c\ MICROCHIP

System Service Libraries Help

MPLAB Harmony Integrated Software Framework

© 2013-2018 Microchip Technology Inc. All rights reserved.

Volume V: MPLAB Harmony Framework

Volume V: MPLAB Harmony Framework Reference

This volume provides API reference information for the framework libraries included in your installation of MPLAB Harmony.

Description
This volume is a programmer reference that details the interfaces to the libraries that comprise MPLAB Harmony and
m explains how to use the libraries individually to accomplish the tasks for which they were designed.
HARMONY

-

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

System Service Libraries Help

This section provides descriptions of the System Service libraries that are available in MPLAB Harmony.

System Service Overview

This section provides an overview of the System Service libraries that are available in MPLAB Harmony.

Introduction
Describes system services provided by MPLAB Harmony.

Description
MPLAB Harmony provides system service libraries to support common functionality and manage resources that are shared by multiple drivers,
libraries, and other modules.

A system service encapsulates code that manages a shared resource or implements a common capability in a single location so that it does not
need to be replicated by individual drivers and libraries. This feature eliminates duplicated code and creates consistency across all modules, and
also helps to eliminate potential conflicts and complex configuration issues and runtime interactions, resulting in a smaller and simpler overall
solution.

System services may directly manage one or more peripherals or core processor capabilities by utilizing peripheral libraries, special function
registers, special CPU instructions, or coprocessor registers. Some system services may utilize drivers, other system services, or even entire
middleware stacks to share or emulate a common resource.

System services may be implemented statically (possibly generated by the MPLAB Harmony Configurator (MHC)) or dynamically to support
multiple channels and instances like a driver. However, system services will not normally provide common Open and Close functions like a device
driver.

In general, the distinguishing feature of a system service is that it implements a common capability that would otherwise "cut horizontally" across
multiple modules in a system, causing interoperability and compatibility conflicts if the capability were implemented by other libraries.

System service functions use the following naming convention:

SYS_<nmodul e- abbrevi ati on>_[<f eat ur e- short - name>] <oper ati on>

Where,

* SYS_ indicates that this is a system service function

* <nodul e- abbr evi ati on> is the abbreviated name of the system service module to which this function belongs

e [<feature-short-name>] is an optional short (or shortened) name that identifies the feature of the associated system service module to
which this function refers. The feature short name will appear in the name of all functions that interact with or provide access to that particular
feature.

» <operation>is a verb that identifies the action taken by the function

For example, SYS_TMR_AlarmSet, where:

e <nodul e- abbrevi ati on>=TMR, which indicates that this is a Timer System Service function

« <feature-short-name>=Al ar m which indicates that this function controls the alarm feature of the Timer System Service

» <operation>=Set, which indicates that this function sets the value of the alarm feature of the Timer System Service, as indicated by the
function's parameters (not shown above).

System State Machine
Describes the MPLAB Harmony main function and system-wide state machine.

Description

In its most basic configuration, a MPLAB Harmony system operates in a single polled super loop that is implemented in the project’s main function
(in the <pr oj ect - name>/ f i r mnvar e/ src/ mai n. c file) that is generated by the MHC, as shown in the following example. The main function
calls two system-wide state machine functions, SYS_Initialize and SYS_Tasks that are also generated by the MHC to initialize and run the system.

MPLAB Harmony "main" Function
MAI N_RETURN main (void)

{
SYS Initialize(NULL);
whi | e(true)
{

SYS _Tasks();
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 3

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

return(EXI T_FAI LURE) ;
}

The SYS_Initialize function calls the initialization functions for all library and application modules that are used in the system to place them in their
initial states. Each module’s initialization function must prepare the module so it is safe to call its Tasks function(s). The SYS_Initialize function’s
implementation (and necessary support code) is generated by the MHC in the

<proj ect - name>/firmare/ src/system confi g/ <configuration-nanme>/system.init. c file.

After initializing all modules, the main function contains the system-wide super loop that executes continuously until the system is powered off or
reset. Inside the super loop, the main function calls the SYS_Tasks function. This function in turn calls the Tasks functions for any library or
application modules whose state machines operate in a polled manner in the system. Of course, those state machines must first have been
initialized by a prior call to their initialization functions by the SYS_Initialize function. The SYS_Task function’s implementation is also generated by
the MHC, but it is contained in the <pr oj ect - name>/ fi r mnar e/ src/ syst em confi g/ <confi gur ati on- name>/ syst em t asks. c file.

The polled super loop configuration described above is the most basic configuration of a MPLAB Harmony project. However, a single MPLAB
Harmony project can have multiple configurations and different configurations may change modules so that they operate either polled or interrupt
driven or in an RTOS thread. However, regardless of the configuration selected, the main function does not normally change.

MPLAB Harmony Documentation Volumes

For further information on MPLAB Harmony configurations and execution models, refer to the following MPLAB Harmony documentation.
¢ Volume I: Getting Started with MPLAB Harmony

e Volume Ill: MPLAB Harmony Configurator (MHC)

¢ Volume IV: MPLAB Harmony Development

Although the MPLAB Harmony main function and system state machine functions (and other system configuration code) are

Note: generated as part of a MPLAB Harmony project for your convenience, these files are unique to your project and can be modified
or implemented by other means if so desired, or even removed from the project to create a binary library (. a file) containing all
configured MPLAB Harmony libraries. Refer to the "MPLAB® X IDE User's Guide" (DS50002027) and the "MPLAB® XC32 C/C++
Compiler User's Guide" (DS50001686) for information on creating library projects (both documents are available for download
from the Microchip website: www.microchip.com).

MPLAB Harmony Module System Interface
Describes the MPLAB Harmony module system interface and provides usage examples.

Description

To support the system-wide state machine (see System State Machine), an MPLAB Harmony module must provide an initialization function and a
Tasks function. In addition, a MPLAB Harmony module may (optionally) provide deinitialization, reinitialization, and status functions. This set of
functions is considered the module’s "system interface". The system state machine, system scheduler, or any other system-management code
uses a module’s system interface to initialize, run, and otherwise control the execution of a module in the MPLAB Harmony system.

To define the calling signature of these system interface functions, the sys_nodul e. h header defines function pointer data types for each. These
data types could be used to develop a dynamic system with capabilities beyond the basic system state machine, such as dynamic task
registration, power management, advanced schedulers, or even your own operating system.
The following examples show how the system interface could be used to create a simple dynamic polled system tasks scheduler.
Example Dynamic System Data Structures
typedef struct _system nodul e_interface
{

SYS_MODULE_I NI TI ALl ZE_ROUTI NE initialize;

SYS_MODULE_TASKS_ROUTI NE t asks;

SYS_MODULE_REI NI TI ALI ZE_ROUTINE reinitialize;

SYS _MODULE _DEI NI TI ALI ZE_ROUTI NE deinitialize;

SYS_MODULE_STATUS_RQOUTI NE st at us;

} SYSTEM MODULE_| NTERFACE;

typedef struct _system nmpdul e_data

{
SYSTEM MODULE_| NTERFACE f uncti on;
SYS_MODULE_| NDEX i ndex;
SYS MODULE INIT *initData;
SYS_MODULE_OBJ obj ;
SYS_STATUS st at us;
ui nt 8_t power St at e;

} SYSTEM MODULE_DATA;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 4

http://www.microchip.com

Volume V: MPLAB Harmony Framework

SYSTEM MODULE_DATA gMbdul es[CONFI G_NUVBER OF_MODULES) ;

In the previous example code, the SYSTEM_MODULE_INTERFACE structure contains pointers to all of a module’s system interface functions.
This structure could be filled in with pointers to a module’s system interface functions and a pointer to the structure passed into a dynamic module
registration function, along with the module index number and a pointer to any initialization data required by the module. The following example
shows how this dynamic registration function might appear.

Example Dynamic Module Registration Function
SYS Modul eRegi ster (SYSTEM MODULE DATA *nodul e,

bool

}

int
bool

for

{

}

SYS MODULE | NDEX i ndex,
SYS MODULE INNT *iniData)

SYSTEM MODULE_DATA nodul e;

13
success = false;

(i=0; i < CONFI G NUMBER OF MODULES; i ++)
if (gWbdules[i].function.initialize !'= NULL)

modul e = &Mbdul es[i];

if (i < CONFI G NUVBER OF MODULES)

{

}

modul e->function.initialize = nmodul e->initialize;
nmodul e- >f uncti on. t asks = nodul e- >t asks;

nodul e->function.reinitialize = nodul e->reinitialize;
nmodul e->function.deinitialize = nodul e->deinitialize;
nmodul e- >f uncti on. st at us = nodul e- >st at us;

nmodul e- >i ndex i ndex;

nodul e- >i ni t Dat a = initData;

nodul e- >obj SYS_MODULE_OBJ_| NVALI D
modul e- >st at us SYS_STATUS_UNI NI TI ALI ZED,;
modul e- >power State = SYS_MODULE_POMER RUN_FULL;

success = true;

return success;

System Service Libraries Help

System Service Overview

The SYS_ModuleRegister function could then scan a system-global array (gModul es, from the previous system data structures example) to find
an empty SYSTEM_MODULE_DATA structure (using the initialization function pointer as a "flag" to indicate if the structure is in use or not), copy

the newly registered module’s interface and other data into the structure, and initialize the other members of the structure.

Once all modules to be used have been similarly registered, the entire system could be initialized when desired by calling a SYS_InitializeDynamic
function implementation, similar to the following example.

Example Dynamic System Initialization Function
void SYS InitializeDynamic (void *data)

{

int

for

{

SYSTEM MODULE_DATA nodul e = (SYSTEM MODULE_DATA *) dat a;

i
(i=0; i < CONFI G NUMBER OF MODULES; i ++)

if (nodul e->function.initialize !'= NULL)

{

nmodul e- >0bj = modul e->function.initialize(nodul e->i ndex,
nodul e- >i ni t Dat a) ;

nmodul e- >st at us SYS_STATUS_BUSY;
nodul e- >power St ate = SYS_MODULE_POWER_RUN_FULL;

i f (nmodul e->obj == SYS_MODULE_OBJ_| NVALI D)
{

modul e->function.initialize = NULL;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

}

The previous SYS_ InitializeDynamic example function iterates through the global array of module data structures, calling the initialization functions
for any modules that have been registered and skipping over any structures that have no module registered (again using the required initialization
function pointer as a sort of flag). If a module’s initialization function successfully initializes the module it returns a valid module object handle,
which the dynamic system initialization function captures in the module’s data structure so it can call the module’s other system interface routines.
If the module is not successfully initialized, the object handle reported will be invalid (SYS_MODULE_OBJECT_INVALID) and the module is
deregistered by nulling the pointer to the initialization function.

Once the system has been initialized, a dynamic tasks function like the following example would also iterate through the module data array and
call the tasks functions for each module registered.

Example Dynamic System Tasks Function
voi d SYS_TasksDynamic (void *data)

{
SYSTEM MODULE_DATA nodul e = (SYSTEM MODULE_DATA *)dat a;
int i
for (i=0; i < CONFI G NUMBER OF MODULES; i ++)
{
if (nodul e->function.initialize !'= NULL &
nmodul e- >f uncti on. t asks I'= NULL)
{
i f (nodul e->status(nodul e->0bj) >= SYS_STATUS_UN NI Tl ALI ZED)
{
nodul e- >f uncti on. t asks(nodul e- >obj) ;
}
el se
{
nmodul e- >f unction. deinitialize(nmodul e->obj);
nodul e->function.initialize = NULL;
}
}
}
}

After calling a module’s Tasks function, the previous example checks the module’s status by calling its Status function. If the module reports an
error status (any status less than SYS_STATUS_UNINITIALIZED), the module is deinitialized by calling its Deinitialize function and deregistered
by nulling out the Initialize function pointer.

Please note that the example code provided is for informational purposes only, and is used to describe the purpose and usage of the MPLAB
Harmony module system interface. A real dynamic tasks scheduler would need to deal with additional complexities. For example, MPLAB
Harmony modules may have zero or more Tasks functions (only the initialization function is absolutely required). Therefore, a single tasks-function
pointer would not be sufficient. The previous example demonstrates usage of the system status and power state data, but it does not actually
update or manage these items. Also, this example does not demonstrate the usage of a module’s reinitialization function. This function allows a
module to provide a way to change its initial parameters while the module is active (after it has been initialized) without disrupting active clients of
the module. However, at the time of this writing, most MPLAB Harmony modules do not implement this function, so this capability is not usually
available.

Using the SYS_ASSERT Macro
Describes the purpose and usage of the system assertion macro.

Description

The SYS_ASSERT macro is a testing and debugging tool used throughout MPLAB Harmony libraries to verify (or assert) critical assumptions
before any action is taken on them. However, it is not usually desirable to have these tests in production code because system assertion failures
are normally fatal events that stop current execution, either hanging or resetting the system because it is not safe to continue. Also, even if the
tests pass, they would add significant overhead, affecting code size and execution time. To avoid these issues, the default implementation of this
macro is empty to eliminate the assertion tests and failure messages from the build, as shown in the following example.

Default SYS_ASSERT Macro Definition

#defi ne SYS_ASSERT(t est, nessage)

Conversely, when developing, debugging, and testing a project, having SYS_ASSERT statements in the code (particularly in library code) can be
very helpful. This macro is used to check key parameter values and intermediate results and provide messages that explain the consequences
that occur when they don't match what was expected when the library was implemented. A SYS_ASSERT failure during testing may save

significant time spent debugging a MPLAB Harmony library only to find that a configuration setting or value passed into a library was incorrect or
unexpected.

The SYS_ASSERT macro provides a convenient way to obtain the desired behavior when an assertion fails. In production code, simply accept the

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 6

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

default definition that disposes of the assertion test code and the failure message. If things go wrong during testing, either enable a predefined
implementation of this macro or define it in any way that is convenient for the current application.
One particularly useful definition of the SYS_ASSERT macro is to execute a hard-coded breakpoint instruction if the assertion fails, as shown in
the following example.
Example SYS_ASSERT Macro Breakpoint Definition
#define SYS _ASSERT(test, message) \

do{ if(!(test)) SYS DEBUG Breakpoint(); }while(false)
When using the previous definition, if the assertion test fails, the processor will reach a hard-coded breakpoint and execution will stop in the
debugger at the SYS_ASSERT call. This behavior identifies the point in the source code where the assertion call failed. Then, the assertion call
conveniently provides an explanation of what the failure means in the associated message string. A system assertion failure is a catastrophic
failure, so the do. .. whi | e loop hangs the system to prevent execution of code under an invalid assumption that may cause incorrect behavior
or even damage to the system. It is also a way to guarantee that the i f statement is correctly interpreted by the compiler and not accidentally
associated with a following el se statement.

Another useful implementation of the SYS_ASSERT macro might use the Debug System Service to display the message, as shown in the
following example.

Example SYS_ASSERT Macro Definition Using Debug Message Service
#defi ne SYS_ASSERT(test, message) \
do{ if(!(test)){ \

SYS_DEBUG Message((nmessage)); \

SYS_DEBUG Message("\r\n"); \

while(1);} \

twhil e(fal se)

The previous definition will display the assertion failure message using whatever method the SYS_DEBUG service is configured to use. However,
it has the drawback that it does not hang the system (because the message service may need to continue running), so incorrect or unsafe
behavior may result.

It is also possible to combine these two example definitions, which is particularly useful if the debug message service is configured to use the
debugger’s output window, or to create any another definition that is more useful for a given situation.

Obtaining System Version Information
Describes the purpose and usage of the system version functions.

Description

It is possible to programmatically obtain the version information for the release of MPLAB Harmony using the SYS_Version group of functions. For
example, once the Debug System Service has been initialized and is running, the following code would retrieve the current version number and
display it on the configured debug console if it were lower than a given value.

Example Version Function Usage
#defi ne REQUI RED_VERSI ON 10700

if (SYS_VersionGet() < REQUI RED _VERSI ON)

{
SYS_DEBUG MESSAGE(SYS_ERROR WARNING, "Version % is too |ow',

SYS VersionStrGet());
}

In the previous example, the SYS_VersionGet function is used to get the numeric representation of the version number so that it can be easily
compared to a known value and the SYS_VersionStrGet is used to get a string representation of it for displaying on the debug console.

Library Interface

Data Types and Constants

Name Description
MAIN_RETURN_CODES Defines return codes for "main".

SYS_MODULE_DEINITIALIZE_ROUTINE Pointer to a routine that deinitializes a system module (driver, library, or
system-maintained application).

SYS_MODULE_INDEX Identifies which instance of a system module should be initialized or opened.

SYS_MODULE_INIT Initializes a module (including device drivers) in a current power status as requested by
the system or power manager.

SYS_MODULE_INITIALIZE_ROUTINE Pointer to a routine that initializes a system module (driver, library, or
system-maintained application).

SYS_MODULE_OBJ Handle to an instance of a system module.

SYS_MODULE_REINITIALIZE_ROUTINE | Pointer to a routine that reinitializes a system module (driver, library, or
system-maintained application)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 7

Volume V: MPLAB Harmony Framework

SYS_MODULE_STATUS_ROUTINE

SYS_MODULE_TASKS_ROUTINE

SYS_STATUS
MAIN_RETURN_CODE

SYS_MODULE_OBJ_INVALID

SYS_MODULE_OBJ_STATIC
SYS_MODULE_POWER_IDLE_RUN
SYS_MODULE_POWER_IDLE_STOP
SYS_MODULE_POWER_OFF

System Service Libraries Help

system-maintained application).

System Service Overview

Pointer to a routine that gets the current status of a system module (driver, library, or

Pointer to a routine that performs the tasks necessary to maintain a state machine in a
module system module (driver, library, or system-maintained application).

Identifies the current status/state of a system module (including device drivers).

Casts the given value to the correct type for the return code from "main”.
Object handle value returned if unable to initialize the requested instance of a system

module.

Object handle value returned by static modules.
Module power-state idle-run state code.

Module power-state power off state code.

SYS_MODULE_POWER_RUN_FULL Module power-state run-full state code.

SYS_MODULE_POWER_SLEEP

Main Function Support Macro

Name
MAIN_RETURN

System Assert Macro

Name
SYS_ASSERT

System State Machine Functions

Name
SYS_Tasks
SYS_|Initialize

Version Functions

Name
SYS_VersionGet
SYS_VersionStrGet

Description

Module power-state sleep state code.

Description

Defines the correct return type for the "main” routine.

Description

Implements default system assert routine, asserts that "test" is true.

Description

Function that performs all polled system tasks.
Initializes the board, services, drivers, and other modules

Description

Gets SYS_COMMON version in numerical format.

Gets SYS_COMMON version in string format.

This section describes the APIs of the System Service Library.

Refer to each section for a detailed description.

Main Function Support Macro

MAIN_RETURN Macro

Defines the correct return type for the "main” routine.

File
sys_common.h

C
#define MAI N RETURN voi d

Description

Main Function Return Type

This macro defines the correct return type for the "main” routine for the selected Microchip microcontroller family.

Remarks

Module power-state idle-stop state code.

The main function return type may change, depending upon which family of Microchip microcontrollers is chosen. Refer to the user documentation
for the C-language compiler in use for more information.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

Example

MAI N_RETURN nmain (void)

{
/1 Initialize the system
SYS Initialize(...);

/1 Main Loop
whi | e(true)
{

}

SYS Tasks();

return MAI N RETURN CODE(MAI N_ RETURN_SUCCESS) ;

System Assert Macro

SYS_ASSERT Macro

Implements default system assert routine, asserts that "test" is true.
File

sys_common.h
C

#defi ne SYS_ASSERT(test, nessage)
Returns

None. Normally hangs in a loop, depending on the implementation to which it is mapped.
Description

This macro implements the default system assert routine that asserts that the provided boolean test is true.
Remarks

Can be overridden as desired by defining your own SYS_ASSERT macro before including system.h.

The default definition removes this macro from all code because it adds significant size to all projects. The most efficient use is to enable it in
individual libraries and build them separately for debugging.

Preconditions

None, depending on the implementation to which this macro is mapped.

Example
void MyFunc (int *pointer)
{
SYS_ASSERT(NULL != pointer, "NULL Pointer passed to MyFunc");
Do sonething with pointer.
}
Parameters
Parameters Description
test This is an expression that resolves to a boolean value (zero=false, non-zero=true)
message This is a NULL-terminated ASCII character string that can be displayed on a debug output
terminal if "test" is false (if supported).
Function

void SYS_ASSERT (bool test, char *message)

System State Machine Functions

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 9

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

SYS Tasks Function
Function that performs all polled system tasks.
File
sys_module.h
C
voi d SYS Tasks();
Returns
None.
Description

System Tasks Function

This function performs all polled system tasks by calling the state machine "tasks" functions for all polled modules in the system, including drivers,
services, middleware and applications.

Remarks

If the module is interrupt driven, the system will call this routine from an interrupt context.
Preconditions

The SYS_Initialize function must have been called and completed.
Example

SYS Initialize (NULL);

while (true)

{
SYS Tasks ();
}
Function

void SYS_Tasks (void);

SYS Initialize Function
Initializes the board, services, drivers, and other modules
File
sys_init.h
C
void SYS_ Initialize(void * data);
Returns
None.
Description

This function initializes the board, services, drivers, and other modules as configured at build time. It should be called almost immediately after
entering the "main" function.

Remarks

Basic System Initialization Sequence:

Initialize core processor services.
Initialize board support package.
Initialize RTOS (if utilized).
Initialize drivers.

Initialize system services.
Initialize middleware.

R e o o

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 10

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

7. Initialize application(s).
This function may be overridden and implemented as desired as long as it appropriately initializes all necessary board, services, and modules.

Most MPLAB Harmony libraries are designed so that the order in which they are initialized is not important. However, core processor services and
board support packgage initialization should be completed before any other initialization takes place and RTOS initialization (if utilized) shoudl take
palce before drivers, system services and middleware are initialized. Applications should be initialized last.

Preconditions
The C-language run-time environment and stack must have been initialized.

Example

int main (void)
{
SYS Initialize(NULL);

while (true)
{

}

SYS _Tasks();

}
Parameters

Parameters Description

data Pointer to any system initialization data required. Normally passed as NULL for static system
implementations.

Function
void SYS_Initialize (void *data)

Version Functions

SYS VersionGet Macro

Gets SYS_COMMON version in numerical format.
File

sys_common.h

C
#define SYS VersionCet(void) SYS_VERSION

Returns

Current driver version in numerical format.

Description

This routine gets the SYS_COMMON version. The version is encoded as major * 10000 + minor * 100 + patch. The string version can be obtained
using SYS_VersionStrGet()

Function
SYS_VersionGet(void)

SYS_ VersionStrGet Macro

Gets SYS_COMMON version in string format.
File

sys_common.h

C
#define SYS VersionStrGet(void) SYS VERSI ON_STR

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 11

Volume V: MPLAB Harmony Framework System Service Libraries Help

Returns

Current SYS_COMMON version in the string format.
Description

Macro: char * SYS_VersionStrGet (void)

This routine gets the SYS_COMMON version in string format. The version is returned as major.minor.path[type], where type is optional. The

numerical version can be obtained using SYS_VersionGet()

Remarks

None.

Data Types and Constants

MAIN_RETURN_CODES Enumeration
Defines return codes for "main”.

File
sys_common.h

C

typedef enum {
MAI N_RETURN_FAI LURE
MAI N_RETURN_SUCCESS
} MAI N_RETURN_CODES;

I
o

Description

Main Routine Codes Enumeration

This enumeration provides a predefined list of return codes for the main function. These codes can be passed into the MAIN_RETURN_CODE
macro to convert them to the appropriate type (or discard them if not needed) for the Microchip C-language compiler in use.

Remarks

System Service Overview

The main function return type may change, depending upon which family of Microchip microcontrollers is chosen. Refer to the user documentation

for the C-language compiler in use for more information.

Example

MAI N_RETURN nain (void)
{
SYS Initialize(...);

whi | e(true)
{

}

return MAIN_RETURN CODE(MAI N_RETURN_SUCCESS) ;

SYS _Tasks();

SYS_MODULE_DEINITIALIZE_ROUTINE Type

Pointer to a routine that deinitializes a system module (driver, library, or system-maintained application).

File
sys_module.h

C
typedef void (* SYS_MODULE_DEI NI TI ALI ZE_ROUTI NE) (SYS_MODULE_OBJ obj ect) ;

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

12

Volume V: MPLAB Harmony Framework

Description

System Module Deinitialization Routine Pointer. This data type is a pointer to a routine that deinitializes a system module (driver, library, or

system-maintained application).

Remarks

System Service Libraries Help

If the module instance has to be used again, the module's "initialize" function must first be called.

Preconditions

The low-level board initialization must have (and will be) completed and the module's initialization routine will have been called before the system
will call the deinitialization routine for any modules.

Example

None.
Parameters

Parameters
object

Function

void (* SYS_MODULE_DEINITIALIZE_ROUTINE) (

SYS_MODULE_INDEX Type

Description
Handle to the module instance

SYS_MODULE_OBJ object)

Identifies which instance of a system module should be initialized or opened.

File
sys_module.h

C

typedef unsigned short int SYS _MODULE | NDEX;

Description

System Module Index

This data type identifies to which instance of a system module a call to that module's "Initialize" and "Open" routines refers.

Remarks

Each individual module will usually define macro names for the index values it supports (e.g., DRV_TMR_INDEX_1, DRV_TMR_INDEX_2, ...).

SYS_MODULE_INIT Union

Initializes a module (including device drivers) in a current power status as requested by the system or power manager.

File
sys_module.h
C
typedef wunion {
uint8_t val ue;
struct {
uint8_t powerState : 4;
uint8_ t reserved : 4;
} sys;
} SYS_MODULE_INIT;
Members
Members
uint8_t powerState : 4;
uint8_t reserved : 4;
Description

System Module Init

© 2013-2017 Microchip Technology Inc.

Description
Requested power state
Module-definable field, module-specific usage

MPLAB Harmony v2.06

System Service Overview

13

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

This structure provides the necessary data to initialize or reinitialize a module (including device drivers) into a requested power state. The structure
can be extended in a module specific way as to carry module specific initialization data.

Remarks

This structure is used in the device driver routines DRV__ Initialize and DRV__Reinitialize that are defined by each device driver.

The "powerState” member has several predefined values (shown below). All other available values (within the 4-bit field) are available for
module-specific meaning.

Predefined powerState Values:

* 0. SYS_MODULE_POWER_OFF - Module power-state power off state code

e 1.SYS_MODULE_POWER_SLEEP - Module power-state sleep state code

e 2.SYS_MODULE_POWER_IDLE_STOP - Module power-state idle-stop state code
* 3.SYS_MODULE_POWER_IDLE_RUN - Module power-state idle-run state code

e 4. through 14. - Module-specific meaning

e 15. SYS_MODULE_POWER_RUN_FULL - Module power-state run-full state code

SYS_MODULE_INITIALIZE_ROUTINE Type
Pointer to a routine that initializes a system module (driver, library, or system-maintained application).
File

sys_module.h

C
typedef SYS MODULE OBJ (* SYS_MODULE | NI TI ALI ZE_ROUTI NE) (const SYS_MODULE_| NDEX i ndex, const
SYS MODULE INIT * const init);
Returns
A handle to the instance of the system module that was initialized. This handle is a necessary parameter to all of the other system-module level
routines for that module.
Description
System Module Initialization Routine Pointer
This data type is a pointer to a routine that initializes a system module (driver, library, or system-maintained application).
Remarks

This function will only be called once during system initialization.

Preconditions

The low-level board initialization must have (and will be) completed before the system will call the initialization routine for any modules.

Parameters
Parameters Description
index Identifier for the module instance to be initialized
init Pointer to the data structure containing any data necessary to initialize the module. This
pointer may be null if no data is required and default initialization is to be used.
Function

SYS_MODULE_OBJ (* SYS_MODULE_INITIALIZE_ROUTINE) (
const SYS_MODULE_INDEX index,
const SYS_MODULE_INIT * const init)

SYS_MODULE_OBJ Type

Handle to an instance of a system module.
File

sys_module.h

C
typedef uintptr_t SYS MODULE OBJ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 14

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

Description

System Module Object

This data type is a handle to a specific instance of a system module (such as a device driver).
Remarks

Code outside of a specific module should consider this as an opaque type (much like a void *). Do not make any assumptions about base type as
it may change in the future or about the value stored in a variable of this type.

SYS_MODULE_REINITIALIZE_ROUTINE Type
Pointer to a routine that reinitializes a system module (driver, library, or system-maintained application)
File
sys_module.h
C
typedef void (* SYS_MODULE_REI NI TI ALI ZE_ROUTI NE) (SYS_MODULE_OBJ obj ect, const SYS MODULE INIT * const init);

Returns

None.

Description

System Module Reinitialization Routine Pointer
This data type is a pointer to a routine that reinitializes a system module (driver, library, or system-maintained application).

Remarks

This operation uses the same initialization data structure as the Initialize operation.
This operation can be used to change the power state of a module.

This operation can also be used to refresh the hardware state as defined by the initialization data, thus it must guarantee that all hardware state
has been refreshed.

This function can be called multiple times to reinitialize the module.
Preconditions

The low-level board initialization must have (and will be) completed and the module's initialization routine will have been called before the system
will call the reinitialization routine for any modules.

Example

None.
Parameters

Parameters Description

object Handle to the module instance

init Pointer to the data structure containing any data necessary to initialize the module. This

pointer may be null if no data is required and default initialization is to be used.

