

# **MPLAB Harmony Help**

MPLAB Harmony Integrated Software Framework

# **Volume II: Supported Hardware**

This volume provides information on hardware supported by MPLAB Harmony, including information on devices, development boards, and board support packages.

#### **Description**



MPLAB Harmony Board Support Packages provide software support for PIC32 device families and related demonstration development hardware.

A Board Support Package (BSP) provides support for board-specific hardware, which is provided in two forms:

- BSP Library: Provides board-specific initialization code and an interface to switches, LEDs, and GPIO pins
- Initial Configuration: Provides a starting point for configuration settings for clocks, ports, and selected libraries when creating a new project (or project configuration)

# Supported Device Families

This section contains information about how MPLAB Harmony supports each PIC32 device family.

#### **Description**

MPLAB Harmony supports all PIC32 device families, with the exception of the PIC32MM family. Middleware, driver, and system service library interfaces are abstracted so that differences between devices are hidden from applications. Library configuration and initialization may contain device-specific options, but these differences are managed by the MPLAB Harmony Configurator (MHC) tool and are not exposed to applications by the library's client interface. However, some libraries may contain optional features that require specific hardware support and are not available on devices that do not provide the required features. Refer to the help section for each library for details on any optional features provided.

Demonstration applications are available for most device families, depending on the availability of development boards that use the device. Applications often have multiple configurations, each of which may support a different development board and device family.

Refer to the Microchip 32-bit design center (http://www.microchip.com/design-centers/32-bit) for information on PIC32 devices.

# Supported Development Boards

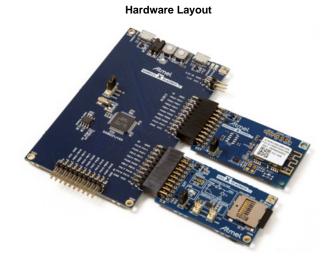
Provides details on the development tools that are used by the Board Support Packages and demonstration applications.

#### **Description**

This section provides information on the development tools (i.e., hardware) used by the MPLAB Harmony Board Support Packages and demonstration applications.

### **ATWINC1500-XSTK Xplained Pro Starter Kit**

Provides information on the ATWINC1500-XSTK Xplained Pro Starter Kit.


#### **Description**

#### Microchip Part Number:

ATWINC1500-XSTK

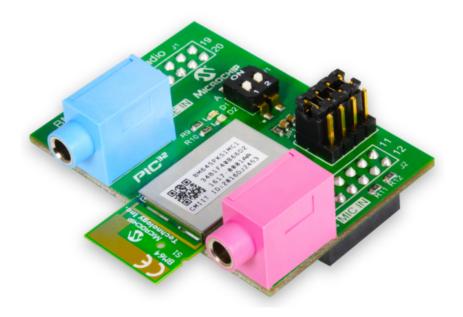
#### **Product Page:**

http://www.microchip.com/developmenttools/productdetails.aspx?partno=atwinc1500-xstk



# **BM64 Bluetooth Module Daughter Board**

Provides information on the BM64 Bluetooth Module Daughter Board.


#### **Description**

#### Microchip Part Number:

AC320032-3

#### **Product Page:**

http://www.microchip.com/development tools/product details.aspx?partno=ac320032-3



# **CAN/LIN PICtail Plus Daughter Board**

Provides information on the CAN/LIN PICtail Plus Daughter Board.

#### **Description**

Microchip Part Number:

AC164130-2

**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac164130-2





# chipKIT WF32 Wi-Fi Development Board

Provides information on the chipKIT™ WF32™ Wi-Fi Development Board.

#### **Description**

Microchip Part Number:

TDGL021

**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=TDGL021

**Hardware Layout** 



# chipKIT Wi-FIRE Development Board

Provides information on the chipKIT™ Wi-FIRE Development Board.

#### **Description**

Microchip Part Number:

TDGL021-2

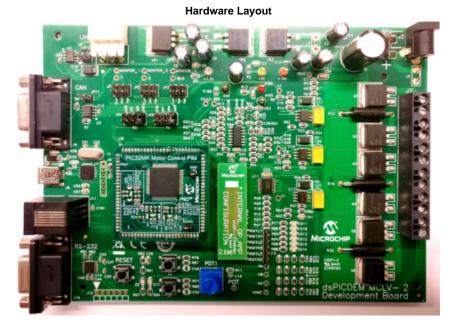
**Product Page:** 

http://www.microchip.com/Development tools/Product Details.aspx?Part NO=TDGL021-2



# dsPICDEM MCLV-2 Development Board

Provides information on the dsPICDEM™ MCLV-2 Development Board.


# **Description**

Microchip Part Number:

DM330021-2

**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm330021-2



#### dsPICDEM MCHV-3 Development Board

Provides information on the dsPICDEM $^{\text{TM}}$  MCHV-3 Development Board.

#### **Description**

Microchip Part Number:

DM330023-3

Explorer 16 Development Board

#### **Product Page:**

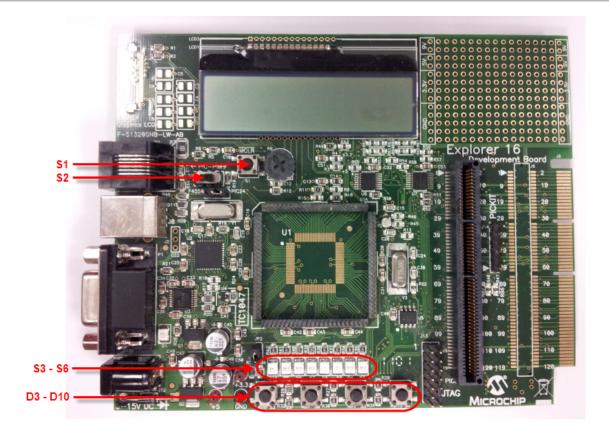
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm330023-3

#### **Hardware Layout**



# **Explorer 16 Development Board**

Provides information on the Explorer 16 Development Board.


#### **Description**

#### **Microchip Part Number:**

DM240001

#### **Product Page:**

 $http://www.microchip.com/stellent/idcplg? IdcService = SS\_GET\_PAGE\&nodeId = 1406\&dDocName = en024858\&part = DM240001$ 

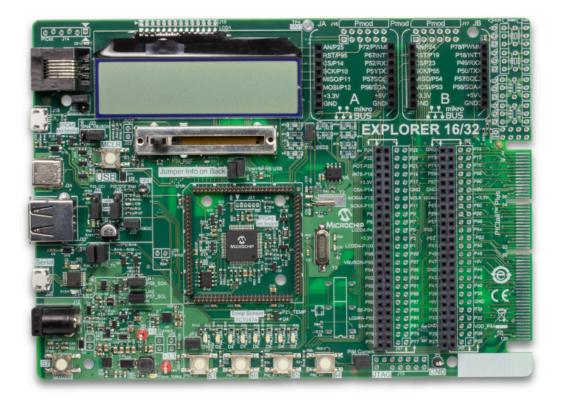


#### **Switch/Button Descriptions**

- 1. S1 Reset button (MCLR)/
- 2. S2 Processor switch. This switch determines which processor is running, the processor on the board or the processor on the Plug-In-Module (PIM).
- 3. S3, S4, S5, and S6 Application switches. For information about which pin is connected to this switch, please refer to the Information Sheet for the PIM in use.
- 4. D3 through D10 Application LEDs. For information about which pin is connected to this LED, please refer to the Information Sheet for the PIM

# **Explorer 16/32 Development Board**

Provides information on the Explorer 16/32 Development Board.


#### **Description**

#### **Microchip Part Number:**

DM240001-2

#### **Product Page:**

http://www.microchip.com/developmenttools/productdetails.aspx?partno=dm240001-2



# **Ethernet PICtail Plus Daughter Board**

Provides information on the Ethernet PICtail Plus Daughter Board.

# **Description**

Microchip Part Number:

AC164123

**Product Page:** 

http://www.microchip.com/AC164123



# Fast 100Mbps Ethernet PICtail Plus Daughter Board

Provides information on the Fast 100Mbps Ethernet PICtail Plus Daughter Board.

#### **Description**

Microchip Part Number:

AC164132

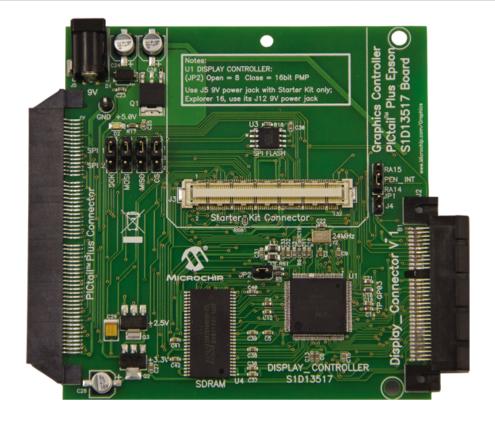
**Product Page:** 

http://www.microchip.com/AC164132



# **Graphics Controller PICtail Plus Epson S1D13517 Daughter Board**

Provides information about the Graphics LCD Controller PICtail Plus Epson S1D13517 Daughter Board.


# **Description**

#### **Microchip Part Number:**

AC164127-7

#### **Product Page:**

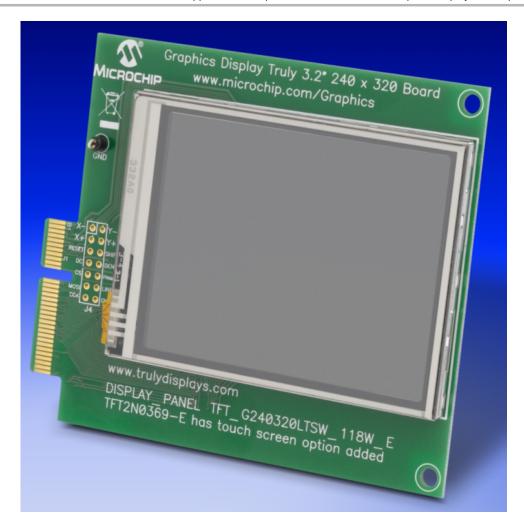
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac164127-7



# Graphics Display Truly 3.2" 320x240 Board

Provides information on the Graphics Display Truly 3.2" 320x240 Board.

# **Description**


The Graphics Display Truly 3.2 240x320 Board is a demonstration board for evaluating Microchip graphic display solutions and the Graphics Library for 16- and 32-bit microcontrollers.

#### **Microchip Part Number**

AC164127-4

#### **Product Page**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC164127-4



# Graphics Display Powertip 4.3" 480x272 Board

Provides information on the Graphics Display Powertip 4.3" 480x272 Board.

#### **Description**

The Graphics Display Powertip 4.3" 480x272 Board is a demonstration board for evaluating Microchip's graphic display solutions and the Graphics Library for 16- and 32- bit microcontrollers.

#### **Microchip Part Number**

AC164127-6

#### **Product Page**

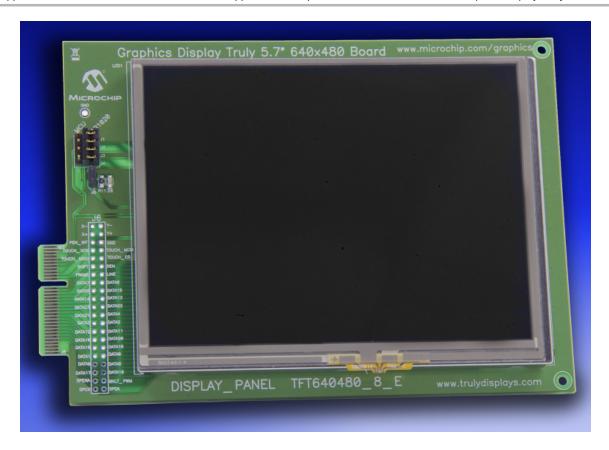
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC164127-6



# Graphics Display Truly 5.7" 640x480 Board

Provides information on the Graphics Display Truly 5.7" 640x480 Board.

#### **Description**


The Graphics Display Truly 5.7" 640x480 Board is a demonstration board for evaluating Microchip's graphic display solution and Graphics Library for 16- and 32-bit microcontrollers

### **Microchip Part Number**

AC164127-8

#### **Product Page**

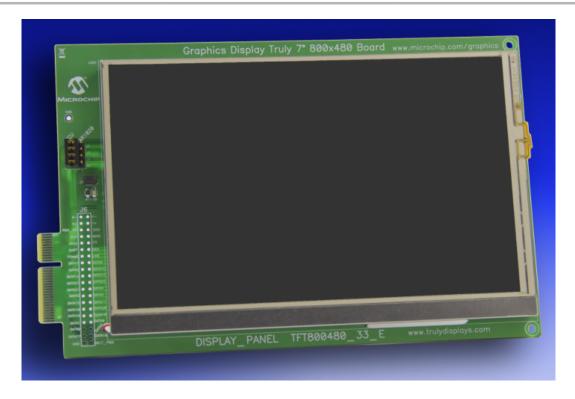
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC164127-8



# Graphics Display Truly 7" 800x480 Board

Provides information on the Graphics Display Truly 7" 800x480 Board.

#### **Description**


The Graphics Display Truly 7" 800x480 Board is a demonstration board for evaluating Microchip's graphic display solution and Graphics Library for 16- and 32-bit microcontrollers.

#### **Microchip Part Number**

AC164127-9

#### **Product Page**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac164127-9



# **Graphics LCD Controller PICtail Plus SSD1926 Daughter Board**

Provides information on the Graphics LCD Controller PICtail Plus SSD1926 Daughter Board.

#### **Description**

#### **Microchip Part Number:**

AC164127-5

#### **Product Page:**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac164127-5



# High-Performance 4.3" WQVGA Display Module with maXTouch

Provides information on the High-Performance 4.3" WQVGA Display Module with maXTouch.

# **Description**

#### **Microchip Part Number:**

AC320005-4

#### **Microchip Product Page:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC320005-4



# **High-Performance WVGA Display Module with maXTouch**

Provides information on the High-Performance 5" WVGA Display Module with maXTouch

# **Description**

#### **Microchip Part Number:**

AC320005-5

#### **Microchip Product Page:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC320005-5



# I/O1 Xplained Pro Extension Kit

Provides information on the I/O1 Xplained Pro Extension Kit.

#### **Description**

Microchip Part Number:

ATIO1-XPRO

**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATIO1-XPRO



# Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board

Provides information on the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board.

#### **Description**

#### **Microchip Part Number:**

AC164144

#### **Product Page:**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac164144

**Hardware Layout** 



#### maXTouch Xplained Pro

Provides information on the maXTouch Xplained Pro 3.5" LCD Display with maXTouch sensor.

#### **Description**

#### **Microchip Part Number:**

ATMXT-XPRO

#### **Product Page:**

http://www.microchip.com/Development tools/Product Details.aspx?Part NO=ATMXT-XPRO



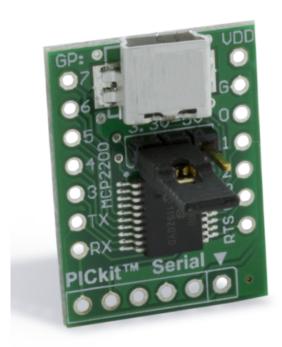
Supported Development Boards

#### **MCP2200 Breakout Module**

Provides information on the MCP2200 Breakout Module.

#### **Description**

The MCP2200 Breakout Module is a development and evaluation platform for the USB-to-UART serial converter MCP2200 device. The module is comprised of a single Dual In-Line Package (DIP) form-factor board.


#### **Microchip Part Number:**

ADM00393

#### **Product Page:**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ADM00393

**Hardware Layout** 



#### MikroElektronika WiFi 7 Click Board

Provides information on the MikroElektronika WiFi 7 Click Board with the on-bard WINC1500 Wi-Fi module.

#### **Description**

MikroElektronika Part Number:

MIKROE-2046

**Product Page:** 

https://shop.mikroe.com/click/wireless-connectivity/wifi-7

#### **Hardware Layout**

Supported Development Boards



#### **MPLAB REAL ICE**

Provides information on the MPLAB REAL ICE In-Circuit Emulator.

#### **Description**

Microchip Part Number:

DV244005

**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dv244005



#### MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board

Provides information on the MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board.

#### **Description**

Microchip Part Number:

AC164149

#### **Microchip Product Page:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC164149

#### **Hardware Layout**



# MRF24WN0MA Wi-Fi PlCtail/PlCtail Plus Daughter Board

Provides information on the MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board.

#### **Description**

Microchip Part Number:

AC164153

**Microchip Product Page:** 

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC164153

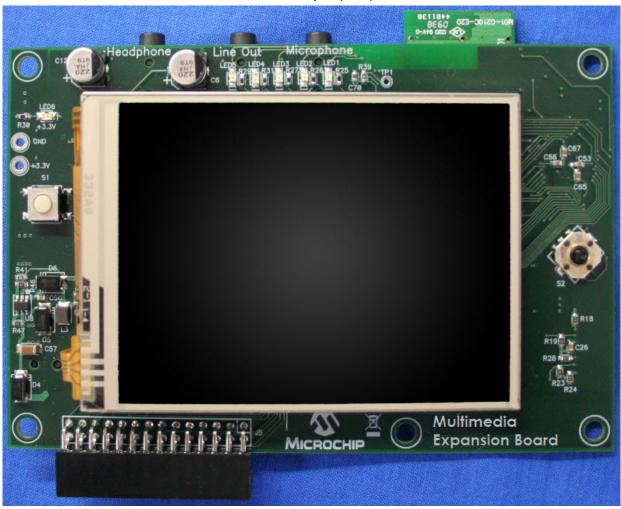
**Hardware Layout** 



# **Multimedia Expansion Board (MEB)**

Provides information on the Multimedia Expansion Board (MEB).

