP
needs to serialize codec's capabilities/configuration for
sending to the remote device.

brief Codec handler description. ingroup avdtp

details This structure is used to register a codec handler for

parsing/serializing codec capabilities and configuration. See
description of the ::bt_avdtp_register_codec for more details.

This is type bt_avdtp_control_channel_t.

This is type bt_avdtp_control_cmd_t.

This is type bt_avdtp_ctrl_evt_data_received_t.

brief Parameter to an application callback. ingroup avdtp
details This union is used to pass event specific data to the
AVDTP consumer. Which member of the union points to a
valid structure depends on the event reported to the

consumer. In general, each event has a corresponding
member in the union.

brief Parameter to
AVDTP_EVT_ABORT_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::abort_stream_requested - when AVDTP
received a "abort stream" request.

brief Parameter to
AVDTP_EVT_CLOSE_STREAM_COMPLETED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::close_stream_completed - when AVDTP
received a response to a "close stream" request.

brief Parameter to
AVDTP_EVT_CLOSE_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::close_stream_requested - when AVDTP
received a "close stream” request.

brief Parameter to
AVDTP_EVT_CTRL_CHANNEL_CONNECTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::ctrl_channel_connected - when a control
channel between two devices has been established.

brief Parameter to
AVDTP_EVT_CTRL_CHANNEL_DISCONNECTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::ctrl_channel_disconnected - when a control
channel between two devices has been terminated.

brief Parameter to AVDTP_EVT_DISCOVER_COMPLETED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::discover_completed - when AVDTP
completed discovering SEPs available on a remote device.

71

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

9 _bt_avdtp_evt_get_sep_capabilities_completed_t brief Parameter to
AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED
event ingroup avdtp
details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::get_sep_capabilities_completed - when
AVDTP received a response to a "get SEP capabilities"
request.
AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED only
informs the status of the request - success or failure. In case
of success another event -
AVDTP_EVT_SEP_CAPABILITIES_RECEIVED - is generate
with a pointer to a structure that holds actual SEP's

capabilities.

k3 _bt_avdtp_evt_get_stream_configuration_completed_t brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLET
ED
event ingroup avdtp
details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::get_stream_configuration_completed -
when AVDTP received a response to a "get stream
configuration” request.
AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLET
ED
only informs the status of the request - success or failure. In
case of success another event -
AVDTP_EVT_STREAM_CONFIGURATION_RECEIVED - is
generate with a pointer to a structure that hold actual stream's
configuration.

P _bt_avdtp_evt_media_packet_received_t brief Parameter to
AVDTP_EVT_MEDIA_PACKET_RECEIVED event ingroup
avdtp
details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::media_packet_received - when ADVDTP
received a media packet from the remote device.

b _bt_avdtp_evt_media_packet_send_failed_t brief Parameter to

AVDTP_EVT_MEDIA_PACKET_SEND_FAILED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::media_packet_send_failed - when
ADVDTP failed to send a media packet to the remote device.

ko _bt_avdtp_evt_media_packet_sent_t brief Parameter to AVDTP_EVT_MEDIA_PACKET_SENT
event ingroup avdtp
details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::media_packet_sent - when ADVDTP sent
a media packet to the remote device.

P _bt_avdtp_evt_open_stream_completed_t brief Parameter to
AVDTP_EVT_OPEN_STREAM_COMPLETED event ingroup
avdtp
details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::open_stream_completed - when AVDTP
received a response to a "open stream" request.

_bt_avdtp_evt_open_stream_requested_t brief Parameter to
AVDTP_EVT_OPEN_STREAM_REQUESTED event ingroup
avdtp
detalils A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::open_stream_requested - when AVDTP
received a "open stream" request.

gi(

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 72

Volume IV: MPLAB Harmony Framework

«{\'

gi\'

gi\'

g{(

© 2013-2017 Microchip Technology Inc.

_bt_avdtp_evt_reconfigure_stream_requested_t

_bt_avdtp_evt_sep_capabilities_received_t

_bt_avdtp_evt_sep_info_received_t

_bt_avdtp_evt_set_stream_configuration_completed_t

_bt_avdtp_evt_set_stream_configuration_requested_t

_bt_avdtp_evt_start_stream_completed_t

_bt_avdtp_evt_start_stream_requested_t

_bt_avdtp_evt_stream_aborted_t

MPLAB Harmony v1.11

Bluetooth Stack Library Help Library Interface

brief Parameter to
AVDTP_EVT_RECONFIGURE_STREAM_REQUESTED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::reconfigure_stream_requested - when
AVDTP received a "change stream configuration” request.

brief Parameter to
AVDTP_EVT_SEP_CAPABILITIES_RECEIVED and
AVDTP_EVT_STREAM_CONFIGURATION_RECEIVED
events ingroup avdtp

detalls A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::sep_capabilities_received - when AVDTP
received a positive response to a "get SEP capabilities" or
"get stream configuration" request.

brief Parameter to AVDTP_EVT_SEP_INFO_RECEIVED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::sep_info_received - when AVDTP received
positive result to a "discover” request.
AVDTP_EVT_SEP_INFO_RECEIVED is generated for every
SEP received from the remote device.

brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLET
ED

event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::set_stream_configuration_completed -
when AVDTP received a response to a "set stream
configuration” request.

brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION_REQUEST
ED

event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::set_stream_configuration_requested -
when AVDTP received a "set stream configuration" request.

brief Parameter to
AVDTP_EVT_START_STREAM_COMPLETED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::start_stream_completed - when AVDTP
received a response to a "start stream" request.

brief Parameter to
AVDTP_EVT_START_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::start_stream_requested - when AVDTP
received a "start stream" request.

brief Parameter to AVDTP_EVT_STREAM_ABORTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_closed -
to notify the AVDTP consumer that a stream has been
successfully aborted.

73

Volume IV: MPLAB Harmony Framework

«{\'

«{\'

gi(

gi(

© 2013-2017 Microchip Technology Inc.

_bt_avdtp_evt_stream_closed_t

_bt_avdtp_evt_stream_configured_t

_bt_avdtp_evt_stream_opened_t

_bt_avdtp_evt_stream_reconfigure_completed_t

_bt_avdtp_evt_stream_reconfigured_t

_bt_avdtp_evt_stream_security_control_completed_t

_bt_avdtp_evt_stream_started_t

_bt_avdtp_evt_stream_suspended_t

MPLAB Harmony v1.11

Bluetooth Stack Library Help Library Interface

brief Parameter to AVDTP_EVT_STREAM_CLOSED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_closed -
to notify the AVDTP consumer that a stream has been
successfully closed.

brief Parameter to AVDTP_EVT_STREAM_CONFIGURED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_configured - to notify the AVDTP
consumer that a stream configuration has been successfully
completed.

brief Parameter to AVDTP_EVT_STREAM_OPENED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_opened -
to notify the AVDTP consumer that a stream has been
successfully opened.

brief Parameter to
AVDTP_EVT_STREAM_RECONFIGURE_COMPLETED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_reconfigure_completed - when
AVDTP received a response to a "change stream
configuration" request.

brief Parameter to
AVDTP_EVT_STREAM_RECONFIGURED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_reconfigured - to notify the AVDTP
consumer that a stream configuration has been successfully
changed.

brief Parameter to
AVDTP_EVT_STREAM_SECURITY_CONTROL_COMPLETE
D

event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::security_control_completed - when AVDTP
received a response to a "exchange content protection control
data" request.

brief Parameter to AVDTP_EVT_STREAM_STARTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_started -
to notify the AVDTP consumer that a stream has been
successfully started.

brief Parameter to AVDTP_EVT_STREAM_SUSPENDED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_suspended - to notify the AVDTP
consumer that a stream has been successfully suspended.

74

Volume IV: MPLAB Harmony Framework

Bluetooth Stack Library Help Library Interface

» _bt_avdtp_evt_suspend_stream_completed_t
> _bt_avdtp_evt_suspend_stream_requested_t
k3 _bt_avdtp_mgr_t

P _bt_avdtp_sep_capabilities_t

P _bt_avdtp_sep_t

P _bt_avdtp_stream_t

» _bt_avdtp_transport_channel_t

_bt_avdtp_transport_session_t

gii

_bt_media_packet_t

gi(

bt_avdtp_codec_handler_fp

bt_avdtp_codec_op_decode_t
bt_avdtp_codec_op_encode_t
bt_avdtp_codec_op_param_t
bt_avdtp_codec_op_parse_config_t

bt_avdtp_codec_op_parse_packet_t

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v1.11

brief Parameter to
AVDTP_EVT_SUSPEND_STREAM_COMPLETED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::suspend_stream_completed - when
AVDTP received a response to a "suspend stream" request.

brief Parameter to
AVDTP_EVT_SUSPEND_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::suspend_stream_requested - when
AVDTP received a "suspend stream" request.

brief AVDTP manager. ingroup avdtp

details A structure that glues all pieces together. There is only
one instance of this structure allocated by dotstack. A pointer
to the instance can be get with ¢ bt_avdtp_get_mgr().

brief SEP capabilities ingroup avdtp
details This structure is used to hold SEP capabilities.

brief SEP description ingroup avdtp
details This structure is used to hold information about SEPs
available on a local device.

brief Stream description ingroup avdtp

details This structure is used to hold information about
streams available on a local device.

brief Transport channel description ingroup avdtp

details This structure is used to hold information about
transport channels available on a local device.

brief Transport session description ingroup avdtp

details This structure is used to hold information about
transport sessions available on a local device.

brief Media packet buffer ingroup avdtp

details This structure is used to receive and send media
packet from/to the remote device. See more information about
usage of this structure in descriptions of
::bt_avdtp_add_media_rx_buffer and

bt _avdtp_add_media_tx_buffer.

brief Codec handler. ingroup avdtp

details AVDTP in theory can support any type of codec. Each
codec uses its own format for exchanging capabilities and
configuration information. In order to make out
implementation do not care about these formats we use a
simple way of telling AVDTP how to parse and serialize
codec's configuration. The consumer of AVDTP (e.g. A2DP)
for each codec it wishes to support has to register a callback
function (one per codec type). That callback has to perform
two function. The first one is to read the configuration
received from the remote device and store it... more

There is currently no use for this structure.

There is currently no use for this structure.

This is type bt_avdtp_codec_op_param_t.

brief Parameter to
AVDTP_CODEC_OPCODE_PARSE_CONFIG operation.
ingroup avdtp

details A pointer to this structure is passed to the codec
handler as a valid member of the
bt_avdtp_codec_op_param_t union -
bt_avdtp_codec_op_param_t::parse - when ADVDTP needs

to parse codec's capabilities/configuration received from the
remote device.