Function

void (* SYS_MODULE_REINITIALIZE_ROUTINE) (SYS_MODULE_OBJ object,
const SYS_MODULE_INIT * const init)

SYS_MODULE_STATUS_ROUTINE Type

Pointer to a routine that gets the current status of a system module (driver, library, or system-maintained application).
File

sys_module.h

C
typedef SYS_STATUS (* SYS_MODULE_STATUS_ROUTI NE) (SYS_MODULE_OBJ obj ect);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 15

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

Returns
One of the possible status codes from SYS_STATUS

Description

System Module Status Routine Pointer

This data type is a pointer to a routine that gets the current status of a system module (driver, library, or system-maintained application).
Remarks

A module's status operation can be used to determine when any of the other module level operations has completed as well as to obtain general
status of the module. The value returned by the status routine will be checked after calling any of the module operations to find out when they have
completed.

If the status operation returns SYS_STATUS_BUSY, the previous operation has not yet completed. Once the status operation returns
SYS_STATUS_READY, any previous operations have completed.

The value of SYS_STATUS_ERROR is negative (-1). A module may define module-specific error values of less or equal
SYS_STATUS_ERROR_EXTENDED (-10).

The status function must NEVER block.

If the status operation returns an error value, the error may be cleared by calling the reinitialize operation. If that fails, the deinitialize operation will
need to be called, followed by the initialize operation to return to normal operations.

Preconditions

The low-level board initialization must have (and will be) completed and the module's initialization routine will have been called before the system
will call the status routine for any modules.

Example

None.
Parameters

Parameters Description
object Handle to the module instance

Function
SYS_STATUS (* SYS_MODULE_STATUS_ROUTINE) (SYS_MODULE_OBJ object)

SYS_MODULE_TASKS_ROUTINE Type

Pointer to a routine that performs the tasks necessary to maintain a state machine in a module system module (driver, library, or
system-maintained application).

File

sys_module.h

C
typedef void (* SYS_MODULE_TASKS_ROUTI NE) (SYS_MODULE_OBJ obj ect);
Returns
None.
Description
System Module Tasks Routine Pointer
This data type is a pointer to a routine that performs the tasks necessary to maintain a state machine in a module system module (driver, library, or
system-maintained application).
Remarks

If the module is interrupt driven, the system will call this routine from an interrupt context.

Preconditions

The low-level board initialization must have (and will be) completed and the module's initialization routine will have been called before the system
will call the deinitialization routine for any modules.

Example

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 16

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

Parameters

Parameters Description

object Handle to the module instance
Function

void (* SYS_MODULE_TASKS_ROUTINE) (SYS_MODULE_OBJ object)

SYS_STATUS Enumeration
Identifies the current status/state of a system module (including device drivers).
File

sys_module.h

C
typedef enum {
SYS_STATUS_ERROR_EXTENDED = - 10,
SYS_STATUS_ERROR = -1,
SYS_STATUS_UNI NI TI ALI ZED = 0,
SYS_STATUS_BUSY = 1,
SYS_STATUS_READY = 2,
SYS_STATUS_READY_EXTENDED = 10
} SYS_STATUS;
Members
Members Description
SYS_STATUS_ERROR_EXTENDED = -10 Indicates that a non-system defined error has occurred. The caller must call the extended
status routine for the module in question to identify the error.
SYS_STATUS_ERROR =-1 An unspecified error has occurred.
SYS_STATUS_UNINITIALIZED =0 The module has not yet been initialized
SYS_STATUS_BUSY =1 An operation is currently in progress
SYS_STATUS_READY =2 Any previous operations have succeeded and the module is ready for additional operations
SYS_STATUS_READY_EXTENDED = 10 Indicates that the module is in a non-system defined ready/run state. The caller must call the
extended status routine for the module in question to identify the state.
Description
System Module Status
This enumeration identifies the current status/state of a system module (including device drivers).
Remarks

This enumeration is the return type for the system-level status routine defined by each device driver or system module (for example,
DRV_I2C_Status).

MAIN_RETURN_CODE Macro

Casts the given value to the correct type for the return code from "main".
File

sys_common.h
C

#defi ne MAI N_RETURN_CODE(c)

Description

Main Routine Code Macro
This macro cases the given value to the correct type for the return code from the main function.

Remarks

The main function return type may change, depending upon which family of Microchip microcontrollers is chosen. Refer to the user documentation
for the C-language compiler in use for more information.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 17

Volume V: MPLAB Harmony Framework System Service Libraries Help

Example

MAI N_RETURN nain (void)
{

/1 Initialize the system
SYS Initialize(...);

/1 Main Loop
whi | e(true)
{

}

SYS Tasks();

return MAIN_RETURN CODE(MAI N_ RETURN_SUCCESS) ;

SYS_MODULE_OBJ_INVALID Macro
Object handle value returned if unable to initialize the requested instance of a system module.
File

sys_module.h

C

#define SYS MODULE OBJ_ | NVALID ((SYS MODULE OBJ) -1)
Description

System Module Object Invalid

This is the object handle value returned if unable to initialize the requested instance of a system module.
Remarks

Do not rely on the actual value of this constant. It may change in future implementations.

SYS_MODULE_OBJ_STATIC Macro
Object handle value returned by static modules.
File

sys_module.h

C

#defi ne SYS_MODULE_OBJ_STATI C ((SYS_MODULE_OBJ) 0)
Description

System Module Object Static

This is the object handle value returned by static system modules.
Remarks

Do not rely on the actual value of this constant. It may change in future implementations.

SYS_MODULE_POWER_IDLE_RUN Macro
Module power-state idle-run state code.

File
sys_module.h

C
#def i ne SYS_MODULE_POWER | DLE_RUN 3

Description

System Module Power Idle-Run State

System Service Overview

This value identifies the current power status/state of a system module (including device drivers). It is used to indicate that the module should

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

18

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

prepare to enter an idle-run state.
Remarks

An idle-run state indicates that the core CPU clock may be stopped, but the module's peripheral clock may continue running and peripheral
operations may continue as long as no code needs to be executed. If code needs to execute, the module must cause an interrupt.

This value is passed in the powerState field of the SYS_MODULE_INIT structure that takes part in all modules initialization and reinitialization.

The power state codes between SYS_MODULE_POWER_IDLE_RUN (with a value of 3) and SYS_MODULE_POWER_RUN_FULL (with a value
of 15) are available for module-specific definition and usage.

SYS_MODULE_POWER_IDLE_STOP Macro
Module power-state idle-stop state code.

File
sys_module.h

C
#define SYS_MODULE_POWER | DLE_STOP 2

Description

System Module Power Idle-Stop State

This value identifies the current power status/state of a system module (including device drivers). It is used to indicate that the module should
prepare to enter an idle-stop state.

Remarks

An idle-stop state indicates that the core CPU clock may be stopped, but the module's peripheral clock may continue running. However, the
peripheral should prepare to stop operations when the idle state is entered.

This value is passed in the powerState field of the SYS_MODULE_INIT structure that takes part in all modules initialization and reinitialization.

The power state codes between SYS_MODULE_POWER_IDLE_RUN (with a value of 3) and SYS_MODULE_POWER_RUN_FULL (with a value
of 15) are available for module-specific definition and usage.

SYS_MODULE_POWER_OFF Macro
Module power-state power off state code.
File
sys_module.h
C
#define SYS_MODULE_POWER OFF 0

Description

System Module Power Off State

This value identifies the current power status/state of a system module (including device drivers). It is used to indicate that the module should
prepare to enter a full power-off state.

Remarks

A power off state indicates that power may be completely removed (0 Volts).
This value is passed in the powerState field of the SYS_MODULE_INIT structure that takes part in all modules initialization and reinitialization.

The power state codes between SYS_MODULE_POWER_IDLE_RUN (with a value of 3) and SYS_MODULE_POWER_RUN_FULL (with a value
of 15) are available for module-specific definition and usage.

SYS_MODULE_POWER_RUN_FULL Macro
Module power-state run-full state code.

File
sys_module.h

C
#def i ne SYS_MODULE_POWNER RUN_FULL 15

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 19

Volume V: MPLAB Harmony Framework System Service Libraries Help System Service Overview

Description

System Module Power Run-Full State. This value identifies the current power status/state of a system module (including device drivers). It is used
to indicate that the module should prepare to enter an run-full state.

Remarks

An run-full state indicates that the core CPU and peripheral clocks are operational at their normal configured speed and the module should be
ready for normal operation.

This value is passed in the powerState field of the SYS_MODULE_INIT structure that takes part in all modules initialization and reinitialization.

The power state codes between SYS_MODULE_POWER_IDLE_RUN (with a value of 3) and SYS_MODULE_POWER_RUN_FULL (with a value
of 15) are available for module-specific definition and usage.

SYS_MODULE_POWER_SLEEP Macro
Module power-state sleep state code.
File
sys_module.h
C
#define SYS_MODULE_POWER SLEEP 1
Description

System Module Power Sleep State
This value identifies the current power status/state of a system module (including device drivers). It is used to indicate that the module should
prepare to enter a sleep state.

Remarks
A Sleep state indicates that the core CPU and peripheral clocks may be stopped and no code will execute and any module hardware will be
stopped.
This value is passed in the powerState field of the SYS_MODULE_INIT structure that takes part in all modules initialization and reinitialization.

The power state codes between SYS_MODULE_POWER_IDLE_RUN (with a value of 3) and SYS_MODULE_POWER_RUN_FULL (with a value
of 15) are available for module-specific definition and usage.

Files
Files
Name Description
sys_common.h Common System Services definitions and declarations.
sys_module.h Defines definitions and declarations related to system modules.
system.h Top level common system services library interface header.
sys_init.h Initialization System Service Library definitions and declarations.
Description

This section lists the source and header files used by the library.

sys_common.h
Common System Services definitions and declarations.

Enumerations

Name Description
MAIN_RETURN_CODES Defines return codes for "main".

Macros
Name Description
MAIN_RETURN Defines the correct return type for the "main” routine.
MAIN_RETURN_CODE Casts the given value to the correct type for the return code from "main”.
SYS_ASSERT Implements default system assert routine, asserts that "test" is true.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 20

Volume V: MPLAB Harmony Framework

SYS_VersionGet
SYS_VersionStrGet

Description

System Services Common Library Header

System Service Libraries Help System Service Overview

Gets SYS_COMMON version in numerical format.
Gets SYS_COMMON version in string format.

This file provides commonsystem services definitions and declarations.

Remarks

This file is included by "system.h" and does not need to be included directly.

File Name

sys_common.h

Company

Microchip Technology Inc.

sys_module.h

Defines definitions and declarations related to system modules.

Enumerations

Name Description
SYS_STATUS Identifies the current status/state of a system module (including device drivers).
Functions
Name Description
@ SYS_Tasks Function that performs all polled system tasks.
Macros
Name Description
SYS_MODULE_OBJ_INVALID Object handle value returned if unable to initialize the requested instance of a system
module.
SYS_MODULE_OBJ_STATIC Object handle value returned by static modules.
SYS_MODULE_POWER_IDLE_RUN | Module power-state idle-run state code.
SYS_MODULE_POWER_IDLE_STOP Module power-state idle-stop state code.
SYS_MODULE_POWER_OFF Module power-state power off state code.
SYS_MODULE_POWER_RUN_FULL Module power-state run-full state code.
SYS_MODULE_POWER_SLEEP Module power-state sleep state code.
Types
Name Description
SYS_MODULE_DEINITIALIZE_ROUTINE Pointer to a routine that deinitializes a system module (driver, library, or
system-maintained application).
SYS_MODULE_INDEX Identifies which instance of a system module should be initialized or opened.
SYS_MODULE_INITIALIZE_ROUTINE Pointer to a routine that initializes a system module (driver, library, or
system-maintained application).
SYS_MODULE_OBJ Handle to an instance of a system module.
SYS_MODULE_REINITIALIZE_ROUTINE | Pointer to a routine that reinitializes a system module (driver, library, or
system-maintained application)
SYS_MODULE_STATUS_ROUTINE Pointer to a routine that gets the current status of a system module (driver, library, or
system-maintained application).
SYS_MODULE_TASKS_ROUTINE Pointer to a routine that performs the tasks necessary to maintain a state machine in a
module system module (driver, library, or system-maintained application).
Unions

Name
SYS_MODULE_INIT

© 2013-2017 Microchip Technology Inc.

Description

Initializes a module (including device drivers) in a current power status as requested by the
system or power manager.

MPLAB Harmony v2.06 21

Volume V: MPLAB Harmony Framework System Service Libraries Help

Description

System Module Header
This file defines definitions and interfaces related to system modules.

Remarks

This file is included via "system.h" and does not normally need to be included directly.
File Name

sys_module.h
Company

Microchip Technology Inc.

system.h
Top level common system services library interface header.

Description

System Services Library Interface Header

Clock System Service Library

This file is the top level common system services library interface header. It defines (or includes files that define) the common system service

types, prototypes, and other definitions that are commonly used by MPLAB Harmony libraries and system services.

System services provide common functionality that would otherwise need to be duplicated by multiple other modules or that would force them to
interact in complex and hard to manage ways. System services eliminate conflicts by controlling access shared resources.

Remarks

The parent directory to the "system" directory should be added to the compiler's search path for header files such that the following include

statment will successfully include this file.
#include "system/system.h"

File Name

system.h

Company

Microchip Technology Inc.

sys_init.h

Initialization System Service Library definitions and declarations.

Functions
Name Description
¢ SYS_|Initialize Initializes the board, services, drivers, and other modules
Description

Initialization System Service Library Definitions
This file contains Initialization System Service Library definitions and declarations.

Remarks

This file is included by "system.h" and need not be included directly.
File Name

sys_init.h
Company

Microchip Technology Inc.

Clock System Service Library

This section describes the Clock System Service Library.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

22

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

Introduction

This library provides an interface to manage the Oscillator module on the Microchip family of microcontrollers during Execution time using the
Clock System Service Library.

Description

The Clock System Service can be configured to run in either Static mode or Dynamic mode via the MPLAB Harmony Configurator. In Static mode,
the service will configure the Oscillator module to the user-desired system clock frequency, peripheral bus clock frequency, reference bus clock
frequency, USB PLL clock frequency, and Bluetooth PLL clock frequency. These settings are set at initialization and are designed to remain the
same for the duration of run-time. In Dynamic mode, the service will also set all of these frequencies at initialization; however it offers the function
support to allow users to change the system clock frequency, peripheral bus frequency, and if the device supports it, the reference clock frequency.

Design Recommendations

If performance and small code size are critical, and there is no requirement to change the clock speed, the recommendation is to use Static mode.
If there is a need to change the system, peripheral, or reference clock frequencies during run-time, the recommendation is to use Dynamic mode.

Configuration

The Oscillator is the heart of the microcontroller, which provides the clock on which the core and the peripherals run. For all of the oscillators
present on a Microchip microcontroller, two types of configurations exist:

e Through Configuration bits

» At Execution time

Configuring the oscillator through the Configuration bits is a one-time process that it is done during the programming of the device. This one-time
configuration is programmed in the code memory. The Execution time configuration provides features that are allowed to be changed during code
execution. The Clock System Service Library provides functions the Execution time configurable features of the Oscillator module.

The Oscillator module supports the CPU and other peripherals by providing the clock. Therefore, there is more initialization and little or no run-time
operations. The run-time operations set the system clock or any other output clocks. If the application needs to make any initialization changes,
they can be done at run-time.

The Oscillator module as a whole is a group of oscillators. These are provided for the application to choose the correct oscillator for the
application. It is important to wisely choose the oscillator and the frequency at which the CPU and the other peripherals should run in power-critical
environments.

The following figure illustrates the interaction of the Clock System Service Library.

Initialization
Clock Sources, PLL,
divisors etc
Oscillator
o — o Clock
Appiication | R i Systam beriphsrat Oscillator Module
tuning Servi Library
ervice (PUB)
Status
Clock, Error etc.

Using the Library
This topic describes the basic architecture of the Clock System Service and provides information and examples on its use.

Description

Interface Header File: sys_osc. h
The interface to the Clock System Service is defined in the sys_osc. h header file, which is included by the sys. h header file.
Any C language source (. c) file that uses the Clock System Service must include sys. h.

Abstraction Model

This library provides a low-level abstraction of the Clock System Service Library. This topic describes how that abstraction is modeled in software
and introduces the library's interface.

Description

To understand the Oscillator module and how each of its feature is mapped in this library, it is important to understand the following terminologies.
Oscillators/Clock Sources

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 23

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

A clock source is hardware that generates oscillations. This may be internal or external.

Divisor and Multiplier/PLL

These are hardware modules that can scale the clock. The rate at which the scaling is done may be fixed or configurable.

Clocks

Clock outputs are output lines from the Oscillator module, which may route to different modules of the device or to the CPU (the system clock).

The following diagram provides a simplified explanation and the relationship between the previously mentioned terms. In most cases, there are
multiple clock source options available for each of the clock outputs. However, not all clock sources are available for all output clocks. Scaling is an
optional feature in most cases.

Clock Sources Multipler/Divisor Output Clocks —>
- Primary Oscillator B :LL‘S I - System Clock
- Secondary Oscillator B Pos cla -~ - Peripheral Clock — To
- Internal Fast RC SUU Ll - USB Clock different
- Internal Low Power RC - Graphics Clock Modules
- Auxiliary Oscillator - Reference Clock —>
—

- ADC/PWM

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Clock System
Service module.

Library Interface Section Description

System Clock Functions Provides functions to set and get the system clock frequency.

Peripheral Clock Functions Provides functions to set and get the peripheral clock frequency.

Reference Clock Functions Provides functions to set up the reference clock, and set and get the reference clock
frequency.

Clock Failure Functions Provides functions to allow registration of a callback function that will be triggered on

a clock failure and to inform the user on a clock failure by invoking the registered call
back function.

Initialization Functions Provides an initialization routine to configure the module at the start-up of the system
and reinitialization if the application wants to change any of the initialization settings.

How the Library Works

The following diagram shows the flow of an application call to the Clock System Service Library.
Refer to the System Services Introduction section for information on how the system services operate in a system.
Configuration

- Configuration bit divisors

- Configuration bit multipliers

- Primary osdillator clock input

- Secondary oscillator clock input

Initialization

- General
- Action on Wait instruction
- Enable Secondary
- Clock Sources
- System Clock
- USB Clock
- Graphics Clock
- Reference clock
- PLL and Clock divisors
- Doze Mode

Oscillator Tuning
- Internal FRC oscillator Tuning

Status routines

- Get clock
- Clock Fail Status

Initialization

Provides information and code examples for initializing the Oscillator.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 24

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

Description

The Oscillator is a module with little or no run-time operations. Therefore, the application must do most of the configurations at the time of system
initialization even though it is allowed to change the clock frequency at run-time.

The Oscillator needs some time to settle. Therefore, it is recommended to perform the oscillator initialization before initializing other modules.
Check for the oscillator status once all of the initializations are complete and before the application task routine takes control.

Not all devices require all of the initialization parameters of the structure. Refer to the specific device data sheet to determine
Note: which features are available for your device.

Clock is Set Through Configuration bits

In most cases, setting the clock is done through Configuration bits. Therefore, what the application expects from the Clock System Service Library
is to provide all of the clock frequency values on a function call. To use the Clock System Service in this way, call the SYS_CLK_lInitialize function
by passing a NULL to it, as shown in the following code example. The function reads the registers and will initialize its internal data structure.

SYS CLK Initialize (NULL);

/'l As per ny setting, the system clock should be 80 MHz

If (SYS_CLK_SystenfrequencyGet () != 80000000)

{
}

/1 Somet hing is wong, check the Configuration bit settings

Alter the Configuration bit Setting

To alter the settings made in the Configuration bit, pass the structure to the SYS_CLK _Initialize function.
SYS CLK_INI'T general I nit;

/1 Populate the oscillator initialization structure
general I nit.systenC ockSource = SYS_CLK SOURCE _FRC SYSPLL;
general I nit. systenC ockFrequencyHz = 30000000;

general I nit.onWaitlnstruction = OSC_ON WAl T_SLEEP;

general I nit.secondaryGOscKeepEnabl ed = true;

SYS CLK Initialize (&jenerallnit);

Changing the Clock
Provides information on changing the clock.

Description

The module initializes only the system clock as part of the SYS_CLK_Initialize function. All other clocks including the peripheral clock must be set
by calling specific functions.

Changing the System Clock

Changing the system clock is done using the SYS_CLK_SystemFrequencySet function, which expects the clock source and the frequency as
arguments. If the clock source is a PLL-based source, a flag is provided so that a user can chose whether to wait until the operation is complete or
just trigger the change and exit. The function will return zero if the requested clock is not achievable.

Changing the Peripheral Clock

Changing the Peripheral clock is done using the SYS_CLK_PeripheralFrequencySet function, which expects the clock source and the frequency
as arguments. The function will return zero if the requested clock is not achievable. When this occurs, call the SYS_CLK_
PeripheralClosestFrequencyGet function by passing the bus number to it, to determine the closest possible clock.

switch (clockState)

{

case 1:
SYS CLK Peri pheral FrequencySet (CLK BUS PERI PHERAL_1, CLK SOURCE PERI PHERAL_SYSTEMCLK, 8000000, true);

cl ockSt at e++;
br eak;

case 2:
if (SYS_CLK Peripheral OperationStatus (CLK BUS PERI PHERAL_1) == SYS CLK OPERATI ON_COVPLETE)

{

/| Peripheral clock setting is conpleted
cl ockSt at e++;

}

br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 25

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

}

Changing/Setting the Reference Clock

Changing or setting the reference clock is done using two functions. Set the module's response to Sleep and Idle mode using the function
SYS_CLK_ReferenceClockSetup. Use the SYS_CLK_ReferenceFrequencySet function to set the clock out, which expects the clock source and
the frequency as arguments. The function will return zero if the requested clock is not achievable. When this occurs, call the SYS_CLK_
ReferenceClosestFrequencyGet function by passing the bus number to it, to determine the closest possible clock.

ui nt 32_t achi evedFr equencyHz;

/11 want 200 kHz as out put
achi evedFrequencyHz = SYS CLK_ Ref erenceFrequencySet (CLK BUS REFERENCE 3, CLK SOURCE REF _FRC, 200000, true
)

if (achi evedFrequencyHz !'= 0)
{

}

/I Frequency successfully set

Using Status Functions
Provides a code example to check the clock output.

Description

Checking the Clock Output

The following code provides an example of checking the clock output.
ui nt 32_t usbd ockQut put Hz;

unsi gned | ong sysC ockQut put Hz;

unsi gned | ong peri pheral C ockHz;

uint32_t sysC ockHz;

sysd ockHz = SYS_CLK SystenfrequencyGet ();

peri pheral O ockHz = SYS_CLK Peri pheral FrequencyGet (CLK_BUS PERI PHERAL_1);
usbd ockQut put Hz = SYS_CLK _USBC ockFrequencyGet (CLK BUS USB 1);

sysd ockQut put Hz = SYS_CLK ReferenceFrequencyGet (CLK BUS REFERENCE 1);

Oscillator Tuning
Provides information on tuning the Oscillator.

Description

Oscillator tuning will help compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an
approximation; the application is supposed to try different values to achieve the best result. In some devices, there are different tuning modes
available.

Direct Number Method

/1 Sof tware must unl ock before the start of the tuning.
SYS_OSC_FRCTUNI NG_DATA t uni ngl nput ;
OSC_FRC_TUNI NG_VALUE tuni ngVal ue = OSC_TUNE_TO CENTRAL_FREQ PLUS 0_86;

t uni ngl nput . t uni ngMbde = OSC_TUNI NG_USI NG_NUMBER,;
tuni ngl nput . tuni ngbData = &t uni ngVal ue;
SYS_OSC_FRCTuni ngSet (& uni ngl nput) ;

Sequential Dithering

To get the Sequential Dithering working, the application is supposed to set the value in seven sequencers and also in the tuning register. Next, the
PWM module is configured and the period and pulse width are set. The Oscillator module generates frequencies corresponding to the value
specified in these registers in every eighth PWM cycle.

/] Sof tware must unlock before the start of the tuning.

SYS_OSC_FRCTUNI NG_DATA t uni ngl nput ;

OSC_FRC_TUNI NG_VALUE t uni ngVal ue[8] ;

/llnitialize with tuning val ues

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 26

Volume V: MPLAB Harmony Framework System Service Libraries Help

tuni ngVal ue[0] = OSC_TUNE_TO CENTRAL_M NUS_2_25 PERC;
tuni ngVal ue[1] = OSC_TUNE_TO CENTRAL_M NUS_1_5_PERC,
tuni ngVal ue[2] = OSC_TUNE_TO CENTRAL_M NUS_0_375_PERC;
tuni ngVal ue[3] = OSC_TUNE_TO CENTRAL_PLUS 0 43 PERC
tuni ngVal ue[4] = OSC_TUNE_TO CENTRAL_PLUS 1 29 PERC
tuni ngVal ue[5] = OSC_TUNE_TO CENTRAL_PLUS 2 54 PERC
tuni ngVal ue[6] = OSC_TUNE_TO_CENTRAL_M NUS_3_PERC;
tuni ngVal ue[7] = OSC_TUNE_TO CENTRAL_M NUS_3_PERC;

t uni ngl nput . t uni ngMbde = OSC_TUNI NG_SEQ DI THER;

tuni ngl nput . tuni ngbData = tuni ngVal ue;
SYS_OSC_FRCTuni ngSet (& uni ngl nput) ;

Pseudo-Random Number

In this method, select the tuning mode. Next, configure the PWM module and set the period and pulse width. The Oscillator system generates a
4-bit number based on a pseudo-random number generation algorithm. The Oscillator system then uses this value to tune the FRC oscillator. The
module will generate different frequencies corresponding to the generated pseudo-random numbers every eighth PWM cycle.

/] Sof tware nmust unlock before the start of the tuning.

SYS_OSC_FRCTUNI NG _DATA tuni ngl nput ;
OSC_FRC_TUNI NG_VALUE tuni ngVal ue = Ox7FFF;

t uni ngl nput . t uni ngMbde = OSC_TUNI NG_PSEUDO_RANDOM

tuni ngl nput .. tuni ngData = &t uni ngVal ue;
SYS_OSC_FRCTuni ngSet (& uni ngl nput) ;
Configuring the Library

Macros

Name
SYS_CLK_CONFIG_FREQ_ERROR_LIMIT
SYS_CLK_CONFIG_PRIMARY_XTAL

SYS_CLK_CONFIG_SECONDARY_XTAL

Description
Sets the allowed frequency configuration error Hertz.

Gives the Primary oscillator input frequency. This is from the hardware and not the
output required frequency.

Gives the Secondary oscillator input frequency. This is from the hardware and not
the output required frequency.

SYS_CLK_CONFIG_SYSPLL_INP_DIVISOR Gives the System PLL input divisor configured through configuration bits. For some

SYS_CLK_CONFIGBIT_USBPLL_DIVISOR
SYS_CLK_CONFIGBIT_USBPLL_ENABLE
SYS_CLK_CONFIG_EXTERNAL_CLOCK
SYS_CLK_UPLL_BEFORE_DIV2_FREQ

Description

of the devices, the system PLL input divisor is not accessible through software. So
use this macro to inform the System service about the input divisor.

Gives the Oscillator USB clock divisor.
Defines the status of the USB PLL.
Gives the clock that is provided on the Reference clock output pin.

Defines the value of the USB clock for the devices which does not have a software
controllable USB clock.

The configuration of the Clock System Service Library is based on the file syst em confi g. h.

This header file contains the configuration selection for the Clock System Service Library. Based on the selections made, the Clock System
Service Library may support the selected features. These configuration settings will apply to all instances of the Clock System Service Library.

This header can be placed anywhere, the path of this header needs to be present in the include search path for a successful build. Refer to the

Applications Help section for more details.

SYS_CLK_CONFIG_FREQ_ERROR_LIMIT Macro

Sets the allowed frequency configuration error Hertz.
File
sys_clk_config_template.h

C
#define SYS_CLK _CONFI G FREQ ERROR LIM T 10

Description

Frequency Configuration error

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Clock System Service Library

27

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

This macro sets the allowed frequency error in Hertz.

Remarks

None.

SYS_CLK_CONFIG_PRIMARY_XTAL Macro

Gives the Primary oscillator input frequency. This is from the hardware and not the output required frequency.
File

sys_clk_config_template.h
C

#defi ne SYS_CLK_CONFI G_PRI MARY_XTAL 8000000L

Description

Primary Oscillator clock input frequency
This macro gives the Primary Oscillator clock input frequency.

Remarks

Find this out by checking the hardware. examine the crystal connected to the Primary Oscillator input pin.

SYS_CLK_CONFIG_SECONDARY_XTAL Macro

Gives the Secondary oscillator input frequency. This is from the hardware and not the output required frequency.
File

sys_clk_config_template.h
C

#defi ne SYS_CLK_CONFI G_SECONDARY_XTAL 8000000

Description

Secondary Oscillator clock input frequency
This macro gives the Secondary Oscillator clock input frequency.

Remarks

Find this out by checking the hardware. examine the crystal connected to the Secondary Oscillator input pin.

SYS_CLK_CONFIG_SYSPLL_INP_DIVISOR Macro

Gives the System PLL input divisor configured through configuration bits. For some of the devices, the system PLL input divisor is not accessible
through software. So use this macro to inform the System service about the input divisor.