# **Description**


# **Microchip Part Number:**

DM320005

# **Product Page:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320005

**Hardware Layout (Front)** 



Hardware Layout (Back)



# Multimedia Expansion Board II (MEB II)

Provides information on the updated Multimedia Expansion Board II (MEB II).

#### **Description**



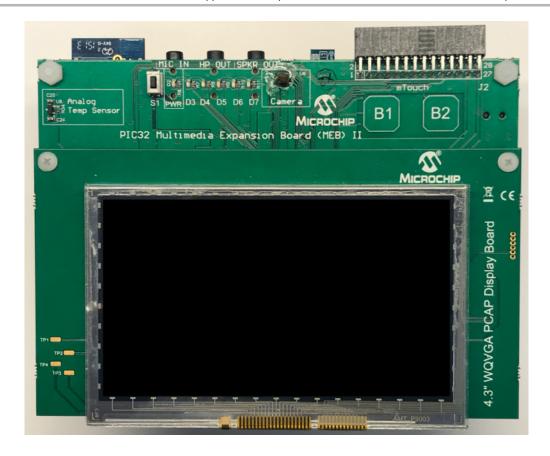
Currently, two versions of the MEB II are available for purchase; however, the original version of this product is not recommended for use. Instead, use the updated version of this board, which features a 4.3" WQVGA maXTouch display.

#### **Microchip Part Number**

DM320005-5

#### **Product Page**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm320005-5




#### **Microchip Part Number**

DM320005-2

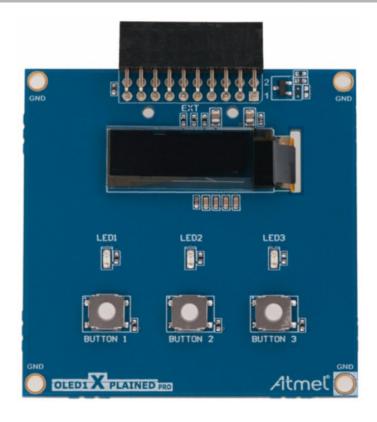
# **Product Page**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm320005-2



# **OLED1 Xplained Pro Extension Kit**

Provides information on the OLED1 Xplained Pro Extension Kit.


#### **Description**

Microchip Part Number:

ATOLED1-XPRO

**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATOLED1-XPRO



Supported Development Boards

### PIC32 Audio DAC Daughter Board - AK4384VT

Provides information on the PIC32 Audio DAC Daughter Board (AK4384VT).

#### **Description**

Microchip Part Number:

AC320032-2

Product Page:

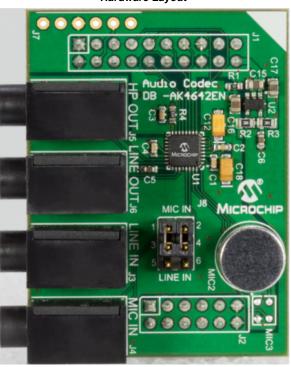
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC320032-2



# PIC32 Audio Codec Daughter Board - AK4642EN

Provides information on the PIC32 Audio Codec Daughter Board - AK4642EN.

#### **Description**


**Microchip Part Number:** 

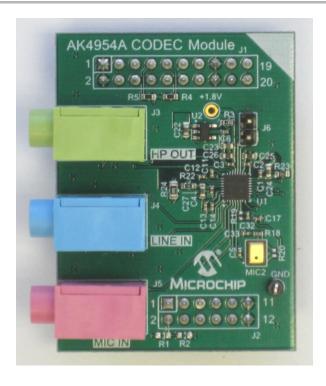
AC320100

**Product Page:** 

http://www.microchip.com/AC320100






# PIC32 Audio Codec Daughter Board - AK4954A

Provides information on the PIC32 Audio Codec Daughter Board - AK4954A.

#### **Description**

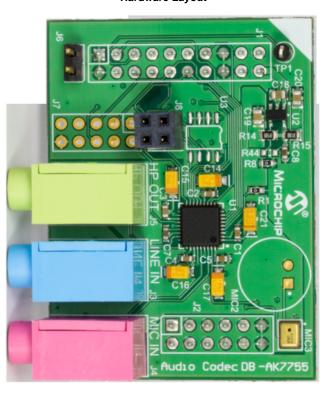


Please contact your local Microchip sales office for information on obtaining this board.



# PIC32 Audio Codec Daughter Board - AK7755

Provides information on the PIC32 Audio Codec Daughter Board - AK7755


#### Description

Microchip Part Number:

AC320100

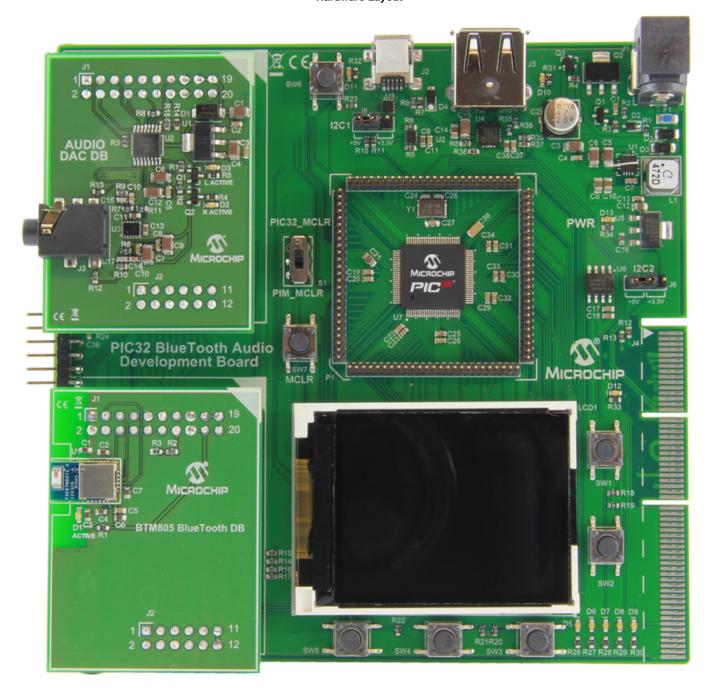
**Product Page:** 

http://www.microchip.com/AC327755



# PIC32 Bluetooth Audio Development Kit

Provides information on the PIC32 Bluetooth Audio Development Kit.


#### **Description**

# **Microchip Part Number:**

DV320032

#### **Product Page:**

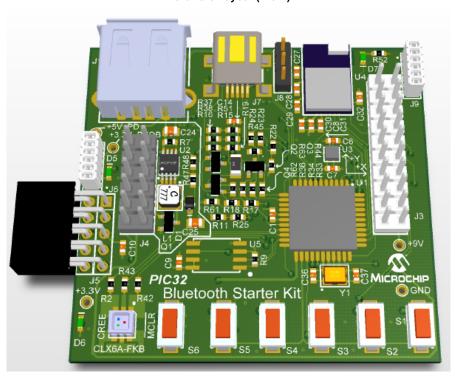
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DV320032



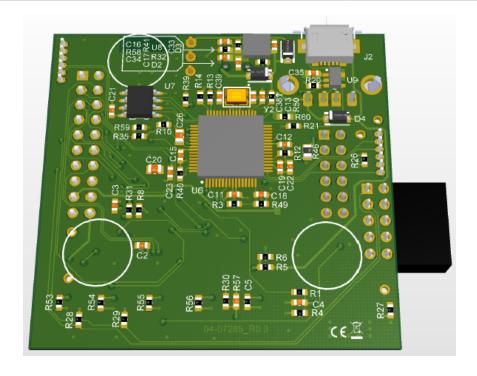
#### **PIC32 Bluetooth Starter Kit**

Provides information on the PIC32 Bluetooth Starter Kit.

# **Description**


# **Microchip Part Number:**

DM320018


#### **Product Page:**

http://www.microchip.com/Development tools/Product Details.aspx?Part NO=DM320018

#### **Hardware Layout (Front)**

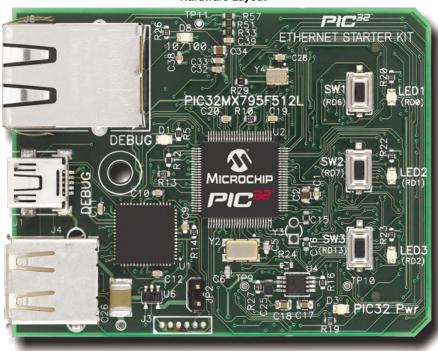


**Hardware Layout (Back)** 



#### **PIC32 Ethernet Starter Kit**

Provides information on the PIC32 Ethernet Starter Kit.


#### **Description**

# **Microchip Part Number:**

DM320004

#### **Product Page:**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm320004



#### PIC32 Ethernet Starter Kit II

Provides information on the PIC32 Ethernet Starter Kit II.

#### **Description**


**Microchip Part Number:** 

DM320004-2

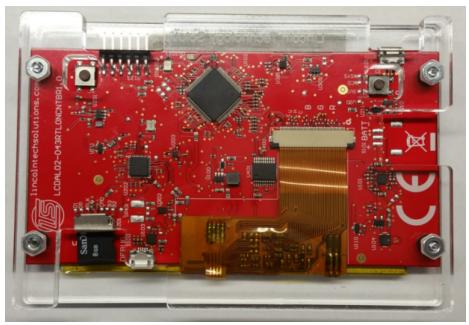
**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=DM320004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-20004-2000

**Hardware Layout** 



# **PIC32 Graphics Discovery Development Board**


Provides information on the PIC32 Graphics Discovery Development Board.

#### **Description**



Please contact your local Microchip sales office for information on obtaining this development board.

**Hardware Layout (Front)** 



**Hardware Layout (Back)** 



# PIC32 GUI Development Board with Projected Capacitive Touch

Provides information on the PIC32 GUI Development Board with Projected Capacitive Touch.

#### **Description**

Microchip Part Number:

DM320015

**Product Page:** 

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm320015



# PIC32 USB Digital Audio Accessory Board

Provides information on the PIC32 USB Digital Audio Board.

#### **Description**

Microchip Part Number:

DM320014

microchipDIRECT Product Page:

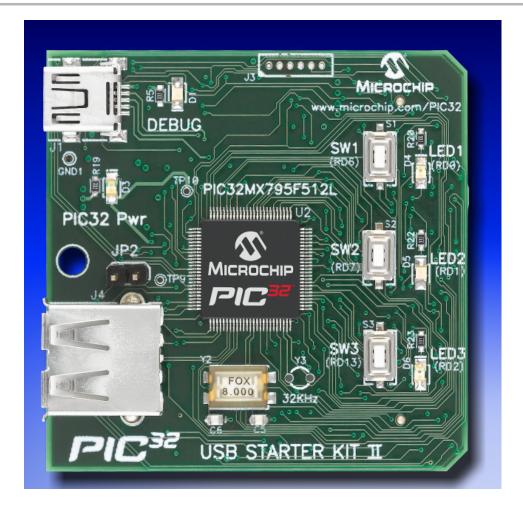
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm320014





# PIC32 USB Starter Kit II

Provides information on the PIC32 USB Starter Kit II.


#### **Description**

#### **Microchip Part Number:**

DM320003-2

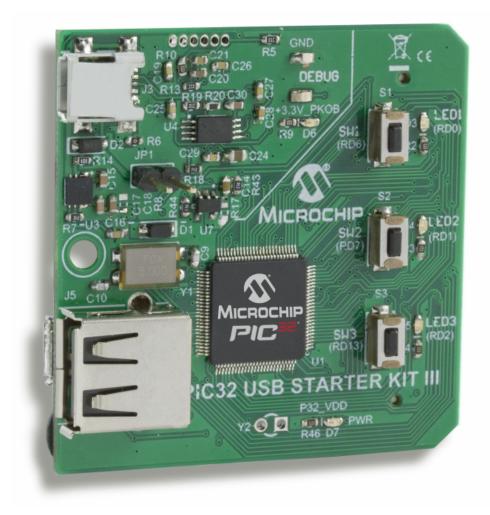
### **Product Page:**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm320003-2



# PIC32 USB Starter Kit III

Provides information on the PIC32 USB Starter Kit III.


### **Description**

# **Microchip Part Number:**

DM320003-3

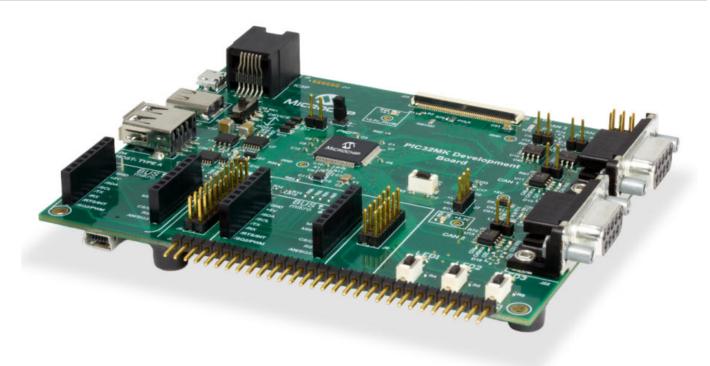
# **Product Page:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320003-3



# PIC32MK General Purpose (GP) Development Board

Provides information on the PIC32MK General Purpose (GP) Development Board.


# **Description**

Microchip Part Number:

DM320106

Product Page:

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320106



# PIC32MK 100-pin Motor Control Plug-in Module (PIM)

Provides information on the PIC32MK 100-pin Motor Control Plug-in Module (PIM).


# **Description**

Microchip Part Number:

MA320024

**Product Page:** 

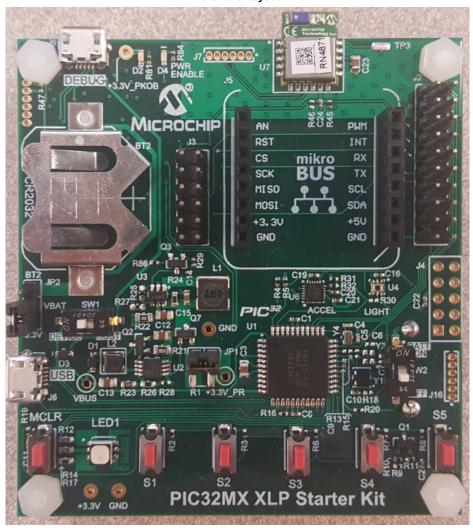
http://www.microchip.com/developmenttools/productdetails.aspx?partno=ma320024



# PIC32MX XLP Starter Kit

Provides information on the PIC32MX XLP Starter Kit.

### **Description**


Microchip Part Number:

DM320105

**Product Page:** 

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320105

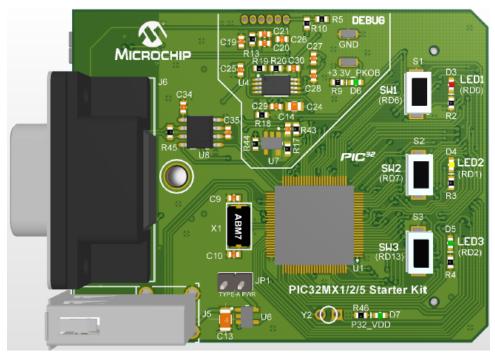
**Hardware Layout** 



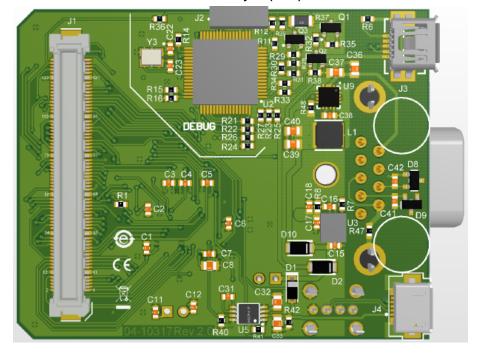
### PIC32MX1/2/5 Starter Kit

Provides information on the PIC32MX1/2/5 Starter Kit.

### **Description**


Microchip Part Number:

DM320100


**Product Page:** 

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320100

**Hardware Layout (Front)** 



**Hardware Layout (Back)** 



# PIC32MX270F256D Plug-in Module (PIM)

Provides information on the PIC32MX270F256D Plug-in Module (PIM).

### **Description**

Two PIC32MX270F256D PIMs are available, one for use with the PIC32 Bluetooth Audio Development Kit, and one for use with the Explorer 16 Development Board.

### **Microchip Part Number:**

MA320013

This PIM is required while using the PIC32 Bluetooth Audio Development Kit

### microchipDIRECT Product Page:

http://www.microchip.com/Development tools/Product Details.aspx?Part NO=MA320013

### **Hardware Layout**



# **Microchip Part Number:**

MA320014

This PIM is required while using the Explorer 16 Development Board.

# microchipDIRECT Product Page:

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=MA320014



# PIC32MX270F512L Plug-in Module (PIM)

Provides information on the PIC32MX270F512L Plug-in Module (PIM).

### **Description**

### Microchip Part Number:

MA320017

This PIM is for use with the PIC32 Bluetooth Audio Development Kit.

microchipDIRECT Product Page:

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=MA320017

### **Hardware Layout**



# PIC32MX360F512L Plug-in Module (PIM)

Provides information on the PIC32MX360F512L Plug-in Module (PIM).

### **Description**

# **Microchip Part Number:**

MA320001

### microchipDIRECT Product Page:

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=MA320001

**Hardware Layout** 



# PIC32MX460F512L Plug-in Module (PIM)

Provides information on the PIC32MX460F512L Plug-in Module (PIM).

### **Description**

### **Microchip Part Number:**

MA320002

### microchipDIRECT Product Page:

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=MA320002



# PIC32MX450/470F512L Plug-in Module (PIM)

Provides information on the PIC32MX450/470F512L Plug-in Module (PIM).