There is currently no use for this structure.

75

Volume IV: MPLAB Harmony Framework

bt_avdtp_codec_op_serialize_config_t

bt_avdtp_codec_t

bt_avdtp_control_channel_t
bt_avdtp_control_cmd_t
bt_avdtp_ctrl_evt_data_received_t
bt_avdtp_event_t

bt_avdtp_evt_abort_stream_requested_t

bt_avdtp_evt_close_stream_completed_t

bt_avdtp_evt_close_stream_requested_t

bt_avdtp_evt_ctrl_channel_connected_t

bt_avdtp_evt_ctrl_channel_disconnected_t

bt_avdtp_evt_discover_completed_t

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

brief Parameter to
AVDTP_CODEC_OPCODE_SERIALIZE_CONFIG operation.
ingroup avdtp

detalils A pointer to this structure is passed to the codec
handler as a valid member of the
bt_avdtp_codec_op_param_t union -
bt_avdtp_codec_op_param_t::serialize - when ADVDTP
needs to serialize codec's capabilities/configuration for
sending to the remote device.

brief Codec handler description. ingroup avdtp
details This structure is used to register a codec handler for

parsing/serializing codec capabilities and configuration. See
description of the ::bt_avdtp_register_codec for more details.

This is type bt_avdtp_control_channel_t.
This is type bt_avdtp_control_cmd_t.
This is type bt_avdtp_ctrl_evt_data_received_t.

brief Parameter to an application callback. ingroup avdtp
details This union is used to pass event specific data to the
AVDTP consumer. Which member of the union points to a
valid structure depends on the event reported to the
consumer. In general, each event has a corresponding
member in the union.

brief Parameter to
AVDTP_EVT_ABORT_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::abort_stream_requested - when AVDTP
received a "abort stream" request.

brief Parameter to
AVDTP_EVT_CLOSE_STREAM_COMPLETED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::close_stream_completed - when AVDTP
received a response to a "close stream" request.

brief Parameter to
AVDTP_EVT_CLOSE_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::close_stream_requested - when AVDTP
received a "close stream” request.

brief Parameter to
AVDTP_EVT_CTRL_CHANNEL_CONNECTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::ctrl_channel_connected - when a control
channel between two devices has been established.

brief Parameter to
AVDTP_EVT_CTRL_CHANNEL_DISCONNECTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::ctrl_channel_disconnected - when a control
channel between two devices has been terminated.

brief Parameter to AVDTP_EVT_DISCOVER_COMPLETED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::discover_completed - when AVDTP
completed discovering SEPs available on a remote device.

76

Volume IV: MPLAB Harmony Framework

bt_avdtp_evt_get_sep_capabilities_completed_t

bt_avdtp_evt_get_stream_configuration_completed_t

bt_avdtp_evt_media_packet_received_t

bt_avdtp_evt_media_packet_send_failed_t

bt_avdtp_evt_media_packet_sent_t

bt_avdtp_evt_open_stream_completed_t

bt_avdtp_evt_open_stream_requested_t

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v1.11

Bluetooth Stack Library Help Library Interface

brief Parameter to
AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::get_sep_capabilities_completed - when
AVDTP received a response to a "get SEP capabilities"
request.
AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED only
informs the status of the request - success or failure. In case
of success another event -
AVDTP_EVT_SEP_CAPABILITIES_RECEIVED - is generate
with a pointer to a structure that holds actual SEP's
capabilities.

brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLET
ED

event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::get_stream_configuration_completed -
when AVDTP received a response to a "get stream
configuration” request.
AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLET
ED

only informs the status of the request - success or failure. In
case of success another event -
AVDTP_EVT_STREAM_CONFIGURATION_RECEIVED - is
generate with a pointer to a structure that hold actual stream's
configuration.

brief Parameter to
AVDTP_EVT_MEDIA_PACKET_RECEIVED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::media_packet_received - when ADVDTP
received a media packet from the remote device.

brief Parameter to
AVDTP_EVT_MEDIA_PACKET_SEND_FAILED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::media_packet_send_failed - when
ADVDTP failed to send a media packet to the remote device.

brief Parameter to AVDTP_EVT_MEDIA_PACKET_SENT
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::media_packet_sent - when ADVDTP sent
a media packet to the remote device.

brief Parameter to
AVDTP_EVT_OPEN_STREAM_COMPLETED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::open_stream_completed - when AVDTP
received a response to a "open stream" request.

brief Parameter to
AVDTP_EVT_OPEN_STREAM_REQUESTED event ingroup
avdtp

detalils A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::open_stream_requested - when AVDTP
received a "open stream" request.

7

Volume IV: MPLAB Harmony Framework

bt_avdtp_evt_reconfigure_stream_requested_t

bt_avdtp_evt_sep_capabilities_received_t

bt_avdtp_evt_sep_info_received_t

bt_avdtp_evt_set_stream_configuration_completed_t

bt_avdtp_evt_set_stream_configuration_requested_t

bt_avdtp_evt_start_stream_completed_t

bt_avdtp_evt_start_stream_requested_t

bt_avdtp_evt_stream_aborted_t

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v1.11

Bluetooth Stack Library Help Library Interface

brief Parameter to
AVDTP_EVT_RECONFIGURE_STREAM_REQUESTED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::reconfigure_stream_requested - when
AVDTP received a "change stream configuration” request.

brief Parameter to
AVDTP_EVT_SEP_CAPABILITIES_RECEIVED and
AVDTP_EVT_STREAM_CONFIGURATION_RECEIVED
events ingroup avdtp

detalls A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::sep_capabilities_received - when AVDTP
received a positive response to a "get SEP capabilities" or
"get stream configuration" request.

brief Parameter to AVDTP_EVT_SEP_INFO_RECEIVED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::sep_info_received - when AVDTP received
positive result to a "discover” request.
AVDTP_EVT_SEP_INFO_RECEIVED is generated for every
SEP received from the remote device.

brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLET
ED

event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::set_stream_configuration_completed -
when AVDTP received a response to a "set stream
configuration” request.

brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION_REQUEST
ED

event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::set_stream_configuration_requested -
when AVDTP received a "set stream configuration" request.

brief Parameter to
AVDTP_EVT_START_STREAM_COMPLETED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::start_stream_completed - when AVDTP
received a response to a "start stream" request.

brief Parameter to
AVDTP_EVT_START_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::start_stream_requested - when AVDTP
received a "start stream" request.

brief Parameter to AVDTP_EVT_STREAM_ABORTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_closed -
to notify the AVDTP consumer that a stream has been
successfully aborted.

78

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

bt_avdtp_evt_stream_closed_t

bt_avdtp_evt_stream_configured_t

bt_avdtp_evt_stream_opened_t

bt_avdtp_evt_stream_reconfigure_completed_t

bt_avdtp_evt_stream_reconfigured_t

bt_avdtp_evt_stream_security_control_completed_t

bt_avdtp_evt_stream_started_t

bt_avdtp_evt_stream_suspended_t

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

brief Parameter to AVDTP_EVT_STREAM_CLOSED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_closed -
to notify the AVDTP consumer that a stream has been
successfully closed.

brief Parameter to AVDTP_EVT_STREAM_CONFIGURED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_configured - to notify the AVDTP
consumer that a stream configuration has been successfully
completed.

brief Parameter to AVDTP_EVT_STREAM_OPENED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_opened -
to notify the AVDTP consumer that a stream has been
successfully opened.

brief Parameter to
AVDTP_EVT_STREAM_RECONFIGURE_COMPLETED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_reconfigure_completed - when
AVDTP received a response to a "change stream
configuration" request.

brief Parameter to
AVDTP_EVT_STREAM_RECONFIGURED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_reconfigured - to notify the AVDTP
consumer that a stream configuration has been successfully
changed.

brief Parameter to
AVDTP_EVT_STREAM_SECURITY_CONTROL_COMPLETE
D

event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::security_control_completed - when AVDTP
received a response to a "exchange content protection control
data" request.

brief Parameter to AVDTP_EVT_STREAM_STARTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union - bt_avdtp_event_t::stream_started -
to notify the AVDTP consumer that a stream has been
successfully started.

brief Parameter to AVDTP_EVT_STREAM_SUSPENDED
event ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::stream_suspended - to notify the AVDTP
consumer that a stream has been successfully suspended.

79

Volume IV: MPLAB Harmony Framework

bt_avdtp_evt_suspend_stream_completed_t

bt_avdtp_evt_suspend_stream_requested_t

bt_avdtp_mgr_callback_fp

bt_avdtp_mgr_t

bt_avdtp_sep_capabilities_t

bt_avdtp_sep_t
bt_avdtp_stream_t

bt_avdtp_transport_channel_t

bt_avdtp_transport_op_callback_fp
bt_avdtp_transport_session_t

bt_media_packet_t
__AVDTP_CONFIG_H
__AVDTP_CONTROL_H
__AVDTP_H

_ AVDTP_PRIVATE_H

Bluetooth Stack Library Help

AVDTP_CODEC_OPCODE_PARSE_CONFIG
AVDTP_CODEC_OPCODE_PARSE_PACKET
AVDTP_CODEC_OPCODE_SERIALIZE_CONFIG

AVDTP_CODEC_TYPE_ATRAC
AVDTP_CODEC_TYPE_MPEG1_2_AUDIO
AVDTP_CODEC_TYPE_MPEG2_4_AAC
AVDTP_CODEC_TYPE_NON_A2DP
AVDTP_CODEC_TYPE_SBC

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v1.11

Library Interface

brief Parameter to
AVDTP_EVT_SUSPEND_STREAM_COMPLETED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::suspend_stream_completed - when
AVDTP received a response to a "suspend stream" request.

brief Parameter to
AVDTP_EVT_SUSPEND_STREAM_REQUESTED event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::suspend_stream_requested - when
AVDTP received a "suspend stream" request.

brief AVDTP application callback. ingroup avdtp

details In order to be notified of various events a consumer of
the AVDTP layer has to register a callback function. The stack
will call that function whenever a new event has been
generated.

param mgr AVDTP manager.

param evt AVDTP event. The event can be one of the
following values: @arg
AVDTP_EVT_CTRL_CHANNEL_CONNECTED: Control
channel connected. @arg
AVDTP_EVT_CTRL_CHANNEL_DISCONNECTED: Control
channel disconnected. @arg
AVDTP_EVT_CTRL_CONNECTION_FAILED: Control
channel connection failed (generated only if control
connection has been initiated by the local device). @arg
AVDTP_EVT_DISCOVER_COMPLETED: Local device
completed discovering remote SEPs. @arg
AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED....
more

brief AVDTP manager. ingroup avdtp

details A structure that glues all pieces together. There is only
one instance of this structure allocated by dotstack. A pointer
to the instance can be get with ¢ bt_avdtp_get_mgr().

brief SEP capabilities ingroup avdtp
details This structure is used to hold SEP capabilities.