File

sys_clk_config_template.h
C

#define SYS_CLK_CONFI G_SYSPLL_| NP_DI VI SOR 2
Description

System PLL input divisor configured through configuration bits

Gives the System PLL input divisor configured through configuration bits. For some of the devices, the system PLL input divisor is not accessible
through software. So use this macro to inform the System service about the input divisor. In case of some devices PLL expects its input frequency
to be in a specific range. So it is important to set the input divisor get the right input frequency.

Remarks

This must be changed every time you change the System PLL input divisor through the configuration bits.

SYS_CLK_CONFIGBIT_USBPLL_DIVISOR Macro
Gives the Oscillator USB clock divisor.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 28

Volume V: MPLAB Harmony Framework System Service Libraries Help

File
sys_clk_config_template.h
C
#define SYS CLK CONFI GBI T_USBPLL_DI VI SOR 2

Description

Oscillator USB clock divisor configured through configuration bits

This macro sets up the Oscillator USB clock divisor. Use OSC_CONFIGBITS_PLLIDIV to select the configuration.

Remarks

This must be changed every time you change the USB PLL divisor through the configuration bits.

SYS_CLK_CONFIGBIT_USBPLL_ENABLE Macro
Defines the status of the USB PLL.

File
sys_clk_config_template.h

C
#def i ne SYS_CLK_CONFI GBI T_USBPLL_ENABLE true

Description

System clock PLL enable configuration
Setting this macro to 'true’ states that USB PLL is enabled through the Configuration bits.

Remarks

This must be changed every time you enable/disable the USB PLL through the configuration bits.

SYS_CLK_CONFIG_EXTERNAL_CLOCK Macro
Gives the clock that is provided on the Reference clock output pin.
File
sys_clk_config_template.h

C
#defi ne SYS_CLK_CONFI G_EXTERNAL_CLOCK 4000000

Description

External clock frequency
This macro gives the clock that is provided on the Reference clock output pin.

Remarks

None.

SYS_CLK_UPLL_BEFORE_DIV2_FREQ Macro
Defines the value of the USB clock for the devices which does not have a software controllable USB clock.
File
sys_clk_config_template.h

C
#def i ne SYS_CLK_UPLL_BEFORE_DI V2_FREQ 48000000

Description
USB clock frequency

Clock System Service Library

Defines the value of the USB clock for the devices which does not have a software controllable USB clock(Fully controlled through configuration

bits).

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

29

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

Remarks

None.

Building the Library
This section lists the files that are available in the Clock System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<instal |l -dir>/framework/systent cl k.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description
sys_clk.h Clock System Service Library API header file.
Required File(s)

urus

HAR

MHc All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC

pa when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/sys_clk.c Clock System Service Library implementation.

/'srclsys_cl k_pi c32nx.
/'srclsys_cl k_pi c32nx.

System clock implementation specific to PIC32MX devices.

/ srcl/sys_cl k_pi c32ne.
/ srcl/sys_cl k_pi c32ne.

System clock implementation specific to PIC32MZ devices.

/'src/sys_cl k_pi c32wk.
/'src/sys_cl k_pi c32wk.

System clock implementation specific to PIC32WK devices.

o0 TS0 T O0

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A No optional files are available for this library.

Module Dependencies
The Clock System Service is not dependent upon other modules.

Library Interface

a) System Clock Functions

Name Description
¢ SYS_CLK_SystemFrequencyGet | Gets the system clock frequency in Hertz.
Implementation: Static/Dynamic
@ SYS_CLK_SystemFrequencySet | Configures the System clock of the device to the value specified.

Implementation: Dynamic
b) Peripheral Clock Functions

Name Description

@ SYS_CLK_PeripheralFrequencyGet | Gets the selected clock peripheral bus frequency in Hertz.
Implementation: Static/Dynamic

¢ SYS_CLK_PeripheralFrequencySet | Configures the peripheral clock of the device to the value specified.
Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 30

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

c) Reference Clock Functions

Name Description
¢ SYS_CLK_ReferenceClockSetup Sets up the reference clock of the device to the value specified.
Implementation: Dynamic

@ SYS_CLK_ReferenceFrequencySet Sets the reference clock of the device to the value specified.
Implementation: Dynamic

¢ SYS_CLK_ReferenceFrequencyGet | Gets the selected Reference clock bus frequency in Hertz.
Implementation: Static/Dynamic

d) Clock Failure Functions

Name Description
¢ SYS_CLK_ClockFailureCallbackRegister | Allows registration of a call back function that will be triggered on a clock failure.
Implementation: Dynamic

¢ SYS_CLK_TaskError Informs the user on a clock failure by invoking the registered call back function.
Implementation: Dynamic

e) Initialization Functions

Name Description

¢ SYS_CLK Initialize Initializes hardware and internal data structure of the System Clock.
Implementation: Static/Dynamic

f) Secondary Oscillator Functions

Name Description
¢ SYS_CLK_SecondaryOscillatorDisable | Disables the secondary oscillator.
Implementation: Static/Dynamic
¢ SYS_CLK_SecondaryOscillatorEnable Enables the secondary oscillator.

Implementation: Static/Dynamic
¢ SYS_CLK_SecondaryOscillatorlsEnabled | Identifies whether secondary oscillator is enabled or disabled.
Implementation: Static/Dynamic

g) Data Types and Constants

Name Description

SYS_CLK_INIT Defines the data required to initialize the Oscillator for the Clock System Service.
CLK_BUSES_PERIPHERAL Lists the available peripheral clock buses.

CLK_BUSES_REFERENCE Lists the available reference clock buses.

CLK_SOURCES_PERIPHERAL Lists the available clock sources for the peripheral clock.
CLK_SOURCES_REFERENCE Lists the available clock sources for the Reference clock.
CLK_SOURCES_SYSTEM Lists the available clock sources for the system clock.
SYS_CLK_ERROR_HANDLER Pointer to a CLK System service SYS_CLK_ClockFailureCallbackRegister function.
SYS_CLK_REFERENCE_SETUP |Defines the data required to initialize the Oscillator for the Clock System Service.
SYS_CLK_STATUS Lists all the possible status of a system clock operation.

¢ SYS_CLK_FRCTune This function is used for direct value based FRC oscillator tuning.
Implementation: Dynamic

SYS_CLK_FRC_TUNING_TYPE | Defines the data type for tuning the Fast RC Oscillator.

Description

This section describes the APIs of the Clock System Service Library.
Refer to each section for a detailed description.
a) System Clock Functions

SYS CLK_SystemFrequencyGet Function

Gets the system clock frequency in Hertz.
Implementation: Static/Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 31

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

File

sys_clk.h
C

uint32_t SYS CLK SystenfrequencyGet();
Returns

System clock frequency in Hertz.
Description

This function gets the System clock frequency in Hertz.
Remarks

This function is supported on the following Microchip device families:
* PIC32M

Preconditions
The SYS_CLK_Initialize function should be called before calling this API.

Example
uint32_t sysd ockHz;

sysd ockHz = SYS_CLK SystenfrequencyGet ();

Function
uint32_t SYS_CLK_SystemFrequencyGet (void)

SYS CLK_SystemFrequencySet Function

Configures the System clock of the device to the value specified.
Implementation: Dynamic

File
sys_clk.h

C

uint32_t SYS_CLK_Syst enfrequencySet (CLK_SOURCES_SYSTEM syst enSour ce, uint32_t systenC ockHz, bool
wai t Unti | Conpl ete);

Returns

'Zero' on an unsuccessful operation. Configured system clock frequency on successful operation.

Description

This function configures the clock multipliers and divisors to achieve requested System clock frequency. Initially it checks the difference between
the requested value and possible value. If it is not within 'SYS_CLK_CONFIG_FREQ_ERROR_LIMIT', the registers values will not be changed
and a value '0" will be returned to let user know that the operation was unsuccessful. If the value requested is acceptable, then it writes to the
oscillator registers and return with the newly set frequency.

Remarks

This function is supported on the following Microchip device families:
* PIC32M

Getting the new frequency doesn't mean that the operation is complete if the API is not called to ‘wait until' the operation is complete. The API will
return with the possible value immediately. The actual hardware switching may take longer. Use SYS_CLK_SystemClockStatus function to get the
status of completion.

Calling this APl is only necessary to change the system clock. Use SYS_CLK_Initialize function to set up the system clock initially.

Preconditions

The SYS_CLK _Initialize function should be called before calling this API. To change the clock source, clock switching must be enabled through
‘configuration bits'.

Example
ui nt 32_t achi evedFrequencyHz;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 32

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

// *kkkkkk ok BI OCklng Call******
achi evedFrequencyHz = SYS CLK Syst enfrequencySet (
SYS_CLK_SOURCE_PRI MARY, 8000000, true);

if (achi evedFrequencyHz !'= 0)

{
/1 ock setting conplete

}
Parameters

Parameters Description

systemSource Clock source means the path of the clock signal. One of the possible value from

CLK_SOURCES_SYSTEM enum. See the block diagram in the data sheet to get an idea.

systemClockHz Required System Clock frequency in Hertz.

waitUntilComplete Passing this parameter as 'true’ will make until the actual hardware operation is complete.
Function

uint32_t SYS_CLK_SystemFrequencySet (CLK_SOURCES_SYSTEM systemSource,
uint32_t systemClockHz, bool waitUntilComplete)

b) Peripheral Clock Functions

SYS CLK_PeripheralFrequencyGet Function

Gets the selected clock peripheral bus frequency in Hertz.
Implementation: Static/Dynamic
File
sys_clk.h
C
uint32_t SYS_CLK_Peri pheral FrequencyGet (CLK_BUSES_PERI PHERAL peri pheral Bus);
Returns
Clock frequency in Hertz.
Description
This function gets the selected peripheral bus clock frequency in Hertz.
Remarks

This function is supported on the following Microchip device families:
* PIC32M
Most devices do not have multiple peripheral clock buses. In those instances, pass CLK_USB_PERIPHERAL_1 as the bus number.

Preconditions
The SYS_CLK Initialize function should be called before calling this API.

Example
unsi gned | ong peri pheral C ockHz;

peri pheral O ockHz = SYS_CLK Peri pheral FrequencyGet (CLK BUS PERI PHERAL_5);

Parameters
Parameters Description
peripheralBus Reference clock bus selection. One of the possible value from CLK_BUSES PERIPHERAL
enum. For devices that do not have multiple clock channels for Reference clock,
CLK_BUS_PERIPHERAL_1 should be the selection.
Function

uint32_t SYS_CLK_PeripheralFrequencyGet (CLK_BUSES_PERIPHERAL peripheralBus)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 33

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

SYS CLK_PeripheralFrequencySet Function

Configures the peripheral clock of the device to the value specified.
Implementation: Dynamic

File
sys_clk.h

C

uint32_t SYS_CLK_ Peri pheral FrequencySet (CLK_BUSES_PERI PHERAL peri pheral Bus, CLK SOURCES_PERI PHERAL
peri pheral Source, uint32_t peripheral G ockHz, bool waitUntil Conplete);

Returns

None.

Description

This function configures the clock multipliers and divisors to achieve requested Peripheral clock frequency. Initially it checks the difference
between the requested value and possible value. If it is not within 'SYS_CLK_CONFIG_FREQ_ERROR_LIMIT', the registers values will not be
changed and a value '0' will be returned to let user know that the operation was unsuccessful. If the value requested is acceptable, then it writes to
the oscillator registers and return with the newly set frequency. If the operation is a failure, SYS_CLK_PeripheralClosestFrequencyGet function will
give the closest possible frequency. If the closest possible value is acceptable, user can reconfigure with that value.

Remarks

This function is supported on the following Microchip device families:
* PIC32M
Most devices do not have multiple Peripheral clock buses. In those instances, pass CLK_BUS_PERIPHERAL_1 as the bus number.

Preconditions
The SYS_CLK Initialize function should be called before calling this API.
Example

ui nt32_t achi evedFrequencyHz;

/| Exanpl e for MX, single peripheral bus
achi evedFrequencyHz = SYS_CLK_Peri pheral FrequencySet (CLK BUS_PERI PHERAL_1,
CLK_SOURCE_PERI PHERAL_SYSTEMCLK, 8000000, true);

if (achi evedFrequencyHz '= 0)
{

}

/| Frequency successfully set

/| Exanple for MZ, multiple peripheral buses
achi evedFrequencyHz = SYS CLK Peri pheral FrequencySet (CLK BUS_PERI PHERAL_4,
CLK_SOURCE_PERI PHERAL_SYSTEMCLK, 8000000, true);

if (achi evedFrequencyHz '= 0)
{
/| Frequency successfully set
}
Parameters

Parameters Description

peripheralBus Peripheral bus selection. One of the possible value from CLK_BUSES_PERIPHERAL enum.
For devices that do not have multiple clock channels for Peripheral clock,
CLK_BUS_PERIPHERAL_1 should be the selection.

peripheralSource Clock source means the path of the clock signal. One of the possible value from
CLK_SOURCES_PERIPHERAL enum. See the block diagram in the data sheet to get an
idea.

peripheralClockHz Clock frequency in Hertz.

waitUntilComplete Passing this parameter as 'true’ will make until the actual hardware operation is complete.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 34

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

Function

uint32_t SYS_CLK_PeripheralFrequencySet (CLK_BUSES_PERIPHERAL peripheralBus,
CLK_SOURCES_PERIPHERAL peripheralSource, uint32_t peripheralClockHz,
bool waitUntiiComplete)

¢) Reference Clock Functions

SYS CLK_ReferenceClockSetup Function

Sets up the reference clock of the device to the value specified.
Implementation: Dynamic

File
sys_clk.h
C
voi d SYS_CLK_ReferenceC ockSet up(CLK_BUSES REFERENCE r ef erenceBus, SYS CLK REFERENCE_SETUP * ref Setup);

Returns

None.

Description

This function sets up the clock multipliers and divisors to achieve requested Reference clock frequency. Initially it checks the difference between
the requested value and possible value. If it is not within 'SYS_CLK_CONFIG_FREQ_ERROR_LIMIT', the registers values will not be changed
and a value '0" will be returned to let user know that the operation was unsuccessful. If the value requested is acceptable, then it writes to the
oscillator registers and return with the newly set frequency. If the operation is a failure, SYS_CLK_ReferenceClosestFrequencyGet function will
give the closest possible frequency. If the closest possible value is acceptable, user can reconfigure with that value.

Remarks

This function is supported on the following Microchip device families:
« PIC32M
Most devices do not have multiple reference clock buses. In those instances, pass CLK_BUS_REFERENCE_1 as the bus number.

Preconditions
The SYS_CLK_Initialize function should be called before calling this API.

Example
SYS CLK_REFERENCE_SETUP r ef Set up;

ref Set up. suspendl nSl eep = true;
ref Setup. stoplnldle = true;

SYS CLK ReferenceC ockSetup (CLK BUS REFERENCE 3, &refSetup);

Parameters
Parameters Description
referenceBus Reference clock bus selection. One of the possible value from CLK_BUSES_REFERENCE
enum. For devices that do not have multiple clock channels for Reference clock,
CLK_BUS_REFERENCE_1 should be the selection.
refSetup A structure which holds the reference oscillator configuration.
Function

void SYS_CLK_ReferenceClockSetup (CLK_BUSES_REFERENCE referenceBus,
SYS_CLK_REFERENCE_SETUP *refSetup)

SYS CLK_ReferenceFrequencySet Function

Sets the reference clock of the device to the value specified.
Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 35

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

File
sys_clk.h

C

uint32_t SYS CLK ReferenceFrequencySet (CLK_BUSES REFERENCE ref erenceBus, CLK_ SOURCES REFERENCE
ref erenceSource, uint32_t referenced ockHz, bool waitUntil Conplete);

Returns

The actual frequency set or zero on failure.

Description

This function sets the clock multipliers and divisors to achieve requested Reference clock frequency. Initially it checks the difference between the
requested value and possible value. If it is not within 'SYS_CLK_CONFIG_FREQ_ERROR_LIMIT', the registers values will not be changed and a
value '0" will be returned to let user know that the operation was unsuccessful. If the value requested is acceptable, then it writes to the oscillator
registers and return with the newly set frequency. If the operation is a failure, SYS_CLK_ReferenceClosestFrequencyGet function will give the
closest possible frequency. If the closest possible value is acceptable, user can reconfigure with that value.

Remarks

This function is supported on the following Microchip device families:
« PIC32M

Most devices do not have multiple reference clock buses. In those instances, pass CLK_BUS_REFERENCE_1 as the bus number.
Preconditions

The SYS_CLK Initialize function should be called before calling this API. To change the clock source clock switching must be enabled through
‘configuration bits'.

Example

ui nt 32_t achi evedFrequencyHz;

/11 want 200 KHz as out put
achi evedFrequencyHz = SYS CLK Ref erenceFrequencySet (CLK BUS REFERENCE 3,
CLK_SOURCE_REF_FRC, 200000, true);

if (achi evedFrequencyHz !'= 0)

{
/| Frequency successfully set
}
Parameters
Parameters Description
referenceBus Reference clock bus selection. One of the possible value from CLK_BUSES_REFERENCE
enum. For devices that do not have multiple clock channels for Reference clock,
CLK_BUS_REFERENCE_1 should be the selection.
referenceSource Clock source means the path of the clock signal. One of the possible value from
CLK_SOURCES_REFERENCE enum. See the block diagram in the data sheet.
referenceClockHz Clock frequency in Hertz.
waitUntiiComplete Passing this parameter as 'true’ will make until the actual hardware operation is complete.
Function

uint32_t SYS_CLK_ReferenceFrequencySet (CLK_BUSES_REFERENCE referenceBus,
CLK_SOURCES_REFERENCE referenceSource, uint32_t referenceClockHz,
bool waitUntilComplete)

SYS_CLK_ReferenceFrequencyGet Function

Gets the selected Reference clock bus frequency in Hertz.
Implementation: Static/Dynamic

File
sys_clk.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 36

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

C
uint32_t SYS _CLK_ReferenceFrequencyGet (CLK_BUSES REFERENCE r ef er enceBus) ;
Returns
Clock frequency in Hertz.
Description
This function gets frequency of the selected Reference clock bus in Hertz.
Remarks

This function is supported on the following Microchip device families:
¢ PIC32M

Preconditions
The SYS_CLK_Initialize function should be called before calling this API.

Example
unsi gned | ong sysd ockCQut put Hz;

sysd ockQut put Hz = SYS_CLK ReferenceFrequencyGet (CLK BUS REFERENCE 3);

Parameters
Parameters Description
peripheralBus Reference clock bus selection. One of the possible value from CLK_BUSES_REFERENCE
enum. For devices that do not have multiple clock channels for Reference clock,
CLK_BUS_REFERENCE_1 should be the selection.
Function

uint32_t SYS_CLK_ReferenceFrequencyGet (CLK_BUSES_REFERENCE referenceBus)

d) Clock Failure Functions

SYS CLK_ClockFailureCallbackRegister Function

Allows registration of a call back function that will be triggered on a clock failure.
Implementation: Dynamic

File

sys_clk.h
C

voi d SYS_CLK_C ockFai | ureCal | backRegi st er (SYS_CLK_ERROR_HANDLER cal | back) ;
Returns

None.
Description

This function allows registration of a callback function that will be triggered on a clock failure.
Remarks

This function is supported on the following Microchip device families:
* PIC32M
This function is not available on all devices. Please refer to the specific device data sheet for availability.

Preconditions
None.

Example

voi d ErrorHandl e (void)
{

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 37

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

//Handl e the error.

}

SYS_CLK _C ockFai | ureCal | backRegi ster (ErrorHandle);
Parameters

Parameters Description

callback Address of a callback function of type 'SYS_CLK_ERROR_HANDLER'.
Function

void SYS_CLK_ClockFailureCallbackRegister (SYS_CLK_ERROR_HANDLER callback)

SYS CLK_TaskError Function

Informs the user on a clock failure by invoking the registered call back function.
Implementation: Dynamic

File
sys_clk.h

C
voi d SYS_CLK TaskError();

Returns

None.

Description

This function informs the user on a clock failure by invoking the registered call back function. This must be called from the Fail Safe Clock Monitor

(FSCM) interrupt service routine.

Remarks

This function is supported on the following Microchip device families:
* PIC32M

Preconditions

None.

Example

voi d cl ockMonitorl SR (void)
{

}

Parameters

SYS CLK TaskError (void);

Parameters Description
index Identifies the desired System Clock

Function
void SYS_CLK_TaskError (void)

e) Initialization Functions

SYS_CLK_Initialize Function

Initializes hardware and internal data structure of the System Clock.
Implementation: Static/Dynamic

File
sys_clk.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

38

Volume V: MPLAB Harmony Framework System Service Libraries Help
C
void SYS CLK Initialize(const SYS CLK INIT * clklnit);
Returns
None.
Description

This function initializes the hardware and internal data structure of System Clock Service.

Remarks

This function is supported on the following Microchip device families:
¢ PIC32M

Clock System Service Library

This is APl must be be called at the time of system initialization to initialize the oscillator. Call this again to change any of the initialization settings.
If the frequency settings are already done through the 'configuration bits', call this API by passing 'NULL' to it. In any case calling this APl is

necessary get the internal data structures updated.
To change the clock source clock switching must be enabled through ‘configuration bits'.

Preconditions

None.

Example

// Exanple 1: Do not alter the configuration bit settings
SYS CLK Initialize (NULL);

/| Exanpl e 2: Want to change the configuration bit settings
SYS CLK_INI'T general I nit;

/'l Populate the oscillator initialization structure
general I nit.systenCl ockSource = SYS_CLK SOURCE FRC SYSPLL;
general I nit. systenC ockFrequencyHz = 30000000;

general I nit.onWaitlnstruction = OSC_ON WAl T_SLEEP;

general I nit.secondaryOscKeepEnabl ed = true;

SYS CLK Initialize (&enerallnit);

//Wait until conplete

while (SYS_CLK SystenOperationStatus () != SYS_CLK OPERATI ON_COWPLETE);

/] Configuration success

Parameters
Parameters Description
clkinit Pointer to a data structure containing any data necessary to initialize the System Clock. This
pointer can be NULL if no data is required as static overrides have been provided.
Function

void SYS_CLK_Initialize (const SYS_CLK_INIT * clkinit)

f) Secondary Oscillator Functions

SYS_CLK_SecondaryOscillatorDisable Function

Disables the secondary oscillator.
Implementation: Static/Dynamic

File

C

sys_clk.h

voi d SYS_CLK_SecondaryGsci | | at or Di sabl e();

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

39

Volume V: MPLAB Harmony Framework System Service Libraries Help

Returns
None.
Description
This function disables the secondary oscillator.

Remarks

This function is supported on the following Microchip device families:
* PIC32M

Preconditions

The SYS_CLK Initialize function should be called before calling this API.
Example

SYS _CLK SecondaryGscillatorDisable ();

Function
void SYS_CLK_SecondaryOscillatorDisable (void)

SYS _CLK_SecondaryOscillatorEnable Function

Enables the secondary oscillator.
Implementation: Static/Dynamic

File
sys_clk.h

C
voi d SYS_CLK_SecondaryGsci |l | at or Enabl e();

Returns

None.

Description

Clock System Service Library

This function enables secondary oscillator which can be used as a clock source for peripherals like RTCC, Timer etc.. The SOSC requires a

warm-up period of 1024 before it can be used as a clock source.

Remarks

This function is supported on the following Microchip device families:
* PIC32M

Preconditions
The SYS_CLK_Initialize function should be called before calling this API.

Example
SYS_CLK _SecondaryGscil | atorEnable ();

Function
void SYS_CLK_SecondaryOscillatorEnable (void)

SYS CLK_SecondaryOscillatorlsEnabled Function

Identifies whether secondary oscillator is enabled or disabled.
Implementation: Static/Dynamic

File
sys_clk.h

C
bool SYS CLK SecondaryGscill atorlsEnabl ed();

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

40

Volume V: MPLAB Harmony Framework System Service Libraries Help

Returns

true - If Secondary oscillator is enabled. false - If Secondary oscillator is disabled.
Description

This function identifies whether the secondary oscillator is enabled or disabled.

Remarks

This function is supported on the following Microchip device families:
* PIC32M

Preconditions
The SYS_CLK Initialize function should be called before calling this API.

Example

bool status;
status = SYS CLK SecondaryGscillatorlsEnabled ();

Function
bool SYS_CLK_SecondaryOscillatorlsEnabled (void)

g) Data Types and Constants

SYS_CLK_INIT Structure
Defines the data required to initialize the Oscillator for the Clock System Service.
File
sys_clk.h

C

typedef struct {
CLK_SOURCES_SYSTEM syst enCl ockSour ce;
ui nt 32_t systenC ockFrequencyHz;
bool waitTill Conplete;
bool secondaryGOscKeepEnabl ed;
OSC_OPERATI ON_ON_WAI T onWai t I nstruction;
SYS_MODULE_INI'T nodul el nit;

} SYS CLK INIT;

Description

Clock System Service Reference Oscillator initialization data

This structure defines the data required to initialize the Oscillator for the Clock System Service.

Remarks

This structure is supported on the following Microchip device families:
* PIC32M

Clock System Service Library

This structure only includes the necessary settings for the clock module. Other features like USB clock and reference clock are considered to be

optional and not every system will use it. There are dedicated APIs for configuring those.

CLK_BUSES_PERIPHERAL Enumeration
Lists the available peripheral clock buses.

File
sys_clk.h

C

typedef enum {
CLK_BUS_PERI PHERAL 1
CLK_BUS_PERI PHERAL_2

0x00,
0x01,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

41

Volume V: MPLAB Harmony Framework

CLK_BUS_PERI PHERAL_3 = 0x02,
CLK_BUS_PERI PHERAL_4 = 0x03,
CLK_BUS_PERI PHERAL_5 = 0x04,
CLK_BUS_PERI PHERAL_6 = 0x05,
CLK_BUS_PERI PHERAL_7 = 0x06,
CLK_BUS_PERI PHERAL_8 = 0x07

} CLK_BUSES_PERI PHERAL;
Members

Members
CLK_BUS_PERIPHERAL_1 = 0x00

CLK_BUS_PERIPHERAL_2 = 0x01
CLK_BUS_PERIPHERAL_3 = 0x02
CLK_BUS_PERIPHERAL_4 = 0x03
CLK_BUS_PERIPHERAL_5 = 0x04
CLK_BUS_PERIPHERAL_6 = 0x05
CLK_BUS_PERIPHERAL_7 = 0x06
CLK_BUS_PERIPHERAL_8 = 0x07

Description

Peripherals Clock Buses enumeration

System Service Libraries Help

Description

Clock System Service Library

Select peripheral bus 1. This should be the selection for the devices which don't have multiple

peripheral buses

Select peripheral bus 2
Select peripheral bus 3
Select peripheral bus 4
Select peripheral bus 5
Select peripheral bus 6
Select peripheral bus 7
Select peripheral bus 8

This enumeration lists all of the available peripheral clock buses. This is used by the SYS_CLK_PeripheralFrequencyGet and

SYS_CLK_PeripheralFrequencySet functions.

Remarks

This enumeration is supported on the following Microchip device families:

« PIC32M

The system service covers a wide range of devices. Not all the elements listed in here will be relevant for your device.

CLK_BUSES_REFERENCE Enumeration
Lists the available reference clock buses.

File
sys_clk.h

C
typedef enum {

CLK_BUS_REFERENCE_1 = 0x00,
CLK_BUS_REFERENCE 2 = 0x01,
CLK_BUS_REFERENCE 3 = 0x02,
CLK_BUS_REFERENCE_4 = 0x03,
CLK_BUS_REFERENCE 5 = 0x04

} CLK_BUSES_REFERENCE;
Members
Members

CLK_BUS_REFERENCE_1 = 0x00

CLK_BUS_REFERENCE_2 = 0x01
CLK_BUS_REFERENCE_3 = 0x02
CLK_BUS_REFERENCE_4 = 0x03
CLK_BUS_REFERENCE_5 = 0x04

Description

Reference Clock Buses enumeration

Description

Select Reference bus 1. This should be the selection for the devices which don't have multiple

Reference buses

Select Reference bus 2
Select Reference bus 3
Select Reference bus 4
Select Reference bus 5

This enumeration lists all of the available Reference clock buses. This is used by the SYS_CLK_ReferenceFrequencyGet and

SYS_CLK_ReferenceFrequencySet functions.

Remarks

This enumeration is supported on the following Microchip device families:

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

42

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

* PIC32M
The system service covers a wide range of devices. Not all the elements listed in here will be relevant for the your device.

CLK_SOURCES_PERIPHERAL Enumeration
Lists the available clock sources for the peripheral clock.
File
sys_clk.h

C

typedef enum {
CLK_SOURCE_PERI PHERAL _SYSTEMCLK
} CLK_SOURCES_PERI PHERAL;

Members

Members Description
CLK_SOURCE_PERIPHERAL_SYSTEMCLK Source of clock is system clock

Description

Peripheral clock sources enumeration
This enumeration lists all the available peripheral clock sources. This is used by the SYS_CLK_PeripheralFrequencySet function.