### **Description**

Microchip Part Number:

MA320002-2

microchipDIRECT Product Page:

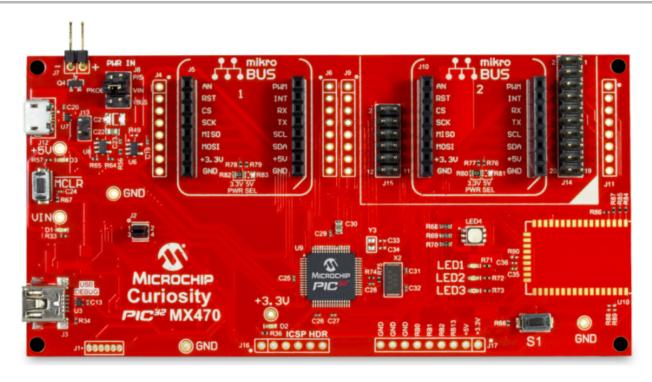
http://www.microchipdirect.com/ProductSearch.aspx?Keywords=MA320002-2





# PIC32MX470 Curiosity Development Board

Provides information on the PIC32MX470 Curiosity Development Board.


### **Description**

**Microchip Part Numbers:** 

DM320103

**Microchip Product Pages:** 

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320103



# PIC32MX570F512L Plug-in Module (PIM)

Provides information on the PIC32MX570F512L Plug-in Module (PIM).

### **Description**

Microchip Part Number:

MA320015

microchipDIRECT Product Page:

http://www.microchipdirect.com/ProductSearch.aspx?Keywords=MA320015





# PIC32MX795F512L CAN-USB Plug-in Module (PIM)

Provides information on the PIC32MX795F512L CAN-USB Plug-in Module (PIM).

# **Description**

### **Microchip Part Number:**

MA320003

# microchipDIRECT Product Page:

http://www.microchipdirect.com/productsearch.aspx?keywords=MA320003



# PIC32MZ2048ECH100 Plug-in Module (PIM)

Provides information on the PIC32MZ2048ECH100 Plug-in Module (PIM).

### **Description**

### **Microchip Part Number:**

MA320012

### microchipDIRECT Product Page:

http://www.microchipdirect.com/productsearch.aspx?keywords=MA320012

**Hardware Layout** 



# PIC32MZ2048EFH100 Plug-in Module (PIM)

Provides information on the PIC32MZ2048EFH100 Plug-in Module (PIM).

### **Description**

Microchip Part Number:

MA320019

**Microchip Product Page:** 

http://www.microchip.com



# PIC32MZ2048ECH144 Audio Plug-in Module (PIM)

Provides information on the PIC32MZ2048ECH144 Audio Plug-in Module (PIM).

### **Description**

**Microchip Part Number:** 

MA320016

microchipDIRECT Product Page:

http://www.microchipdirect.com/productsearch.aspx?keywords=MA320016

**Hardware Layout** 



# PIC32MZ2048EFH144 Audio Plug-in Module (PIM)

Provides information on the PIC32MZ2048EFH144 Audio Plug-in Module (PIM).

### **Description**

Microchip Part Number:

MA320018

microchipDIRECT Product Page:

http://www.microchipdirect.com/productsearch.aspx?keywords=MA320018



### **PIC32MZ Audio PIM**

Provides information on the PIC32MZ Audio PIM.

### **Description**

# **Microchip Part Number:**

MA320016

# **Microchip Product Page:**

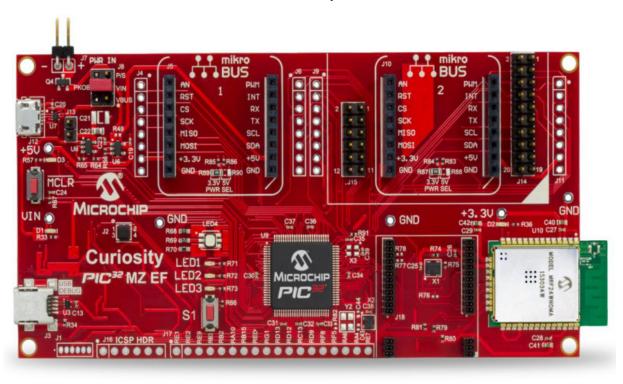
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=MA320016



# PIC32MZ EF Curiosity Development Board

Provides information on the PIC32MZ EF Curiosity Development Board.

### **Description**


### **Microchip Part Numbers:**

DM320104

### **Microchip Product Pages:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320104

**Hardware Layout** 

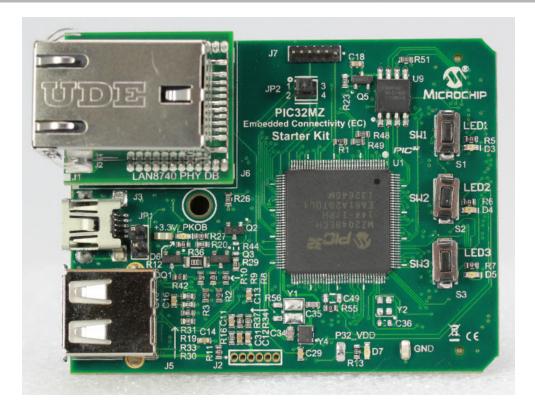


# PIC32MZ Embedded Connectivity (EC) Starter Kit

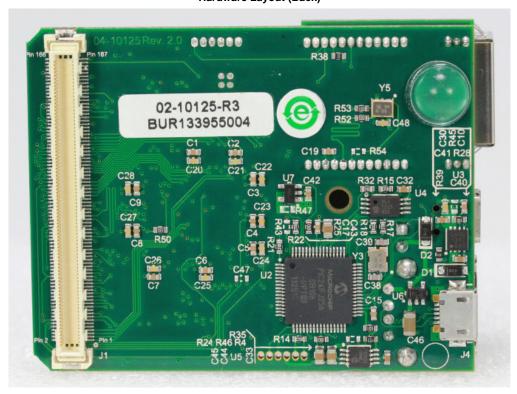
Provides information on the PIC32MZ Embedded Connectivity (EC) Starter Kit.

### **Description**

### **Microchip Part Numbers:**


DM320006

DM320006-C (with Crypto Engine)


### **Microchip Product Pages:**

 $http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320006\\ http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320006-C \\ http://www.microchip.com/Developmenttools/PartNO=DM320006-C \\ http://www.microchip.com/Develo$ 

**Hardware Layout (Front)** 



**Hardware Layout (Back)** 

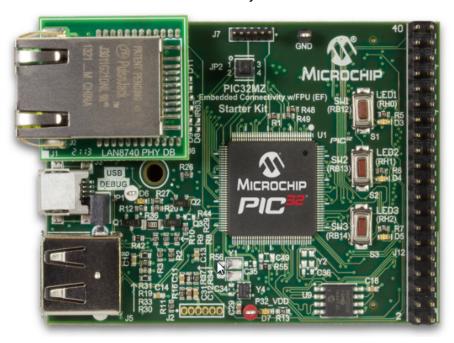


# PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

Provides information on the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

### **Description**

**Microchip Part Numbers:** 


DM320007 (without Crypto)

### DM320007-C (with Crypto)

### **Microchip Product Page:**

 $http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320007\\ http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320007-C\\ http://www.microchip.com/Developmenttools/PartNO=DM320007-C\\ http://www.microchip.com/Developmentto$ 

#### **Hardware Layout**





The hardware layout is subject to change and my differ from the photograph provided.

# PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit

Provides information about the PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit.

### **Description**

### Microchip Part Number:

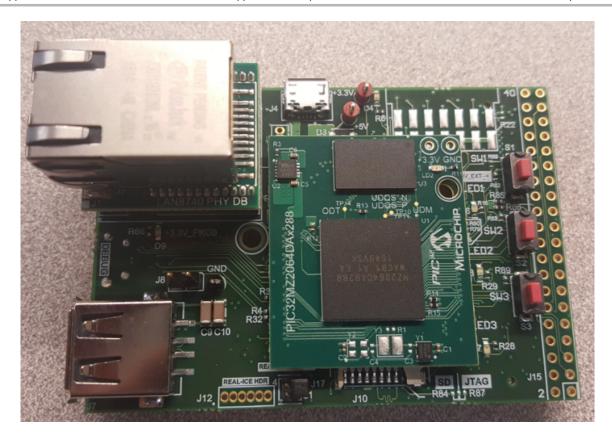


Please contact your local Microchip sales office for information on obtaining this board.

### PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit

Provides information on the PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit.

### **Description**


### **Microchip Part Numbers:**

DM320008 (without Crypto)

DM320008-C (with Crypto)

### Microchip Product Page:

 $http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320008\\ http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320008-C \\ http://www.microchip.com/Developmenttools/PartNO=DM320008-C \\ http://www.microchip.com/Developmenttools/PartNO=DM32008-C \\ http://www.m$ 



# PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

Provides information on the PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit.

# **Description**

### **Microchip Part Numbers:**

DM320010 (without Crypto)

DM320010-C (with Crypto)

### **Microchip Product Page:**

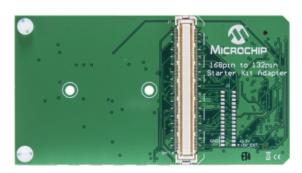
 $http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320010\\ http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=DM320010-C$ 



# PIC32MZ Starter Kit Adapter Board

Provides information on the PIC32MZ Starter Kit Adapter Board.

# **Description**


# **Microchip Part Number:**

AC320006

# **Microchip Product Page:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC320006

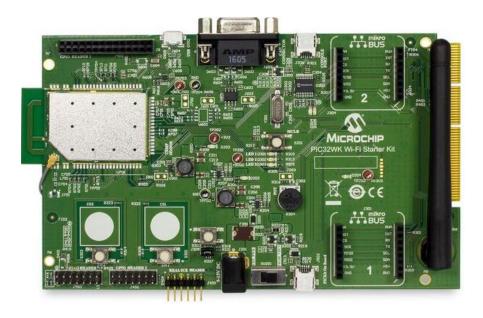
**Hardware Layout** 



# PIC32WK Wi-Fi Starter Kit

Provides information on the PIC32WK Wi-Fi Starter Kit.

# **Description**


# **Microchip Part Numbers:**

DM320102-1



Please contact your local Microchip sales office for information on obtaining this board.

### **Hardware Layout**



# PICkit 3 In-Circuit Debugger

Provides information on the PICkit™ 3 In-Circuit Debugger.

# **Description**

Microchip Part Number:

PG164130

**Microchip Product Page:** 

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=PG164130



# PICtail Daughter Board for SD and MMC

Provides information on the PICtail Daughter Board for SD and MMC.

# **Description**

# **Microchip Part Number:**

AC164122

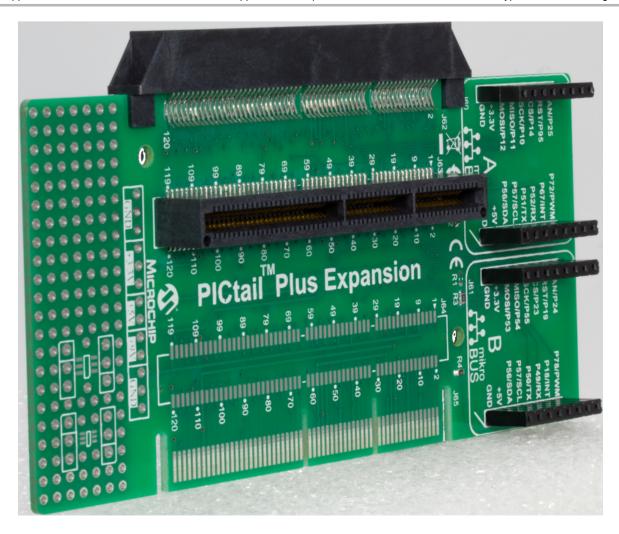
# **Microchip Product Page:**

http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC164122



# **PICtail Plus Expansion Board**

Provides information on the PICtail Plus Expansion Board


# **Description**

# **Microchip Part Number:**

AC240100

# **Microchip Product Page:**

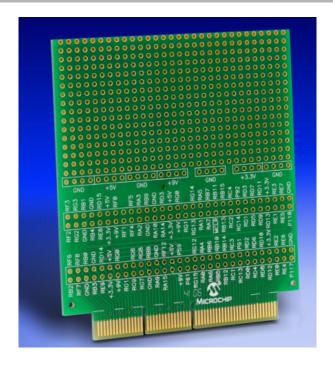
http://www.microchip.com/developmenttools/productdetails.aspx?partno=ac240100



# **Prototype PICtail Plus Daughter Board**

Provides information on the Prototype PICtail Plus Daughter Board.

# **Description**


# **Microchip Part Number:**

AC164126

# **Microchip Product Page:**

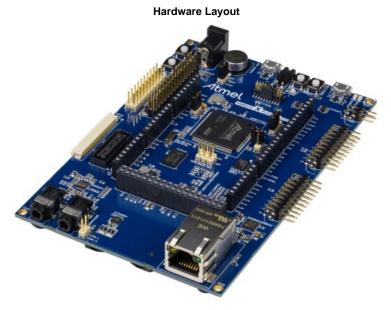
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=AC164126

Starter Kit I/O Expansion Board



# SAM V71 Xplained Ultra Evaluation Kit

Provides information on the SAM V71 Xplained Ultra Evaluation Kit.


# **Description**

# **Microchip Part Number:**

ATSAMV71-XULT

# **Microchip Product Page:**

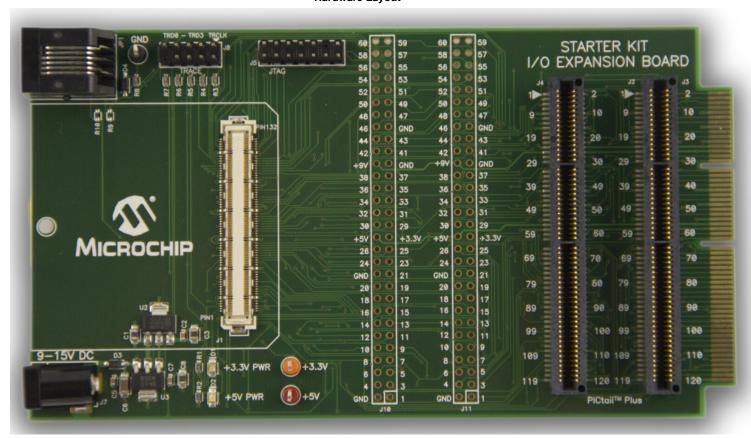
http://www.microchip.com/developmenttools/productdetails.aspx?partno=atsamv71-xult



# Starter Kit I/O Expansion Board

Provides information on the Starter Kit I/O Expansion Board.

### **Description**


# **Microchip Part Number:**

DM320002

### **Microchip Product Page:**

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=DM320002

#### **Hardware Layout**



# **USB PICtail Plus Daughter Board**

Provides information on the USB PICtail Plus Daughter Board.

### **Description**

### **Microchip Part Number:**

AC164131

### **Microchip Product Page:**

http://www.microchip.com/Development tools/Product Details.aspx?Part NO=AC164131



# WINC1500 Wi-Fi module

Provides information on the WINC1500 Wi-Fi Module

### **Description**

Microchip Part Number:

ATWINC1500-MR210PB1952

**Microchip Product Page:** 

http://www.microchip.com/wwwproducts/en/atwinc1500

**Hardware Layout** 



# WILC1000 Wi-Fi PICtail/PICtail Plus Daughter Board

Provides information about the WILC1000 Wi-Fi PICtail/PICtail Plus Daughter Board.

### **Description**

**Microchip Part Number:** 



Please contact your local Microchip sales office for information on obtaining this board.

# WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board

Provides information about the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board.

### **Description**

Microchip Part Number:

AC164156

# **Microchip Product Page:**

http://www.microchip.com/developmenttools/productdetails.aspx?partno=ac164156

**Hardware Layout** 

Supported Development Boards



# **Board Support Packages Help**

This section describes the Board Support Packages (BSP) that are available in MPLAB Harmony.

#### Introduction

This topic provides information for the Board Support Package (BSP) capabilities MPLAB Harmony.

#### Description

A MPLAB Harmony Board Support Package (BSP) provides support for board-specific hardware, which is provided in two forms:

- BSP Library: Provides board-specific initialization code and an interface to switches, LEDs, and GPIO pins
- Initial Configuration: Provides a starting point for configuration settings for clocks, ports, and selected libraries when creating a new project (or project configuration)

### **BSP Library**

A MPLAB Harmony BSP library (consisting of a bsp.h and bsp.c file) is configured specifically for the selected board and generated into the project's configuration folder at the following location:

project>/firmware/src/system\_config/<configuration>/bsp

#### Where:

project> - Is the root folder of the project

<configuration> - Is the project's configuration folder when the BSP is generated

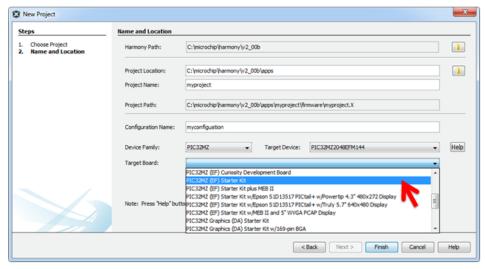
A BSP library has a set of system interface functions and a set of client interface functions. However, unlike most MPLAB Harmony library modules, BSPs do not often have a state machine of their own, and therefore, they usually do not have a BSP\_Tasks function or other system interface functions. In a project configuration, the BSP's initialize function (BSP\_Initialize) is normally called from the system's SYS\_Initialize function before any other initialization function (except those that initialize any required core processor capabilities). This allows the BSP to initialize any necessary board-specific hardware (like memory and GPIO controllers) before other libraries are initialized. Refer to *Volume IV*: MPLAB Harmony Development > MPLAB Harmony Driver Development Guide > System Interface for additional information on system interface functions.)