This is type bt_avdtp_sep_t.

brief Stream description ingroup avdtp
details This structure is used to hold information about
streams available on a local device.

brief Transport channel description ingroup avdtp
details This structure is used to hold information about
transport channels available on a local device.

This is type bt_avdtp_transport_op_callback_fp.

brief Transport session description ingroup avdtp

details This structure is used to hold information about
transport sessions available on a local device.

This is type bt_media_packet_t.

This is macro __ AVDTP_CONFIG_H.

This is macro __ AVDTP_CONTROL_H.

This is macro __AVDTP_H.

This is macro __AVDTP_PRIVATE_H.

< Parse codec configuration.

This is macro AVDTP_CODEC_OPCODE_PARSE_PACKET.
< Serialize codec configuration.

< ATRAC (proprietary codec owned by Sony Corporation).
< MPEG-1,2 (optional).

< MPEG-2,4 AAC (optional, used in Apple's products).

< Vendor specific.

< SBC (mandatory to support in A2DP profile).

80

Volume IV: MPLAB Harmony Framework

© 2013-2017 Microchip Technology Inc.

AVDTP_CTLR_CHANNEL_EVT_CONNECTED

AVDTP_CTLR_CHANNEL_EVT_CONNECTION_FAILED

AVDTP_CTLR_CHANNEL_EVT_DISCONNECTED

AVDTP_CTLR_CHANNEL_EVT_NOTHING
AVDTP_CTRL_CHANNEL_EVT_DATA_RECEIVED

AVDTP_CTRL_CHANNEL_STATE_CONNECTED

AVDTP_CTRL_CHANNEL_STATE_CONNECTING

AVDTP_CTRL_CHANNEL_STATE_DISCONNECTED

AVDTP_CTRL_MESSAGE_TYPE_ACCEPT
AVDTP_CTRL_MESSAGE_TYPE_COMMAND
AVDTP_CTRL_MESSAGE_TYPE_FLD
AVDTP_CTRL_MESSAGE_TYPE_REJECT
AVDTP_CTRL_PACKET_TYPE_CONTINUE
AVDTP_CTRL_PACKET_TYPE_END
AVDTP_CTRL_PACKET_TYPE_FLD
AVDTP_CTRL_PACKET_TYPE_SIGNLE
AVDTP_CTRL_PACKET_TYPE_START
AVDTP_ERROR_BAD_ACP_SEID

AVDTP_ERROR_BAD_CP_FORMAT

AVDTP_ERROR_BAD_HEADER_FORMAT
AVDTP_ERROR_BAD_LENGTH

AVDTP_ERROR_BAD_MEDIA_TRANSPORT_FORMAT

AVDTP_ERROR_BAD_MULTIPLEXING_FORMAT
AVDTP_ERROR_BAD_PAYLOAD_FORMAT
AVDTP_ERROR_BAD_RECOVERY_FORMAT
AVDTP_ERROR_BAD_RECOVERY_TYPE
AVDTP_ERROR_BAD_ROHC_FORMAT

AVDTP_ERROR_BAD_SERV_CATEGORY

AVDTP_ERROR_BAD_STATE

AVDTP_ERROR_FAILED_TO_CONNECT_CONTROL

AVDTP_ERROR_FAILED_TO_CONNECT_TRANSPORT

AVDTP_ERROR_INVALID_CAPABILITIES

AVDTP_ERROR_NOT_SUPPORTED_COMMAND
AVDTP_ERROR_SEP_IN_USE
AVDTP_ERROR_SEP_NOT_IN_USE
AVDTP_ERROR_SUCCESS
AVDTP_ERROR_UNSUPPORTED_CONFIGURAION
AVDTP_EVT_ABORT_STREAM_COMPLETED

AVDTP_EVT_ABORT_STREAM_REQUESTED

AVDTP_EVT_CLOSE_STREAM_COMPLETED

AVDTP_EVT_CLOSE_STREAM_REQUESTED

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

This is macro AVDTP_CTLR_CHANNEL_EVT_CONNECTED.

This is macro
AVDTP_CTLR_CHANNEL_EVT_CONNECTION_FAILED.

This is macro
AVDTP_CTLR_CHANNEL_EVT_DISCONNECTED.

This is macro AVDTP_CTLR_CHANNEL_EVT_NOTHING.

This is macro
AVDTP_CTRL_CHANNEL_EVT_DATA_RECEIVED.

This is macro
AVDTP_CTRL_CHANNEL_STATE_CONNECTED.

This is macro
AVDTP_CTRL_CHANNEL_STATE_CONNECTING.

This is macro
AVDTP_CTRL_CHANNEL_STATE_DISCONNECTED.

This is macro AVDTP_CTRL_MESSAGE_TYPE_ACCEPT.
This is macro AVDTP_CTRL_MESSAGE_TYPE_COMMAND.
This is macro AVDTP_CTRL_MESSAGE_TYPE_FLD.

This is macro AVDTP_CTRL_MESSAGE_TYPE_REJECT.
This is macro AVDTP_CTRL_PACKET_TYPE_CONTINUE.
This is macro AVDTP_CTRL_PACKET_TYPE_END.

This is macro AVDTP_CTRL_PACKET_TYPE_FLD.

This is macro AVDTP_CTRL_PACKET_TYPE_SIGNLE.

This is macro AVDTP_CTRL_PACKET_TYPE_START.

< The requested command indicates an invalid ACP SEP ID
(not addressable)

< The format of Content Protection Service Capability is not
correct.

< The request packet header format is invalid.

< The request packet length is not match the assumed length.
< The format of Media Transport Capability is not correct.

< The format of Multiplexing Service Capability is not correct.
< The requested command has an incorrect payload format.
< The format of Recovery Service Capability is not correct.

< The requested Recovery Type is not defined in AVDTP.

< The format of Header Compression Service Capability is
not correct.

< The value of Service Category in the request packet is not
defined in AVDTP.

< The stream is in state that does not permit executing
commands.

< An attempt to establish a control channel has failed.
< An attempt to establish a transport channel has failed.

< The reconfigure command is an attempt to reconfigure a
transport service capabilities of the SEP. Reconfigure is only
permitted for application service capabilities.

< The requested command is not supported by the device.
< The SEP is in use.

< The SEP is not in use.

< The operation completed with no errors.

< Configuration not supported.

< This event is generated when a local device received a
response (either positive or negative) to a "abort stream"
request.

< This event is generated when a local device received "abort
stream" request.

< This event is generated when a local device received a
response (either positive or negative) to a "close stream"
request.

< This event is generated when a local device received "close
stream” request.

81

Volume IV: MPLAB Harmony Framework

© 2013-2017 Microchip Technology Inc.

AVDTP_EVT_CTRL_CHANNEL_CONNECTED

AVDTP_EVT_CTRL_CHANNEL_DISCONNECTED

AVDTP_EVT_CTRL_CONNECTION_FAILED

AVDTP_EVT_DISCOVER_COMPLETED

AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED

AVDTP_EVT_GET_STREAM_CONFIGURATION_COMPLETED

AVDTP_EVT_LAST

AVDTP_EVT_MEDIA_PACKET_ RECEIVED

AVDTP_EVT_MEDIA_PACKET_SEND_FAILED

AVDTP_EVT_MEDIA_PACKET_SENT

AVDTP_EVT_NULL

AVDTP_EVT_OPEN_STREAM_COMPLETED

AVDTP_EVT_OPEN_STREAM_REQUESTED

AVDTP_EVT_RECONFIGURE_STREAM_REQUESTED

AVDTP_EVT_SEP_CAPABILITIES_RECEIVED

AVDTP_EVT_SEP_INFO_RECEIVED

AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLETED

AVDTP_EVT_SET_STREAM_CONFIGURATION_REQUESTED

AVDTP_EVT_START_STREAM_COMPLETED

AVDTP_EVT_START_STREAM_REQUESTED

AVDTP_EVT_STREAM_ABORTED

AVDTP_EVT_STREAM_CLOSED

AVDTP_EVT_STREAM_CONFIGURATION_RECEIVED

AVDTP_EVT_STREAM_CONFIGURED

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

< This event is generated when a control channel between
two AVDTP entities has been established.

< This event is generated when a control channel between
two AVDTP entities has been terminated.

< This event is generated when a local device failed to create
a control channel between two AVDTP entities.

< This event is generated when a local device received a
response (either positive or negative) to a "discover" request.

< This event is generated when a local device received a
response (either positive or negative) to a "get SEP
capabilities" request.

< This event is generated when a local device received a
response (either positive or negative) to a "get stream
configuration" request.

This is macro AVDTP_EVT_LAST.

< This event is generated when a local device received a
media packet.

< This event is generated when a local device failed to send a
media packet.

< This event is generated when a local device sent a media
packet.

This is macro AVDTP_EVT_NULL.

< This event is generated when a local device received a
response (either positive or negative) to a "open stream"
request.

< This event is generated when a local device received "open
stream" request.

< This event is generated when a local device received
"change stream configuration" request.

< This event is generated when a local device received a
positive response to a "get SEP capabilities” request.

< This event is generated for each SEP contained in a
positive response to a "discover" request.

< This event is generated when a local device received a
response (either positive or negative) to a "set stream
configuration” request.

< This event is generated when a local device received "set
stream configuration" request.

< This event is generated when a local device received a
response (either positive or negative) to a "start stream"
request.

< This event is generated when a local device received "start
stream” request.

< This event is generated when a local device has
successfully aborted a stream. < This event follows the
AVDTP_EVT_ABORT_STREAM_REQUESTED if the upper
layer has accepted it. < This event is not generated if stream
abortion was initiated by the local device.

< This event is generated when a local device has
successfully closed a stream. < This event follows the
AVDTP_EVT_CLOSE_STREAM_REQUESTED if the upper
layer has accepted it. < This event is not generated if stream
closing was initiated by the local device.

< This event is generated when a local device received a
positive response to a "get stream configuration" request.

< This event is generated when a local device has
successfully configured a stream. < This event follows the
AVDTP_EVT_SET_STREAM_CONFIGURATION_REQUEST
ED

if the upper layer has accepted it. < This event is not
generated if stream configuration was initiated by the local
device.

82

Volume IV: MPLAB Harmony Framework

© 2013-2017 Microchip Technology Inc.