Remarks

This enumeration is supported on the following Microchip device families:
* PIC32M

CLK_SOURCES_REFERENCE Enumeration
Lists the available clock sources for the Reference clock.
File
sys_clk.h

C

typedef enum {
CLK_SOURCE_REF_SYSTEMCLK,
CLK_SOURCE_REF_PBCLK_BUSL,
CLK_SOURCE_REF_PRI MARY,
CLK_SOURCE_REF_FRC,
CLK_SOURCE_REF_LPRC,
CLK_SOURCE_REF_SECONDARY,
CLK_SOURCE_REF_USBPLL_QUT,
CLK_SOURCE_REF_SYSPLL_QUT,
CLK_SOURCE_REF_EXTERNAL,
CLK_SOURCE_REF_BFRC

} CLK_SOURCES_REFERENCE;

Members
Members Description
CLK_SOURCE_REF_SYSTEMCLK Source of Reference clock is System clock
CLK_SOURCE_REF_PBCLK_BUS1 Source of Reference clock is Peripheral clock
CLK_SOURCE_REF_PRIMARY Source of Reference clock is Primary oscillator
CLK_SOURCE_REF_FRC Source of Reference clock is Fast RC oscillator
CLK_SOURCE_REF_LPRC Source of Reference clock is Low power RC oscillator
CLK_SOURCE_REF_SECONDARY Source of Reference clock is Secondary oscillator
CLK_SOURCE_REF_USBPLL_OUT Source of clock is output of USB PLL This is used only for the Reference clock.
CLK_SOURCE_REF_SYSPLL_OUT Source of clock is the output of System PLL. Input to the system PLL may be Primary or FRC
CLK_SOURCE_REF_EXTERNAL Source of clock is external(from the pin)
CLK_SOURCE_REF_BFRC Source of Reference clock is backup Fast RC oscillator

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 43

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

Description

Reference clock sources enumeration
This enumeration lists all the available peripheral clock sources. This is used by the SYS_CLK_ReferenceFrequencySet function.

Remarks

This enumeration is supported on the following Microchip device families:
« PIC32M

CLK_SOURCES_SYSTEM Enumeration
Lists the available clock sources for the system clock.
File
sys_clk.h

C

typedef enum {
SYS_CLK_SOURCE_FRC,
SYS_CLK_SOURCE_FRC SYSPLL,
SYS_CLK_SOURCE_PRI MARY,
SYS_CLK_SOURCE_PRI MARY_SYSPLL,
SYS_CLK_SOURCE_SECONDARY,
SYS_CLK_SOURCE_LPRC,
SYS_CLK_SOURCE_FRC_BY_16,
SYS_CLK_SOURCE_FRC BY_DI V,
SYS CLK_SOURCE_BKP_FRC,
SYS_CLK_SOURCE_UPLL,
SYS_CLK_SOURCE_NONE

} CLK_SOURCES_SYSTEM

Members
Members Description
SYS_CLK_SOURCE_FRC Source of clock is internal fast RC
SYS_CLK_SOURCE_FRC_SYSPLL Source of clock is internal fast RC multiplied by system PLL
SYS_CLK_SOURCE_PRIMARY Source of clock is primary oscillator
SYS_CLK_SOURCE_PRIMARY_SYSPLL Source of clock is primary oscillator multiplied by the System PLL value and divided by the

divisor configured by software

SYS_CLK_SOURCE_SECONDARY Source of clock is secondary oscillator
SYS_CLK_SOURCE_LPRC Source of clock is internal low power RC
SYS_CLK_SOURCE_FRC_BY_16 Source of clock is internal fast RC divided by the divisor configured in software
SYS_CLK_SOURCE_FRC_BY_DIV Source of clock is internal fast RC divided by the divisor configured in software
SYS_CLK_SOURCE_BKP_FRC Source of clock is backup fast RC
SYS_CLK_SOURCE_UPLL Source of clock is USB PLL output configured in software
SYS_CLK_SOURCE_NONE Source of clock is none

Description

System Clock sources enumeration
This enumeration lists all the available clock sources for the system clock. This is used by the SYS_CLK_INIT structure.

Remarks

This enumeration is supported on the following Microchip device families:
* PIC32M

SYS_CLK_ERROR_HANDLER Type

Pointer to a CLK System service SYS_CLK_ClockFailureCallbackRegister function.
File

sys_clk.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

44

Volume V: MPLAB Harmony Framework System Service Libraries Help Clock System Service Library

C
typedef void (* SYS_CLK ERROR HANDLER) (CLK_SOURCES_SYSTEM syst enSour ce, uint32_t systenfFrequencyHz);
Returns
None.
Description
CLK System Service Error Handler Function Pointer
This data type defines the type of the CLK System Service Error Handler callback function. The parameters are described here and a partial
example implementation is provided. On a clock failure, the device will switch its clock source to the FRC clock. By registering the callback function
user will get the current System clock source and the clock frequency. User can use this information to try switching back.
Remarks
This function is supported on the following Microchip device families:
* PIC32M
Example
voi d SYS_CLK_ O ockFai | ureCal | backRegi ster(errorHandler);
error Handl er (CLK_SOURCES_SYSTEM syst enSour ce, uint32_t systenfrequencyHz)
{
//Log a war ni ng
/1 Try switching back to the old source
}
Parameters
Parameters Description
systemSource System clock source.
systemFrequencyHz System clock frequency in hertz.

SYS_CLK_REFERENCE_SETUP Structure

Defines the data required to initialize the Oscillator for the Clock System Service.
File

sys_clk.h

C

typedef struct {
bool suspendl nSl eep;
bool stoplnldle;

} SYS_CLK_REFERENCE_SETUP;

Members
Members Description
bool suspendinSleep; Reference clock module should stop its operation in 'Sleep' mode
bool stopinldle; Reference clock module should stop its operation in ‘Idle' mode
Description

Clock System Service Reference Oscillator initialization data
This structure defines the data required to initialize the Oscillator for the Clock System Service.

Remarks

This structure is supported on the following Microchip device families:
* PIC32M

This structure only includes the necessary settings for the clock module. Other features like USB clock and reference clock are considered to be
optional and not every system will use it. There are dedicated APIs for configuring those.

SYS _CLK_STATUS Enumeration
Lists all the possible status of a system clock operation.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 45

Volume V: MPLAB Harmony Framework

File
sys_clk.h

C

typedef enum {
SYS_CLK_OPERATI ON_COVPLETE,
SYS_CLK_OPERATI ON_| N_PROGRESS,

System Service Libraries Help Clock System Service Library

SYS CLK_OPERATI ON_FAI L_SW TCHI NG_DI SABLED,

SYS_CLK_OPERATI ON_FAI L_NOT_ACH! EVABLE,

SYS_CLK_OPERATI ON_FAI L_REG STER _NOT_READY,
SYS_CLK_OPERATI ON_FAI L_USBPLL_NOT_ENABLED,

SYS_CLK_OPERATI ON_FAI L_PLL_LOCK_TI MEQUT,

SYS_CLK_PLL_I NVALI D_I NP_FREQUENCY
} SYS CLK_STATUS;

Members

Members
SYS_CLK_OPERATION_COMPLETE
SYS_CLK_OPERATION_IN_PROGRESS

Description
The last operation was successful
Operation started, may be PLL is not yet locked

SYS_CLK_OPERATION_FAIL_SWITCHING_DISABLED |The last operation was not successful, Clock switching is not enabled through

SYS_CLK_OPERATION_FAIL_NOT_ACHIEVABLE

configuration bits
The last operation was not successful, requested frequency is not achievable

SYS_CLK_OPERATION_FAIL_REGISTER_NOT_READY The last operation was not successful, register is not ready to take the new value
SYS_CLK_OPERATION_FAIL_USBPLL_NOT_ENABLED The last operation was not successful, USB PLL is not enabled in through the

SYS_CLK_OPERATION_FAIL_PLL_LOCK_TIMEOUT
SYS_CLK_PLL_INVALID_INP_FREQUENCY

Description

System clock operation status

‘configuration bits'. The same must be update in system_config.h
PLL Lock time out. A restart is the only option

PLL cannot work with the current input clock frequency, adjust the clock input or the
input divisor. Check the device data sheet to know the PLL input requirement

This enumeration lists all the possible status of a system clock operation.

Remarks

This enumeration is supported on the following Microchip device families:

* PIC32M

SYS_CLK_FRCTune Function

This function is used for direct value based FRC oscillator tuning.

Implementation: Dynamic
File

sys_clk.h
C

voi d SYS_CLK_FRCTune(SYS_CLK_FRC_TUNI NG TYPE t uni ngDat a) ;

Returns

None.

Description

This function tunes the FRC as per the given value. FRC tuning functionality has been provided to help customers compensate for temperature
effects on the FRC frequency over a wide range of temperatures.

Remarks

This function is supported on the following Microchip device families:

* PIC32M

The tuning step size is an approximation, and is neither characterized, nor tested.

This API can only be used with devices that support direct value based FRC tuning. Refer to the specific device data sheet to determine whether

this feature exists for your device.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

46

Volume V: MPLAB Harmony Framework

Preconditions

System Service Libraries Help Clock System Service Library

The device selected must support the oscillator tuning feature.

Example
SYS_CLK_FRCTune(0x30);

Parameters

Parameters
tuningData

Function

Description

One of the possible value of Tuning. Refer to the specific device data sheet for possible
values.

void SYS_CLK_FRCTune (SYS_CLK_FRC_TUNING_TYPE tuningData)

SYS_CLK_FRC_TUNING_TYPE Type

Defines the data type for tuning the Fast RC Oscillator.

File
sys_clk.h
C

typedef unsigned int SYS_CLK_FRC_TUNI NG TYPE;

Description
Clock module FRC tuning type

This structure defines the data type to tune the Fast RC Oscillator.

Remarks

None.

Files

Files

Name
sys_clk.h
sys_clk_config_template.h

Description

Description

Clock system service interface header.
Clock System Service configuration templates.

This section lists the source and header files used by the library.

sys_clk.h
Clock system service interface header.
Enumerations

Name
CLK_BUSES_PERIPHERAL
CLK_BUSES_REFERENCE
CLK_SOURCES_PERIPHERAL
CLK_SOURCES_REFERENCE
CLK_SOURCES_SYSTEM
SYS_CLK_STATUS

Functions

Name

Description

Lists the available peripheral clock buses.

Lists the available reference clock buses.

Lists the available clock sources for the peripheral clock.
Lists the available clock sources for the Reference clock.
Lists the available clock sources for the system clock.
Lists all the possible status of a system clock operation.

Description

¢ SYS_CLK_ClockFailureCallbackRegister | Allows registration of a call back function that will be triggered on a clock failure.

© 2013-2017 Microchip Technology Inc.

Implementation: Dynamic

MPLAB Harmony v2.06 47

Volume V: MPLAB Harmony Framework

Structures

Types

Description

SYS_CLK_FRCTune

SYS_CLK Initialize

SYS_CLK_PeripheralFrequencyGet

SYS_CLK_PeripheralFrequencySet

SYS_CLK_ReferenceClockSetup

SYS_CLK_ReferenceFrequencyGet

SYS_CLK_ReferenceFrequencySet

System Service Libraries Help Clock System Service Library

This function is used for direct value based FRC oscillator tuning.
Implementation: Dynamic

Initializes hardware and internal data structure of the System Clock.
Implementation: Static/Dynamic

Gets the selected clock peripheral bus frequency in Hertz.
Implementation: Static/Dynamic

Configures the peripheral clock of the device to the value specified.
Implementation: Dynamic

Sets up the reference clock of the device to the value specified.
Implementation: Dynamic

Gets the selected Reference clock bus frequency in Hertz.
Implementation: Static/Dynamic

Sets the reference clock of the device to the value specified.
Implementation: Dynamic

SYS_CLK_SecondaryOscillatorDisable | Disables the secondary oscillator.

Implementation: Static/Dynamic

SYS_CLK_SecondaryOscillatorEnable Enables the secondary oscillator.

Implementation: Static/Dynamic

SYS_CLK_SecondaryOscillatorlsEnabled | Identifies whether secondary oscillator is enabled or disabled.

SYS_CLK_SystemFrequencyGet

SYS_CLK_SystemFrequencySet

SYS_CLK_TaskError

Name
SYS_CLK_INIT
SYS_CLK_REFERENCE_SETUP

Name
SYS_CLK_ERROR_HANDLER
SYS_CLK_FRC_TUNING_TYPE

Clock System Service Interface Definition

Implementation: Static/Dynamic
Gets the system clock frequency in Hertz.
Implementation: Static/Dynamic

Configures the System clock of the device to the value specified.
Implementation: Dynamic

Informs the user on a clock failure by invoking the registered call back function.
Implementation: Dynamic

Description
Defines the data required to initialize the Oscillator for the Clock System Service.
Defines the data required to initialize the Oscillator for the Clock System Service.

Description
Pointer to a CLK System service SYS_CLK_ClockFailureCallbackRegister function.
Defines the data type for tuning the Fast RC Oscillator.

This file contains the interface definition for the Clock System Service. It provides a way to interact with the Clock subsystem to manage the timing
requests supported by the system.

File Name
sys_clk.h

Company

Microchip Technology Inc.

sys_clk_config_template.h

Clock System Service configuration templates.

Macros

Name

Description

SYS_CLK_CONFIG_EXTERNAL_CLOCK Gives the clock that is provided on the Reference clock output pin.
SYS_CLK_CONFIG_FREQ_ERROR_LIMIT | Sets the allowed frequency configuration error Hertz.
SYS_CLK_CONFIG_PRIMARY_XTAL Gives the Primary oscillator input frequency. This is from the hardware and not the

© 2013-2017 Microchip Technology Inc.

output required frequency.

MPLAB Harmony v2.06 48

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

SYS_CLK_CONFIG_SECONDARY_XTAL | Gives the Secondary oscillator input frequency. This is from the hardware and not
the output required frequency.

SYS_CLK_CONFIG_SYSPLL_INP_DIVISOR Gives the System PLL input divisor configured through configuration bits. For some
of the devices, the system PLL input divisor is not accessible through software. So
use this macro to inform the System service about the input divisor.

SYS_CLK_CONFIGBIT_USBPLL_DIVISOR Gives the Oscillator USB clock divisor.
SYS_CLK_CONFIGBIT_USBPLL_ENABLE Defines the status of the USB PLL.

SYS_CLK_UPLL_BEFORE_DIV2_FREQ Defines the value of the USB clock for the devices which does not have a software
controllable USB clock.

Description

Clock System Service Configuration Templates
This file contains constants to configure the Clock System Service.

File Name
sys_clk_config_template.h
Company

Microchip Technology Inc.

Command Processor System Service Library

This section describes the Command Processor System Service Library.

Introduction

This library provides an abstraction of the Command Processor System Service Library that is available on the Microchip family of PIC32
microcontrollers with a convenient C language interface. It provides the framework for a command console that can support commands from
multiple client sources.

Description

The Command Processor System Service provides the developer with simple APIs to implement a command console. The console may support
commands from one or more client software modules.

Using the Library
This topic describes the basic architecture of the Command Processor System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_comrand. h
The interface to the Command Processor System Service library is defined in the sys_comrand. h header file.
Please refer to the What is MPLAB Harmony? section for how the Command Processor System Service interacts with the framework.

Abstraction Model
This topic provides a description of the software abstraction for the Command Processor System Service.

Description

The Command Processor System Service Library is a collection of operations specific to supporting user input commands. The commands can be
uniquely native to each client service and can be dynamically added. The library can support multiple client services at once.

The Command Processor System Service is a module that works closely with the Console System Service to present a user interface command
prompt.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 49

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

Application (Application j
Middleware Debug Service File System Service
(System Console Core j

Console Service

UART Console

USB-CDC Console

UART Driver

Device Drivers USB Device Driver

Peripheral Library USB PLIB UART PLIB

Library Overview

Refer to the section System Services Introduction for how the system services operates in a system.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Device Control
module.

Library Interface Section Description

System Interaction Functions Provides system module APIs. Service initialization, deinitialization, reinitialization and
status functions.

Core Functionality Functions State Machine and control functions.

Data Types and Constants Enumerations, structures, and constants.

How the Library Works

System Interaction

Initialization and Reinitialization
Initialization of the Command Processor System Service initializes the status of the module and sets the state of the internal state machine.
The Command Processor Status and Tasks routines are required for the normal operation of the service.

Core Functionality

Adding Commands

The Command Processor System Service will accept commands dynamically during run-time through the follow interface:
SYS_COMVAND_ADDGRP(const _SYS CMD_DCPT* pCndTbl, int nCnds, const char*
groupNane, const char* menuStr)

Command Prompt

In conjunction with the Console System Service, the Command Processor System Service provides the user with an ASCII command prompt. It
will interpret the commands entered at the prompt and process accordingly. It also supports command history, as well as command help.

Configuring the Library

The configuration of the Command Processor System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Device Control system service. Based on the selections made, the Device Control
System Service Library may support the selected features. These configuration settings will apply to all instances of the Device Control System
Service.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 50

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

Building the Library
This section lists the files that are available in the Command Processor System Service Library.

Description

The following three tables list and describe the header (. h) and source (. ¢) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenl comand.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name

sys_command. h

Required File(s)

urut

HAR!

‘MHC

Description

Command Processor System Service Library API header file.

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name

/ src/ sys_conmmand. ¢

Optional File(s)

Description

Command Processor System Service Library implementation.

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name
N/A

Description

No optional files are available for this library.

Module Dependencies

The Command Processor System Service is dependent on the following library:

Console System Service Library

Library Interface

a) System Interaction Functions

Name Description
¢ SYS_CMD_Initialize Initializes data for the instance of the Command Processor module.
¢ SYS_CMD_DELETE Removes CMDIO parameters from the Command Processor System Service console.
@ SYS_CMD_ADDGRP Allows clients to add command process to the Command Processor System Service.
@ SYS_CMD_MESSAGE Outputs a message to the Command Processor System Service console.
¢ SYS_CMD_PRINT Outputs a printout to the Command Processor System Service console.
¢ SYS_CMD_READY_TO_READ Allows upper layer application to confirm that the command module is ready to accept
command input
¢ SYS_CMD_READY_TO_WRITE | Allows upper layer application to confirm that the command module is ready to write output to

SYS_CMD_Tasks
SYS_CMD_RegisterCallback

b) Command I/O Functions

Name
SYS_CMDIO_GET_HANDLE
SYS_CMDIO_ADD

© 2013-2017 Microchip Technology Inc.

the Console System Service.
Maintains the Command Processor System Service's internal state machine.

Registers a callback function with the command service that will be executed when the lower
layer read or write queue is empty.

Description
Gets the CMDIO Handle base via index.
Adds CMDIO parameters to the Command Processor System Service console.

MPLAB Harmony v2.06 51

Volume V: MPLAB Harmony Framework

c) Data Types and Constants

Description

Name

_promptStr
COMMAND_HISTORY_DEPTH
ESC_SEQ_SIZE

LINE_TERM

MAX_CMD_ARGS
MAX_CMD_GROUP
SYS_CMD_MAX_LENGTH
SYS_CMD_READ_BUFFER_SIZE
SYS_CMD_DEVICE_NODE
SYS_CMD_INIT

SYS_CMD_API
SYS_CMD_DATA_RDY_FNC
SYS_CMD_DESCRIPTOR
SYS_CMD_DESCRIPTOR_TABLE
SYS_CMD_DEVICE_LIST
SYS_CMD_FNC
SYS_CMD_GETC_FNC
SYS_CMD_HANDLE
SYS_CMD_INIT_DATA
SYS_CMD_MSG_FNC
SYS_CMD_PRINT_FNC
SYS_CMD_PUTC_FNC
SYS_CMD_READC_FNC
SYS_CMD_STATE
SYS_CMD_CONSOLE_IO_PARAM
SYS_CMD_BUFFER_DMA_READY

SYS_CONSOLE_MESSAGE
SYS_CONSOLE_PRINT

SYS_CMD_DEVICE_MAX_INSTANCES

SYS_CMD_MESSAGE

SYS _CMD_PRINT
SYS_CMD_CallbackFunction
SYS_CMD_EVENT

System Service Libraries Help Command Processor System Service Library

Description

prompt string

Command Processor System Service Maximum Depth of Command History.
standard VT100 escape sequences

line terminator

Command Processor System Service Maximum Number of Argument definitions.
Command Processor System Service Maximum Number of Command Group definitions.
Command Processor System Service Command Buffer Maximum Length definition.
Command Processor System Service Read Buffer Size definition.

Defines the data structure to store each command instance.

Identifies the system command initialize structure.

Identifies the Command API structure.

Identifies a data available function API.

a simple command descriptor

table containing the supported commands

Defines the list structure to store a list of command instances.

Identifies the command process function API.

Identifies a get single character function API.

Identifies a particular Command 1/O instance.

Defines the data structure to store each command.

Identifies a message function API.

Identifies a print function API.

Identifies a single character print function API.

Identifies a read single character function API.

Defines the various states that can be achieved by a Command instance.
Defines whether the command module is single character or full command read

Define this for MX #define SYS_CMD_BUFFER_DMA_READY __attribute__ ((coherent))
__attribute__ ((aligned(4))) //Define this for MZ

ifdef SYS_CONSOLE_REMOVE_APIS

This is macro SYS_CONSOLE_PRINT.

This is macro SYS_CMD_DEVICE_MAX_INSTANCES.
This is macro SYS_CMD_MESSAGE.

This is macro SYS_CMD_PRINT.

Command Callback Function Handle.

Identifies the Command Event Types

This section describes the APIs of the Command Processor System Service Library.

Refer to each section for a detailed description.

a) System Interaction Functions

SYS_CMD_Initialize Function

Initializes data for the instance of the Command Processor module.

File

sys_command.h

C

bool

Returns

SYS CMD Initialize(const SYS MODULE_ INIT * const

¢ true - Indicates success

© 2013-2017 Microchip Technology Inc.

init);

MPLAB Harmony v2.06 52

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

« false - Indicates an error occurred

Description

This function initializes the Command Processor module. It also initializes any internal data structures.

Remarks

This routine should only be called once during system initialization.

Preconditions

None.
Parameters
Parameters Description
init Pointer to a data structure containing any data necessary to initialize the sys command. This
pointer may be null if no data is required because static overrides have been provided.
Function

bool SYS_CMD_Initialize(const SYS_MODULE_INIT * const init)

SYS_CMD_DELETE Function
Removes CMDIO parameters from the Command Processor System Service console.
File
sys_command.h
C
bool SYS_CVD_DELETE(SYS_CMD_DEVI CE_NODE* pDevNode) ;
Returns

None.

Description

This function removes CMDIO parameters from the Command Processor System Service console.
Remarks

None.
Preconditions

SYS_CMD_Initialize was successfully run once.

Function
bool SYS_CMD_DELETE(SYS_CMD_DEVICE_NODE* pDevNode);

SYS CMD_ADDGRP Function

Allows clients to add command process to the Command Processor System Service.
File

sys_command.h

C

bool SYS CVD ADDGRP(const SYS _CWVMD DESCRI PTOR* pCndThl, int nCnds, const char* groupNane, const char*
menusStr);

Returns

¢ true - Indicates success
« false - Indicates an error occurred

Description

Client modules may call this function to add command process to the Command Processor System Service.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 53

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

Remarks

None.
Preconditions

SYS_CMD_Initialize was successfully run once.
Example

static const SYS_CMD_DESCRIPTOR cmdTbl[]= { {"command_as_typed_at_the_prompt", _Function_Name_That_Supports_The_Command, "
Helpful description of the command for the user'}, };

bool APP_AddCommandFunction() { if {SYS_CMD_ADDGRP(cmdThbl, sizeof(cmdTbl)/sizeof(*cmdTbl), "Command Group Name", ": Command
Group Description")) { return false; } return true; }

Function

bool SYS_CMD_ADDGRP(const SYS_CMD_DESCRIPTOR* pCmdThl, int nCmds,
const char* groupName,
const char* menuStr)

SYS _CMD_MESSAGE Function

Outputs a message to the Command Processor System Service console.
File

sys_command.h

C
voi d SYS_CMD_MESSAGE(const char* nessage);

Returns
None.
Description
This function outputs a message to the Command Processor System Service console.
Remarks
None.
Preconditions
SYS_CMD_Initialize was successfully run once.
Function
void SYS_CMD_MESSAGE (const char* message)

SYS _CMD_PRINT Function

Outputs a printout to the Command Processor System Service console.
File

sys_command.h

C
void SYS CMD PRI NT(const char * format, ...);

Returns
None.
Description
This function outputs a printout to the Command Processor System Service console.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 54

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

Preconditions

SYS_CMD_Initialize was successfully run once.

Function
void SYS_CMD_PRINT(const char *format, ...)

SYS_CMD_READY_TO_READ Function

Allows upper layer application to confirm that the command module is ready to accept command input

File
sys_command.h
C
bool SYS_CMD_READY_TO REAI);
Returns
» true - Indicates command module is ready
e false - Indicates command module is not ready
Description
This function allows upper layer application to confirm that the command module is ready to accept command input
Remarks

None.

Preconditions

SYS_CMD_Initialize was successfully run once.

Function
bool SYS_CMD_READY_TO_READ(void)

SYS_CMD_READY_TO_WRITE Function
Allows upper layer application to confirm that the command module is ready to write output to the Console System Service.
File

sys_command.h

C
bool SYS_CVD_READY_TO WRI TE();
Returns
e true - Indicates command module is ready
« false - Indicates command module is not ready
Description
This function allows upper layer application to confirm that the command module is ready to write output to the Console System Service.
Remarks

None.

Preconditions

SYS_CMD_Initialize was successfully run once.

Function
bool SYS_CMD_READY_TO_WRITE(void)

SYS_CMD_Tasks Function

Maintains the Command Processor System Service's internal state machine.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 55

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

File
sys_command.h
C
bool SYS_CMD Tasks();
Returns
» true - Indicates success
» false - Indicates an error occurred
Description
This function is used to maintain the Command Processor System Service internal state machine.
Remarks

None.
Preconditions
SYS_CMD_Initialize was successfully run once.

Function
bool SYS_CMD_Tasks(void)

SYS_CMD_RegisterCallback Function

Registers a callback function with the command service that will be executed when the lower layer read or write queue is empty.
File

sys_command.h

C
voi d SYS_CMD_Regi st erCal | back(SYS_CVD_Cal | backFuncti on cbFunc, SYS_CMD _EVENT event);
Returns

None.

Description

This function is used by an application to register a callback function with the command service. The callback function is called in response to an
event. Separate callback functions are required for each event.

Remarks

None.

Preconditions

None.
Parameters

Parameters Description

cbFunc The name of the callback function

event Enumerated list of events that can trigger a callback
Function

void SYS_CMD_RegisterCallback(SYS_CMD_CallbackFunction cbFunc, SYS_CMD_EVENT event)

b) Command I/O Functions

SYS_CMDIO_GET_HANDLE Function

Gets the CMDIO Handle base via index.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 56

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

File

sys_command.h
C

SYS_CMD_DEVI CE_NODE* SYS_CMVDI O_GET_HANDLE(short num ;
Returns

« SYS_CMD_DEVICE_NODE Handle for the CMDIO - Indicates success
e NULL - Indicates not successful

Description

This function returns the handle for the CMDIO when supplied with an index.
Remarks

None.
Preconditions

SYS_CMD_Initialize was successfully run once.

Function
SYS_CMD_DEVICE_NODE* SYS_CMDIO_GET_HANDLE(short num)

SYS_CMDIO_ADD Function

Adds CMDIO parameters to the Command Processor System Service console.
File

sys_command.h

C

SYS_CMD_DEVI CE_NODE* SYS_CMDI O ADD(const SYS _CMD_API * opApi, const void* cndl oParam const
SYS_CVD_CONSOLE_| O PARAM crdl oType) ;

Returns
None.
Description
This function adds CMDIO Parameters to the Command Processor System Service console.
Remarks
None.
Preconditions
SYS_CMD_Initialize was successfully run once.

Function

SYS_CMD_DEVICE_NODE* SYS_CMDIO_ADD(const SYS_CMD_API* opApi, const void* cmdloParam,
const SYS_CMD_CONSOLE_|IO_PARAM cmdloType)

¢) Data Types and Constants

_promptStr Macro

File
sys_command.h

C
#define _promptStr ">" /] pronpt string

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

57

Volume V: MPLAB Harmony Framework System Service Libraries Help

Description

prompt string

COMMAND_HISTORY_DEPTH Macro

Command Processor System Service Maximum Depth of Command History.
File

sys_command.h

C
#def i ne COMVAND_HI STORY_DEPTH 3

Description

SYS CMD Processor Command History Depth
This macro defines the maximum depth of the command history.

Remarks

None.

ESC _SEQ_SIZE Macro
File

sys_command.h

C

#defi ne ESC_SEQ SI ZE 2 /| standard VT100 escape sequences

Description

standard VT100 escape sequences

LINE_TERM Macro
File
sys_command.h

C
#define LINE_TERM "\r\n" /1 1line term nator

Description

line terminator

MAX_CMD_ARGS Macro

Command Processor System Service Maximum Number of Argument definitions.
File

sys_command.h

C
#def i ne MAX_CMD_ARGS 15

Description

SYS CMD Processor Maximum Number of Command Arguments
This macro defines the maximum number of arguments per command.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Command Processor System Service Library

58

Volume V: MPLAB Harmony Framework System Service Libraries Help

MAX_CMD_GROUP Macro

Command Processor System Service Maximum Number of Command Group definitions.

File
sys_command.h

C
#define MAX_CVD_GROUP 8

Description

SYS CMD Processor Maximum Number of Command Group
This macro defines the maximum number of command groups.

Remarks

None.

SYS_CMD_MAX_LENGTH Macro

Command Processor System Service Command Buffer Maximum Length definition.
File

sys_command.h

C
#define SYS_CVD_MAX_LENGTH 128

Description

SYS CMD Processor Buffer Maximum Length
This macro defines the maximum length of the command buffer.

Remarks

None.