A BSP also provides a simple and extensible client interface for controlling switches, LEDs, and other GPIO pins. This interface includes functions to turn LEDs and pins on-or-off and to toggle, set, or get their current state, where so configured. The names of these functions all begin with "BSP\_LED" and are followed by the operation verb (On, Off, Toggle, StateSet, or StateGet). There is also a BSP function to get the current state of switches on the board called BSP\_SwitchStateGet. These functions accept values from a custom-generated enumeration as a parameter to identify the specific switches, LEDs, and pins on which to perform the operation. The names given to the switches, LEDs, and other pins used by the BSP interface functions are defined in the MPLAB Harmony Configurator's Pin Settings window. These names are used to define the labels in the custom-generated enumerations used by these BSP functions. Refer to Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Configurator User's Guide > MPLAB Harmony Graphical Pin Manager and to the following topics in this section for additional information on how to define custom pin names.

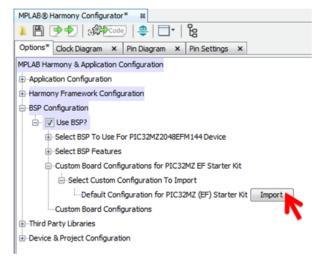
Additionally, the BSP client interface is extensible. The names given to the switches, LEDs, and pins in the Graphical Pin Manager are also prepended to the operation verbs (On, Off, Toggle, StateSet, and StateGet) to generate a completely custom set of control functions for each pin. These functions are described in the Library Interface section of this document using monikers prefixed with "custom\_gpio\_name", "custom\_switch\_name", and "custom\_gpio\_name". No actual functions exist with these names. Instead, these labels are replaced with the custom name given to each pin and function-like macros are generated (defined in system\_config.h) to provide functions that directly access these IO pins. These macros can be used by the application, but be aware that the common BSP functions may be more portable as these custom macros must be generated by the configuration. For more information, refer to Extending the BSP Library Interface.

### **Initial Configuration**

An initial BSP configuration is basically another type of MHC configuration file. (Refer to *Volume III: MPLAB Harmony Configurator (MHC)* > *MPLAB Harmony Configurator Developer's Guide* > *MHC Files* for details of the MHC file.) The initial configuration can contain settings selected using the MHC (see *Volume III: MPLAB Harmony Configurator (MHC)* for information on using the MHC). When a new project (or a new configuration of an existing project) is created (or any time a BSP configuration is imported), the MHC allows the user the option to select an initial board configuration (MHC) file. If one is selected, the MHC initializes the project configuration with the settings in the selected file (overwriting the default or existing settings). This gives the user a known starting point from which to configure the project, based upon the board selected. A single BSP can have multiple initial board configuration files with different configuration settings, allowing the user to select the initial configuration that most closely represents the desired project configuration.


# Using a BSP

This section provides information on using a MPLAB Harmony BSP.


#### **Description**

To use a BSP, select the desired BSP from the list of available BSPs in the MPLAB X IDE New Project Wizard when creating a new project, as

shown in the following figure, and complete the New Project Wizard.



The default board configuration settings will have been applied when the project is created, even before clicking the Generate Code button. You may then make modifications to the current configuration as desired, or load a custom board configuration, or reload the default BSP configuration by expanding BSP Configuration > USB BSP > Custom Board Configurations for [BSP Name] > Select Custom Configuration to Import, and then clicking the Import button as shown in the following figure. The imported settings will overwrite any current settings, and then be saved in the configuration's MHC file (not the BSP's board configuration file) when you click either the Generate Code or Save Configuration button.



Refer to Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Configurator User's Guide for information on using the MHC. To utilize the BSP library functions, simply call the desired function from your application as shown in the example section within the documentation for each function in the Library Interface section of this document.

### Customizing a BSP

Describes how to customize a BSP library and create custom initial board configurations.

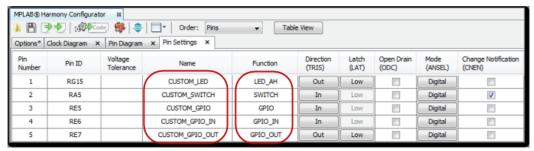
### **Description**

Customizations can be made by extending or modifying the BSP library source code or by creating custom initial board configurations, as described in the following topics.

### Extending the BSP Library Interface

Describes how to extend the BSP library interface.

# **Description**


The MHC will generate custom code that extends the BSP API when any of the following pin functions are selected in the Pin Settings table.

### **BSP-Related Pin Functions**

· LED\_AH Selects active high LED functionality that will generate custom named macros to control an LED that turns on when the pin is driven

high

- · LED\_AL Selects active low LED functionality that will generate custom named macros to control an LED that turns on when the pin is driven low
- GPIO Selects general purpose IO pin functionality that will generate custom named macro constants for use with the Ports System Service functions
- · GPIO\_IN Selects general purpose input pin that will generate a custom named macro to obtain the state of a general purpose input pin
- GPIO\_OUT Selects general purpose output pin functionality that will generate custom named macros to control a general purpose output pin Select one of the BSP-related pin functions in the MHC's Pin Setting window and provide a custom name for the pin, as shown in the following figure.





Be sure to correctly configure the pin direction, initial latch value, digital-or-analog mode, and other settings.

After clicking the **Generate Code** button, the bsp.h file will be updated to contain macro definitions for any custom-named pins that are configured for BSP-related pin functions, as shown in the following examples.

### Example Macros for LED\_AH or LED\_AL Pin Named CUSTOM\_LED

```
#ifndef CUSTOM_LEDToggle
    #define CUSTOM_LEDToggle() PLIB_PORTS_PinToggle \
                               (PORTS_ID_0, PORT_CHANNEL_G, PORTS_BIT_POS_15)
#endif
#ifndef CUSTOM_LEDOn
    #define CUSTOM_LEDOn() PLIB_PORTS_PinSet \
                           (PORTS_ID_0, PORT_CHANNEL_G, PORTS_BIT_POS_15)
#endif
#ifndef CUSTOM LEDOff
    #define CUSTOM_LEDOff() PLIB_PORTS_PinClear \
                            (PORTS_ID_0, PORT_CHANNEL_G, PORTS_BIT_POS_15)
#endif
#ifndef CUSTOM_LEDStateGet
   #define CUSTOM_LEDStateGet() PLIB_PORTS_PinGetLatched \
                                 (PORTS_ID_0, PORT_CHANNEL_G, PORTS_BIT_POS_15)
#endif
```

Note:

The macros will be implemented to correctly set or clear the pin based on the selection of active-high or active-low LED function.

### **Example Macro for SWITCH Pin Named CUSTOM\_SWITCH**

#### **Example Macros for GPIO OUT Pin Named CUSTOM GPIO OUT**

### Example Macro for GPIO\_IN Pin Named CUSTOM\_GPIO\_IN

### **Example Macros for GPIO Pin Named CUSTOM GPIO**

```
#define CUSTOM_GPIO_PORT PORT_CHANNEL_E
#define CUSTOM_GPIO_PIN PORTS_BIT_POS_5
#define CUSTOM_GPIO_PIN_MASK (0x1 << 5)</pre>
```



Custom GPIO pin name macros are intended for use with the PORTS PLIB or System Service library interface functions. Refer to Volume IV: MPLAB Harmony Framework Reference > Peripheral Libraries Help > Ports Peripheral Library or Volume IV: MPLAB Harmony Framework Reference > System Service Libraries Help > Ports System Service Library for information on these functions.

The extended BSP interface macros can be overridden by defining them in the project's  $system\_config.h$  header, if desired.



Current versions of MPLAB Harmony only define these macros in the system\_config.h file, so they may be overridden by redefining them there.

### Modifying the BSP Library Source Code

Describes how to modify the BSP library source code.

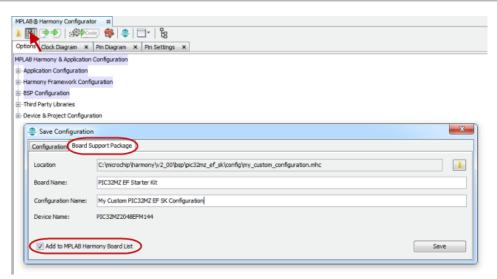
#### **Description**

The bsp.h and bsp.c source code files are generated by the MHC directly into the project's current configuration folder as described in the Introduction. Therefore, these files can be directly edited as required to support the configuration. The MHC will show a "diff" tool window when generating updates to the configuration, allowing you to merge the newly generated code with the existing code.

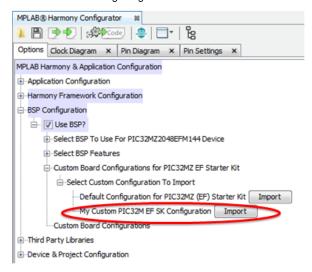
### **Creating Custom Initial Board Configurations**

Describes how to create custom initial board configurations.

#### **Description**


An initial board configuration is a MHC (\*.mhc) file that has the same format and contains the same sort of information (about configuration selections made using the MHC graphical user interface) as the MHC file in which a project configuration is stored. The difference is that it has been added to the MHC's list of initial board configurations for an associated BSP library within an installation of MPLAB Harmony.

The easiest way to create a custom initial board configuration is to create a temporary MPLAB Harmony project based upon an existing BSP, and import and customize any desired configuration settings from existing project configurations. Refer to *Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Configurator User's Guide* for information on how to create new projects using the MHC. Refer to *Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Configurator User's Guide > Importing and Exporting Data* for information on how to import settings from other configurations.




While it is possible to import or select application settings in an initial board configuration, it is not usually recommended, as the file may be used to initialize configurations for various different applications.

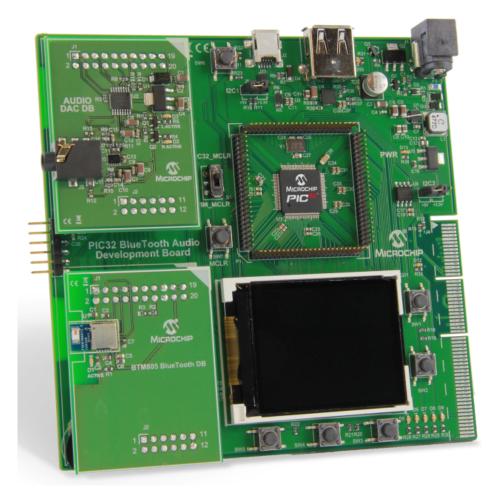
Once you have imported and/or selected all of the desired settings, save the configuration as an initial board configuration by choosing the Board Support Package tab, instead of the default Configurations tab, as shown in the following figure.



To associate the initial board configuration with a specific BSP library, be sure to save it in the <code>config</code> folder of the BSP for which it was created. For example, <code><install-dir>/bsp/pic32mz\_ef\_sk/config/</code>, as shown in the previous example, and be sure to select **Add to MPLAB Harmony Board List** so that the MHC will display it as a Custom Board Configuration for the associated BSP library. Give it a name that is descriptive of how it configures the board, so that you can easily understand why you might choose it over the default (or other) initial board configuration. Once saved, close and reopen the MHC and the new initial board Configuration Name will appear in the list of Custom Board Configurations for the associated BSP, as shown in the following image.



### **Board Support Packages**


Provides information on the individual board support packages included in your installation of MPLAB Harmony.

### bt\_audio\_dk

PIC32 Bluetooth Audio Development Kit BSP.

#### **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit.

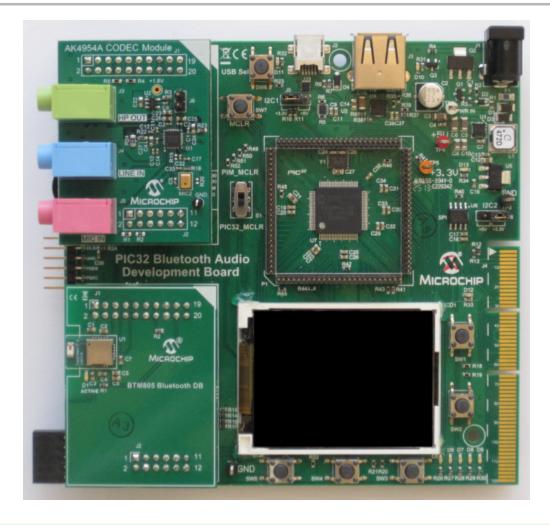


# bt\_audio\_dk+4642

PIC32 Bluetooth Audio Development Kit with the AK4642 Audio Codec BSP.

# **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit with the AK4642 Audio Codec.

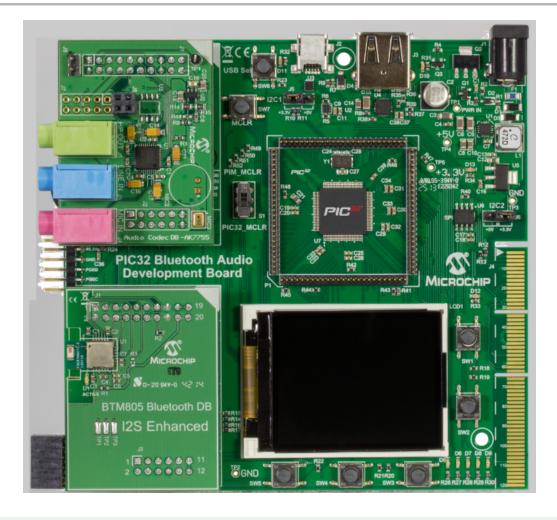



# bt\_audio\_dk+ak4954

PIC32 Bluetooth Audio Development Kit with the AK4954 Audio Codec BSP.

# **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit with the AK4954 Audio Codec.




# bt\_audio\_dk+ak7755

PIC32 Bluetooth Audio Development Kit with the AK7755 Audio Codec BSP.

# **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit with the AK7755 Audio Codec.



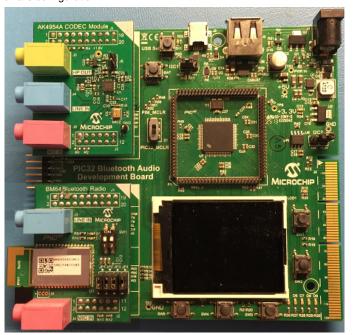
# bt\_audio\_dk+bm64

PIC32 Bluetooth Audio Development Kit with the BM64 Bluetooth Module BSP.

### **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit with the BM64 Bluetooth Module Daughter Board and the default PIC32 Audio DAC Daughter Board.




# bt\_audio\_dk+bm64+ak4954

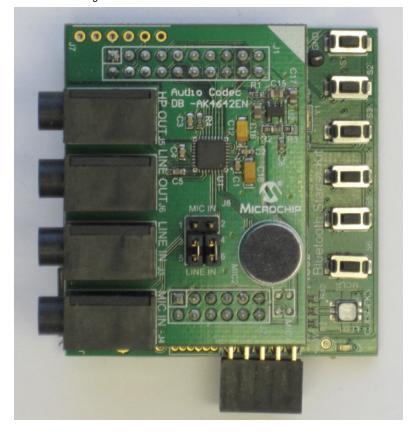
PIC32 Bluetooth Audio Development Kit with the BM64 Bluetooth Module and the AK4954 Audio Codec BSP.

### **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kitwith the BM64 Bluetooth Module Daughter Board and the PIC32 Audio Codec Daughter Board - AK4954A.

The following figure illustrates the hardware configuration.




# bt\_sk+4642

PIC32 Bluetooth Starter Kit with the AK4642 Audio Codec BSP.

# **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit with the AK4642 Audio Codec.

The following figure illustrates the hardware configuration.

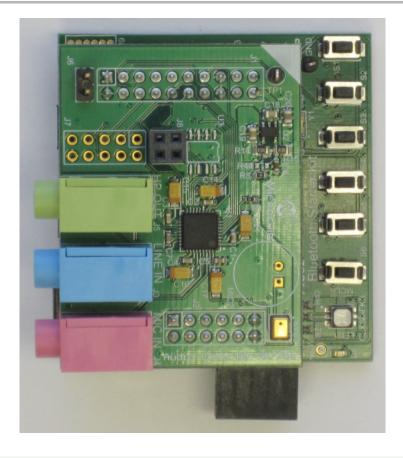


# bt\_sk+4954

PIC32 Bluetooth Starter Kit with the AK4954 Audio Codec BSP

### **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit with the AK4954 Audio Codec.




## bt\_sk+ak7755

PIC32 Bluetooth Starter Kit with the AK7755 Audio Codec BSP.

## **Description**

This BSP is intended for the PIC32 Bluetooth Audio Development Kit with the AK7755 Audio Codec.



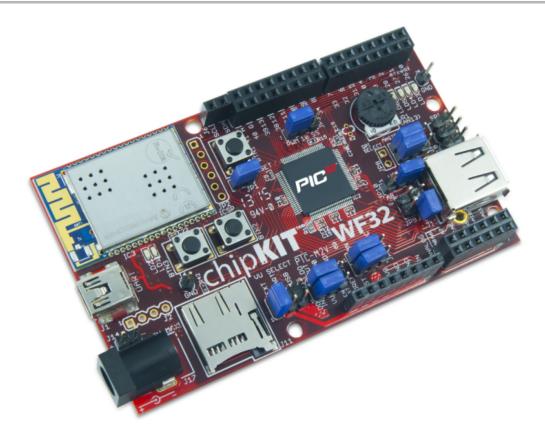
## chipkit\_wf32

chipKIT™ WF32™ Wi-Fi Development Board BSP.

#### **Description**

This BSP is intended for the chipKIT™ WF32™ Wi-Fi Development Board.




If a USB Host application is used, the board will not be able to power the USB device without one of the following:

Using an external power supply (9V or greater) connected to J17

- or

Bypassing the on-board voltage regulator by removing the jumpers on J16 and only connecting VU to 5V0.