AVDTP_EVT_STREAM_OPENED

AVDTP_EVT_STREAM_RECONFIGURE_COMPLETED

AVDTP_EVT_STREAM_RECONFIGURED

AVDTP_EVT_STREAM_SECURITY_CONTROL_COMPLETED

AVDTP_EVT_STREAM_STARTED

AVDTP_EVT_STREAM_SUSPENDED

AVDTP_EVT_SUSPEND_STREAM_COMPLETED

AVDTP_EVT_SUSPEND_STREAM_REQUESTED

AVDTP_MANAGER_STATE_CONNECTING
AVDTP_MANAGER_STATE_IDLE
AVDTP_MAX_STREAM_TRANSPORT_SESSION

AVDTP_MEDIA_TYPE_AUDIO
AVDTP_MEDIA_TYPE_MULTIMEDIA
AVDTP_MEDIA_TYPE_VIDEO
AVDTP_SEP_CAPABILITY_FLAG_CONTENT_PROTECTION

AVDTP_SEP_CAPABILITY_FLAG_HEADER_COMPRESSION

AVDTP_SEP_CAPABILITY_FLAG_MEDIA_CODEC

AVDTP_SEP_CAPABILITY_FLAG_MEDIA_TRANSPORT

AVDTP_SEP_CAPABILITY_FLAG_MULTIPLEXING

AVDTP_SEP_CAPABILITY_FLAG_RECOVERY

AVDTP_SEP_CAPABILITY_FLAG_REPORTING

AVDTP_SEP_SERVICE_CAPABILITY_CONTENT_PROTECTION

AVDTP_SEP_SERVICE_CAPABILITY_HEADER_COMPRESSION

AVDTP_SEP_SERVICE_CAPABILITY_MEDIA_CODEC
AVDTP_SEP_SERVICE_CAPABILITY_MEDIA_TRANSPORT

AVDTP_SEP_SERVICE_CAPABILITY_MULTIPLEXING

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

< This event is generated when a local device has
successfully opened a stream. < This event follows the
AVDTP_EVT_OPEN_STREAM_REQUESTED if the upper
layer has accepted it. < This event is not generated if stream
opening was initiated by the local device.

< This event is generated when a local device received a
response (either positive or negative) to a "change stream
configuration" request.

< This event is generated when a local device has
successfully reconfigured a stream. < This event follows the
AVDTP_EVT_RECONFIGURE_STREAM_REQUESTED if
the upper layer has accepted it. < This event is not generated
if stream reconfiguration was initiated by the local device.

< This event is generated when a local device received a
response (either positive or negative) to a "exchange content
protection control data" request.

< This event is generated when a local device has
successfully started a stream. < This event follows the
AVDTP_EVT_START_STREAM_REQUESTED if the upper
layer has accepted it. < This event is not generated if stream
starting was initiated by the local device.

< This event is generated when a local device has
successfully suspended a stream. < This event follows the
AVDTP_EVT_SUSPEND_STREAM_REQUESTED if the
upper layer has accepted it. < This event is not generated if
stream suspension was initiated by the local device.

< This event is generated when a local device received a
response (either positive or negative) to a "suspend stream"
request.

< This event is generated when a local device received
"suspend stream" request.

This is macro AVDTP_MANAGER_STATE_CONNECTING.
This is macro AVDTP_MANAGER_STATE_IDLE.

This is macro
AVDTP_MAX_STREAM_TRANSPORT_SESSION.

< Audio.
< Both Audio & Video.
< Video.

< Content Prortection. A SEP is capable of transferring
content protection packets.

< Header Compression. A SEP can use header compression
for transferring Media or Recovery packets.

< Media Codec. Defines which codec a SEP supports. A SEP
can support only one codec.

< Media. A SEP is capable of transferring media (audio, video
or both) packets.

< Multiplexing. Multiple transport sessions, belonging to the
same or to a different stream, can share a common transport
(L2CAP) channel.

< Recovery. A SEP is capable of transferring recovery
packets.

< Reporting. A SEP is capable of transferring reporting
packets.

< Content Prortection. A SEP is capable of transferring
content protection packets.

< Header Compression. A SEP can use header compression
for transferring Media or Recovery packets.

< Media Codec. Defines which codec a SEP supports. A SEP
can support only one codec.

< Media. A SEP is capable of transferring media (audio, video
or both) packets.

< Multiplexing. Multiple transport sessions, belonging to the
same or to a different stream, can share a common transport
(L2CAP) channel.

83

Volume IV: MPLAB Harmony Framework

© 2013-2017 Microchip Technology Inc.

AVDTP_SEP_SERVICE_CAPABILITY_RECOVERY

AVDTP_SEP_SERVICE_CAPABILITY_REPORTING

AVDTP_SEP_STATE_FREE
AVDTP_SEP_STATE_IDLE

AVDTP_SEP_TYPE_SINK
AVDTP_SEP_TYPE_SOURCE
AVDTP_STREAM_CLOSING_TRANSPORT_CHANNELS
AVDTP_STREAM_FLAG_LISTENING

AVDTP_STREAM_OPENING_TRANSPORT_CHANNELS

AVDTP_STREAM_STATE_ABORTING

AVDTP_STREAM_STATE_CLOSING

AVDTP_STREAM_STATE_CONFIGURED
AVDTP_STREAM_STATE_IDLE

AVDTP_STREAM_STATE_OPEN
AVDTP_STREAM_STATE_STREAMING

AVDTP_TC_OPCODE_CONNECT
AVDTP_TC_OPCODE_DISCONNECT
AVDTP_TC_STATUS_ERROR
AVDTP_TC_STATUS_SUCCESS
AVDTP_TRANSPORT_CHANNEL_TYPE_DEDICATED

AVDTP_TRANSPORT_CHANNEL_TYPE_SHARED

AVDTP_TRANSPORT_SESSION_TYPE_MEDIA
AVDTP_TRANSPORT_SESSION_TYPE_RECOVERY
AVDTP_TRANSPORT_SESSION_TYPE_REPORTING
bt_avdtp_connect

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

< Recovery. A SEP is capable of transferring recovery
packets.

< Reporting. A SEP is capable of transferring reporting
packets.

This is macro AVDTP_SEP_STATE_FREE.

This is macro AVDTP_SEP_STATE_IDLE.

< Sink (usually a device like a headphones or BMW).

< Source (usually a device like a phone, desktop or laptop).
< The stream is closing transport channels.

This is macro AVDTP_STREAM_FLAG_LISTENING.

< The stream is opening transport channels.

< The stream is aborting. This means that all transport
channels associated with the stream are being closed. < After
they have been closed the stream goes to
AVDTP_STREAM_STATE_IDLE state.

< The stream is closing. This means that all transport
channels associated with the stream are being closed. < After
they have been closed the stream goes to
AVDTP_STREAM_STATE_IDLE state.

< The stream has been configured.
< The stream is idle. This can mean two things. The stream

specified by strm_handle does not exist < or the stream is
closed.

< The stream has been opened.

< The stream has been started. Depending on the local SEP
type (source or sink) it means < that the stream can send or
receive media packets.

This is macro AVDTP_TC_OPCODE_CONNECT.
This is macro AVDTP_TC_OPCODE_DISCONNECT.
This is macro AVDTP_TC_STATUS_ERROR.

This is macro AVDTP_TC_STATUS_SUCCESS.
This is macro
AVDTP_TRANSPORT_CHANNEL_TYPE_DEDICATED.
This is macro
AVDTP_TRANSPORT_CHANNEL_TYPE_SHARED.
< Media (audio or video).

< Recovery (currently not supported).

< Reporting (currently not supported).

brief Connect to a remote device. ingroup avdtp

details This function opens a control channel connection to a
remote device specified by the p remote_addr. If connection
cannot be initiated for some reason, for example, there is not
enough resources, it returns FALSE and not events are
generated. Otherwise the result of an attempt to connect to
the remote device is reported via the AVDTP callback. The
events generated will either be
AVDTP_EVT_CTRL_CHANNEL_CONNECTED or
AVDTP_EVT_CTRL_CHANNEL_CONNECTION_FAILED.
param mgr AVDTP manager. param remote_addr The
address of a remote device.

return li ¢ TRUE if connection establishment has been started.
lic FALSE... more

84

Volume IV: MPLAB Harmony Framework

g{(

gi\'

© 2013-2017 Microchip Technology Inc.

bt_avdtp_connect_ex

AVDTP_CMD_DELAYREPORT
AVDTP_CMD_GET_ALL_CAPABILITIES
AVDTP_CONTENT_PROTECTION_METHOD_SCMS_T

AVDTP_CTRL_MESSAGE_TYPE_GENERAL_REJECT

AVDTP_SCMS_T_CP_BIT
AVDTP_SCMS_T_L_BIT
bt_avdtp_evt_delay_report_completed_t

bt_cp_header_t
_bt_avdtp_evt_delay_report_completed_t

_bt_cp_header_s
_bt_avdtp_evt_ctrl_connection_failed_s

_bt_avdtp_evt_set_stream_configuration_t

AVDTP_EVT_DELAYREPORT_COMPLETED

AVDTP_EVT_SET_STREAM_CONFIGURATION

AVDTP_SEP_CAPABILITY_FLAG_DELAY_REPORTING
AVDTP_SEP_SERVICE_CAPABILITY_DELAY_REPORTING

Bluetooth Stack Library Help

MPLAB Harmony v1.11

Library Interface

brief Connect to a remote device. ingroup avdtp

details This function opens a control channel connection to a
remote device specified by the p remote_addr. If connection
cannot be initiated for some reason, for example, there is not
enough resources, it returns FALSE and not events are
generated. Otherwise the result of an attempt to connect to
the remote device is reported via the AVDTP callback. The
events generated will either be
AVDTP_EVT_CTRL_CHANNEL_CONNECTED or
AVDTP_EVT_CTRL_CHANNEL_CONNECTION_FAILED.
param mgr AVDTP manager. param remote_addr The
address of a remote device. param acl_config ACL link
configuration. This can be a combination of the following...
more

This is macro AVDTP_CMD_DELAYREPORT.
This is macro AVDTP_CMD_GET_ALL_CAPABILITIES.

This is macro
AVDTP_CONTENT_PROTECTION_METHOD_SCMS _T.

This is macro
AVDTP_CTRL_MESSAGE_TYPE_GENERAL_REJECT.

This is macro AVDTP_SCMS_T_CP_BIT.
This is macro AVDTP_SCMS_T_L_BIT.

brief Parameter to
AVDTP_EVT_DELAYREPORT_COMPLETED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::delay_report_completed - when AVDTP
received a response to a "delay report" request.