SYS_CMD_READ_BUFFER_SIZE Macro

Command Processor System Service Read Buffer Size definition.
File

sys_command.h

C
#def i ne SYS_CMD_READ BUFFER_SI ZE 128

Description

SYS CMD Processor Read Buffer Size
This macro defines the maximum size of the command buffer.

Remarks

None.

SYS_CMD_DEVICE_NODE Structure

Defines the data structure to store each command instance.
File

sys_command.h

C
struct SYS_CMD_DEVI CE_NODE {

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Command Processor System Service Library

59

Volume V: MPLAB Harmony Framework System Service Libraries Help

char* cmdPnt;

char* cndEnd;

char cnmdBuff SYS CMD BUFFER_DMA READY[SYS _CMD MAX LENGTH+1] ;
const SYS CMD APl * pCndApi ;

const voi d* cndl oParam

SYS CMVMD_CONSOLE | O PARAM cndl oType;

struct SYS_CMD_DEVI CE_NODE* next;

SYS_CMD_STATE cndSt at e;

b

Members
Members Description
const SYS_CMD_API* pCmdApi; Cmd 10 APIs

const void* cmdloParam; channel specific parameter

Description
SYS CMD Command Instance Node Structure

Command Processor System Service Library

This data structure stores all the data relevant to a uniquely entered command instance. It is a node for a linked list structure to support the

Command Processor System Service's command history feature

Remarks

None.

SYS_CMD_INIT Structure
Identifies the system command initialize structure.
File
sys_command.h

C

typedef struct {

SYS MODULE I NI T nodul el nit;

uint8_t consol eCrdl OPar am

SYS _CVD_CONSOLE | O PARAM cndl oType;
} SYS CVMDINT,;

Members

Members Description

SYS_MODULE_INIT modulelnit; System module initialization

Description

SYS CMD INIT structure

This structure identifies the system command initialize structure.
Remarks

None.

SYS _CMD_API Structure
Identifies the Command API structure.
File
sys_command.h

C

typedef struct {
SYS_CVD_MSG _FNC nsg;
SYS CMD PRI NT_FNC print;
SYS_CMD_PUTC_FNC put c;
SYS_CVD_DATA _RDY_FNC i sRdy;
SYS_CMD_CGETC_FNC getc;
SYS_CMD_READC _FNC r eadc;

} SYS _CVD_API ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

60

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

Members

Members

SYS_CMD_MSG_FNC msg;
SYS_CMD_PRINT_FNC print;
SYS_CMD_PUTC_FNC putc;
SYS_CMD_DATA_RDY_FNC isRdy;
SYS_CMD_GETC_FNC getc;
SYS_CMD_READC_FNC readc;

Description

Message function API

Print function API

Put single char function API
Data available API

Get single data API

Read single data API

Description

SYS CMD API structure
This structure identifies the Command API structure.

Remarks

None.

SYS_CMD_DATA_RDY_FNC Type
Identifies a data available function API.
File

sys_command.h

C
typedef bool (* SYS_CVD DATA RDY_FNC) (const voi d* cndl oParan;

Description
Ready Status Check function API. This handle identifies the interface structure of the data available function API within the Command 10
encapsulation.

Remarks

None.

SYS_CMD_DESCRIPTOR Structure
File
sys_command.h

C

typedef struct {
const char* cndStr;
SYS_CMD_FNC cndFnc;
const char* cndDescr;
} SYS_CVD_DESCRI PTOR,

Members

Members
const char* cmdStr;
SYS_CMD_FNC cmdFnc;

Description
string identifying the command
function to execute for this command

const char* cmdDescr; simple command description

Description

a simple command descriptor

SYS_CMD_DESCRIPTOR_TABLE Structure
File

sys_command.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

61

Volume V: MPLAB Harmony Framework

C

typedef struct {
i nt nCrds;
const SYS CMD DESCRI PTOR* pCnd;
const char* cnmdG oupNane;
const char* cmdMenuStr;
} SYS_CMD_DESCRI PTOR_TABLE;

Members

Members

int nCmds;

const SYS_CMD_DESCRIPTOR* pCmd;
const char* cmdGroupName;

const char* cmdMenusStr;

Description

table containing the supported commands

SYS_CMD_DEVICE_LIST Structure

C

System Service Libraries Help

Description

number of commands available in the table
pointer to an array of command descriptors
name identifying the commands

help string

Defines the list structure to store a list of command instances.

File

sys_command.h

typedef struct {
int num
SYS_CMD_DEVI CE_NODE* head;
SYS_CMD_DEVI CE_NCDE* tail ;
} SYS_CVD DEVI CE_LI ST;

Description

SYS CMD Command List Structure

Command Processor System Service Library

This data structure defines he linked list structure to support the Command Processor System Service's command history feature

Remarks

None.

SYS_CMD_FNC Type

Identifies the command process function API.

File

C

sys_command.h

typedef int (* SYS_CMVMD FNC) (SYS _CVD DEVI CE_NODE* pCrndl O, int argc, char **argv);

Description

SYS CMD Command Function

Command Process Function API. This handle identifies the interface structure of the command process function API.

Remarks

None.

SYS_CMD_GETC_FNC Type

Identifies a get single character function API.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

62

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

File

sys_command.h
C

typedef char (* SYS_CVD _GETC FNC) (const voi d* cndl oParan;
Description

Get Single Character function API. This handle identifies the interface structure of the get single character function API within the Command I/O
encapsulation.

Remarks

None.

SYS_CMD_HANDLE Type

Identifies a particular Command I/O instance.
File

sys_command.h
C

typedef const voi d* SYS_CVD_HANDLE;
Description

Command I/0 Handle. This event handle identifies a registered instance of a Command IO object. Every time the application that tries to access
the parameters with respect to a particular event, this event handle is used to refer to that event.

Remarks

None.

SYS_CMD_INIT_DATA Structure

Defines the data structure to store each command.
File

sys_command.h

C

typedef struct {
size_t bytesRead;
int seqByt esRead;
char seqBuf f[ESC_SEQ S| ZE + 1];
SYS_MODULE_| NDEX nodul el ndi ces[SYS_CVD_DEVI CE_MAX_| NSTANCES] ;
i nt nodul el nFd;
i nt nodul eCut Fd;
} SYS CVD | NI T_DATA;

Description

SYS CMD Command App Init Structure

This data structure stores all the data relevant to a uniquely entered command. It is a node for a linked list structure to support the command
history functionality

Remarks

None.

SYS _CMD_MSG_FNC Type
Identifies a message function API.
File

sys_command.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 63

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

C

typedef void (* SYS_CVD _MSG FNC) (const voi d* cndl oParam const char* str);
Description

Message function API. This handle identifies the interface structure of the message function API within the Command I/O encapsulation.
Remarks

None.

SYS_CMD_PRINT_FNC Type
Identifies a print function API.
File

sys_command.h

C

typedef void (* SYS_CVD PRI NT_FNC) (const voi d* cmdl oParam const char* format, ...);
Description

Print function API. This handle identifies the interface structure of the print function API within the Command I/O encapsulation.
Remarks

None.

SYS_CMD_PUTC_FNC Type

Identifies a single character print function API.
File

sys_command.h

C
typedef void (* SYS_CMD _PUTC _FNC) (const voi d* cndl oParam char c);
Description

Single Character Print function API. This handle identifies the interface structure of single character print function API within the Command 1/0
encapsulation.

Remarks

None.

SYS_CMD_READC_FNC Type
Identifies a read single character function API.
File
sys_command.h

C
typedef size_t (* SYS_CMD_READC FNC) (const voi d* cndl oParan;
Description

Read Single Character function API
This handle identifies the interface structure of read single character function API within the Command I/O encapsulation.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 64

Volume V: MPLAB Harmony Framework System Service Libraries Help Command Processor System Service Library

SYS CMD_STATE Enumeration

Defines the various states that can be achieved by a Command instance.
File

sys_command.h

C

typedef enum {
SYS_CMD_STATE_DI SABLE,
SYS_CMD_STATE_SETUP_READ,
SYS_CMD_STATE_WAI T_FOR_READ DONE,
SYS_CMD_STATE_PROCESS_FULL_READ

} SYS_CMD_STATE;

Description

SYS CMD State Machine States
This enumeration defines the various states that can be achieved by the command operation.

Remarks

None.

SYS_CMD_CONSOLE_IO_PARAM Enumeration

Defines whether the command module is single character or full command read
File

sys_command.h

C

typedef enum {
SYS_CMD_SI NGLE_CHARACTER_READ_CONSOLE_| O_PARAM = 0,
SYS _CMVMD_FULL_COWAND READ CONSOLE | O PARAM = 1,
SYS_CMD_TELNET_COMVAND READ CONSOLE_| O PARAM = 2

} SYS_CVD _CONSOLE_| O _PARAM

Description

SYS CMD Console I/O Parameter
This enumeration defines whether the command module is single character or full command read.

Remarks

None.

SYS_CMD_BUFFER_DMA_READY Macro
File
sys_command.h

C
#define SYS CMD BUFFER DMA READY

Description
Define this for MX #define SYS_CMD_BUFFER_DMA_READY __attribute__((coherent)) __attribute__((aligned(4))) //Define this for MZ

SYS CONSOLE_MESSAGE Macro
File

sys_console.h

C
#defi ne SYS_CONSOLE_MESSACE(message)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 65

Volume V: MPLAB Harmony Framework System Service Libraries Help

Description
ifdef SYS_CONSOLE_REMOVE_APIS

SYS CONSOLE_PRINT Macro
File

sys_console.h

C
#def i ne SYS_CONSOLE_PRINT(fnt, ...)

Description
This is macro SYS_CONSOLE_PRINT.

SYS_CMD_DEVICE_MAX_INSTANCES Macro

File
sys_command.h

C
#define SYS_CMD_DEVI CE_MAX_| NSTANCES 1

Description
This is macro SYS_CMD_DEVICE_MAX_INSTANCES.

SYS CMD_MESSAGE Macro
File

sys_command.h

C
#defi ne SYS_CVD_MESSAGE(nmessage)

Description
This is macro SYS_CMD_MESSAGE.

SYS_CMD_PRINT Macro

File
sys_command.h

C
#define SYS_CVMD PRINT(fmt, ...)

Description
This is macro SYS_CMD_PRINT.

SYS_CMD_CallbackFunction Type
Command Callback Function Handle.

File
sys_command.h

C
typedef void (* SYS_CMD _Cal | backFunction) (void *handl e);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Command Processor System Service Library

66

Volume V: MPLAB Harmony Framework

Description
Command Callback Function Handle.

Remarks

None.

SYS _CMD_EVENT Enumeration
Identifies the Command Event Types
File
sys_command.h

C

typedef enum {
SYS_CVD_EVENT_W\RI TE_COVPLETE,
SYS_CMD_EVENT_READ_COMPLETE

} SYS_CMD_EVENT;

Description
SYS CMD EVENT structure

This structure identifies the Command Event Types.

Remarks

None.

Files

Files

Name
sys_command.h

Description

System Service Libraries Help Command Processor System Service Library

Description
Command Processor System Service interface definition.

This section lists the source and header files used by the library.

sys_command.h

Command Processor System Service interface definition.

Enumerations

Name
SYS_CMD_CONSOLE_IO_PARAM
SYS CMD_EVENT
SYS_CMD_STATE

Functions
Name
@ SYS_CMD_ADDGRP
@ SYS_CMD_DELETE
¢ SYS_CMD_Initialize
v SYS_CMD_MESSAGE
@ SYS_CMD_PRINT
] SYS_CMD_READY_TO_READ
& SYS_CMD_READY_TO_WRITE
¢ SYS_CMD_RegisterCallback
@ SYS_CMD_Tasks

© 2013-2017 Microchip Technology Inc.

Description

Defines whether the command module is single character or full command read
Identifies the Command Event Types

Defines the various states that can be achieved by a Command instance.

Description

Allows clients to add command process to the Command Processor System Service.
Removes CMDIO parameters from the Command Processor System Service console.
Initializes data for the instance of the Command Processor module.

Outputs a message to the Command Processor System Service console.

Outputs a printout to the Command Processor System Service console.

Allows upper layer application to confirm that the command module is ready to accept
command input

Allows upper layer application to confirm that the command module is ready to write output to
the Console System Service.

Registers a callback function with the command service that will be executed when the lower
layer read or write queue is empty.

Maintains the Command Processor System Service's internal state machine.

MPLAB Harmony v2.06 67

Volume V: MPLAB Harmony Framework

SYS_CMDIO_ADD
SYS_CMDIO_GET_HANDLE

Macros

Name

__promptStr
COMMAND_HISTORY_DEPTH
ESC_SEQ_SIZE

LINE_TERM

MAX_CMD_ARGS
MAX_CMD_GROUP
SYS_CMD_BUFFER_DMA_READY

System Service Libraries Help Console System Service Library

Adds CMDIO parameters to the Command Processor System Service console.
Gets the CMDIO Handle base via index.

Description

prompt string

Command Processor System Service Maximum Depth of Command History.

standard VT100 escape sequences

line terminator

Command Processor System Service Maximum Number of Argument definitions.
Command Processor System Service Maximum Number of Command Group definitions.

Define this for MX #define SYS_CMD_BUFFER_DMA_READY __ attribute__((coherent))
__attribute__ ((aligned(4))) //Define this for MZ

SYS_CMD_DEVICE_MAX_INSTANCES This is macro SYS_CMD_DEVICE_MAX_INSTANCES.

SYS_CMD_MAX_LENGTH
SYS_CMD_MESSAGE
SYS_CMD_PRINT
SYS_CMD_READ_BUFFER_SIZE
SYS_DEBUG

SYS_ERROR
SYS_ERROR_PRINT

Structures

Name

k4 SYS_CMD_DEVICE_NODE
SYS_CMD_API
SYS_CMD_DESCRIPTOR
SYS_CMD_DESCRIPTOR_TABLE
SYS_CMD_DEVICE_LIST
SYS_CMD_INIT
SYS_CMD_INIT_DATA

Types

Name
SYS_CMD_CallbackFunction
SYS_CMD_DATA_RDY_FNC
SYS_CMD_FNC
SYS_CMD_GETC_FNC
SYS_CMD_HANDLE
SYS_CMD_MSG_FNC
SYS_CMD_PRINT_FNC
SYS_CMD_PUTC_FNC
SYS_CMD_READC_FNC

Description

Command Processor System Service Command Buffer Maximum Length definition.
This is macro SYS_CMD_MESSAGE.

This is macro SYS_CMD_PRINT.

Command Processor System Service Read Buffer Size definition.

This is macro SYS_DEBUG.

This is macro SYS_ERROR.

This is macro SYS_ERROR_PRINT.

Description

Defines the data structure to store each command instance.
Identifies the Command API structure.

a simple command descriptor

table containing the supported commands

Defines the list structure to store a list of command instances.
Identifies the system command initialize structure.

Defines the data structure to store each command.

Description

Command Callback Function Handle.
Identifies a data available function API.
Identifies the command process function API.
Identifies a get single character function API.
Identifies a particular Command I/O instance.
Identifies a message function API.

Identifies a print function API.

Identifies a single character print function API.
Identifies a read single character function API.

Command Processor System Service Interface Definition

This file contains the interface definition for the Command Processor System Service. It provides a way to interact with the Command Processor
subsystem to manage the ASCIl command requests from the user supported by the system.

File Name

sys_command.h

Company

Microchip Technology Inc.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 68

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

Console System Service Library

This section describes the Console System Service Library.

Introduction

The Console System Service routes data or message traffic between a console device and a middleware layer or application. The most common
use of the Console Service is to route debug or error messages from a PIC32-based device to a terminal program on a host development system.
When fully implemented, the Console Service will be capable of routing data from any supported console device to a variety of middleware layers.

Description

The Console System Service consists of a core layer and a console device layer. The core layer handles module initialization and system
functions. It provides a common API for use by applications and middleware libraries to send and receive data to and from one or more console
devices. The Console System core layer maintains the status and device descriptor information for each console instance that has been
initialized. The maximum number of simultaneous console instances supported by the service is defined by a configuration option. The default is
four.

The console device layer contains the functional implementation of the core layer APIs. Each console device may have a different
implementation, but the behavior of the API should be uniform across different devices. The console device layer interacts with the peripheral
device drivers to send and receive data to and from the hardware peripheral. The details of the data transaction are abstracted by the console
device layer and the peripheral device driver.

Both blocking and non-blocking implementations are provided. For a blocking implementation, the API to transfer data to or from the console
device will return after the data has been successfully transferred, or an error has occurred. Non-blocking implementations return immediately and
the data transfer is controlled by a state machine implemented in the console device layer. The calling program is notified of the data transfer
completion by a callback mechanism, or can optionally poll the status of the console device layer to see if it is busy or ready for more data.

The console device layer provides the ability to queue data buffers written to the console. The size of the queue is defined by a configuration
option. Read data is queued internally in the console device layer depending on the console device. The size of this queue is also defined by a
configuration option. Each console device has configuration options specific to that device. They are explained in their respective sections in this
document.

Using the Library
This topic describes the basic architecture of the Console System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_consol e. h

The interface to the Console System Service library is defined in the sys_consol e. h header file. This file is included by the sys. h file. Any C
language source (. c) file that uses the Console System Service library should include sys. h.

Please refer to the What is MPLAB Harmony? section for how the System Service interacts with the framework.

Abstraction Model
This library provides a set of functions that send and receive data to and from a console I/O device.

Description

Console Service Software Abstraction Block Diagram

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 69

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

Application (Application)
Middleware Debug Service File System Service
(System Console Core J

Console Service

USB-CDC Console

UART Console

UART Driver

MPLAB X IDE

Device Drivers USB Device Driver
Peripheral Library USB PLIB

The Console System Service is a middleware library that is part of a layered software architecture. The purpose of this software layering is to allow
each module to provide a consistent interface to its client, thus making it easy for the developer to add and remove modules as needed. The
console core layer provides a POSIX-like read/write API to applications and middleware libraries to send and receive data to and from the console
device. Data and message buffering, along with the details of the data transfer are contained within the console device and device driver layers.

UART PLIB

Additional APIs are provided to handle system functions, register a callback function for non-blocking implementations, and flush (reset) the
internal queues in the event of an error condition.

Library Overview

Refer to the section System Services Introduction for how the system services operates in a system.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the System Console
module.

Library Interface Section Description
System Functions Provides system module interfaces, device initialization, tasks and status functions.
Core Functions Reads or writes data to or from the console 1/O device.

How the Library Works
The Console System Service is used to transfer data between an application or middleware layer and a console device.

Not all modes are available on all devices. Please refer to the specific device data sheet to determine the supported modes.
Note:

System Functions
This topic describes Console System Service Library system functions.

Description

The Console System Service must be initialized before use. Initialization opens a specific console module instance and initializes the internal data
structures for that instance. The initialization routine is provided a pointer to a SYS_CONSOLE_INIT data structure, which contains a pointer to a
device descriptor for a particular console device.
USB CDC Example
SYS CONSOLE INIT conslnit =
{
.nmodul el nit = {0},
.consDevDesc = &consUsbCdcDevDesc,
b
UART Example
SYS CONSOLE_INIT conslnit =
{

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 70

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

.nmodulelnit = {0},

.consDevDesc = &consUsart DevDesc,
h
The console device descriptor contains information specific to the device associated with that console instance, including pointers to
device-specific implementations of the Console System service API. The device descriptor for each console device is declared in the console
device implementation. A pointer to the descriptor must be provided to the initialization routine.

Status

The SYS_CONSOLE_Status function returns the status of the console device module. The internal status of the console device module is updated
as the module cycles through its internal state machine. For example, the console device module may need to wait for its corresponding device
driver to initialize before moving to an initialized state. Module status is converted from an internal data type to the generic Harmony
SYS_STATUS data type.

Tasks

The SYS_CONSOLE_Tasks function advances the state machine of the console device module. A pointer to the console device module's Tasks()
routine is provided as part of the console device descriptor during initialization.

Core Functions
This topic describes core Console System Service functions.

Description

Read

The SYS_CONSOLE_Read function reads data from a console device into a read buffer. In a blocking implementation, the API will return the
number of successfully read bytes when the read operation completes. In a non-blocking implementation, the API will return immediately with
number of successfully queued bytes. Completion of the read triggers a callback mechanism in which a user-defined function is executed. A
pointer to the read buffer for that transaction is provided as an argument to the callback function to allow console users to distinguish between read
events.

For single read events, the user may also poll the status of the console device module.

Write

The SYS_CONSOLE_Write function writes data from a write buffer or string to a console device. In a blocking implementation, the API will return
the number of successfully written bytes when the write operation completes. In a non-blocking implementation, the API will return immediately
with the number of successfully queued bytes. Completion of the write triggers a callback mechanism in which a user-defined function is executed.
A pointer to the write buffer for that transaction is provided as an argument to the callback function to allow console users to distinguish between
write events.

For single write events, the user may also poll the status of the console device module.

Register Callback

Users wishing to take advantage of the callback mechanism must register a callback function with the console service. A separate function must
be registered for each event capable of triggering a callback. If no function is registered, the operation will complete normally without triggering any
callback function.

Flush

Error conditions may be triggered by a queue overflow or data transfer errors. An error condition may present itself as an unexpected return value
from a read or write call, or an error status returned by the SYS_CONSOLE_Status function. The SYS_CONSOLE_Flush function is provided to
allow the user to terminate any pending transfers and reset the read/write queues internal to the console device.

Console Device Modules

Each supported console device has its own implementation of the Console System service APIs. Function pointers to the console device
implementations are provided in the console device descriptor registered to each console instance. This allows the user to utilize the same API for
all console devices, making application code more portable across different devices.

Description

Each supported console device has its own implementation of the Console System service APIs. Function pointers to the console device
implementations are provided in the console device descriptor registered to each console instance. This allows the user to utilize the same API for
all console devices, making application code more portable across different devices.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 71

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

Application I/O (ApplO)
The ApplO provides a convenient user I/O interface to applications running on a PIC32 using MPLAB X IDE.

Description

Read

The read function accepts user input through the Input Format Field in the PIC ApplO window of MPLAX X IDE. It is the responsibility of the
application programmer to properly allocate the read buffer.

Write

The write function sends output to the Output Format Window in MPLAB X IDE, a line at a time. It is the responsibility of the application
programmer to properly allocate the write buffer.

USB-CDC Console Device
The USB-CDC Console Device provides a convenient user 1/O interface to applications running on a PIC32 with USB support.

Description

In this implementation, the PIC32 acts as a USB device, communicating with a host PC running a terminal emulation program such as Tera Term.
This provides a convenient interface for error or debug messages, or a means of communicating with a user interactively. The application does not
use the USB-CDC APIs directly, instead all interaction is through the Console System service APIs.

The USB-CDC Console Device supports only non-blocking operation.
Read

While the user may request multiple bytes of data per read, a typical terminal emulator program sends only one byte per USB transaction. When
multiple bytes are requested, the USB-CDC Console Device layer will queue individual byte reads until all bytes are read. The size of the read
gueue is a configuration option. The bytes are sent to the user-supplied read buffer as they are read, and the read callback is triggered when all
bytes have been read. Only one read operation can be active at a time.

If the user requests more data bytes than the read queue will hold, the read function will queue and return the size of the read queue. In this
scenario, the user can either do multiple reads until all the data is read, or configure the service to use a larger read queue.

The read function accepts a pointer to a read buffer as one of the arguments. It is the responsibility of the application programmer to properly
allocate the read buffer.

Write

The USB-CDC console device is capable of writing multiple data bytes per USB transaction, and queuing multiple write transactions. The size of
the write queue is a configuration option. If the user tries to queue more write transactions than the write queue can accommodate, the write
function will return -1 and set the module status to SYS_STATUS_ERROR.

The write function accepts a pointer to a write buffer as one of the arguments. It is the responsibility of the application programmer to properly
allocate the write buffer.

State Machine

The USB-CDC Console Device layer implements a state machine that is advanced by each call to the tasks routine. The Console System tasks
routine is called periodically by the SYS_Tasks routine, which is called in a loop by main(). The state machine manages initialization of the
Console Device, schedules reads and writes, and dispatches callback functions.

Register Callback

The callback registration mechanism associates a user function with a read or write completion event. The callback function includes an argument
containing a pointer to the read or write buffer associated with the transfer that initiated the callback. Separate callback functions must be
registered for read and write events. If there is no callback function registered, the event will complete as normal, with no callback executed.

Flush

The flush routine in the USB-CDC implementation clears any error conditions, terminates any read or write transactions, and resets the read and
write queues. A flush operation is typically triggered in response to an error condition.

UART Console Device
The UART Console Device provides a convenient user I/O interface to applications running on a PIC32 with UART support.

Description

Read

While the user may request multiple bytes of data per read, a typical terminal emulator program sends only one byte per transaction. When
multiple bytes are requested, the UART Console Device layer will queue individual byte reads until all bytes are read. The size of the read queue is
a configuration option. The bytes are sent to the user-supplied read buffer as they are read, and the read callback is triggered when all bytes have
been read. Only one read operation can be active at a time.

If the user requests more data bytes than the read queue will hold, the read function will queue and return the size of the read queue. In this
scenario, the user can either do multiple reads until all the data is read, or configure the service to use a larger read queue.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 72

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

The read function accepts a pointer to a read buffer as one of the arguments. It is the responsibility of the application programmer to properly
allocate the read buffer.

Write

The UART console device is capable of writing multiple data bytes per transaction, and queuing multiple write transactions. The size of the write
gueue is a configuration option. If the user tries to queue more write transactions than the write queue can accommodate, the write function will
return -1 and set the module status to SYS_STATUS_ERROR.

The write function accepts a pointer to a write buffer as one of the arguments. It is the responsibility of the application programmer to properly
allocate the write buffer.

State Machine

The UART Console Device layer implements a state machine that is advanced by each call to the tasks routine. The Console System tasks routine
is called periodically by the SYS_Tasks routine, which is called in a loop by main(). The state machine manages initialization of the Console
Device, schedules reads and writes, and dispatches callback functions.

Register Callback

The callback registration mechanism associates a user function with a read or write completion event. The callback function includes an argument
containing a pointer to the read or write buffer associated with the transfer that initiated the callback. Separate callback functions must be
registered for read and write events. If there is no callback function registered, the event will complete as normal, with no callback executed.

Flush

The flush routine in the UART implementation clears any error conditions, terminates any read or write transactions, and resets the read and write
queues. A flush operation is typically triggered in response to an error condition.

Configuring the Library

The configuration of the Console System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Console System Service. Based on the selections made, the Console System Service
may support the selected features. These configuration settings will apply to all instances of the Console System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

The Console System Service supports these configuration options:
/* Maxi num nunber of simultaneous consol e i nstances */
#defi ne CONSOLE_DEVI CE_MAX_| NSTANCES 1

Additional configuration options may be required for the selected Console Device.

Command ApplO Console Device Configuration Options
This topic provided configuration option examples for the Command ApplO Console Device.

Description

/* maxi mum nunber of consol e instances */
#def i ne SYS_CONSOLE_DEVI CE_MAX_I NSTANCES 1

/* nunber of nessages that may be queued up for read */
#defi ne SYS_CONSOLE_APP| O RD_QUEUE_DEPTH 8

/* nunmber of nessages that nmay be queued up for wite */
#defi ne SYS_CONSOLE_APPI O WR_QUEUE_DEPTH 128

USB-CDC Console Device Configuration Options
This topic provided configuration option examples for the USB-CDC Console Device.

Description

USB-CDC Queues

/* Number of characters that may be queued for a single read */
#def i ne CONSOLE_USB_CDC_RD_QUEUE_DEPTH 64

/* Nunmber of nessages that may be queued for wite */
#def i ne CONSOLE_USB_CDC_WR_QUEUE_DEPTH 64

USB Controller Driver

/* Enabl es Device Support */
#defi ne DRV_USB_DEVI CE_SUPPORT true

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 73

Volume V: MPLAB Harmony Framework System Service Libraries Help

/* Di sabl es host support */
#defi ne DRV_USB_HOST_SUPPORT fal se

/* Provides 3 endpoints*/
#def i ne DRV_USB_ENDPO NTS_NUMBER 3

/* Only one instance of the USB Peripheral */
#def i ne DRV_USB_| NSTANCES_NUMBER 1

/* Enables interrupt node */
#def i ne DRV_USB_| NTERRUPT_MODE true

USB Device Layer
/* Maxi mum devi ce | ayer instances */
#defi ne USB_DEVI CE_MAX_| NSTANCES 1

/* Maximumclients for Device Layer */
#def i ne USB_DEVI CE_MAX_CLI ENTS 1

/* Maxi mum function drivers allowed per instance of the USB device |ayer */

#define USB_DEVI CE_FUNCTI ON_DRI VERS_NUMBER 1

/* EPO size in bytes */
#defi ne USB_DEVI CE_EPO_BUFFER_SI ZE 64

USB-CDC Function Driver

/* Maxi mum i nstances of CDC function driver */
#define USB_DEVI CE_CDC | NSTANCES NUVMBER 1

/* CDC Transfer Queue Size for both read and

* wite. Applicable to all instances of the

* function driver */
#defi ne USB_DEVI CE_CDC_WRI TE_QUEUE_DEPTH 4
#def i ne USB_DEVI CE_CDC_READ_QUEUE_DEPTH 1
#def i ne USB_DEVI CE_CDC_SSN_QUEUE_DEPTH 1

#def i ne USB_DEVI CE_CDC_QUEUE_DEPTH_COVBI NED
(USB_DEVI CE_CDC_WRI TE_QUEUE_DEPTH +
USB_DEVI CE_CDC_READ QUEUE_DEPTH +
USB_DEVI CE_CDC_SSN_QUEUE_DEPTH)

UART Console Device Configuration Options
This topic provided configuration option examples for the UART Console Device.