Warning: Do not connect an external power supply in this configuration, or the 5V rail on the board will be supplied with the external voltage directly, which could result in damage to the board.



## chipkit\_wifire

chipKIT™ Wi-FIRE Development Board BSP.

#### **Description**

This BSP is intended for the chipKIT Wi-FIRE Development Board.



If a USB Host application is used, the board *will not* be able to power the USB device without one of the following: Using an external power supply (9V or greater) connected to J15

- or -

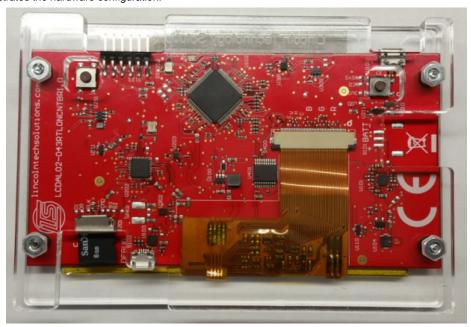
Bypassing the on-board voltage regulator by removing the jumpers on J17 and only connecting VU to 5V0.

Warning: Do not connect an external power supply in this configuration, or the 5V rail on the board will be supplied with the external voltage directly, which could result in damage to the board.



## pic32\_gdb\_ef

PIC32 Graphics Discovery Development Board BSP.


## **Description**

This BSP is intended for the the PIC32 Graphics Discovery Development Board and the PIC32MZ EF Starter Kit.



Please contact your local Microchip sales office for information on obtaining this development board.

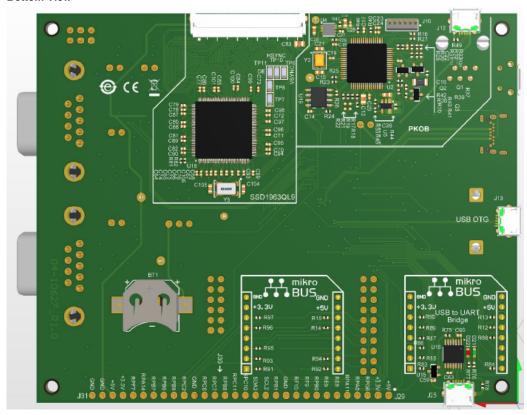
The following figure illustrates the hardware configuration.



# pic32mk\_gp\_db


PIC32MK GP Development Board BSP

## **Description**


This BSP is intended for the PIC32MK GP Development Board.

The following figures illustrate the hardware configuration.

## **Top View**



#### **Bottom View**



#### pic32mk\_gp\_db+wqvga\_mxt

PIC32MK GP Development Board (with SSD1963 Graphics Controller) and a 480x272 WQVGA maXTouch Display Module BSP.

#### **Description**

This BSP is intended for the PIC32MK GP Development Board (with SSD1963 Graphics Controller) connected to a High-Performance 4.3" WQVGA Display Module with maXTouch.



The display plus an interposer for use with the Multimedia Expansion Board II (MEBII) can be ordered from Microchip using the part number: AC320005-4.



#### pic32mk\_gp\_db+wvga\_mxt

PIC32MK GP Development Board (with SSD1963 Graphics Controller) and a High-Performance WVGA Display Module with maXTouch.

## **Description**

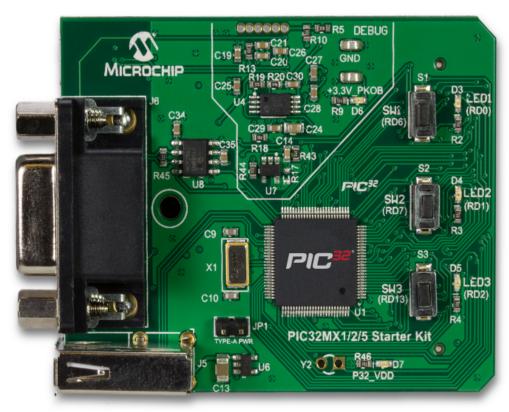
This BSP is intended for the PIC32MK GP Development Board (with SSD1963 Graphics Controller) connected to a High-Performance WVGA Display Module with maXTouch.



The display plus an interposer for use with the Multimedia Expansion Board II (MEB II) can be ordered from Microchip using the part number: AC320005-5.

The following figure illustrates the hardware configuration.




#### pic32mx\_125\_sk

PIC32MX1/2/5 Starter Kit BSP.

#### **Description**

This BSP is intended for the PIC32MX1/2/5 Starter Kit.

The following figure illustrates the hardware configuration.



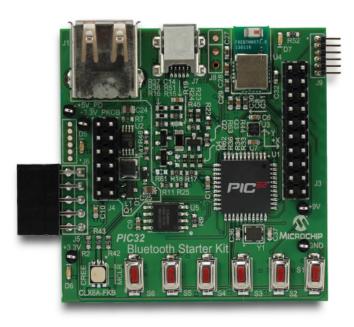
#### pic32mx\_125\_sk+lcc\_pictail+qvga

PIC32MX1/2/5 Starter Kit plus the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with the Graphics Display Truly 3.2" 320x240 Board BSP.

## **Description**

This BSP is intended for the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with the Graphics Display Truly 3.2" 320x240 Board connected to the PIC32MX1/2/5 Starter Kit.



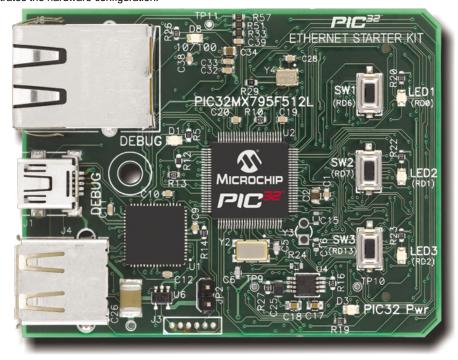

# pic32mx\_bt\_sk

PIC32 Bluetooth Starter Kit BSP.

## **Description**

This BSP is intended for the PIC32 Bluetooth Starter Kit.

The following figure illustrates the hardware configuration.



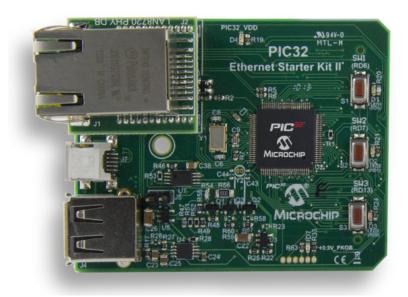

## pic32mx\_eth\_sk

PIC32 Ethernet Starter Kit BSP.

#### **Description**

This BSP is intended for the PIC32 Ethernet Starter Kit.




#### pic32mx\_eth\_sk2

PIC32 Ethernet Starter Kit II BSP.

#### **Description**

This BSP is intended for the PIC32 Ethernet Starter Kit II.

The following figure illustrates the hardware configuration.



## pic32mx\_pcap\_db

PIC32 GUI Development Board with Projected Capacitive Touch BSP.

#### **Description**

This BSP is intended for the PIC32 GUI Development Board with Projected Capacitive Touch.

The following figure illustrates the hardware configuration.

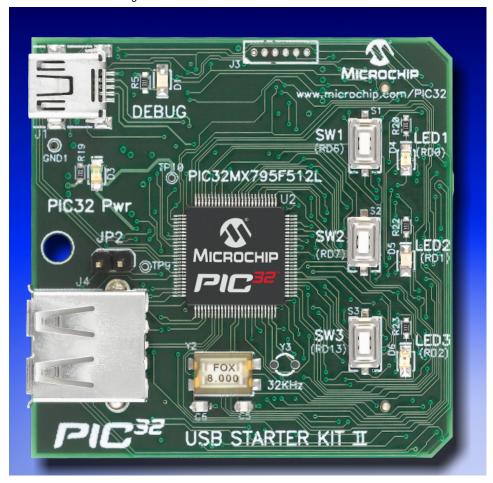


#### pic32mx\_usb\_digital\_audio\_ab

PIC32 USB Digital Audio Accessory Board BSP.

#### **Description**

This BSP is intended for the PIC32 USB Digital Audio Accessory Board.




## pic32mx\_usb\_sk2

PIC32 USB Starter Kit II BSP.

# **Description**

This BSP is intended for the PIC32 USB Starter Kit II.



#### pic32mx\_usb\_sk2+lcc\_pictail+qvga

PIC32 USB Starter Kit II plus the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with the Graphics Display Truly 3.2" 320x240 Board BSP.

#### **Description**

This BSP is intended for the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with the Graphics Display Truly 3.2" 320x240 Board connected to the PIC32 USB Starter Kit II.

The following figure illustrates the hardware configuration.



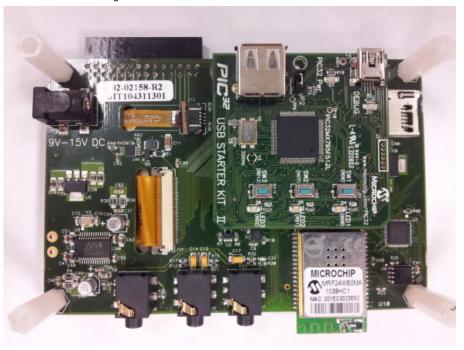
#### pic32mx\_usb\_sk2+lcc\_pictail+wqvga

PIC32 USB Starter Kit II plus the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with Graphics Display Powertip 4.3" 480x272 Board BSP.

#### **Description**

This BSP is intended for the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with the Graphics Display Powertip 4.3" 480x272 Board connected to the PIC32 USB Starter Kit II.




#### pic32mx\_usb\_sk2+meb

PIC32 USB Starter Kit II plus MEB BSP.

#### **Description**

This BSP is intended for the Multimedia Expansion Board (MEB) connected to the PIC32 USB Starter Kit II.

The following figure illustrates the hardware configuration.



#### pic32mx\_usb\_sk2+s1d\_pictail+vga

PIC32 USB Starter Kit II plus the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Truly 5.7" 640x480 Board BSP.

## **Description**

This BSP is intended for the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with the Graphics Display Truly 5.7" 640x480 Board connected to the PIC32 USB Starter Kit II.




# pic32mx\_usb\_sk2+s1d\_pictail+wqvga

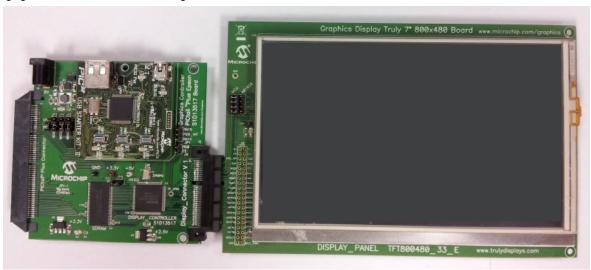
PIC32 USB Starter Kit II plus the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with the Graphics Display Powertip 4.3" 480x272 Board BSP.

#### **Description**

This BSP is intended for the Graphics Controller PlCtail Plus Epson S1D13517 Daughter Board with the Graphics Display Powertip 4.3" 480x272 Board connected to the PlC32 USB Starter Kit II.

The following figure illustrates the hardware configuration.




## pic32mx\_usb\_sk2+s1d\_pictail+wvga

PIC32 USB Starter Kit II plus the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Truly 7" 800x480 Board BSP.

#### **Description**

This BSP is intended for the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Truly 7" 800x480 Board connected to the PIC32 USB Starter Kit II.

The following figure illustrates the hardware configuration.



#### pic32mx usb sk2+ssd pictail+qvga

PIC32 USB Starter Kit II plus the Graphics LCD Controller PICtail Plus SSD1926 Daughter Board with Graphics Display Truly 3.2" 320x240 Board BSP.

## **Description**

This BSP is intended for the Graphics LCD Controller PICtail Plus SSD1926 Daughter Board with Graphics Display Truly 3.2" 320x240 Board connected to the PIC32 USB Starter Kit II.

The following figure illustrates the hardware configuration.

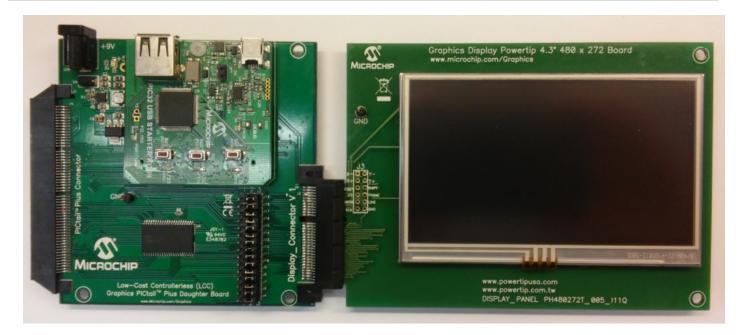


## pic32mx\_usb\_sk3

PIC32 USB Starter Kit III BSP.

#### **Description**

This BSP is intended for the PIC32 USB Starter Kit III.




## pic32mx\_usb\_sk3+lcc\_pictail+wqvga

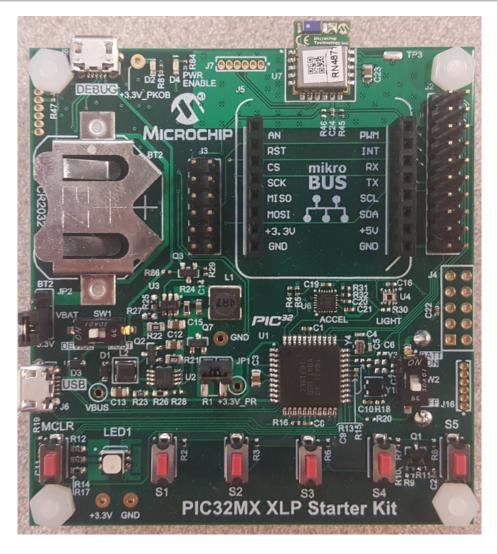
PIC32 USB Starter Kit III plus the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with Graphics Display Powertip 4.3" 480x272 Board BSP.

## **Description**

This BSP is intended for the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board with the Graphics Display Powertip 4.3" 480x272 Board connected to the PIC32 USB Starter Kit III.



# pic32mx\_xlp\_sk


PIC32MX XLP Starter Kit BSP.

## **Description**

This BSP is intended for the PIC32MX XLP Starter Kit.

The following figures illustrates the hardware configuration.

**Top View** 



**Bottom View** 



## pic32mx270f512l\_pim+bt\_audio\_dk

PIC32MX270F512L Plug-in Module (PIM) plus PIC32 Bluetooth Audio Development Kit.

## **Description**

This BSP is intended for the PIC32MX270F512L Plug-in Module (PIM) connected to the PIC32 Bluetooth Audio Development Kit. The following figure illustrates the hardware configuration.

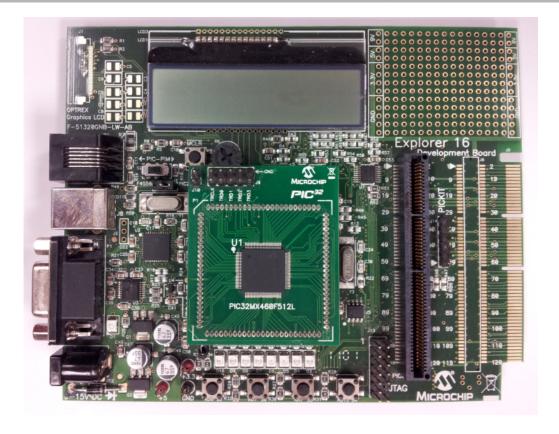


#### pic32mx\_270f512I\_pim+ bt\_audio\_dk+ak4642

PIC32MX270F512L Plug-in Module (PIM) plus PIC32 Bluetooth Audio Development Kit with the AK4642 Audio Codec.

#### **Description**

This BSP is intended for the PIC32MX270F512L Plug-in Module (PIM) connected to the PIC32 Bluetooth Audio Development Kit with the Audio Codec Daughter Board AK4642EN.

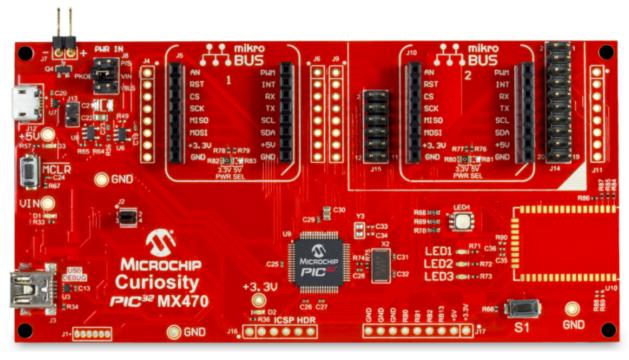



#### pic32mx460\_pim+e16

PIC32MX460F512L Plug-in Module (PIM) plus Explorer 16 Development Board BSP.

#### **Description**

This BSP is intended for the PIC32MX460F512L Plug-in Module (PIM) connected to the Explorer 16 Development Board. The following figure illustrates the hardware configuration.

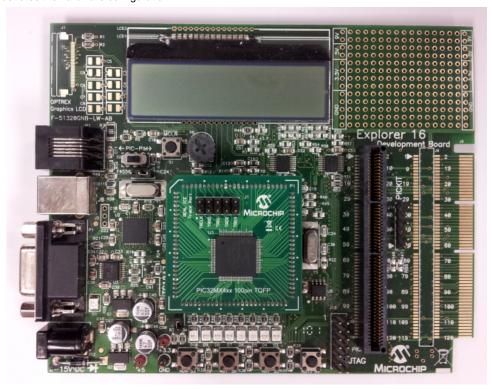



## pic32mx470\_curiosity

PIC32MX470 Curiosity Development Board BSP.

# **Description**

This BSP is intended for the PIC32MX470 Curiosity Development Board.