This is type bt_cp_header_t.

brief Parameter to
AVDTP_EVT_DELAYREPORT_COMPLETED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::delay_report_completed - when AVDTP
received a response to a "delay report" request.

This is record _bt_cp_header_s.

brief Parameter to
AVDTP_EVT_CTRL_CONNECTION_FAILED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::ctrl_connection_failed - when a control
channel between two devices has been established.

brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::set_stream_configuration - when AVDTP
received a "set stream configuration" request.

< This event is generated when a local device received a
response (either positive or negative) to a "delay report"
request.

This is macro
AVDTP_EVT_SET_STREAM_CONFIGURATION.

< Delat reporitng.
< Delay Reporting.

85

Volume IV: MPLAB Harmony Framework

bt_avdtp_evt_ctrl_connection_failed_t

bt_avdtp_evt_set_stream_configuration_t

AVDTP Functions

Name

_bt_avdtp_add_param_byte
_bt_avdtp_add_param_uint
_bt_avdtp_allocate_buffers
_bt_avdtp_allocate_cmd
_bt_avdtp_allocate_sep
_bt_avdtp_allocate_sep_config
_bt_avdtp_allocate_stream
_bt_avdtp_allocate_transport_channel
_bt_avdtp_allocate_transport_session_id
_bt_avdtp_begin_tc_channel_operation
_bt_avdtp_commit_tc_channel_operation
_bt_avdtp_control_channel_accept_handler
_bt_avdtp_control_channel_cmd_handler
_bt_avdtp_control_channel_event_handler
_bt_avdtp_control_channel_reject_handler
_bt_avdtp_execute_tc_channel_operation
_bt_avdtp_find_listening_stream
_bt_avdtp_find_stream
_bt_avdtp_find_stream_by_remote_sep_id
_bt_avdtp_find_stream_by_sep_id
_bt_avdtp_free_cmd
_bt_avdtp_free_sep_config
_bt_avdtp_free_stream
_bt_avdtp_free_transport_channel
_bt_avdtp_get_control_channel
_bt_avdtp_init_cmd_buffers
_bt_avdtp_init_sep_config_buffers
_bt_avdtp_init_signal
_bt_avdtp_is_sep_inuse
_bt_avdtp_open_control_channel_ex
_bt_avdtp_open_control_channel_ex
_bt_avdtp_register_transport_channel_for_operation
_bt_avdtp_send_command
_bt_avdtp_send_media_packet
_bt_avdtp_set_signal
_bt_avdtp_transport_I2cap_read_data_callback
_bt_avdtp_transport_|2cap_state_changed_callback
_bt_avdtp_write_caps

LR SR SR SR SRR iR S S SR SR SR SR I SN SR SR SR IR S SR SR SR I IR SRR SR SR SR SRR SR IR SR SHIE Sl IR IR IR G ¢

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help

brief Parameter to
AVDTP_EVT_CTRL_CONNECTION_FAILED event ingroup
avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::ctrl_connection_failed - when a control
channel between two devices has been established.

brief Parameter to
AVDTP_EVT_SET_STREAM_CONFIGURATION event
ingroup avdtp

details A pointer to this structure is passed to the AVDTP
application callback as a valid member of the
bt_avdtp_event_t union -
bt_avdtp_event_t::set_stream_configuration - when AVDTP
received a "set stream configuration" request.

Description

This is function _bt_avdtp_add_param_byte.

This is function _bt_avdtp_add_param_uint.

This is function _bt_avdtp_allocate_buffers.

This is function _bt_avdtp_allocate_cmd.

This is function _bt_avdtp_allocate_sep.

This is function _bt_avdtp_allocate_sep_config.

This is function _bt_avdtp_allocate_stream.

This is function _bt_avdtp_allocate_transport_channel.

This is function _bt_avdtp_allocate_transport_session_id.
This is function _bt_avdtp_begin_tc_channel_operation.
This is function _bt_avdtp_commit_tc_channel_operation.
This is function _bt_avdtp_control_channel_accept_handler.
This is function _bt_avdtp_control_channel_cmd_handler.
This is function _bt_avdtp_control_channel_event_handler.
This is function _bt_avdtp_control_channel_reject_handler.
This is function _bt_avdtp_execute_tc_channel_operation.
This is function _bt_avdtp_find_listening_stream.

This is function _bt_avdtp_find_stream.

This is function _bt_avdtp_find_stream_by_remote_sep_id.
This is function _bt_avdtp_find_stream_by_sep_id.

This is function _bt_avdtp_free_cmd.

This is function _bt_avdtp_free_sep_config.

This is function _bt_avdtp_free_stream.

This is function _bt_avdtp_free_transport_channel.

This is function _bt_avdtp_get_control_channel.

This is function _bt_avdtp_init_cmd_buffers.

This is function _bt_avdtp_init_sep_config_buffers.

This is function _bt_avdtp_init_signal.

This is function _bt_avdtp_is_sep_inuse.

This is function _bt_avdtp_open_control_channel_ex.

This is function _bt_avdtp_open_control_channel_ex.

This is function _bt_avdtp_register_transport_channel_for_operation.
This is function _bt_avdtp_send_command.

This is function _bt_avdtp_send_media_packet.

This is function _bt_avdtp_set_signal.

This is function _bt_avdtp_transport_|2cap_read_data_callback.
This is function _bt_avdtp_transport_|2cap_state_changed_callback.
This is function _bt_avdtp_write_caps.

MPLAB Harmony v1.11

Library Interface

86

Volume IV: MPLAB Harmony Framework

¢ bt_avdtp_abort_stream

¢ bt_avdtp_add_media_rx_buffer
] bt_avdtp_add_media_tx_buffer
¢ bt_avdtp_cancel_listen

¢ bt_avdtp_close_stream

¢ bt_avdtp_create_stream

¢ bt_avdtp_destroy_stream

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Suspend a stream. ingroup avdtp

details This function tries to suspend a stream by sending a request to the
remote party. The stream can be in any state state except
AVDTP_STREAM_STATE_IDLE. As a result of this operation the
AVDTP_EVT_ABORT_STREAM_COMPLETED event will be generated.
This operation cannot be rejected. The p
evt_param.abort_stream_requested.err_code is always ==
AVDTP_ERROR_SUCCESS.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ TRUE if the function succeeds, i.e. the actual request has been
sent to the remote party. li c FALSE otherwise. No events will be generated.

brief Add a media packet buffer to a receive queue ingroup avdtp

details The consumer of AVDTP is responsible for allocating and supplying
AVDTP with buffers used to store received packets. AVDTP itself only has a
queue for storing pointers to buffers supplied by the consumer. When a
packet comes in AVDTP finds the first buffer large enough to hold the
received packet, copies the packet to the buffer and generates a
AVDTP_EVT_MEDIA_PACKET_RECEIVED event. The consumer then has
to process the data in the buffer and return it back to the queue. If there is no
buffers in the queue... more

brief Add a media packet buffer to a send queue ingroup avdtp

details When the consumer of AVDTP wants to send a packet to a remote
device it calls this function. The function adds the packet to a queue and tells
AVDTP that it has something to send. The packet will be send as soon as
the stream goes to AVDTP_STREAM_STATE_STREAMING state. When
the packet has been successfully sent a
AVDTP_EVT_MEDIA_PACKET_SENT is generated. Otherwise a
AVDTP_EVT_MEDIA_PACKET_SEND_FAILED is generated. Regardless of
the event generated the consumer can re-use the buffer as AVDTP has
removed it from the queue and gave up... more

brief Cancel listening for incoming connections. ingroup avdtp

details This function removes a SEP from a list of SEPS which a stream can
use for incoming requests.

param mgr AVDTP manager. param strm_handle Stream handle. param
sep_id Local SEP ID.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

brief Close a stream. ingroup avdtp

details This function tries to close a stream by sending a request to the
remote party. The stream has to be in AVDTP_STREAM_STATE_OPEN or
AVDTP_STREAM_STATE_STREAMING state. As a result of this operation
the AVDTP_EVT_CLOSE_STREAM_COMPLETED event will be generated.
If the stream has been closed the p
evt_param.bt_avdtp_evt_close_stream_completed_t.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise, if the remote device for any reason
cannot or does not wish to close the stream, the p
evt_param.bt_avdtp_evt_close_stream_completed_t.err_code == the error
code sent by the remote.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ TRUE if the function succeeds,... more

brief Create a stream. ingroup avdtp

details This function allocates memory for storing stream's data and assigns
a stream handle. The stream handle is used to manipulate the stream -
open, close, configure, suspend, abort.

param mgr AVDTP manager.
return li ¢ Stream handle if the function succeeds. li ¢ 0 otherwise.

brief Destroy a stream. ingroup avdtp

details This function frees memory used by the stream. The stream has to
exist and be in the "idle" state for this function to succeed. |.e. the stream has
to be closed or aborted before this function can be called.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

MPLAB Harmony v1.11 87

Volume IV: MPLAB Harmony Framework

¢ bt_avdtp_disconnect

¢ bt_avdtp_discover

¢ bt_avdtp_find_codec

¢ bt_avdtp_get_capabilities
¢ bt_avdtp_get_configuration

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Disconnect from a remote device. ingroup avdtp

details This function closes a control and transport channels on all streams
associated with the remote device specified by the p remote_addr. As a
result of this operation the following events will be generated: @arg
AVDTP_EVT_MEDIA_PACKET_RECEIVED: if a stream's receive queue is
not empty this event is generated for each buffer with
bt_media_packet_t::data_len set to 0 @arg
AVDTP_EVT_MEDIA_PACKET_SENT: if a stream's send queue is not
empty this event is generated for each buffer with
bt_media_packet_t::data_len set to 0 @arg
AVDTP_EVT_STREAM_CLOSED: this event is generate if a stream is in...
more

brief Discover SEPs on a remote device. ingroup avdtp

details This function asks the remote device to send a list of all available
SEPs. As a result of this operation the following events will be generated:
@arg AVDTP_EVT_SEP_INFO_RECEIVED: this event is generated for
every SEP received from the remote device. the p
evt_param.sep_info_received contains SEP information. @arg
AVDTP_EVT_DISCOVER_COMPLETED: this event is generated after last
AVDTP_EVT_SEP_INFO_RECEIVED if the remote accepted the request
and the p evt_param.discover_completed.err_code ==
AVDTP_ERROR_SUCCESS. if the remote rejected the request the p
evt_param.discover_completed.err_code == the error code sent by the
remote.