Description
/* Maxi mum nunber of sinultaneous consol e instances */
#defi ne CONSOLE_DEVI CE_MAX_| NSTANCES 1

/* Number of characters that may be queued for a single read */
#def i ne CONSOLE_UART_RD QUEUE_DEPTH 1

/* Number of nessages that may be queued for wite */
#defi ne CONSOLE_UART_WR_QUEUE_DEPTH 64

[] KKKk R R Kk Kk kR R Kk Kk kR R R R K K R R R R R R Rk R R R R K Kk R R R Rk Kk K R R Rk Rk kR R Rk Kk kR R Rk Rk kR Rk kK k ok kK

// khkkhkkhkkhkkhkhhhdhhhdhhhdhdhdhdhhrhhhhhhhhhhxk

/] Section: UART Driver Configuration

[k kR kR ok ok ko sk kK ok ok kK Kk ok ok R kR ok ok kR Rk R kR Rk Rk kR Rk kR ok kR Rk kR ok kR Rk kR ok ok R Rk kR ok ok kK

[kR Rk Kk ok kR Kk ok ok kK Kk ok ok Kk R R kK R R R R R R R R R Rk R R R R Rk kR R R Rk Rk Rk kR kR R Rk kR ok Rk K

#define DRV_USART | NTERRUPT MODE true
#def i ne DRV_USART_| NSTANCES NUMBER 1
#def i ne DRV_USART_CLI ENTS_NUVBER 1

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Console System Service Library

74

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

#defi ne DRV_USART_BUFFER_QUEUE_SUPPORT true

#defi ne DRV_USART_BYTE_MODEL_SUPPORT fal se

#defi ne DRV_USART READ W\RI TE_MODEL_SUPPORT fal se

#defi ne DRV_USART_WRI TE_QUEUE_DEPTH CONSOLE_UART_RD_QUEUE_DEPTH
#defi ne DRV_USART READ QUEUE_DEPTH CONSOLE_UART_WR_QUEUE_DEPTH
#def i ne DRV_USART_SSN_QUEUE_DEPTH 1

#def i ne DRV_USART_QUEUE_DEPTH_COVBI NED (DRV_USART_WRI TE_QUEUE DEPTH +

DRV_USART_READ QUEUE_DEPTH +
DRV_USART_SSN_QUEUE_DEPTH)

Building the Library
This section lists the files that are available in the Console System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systeni consol e.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_consol e. h Console System Service Library API header file.

Required File(s)

h All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
N MHC when the library is selected for use.

-~
This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/srcl/sys_consol e.c Console System Service Library implementation.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

/ srcl/sys_consol e_usb_cdc. c Required for USB-CDC console device.

/'src/sys_consol e_uart.c Required for UART console device.

/ src/sys_consol e_| ocal . h Data structures and definitions used by the Console System Service, but not exposed to
clients.

/'src/sys_consol e_usb_cdc_| ocal . h Dl_ata structures and definitions used by the USB-CDC console device, but not exposed to
clients.

Module Dependencies

The Console System Service is dependent upon the following modules:
» Device Control System Service Library

e USART Diriver Library (if UART)

e USB Driver Library (if USB-CDC)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 75

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

Library Interface

a) System Functions

Name Description

¢ SYS_CONSOLE_Initialize Initializes data for the instance of the Console module and opens the specific module
instance.
Implementation: Static/Dynamic

@ SYS_CONSOLE_Reinitialize Reinitializes and refreshes the data structure for the instance of the Console module.
Implementation: Static/Dynamic

¢ SYS_CONSOLE_Deinitialize Deinitializes the specific module instance of the Console module.
Implementation: Static/Dynamic

@ SYS_CONSOLE_Tasks Maintains the console's state machine.

Implementation: Dynamic

¢ SYS_CONSOLE_Status Returns status of the specific instance of the Console module.
Implementation: Dynamic

b) Core Functions

Name Description
¢ SYS_CONSOLE_Read Reads data from the console device.
Implementation: Static/Dynamic
¢ SYS_CONSOLE_Write Writes data to the console device.

Implementation: Static/Dynamic

¢ SYS_CONSOLE_RegisterCallback |Registers a callback function with the console service that will be executed when the read or
write queue is emptied.

Implementation: Dynamic

¢ SYS_CONSOLE_Flush Flushes the read and write queues and resets an overflow error for the console.
Implementation: Static/Dynamic

c) Data Types and Constants

Name Description
SYS_CONSOLE_OBJECT_INSTANCE | System Console object instance structure.
SYS_CONSOLE_DEVICE Lists the available console devices.
SYS_CONSOLE_DEV_DESC This is type SYS_CONSOLE_DEV_DESC.
SYS_CONSOLE_INIT Identifies the system console initialize structure.
STDERR_FILENO This is macro STDERR_FILENO.
STDIN_FILENO These are in unistd.h

STDOUT_FILENO This is macro STDOUT_FILENO.
SYS_CONSOLE_INDEX_0 Console System Service index definitions.
SYS_CONSOLE_INDEX_1 This is macro SYS_CONSOLE_INDEX_1.
SYS_CONSOLE_INDEX_2 This is macro SYS_CONSOLE_INDEX_2.
SYS_CONSOLE_INDEX_3 This is macro SYS_CONSOLE_INDEX_3.

CONSOLE_DEVICE_HANDLE_INVALID | This is macro CONSOLE_DEVICE_HANDLE_INVALID.
SYS_CONSOLE_BUFFER_DMA_READY This is added here to prevent built errors, just in-case MHC was never run

Description

This section describes the APIs of the Console System Service Library.
Refer to each section for a detailed description.

a) System Functions

SYS_CONSOLE_|Initialize Function

Initializes data for the instance of the Console module and opens the specific module instance.
Implementation: Static/Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 76

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

File
sys_console.h

C
SYS_MODULE_OBJ SYS CONSOLE Initialize(const SYS MODULE | NDEX index, const SYS MODULE INIT * const init);

Returns

If successful, returns a valid handle to an object. Otherwise, it returns SYS_MODULE_OBJ_INVALID. The returned object must be passed as
argument to SYS_CONSOLE_Reinitialize, SYS_CONSOLE_Deinitialize, SYS_CONSOLE_Tasks and SYS_CONSOLE_ Status routines.

Description

This function initializes the Console module, and selects the 1/O device to be used. It also initializes any internal data structures.

Remarks
This routine should only be called once during system initialization unless SYS_Console_Deinitialize is first called to deinitialize the device
instance before reinitializing it. If the system was already initialized it safely returns without causing any disturbance.

Preconditions

None.

Example
SYS_MODULE_OBJ obj ect Handl g;

/'l Popul ate the console initialization structure
SYS CONSOLE_INIT conslnit =
{

.nmodulelnit = {0},

.consDevDesc = &consUshCdcDevDesc,

}s

obj ect Handl e = SYS Console_Initialize (SYS_CONSOLE | NDEX 0, (SYS _MODULE IN T*)&conslnit);
if (SYS_MODULE_OBJ_I NVALI D == obj ect Handl e)

{
/1 Handl e error
}
Parameters
Parameters Description
index Index for the instance to be initialized
init Pointer to a data structure containing any data necessary to initialize the Console System
service. This pointer may be null if no data is required because static overrides have been
provided.
Function

SYS _MODULE_OBJ SYS_CONSOLE_Initialize(const SYS_MODULE_INDEX index,
const SYS_MODULE_INIT * const init)

SYS _CONSOLE_REeinitialize Function

Reinitializes and refreshes the data structure for the instance of the Console module.
Implementation: Static/Dynamic

File
sys_console.h

C
bool SYS CONSOLE_Reinitialize(SYS MODULE OBJ object, const SYS_ MODULE INIT * const init);

Returns

e true - If successful
« false - If unsuccessful

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

7

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

Description
This function reinitializes and refreshes the data structure for the instance of the Console module using the supplied data.
Remarks

This operation uses the same initialization data structure as the SYS_CONSOLE_Initialize operation. This function can be called multiple times to
reinitialize the module.

Preconditions
The SYS_CONSOLE_Initialize function should have been called before calling this function.
Example

SYS MODULE _OBJ obj ect Handl e;

/'l Popul ate the console initialization structure
SYS CONSOLE_INIT conslnit =

{
.nmodul el nit = {0},
.consDevDesc = &consUsbCdcDevDesc,
h
SYS_CONSCOLE_Reinitialize (objectHandl e, (SYS_MODULE | N T*)&conslnit);
Parameters
Parameters Description
object Identifies the SYS CONSOLE Object returned by the Initialize interface
init Pointer to the data structure containing any data necessary to initialize the hardware
Function

void SYS_CONSOLE_Reinitialize(SYS_MODULE_OBJ object,
const SYS_MODULE_INIT * const init)

SYS_CONSOLE_Deinitialize Function

Deinitializes the specific module instance of the Console module.
Implementation: Static/Dynamic

File
sys_console.h
C
bool SYS CONSOLE Deinitialize(SYS_MODULE OBJ object);

Returns

e true - If successful
¢ false - If unsuccessful

Description

This function deinitializes the specific module instance disabling its operation (and any hardware for driver modules). Resets all of the internal data
structures and fields for the specified instance to the default settings.

Remarks

Once the Initialize operation has been called, the Deinitialize operation must be called before the Initialize operation can be called again.

Preconditions

The SYS_CONSOLE_Initialize function should have been called before calling this function.

Example
SYS_MODULE_0OBJ obj ect ; /1 Returned from SYS_CONSCLE |nitialize

SYS_CONSCOLE Deinitialize (object);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 78

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

Parameters

Parameters Description

object SYS CONSOLE object handle, returned from SYS_CONSOLE_ Initialize
Function

void SYS_CONSOLE_Deinitialize(SYS_MODULE_OBJ object)

SYS_CONSOLE_Tasks Function

Maintains the console's state machine.
Implementation: Dynamic

File
sys_console.h
C
voi d SYS_CONSOLE Tasks(SYS_MODULE_OBJ object);
Returns
None
Description
This function is used to maintain the Console System Service internal state machine and implement its ISR for interrupt-driven implementations.
Remarks
This function is normally not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks) or by the appropriate raw ISR.
Preconditions
The SYS_CONSOLE_Initialize function must have been called for the specified CONSOLE driver instance.
Example
SYS_MODULE_OBJ obj ect ; /1 Returned from SYS_CONSCLE | nitialize

while (true)

{
SYS_CONSCLE_Tasks (object);

/'l Do other tasks

}
Parameters

Parameters Description

object SYS CONSOLE object handle, returned from SYS_CONSOLE_ Initialize
Function

void SYS_CONSOLE_Tasks(SYS_MODULE_OBJ object)

SYS_CONSOLE_Status Function

Returns status of the specific instance of the Console module.
Implementation: Dynamic

File
sys_console.h

C
SYS_STATUS SYS_CONSOLE_St at us(SYS_MODULE_OBJ obj ect);

Returns

« SYS_STATUS_READY - Indicates that the driver is busy with a previous system level operation and cannot start another. Any value greater
than SYS_STATUS_READY is also a hormal running state in which the driver is ready to accept new operations.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 79

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

* SYS_STATUS_BUSY - Indicates that the driver is busy with a previous system level operation and cannot start another.
* SYS_STATUS_ERROR - Indicates that the driver is in an error state. Any value less than SYS_STATUS_ERROR is also an error state.
* SYS_MODULE_DEINITIALIZED - Indicates that the driver has been deinitialized. This value is less than SYS_STATUS_ERROR.

Description

This function returns the status of the specific module instance disabling its operation (and any hardware for driver modules).
Remarks

None.
Preconditions

The SYS_CONSOLE_Initialize function should have been called before calling this function.

Example
SYS_MODULE_0OBJ obj ect ; /1 Returned from SYS_CONSCLE | nitialize
SYS_STATUS consSt at us;

consStatus = SYS CONSOLE Status (object);
i f (SYS_STATUS_ERROR >= consStat us)

{
/1 Handl e error
}
Parameters
Parameters Description
object SYS CONSOLE object handle, returned from SYS_CONSOLE_ Initialize
Function

SYS_STATUS SYS_CONSOLE_Status(SYS_MODULE_OBJ object)

b) Core Functions

SYS CONSOLE_Read Function

Reads data from the console device.
Implementation: Static/Dynamic

File

sys_console.h
C

ssize_t SYS CONSOLE Read(const SYS MODULE | NDEX index, int fd, void * buf, size_t count);
Returns

Number of bytes actually read.
Description

This function reads the data from the console device.
Remarks

None.
Preconditions

None.

Example

ssize_t nr;

char myBuf f er [MY_BUFFER_SI ZE] ;

nr = SYS_CONSOLE_Read(SYS_CONSOLE_| NDEX_ 0, STDI N_FILENO, nyBuffer, MY_BUFFER SIZE);
if (nr !'= MY_BUFFER_ S| ZE)

{

/'l handl e error

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 80

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

}
Parameters
Parameters Description
index Console instance index
fd I/O stream handle. Maintained for backward compatibility. NULL value can be passed as a
parameter.
buf Buffer to hold the read data.
count Number of bytes to read.
Function

int SYS_CONSOLE_Read(int handle, char *buffer, int len)

SYS CONSOLE_Write Function

Writes data to the console device.
Implementation: Static/Dynamic

File

sys_console.h
C

ssize_t SYS CONSOLE Wite(const SYS_MODULE | NDEX index, int fd, const char * buf, size_t count);
Returns

Number of bytes written or -1 if an error occurred.
Description

This function writes data to the console device.
Remarks

None.
Preconditions

None.

Example

ssize_t nr;

char nyBuffer[] = "message";

nr = SYS_CONSOLE Wite(SYS CONSOLE | NDEX 0, STDOUT_FILENO, nyBuffer, strlen(nyBuffer));
if (nr !'= strlen(nyBuffer))

{
/1 Handl e error

}
Parameters

Parameters Description

index Console instance index

fd I/O stream handle. Maintained for backward compatibility. NULL value can be passed as a

parameter.

buf Buffer holding the data to be written.

count Number of bytes to write.
Function

ssize_t SYS_CONSOLE_Write(const SYS_MODULE_INDEX index, int fd, const char *buf, size_t count)

SYS CONSOLE_RegisterCallback Function

Registers a callback function with the console service that will be executed when the read or write queue is emptied.
Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 81

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

File
sys_console.h

C

voi d SYS_CONSCLE_Regi st erCal | back(const SYS_MODULE_I NDEX i ndex, consol eCal | backFunction cbFunc,
SYS_CONSOLE_EVENT event);

Returns

None.

Description

This function is used by an application to register a callback function with the console service. The callback function is called in response to an
event. Separate callback functions are required for each event.

Remarks

None.

Preconditions

None.

Example

SYS_CONSCLE_Regi st er Cal | back(SYS_CONSOLE_| NDEX_0, APP_ReadConpl et e,
SYS _CONSOLE_EVENT_READ COVPLETE) ;

SYS _CONSOLE_Regi st er Cal | back(SYS_CONSOLE | NDEX_0, APP_WiteConpl ete,
SYS_CONSOLE_EVENT_WRI TE_COVPLETE) ;

Parameters

Parameters Description

index Console instance index

consCallbackFunc The name of the callback function

event Enumerated list of events that can trigger a callback
Function

void SYS_CONSOLE_RegisterCallback(const SYS_MODULE_INDEX index,
consoleCallbackFunction cbFunc, SYS_CONSOLE_EVENT event)

SYS_CONSOLE_Flush Function

Flushes the read and write queues and resets an overflow error for the console.
Implementation: Static/Dynamic

File
sys_console.h

C
voi d SYS_CONSOLE_Fl ush(const SYS_MODULE_I NDEX i ndex) ;

Returns
None.
Description
This function flushes the read and write queues and resets an overflow error for the console.
Remarks
None.
Preconditions
None.

Example
SYS_CONSOLE_Fl ush(SYS_CONSOLE | NDEX_O) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 82

Volume V: MPLAB Harmony Framework System Service Libraries Help

Parameters

Parameters Description

index Console instance index
Function

void SYS_CONSOLE_Flush(const SYS_MODULE_INDEX index)

¢) Data Types and Constants

SYS_CONSOLE_OBJECT_INSTANCE Structure
System Console object instance structure.
File

sys_console.h

C
typedef struct {
SYS_STATUS consol eDevi cel nst anceSt at us;
SYS_CONSOLE_DEV_DESC * consol el nst anceDevDesc;
CONSOLE_DEVI CE_HANDLE consol eDevHandl e;
} SYS_CONSOLE_OBJECT_I| NSTANCE;
Members
Members Description
SYS_STATUS consoleDevicelnstanceStatus; State of this instance
Description
SYS CONSOLE OBJECT INSTANCE structure
This data type defines the System Console object instance.
Remarks

None.

SYS _CONSOLE_DEVICE Enumeration
Lists the available console devices.

File
sys_console.h

C

typedef enum {
SYS_CONSOLE_DEV_USART,
SYS_CONSOLE_DEV_USB_CDC,
SYS_CONSOLE_DEV_APPI O,
SYS_CONSOLE_NR _DEVS

} SYS_CONSOLE_DEVI CE;

Description

Console device enumeration

Console System Service Library

This enumeration lists all of the available console devices. A console device is a physical peripheral used by the console service to send and

receive data.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

83

Volume V: MPLAB Harmony Framework System Service Libraries Help Console System Service Library

SYS_CONSOLE_DEV_DESC Structure
File
sys_console.h

C

typedef struct {
SYS_CONSOLE_DEVI CE consol eDevi ce;
DRV_I O_ | NTENT intent;
char (* sysConsol eReadC) (int fd);
ssize_t (* sysConsol eRead) (int fd, void *buf, size_t count);
ssize_t (* sysConsoleWite)(int fd, const void *buf, size_t count);
void (* sysConsol eRegi st erCal | back) (consol eCal | backFuncti on cbFunc, SYS_CONSOLE_EVENT event);
void (* sysConsol eTasks) (SYS_MODULE _OBJ obj ect);
SYS_CONSOLE_STATUS (* sysConsol eSt at us) (voi d);
void (* sysConsol eFl ush) (void);

} SYS_CONSCOLE_DEV_DESC;

Description
This is type SYS_CONSOLE_DEV_DESC.

SYS_CONSOLE_INIT Structure
Identifies the system console initialize structure.
File
sys_console.h

C

typedef struct {
SYS MODULE_INI'T nodul el nit;
SYS_CONSOLE_DEV_DESC * consDevDesc;
} SYS_CONSOLE I NIT;
Members

Members Description
SYS_MODULE_INIT modulelnit; System module initialization

Description

SYS Console Initialize structure
This structure identifies the system console initialize structure.

Remarks

None.

STDERR_FILENO Macro
File

sys_console.h

C
#def i ne STDERR FI LENO 2

Description
This is macro STDERR_FILENO.

STDIN_FILENO Macro
File

sys_console.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 84

Volume V: MPLAB Harmony Framework System Service Libraries Help

C
#define STDI N_FI LENO 0

Description

These are in unistd.h

STDOUT_FILENO Macro
File
sys_console.h

C
#def i ne STDOUT_FI LENO 1

Description
This is macro STDOUT_FILENO.

SYS_CONSOLE_INDEX_0 Macro
Console System Service index definitions.
File
sys_console.h

C
#def i ne SYS_CONSOLE_| NDEX_0 0

Description

SYS Console Module Index Numbers
These constants provide Console System Service index definitions.

Remarks

These constants should be used in place of hard-coded numeric literals.

SYS CONSOLE_INDEX_1 Macro
File

sys_console.h

C
#def i ne SYS_CONSOLE_| NDEX_1 1

Description
This is macro SYS_CONSOLE_INDEX_1.

SYS_CONSOLE_INDEX_2 Macro

File
sys_console.h

C
#define SYS_CONSOLE_| NDEX_2 2

Description
This is macro SYS_CONSOLE_INDEX_2.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Console System Service Library

85

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS_CONSOLE_INDEX_3 Macro

File
sys_console.h

C
#define SYS_CONSOLE_| NDEX_3 3

Description
This is macro SYS_CONSOLE_INDEX_3.

CONSOLE_DEVICE_HANDLE_INVALID Macro
File

sys_console.h

C
#def i ne CONSOLE_DEVI CE_HANDLE_| NVALI D ((CONSOLE_DEVI CE_HANDLE) (- 1))

Description
This is macro CONSOLE_DEVICE_HANDLE_INVALID.

SYS_CONSOLE_BUFFER_DMA_READY Macro

File
sys_console.h

C
#define SYS_CONSOLE_BUFFER DMA READY

Description

This is added here to prevent built errors, just in-case MHC was never run

Files

Files

Name Description

sys_console.h Console System Service interface definitions.

Description

This section lists the source and header files used by the library.

sys_console.h
Console System Service interface definitions.

Enumerations

Console System Service Library

Name Description
SYS_CONSOLE_DEVICE Lists the available console devices.
Functions
Name Description
¢ SYS_CONSOLE_Deinitialize Deinitializes the specific module instance of the Console module.
Implementation: Static/Dynamic
¢ SYS_CONSOLE_Flush Flushes the read and write queues and resets an overflow error for the console.

Implementation: Static/Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

86

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

¢ SYS_CONSOLE_Initialize Initializes data for the instance of the Console module and opens the specific module
instance.
Implementation: Static/Dynamic

¢ SYS_CONSOLE_Read Reads data from the console device.

Implementation: Static/Dynamic

¢ SYS_CONSOLE_RegisterCallback |Registers a callback function with the console service that will be executed when the read or
write queue is emptied.

Implementation: Dynamic

¢ SYS_CONSOLE_Reinitialize Reinitializes and refreshes the data structure for the instance of the Console module.
Implementation: Static/Dynamic

¢ SYS_CONSOLE_Status Returns status of the specific instance of the Console module.
Implementation: Dynamic

] SYS_CONSOLE_Tasks Maintains the console's state machine.
Implementation: Dynamic

¢ SYS_CONSOLE_Write Writes data to the console device.

Implementation: Static/Dynamic

Macros
Name Description
CONSOLE_DEVICE_HANDLE_INVALID |This is macro CONSOLE_DEVICE_HANDLE_INVALID.
STDERR_FILENO This is macro STDERR_FILENO.
STDIN_FILENO These are in unistd.h
STDOUT_FILENO This is macro STDOUT_FILENO.
SYS_CONSOLE_BUFFER_DMA_READY This is added here to prevent built errors, just in-case MHC was never run
SYS_CONSOLE_INDEX_0 Console System Service index definitions.
SYS_CONSOLE_INDEX_1 This is macro SYS_CONSOLE_INDEX_1.
SYS_CONSOLE_INDEX_2 This is macro SYS_CONSOLE_INDEX_2.
SYS_CONSOLE_INDEX_3 This is macro SYS_CONSOLE_INDEX_3.
SYS_CONSOLE_MESSAGE ifdef SYS_CONSOLE_REMOVE_APIS
SYS_CONSOLE_PRINT This is macro SYS_CONSOLE_PRINT.

Structures
Name Description
SYS_CONSOLE_DEV_DESC This is type SYS_CONSOLE_DEV_DESC.
SYS_CONSOLE_INIT Identifies the system console initialize structure.
SYS_CONSOLE_OBJECT_INSTANCE System Console object instance structure.

Description

Console System Service Interface Definition

This file contains the interface definition for the Console system service. It provides a way to interact with the Console subsystem to manage the
timing requests supported by the system.

File Name

sys_console.h

Company
Microchip Technology Inc.

Debug System Service Library

This section describes the Debug System Service Library.

Introduction

This library implements the Debug System Service. The Debug System Service provides a convenient mechanism for the application developer to
send formatted or unformatted messages to a system console. The console may direct the messages to a terminal program, file, or any other
supported console device. The Debug System Service maintains a global error level, which may be set during initialization and changed
dynamically at run-time. Both formatted and unformatted messages can be output or not, depending on the current global error level.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 87

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

Description

The Debug System Service provides a set of functions that allow the developer to output debug and/or error messages based on a global error
level. The messages are sent to the System Console Service, where they are routed to a console device.

Application j

Hddevre pebug senice

System Console Core j

Application

File System Service

Console Service

UART Console

USB-CDC Console

Device Drivers USB Device Driver UART Driver

MPLAB X

UART PLIB

Peripheral Library USB PLIB

Using the Library
This topic describes the basic architecture of the Debug System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_debug. h

The interface to the Debug System Service library is defined in the sys_debug. h header file. This file is included by the sys. h file. Any C
language source (. c) file that uses the Debug System Service Library should include sys. h.

Please refer to the What is MPLAB Harmony? section for how the Debug System Service interacts with the framework.

Abstraction Model

This library provides a set of functions that allow the developer to quickly and easily provide debug and error messaging during and after program
development.

Description

Debug Service Software Abstraction Block Diagram

SYS_ERROR_LEVEL je¢------ e ===k oo SYS_DEBUG_Initialize(...

------- === SYS_ERROR(level, message)

level <=
SYS_ERROR_LEVEL

- —==>3] Send Message to Console

Do Nothing

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 88

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

When the Debug System Service is initialized, it sets the global system error level to the specified level. This level determines the threshold at
which debug and error messages are sent to the console. This allows different debug and error reporting verbosity depending on the needs of the
developer. The Debug System Service also provides APIs to dynamically set the error level during program execution. This allows the developer to
increase or decrease debug verbosity to specific areas of interest within the program.

Library Overview

Refer to the section System Services Introduction for how the system services operates in a system.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Debug System
Service module.

Library Interface Section Description
System Functions Initializes the Debug System Service and sets the global system error level.
Changing System Error Level Functions Reads or sets the global system debug level.

How the Library Works

The Debug System Service library can be used by a device driver, middleware layer, or application to report error conditions and output debug
messages to a console device during program operation.

Debug System Initialization

The Debug System Service library must be initialized by calling the SYS_DEBUG_ Initialize function. Initialization opens a specific debug module
instance and initializes the internal data structures for that instance.
Example: Debug System Service Initialization
SYS_DEBUG I NI T debuglnit =
{
.nodul el ni t {0},
.errorlLevel = SYS ERROR DEBUG

}s

Debug Messages and Error Reporting

The following macros are available to output debug and error messages:
e SYS_MESSAGE(message) prints a simple message string to the output device

*« SYS_DEBUG(level, message) prints a debug message to the console device if the global error level is equal to or lower than that specified by
the "level" argument. The default implementation of SYS_DEBUG(level, message) resolves to nothing by the preprocessor. This is to allow the
developer to leave debug messaging in released code without impacting code size or performance. Typically, the developer would define
SYS_DEBUG to map to _SYS_DEBUG in a configuration file for debug builds.

#define SYS_DEBUE | evel , nessage) _SYS DEBUE | evel , nessage)

e SYS_PRINT(fmt, ...) prints formatted messages to the console. The message formatting is the same as printf.

*« SYS_ERROR(level, fmt, ...) prints formatted messages to the console if the global error level is equal to or lower than that specified by the
"level" argument. The message formatting is the same as printf.

Changing the System Error Level

Two functions are provided to manipulate the global system error level at runtime. This may be useful when you want to increase the debug
verbosity for a particular section of code, but not for the entire program.

* SYS_ERROR_LevelGet returns the current global system error level

* SYS_ERROR_LevelSet(level) sets the current global system error level
Example: Changing the system error level

SYS_ERROR _LEVEL vl ;

/* Get current |evel */

Ivl = SYS_ERROR Level Get ();

/* Set new | evel */

SYS _ERROR Level Set (SYS_ERROR_DEBUG) ;

/1 Do sonething

SYS_DEBUQE " Ckay until here\n");

/* Restore previous |level */

SYS ERROR Level Set (1vl);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 89

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

Configuring the Library

The configuration of the Debug System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Debug System Service. Based on the selections made, the Debug System Service may
support the selected features. These configuration settings will apply to all instances of the Debug System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

The Debug System Service supports these configuration options:
/* Enabl e debug messagi ng */
#define SYS _DEBUJ | evel , message) _SYS DEBUJ | evel , nessage)

/* Circular buffer for formatted output */
#def i ne DEBUG_PRI NT_BUFFER S| ZE 512

Building the Library
This section lists the files that are available in the Debug System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenf debug.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_debug. h Debug System Service Library API header file.

Required File(s)

HARM:

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
Y MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/ srcl/ sys_debug. c Debug System Service Library implementation.
Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

/'src/sys_debug_l ocal . h Data structures used by the Debug System Service Library, but not exposed to clients.

Module Dependencies

The Debug System Service is dependent upon the following modules:
» Device Control System Service Library
* Console System Service Library

Library Interface

a) System Functions

Name Description
@ SYS_DEBUG_Deinitialize Deinitializes the specific module instance of the Debug module.
¢ SYS_DEBUG_Initialize Initializes the global error level and specific module instance.
¢ SYS_DEBUG_Reinitialize Reinitializes and refreshes the data structure for the instance of the Debug module.
¢ SYS_DEBUG_Status Returns status of the specific instance of the debug service module.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 90

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

SYS_DEBUG_Tasks Maintains the debug module's state machine.
SYS_DEBUG_Message Prints a message to the console regardless of the system error level.
SYS_DEBUG_Print Formats and prints a message with a variable number of arguments to the console regardless

of the system error level.

b) Changing System Error Level Functions

Name Description
SYS_DEBUG_ErrorLevelGet Returns the global system Error reporting level.
SYS_DEBUG_ErrorLevelSet Sets the global system error reporting level.

c) Data Types and Constants

Name Description

SYS_DEBUG_INIT Defines the data required to initialize the debug system service.