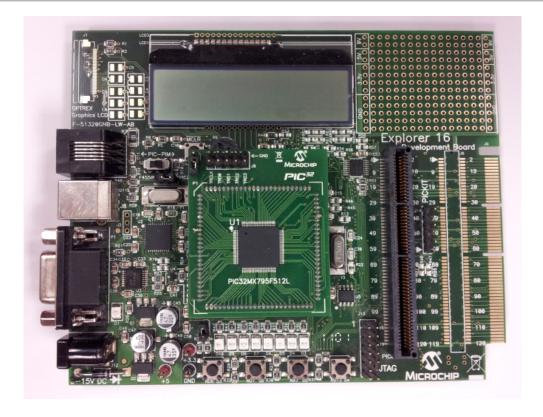



#### pic32mx470\_pim+e16

PIC32MX450/470F512L Plug-in Module (PIM) plus Explorer 16 Development Board BSP.

## **Description**

This BSP is intended for the PIC32MX450/470F512L Plug-in Module (PIM) connected to the Explorer 16 Development Board. The following figure illustrates the hardware configuration.

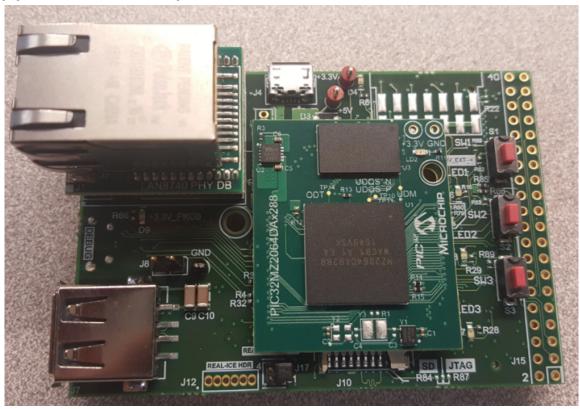



#### pic32mx795\_pim+e16

PIC32MX795F512L Plug-in Module (PIM) plus Explorer 16 Development Board BSP.

## **Description**

This BSP is intended for the PIC32MX795F512L CAN-USB Plug-in Module (PIM) connected to the Explorer 16 Development Board. The following figure illustrates the hardware configuration.




# pic32mz\_da\_sk\_extddr

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit BSP.

## **Description**

This BSP is intended for the PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit.




## pic32mz\_da\_sk\_extddr+meb2

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit plus MEB II BSP.

## **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) connected to the PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit.



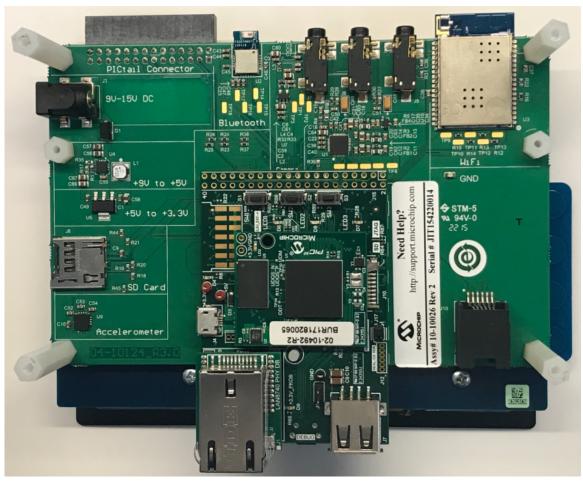


**Bottom View** 



## pic32mz\_da\_sk\_extddr+meb2+wvga

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit plus MEB II and 5" WVGA PDA Display Board BSP.


#### **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) with the High-Performance WVGA Display Module with maXTouch connected to the PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit.

**Top View** 



**Bottom View** 



#### pic32mz\_da\_sk\_intddr

PIC32MZ Embedded Graphics with Stacked DRAM (DA) Starter Kit BSP.

#### **Description**

This BSP is intended for the PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit.

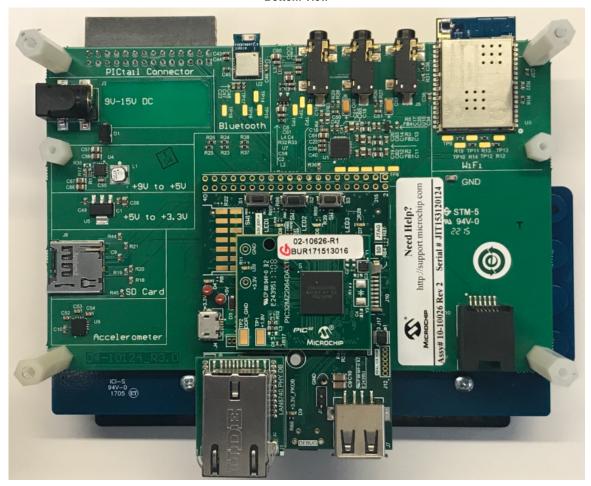
The following figure illustrates the hardware configuration.



## pic32mz\_da\_sk\_intddr+meb2

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit plus MEB II BSP.

## **Description**


This BSP is intended for the Multimedia Expansion Board II (MEB II) connected to the PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit.

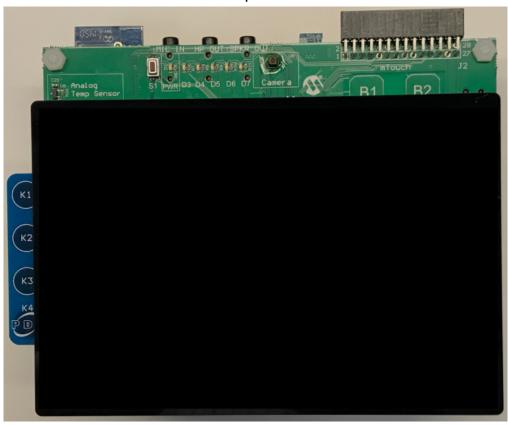
The following figures illustrate the hardware configuration.

**Top View** 



**Bottom View** 




## pic32mz\_da\_sk\_intddr+meb2+wvga

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit plus MEB II and 5" WVGA PDA Display Board BSP.


# **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) with the High-Performance WVGA Display Module with maXTouch connected to the PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit.

**Top View** 



**Bottom View** 



## pic32mz\_da\_sk\_noddr+meb2


PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit plus Multimedia Expansion Board II (MEB II) BSP.

## **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) connected to the PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit.

The following figures illustrate the hardware configuration.

**Top View** 



**Bottom View** 



## pic32mz\_da\_sk\_noddr+meb2+wvga

PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit plus MEB II and 5" WVGA PCAP Display Board BSP.

#### **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) with the High-Performance WVGA Display Module with maXTouch connected to the PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit.

The following figures illustrate the hardware configuration.

**Top View** 



**Bottom View** 



## pic32mz\_ec\_pim+bt\_audio\_dk

PIC32MZ2048ECH144 Audio Plug-in Module (PIM) plus PIC32 Bluetooth Audio Development Kit BSP.

#### **Description**

This BSP is intended for the PIC32MZ2048ECH144 Audio Plug-in Module (PIM) connected to the PIC32 Bluetooth Audio Development Kit. The following figure illustrates the hardware configuration.



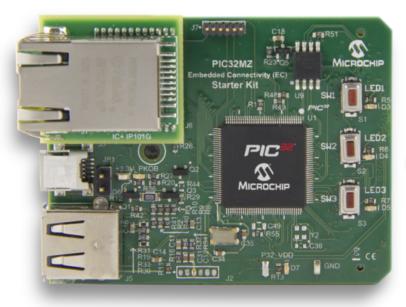
## pic32mz\_ec\_pim+e16

PIC32MZ2048ECH100 Plug-in Module (PIM) plus Explorer 16 Development Board BSP.

#### **Description**

 $This \ BSP \ is \ intended \ for \ the \ PIC32MZ2048ECH100 \ Plug-in \ Module \ (PIM) \ connected \ to \ the \ Explorer \ 16 \ Development \ Board.$ 




# pic32mz\_ec\_sk

PIC32MZ EC Starter Kit BSP.

# **Description**

This BSP is intended for the PIC32MZ Embedded Connectivity (EC) Starter Kit.

The following figure illustrates the hardware configuration.





# pic32mz\_ec\_sk+meb2

PIC32MZ EC Starter Kit plus MEB II BSP.

# **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) with the PIC32MZ Embedded Connectivity (EC) Starter Kit. The following figure illustrates the hardware configuration.



# pic32mz\_ec\_sk+meb2+wvga

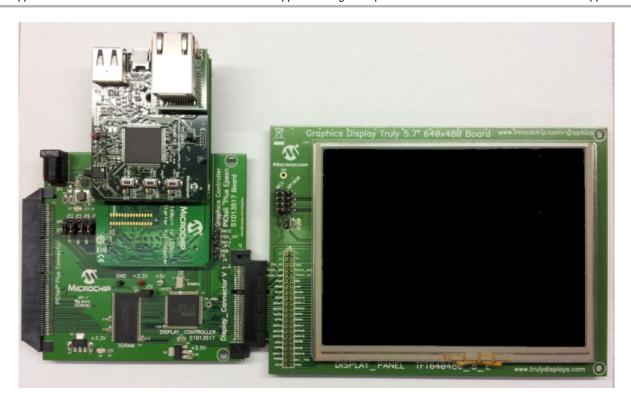
PIC32MZ EC Starter Kit plus MEB II and 5" WVGA PCAP Display Board BSP.

# **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) with the High-Performance WVGA Display Module with maXTouch connected to the PIC32MZ Embedded Connectivity (EC) Starter Kit.



# pic32mz\_ec\_sk+s1d\_pictail+vga


PIC32MZ EC Starter Kit plus Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Truly 5.7" 640x480 Board.

# **Description**

This BSP is intended for the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with the Graphics Display Truly 5.7" 640x480 Board connected to the PIC32MZ Embedded Connectivity (EC) Starter Kit.



The starter kit shown in the following figure is the PIC32MZ EF Starter Kit. The PIC32MZ EC and PIC32MZ EF starter kits are identical with the exception of the on-board device, so the hardware configuration is the same regardless of which starter kit is used.



# pic32mz\_ec\_sk+s1d\_pictail+wqvga


PIC32MZ EC Starter Kit plus Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Powertip 4.3" 480x272 Board BSP.

# **Description**

This BSP is intended for the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with the Graphics Display Powertip 4.3" 480x272 Board connected to the PIC32MZ Embedded Connectivity (EC) Starter Kit with the PIC32MZ Starter Kit Adapter Board.



The PIC32MZ EC Adapter Board is required when using the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with the PIC32MZ EC Starter Kit.

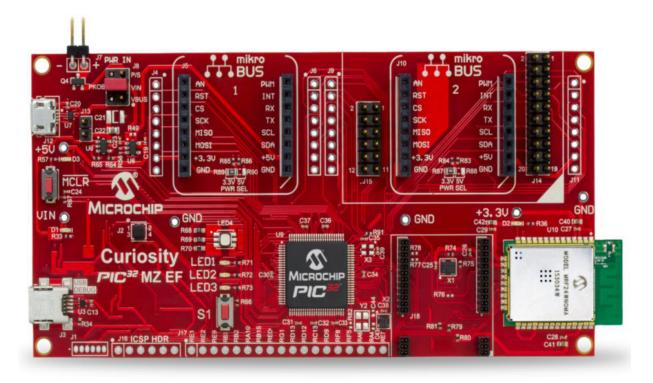


# pic32mz\_ec\_sk+s1d\_pictail+wvga

PIC32MZ EC Starter Kit plus Graphics Controller PICtail Plus Epson S1D13517 Daughter Board and Graphics Display Truly 7" 800x480 Board BSP.

# **Description**

This BSP is intended for the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Truly 7" 800x480 Board connected to the PIC32MZ Embedded Connectivity (EC) Starter Kit.




# pic32mz\_ef\_curiosity

PIC32MZ EF Curiosity Development Board BSP.

# **Description**

This BSP is intended for the PIC32MZ EF Curiosity Development Board.



# pic32mz\_ef\_pim+bt\_audio\_dk

PIC32MZ2048EFH144 Audio Plug-in Module (PIM) plus PIC32 Bluetooth Audio Development Kit BSP.

# **Description**

This BSP is intended for the PIC32MZ2048EFH144 Audio Plug-in Module (PIM) connected to the PIC32 Bluetooth Audio Development Kit.



The PIM shown in the following figure is the PIC32MZEC2048. The PIC32MZ EC and PIC32MZ EF PIMs are identical with the exception of the on-board device, so the hardware configuration is the same regardless of which PIM is used.



# pic32mz\_ef\_pim+bt\_audio\_dk+ak4642

PIC32MZ2048EFH144 Audio Plug-in Module (PIM) plus PIC32 Bluetooth Audio Development Kit and AK4642 Audio Codec BSP.

# **Description**

This BSP is intended for the PIC32MZ2048EFH144 Audio Plug-in Module (PIM) connected to the PIC32 Bluetooth Audio Development Kit with the AK4642 Audio Codec.



# pic32mz\_ef\_pim+e16

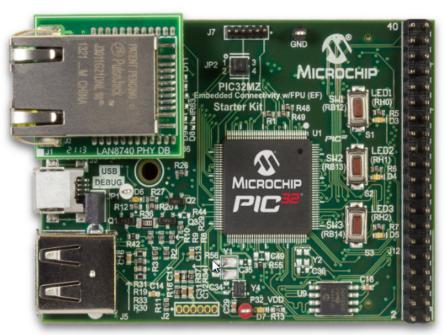
PIC32MZ2048EFH100 Plug-in Module (PIM) plus Explorer 16 Development Board BSP.

# **Description**

This BSP is intended for the PIC32MZ2048EFH100 Plug-in Module (PIM) connected to the Explorer 16 Development Board.



The PIM shown in the following figure is the PIC32MZEC2048. The PIC32MZ EC and PIC32MZ EF PIMs are identical with the exception of the on-board device, so the hardware configuration is the same regardless of which PIM is used.




# pic32mz\_ef\_sk

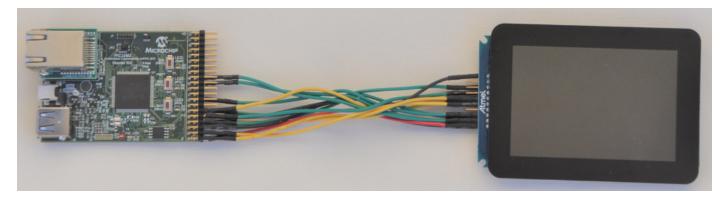
PIC32MZ EF Starter Kit BSP.

# **Description**

This BSP is intended for the PIC32MZ Embedded Connectivity (EF) Starter Kit.



# pic32mz\_ef\_sk+maxtouch\_xplained\_pro\_3\_5


PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the maXTouch Xplained Pro 3.5" display BSP.

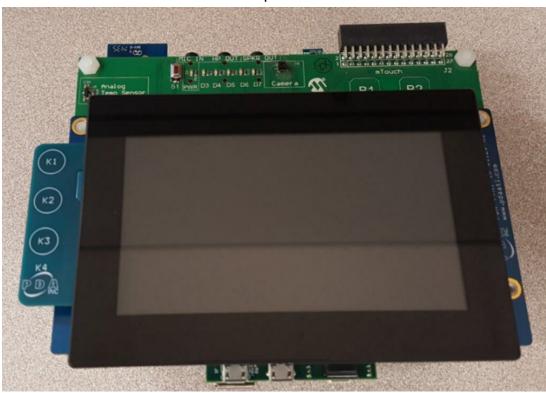
# **Description**

This BSP is intended for the PIC32MZ Embedded Connectivity (EF) Starter Kit the maXTouch Xplained Pro 3.5" display. The following figure illustrates the hardware configuration.



Refer to the aria\_quickstart demonstration for detailed information on pin connections between the starter kit and the display.




# pic32mz\_ef\_sk+meb2

PIC32MZ EF Starter Kit plus MEB II BSP.

# **Description**

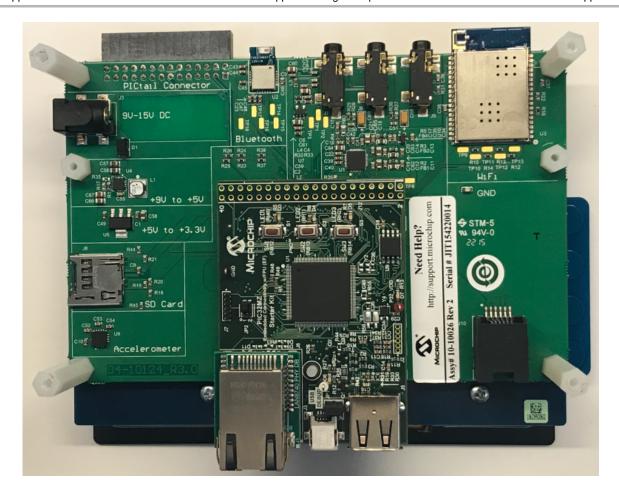
This BSP is intended for the Multimedia Expansion Board II (MEB II) connected to the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

**Top View** 



# **Bottom View**



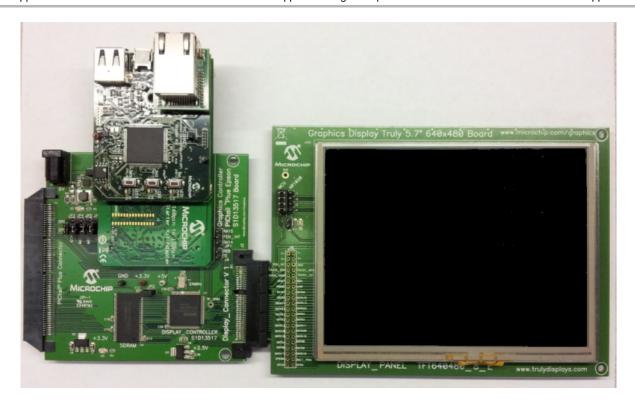

# pic32mz\_ef\_sk+meb2+wvga

PIC32MZ EF Starter Kit plus MEB II and 5" WVGA PDA Display Board BSP.