param mgr AVDTP... more

brief Find a codec ingroup avdtp

details AVDTP in theory can support any type of codec. Each codec uses its
own format for exchanging capabilities and configuration information. In
order to make out implementation do not care about these formats we use a
simple way of telling AVDTP how to parse and serialize codec's
configuration. The consumer of AVDTP (e.g. A2DP) for each codec it wishes
to support has to register a callback function (one per codec type). That
callback has to perform two function. The first one is to read the configuration
received from the remote device and store... more

brief Get remote SEP capabilities. ingroup avdtp

details This function asks the remote device to send capabilities of a SEP
specified by the p seid_acp. As a result of this operation the following events
will be generated: @arg AVDTP_EVT_SEP_CAPABILITIES_RECEIVED:
this event is generated if the remote device accepted the request. the p
evt_param.sep_capabilities_received contains SEP capabilities. @arg
AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED: this event is
generated right after AVDTP_EVT_SEP_CAPABILITIES_RECEIVED if the
remote accepted the request the p
evt_param.get_sep_capabilities_completed.err_code ==
AVDTP_ERROR_SUCCESS. if the remote rejected the request the p
evt_param.get_sep_capabilities_completed.err_code == the error code sent
by the remote.

param mgr AVDTP manager.... more

brief Get stream configuration. ingroup avdtp

details This function requests stream configuration from a remote device. As
a result of this operation the following events will be generated: @arg
AVDTP_EVT_STREAM_CONFIGURATION_RECEIVED: this event is
generated if the remote accepted the request. the p
ebt_para.sep_capabilities_received.caps will contain current stream
configuration. @arg
AVDTP_EVT_GET_STREAM_CONFIGURATION_COMPLETED: If the
remote accepted the request the p
evt_param.get_stream_configuration_completed.err_code ==
AVDTP_ERROR_SUCCESS. if the remote rejected the request the p
evt_param.get_stream_configuration_completed.err_code == the error code
sent by the remote.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ TRUE if the function succeeds, i.e. the actual... more

MPLAB Harmony v1.11 88

Volume IV: MPLAB Harmony Framework

@ bt_avdtp_get_hci_connection

¢ bt_avdtp_get_mgr

¢ bt_avdtp_get_sep

¢ bt_avdtp_get_stream_codec_config

¢ bt_avdtp_get_stream_codec_type

¢ bt_avdtp_get_stream_config

¢ bt_avdtp_get_stream_local_sep_id

¢ bt_avdtp_get_stream_remote_address

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Get HCI connection for a stream ingroup avdtp

details This function returns a pointer to a structure that describes an HCI
connection a stream is open on. The return value can be used to call various
function from the HCI layer. For example, if an app wants to force
disconnection from a remote device it can call bt_hci_disconnect.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ Pointer to a structure that describes an HCI connection if the
function succeeds. li ¢ NULL otherwise. The function fails only if a stream
specified by the p strm_handle... more

brief Return a pointer to an instance of the AVDTP manager. ingroup avdtp
details This function returns a pointer to an instance of the AVDTP manager.
There is only one instance of the manager allocated by the stack. The
pointer is passed as the first parameter to all AVDTP functions.

brief Get a SEP info by its ID. ingroup avdtp

details This function returns a pointer to bt_avdtp_sep_t structure that
describes a SEP previously registered with bt_avdtp_register_sep.

param mgr AVDTP manager. param sep_id The ID of a SEP.

return li ¢ Pointer to bt_avdtp_sep_t if the SEP is in the list of registered
SEPs. li ¢ NULL otherwise.

brief Get the configuration of the codec currently used with the stream.
ingroup avdtp

details This function returns a pointer to a structure that contains
configuration of the codec currently used with the stream. The structure
returned depends on the codec. The dotstack defines structures only for
SBC, MPEG-1,2 and MPEG-2,4 AAC codecs: @arg SBC:
bt_a2dp_sbc_config_t (defined in a2dp_sbc_codec.h) @arg MPEG-1,2:
bt_a2dp_mpeg_config_t (defined in a2dp_mpeg_codec.h) @arg MPEG-2,4
AAC: bt_a2dp_aac_config_t (defined in a2dp_aac_codec.h)

param mgr AVDTP manager. param strm_handle Stream handle.

return li The codec's configuration if strm_handle specifies a valid stream
and the stream is in one of the following... more

brief Get the type of the codec currently used with the stream. ingroup avdtp

details This function returns the type of the codec currently used with the
stream.

param mgr AVDTP manager. param strm_handle Stream handle.

return @arg The type of the codec if strm_handle specifies a valid stream
and the stream is in one of the following states:
AVDTP_STREAM_STATE_CONFIGURED
AVDTP_STREAM_STATE_OPEN AVDTP_STREAM_STATE_STREAMING
@arg The result will be one of the following values:
AVDTP_CODEC_TYPE_SBC: SBC
AVDTP_CODEC_TYPE_MPEG1_2_AUDIO: MPEG-1,2 (used in MP3 files)
AVDTP_CODEC_TYPE_MPEG2_4_AAC: MPEG-2,4 AAC (used in Apple
products) AVDTP_CODEC_TYPE_ATRAC: ATRAC (used in Sony products)
AVDTP_CODEC_TYPE_NON_A2DP: Non-A2DP... more

brief Get stream's configuration. ingroup avdtp

details This function returns a pointer to a structure holding the current
configuration of stream.

param mgr AVDTP manager. param strm_handle Stream handle.

return li The stream's configuration if strm_handle specifies a valid stream
and the stream is in one of the following state:

AVDTP_STREAM_STATE_CONFIGURED
AVDTP_STREAM_STATE_OPEN AVDTP_STREAM_STATE_STREAMING

li NULL otherwise.

brief Get stream's local SEP ID. ingroup avdtp

details This function returns the ID of the local SEP associated with the
stream.

param mgr AVDTP manager. param strm_handle Stream handle.

return li The ID of the local SEP if strm_handle specifies a valid stream. li 0
otherwise.

brief Get stream's remote BT address. ingroup avdtp

details This function returns the address of the remote device associated
with the stream.

param mgr AVDTP manager. param strm_handle Stream handle.

return li The address of the remote device if strm_handle specifies a valid
stream. li NULL otherwise.

MPLAB Harmony v1.11 89

Volume IV: MPLAB Harmony Framework

¢ bt_avdtp_get_stream_remote_sep_id
¢ bt_avdtp_get_stream_state

¢ bt_avdtp_init

@ bt_avdtp_listen

¢ bt_avdtp_open_stream

¢ bt_avdtp_reconfigure_stream

@ bt_avdtp_register_callback

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Get stream's remote SEP ID. ingroup avdtp

details This function returns the ID of the remote SEP associated with the
stream.

param mgr AVDTP manager. param strm_handle Stream handle.

return li The ID of the remote SEP if strm_handle specifies a valid stream. |i 0
otherwise.

brief Get local stream state. ingroup avdtp

details This function returns local state of a stream specified by the p
strm_handle. No request is sent to the remote party.

param mgr AVDTP manager. param strm_handle Stream handle.

return The state of the stream. The result will be one of the following values:
@arg AVDTP_STREAM_STATE_IDLE: The stream is idle. This can mean
two things. The stream specified by p strm_handle does not exist or the
stream is closed. @arg
AVDTP_STREAM_OPENING_TRANSPORT_CHANNELS: The stream is
opening transport channels. @arg
AVDTP_STREAM_CLOSING_TRANSPORT_CHANNELS: The stream is
closing transport channels. @arg
AVDTP_STREAM_STATE_CONFIGURED: The... more

brief Initialize the AVDTP layer. ingroup avdtp
details This function initializes the AVDTP layer of the stack. It must be called
prior to any other AVDTP function can be called.

brief Listen for incoming connections. ingroup avdtp

details This function tells a stream that it can use a particular SEP to accept
incoming requests to open it. The SEP can be associated with multiple
streams but used with only one. The stream has to be closed before the SEP
can be used with another stream. For outgoing connections this is not
needed. Any SEP can be used with any stream given that the SEP is not
already in use by another stream.

param mgr AVDTP manager. param strm_handle Stream handle. param
sep_id Local SEP ID.

return li ¢ TRUE if... more

brief Open a stream. ingroup avdtp

details This function tries to open a stream by sending a request to the
remote party. The stream has to be already configured with a
bt_avdtp_set_configuration call. As a result of this operation the
AVDTP_EVT_OPEN_STREAM_COMPLETED event will be generated. If the
stream has been open the p evt_param.open_stream_completed.err_code
== AVDTP_ERROR_SUCCESS. Otherwise, if the remote device for any
reason cannot or does not wish to open the stream, the p
evt_param.open_stream_completed.err_code == the error code sent by the
remote.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ TRUE if the function... more

brief Reconfigure stream. ingroup avdtp

details This function tries to change the stream's configuration. For this
function to succeed the stream has to be open. As a result of this operation
the AVDTP_EVT_STREAM_RECONFIGURE_COMPLETED event will be
generated. If reconfiguration was a success the p
evt_param.stream_reconfigure_completed.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise the p
evt_param.stream_reconfigure_completed.err_code == the error code sent
by the remote.

param mgr AVDTP manager. param strm_handle Stream handle. param
caps New stream configuration.

return li ¢ TRUE if the function succeeds, i.e. the actual request has been
sent to the remote party. li c FALSE otherwise. No events will be... more

brief Register a AVDTP application callback. ingroup avdtp

details In order to be notified of various events a consumer of the AVDTP
layer has to register a callback function. The stack will call this function
whenever a new event has been generated passing the code of the event as
the second parameter. The event can be one of the following values:

@arg AVDTP_EVT_CTRL_CHANNEL_CONNECTED: Control channel
connected. @arg AVDTP_EVT_CTRL_CHANNEL_DISCONNECTED:
Control channel disconnected. @arg
AVDTP_EVT_CTRL_CONNECTION_FAILED: Control channel connection
failed (generated only if control connection has been initiated by the local
device). @arg AVDTP_EVT_DISCOVER_COMPLETED: Local device
completed discovering remote... more

MPLAB Harmony v1.11 90

Volume IV: MPLAB Harmony Framework

¢ bt_avdtp_register_codec

¢ bt_avdtp_register_sep

¢ bt_avdtp_remove_media_rx_buffer
¢ bt_avdtp_remove_media_tx_buffer
¢ bt_avdtp_security_control