SYS_ERROR_LEVEL System error message priority levels.

SYS_DEBUG This is macro SYS_DEBUG.

SYS_DEBUG_INDEX_0 Debug System Service index.

SYS_MESSAGE Prints a message to the console regardless of the system error level.

SYS_ERROR This is macro SYS_ERROR.

SYS_PRINT Formats and prints an error message with a variable number of arguments regardless of the
system error level.

SYS_DEBUG_MESSAGE Prints a debug message if the system error level is defined defined at or lower than the level
specified.

SYS_DEBUG_PRINT Formats and prints an error message if the system error level is defined at or lower than the
level specified.

SYS_DEBUG_BreakPoint Inserts a software breakpoint instruction when building in Debug mode.

SYS_ERROR_PRINT This is macro SYS_ERROR_PRINT.

_SYS _DEBUG_MESSAGE Prints a debug message if the specified level is at or below the global system error level.

_SYS_DEBUG_PRINT Formats and prints a debug message if the specified level is at or below the global system
error level.

Description

This section describes the APIs of the Debug System Service Library.
Refer to each section for a detailed description.

a) System Functions

SYS_DEBUG_Deinitialize Function

Deinitializes the specific module instance of the Debug module.
File

sys_debug.h
C

void SYS _DEBUG Deinitialize(SYS_MODULE OBJ object);
Returns

None.

Description

This function deinitializes the specific module instance disabling its operation (and any hardware for driver modules). Resets all of the internal data
structures and fields for the specified instance to the default settings.

Remarks

Once the Initialize operation has been called, the Deinitialize operation must be called before the Initialize operation can be called again.

Preconditions

The SYS_DEBUG_Initialize function should have been called before calling this function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 91

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

Example

SYS_MODULE_OBJ obj ect ; /'l Returned from SYS_DEBUG Initialize
SYS _DEBUG Deinitialize (object);

Parameters

Parameters Description

object SYS DEBUG object handle, returned from SYS_DEBUG_ Initialize
Function

void SYS_DEBUG_Deinitialize(SYS_MODULE_OBJ object)

SYS DEBUG_|Initialize Function
Initializes the global error level and specific module instance.
File
sys_debug.h
C
SYS MODULE OBJ SYS DEBUG | nitialize(const SYS MODULE | NDEX i ndex, const SYS MODULE INIT * const init);
Returns
If successful, returns a valid handle to an object. Otherwise, it returns SYS_MODULE_OBJ_INVALID.
Description
This function initializes the global error level. It also initializes any internal system debug module data structures.

Remarks

This routine should only be called once during system initialization. If the system was already initialized it safely returns without causing any
disturbance.

Preconditions

None.

Example

SYS_MODULE_OBJ obj ect Handl e;
SYS DEBUG | NI T debuglnit =
{
.nodul el ni t {0},
.errorLevel = SYS _ERROR DEBUG

b

obj ect Handl e = SYS Debug_| nitialize (SYS_DEBUG CONSOLE, (SYS_MODULE_I NI T*)&debuglnit);
if (SYS_MODULE_OBJ_I NVALI D == obj ect Handl e)

/'l Handl e error

}
Parameters
Parameters Description
index Index for the instance to be initialized
init Pointer to a data structure containing any data necessary to initialize the debug service. This
pointer may be null if no data is required because static overrides have been provided.
Function

SYS_MODULE_OBJ SYS_DEBUG_Initialize(const SYS_MODULE_INDEX index,
const SYS_MODULE_INIT * const init)

SYS DEBUG_Reinitialize Function

Reinitializes and refreshes the data structure for the instance of the Debug module.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 92

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

File

sys_debug.h
C

void SYS DEBUG Reinitialize(SYS MODULE OBJ object, const SYS MODULE INIT * const init);
Returns

None
Description

This function reinitializes and refreshes the data structure for the instance of the Debug module using the supplied data.
Remarks

This operation uses the same initialization data structure as the SYS_DEBUG_ Initialize operation. This function can be called multiple times to
reinitialize the module.

Preconditions
The SYS_DEBUG_Initialize function should have been called before calling this function.
Example

SYS_MODULE_OBJ obj ect Handl e;

/'l Popul ate the console initialization structure
SYS DEBUG INI T dbglnit =

{
.nmodul elnit = {0},
.errorLevel = SYS ERROR DEBUG
b
SYS_DEBUG Reinitialize (objectHandl e, (SYS_MODULE_ | N T*)&dbglnit);
Parameters
Parameters Description
object Identifies the SYS DEBUG Object returned by the Initialize interface
init Pointer to the data structure containing any data necessary to initialize the hardware
Function

void SYS_DEBUG_Reinitialize(SYS_MODULE_OBJ object,
const SYS_MODULE_INIT * const init)

SYS DEBUG_Status Function

Returns status of the specific instance of the debug service module.
File

sys_debug.h
C

SYS_STATUS SYS_DEBUG St at us(SYS_MODULE_OBJ obj ect);
Returns

*« SYS_STATUS_READY - Indicates that the module is running and ready to service requests. Any value greater than SYS_STATUS_READY is
also a normal running state in which the module is ready to accept new operations.

* SYS_STATUS_BUSY - Indicates that the module is busy with a previous system level operation and cannot start another.
* SYS_STATUS_ERROR - Indicates that the module is in an error state. Any value less than SYS_STATUS_ERROR is also an error state.
e SYS_STATUS_UNINITIALIZED - Indicates that the module has not been initialized or has been deinitialized.

Description
This function returns the status of the specific debug service module instance.
Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 93

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

Preconditions

The SYS_CONSOLE_Initialize function should have been called before calling this function.

Example
SYS_MODULE_OBJ obj ect; /1 Returned from SYS_CONSCLE | nitialize
SYS_STATUS debugSt at us;

debugSt at us = SYS_DEBUG St at us (obj ect);
i f (SYS_STATUS ERROR >= debugsSt at us)

/'l Handl e error

}
Parameters

Parameters Description

object Debug module object handle, returned from SYS_DEBUG_ Initialize
Function

SYS_STATUS SYS_DEBUG_Status(SYS_MODULE_OBJ object)

SYS _DEBUG_Tasks Function
Maintains the debug module's state machine.
File
sys_debug.h

C
voi d SYS_DEBUG Tasks(SYS_MODULE_OBJ obj ect);

Returns

None.

Description

This function is used to maintain the debug module's internal state machine and implement its ISR for interrupt-driven implementations.

Remarks

This function is normally not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks) or by the appropriate raw ISR.

Preconditions

The SYS_DEBUG_Initialize function must have been called for the specified CONSOLE driver instance.
Example

SYS_MODULE_OBJ obj ect ; /'l Returned from SYS DEBUG Initialize

while (true)

{
SYS_DEBUG Tasks (object);

/'l Do other tasks

}
Parameters

Parameters Description

object SYS DEBUG object handle, returned from SYS_DEBUG_ Initialize
Function

void SYS_DEBUG_Tasks(SYS_MODULE_OBJ object)

SYS_DEBUG_Message Function

Prints a message to the console regardless of the system error level.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

94

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

File

sys_debug.h
C

voi d SYS DEBUG Message(const char * message);
Returns

None.

Description

This function prints a message to the console regardless of the system error level. It can be used as an implementation of the SYS_MESSAGE
and SYS_DEBUG_MESSAGE macros.

Remarks

Do not call this function directly. Call the SYS_MESSAGE or SYS_DEBUG_MESSAGE macros instead.

The default SYS_MESSAGE and SYS_DEBUG_MESSAGE macro definitions remove the messages and message function calls from the source
code. To access and utilize the messages, define the SYS_DEBUG_USE_CONSOLE macro or override the definitions of the individual macros.

Preconditions

SYS_DEBUG_Initialize must have returned a valid object handle and the SYS_DEBUG_Tasks function must be called by the system to complete
the message request.

Example
/1 In systemconfig.h:
#defi ne SYS_MESSAGE(nessage) SYS _DEBUG Message(nessage)

/'l In source (.c) files:
SYS_MESSAGE("My Messagenr™);

Parameters

Parameters Description

message Pointer to a message string to be displayed.
Function

SYS_DEBUG_Message(const char* message);

SYS_DEBUG_Print Function
Formats and prints a message with a variable number of arguments to the console regardless of the system error level.
File
sys_debug.h
C
void SYS DEBUG Print(const char * format, ...);
Returns
None.

Description

This function formats and prints a message with a variable number of arguments to the console regardless of the system error level. It can be used
to implement the SYS_PRINT and SYS_DEBUG_PRINT macros.

Remarks

The format string and arguments follow the printf convention.
Do not call this function directly. Call the SYS_PRINT or SYS_DEBUG_PRINT macros instead.

The default SYS_PRINT and SYS_DEBUG_PRINT macro definitions remove the messages and message function calls. To access and utilize the
messages, define the SYS_DEBUG_USE_CONSOLE macro or override the definitions of the individual macros.

Preconditions

SYS_DEBUG_ Initialize must have returned a valid object handle and the SYS_DEBUG_Tasks function must be called by the system to complete
the message request.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 95

Volume V: MPLAB Harmony Framework System Service Libraries Help

Example

/1 In systemconfig.h

#define SYS_PRINT(format, ...) SYS_DEBUG Print(format, ##__VA ARG)

/1l I'n source code
int result;

result = SoneOperation();
if (result > MAX VALUE)

Debug System Service Library

{
SYS_PRINT("Result of %l exceeds max valuern", result);

}
Parameters

Parameters Description

format Pointer to a buffer containing the format string for the message to be displayed.

Zero or more optional parameters to be formated as defined by the format string.

Function

SYS_DEBUG_Print(const char* format, ...)

b) Changing System Error Level Functions

SYS DEBUG_ErrorLevelGet Function
Returns the global system Error reporting level.
File
sys_debug.h

C
SYS_ERROR LEVEL SYS DEBUG ErrorLevel Get () ;

Returns
The global System Error Level.

Description

This function returns the global System Error reporting level.

Remarks

None.

Preconditions

SYS_DEBUG_ Initialize must have returned a valid object handle.

Example
SYS ERROR _LEVEL | evel;

| evel = SYS DEBUG ErrorlLevel Get();

Function
SYS_ERROR_LEVEL SYS_DEBUG_ErrorLevelGet(void);

SYS DEBUG_ErrorLevelSet Function
Sets the global system error reporting level.
File
sys_debug.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

96

Volume V: MPLAB Harmony Framework System Service Libraries Help

C
voi d SYS_DEBUG ErrorLevel Set (SYS_ERROR _LEVEL | evel);

Returns
None.
Description
This function sets the global system error reporting level.
Remarks
None.
Preconditions
SYS_DEBUG_Initialize must have returned a valid object handle.

Example
SYS_DEBUG Error Level Set (SYS_ERROR_WARNI NG) ;

Parameters

Parameters Description

level The desired system error level.
Function

void SYS_DEBUG_ErrorLevelSet(SYS_ERROR_LEVEL level);

c) Data Types and Constants

SYS_DEBUG_INIT Structure

Defines the data required to initialize the debug system service.
File

sys_debug.h
C

typedef struct {
SYS MODULE I NI T nodul el nit;
SYS _ERROR LEVEL errorlLevel;
SYS_MODULE_| NDEX consol el ndex;
} SYS_DEBUG INT;

Members
Members Description
SYS_MODULE_INIT modulelnit; System module initialization
SYS_ERROR_LEVEL errorLevel; Initial system error level setting.
SYS_MODULE_INDEX consolelndex; Console index to receive debug messages
Description

SYS Debug Initialize structure
This structure defines the data required to initialize the debug system service.

Remarks

None.

SYS_ERROR_LEVEL Enumeration

System error message priority levels.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Debug System Service Library

97

Volume V: MPLAB Harmony Framework

File
sys_debug.h

C

typedef enum {
SYS_ERROR FATAL = 0
SYS_ERROR ERROR = 1,

SYS_ERROR | NFO = 3,
SYS_ERROR_DEBUG = 4
} SYS ERROR LEVEL;

Members

Members
SYS_ERROR_FATAL =0
SYS_ERROR_ERROR =1
SYS_ERROR_WARNING =2
SYS_ERROR_INFO =3
SYS_ERROR_DEBUG =4

Description
SYS_ERROR_LEVEL enumeration

System Service Libraries Help Debug System Service Library

Description

Errors that have the potential to cause a system crash.

Errors that have the potential to cause incorrect behavior.
Warnings about potentially unexpected behavior or side effects.

Information helpful to understanding potential errors and warnings.

Verbose information helpful during debugging and testing.

This enumeration defines the supported system error message priority values.

Remarks

Used by debug message macros to compare individual message priority against a global system-wide error message priority level to determine if

an individual message should be displayed.

SYS _DEBUG Macro
File

sys_command.h

C

#define SYS _DEBUJ | evel , message) SYS DEBUG MESSAGE(| evel , message)

Description
This is macro SYS_DEBUG.

SYS_DEBUG_INDEX_0 Macro
Debug System Service index.

File
sys_debug.h

C
#define SYS DEBUG | NDEX 0 0

Description
SYS Debug Module Index Number

This constant defines a symbolic name for the debug system service index.

Remarks

There can only be a single debug system service instance in the system.

SYS_MESSAGE Macro

Prints a message to the console regardless of the system error level.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

98

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

File

sys_debug.h
C

#defi ne SYS_MESSAGE(nessage)
Returns

None.

Description

Macro: SYS_MESSAGE(const char* message)

This macro is used to print a message to the console regardless of the system error level. It can be mapped to any desired implementation.
Remarks

By default, this macro is defined as nothing, effectively removing all code generated by calls to it. To process SYS_MESSAGE calls, this macro
must be defined in a way that maps calls to it to the desired implementation (see example, above).

This macro can be mapped to the system console service (along with other system debug macros) by defining SYS_DEBUG_USE_CONSOLE in
the system configuration (system_config.h) instead of defining it individually.

Preconditions
If mapped to the _SYS_MESSAGE function, then the system debug service must be initialized and running.

Example

/1 In systemconfig.h:
#define SYS_MESSAGE(nessage) _SYS MESSAGE(nessage)

/1 In source (.c) files:
SYS MESSAGE("My Messagenr");

Parameters
Parameters Description
message Pointer to a buffer containing the message string to be displayed.

SYS_ERROR Macro

File
sys_command.h

C
#define SYS_ERROR(level,fnt, ...) SYS_ERROR PRINT(level, fnt, ##_ VA ARGS)

Description
This is macro SYS_ERROR.

SYS_PRINT Macro

Formats and prints an error message with a variable number of arguments regardless of the system error level.
File

sys_debug.h

C
#define SYS_PRINT(fmt, ...)

Returns

None.

Description

This function formats and prints an error message with a variable number of if the system error level is defined at or lower than the level specified.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 99

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

Remarks

The format string and arguments follow the printf convention. This function is called by the macros SYS_PRINT and SYS_ERROR_PRINT

By default, this macro is defined as nothing, effectively removing all code generated by calls to it. To process SYS_PRINT calls, this macro must
be defined in a way that maps calls to it to the desired implementation (see example, above).

This macro can be mapped to the system console service (along with other system debug macros) by defining SYS_DEBUG_USE_CONSOLE in
the system configuration (system_config.h) instead of defining it individually.

Preconditions
SYSTEM_CURRENT_ERROR_LEVEL must be defined.
Example

/'l In systemconfig.h
#define SYS_ PRINT(format, ...) _SYS DEBUG PRINT(format, ##_ VA ARG)

/1 In source code
int result;

result = SoneCperation();
if (result > MAX VALUE)

{
SYS PRI NT("Result of % exceeds max valuern", result);
/'l Take appropriate action
}
Parameters
Parameters Description
format Pointer to a buffer containing the format string for the message to be displayed.
Zero or more optional parameters to be formated as defined by the format string.
Function

SYS_PRINT(const char* format, ...);

SYS_DEBUG_MESSAGE Macro

Prints a debug message if the system error level is defined defined at or lower than the level specified.
File

sys_debug.h
C

#defi ne SYS_DEBUG MESSAGE(| evel , nessage)
Returns

None.
Description

This function prints a debug message if the system error level is defined at or lower than the level specified.
Remarks

By default, this macro is defined as nothing, effectively removing all code generated by calls to it. To process SYS_DEBUG_MESSAGE calls, this
macro must be defined in a way that maps calls to it to the desired implementation (see example, above).

This macro can be mapped to the system console service (along with other system debug macros) by defining SYS_DEBUG_USE_CONSOLE in
the system configuration (system_config.h) instead of defining it individually.

Preconditions
SYSTEM_CURRENT_ERROR_LEVEL must be defined as SYS_ERROR_DEBUG.

Example

#defi ne SYS_DEBUG MESSAGE _SYS_DEBUG MESSAGE
SYS _ERROR Level Set (SYS_ERROR_DEBUG) ;
SYS_DEBUG_MESSAGE(" Syst em Debug Message nr");

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 100

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

Parameters
Parameters Description
level The current error level threshold for displaying the message.
message Pointer to a buffer containing the message to be displayed.
Function

SYS_DEBUG_MESSAGE(const char* message)

SYS DEBUG_PRINT Macro

Formats and prints an error message if the system error level is defined at or lower than the level specified.
File

sys_debug.h
C

#defi ne SYS_DEBUG PRI NT(Il evel, fmt, ...)
Returns

None.
Description

Macro: SYS_DEBUG_PRINT(SYS_ERROR_LEVEL level, const char* format, ...)

This macro formats and prints an error message if the system error level is defined at or lower than the level specified.o
Remarks

The format string and arguments follow the printf convention. This function is called by the macros SYS_PRINT and SYS_DEBUG_PRINT.

By default, this macro is defined as nothing, effectively removing all code generated by calls to it. To process SYS_MESSAGE calls, this macro
must be defined in a way that maps calls to it to the desired implementation (see example, above).

This macro can be mapped to the system console service (along with other system debug macros) by defining SYS_DEBUG_USE_CONSOLE in
the system configuration (system_config.h) instead of defining it individually.

Preconditions
SYS_DEBUG_ Initialize must have returned a valid object handle.

Example

/1 In systemconfig.h
#define SYS DEBUG PRI NT(level, format, ...) _SYS DEBUG PRI NT(level, format, ##_ VA ARG)

/1 I'n source code
int result;

result = SoneOperation();
if (result > MAX VALUE)

{
SYS DEBUG PRI NT(SYS_ERROR WARNI NG, "Result of %l exceeds max valuern", result);
/| Take appropriate action
}
Parameters
Parameters Description
level The current error level threshold for displaying the message.
format Pointer to a buffer containing the format string for the message to be displayed.

Zero or more optional parameters to be formated as defined by the format string.

SYS_DEBUG_BreakPoint Macro

Inserts a software breakpoint instruction when building in Debug mode.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 101

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

File

sys_debug.h
C

#defi ne SYS_DEBUG_Br eakPoi nt
Returns

None.

Description

Macro: SYS_DEBUG_BreakPoint(void)
This macro inserts a software breakpoint instruction when building in Debug mode.

Remarks
Compiles out if not built for debugging.
Preconditions

None.

Example

i f (nyDebugTest Fai | ed)
{

}

SYS_DEBUG Br eakPoi nt () ;

SYS ERROR_PRINT Macro
File
sys_command.h

C

#define SYS ERROR PRINT(level, fnt, ...) do { if((level) <= gbl ErrLvl) SYS_CMD PRINT(fnt, ## VA ARGS_): }
while (0)

Description
This is macro SYS_ERROR_PRINT.

_SYS_DEBUG_MESSAGE Macro

Prints a debug message if the specified level is at or below the global system error level.
File

sys_debug.h

C

#define _SYS DEBUG MESSAGE(I| evel, nessage) do { if((level) <= SYS DEBUG ErrorLevel Get())
SYS DEBUG Message(nessage); }while(0)

Returns

None.

Description

Macro: _SYS_DEBUG_MESSAGE(SYS_ERROR_LEVEL level, const char* message)

This macro prints a debug message if the specified level is at or below the global error level. It can be used to implement the
SYS_DEBUG_MESSAGE macro.

Remarks

Do not call this macro directly. Call the SYS_DEBUG_MESSAGE macro instead.

The default SYS_DEBUG_MESSAGE macro definition removes the message and function call from the source code. To access and utilize the
message, define the SYS_DEBUG_USE_CONSOLE macro or override the definition of the SYS_DEBUG_MESSAGE macro.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 102

Volume V: MPLAB Harmony Framework System Service Libraries Help Debug System Service Library

Preconditions
SYS_DEBUG_Initialize must have returned a valid object handle.

Example

/1 In systemconfig.h
#defi ne SYS_DEBUG MESSAGE(| evel , message) _SYS DEBUG MESSAGCE(| evel , nessage)

/1 In library source (.c) code.
SYS_DEBUG _MESSAGE(SYS_ERROR_WARNI NG "My debug warni ng nessagenr");

Parameters
Parameters Description
level The current error level threshold for displaying the message.
message Pointer to a buffer containing the message to be displayed.

_SYS_DEBUG_PRINT Macro

Formats and prints a debug message if the specified level is at or below the global system error level.
File

sys_debug.h
C

#define _SYS DEBUG PRI NT(level, format, ...) do { if((level) <= SYS DEBUG ErrorLevel Get())
SYS DEBUG Print(format, ## VA ARGS_); } while (0)

Returns

None.

Description

Macro: _SYS_DEBUG_PRINT(SYS_ERROR_LEVEL level, const char* format, ...)

This function formats and prints a debug message if the specified level is at or below the global system error level. It can be used to implement the
SYS_DEBUG_PRINT macro.

Remarks

Do not call this macro directly. Call the SYS_DEBUG_PRINT macro instead.

The default SYS_DEBUG_PRINT macro definition removes the message and function call from the source code. To access and utilize the
message, define the SYS_DEBUG_USE_CONSOLE macro or override the definition of the SYS_DEBUG_PRINT macro.

Preconditions
SYS_DEBUG_ Initialize must have returned a valid object handle.

Example

/1 In systemconfig.h
#define SYS_DEBUG PRINT(level, format, ...) _SYS _DEBUG PRINT(level, format, ##__VA ARG)

/1l I'n source code
int result;

result = SoneOperation();
if (result > MAX_VALUE)

{
SYS_DEBUG PRI NT(SYS_ERROR WARNI NG, "Result of %l exceeds max val uern", result);
/| Take appropriate action
}
Parameters
Parameters Description
level The current error level threshold for displaying the message.
format Pointer to a buffer containing the format string for the message to be displayed.

Zero or more optional parameters to be formated as defined by the format string.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 103

Volume V: MPLAB Harmony Framework

Files

Files

Name
sys_debug.h

Description

System Service Libraries Help Debug System Service Library

Description

Defines the common debug definitions and interfaces used by MPLAB Harmony libraries to
report errors and debug information to the user.

This section lists the source and header files used by the library.

sys_debug.h

Defines the common debug definitions and interfaces used by MPLAB Harmony libraries to report errors and debug information to the user.

Enumerations

Name
SYS_ERROR_LEVEL

Functions

Name
SYS_DEBUG_Deinitialize
SYS_DEBUG_ErrorLevelGet
SYS_DEBUG_ErrorLevelSet
SYS_DEBUG_Initialize
SYS_DEBUG_Message
SYS _DEBUG_Print

¢ ¢ ¢ ¢ ¢ <

<

SYS_DEBUG_Reinitialize
SYS_DEBUG_Status
SYS_DEBUG_Tasks

<

Macros

Name
_SYS_DEBUG_MESSAGE
_SYS _DEBUG_PRINT

SYS_DEBUG_BreakPoint
SYS_DEBUG_INDEX_O
SYS_DEBUG_MESSAGE

SYS_DEBUG_PRINT

SYS_MESSAGE
SYS_PRINT

Structures

Name
SYS_DEBUG_INIT

Description

Debug System Services Library Header

Description
System error message priority levels.

Description

Deinitializes the specific module instance of the Debug module.
Returns the global system Error reporting level.

Sets the global system error reporting level.

Initializes the global error level and specific module instance.

Prints a message to the console regardless of the system error level.

Formats and prints a message with a variable number of arguments to the console regardless
of the system error level.

Reinitializes and refreshes the data structure for the instance of the Debug module.
Returns status of the specific instance of the debug service module.
Maintains the debug module's state machine.

Description
Prints a debug message if the specified level is at or below the global system error level.

Formats and prints a debug message if the specified level is at or below the global system
error level.

Inserts a software breakpoint instruction when building in Debug mode.
Debug System Service index.

Prints a debug message if the system error level is defined defined at or lower than the level
specified.

Formats and prints an error message if the system error level is defined at or lower than the
level specified.

Prints a message to the console regardless of the system error level.

Formats and prints an error message with a variable number of arguments regardless of the
system error level.

Description
Defines the data required to initialize the debug system service.

This header file defines the common debug definitions and interface macros (summary below) and prototypes used by MPLAB Harmony libraries

to report errors and debug information to the user.

File Name
sys_debug.h

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 104

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

Company

Microchip Technology Inc.

Device Control System Service Library

This section describes the Device Control System Service Library.

Introduction

This library provides a low-level abstraction of the Device Control System Service Library that is available on the Microchip family of PIC32
microcontrollers with a convenient C language interface. It can be used to simplify low-level access to the module without the necessity of
interacting directly with the module's registers, there by hiding differences from one microcontroller variant to another.

Description

The Device Control System Service provides the developer with simple APIs to configure and control device-specific functions. These functions
may involve one or more peripherals, or no peripherals at all.

Using the Library
This topic describes the basic architecture of the Device Control System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_devcon. h
The interface to the Device Control System Service library is defined in the sys_devcon. h header file.
Please refer to the What is MPLAB Harmony? section for how the Device Control System Service interacts with the framework.

Abstraction Model
This topic provides a description of the software abstraction for the Device Control System Service.

Description

The Device Control System Service is a collection of device-specific operations that may not be tied to any specific peripheral, multiple peripherals,
or may not involve any peripherals at all. This service provides functions to optimize system performance, perform cache management, and do
other system-level tasks that may be needed by multiple modules.

Library Overview

Refer to the section System Services Introduction for how the system services operates in a system.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Device Control
module.

Library Interface Section Description

System Interaction Functions Provides system module APIs. Device initialization, deinitialization, reinitialization and
status functions.

Core Functionality Functions Device-specific configuration and control functions.

Cache Functions Configuration and control functions specific to L1 Cache.

Data Types and Constants Device-specific enumerations, structures, and constants.

How the Library Works

System Interaction

Initialization and Reinitialization
Initialization of the Device Control System Service initializes the status of the module and sets the state of the internal state machine.
The Device Control Status and Tasks routines are provided as stubs for future enhancement. They are not currently required for this system

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 105

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

service.

Core Functionality

System Performance Tuning

When any PIC32 device is powered up, the Program Flash Memory and Data RAM memory wait states are not set to optimum values. By setting
these wait states to the minimum required for the programmed clock speed, enabling the prefetch cache (if available), performance can be
optimized. This service provides a single API that performs this optimization across all PIC32 devices.

The SYS_DEVCON_PerformanceConfig function takes the current system clock frequency as an argument and uses this value to set the program
Flash wait states to the optimum value. It enables the Prefetch Cache module on both PIC32MX and PIC32MZ devices, and sets the SRAM Wait
state for PIC32MX devices.

SYS_DEVCON Per f or manceConfi g(unsigned int sysclk)

Performance Tuning Block Diagram

Prefetch Enable
PFM Wait States

l

Instructions prefetch Program
Cache Flash
Module Memory
System
CPU Bus
SRAM
Data

I

DRAM Wait States

System Locking and Unlocking

Many operations within the PIC32 device require the system to be unlocked before the operation is performed. This is a safety feature which
prevents errant code from altering critical settings by mistake. The unlock sequence consists of writing a series of "magic humbers" to a specific
register in sequence. The critical operation is then performed, and the system is relocked by writing to the same register. This service provides
convenient APIs that work across all PIC32 devices to perform this lock/unlock sequence.

SYS_DEVCON_Syst enlnl ock() ;

/1 critical operation

SYS_DEVCON_Syst enlock();

For the operations that require a lock/unlock sequence, refer to the specific device data sheet to determine the requirement for
Note: your device.

L1 Cache
This topic provides a description of the management functions for the Level 1 (L1) Cache that is available in PIC32MZ family devices.

Description

The Device Control System Service contains an interface for controlling the L1 Cache in the PIC32MZ family of devices.

The L1 cache is divided into two parts, a Data Cache (D-cache) and an Instruction Cache (I-cache). These blocks of high-speed memory both
serve to compensate for the lengthy access time of main memory, by fetching instructions and data for the CPU ahead of time. The CPU can then
access the information directly through the cache in a single clock cycle, rather than having to wait multiple clock cycles for accesses to main

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 106

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

memory. The L1 cache provides a drastic increase in performance, but the user must be aware of hazards that exist when using the cache.

Cache Coherency

Cache coherency is the discipline of ensuring that the data stored in main memory matches the corresponding data in the cache. The majority of
the cache-related APIs deal with cache coherency. These functions allow the user to flush, clean and invalidate entire cache(s), or just a range of
addresses within the cache.

Caches most often lose coherency when a bus master other than the CPU modifies memory. This happens frequently with DMA. Two examples
are provided in the following section.