# **Description**

This BSP is intended for the Multimedia Expansion Board II (MEB II) with the High-Performance WVGA Display Module with maXTouch connected to the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

**Bottom View** 




# pic32mz\_ef\_sk+s1d\_pictail+vga

PIC32MZ EF Starter Kit plus Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Truly 5.7" 640x480 Board.

# **Description**

This BSP is intended for the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with the Graphics Display Truly 5.7" 640x480 Board connected to the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.



# pic32mz\_ef\_sk+s1d\_pictail+wqvga

PIC32MZ EF Starter Kit plus Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with Graphics Display Powertip 4.3" 480x272 Board BSP.

# **Description**

This BSP is intended for the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board with the Graphics Display Powertip 4.3" 480x272 Board connected to the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the PIC32MZ Starter Kit Adapter Board.



The starter kit shown in the following figure is the PIC32MZ EC Starter Kit. The PIC32MZ EC and PIC32MZ EF starter kits are identical with the exception of the on-board device, so the hardware configuration is the same regardless of which starter kit is used.




# pic32wk\_gbp\_gpd\_sk+module

PIC32WK Wi-Fi Starter Kit BSP.

# **Description**

This BSP is intended for the PIC32WK Wi-Fi Starter Kit.

The following figure illustrates the hardware configuration.



# **Library Interface**

Provides information on BSP functions, structs, types, and macros.

# **Custom Named GPIO Macros**

| Name                     | Description                                                                                  |
|--------------------------|----------------------------------------------------------------------------------------------|
| custom_gpio_nameOff      | Turns off the custom-named GPIO pin.                                                         |
| custom_gpio_nameOn       | Turns on the custom-named GPIO pin.                                                          |
| custom_gpio_nameStateGet | Gets the current value of the custom-named GPIO pin.                                         |
| custom_gpio_nameStateSet | Sets a new value on the custom-named GPIO pin.                                               |
| custom_gpio_nameToggle   | Toggles the custom-named GPIO pin.                                                           |
| custom_gpio_pin_PIN      | Identifies the bit position within the port channel associated with a custom-named GPIO pin. |
| custom_gpio_pin_PIN_MASK | Identifies the bit mask within the port channel associated with a custom-named GPIO pin.     |
| custom_gpio_pin_PORT     | Identifies the port channel associated with a custom-named GPIO pin.                         |

# **Custom Named LED Macros**

| Name                    | Description                                     |
|-------------------------|-------------------------------------------------|
| custom_led_nameOff      | Turns off the custom-named LED.                 |
| custom_led_nameOn       | Turns on the custom-named LED.                  |
| custom_led_nameStateGet | Gets the current state of the custom-named LED. |
| custom_led_nameToggle   | Toggles the custom-named LED.                   |

# **Custom Named Switch State Macros**

| Name                       | Description                                        |
|----------------------------|----------------------------------------------------|
| custom_switch_nameStateGet | Gets the current value of the custom-named switch. |

# **Data Types and Constants**

|  | Name    | Description                                                    |
|--|---------|----------------------------------------------------------------|
|  | BSP_LED | Defines the names of the LEDs available on the selected board. |

| BSP_SWITCH_STATE  | Defines possible states of the switches on this board.              |
|-------------------|---------------------------------------------------------------------|
| BSP_LED_STATE     | Enumerates the supported LED states.                                |
| BSP_SWITCH        | Defines the switches available on this board.                       |
| BSP_OSC_FREQUENCY | Defines the frequency value of crystal/oscillator used on the board |

# **Initialization Functions**

|            | Name           | Description                                           |
|------------|----------------|-------------------------------------------------------|
| <b>≡</b> ∳ | BSP_Initialize | Performs the necessary actions to initialize a board. |

### **LED Control Functions**

|           | Name            | Description                           |
|-----------|-----------------|---------------------------------------|
| <b>=♦</b> | BSP_LEDOff      | Turns OFF the specified LED.          |
| <b>=♦</b> | BSP_LEDOn       | Turns on the specified LED.           |
| <b>=♦</b> | BSP_LEDStateGet | Returns the current state of the LED. |
| <b>=♦</b> | BSP_LEDStateSet | Controls the state of the LED.        |
| <b>=♦</b> | BSP_LEDToggle   | Toggles the current state of the LED. |

# **Switch State Functions**

|           | Name               | Description                                        |
|-----------|--------------------|----------------------------------------------------|
| <b>≡∳</b> | BSP_SwitchStateGet | Returns the current state of the specified switch. |

# **Description**

The header file for each BSP library uses the file named  $bsp\_config.h.$ 

### Initialization Functions

# **BSP\_Initialize Function**

Performs the necessary actions to initialize a board.

#### File

bsp\_help.h

C

void BSP\_Initialize();

# Returns

None.

# **Description**

This function initializes the LED and Switch ports on the board. This function must be called by the user before using any APIs present on this BSP.

## **Remarks**

None.

#### **Preconditions**

None.

#### **Example**

```
//Initialize the BSP
BSP_Initialize();
```

### **Function**

void BSP\_Initialize (void)

### **LED Control Functions**

# **BSP\_LEDOff Function**

Turns OFF the specified LED.

#### File

bsp\_help.h

C

```
void BSP_LEDOff(BSP_LED led);
```

### **Returns**

None.

# **Description**

This function turns OFF the specified LED.

### **Remarks**

None.

# **Preconditions**

BSP\_Initialize() should have been called.

### **Example**

```
// Turn off LED1 on the board
BSP_LEDOff(BSP_LED_1);
```

### **Parameters**

| Parameters | Description                      |
|------------|----------------------------------|
| led        | The name of the LED to turn off. |

# **Function**

```
void BSP_LEDOff ( BSP_LED led);
```

# **BSP\_LEDOn Function**

Turns on the specified LED.

### **File**

bsp\_help.h

C

```
void BSP_LEDOn(BSP_LED led);
```

## **Returns**

None.

# **Description**

This function turns on the specified LED.

## **Remarks**

None.

# **Preconditions**

BSP\_Initialize() should have been called.

# **Example**

```
// Turn on LED1 on the board
BSP_LEDOn(BSP_LED_1);
```

### **Parameters**

| Parameters | Description                    |
|------------|--------------------------------|
| led        | The name of the LED to turn on |

#### **Function**

```
void BSP_LEDOn ( BSP_LED led );
```

### **BSP\_LEDStateGet Function**

Returns the current state of the LED.

### **File**

bsp\_help.h

C

```
BSP_LED_STATE BSP_LEDStateGet(BSP_LED led);
```

### **Returns**

BSP\_LED\_STATE\_OFF If the LED is off. BSP\_LED\_STATE\_ON If the LED is on.

# **Description**

This function returns the current state of the LED.

## **Remarks**

None.

# **Preconditions**

BSP\_Initialize() should have been called.

# **Example**

```
// Check if LED2 is off.
if(BSP_LED_STATE_OFF == BSP_LEDStateGet(BSP_LED_2)
{
    // Turn the LED on.
    BSP_LEDStateSet(BSP_LED_2, BSP_LED_STATE_ON);
}
```

## **Parameters**

| Parameters | Description                                   |
|------------|-----------------------------------------------|
| led        | The name of the LED to whose state to obtain. |

### **Function**

```
BSP_LED_STATE BSP_LEDStateGet ( BSP_LED led );
```

### **BSP LEDStateSet Function**

Controls the state of the LED.

# **File**

bsp\_help.h

C

```
void BSP_LEDStateSet(BSP_LED led, BSP_LED_STATE state);
```

#### **Returns**

None.

## **Description**

This function allows the caller to specify the state of the LED.

### **Remarks**

None.

#### **Preconditions**

BSP\_Initialize() should have been called.

#### **Example**

```
// Turn on LED1 on the board
BSP_LEDStateSet(BSP_LED_1, BSP_LED_STATE_ON);

// Turn off LED2 on the board
BSP_LEDStateSet(BSP_LED_2, BSP_LED_STATE_OFF);
```

### **Parameters**

| Parameters | Description                                                                                                     |
|------------|-----------------------------------------------------------------------------------------------------------------|
| led        | The name of the LED to control.                                                                                 |
| state      | The state to which the LED will be set: BSP_LED_STATE_OFF turns the LED off. BSP_LED_STATE_ON turns the LED on. |

#### **Function**

```
void BSP_LEDStateSet ( BSP_LED led, BSP_LED_STATE state );
```

# **BSP\_LEDToggle Function**

Toggles the current state of the LED.

#### File

bsp\_help.h

C

```
void BSP_LEDToggle(BSP_LED led);
```

#### **Returns**

None.

### Description

This function toggles the current state of the LED.

- If the current state is BSP\_LED\_STATE\_ON it changes to BSP\_LED\_STATE\_OFF.
- If the current state is BSP\_LED\_STATE\_OFF it changes to BSP\_LED\_STATE\_ON.

## **Remarks**

None.

### **Preconditions**

BSP\_Initialize() should have been called.

# **Example**

```
// Toggle LED1 on the board.
BSP_LEDToggle(BSP_LED_1);

// Toggle LED2 on the board.
BSP_LEDToggle(BSP_LED_2);

// Toggle state of LED3.
BSP_LEDToggle(BSP_LED_3);
```

# **Parameters**

| Parameters | Description                |
|------------|----------------------------|
| led        | The name of LED to toggle. |

## **Function**

```
void BSP_LEDToggle ( BSP_LED led );
```

#### Switch State Functions

### **BSP SwitchStateGet Function**

Returns the current state of the specified switch.

#### **File**

bsp\_help.h

C

```
BSP_SWITCH_STATE BSP_SwitchStateGet(BSP_SWITCH bspSwitch);
```

#### **Returns**

BSP\_SWITCH\_STATE\_PRESSED if the switch is currently pressed. BSP\_SWITCH\_STATE\_RELEASED if the switch is not currently pressed (i.e. is released.

## **Description**

This function returns the current state of the specified switch.

#### Remarks

Unless otherwise documented by the selected BSP, this function does not perform switch debouncing.

#### **Preconditions**

BSP\_Initialize() should have been called.

#### **Example**

```
// Check the state of the switch.
if(BSP_SWITCH_STATE_PRESSED == BSP_SwitchStateGet(BSP_SWITCH_1))
{
    // This means that Switch 1 on the board is pressed.
}
```

#### **Parameters**

| Parameters | Description                                   |
|------------|-----------------------------------------------|
| switch     | The name of the switch whose state to obtain. |

### **Function**

BSP\_SWITCH\_STATE BSP\_SwitchStateGet ( BSP\_SWITCH switch );

### **Custom Named GPIO Macros**

## custom\_gpio\_nameOff Macro

Turns off the custom-named GPIO pin.

### **File**

bsp\_help.h

C

#define custom\_gpio\_nameOff

# **Description**

Custom-Named GPIO Off Macro

This is a function-like macro that turns off a custom-named GPIO pin.

## Remarks

There is no actual macro or function named "custom\_gpio\_nameOff". It is given here as a place holder to indicate that the BSP can define custom-named macros to turn off GPIO pins with custom names for any port pins set to the "GPIO\_OUT" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named GPIO off macros with names that matching the names of GPIO pins provided

on the selected board. The user can add additional custom GPIO off macros by selecting the "GPIO\_OUT" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

# custom\_gpio\_nameOn Macro

Turns on the custom-named GPIO pin.

#### **File**

bsp\_help.h

C

#define custom\_gpio\_nameOn

## **Description**

Custom-Named GPIO On Macro

This is a function-like macro that turns on a custom-named GPIO pin.

#### Remarks

There is no actual macro or function named "custom\_gpio\_nameOn". It is given here as a place holder to indicate that the BSP can define custom-named macros to turn on GPIO pins with custom names for any port pins set to the "GPIO\_OUT" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named GPIO on macros with names that matching the names of GPIO pins provided on the selected board. The user can add additional custom GPIO on macros by selecting the "GPIO\_OUT" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

## custom\_gpio\_nameStateGet Macro

Gets the current value of the custom-named GPIO pin.

#### **File**

bsp\_help.h

C

#define custom\_gpio\_nameStateGet

# **Description**

Custom-Named GPIO Get Macro

This is a function-like macro that gets the current value of a custom-named GPIO pin.

### Remarks

There is no actual macro or function named "custom\_gpio\_nameStateGet". It is given here as a place holder to indicate that the BSP can define custom-named macros to get the current state of GPIO pins with custom names for any port pins set to the "GPIO\_IN" or "GPIO\_OUT" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named GPIO state-get macros with names that matching the names of GPIO pins provided on the selected board. The user can add additional custom GPIO state-get macros by selecting the "GPIO\_IN" or "GPIO\_OUT" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

# custom\_gpio\_nameStateSet Macro

Sets a new value on the custom-named GPIO pin.

#### **File**

bsp\_help.h

C

#define custom\_gpio\_nameStateSet(state)

# **Description**

Custom-Named GPIO Set Macro

This is a function-like macro that sets a new value on a custom-named GPIO pin.

#### Remarks

There is no actual macro or function named "custom\_gpio\_nameStateSet". It is given here as a place holder to indicate that the BSP can define custom-named macros to set the current state of GPIO pins with custom names for any port pins set to the "GPIO\_OUT" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named GPIO state-set macros with names that matching the names of GPIO pins provided on the selected board. The user can add additional custom GPIO state-set macros by selecting the "GPIO\_OUT" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

#### **Parameters**

| Parameters | Description                                                                                |
|------------|--------------------------------------------------------------------------------------------|
| state      | A boolean value. true if the pin is to be turned on. false if the pin is to be turned off. |

# custom\_gpio\_nameToggle Macro

Toggles the custom-named GPIO pin.

#### **File**

bsp\_help.h

C

#define custom\_gpio\_nameToggle

### **Description**

Custom-Named GPIO Toggle Macro

This is a function-like macro that toggles a custom-named GPIO pin.

#### Remarks

There is no actual macro or function named "custom\_gpio\_nameToggle". It is given here as a place holder to indicate that the BSP can define custom-named macros to toggle GPIO pins with custom names for any port pins set to the "GPIO\_OUT" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named GPIO pin toggle macros with names that matching the names of GPIO pins provided on the selected board. The user can add additional custom GPIO pin toggle macros by selecting the GPIO\_OUT" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

# custom\_gpio\_pin\_PIN Macro

Identifies the bit position within the port channel associated with a custom-named GPIO pin.

#### **File**

bsp\_help.h

C

#define custom\_gpio\_pin\_PIN PORTS\_BIT\_POS\_y

# **Description**

Custom GPIO Pin Port Channel Bit Position

This macro identifies the bit position within the port channel associated with a custom-named GPIO pin. This macro is intended for use with ports system service functions.

#### Remarks

There is no actual macro or function named "custom\_gpio\_pin\_PIN". It is given here as a place holder to indicate that the BSP can define custom-named macros to identify the bit position within the port channel associated with the custom-named pin.

This macro will actually be defined in the system\_config.h header for the current configuration.

#### custom gpio pin PIN MASK Macro

Identifies the bit mask within the port channel associated with a custom-named GPIO pin.

### File

bsp\_help.h

C

#define custom\_gpio\_pin\_PIN\_MASK (0x1 << 0)</pre>

#### **Description**

Custom GPIO Pin Mask

This macro identifies the bit mask within the port channel associated with a custom-named GPIO pin. This macro is intended for use with ports system service functions.

#### Remarks

There is no actual macro or function named "custom\_gpio\_pin\_PIN\_MASK". It is given here as a place holder to indicate that the BSP can define custom-named macros to identify the bit position within the port channel associated with the custom-named pin.

This macro will actually be defined in the system\_config.h header for the current configuration.

# custom\_gpio\_pin\_PORT Macro

Identifies the port channel associated with a custom-named GPIO pin.

#### File

bsp\_help.h

C

#define custom\_gpio\_pin\_PORT PORT\_CHANNEL\_x

#### Description

Custom GPIO Pin Port Channel

This macro identifies the port channel associated with a custom-named GPIO pin. This macro is intended for use with ports system service functions.

#### Remarks

There is no actual macro or function named "custom\_gpio\_pin\_PORT". It is given here as a place holder to indicate that the BSP can define custom-named macros to identify the port channel associated with the custom-named pin.

This macro will actually be defined in the system\_config.h header for the current configuration.

#### **Custom Named LED Macros**

#### custom led nameOff Macro

Turns off the custom-named LED.

#### **File**

bsp\_help.h

C

#define custom\_led\_nameOff

## **Description**

Custom-Named LED Off Macro

This is a function-like macro that turns off a custom-named LED.

#### Remarks

There is no actual macro or function named "custom\_led\_nameOff". It is given here as a place holder to indicate that the BSP can define custom-named macros to turn off LEDs with custom names for any port pins set to the "LED\_AH" or "LED\_AL" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named LED off macros with names that matching the names of LEDs provided on the selected board. The user can add additional custom LED off macros by selecting the "LED\_AH" or "LED\_AL" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

#### custom led nameOn Macro

Turns on the custom-named LED.

#### File

bsp\_help.h

C

#define custom\_led\_nameOn

# **Description**

Custom-Named LED On Macro

This is a function-like macro that turns on a custom-named LED.

#### Remarks

There is no actual macro or function named "custom\_led\_nameOn". It is given here as a place holder to indicate that the BSP can define custom-named macros to turn on LEDs with custom names for any port pins set to the "LED\_AH" or "LED\_AL" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named LED on macros with names that matching the names of LEDs provided on the selected board. The user can add additional custom LED on macros by selecting the "LED\_AH" or "LED\_AL" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

#### custom led nameStateGet Macro

Gets the current state of the custom-named LED.