¢ bt_avdtp_set_configuration

¢ bt_avdtp_start

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Register a codec ingroup avdtp

details AVDTP in theory can support any type of codec. Each codec uses its
own format for exchanging capabilities and configuration information. In
order to make out implementation do not care about these formats we use a
simple way of telling AVDTP how to parse and serialize codec's
configuration. The consumer of AVDTP (e.g. A2DP) for each codec it wishes
to support has to register a callback function (one per codec type). That
callback has to perform two function. The first one is to read the configuration
received from the remote device and store... more

brief Register a SEP with the local AVDTP manager. ingroup avdtp

details This function is used to make a list of SEPs supported by the local
ADVTP entity.

param mgr AVDTP manager. param type The type of a SEP. The type can
be one of the following values: @arg AVDTP_SEP_TYPE_SOURCE: The
SEP is a source. @arg AVDTP_SEP_TYPE_SINK: The SEP is a sink.
param caps The capabilities of a SEP.

return li c ID of a SEP if the function succeeds. li c FALSE otherwise.

brief Remove a media packet buffer from a receive queue ingroup avdtp
details The consumer of AVDTP is responsible for allocating and supplying
AVDTP with buffers used to store received packets. AVDTP itself only has a
gueue for storing pointers to buffers supplied by the consumer. When a
packet comes in AVDTP finds the first buffer large enough to hold the
received packet, copies the packet to the buffer and generates a
AVDTP_EVT_MEDIA_PACKET_RECEIVED event. The consumer then has
to process the data in the buffer and return it back to the queue. If there is no
buffers in the queue... more

brief Remove a media packet buffer from a send queue ingroup avdtp
details When the consumer of AVDTP wants to send a packet to a remote
device it calls bt_avdtp_add_media_tx_buffer function. The function adds the
packet to a queue and tells AVDTP that it has something to send. The packet
will be send as soon as the stream goes to
AVDTP_STREAM_STATE_STREAMING state. The consumer has a chance
to remove a packet from the queue before it has been sent to a remote
device by calling bt_avdtp_remove_media_tx_buffer.

param mgr AVDTP manager. param strm_handle Stream handle. param
buffer Pointer to a structure... more

brief Exchange content protection control data. ingroup avdtp

details This function tries to establish content protection by sending a request
to the remote party. The stream can be in any state state except
AVDTP_STREAM_STATE_IDLE, AVDTP_STREAM_STATE_CLOSING,
AVDTP_STREAM_STATE_ABORTING. As a result of this operation the
AVDTP_EVT_STREAM_SECURITY_CONTROL_COMPLETED event will
be generated. If the stream's content protection data has been accepted by
the remote party the p evt_param.security_control_completed.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise the p
evt_param.security_control_completed.err_code == the error code sent by
the remote.

note The dotstack does not support content protection. Although the request
can be sent it will not affect... more

brief Set stream configuration. ingroup avdtp

details This function tries to configure a stream before opening it. As a result
of this operation the
AVDTP_EVT_SET_STREAM_CONFIGURATION_COMPLETED event will
be generated. If configuration was a success the p
evt_param.set_stream_configuration_completed.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise the p
evt_param.set_stream_configuration_completed.err_code == the error code
sent by the remote and p
evt_param.set_stream_configuration_completed.svc_category == the value
of the first Service Category to fail.

param mgr AVDTP manager. param strm_handle Stream handle. param
remote_addr The address of a remote device. param seid_int Local SEP ID.
param seid_acp Remote SEP ID. param caps Stream configuration.

return li ¢ TRUE if... more

brief Start the AVDTP layer. ingroup avdtp

details This function makes the AVDTP layer ready to accept connection
requests from remote device. To make an outgoing connection calling this
function is not required.

param mgr AVDTP manager.
return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise.

MPLAB Harmony v1.11 91

Volume IV: MPLAB Harmony Framework

¢ bt_avdtp_start_stream

¢ bt_avdtp_suspend_stream

¢ bt_avdtp_unregister_codec

¢ _bt_avdtp_add_param_uintn

¢ _bt_avdtp_read_caps

@ bt_avdtp_get_I2cap_channel

¢ bt_avdtp_clear_media_tx_queue

@ bt_avdtp_get_all_capabilities

@ bt_avdtp_get_stream_direction

© 2013-2017 Microchip Technology Inc.

Bluetooth Stack Library Help Library Interface

brief Start a stream. ingroup avdtp

details This function tries to start a stream by sending a request to the
remote party. The stream has to be in AVDTP_STREAM_STATE_OPEN
state. The stream goes to this state as a result of successful configuration or
suspension (both can be initiated by either party). As a result of this
operation the AVDTP_EVT_START_STREAM_COMPLETED event will be
generated. If the stream has been open the p
evt_param.start_stream_requested.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise, if the remote device for any reason
cannot or does not wish to start the stream, the p
evt_param.start_stream_requested.err_code == the error code sent... more

brief Suspend a stream. ingroup avdtp

details This function tries to suspend a stream by sending a request to the
remote party. The stream has to be in
AVDTP_STREAM_STATE_STREAMING state. As a result of this operation
the AVDTP_EVT_SUSPEND_STREAM_COMPLETED event will be
generated. If the stream has been suspended the p
evt_param.bt_avdtp_evt_suspend_stream_requested_t.err_code ==
AVDTP_ERROR_SUCCESS. Otherwise, if the remote device for any reason
cannot or does not wish to suspend the stream, the p
evt_param.bt_avdtp_evt_suspend_stream_requested_t.err_code == the
error code sent by the remote.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ TRUE if the function succeeds, i.e. the... more

brief Unregister a codec ingroup avdtp

details AVDTP in theory can support any type of codec. Each codec uses its
own format for exchanging capabilities and configuration information. In
order to make out implementation do not care about these formats we use a
simple way of telling AVDTP how to parse and serialize codec's
configuration. The consumer of AVDTP (e.g. A2DP) for each codec it wishes
to support has to register a callback function (one per codec type). That
callback has to perform two function. The first one is to read the configuration
received from the remote device and store... more

This is function _bt_avdtp_add_param_uintn.
This is function _bt_avdtp_read_caps.
This is function bt_avdtp_get_|2cap_channel.

brief Clear send queue ingroup avdtp

details When the consumer of AVDTP wants to send a packet to a remote
device it calls bt_avdtp_add_media_tx_buffer function. The function adds the
packet to a queue and tells AVDTP that it has something to send. The packet
will be send as soon as the stream goes to
AVDTP_STREAM_STATE_STREAMING state. The consumer can remove
all packets from the queue before they have been sent to a remote device by
calling ::bt_avdtp_clear_media_tx_queue.

param mgr AVDTP manager. param strm_handle Stream handle.

return li ¢ TRUE if the function succeeds. li ¢ FALSE otherwise. The function
fails... more

brief Get remote SEP capabilities. ingroup avdtp

details This function asks the remote device to send capabilities of a SEP
specified by the p seid_acp. As a result of this operation the following events
will be generated: @arg AVDTP_EVT_SEP_CAPABILITIES_RECEIVED:
this event is generated if the remote device accepted the request. the p
evt_param.sep_capabilities_received contains SEP capabilities. @arg
AVDTP_EVT_GET_SEP_CAPABILITIES_COMPLETED: this event is
generated right after AVDTP_EVT_SEP_CAPABILITIES_RECEIVED if the
remote accepted the request the p
evt_param.get_sep_capabilities_completed.err_code ==
AVDTP_ERROR_SUCCESS. if the remote rejected the request the p
evt_param.get_sep_capabilities_completed.err_code == the error code sent
by the remote.

param mgr AVDTP manager.... more
This is function bt_avdtp_get_stream_direction.

MPLAB Harmony v1.11 92

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

¢ bt_avdtp_report_delay brief Report delay value of a Sink to a Source. ingroup avdtp
details This function sends the delay value of a Sink to a Source. This
enables synchronous playback of audio and video. Delay reports are always
sent from the Sink to the Source. If the Sink's delay report has been
accepted by the Source the p evt_param.delay_report_completed.err_code
== AVDTP_ERROR_SUCCESS. Otherwise the p
evt_param.delay_report_completed.err_code == the error code sent by the
Source.
param mgr AVDTP manager. param strm_handle Stream handle. param
delay The delay value in 1/10 milliseconds.
return li ¢ TRUE if the function succeeds, i.e. the actual... more

@ bt_avdtp_set_media_tx_queue_limit brief Set limit on the send queue ingroup avdtp
details When the consumer of AVDTP wants to send a packet to a remote
device it calls bt_avdtp_add_media_tx_buffer function. The function adds the
packet to a queue and tells AVDTP that it has something to send. The packet
will be send as soon as the stream goes to
AVDTP_STREAM_STATE_STREAMING state. By default the send queue
can contain unlimited number of packets. The consumer can set a limit on
how many packets are held in the queue. In this case when new packet is
added to the queue and the length of... more

AVRCP Data Types and Constants

Name Description
k3 _bt_av_add_to_now_playing_s brief Parameter to
AVRCP_EVT _ADD_TO_NOW_PLAYING_COMPLE
TED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::add_to_now_playing_status -
when a local device received a response to a "add
to now playing" request.

> _bt_av_battery_status_of ct_s brief Parameter to
AVRCP_EVT_BATTERY_STATUS_OF_CT_RECEI
VED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::battery_status_of _ct - when a
local device received a "battery status of controller”
command.

_bt_av_capability_company_id_s brief Parameter to
AVRCP_EVT_COMPANY_ID_LIST_RECEIVED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::company_id - when a local device
received a response to a "get company id" request.

gi\'

> _bt_av_capability_event_id_s brief Parameter to
AVRCP_EVT_EVENT_ID_LIST_RECEIVED event
ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::supported_event_id - when a
local device received a response to a "get supported
events" request.

E _bt_av_command_t This is record _bt_av_command_t.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 93

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

» _bt_av_displayable_character_set_s brief Parameter to
AVRCP_EVT_DISPLAYABLE_CHARACTER_SET_
RECEIVED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::displayable_character_set - when
a local device received a "displayable chracter set
command" request.

» _bt_av_element_attribute_s brief Media element attribute ingroup avrcp
details This structure is used to store media element
attribute.

P _bt_av_element_attributes_s brief Parameter to
AVRCP_EVT_GET_ELEMENT_ATTRIBUTES_REC
EIVED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::element_attributes - when a local
device received a response to a "get media element
attributes" request.

o _bt_av_element_id_s brief Media element UID ingroup avrcp
details This structure is used to store media element
UID.

> _bt_av_get_element_attributes_s brief Parameter to
AVRCP_EVT_ELEMENT_ATTRIBUTES_REQUEST
ED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::get_element_attributes - when a
local device received a "get element attributes”

request.

» _bt_av_notification_addressed_player_changed_s brief Parameter to
AVRCP_EVT_ADDRESSED_PLAYER_CHANGED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:addressed_pl
ayer
- when a local device received a "addressed player
changed" notification.

b _bt_av_notification_app_setting_changed_s This is type
bt_av_notification_app_setting_changed_t.

P _bt_av_notification_battery_status_s brief Parameter to

AVRCP_EVT_BATT_STATUS_CHANGED event
ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:battery_status

- when a local device received a "battery status
changed" notification.

» _bt_av_notification_playback_pos_changed_s brief Parameter to
AVRCP_EVT_PLAYBACK_POS_CHANGED event
ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:playback_pos

- when a local device received a "playback position
changed" notification.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 94

Volume IV: MPLAB Harmony Framework

Bluetooth Stack Library Help

L3 _bt_av_notification_playback_status_changed_s

_bt_av_notification_s

gii

> _bt_av_notification_system_status_changed_s

_bt_av_notification_track_changed_s

gi(

_bt_av_notification_uids_changed_s

gii

_bt_av_notification_volume_changed_s

g((

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v1.11

Library Interface

brief Parameter to
AVRCP_EVT_PLAYBACK_STATUS_CHANGED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:play_status -
when a local device received a "play status
changed" notification.

brief Parameter to the following events: li
AVRCP_EVT_PLAYBACK_STATUS_CHANGED li
AVRCP_EVT_TRACK_CHANGED li
AVRCP_EVT_PLAYBACK_POS_CHANGED li
AVRCP_EVT_BATT_STATUS_CHANGED li
AVRCP_EVT_SYSTEM_STATUS_CHANGED li
AVRCP_EVT_NOW_PLAYING_CONTENT_CHANG
ED

li
AVRCP_EVT_AVAILABLE_PLAYERS_CHANGED
li
AVRCP_EVT_ADDRESSED_PLAYER_CHANGED
li AVRCP_EVT_UIDS_CHANGED li
AVRCP_EVT_VOLUME_CHANGED ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification - when a local device
received one of the following notifications from the
target: li Play status changed li Track changed
changed li Playback position changed li Battery
status changed li System status changed li
Addressed player changed li UIDs changed li
Volume changed li Player application setting
changed... more

brief Parameter to
AVRCP_EVT_SYSTEM_STATUS_CHANGED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:system_statu
s

- when a local device received a "system status
changed" notification.

brief Parameter to
AVRCP_EVT_TRACK_CHANGED event ingroup
avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:track - when
a local device received a "track changed"
notification.

brief Parameter to AVRCP_EVT_UIDS_CHANGED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:uids - when a
local device received a "UIDs changed" notification.

brief Parameter to
AVRCP_EVT_VOLUME_CHANGED event ingroup
avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:volume -
when a local device received a "UIDs changed"
notification.

95

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

9 _bt_av_play_item_s brief Parameter to
AVRCP_EVT_PLAY_ITEM_COMPLETED event
ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::play_item_status - when a local
device received a response to a "play item" request.

_bt_av_play_status_s brief Parameter to
AVRCP_EVT_GET_PLAY_STATUS_RECEIVED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::play_status - when a local device
received a response to a "get play status" request.

«{\'

k3 _bt_av_player_setting_current_values_s brief Parameter to
AVRCP_EVT_PLAYER_CURRENT_SETTING_VAL
UES_RECEIVED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::player_setting_current_values -
when a local device received a response to a "get
current player setting attribute values" request.

> _bt_av_player_setting_values_s brief Parameter to
AVRCP_EVT_PLAYER_SETTING_VALUES_RECEI
VED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::player_setting_values - when a
local device received a response to a "get player
setting attribute values" request.

_bt_av_player_setting_values_text_s brief Parameter to
AVRCP_EVT_PLAYER_SETTING_VALUES_TEXT_
RECEIVED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::player_setting_values_text -
when a local device received a response to a "get
player setting attribute values displayable text"
request.

gi(

_bt_av_player_settings_s brief Parameter to
AVRCP_EVT_PLAYER_SETTING_ATTRIBUTES_R
ECEIVED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::player_settings - when a local
device received a response to a "get supported
player setting attributes” request.

» _bt_av_player_settings_text_s brief Parameter to
AVRCP_EVT_PLAYER_SETTING_ATTRIBUTES_T
EXT_RECEIVED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::player_settings_text - when a
local device received a response to a "get player
setting attributes displayable text" request.

g{(

> _bt_av_player_text_s This is type bt_av_player_text_t.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 96

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

» _bt_av_register_notification_t brief Parameter to
AVRCP_EVT_REGISTER_NOTIFICATION_REQUE
STED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::register_notification - when a
local device received a "register notification" request.

k3 _bt_av_response_t brief AV/C response header ingroup avrcp
details This structure is used to store fields present
in every AV/C response.

» _bt_av_set_absolute_volume_s brief Parameter to
AVRCP_EVT_SET_ABSOLUTE_VOLUME_COMPL
ETED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::absolute_volume - when a local
device received a response to a "set absolute
volume" request.

» _bt_av_set_addressed_player_s brief Parameter to
AVRCP_EVT_SET_ADDRESSED_PLAYER_COMP
LETED
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::addressed_player - when a local
device received a response to a "set addressed
player" request.

o _bt_avrcp_channel_t brief AVRCP channel description ingroup avrcp
details This structure is used to hold information
about an AVRCP channel.

3 _bt_avrcp_device_s This is type bt_avrcp_device_t.

» _bt_avrcp_event_u brief Parameter to an application callback. ingroup
avrep
details This union is used to pass event specific
data to the AVRCP consumer. Which member of the
union points to a valid structure depends on the
event reported to the consumer. In general, each
event has a corresponding member in the union.

P _bt_avrcp_evt_channel_connected_t brief Parameter to
AVRCP_EVT_CONTROL_CHANNEL_CONNECTE
D
event ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::channel_connected - when a
control channel between two devices has been
established.

G _bt_avrcp_evt_channel_disconnected_t brief Parameter to
AVRCP_EVT_CONTROL_CHANNEL_DISCONNEC
TED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::channel_disconnected - when a
control channel between two devices has been
terminated.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11 97

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help
» _bt_avrcp_evt_connection_failed_t
k3 _bt_avrcp_evt_panel_command_received_t
o _bt_avrcp_evt_panel_response_received_t

b _bt_avrcp_evt_register_events_completed_t
P _bt_avrcp_evt_search_completed_s
» _bt_avrcp_mgr_t

bt_av_add_to_now_playing_t

bt_av_battery status_of_ct_t

bt_av_capability_company_id_t

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Library Interface

brief Parameter to
AVRCP_EVT_CONTROL_CONNECTION_FAILED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::connection_failed - when a local
device failed to create a control channel between
two AVRCP entities.

brief Parameter to
AVRCP_EVT_PANEL_COMMAND_RECEIVED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::panel_command_received - when
a local device received a PASS THROUGH
command.

brief Parameter to
AVRCP_EVT_PANEL_RESPONSE_RECEIVED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::panel_response_received - when
a local device received a response to a PASS
THROUGH command.

This is type
bt_avrcp_evt_register_events_completed_t.

brief Parameter to
AVRCP_EVT_SEARCH_COMPLETED event
ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::device_search - when searching
for nearby devices has finished.

brief AVRCP manager. ingroup avrcp

details A structure that glues all pieces together.
There is only one instance of this structure allocated
by dotstack. A pointer to the instance can be get
with ¢ bt_avrcp_get_mgr().

brief Parameter to
AVRCP_EVT_ADD_TO_NOW_PLAYING_COMPLE
TED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::add_to_now_playing_status -
when a local device received a response to a "add
to now playing" request.

brief Parameter to
AVRCP_EVT_BATTERY_STATUS_OF_CT_RECEI
VED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::battery_status_of_ct - when a
local device received a "battery status of controller”
command.

brief Parameter to
AVRCP_EVT_COMPANY_ID_LIST_RECEIVED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::company_id - when a local device
received a response to a "get company id" request.

98

Volume IV: MPLAB Harmony Framework

bt_av_capability_event_id_t

bt_av_command_t
bt_av_displayable_character_set_t

bt_av_element_attribute_t

bt_av_element_attributes_t

bt_av_element_id_t

bt_av_get_element_attributes_t

bt_av_notification_addressed_player_changed_t

bt_av_notification_app_setting_changed_t

bt_av_notification_battery_status_t

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v1.11

Bluetooth Stack Library Help

Library Interface

brief Parameter to
AVRCP_EVT_EVENT_ID_LIST_RECEIVED event
ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::supported_event_id - when a
local device received a response to a "get supported
events" request.

This is type bt_av_command_t.

brief Parameter to
AVRCP_EVT_DISPLAYABLE_CHARACTER_SET_
RECEIVED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::displayable_character_set - when
a local device received a "displayable chracter set
command" request.

brief Media element attribute ingroup avrcp

details This structure is used to store media element
attribute.

brief Parameter to
AVRCP_EVT_GET_ELEMENT_ATTRIBUTES_REC
EIVED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::element_attributes - when a local
device received a response to a "get media element
attributes" request.

brief Media element UID ingroup avrcp

details This structure is used to store media element
UID.

brief Parameter to
AVRCP_EVT_ELEMENT_ATTRIBUTES_REQUEST
ED

event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::get_element_attributes - when a
local device received a "get element attributes"
request.

brief Parameter to
AVRCP_EVT_ADDRESSED_PLAYER_CHANGED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:addressed_pl
ayer

- when a local device received a "addressed player
changed" notification.

This is type
bt_av_notification_app_setting_changed_t.

brief Parameter to
AVRCP_EVT_BATT_STATUS_CHANGED event
ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:battery_status

- when a local device received a "battery status
changed" naotification.

99

Volume IV: MPLAB Harmony Framework Bluetooth Stack Library Help Library Interface

bt_av_natification_playback_pos_changed_t brief Parameter to
AVRCP_EVT_PLAYBACK_POS_CHANGED event
ingroup avrcp
details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:playback_pos

- when a local device received a "playback position
changed" notification.

bt_av_notification_playback_status_changed_t brief Parameter to
AVRCP_EVT_PLAYBACK_STATUS_CHANGED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:play_status -
when a local device received a "play status
changed" notification.

bt_av_notification_system_status_changed_t brief Parameter to
AVRCP_EVT_SYSTEM_STATUS_CHANGED
event ingroup avrcp

details A pointer to this structure is passed to the
AVRCP application callback as a valid member of
the bt_avrcp_event_t union -
bt_avrcp_event_t::notification::params:system_statu
s

- when a local device received a "system status
changed" notification.

bt_av_notification_t brief