#### File

bsp\_help.h

C

#define custom\_led\_nameStateGet

## **Description**

Custom-Named LED State Get Macro

This is a function-like macro that gets the current state of a custom named LED.

## Remarks

There is no actual macro or function named "custom\_led\_nameStateGet". It is given here as a place holder to indicate that the BSP can define custom-named macros to get the current state LEDs with custom names for any port pins set to the "LED\_AH" or "LED\_AL" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named LED get-state macros with names that matching the names of LEDs provided on the selected board. The user can add additional custom LED get- state macros by selecting the "LED\_AH" or "LED\_AL" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

## custom\_led\_nameToggle Macro

Toggles the custom-named LED.

#### **File**

bsp\_help.h

C

#define custom\_led\_nameToggle

## Description

Custom-Named LED Toggle Macro

This is a function-like macro that toggles a custom-named LED.

## Remarks

There is no actual macro or function named "custom\_led\_nameToggle". It is given here as a place holder to indicate that the BSP can define custom-named macros to toggle LEDs with custom names for any port pins set to the "LED\_AH" or "LED\_AL" function in the Pin Settings

configuration page. By default, the selected BSP may define a number of custom-named LED toggle macros with names that matching the names of LEDs provided on the selected board. The user can add additional custom LED toggle macros by selecting the "LED\_AH" or "LED\_AL" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

#### **Custom Named Switch State Macros**

# custom\_switch\_nameStateGet Macro

Gets the current value of the custom-named switch.

#### File

bsp\_help.h

C

#define custom\_switch\_nameStateGet

## **Description**

Custom-Named Switch Get Macro

This is a function-like macro that gets the current value of a custom-named switch.

#### Remarks

There is no actual macro or function named "custom\_switch\_nameStateGet". It is given here as a place holder to indicate that the BSP can define custom-named macros to get the current state of switches with custom names for any port pins set to the "SWITCH" function in the Pin Settings configuration page. By default, the selected BSP may define a number of custom-named switch state-get macros with names that matching the names of switches provided on the selected board. The user can add additional custom switch state-get macros by selecting the "SWITCH" function and defining a custom name for any desired pins in the MHC Pin Settings page.

This macro will actually be defined in the system\_config.h header for the current configuration.

## **Data Types and Constants**

### **BSP\_LED Enumeration**

Defines the names of the LEDs available on the selected board.

### **File**

bsp\_help.h

C

```
typedef enum {
  BSP_LED_1,
  BSP_LED_2,
  BSP_LED_3,
  custom_led_name
} BSP_LED;
```

#### **Members**

| Members         | Description                    |
|-----------------|--------------------------------|
| BSP_LED_1       | LED 1                          |
| BSP_LED_2       | LED 2                          |
| BSP_LED_3       | LED 3                          |
| custom_led_name | Custom LED Name (see Remarks). |

#### **Description**

BSP LED Name.

This enumeration defines the names of the LEDs available on the selected board.

#### Remarks

There is no actual value named "custom\_led\_name" in the BSP\_LED enum. It is listed here as a place holder to indicate that the MHC can define custom names for any port pins set to the "LED\_AH" or "LED\_AL" function in the Pin Settings configuration page and those and those names will

then become part of this enum definition. By default, the selected BSP may define a number of custom LED names to match the names of LEDs provided on the selected board. The user can add additional custom switch names by selecting the "LED\_AH" or "LED\_AL" function and defining a custom name for any desired pins in the MHC Pin Settings page.

# **BSP\_SWITCH\_STATE** Enumeration

Defines possible states of the switches on this board.

#### **File**

bsp\_help.h

C

```
typedef enum {
   BSP_SWITCH_STATE_PRESSED,
   BSP_SWITCH_STATE_RELEASED
} BSP_SWITCH_STATE;
```

#### **Members**

| Members                   | Description        |
|---------------------------|--------------------|
| BSP_SWITCH_STATE_PRESSED  | Switch pressed     |
| BSP_SWITCH_STATE_RELEASED | Switch not pressed |

## **Description**

BSP Switch state.

This enumeration defines the possible states of the switches on the selected board.

### Remarks

None.

# **BSP\_LED\_STATE** Enumeration

Enumerates the supported LED states.

## **File**

```
bsp_help.h
```

C

```
typedef enum {
   BSP_LED_STATE_OFF,
   BSP_LED_STATE_ON
} BSP_LED_STATE;
```

### **Members**

| Members           | Description      |
|-------------------|------------------|
| BSP_LED_STATE_OFF | LED State is on  |
| BSP_LED_STATE_ON  | LED State is off |

# **Description**

LED State

This enumeration defines the supported LED states.

### Remarks

None.

# **BSP\_SWITCH Enumeration**

Defines the switches available on this board.

#### **File**

bsp\_help.h

### C

```
typedef enum {
  BSP_SWITCH_1,
  BSP_SWITCH_2,
  BSP_SWITCH_3,
  custom_switch_name
} BSP_SWITCH;
```

#### **Members**

| Members            | Description                       |
|--------------------|-----------------------------------|
| BSP_SWITCH_1       | SWITCH 1                          |
| BSP_SWITCH_2       | SWITCH 2                          |
| BSP_SWITCH_3       | SWITCH 3                          |
| custom_switch_name | Custom Switch Name (see Remarks). |

## **Description**

BSP Switch.

This enumeration defines the switches available on this board.

#### **Remarks**

There is no actual value named "custom\_switch\_name" in the BSP\_SWITCH enum. It is listed here as a place holder to indicate that the MHC can define custom names for any port pins set to the "SWITCH" function in the Pin Settings configuration page and those and those names will then become part of this enum definition. By default, the selected BSP will define a number of custom switch names to match the names of switches provided on the selected board. The user can add additional custom switch names by selecting the "SWITCH" function and defining a custom name for any desired pins in the MHC Pin Settings page.

# **BSP\_OSC\_FREQUENCY Macro**

Defines the frequency value of crystal/oscillator used on the board

# File

bsp\_help.h

C

#define BSP\_OSC\_FREQUENCY

## **Description**

Oscillator Frequency

This macro defines the frequency value of the crystal/oscillator used on the board.

# Index

## Α

ATWINC1500-XSTK Xplained Pro Starter Kit 4

#### В

BM64 Bluetooth Module Daughter Board 4

**Board Support Package** 

bt\_audio\_dk 66

**Development Tools 4** 

pic32mx\_125\_sk 79

pic32mx\_bt\_sk 81

pic32mx\_eth\_sk 81

pic32mx\_eth\_sk2 82

pic32mx\_usb\_sk2 83

pic32mx\_usb\_sk2+lcc\_pictail+qvga 84

pic32mx\_usb\_sk2+lcc\_pictail+wqvga 84

pic32mx\_usb\_sk2+meb 85

pic32mx\_usb\_sk2+s1d\_pictail+vga 85

pic32mx\_usb\_sk2+s1d\_pictail+wqvga 86

pic32mx\_usb\_sk2+s1d\_pictail+wvga 86

pic32mx\_usb\_sk2+ssd\_pictail+qvga 86

pic32mx\_usb\_sk3 87

pic32mx270f512l\_pim+bt\_audio\_dk 91

pic32mx460\_pim+e16 93

pic32mx470\_pim+e16 95

pic32mx795\_pim+e16 95

pic32mz\_ec\_pim+bt\_audio\_dk 107

pic32mz\_ec\_pim+e16 108

pic32mz\_ec\_sk 109

pic32mz\_ec\_sk+meb2 109

pic32mz\_ec\_sk+meb2+wvga 110

pic32mz\_ec\_sk+s1d\_pictail+wqvga 112

Board Support Packages 66

Board Support Packages Help 62

BSP\_Initialize function 123

BSP\_LED enumeration 132

BSP LED STATE enumeration 133

BSP\_LEDOff function 124

BSP\_LEDOn function 124

BSP\_LEDStateGet function 125

BSP\_LEDStateSet function 125

BSP\_LEDToggle function 126

BSP\_OSC\_FREQUENCY macro 134

BSP\_SWITCH enumeration 133

BSP\_SWITCH\_STATE enumeration 133

BSP\_SwitchStateGet function 127

bt\_audio\_dk 66

bt\_audio\_dk+4642 67

bt\_audio\_dk+ak4954 68

bt\_audio\_dk+ak7755 69

bt\_audio\_dk+bm64 70

bt\_audio\_dk+bm64+ak4954 71

bt\_sk+4642 71

bt\_sk+4954 72

bt\_sk+ak7755 73

#### C

CAN/LIN PICtail Plus Daughter Board 5

chipKIT WF32 Wi-Fi Development Board 6

chipKIT Wi-FIRE Development Board 6

chipkit\_wf32 74

chipkit\_wifire 75

Creating Custom Initial Board Configurations 65

custom\_gpio\_nameOff macro 127

custom\_gpio\_nameOn macro 128

custom\_gpio\_nameStateGet macro 128

custom\_gpio\_nameStateSet macro 128

custom\_gpio\_nameToggle macro 129

custom\_gpio\_pin\_PIN macro 129

custom\_gpio\_pin\_PIN\_MASK macro 129

custom\_gpio\_pin\_PORT macro 130

custom\_led\_nameOff macro 130

custom\_led\_nameOn macro 131

custom\_led\_nameStateGet macro 131

custom\_led\_nameToggle macro 131

custom\_switch\_nameStateGet macro 132

Customizing a BSP 63

#### D

**Demonstration Boards** 

Explorer 16 Development Board 8

Graphics Controller PICtail Plus Epson S1D13517 Daughter Board

12

Graphics Display Powertip 4.3" 480x272 Board 14

Graphics Display Truly 3.2" 320x240 Board 13

Graphics Display Truly 5.7" 640x480 Board 15

Graphics Display Truly 7" 800x480 Board 16

Graphics LCD Controller PICtail Plus SSD1926 Daughter Board 17

Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter

Board 20

MCP2200 Breakout Module 21

Multimedia Expansion Board (MEB) 23

PIC32 Bluetooth Audio Development Kit 31

PIC32 Bluetooth Starter Kit 32

PIC32 Ethernet Starter Kit 33

PIC32 USB Starter Kit II 36

PIC32 USB Starter Kit III 37

PIC32MX270F256D Plug-in Module (PIM) 41

PIC32MX460F512L Plug-in Module (PIM) 43

PIC32MZ Embedded Connectivity (EC) Starter Kit 49

PIC32MZ Starter Kit Adapter Board 53

PIC32MZ2048ECH100 Plug-in Module (PIM) 46

PICtail Daughter Board for SD and MMC 55

Starter Kit IO Expansion Board 58

USB PICtail Plus Daughter Board 59

dsPICDEM MCHV-3 Development Board 7

dsPICDEM MCLV-2 Development Board 7

### Ε

Ethernet PICtail Plus Daughter Board 10

Explorer 16 Development Board 8

Explorer 16/32 Development Board 9

Extending the BSP Library Interface 63

pic32mx\_125\_sk+lcc\_pictail+qvga 80 F pic32mx\_270f512l\_pim+ bt\_audio\_dk+ak4642 92 Fast 100Mbps Ethernet PICtail Plus Daughter Board 11 pic32mx\_bt\_sk 81 pic32mx\_eth\_sk 81 G pic32mx\_eth\_sk2 82 Graphics Controller PICtail Plus Epson S1D13517 Daughter Board 12 pic32mx\_pcap\_db 82 Graphics Display Powertip 4.3" 480x272 Board 14 pic32mx\_usb\_digital\_audio\_ab 82 Graphics Display Truly 3.2" 320x240 Board 13 pic32mx\_usb\_sk2 83 Graphics Display Truly 5.7" 640x480 Board 15 pic32mx\_usb\_sk2+lcc\_pictail+qvga 84 Graphics Display Truly 7" 800x480 Board 16 pic32mx\_usb\_sk2+lcc\_pictail+wqvga 84 Graphics LCD Controller PICtail Plus SSD1926 Daughter Board 17 pic32mx\_usb\_sk2+meb 85 pic32mx\_usb\_sk2+s1d\_pictail+vga 85 pic32mx\_usb\_sk2+s1d\_pictail+wqvga 86 High-Performance 4.3" WQVGA Display Module with maXTouch 18 pic32mx\_usb\_sk2+s1d\_pictail+wvga 86 High-Performance WVGA Display Module with maXTouch 18 pic32mx\_usb\_sk2+ssd\_pictail+qvga 86 pic32mx\_usb\_sk3 87 I/O1 Xplained Pro Extension Kit 19 pic32mx\_usb\_sk3+lcc\_pictail+wqvga 88 Introduction 62 pic32mx\_xlp\_sk 89 PIC32MX1/2/5 Starter Kit 40 PIC32MX270F256D Plug-in Module (PIM) 41 Library Interface 122 PIC32MX270F512L Plug-in Module (PIM) 42 Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board 20 pic32mx270f512l\_pim+bt\_audio\_dk 91 PIC32MX360F512L Plug-in Module (PIM) 43 PIC32MX450/470F512L Plug-in Module (PIM) 44 maXTouch Xplained Pro 20 pic32mx460\_pim+e16 93 MCP2200 Breakout Module 21 PIC32MX460F512L Plug-in Module (PIM) 43 MikroElektronika WiFi 7 Click Board 21 PIC32MX470 Curiosity Development Board 44 Modifying the BSP Library Source Code 65 pic32mx470\_curiosity 94 MPLAB REAL ICE 22 pic32mx470\_pim+e16 95 MRF24WG0MA Wi-Fi G PICtail/PICtail Plus Daughter Board 22 PIC32MX570F512L Plug-in Module (PIM) 45 MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board 23 pic32mx795\_pim+e16 95 Multimedia Expansion Board (MEB) 23 PIC32MX795F512L CAN-USB Plug-in Module (PIM) 45 Multimedia Expansion Board II (MEB II) 25 PIC32MZ Audio PIM 48 0 PIC32MZ EF Curiosity Development Board 49 OLED1 Xplained Pro Extension Kit 27 PIC32MZ Embedded Connectivity (EC) Starter Kit 49 PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit 50 PIC32 Audio Codec Daughter Board - AK4642EN 29 PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit 51 PIC32 Audio Codec Daughter Board - AK4954A 29 PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit 51 PIC32 Audio Codec Daughter Board - AK7755 30 PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit 52 PIC32 Audio DAC Daughter Board - AK4384VT 28 PIC32MZ Starter Kit Adapter Board 53 PIC32 Bluetooth Audio Development Kit 31 pic32mz\_da\_sk\_extddr 96 PIC32 Bluetooth Starter Kit 32 pic32mz\_da\_sk\_extddr+meb2 97 PIC32 Ethernet Starter Kit 33 pic32mz\_da\_sk\_extddr+meb2+wvga 98 PIC32 Ethernet Starter Kit II 34 pic32mz\_da\_sk\_intddr 100 PIC32 Graphics Discovery Development Board 34 pic32mz\_da\_sk\_intddr+meb2 100 PIC32 GUI Development Board with Projected Capacitive Touch 35 pic32mz da sk intddr+meb2+wvga 101 PIC32 USB Digital Audio Accessory Board 36 pic32mz\_da\_sk\_noddr+meb2 103 PIC32 USB Starter Kit II 36 pic32mz\_da\_sk\_noddr+meb2+wvga 105 PIC32 USB Starter Kit III 37 pic32mz\_ec\_pim+bt\_audio\_dk 107 pic32\_gdb\_ef 76 pic32mz\_ec\_pim+e16 108 PIC32MK 100-pin Motor Control Plug-in Module (PIM) 39 pic32mz\_ec\_sk 109 PIC32MK General Purpose (GP) Development Board 38 pic32mz\_ec\_sk+meb2 109 pic32mk\_gp\_db 76 pic32mz\_ec\_sk+meb2+wvga 110 pic32mk\_gp\_db+wqvga\_mxt 78 pic32mz\_ec\_sk+s1d\_pictail+vga 111 pic32mk\_gp\_db+wvga\_mxt 79 pic32mz\_ec\_sk+s1d\_pictail+wqvga 112 PIC32MX XLP Starter Kit 40 pic32mz\_ec\_sk+s1d\_pictail+wvga 113 pic32mx\_125\_sk 79 pic32mz\_ef\_curiosity 113

pic32mz\_ef\_pim+bt\_audio\_dk 114 pic32mz\_ef\_pim+bt\_audio\_dk+ak4642 115 pic32mz\_ef\_pim+e16 116 pic32mz\_ef\_sk 117 pic32mz\_ef\_sk+maxtouch\_xplained\_pro\_3\_5 118 pic32mz\_ef\_sk+meb2 118 pic32mz\_ef\_sk+meb2+wvga 119 pic32mz\_ef\_sk+s1d\_pictail+vga 120 pic32mz\_ef\_sk+s1d\_pictail+wqvga 121 PIC32MZ2048ECH100 Plug-in Module (PIM) 46 PIC32MZ2048ECH144 Audio Plug-in Module (PIM) 47 PIC32MZ2048EFH100 Plug-in Module (PIM) 46 PIC32MZ2048EFH144 Audio Plug-in Module (PIM) 47 PIC32WK Wi-Fi Starter Kit 53 pic32wk\_gbp\_gpd\_sk+module 122 PICkit 3 In-Circuit Debugger 54 PICtail Daughter Board for SD and MMC 55 PICtail Plus Expansion Board 56 Prototype PICtail Plus Daughter Board 57

### S

SAM V71 Xplained Ultra Evaluation Kit 58 Starter Kit I/O Expansion Board 58 Supported Development Boards 4 Supported Device Families 3

#### U

USB PICtail Plus Daughter Board 59 Using a BSP 62

#### ٧

Volume II: Supported Hardware 2

# W

WILC1000 Wi-Fi PICtail/PICtail Plus Daughter Board 60 WINC1500 Wi-Fi module 60 WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board 61