Examples

Example 1:

Imagine a situation where you would like to transfer data from a source buffer to a destination buffer using DMA. You would write data to the
source buffer, start the DMA transfer, and then expect that the same data now appears in the destination buffer. With the cache in write-back
mode (the default mode for the PIC32MZ family), this will not be the case. When transferring data out of memory using DMA, it is possible that the
desired data is held in the D-cache, but has never been written back to main memory. Therefore, in this case, you write data to the source buffer
and it gets stored in cache. When the DMA transfer executes, it will pull the data from the source buffer out of RAM and then transfer it to the
destination buffer in RAM. The problem is that the fresh data was stored in the cache but never written back to RAM, so what has happened is that
stale data was copied over rather than the intended data. What is needed is a way to force the cache to write its data back to main memory before
the DMA transfer. This is known as a write-back operation and would be performed with the use of the function:
SYS_DEVCON_DataCacheClean(uint32_t addr, size_t len)

The example application, devcon_cache_clean, in the Device Control System Service Examples demonstrates this situation and shows how to
resolve the issue.

Example 2:

The second situation involves writing data into memory using DMA. Imagine that the cache is holding a chunk of data known as destination_buffer.
You then execute a DMA transfer to copy some new data from a source buffer into destination_buffer. The issue here is that main memory now
contains the correct data, but the cache holds a copy of stale data for destination_buffer. The CPU cannot see this problem and it will keep pulling
the data out of the cache, not even realizing that it's stale. What is needed is a way to tell the cache to pull the fresh data out of main memory, to
replace the stale data that the cache contains. This is known as an invalidate operation. It is performed with the use of the function:
SYS_DEVCON_DataCachelnvalidate(uint32_t addr, size_t len)

The example application, devcon_cache_invalidate, in the Device Control System Service Examples demonstrates this situation and shows how to
resolve the issue.

Configuring the Library

No configuration is required for the Device Control System Service.

Building the Library
This section lists the files that are available in the Device Control System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenf devcon.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description
sys_devcon. h Device Control System Service Library API header file.
Required File(s)

(s} All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
N MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/ srcl/ sys_devcon. c Device Control System Service Library implementation.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 107

Volume V: MPLAB Harmony Framework

Optional File(s)

System Service Libraries Help Device Control System Service Library

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name
src/sys_devcon_pi c32nx. ¢
/ src/ sys_devcon_pi c32nz. c

/ src/ sys_devcon_l ocal . h

/ src/ sys_devcon_cache_pi c3ne. S

Module Dependencies

Description
PIC32MX-specific implementation of SYS_DEVCON_PerformanceConfig.
PIC32MZ-specific implementation of SYS_DEVCON_PerformanceConfig.

Data structures and definitions used by the Device Control System Service, but not exposed to
clients.

PIC32MZ-specific implementation to support L1 Cache.

The Device Control System Service is not dependent upon any other modules.

Library Interface

a) System Interaction Functions

Name
SYS_DEVCON_Deinitialize
SYS_DEVCON_Initialize

SYS_DEVCON_REeinitialize
SYS_DEVCON_Status
SYS_DEVCON_Tasks

b) Core Functionality Functions

Name
SYS_DEVCON_SystemLock
SYS_DEVCON_SystemUnlock
SYS_DEVCON_JTAGDisable
SYS_DEVCON_JTAGEnable
SYS_DEVCON_TraceDisable
SYS_DEVCON_TraceEnable

¢ ¢ ¢ ¢ ¢ ¢ ¢ <

SYS_DEVCON_PowerModeEnter

c) Cache Functions

Name
SYS_DEVCON_CacheClean
SYS_DEVCON_CacheCoherency
SYS_DEVCON_CacheCoherency
SYS_DEVCON_CacheFlush
SYS_DEVCON_Cachelnit
SYS_DEVCON_CacheSync
SYS_DEVCON_DataCacheClean
SYS_DEVCON_DataCacheFlush

SYS_DEVCON_DataCachelLock
SYS_DEVCON_DataCacheAssoc
SYS_DEVCON_DataCacheLineSi

SYS_DEVCON_DataCacheSizeG

SYS_DEVCON_InstructionCachel

LR SR AR AR SR SR R R R R R R R R R R

© 2013-2017 Microchip Technology Inc.

Description
Deinitializes the specific module instance of the DEVCON module

Initializes data for the instance of the Device Control module and opens the specific module
instance.

Reinitializes and refreshes the hardware for the instance of the Device Control module.
Returns status of the specific instance of the Device Control module.
Maintains the system Device Control state machine.

Description

Performs a system lock sequence by writing to the SYSKEY register.
Performs a system unlock sequence by writing to the SYSKEY register.
Disables the JTAG port on the device.

Enables the JTAG port on the device.

Disables the trace output port on the device.

Enables the trace output port on the device.

SYS_DEVCON_PerformanceConfig Configures the PFM wait states and Prefetch Cache module for maximum performance.

Puts the device in a low-power state.

Description

Writes back and invalidates an address range in either cache.
Get Returns the current cache coherency attribute for ksegO.
Set Sets the cache coherency attribute for ksegO.

Flushes the L1 cache.

Initializes the L1 cache.

Synchronizes the instruction and data caches.

Writes back and invalidates an address range in the data cache.

Flushes the L1 data cache.

SYS_DEVCON_DataCachelnvalidate Invalidates an address range in the data cache.

Fetches and locks a block of data in the data cache.
iativityGet Returns the number of ways in the data cache.
zeGet Returns the data cache line size.

SYS_DEVCON_DataCacheLinesPerWayGet Returns the number of lines per way in the data cache.

et Returns the total number of bytes in the data cache.

SYS_DEVCON_InstructionCacheFlush Flushes (invalidates) the L1 instruction cache.

nvalidate Invalidates an address range in the instruction cache.

SYS_DEVCON_InstructionCachelLock Fetches and locks a block of instructions in the instruction cache.

MPLAB Harmony v2.06 108

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

SYS_DEVCON_InstructionCacheAssociativityGet |Returns the number of ways in the instruction cache.
SYS_DEVCON_InstructionCacheLineSizeGet Returns the instruction cache line size.
SYS_DEVCON_InstructionCacheLinesPerWayGet Returns the number of lines per way in the instruction cache.
SYS_DEVCON_InstructionCacheSizeGet Returns the total number of bytes in the instruction cache.

¢ ¢ ¢ <

d) Data Types and Constants

Name Description

SYS_DEVCON_HANDLE Identifies a particular registered event instance.
SYS_DEVCON_INIT Identifies the system device control initialize structure.
SYS_DEVCON_INDEX_0 Device Control System Service index definitions.
SYS_CACHE_COHERENCY System L1 cache coherency settings.
SYS_POWER_MODE System power mode settings.

Description

This section describes the APIs of the Device Control System Service Library.
Refer to each section for a detailed description.

a) System Interaction Functions

SYS_DEVCON_Deinitialize Function

Deinitializes the specific module instance of the DEVCON module
File

sys_devcon.h
C

voi d SYS _DEVCON Deinitialize(SYS_MODULE OBJ object);
Returns

None.

Description

This function deinitializes the specific module instance disabling its operation (and any hardware for driver modules). Resets all of the internal data
structures and fields for the specified instance to the default settings.

Remarks
Once the Initialize operation has been called, the Deinitialize operation must be called before the Initialize operation can be called again.

Preconditions

The SYS_DEVCON_ Initialize function should have been called before calling this function.

Example
SYS_MODULE_0OBJ obj ect ; /1 Returned from SYS_DEVCON | nitialize
SYS_STATUS st at us;

SYS DEVCON Deinitialize (object);

status = SYS DEVCON Status (object);
if (SYS_MODULE_DEI NI TI ALI ZED == st at us)

{
/1 Check again later if you need to know
/1 when the SYS DEVCON is deinitialized.
}
Parameters
Parameters Description
object SYS DEVCON object handle, returned from SYS_DEVCON_Initialize

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 109

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

Function
void SYS_DEVCON_Deinitialize(SYS_MODULE_OBJ object)

SYS_DEVCON_Initialize Function
Initializes data for the instance of the Device Control module and opens the specific module instance.
File

sys_devcon.h

C
SYS_MODULE_OBJ SYS DEVCON I nitialize(const SYS MODULE | NDEX i ndex, const SYS MODULE INIT * const init);
Returns
If successful, returns a valid handle to an object. Otherwise, it returns SYS_MODULE_OBJ_INVALID. The returned object must be passed as
argument to SYS_DEVCON_Reinitialize, SYS_DEVCON_Deinitialize, SYS_DEVCON_Tasks and SYS_DEVCON_Status routines.
Description
This function initializes the instance of the Device Control module, using the specified initialization data. It also initializes any internal data
structures.
Remarks

This routine should only be called once during system initialization unless SYS_DEVCON_Deinitialize is first called to deinitialize the device
instance before reinitializing it. If the system was already initialized it safely returns without causing any disturbance.

Preconditions

None.

Example
SYS MODULE _OBJ obj ect Handl e;
SYS_DEVCON INI'T initConfig;

/'l Popul ate the DEVCON initialization structure
i nitConfig.nodul elnit.value = SYS_MODULE _PONER_RUN_FULL;

obj ect Handl e = SYS DEVCON | nitialize (SYS_DEVCON | NDEX_ 0, (SYS_MODULE_ | NI T*) & nitConfig);
if (SYS_MODULE_OBJ_I NVALI D == obj ect Handl e)

/'l Handl e error

}
Parameters
Parameters Description
index Index for the instance to be initialized
init Pointer to a data structure containing any data necessary to initialize the Device Control
module. This pointer may be null if no data is required because static overrides have been
provided.
Function

SYS_MODULE_OBJ SYS_DEVCON_Initialize(const SYS_MODULE_INDEX index,
const SYS_MODULE_INIT * const init)

SYS_DEVCON_Reinitialize Function

Reinitializes and refreshes the hardware for the instance of the Device Control module.
File

sys_devcon.h

C
void SYS_DEVCON Reinitialize(SYS_MODULE_OBJ object, const SYS MODULE INIT * const init);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 110

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

Returns

None
Description

This function reinitializes the instance of the Device Control module using the supplied data. It modifies the internal data structure.
Remarks

This operation uses the same initialization data structure as the SYS_DEVCON_Initialize operation. This operation can be used to change the
power state of a DEVCON module. This function can be called multiple times to reinitialize the module. This operation uses the same initialization
data structure as the Initialize operation. This operation can also be used to refresh the hardware registers as defined by the initialization data.

Preconditions

The SYS_DEVCON_Initialize function should have been called before calling this function.

Example
SYS_MODULE_OBJ obj ect Handl e;
SYS_DEVCON_INIT i nitConfig;
SYS_STATUS devconsSt at us;

/'l Popul ate the device control initialization structure
i ni tConfig.nodul elnit.val ue = SYS_MODULE_POWER RUN FULL;

SYS _DEVCON Reinitialize (objectHandl e, (SYS_MODULE | N T*)& nitConfig);

devconStatus = SYS _DEVCON_Status (object);
i f (SYS_STATUS_ERROR >= devconsSt at us)

{
/1 Handl e error

}
Parameters

Parameters Description

object Identifies the SYS DEVCON Object returned by the Initialize interface

init Pointer to the data structure containing any data necessary to initialize the hardware
Function

void SYS_DEVCON_Reinitialize(SYS_MODULE_OBJ object,
const SYS_MODULE_INIT * const init)

SYS DEVCON_Status Function

Returns status of the specific instance of the Device Control module.
File

sys_devcon.h
C

SYS _STATUS SYS DEVCON St at us(SYS _MODULE _OBJ obj ect);

Returns

e SYS_STATUS_READY - Indicates that any previous operations have succeeded and the module is ready for additional operations. Any value
greater than SYS_STATUS_READY is also a nhormal running state in which the driver is ready to accept new operations.

* SYS_STATUS_BUSY - Indicates that the driver is busy with a previous system level operation and cannot start another.
* SYS_STATUS_ERROR - Indicates that the driver is in an error state. Any value less than SYS_STATUS_ERROR is also an error state.

* SYS_MODULE_DEINITIALIZED - Indicates that the driver has been deinitialized. This value is less than SYS_STATUS_ERROR. Once the
Initialize operation has been called, the Deinitialize operation must be called before the Initialize operation can be called again.

Description
This function returns the status of the specific module instance disabling its operation (and any hardware for driver modules).

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 111

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

Preconditions

The SYS_DEVCON_ Initialize function should have been called before calling this function.

Example
SYS_MODULE_OBJ obj ect; /1 Returned from SYS_DEVCON Initialize
SYS_STATUS t nr St at us;

devconStatus = SYS_DEVCON_Status (object);
el se if (SYS_STATUS ERROR >= devconSt at us)

/'l Handl e error

}
Parameters

Parameters Description

object SYS DEVCON object handle, returned from SYS_DEVCON_Initialize
Function

SYS_STATUS SYS_DEVCON_Status(SYS_MODULE_OBJ object)

SYS _DEVCON_Tasks Function
Maintains the system Device Control state machine.
File
sys_devcon.h
C
voi d SYS_DEVCON Tasks(SYS_MODULE_OBJ object);
Returns
None.
Description
This function is used to maintain the system Device Control internal state machine.
Remarks
This function is normally not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks) or by the appropriate raw ISR.
Preconditions
The SYS_DEVCON_Initialize function must have been called for the specified DEVCON driver instance.
Example
SYS_MODULE_OBJ obj ect ; /'l Returned from SYS_DEVCON Initialize

while (true)

{
SYS_DEVCON Tasks (object);

/'l Do other tasks

}
Parameters

Parameters Description

object SYS DEVCON object handle, returned from SYS_DEVCON_Initialize
Function

void SYS_DEVCON_Tasks(SYS_MODULE_OBJ object)

b) Core Functionality Functions

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 112

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

SYS DEVCON_SystemLock Function
Performs a system lock sequence by writing to the SYSKEY register.
File
sys_devcon.h
C
voi d SYS_DEVCON_Syst enLock();
Returns
None.
Description

Performs a system lock sequence by writing to the SYSKEY register. A system lock sequence is required after performing the action that required
a system lock sequence.

Remarks
None.
Preconditions
None.

Example

SYS_DEVCON_Syst enlnl ock();
/'l Perform sone action
SYS_DEVCON_Syst enfLock() ;

Function
void SYS_DEVCON_SystemLock(void)

SYS _DEVCON_SystemUnlock Function
Performs a system unlock sequence by writing to the SYSKEY register.
File
sys_devcon.h
C
voi d SYS_DEVCON_Syst enlnl ock();
Returns
None.
Description

Performs a system unlock sequence by writing to the SYSKEY register. A system unlock sequence is required before performing certain actions
such as changing a clock frequency or I/O unlocking.

Remarks
None.
Preconditions
None.

Example

SYS_DEVCON_Syst enlnl ock();
/'l Performsone action
SYS_DEVCON_Syst enlLock();

Function
void SYS_DEVCON_SystemUnlock(void)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 113

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

SYS DEVCON_JTAGDisable Function
Disables the JTAG port on the device.

File
sys_devcon.h

C
voi d SYS_DEVCON_JTAGDI sabl e();

Returns

None.
Description

This function disables the JTAG port on the device.
Remarks

None.
Preconditions

None.
Example

SYS_DEVCON_JTAGDI sabl e();
Function

void SYS_DEVCON_JTAGDisable(void)

SYS_DEVCON_JTAGEnable Function
Enables the JTAG port on the device.

File
sys_devcon.h

C
voi d SYS_DEVCON_JTAGEnabl e();

Returns
None.
Description
This function enables the JTAG port on the device.
Remarks
None.
Preconditions
None.
Example
SYS_DEVCON_JTAGEnabl e() ;

Function
void SYS_DEVCON_JTAGEnable(void)

SYS_DEVCON_TraceDisable Function

Disables the trace output port on the device.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 114

Volume V: MPLAB Harmony Framework System Service Libraries Help

File
sys_devcon.h

C
voi d SYS_DEVCON TraceDi sabl e();

Returns
None.
Description
This function disables the trace output port on the device.
Remarks
None.
Preconditions
None.
Example
SYS _DEVCON TraceDi sabl e();

Function
void SYS_DEVCON_TraceDisable(void)

SYS _DEVCON_TraceEnable Function
Enables the trace output port on the device.
File
sys_devcon.h

C
voi d SYS_DEVCON _TraceEnabl e();

Returns
None.
Description
This function enables the trace output port on the device.
Remarks
None.
Preconditions

None.

Example
SYS_DEVCON_Tr aceEnabl e() ;

Function
void SYS_DEVCON_TraceEnable(void)

SYS_DEVCON_PerformanceConfig Function

Configures the PFM wait states and Prefetch Cache module for maximum performance.

File
sys_devcon.h

C
voi d SYS_DEVCON_Per f or manceConfi g(unsi gned int sysclKk);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Device Control System Service Library

115

Volume V: MPLAB Harmony Framework System Service Libraries Help

Returns

None.

Description

This function configures the PFM wait states and Prefetch Cache module for maximum performance.

Remarks

None.

Preconditions

The SYS_DEVCON_Initialize function should have been called before calling this function.

Example
SYS_DEVCON_Per f or manceConf i g(SYS_FREQUENCY) ;

Function
void SYS_DEVCON_PerformanceConfig(unsigned int sysclk)

SYS_DEVCON_PowerModeEnter Function
Puts the device in a low-power state.

File
sys_devcon.h

C
voi d SYS_DEVCON_Power MbdeEnt er (SYS_PONER_MODE pwr Mode) ;

Returns

None.
Description

This function places the device in a low-power state.
Remarks

None.
Preconditions

None.

Example
SYS_DEVCON_Power MbdeEnt er (SYS_POWER_MODE_SLEEP) ;

Parameters

Parameters Description

pwrMode The low power state to enter.
Function

void SYS_DEVCON_PowerModeEnter(SYS_POWER_MODE pwrMode)

¢) Cache Functions

SYS _DEVCON_CacheClean Function
Writes back and invalidates an address range in either cache.
File

sys_devcon.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Device Control System Service Library

116

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

C
voi d SYS_DEVCON Cached ean(uint32_t addr, size_t len);

Returns
None.
Description
This function writes back (data) and invalidates (data and address) an address range in either cache.
Remarks
None.
Preconditions
None.

Example
SYS_DEVCON_Cached ean(&nyData, sizeof (nmyData));

Parameters
Parameters Description
addr Starting address of data block.
len Size of data block.
Function

void SYS_DEVCON_CacheClean(uint32_t addr, size_t len)

SYS DEVCON_CacheCoherencyGet Function
Returns the current cache coherency attribute for ksegO.
File
sys_devcon.h

C
SYS CACHE COHERENCY SYS DEVCON CacheCoher encyGet () ;

Returns
The current cache coherency attribute for ksegO.
Description
This function returns the current cache coherency attribute for ksegO.
Remarks
None.
Preconditions

None.

Example

SYS_CACHE_COHERENCY cacheCoher ency;
cacheCoherency = SYS_DEVCON CacheCoherencyGet ();

Function
SYS_CACHE_COHERENCY SYS_DEVCON_CacheCoherencyGet(void)

SYS_DEVCON_CacheCoherencySet Function
Sets the cache coherency attribute for ksegO.
File

sys_devcon.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 117

Volume V: MPLAB Harmony Framework System Service Libraries Help

C

voi d SYS_DEVCON _CacheCoher encySet (SYS_CACHE_COHERENCY cacheCoher ency);

Returns

None.
Description

This function sets the cache coherency attribute for ksegO.
Remarks

Use with caution. May cause unpredictable behavior in a running system.
Preconditions

None.

Example
SYS_DEVCON_CacheCoher encySet (SYS_CACHE_WRI TEBACK_W\RI TEALLOCATE) ;

Parameters

Parameters Description

cacheCoherency The desired coherency attribute.
Function

void SYS_DEVCON_CacheCoherencySet(SYS_CACHE_COHERENCY cacheCoherency)

SYS DEVCON_CacheFlush Function
Flushes the L1 cache.

File
sys_devcon.h

C
voi d SYS_DEVCON_CacheFl ush();

Returns

None.

Description

Device Control System Service Library

This function flushes both instruction and data caches. Invalidate entire instruction cache; writes back and invalidates the entire data cache.

Remarks

Simplest way to synchronize caches with memory, but not necessarily the most efficient.

Preconditions

None.

Example
SYS_DEVCON_CacheFl ush() ;

Function
void SYS_DEVCON_CacheFlush(void)

SYS DEVCON_Cachelnit Function
Initializes the L1 cache.
File

sys_devcon.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

118

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

C
voi d SYS_DEVCON Cachel ni t (SYS_CACHE_COHERENCY cacheCoher ency);

Returns

None.
Description

This function initializes both instruction and data caches. Invalidates all entries and zeros all tags. Sets coherency attribute for ksegO.
Remarks

Use with caution. Invalidates all cache lines without writing data back to memory. Any dirty data in the cache will be lost.
Preconditions

None.

Example
SYS_DEVCON_Cachel ni t (SYS_CACHE_WRI TEBACK_\\RI TEALLCOCATE) ;

Parameters

Parameters Description

cacheCoherency The desired kseg0 coherency attribute.
Function

void SYS_DEVCON_Cachelnit(SYS_CACHE_COHERENCY cacheCoherency)

SYS _DEVCON_CacheSync Function
Synchronizes the instruction and data caches.
File
sys_devcon.h
C
voi d SYS_DEVCON CacheSync(uint32_t addr, size_t len);
Returns
None.

Description

This function synchronizes the instruction and data caches. Used when modifying the instruction stream (breakpoints, self-modifying code,
relocating executable code to RAM). Flushes an address range from the data cache and invalidates that same range from the instruction cache.

Remarks
None.
Preconditions
None.

Example
SYS DEVCON CacheSync(&ryCode, mnyCodeSi ze);

Parameters
Parameters Description
addr Starting address of code block.
len Size of code block.
Function

void SYS_DEVCON_CacheSync(uint32_t addr, size_t len)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 119

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

SYS_DEVCON_DataCacheClean Function
Writes back and invalidates an address range in the data cache.
File
sys_devcon.h
C
voi d SYS_DEVCON Dat aCached ean(uint32_t addr, size_t len);
Returns
None.
Description
This function writes back and invalidates an address range in the data cache.
Remarks
None.
Preconditions

None.

Example
SYS_DEVCON_Dat aCached ean(&ryDat a, sizeof (nyData));

Parameters
Parameters Description
addr Starting address of data block.
len Size of data block.
Function

void SYS_DEVCON_DataCacheClean(uint32_t addr, size_tlen)

SYS_DEVCON_DataCacheFlush Function
Flushes the L1 data cache.

File
sys_devcon.h

C
voi d SYS_DEVCON Dat aCacheFl ush();

Returns

None.
Description

This function writes back and invalidates the entire data cache.
Remarks

None.
Preconditions

None.
Example

SYS_DEVCON_Dat aCacheFl ush();
Function

void SYS_DEVCON_DataCacheFlush(void)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 120

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS_DEVCON_DataCachelnvalidate Function
Invalidates an address range in the data cache.
File
sys_devcon.h
C
voi d SYS_DEVCON Dat aCachel nval i date(ui nt32_t addr, size_t len);
Returns
None.
Description
This function invalidates an address range in the data cache.
Remarks
Use caution. Any dirty data in the cache will be lost.
Preconditions

None.

Example
SYS_DEVCON_Dat aCachel nval i dat e(&ryDat a, sizeof (nmyData));

Parameters
Parameters Description
addr Starting address of data block.
len Size of data block.
Function

void SYS_DEVCON_DataCachelnvalidate(uint32_t addr, size_t len)

SYS_DEVCON_DataCachelLock Function
Fetches and locks a block of data in the data cache.
File
sys_devcon.h

C
voi d SYS_DEVCON Dat aCacheLock(ui nt32_t addr, size_t len);

Returns
None.
Description
This function fetches and locks a block of data in the data cache.

Remarks

Global flush functions will invalidate and unlock any cache lines locked with this function.

Preconditions

None.

Example
SYS_DEVCON_Dat aCacheLock(&ryData, sizeof (nyData));

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Device Control System Service Library

121

Volume V: MPLAB Harmony Framework

Parameters
Parameters Description
addr Starting address of data block.
len Size of data block.
Function

void SYS_DEVCON_DataCachelLock(uint32_t addr, size_tlen)

SYS _DEVCON_DataCacheAssociativityGet Function
Returns the number of ways in the data cache.
File
sys_devcon.h
C
size_t SYS _DEVCON Dat aCacheAssociativityGet();
Returns
The number of ways in the data cache.
Description
This function returns the number of ways in the data cache.
Remarks
None.
Preconditions
None.

Example

unsi gned int size;
size = SYS_DEVCON_Dat aCacheAssoci ati vityCet();

Function
size_t SYS_DEVCON_DataCacheAssociativityGet(void)

SYS DEVCON_DataCacheLineSizeGet Function
Returns the data cache line size.
File

sys_devcon.h

C

size_t SYS_DEVCON_Dat aCachelLi neSi zeCet () ;
Returns

The number of bytes per line in the data cache.
Description

This function returns the data cache line size.
Remarks

None.

Preconditions

None.

Example

unsi gned int size;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

System Service Libraries Help

Device Control System Service Library

122

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

size = SYS_DEVCON Dat aCacheli neSi zeGet () ;

Function
size_t SYS_DEVCON_DataCacheLineSizeGet(void)

SYS _DEVCON_DataCacheLinesPerWayGet Function
Returns the number of lines per way in the data cache.
File

sys_devcon.h

C

size_t SYS_DEVCON Dat aCachelLi nesPerWayGet () ;
Returns

The number of lines per way in the data cache.
Description

This function returns the number of lines per way in the data cache.
Remarks

None.
Preconditions
None.

Example

unsi gned int size;
si ze = SYS_DEVCON_Dat aCacheLi nesPer WayGet () ;

Function
size_t SYS_DEVCON_DataCacheLinesPerWayGet(void)

SYS DEVCON_DataCacheSizeGet Function

Returns the total number of bytes in the data cache.
File

sys_devcon.h
C

size_t SYS_DEVCON Dat aCacheSi zeGet () ;
Returns

The total number of bytes in the data cache.
Description

This function returns the total number of bytes in the data cache.
Remarks

None.
Preconditions

None.

Example

unsi gned int size;
size = SYS_DEVCON _Dat aCacheSi zeGet () ;

Function
size_t SYS_DEVCON_DataCacheSizeGet(void)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 123

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS_DEVCON_InstructionCacheFlush Function
Flushes (invalidates) the L1 instruction cache.
File
sys_devcon.h
C
voi d SYS_DEVCON I nstructionCacheFl ush();
Returns
None.
Description
This function invalidates the entire instruction cache.
Remarks
None.
Preconditions

None.

Example

SYS_DEVCON_I nstructi onCacheFl ush();
Function

void SYS_DEVCON_InstructionCacheFlush(void)

SYS_DEVCON_InstructionCachelnvalidate Function
Invalidates an address range in the instruction cache.
File
sys_devcon.h
C
voi d SYS_DEVCON I nstructionCachel nval i date(ui nt32_t addr, size_t
Returns
None.
Description
This function invalidates an address range in the instruction cache.
Remarks
None.
Preconditions
None.

Example
SYS_DEVCON I nstructi onCachel nval i dat e(&ryCode, nyCodeSi ze) ;

Parameters
Parameters Description
addr Starting address of code block.
len Size of code block.
Function

void SYS_DEVCON_InstructionCachelnvalidate(uint32_t addr, size_tlen)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Device Control System Service Library

124

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

SYS_DEVCON_InstructionCachelLock Function

Fetches and locks a block of instructions in the instruction cache.
File

sys_devcon.h
C

voi d SYS_DEVCON I nstructionCacheLock(uint32_t addr, size_t len);
Returns

None.
Description

This function fetches and locks a block of instructions in the instruction cache.
Remarks

Global flush functions will invalidate and unlock any cache lines locked with this function.
Preconditions

None.

Example
SYS_DEVCON_ I nstructi onCacheLock(&ryCode, nyCodeSi ze);

Parameters
Parameters Description
addr Starting address of code block.
len Size of code block.
Function

void SYS_DEVCON_InstructionCachelock(uint32_t addr, size_t len)

SYS_DEVCON_InstructionCacheAssociativityGet Function
Returns the number of ways in the instruction cache.
File

sys_devcon.h

C

size_t SYS _DEVCON I nstructionCacheAssociativityGet();
Returns

The number of ways in the instruction cache.
Description

This function returns the number of ways in the instruction cache.
Remarks

None.
Preconditions
None.

Example

unsi gned int size;
size = SYS DEVCON | nstructi onCacheAssociativityGet();

Function
size_t SYS_DEVCON_InstructionCacheAssociativityGet(void)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 125

Volume V: MPLAB Harmony Framework System Service Libraries Help Device Control System Service Library

SYS_DEVCON_InstructionCachelLineSizeGet Function
Returns the instruction cache line size.
File

sys_devcon.h

C

size_t SYS DEVCON | nstructionCachelLineSi zeGet ();
Returns

The number of bytes per line in the instruction cache.
Description

This function returns the instruction cache line size.
Remarks

None.

Preconditions

None.

Example

unsi gned int size;
size = SYS DEVCON | nstructionCachelLi neSi zeGet () ;

Function
size_t SYS_DEVCON_InstructionCacheLineSizeGet(void)

SYS_DEVCON_InstructionCacheLinesPerWayGet Function
Returns the number of lines per way in the instruction cache.
File

sys_devcon.h

C

size_t SYS_DEVCON I nstructionCachelLi nesPer\WayGet () ;
Returns

The number of lines per way in the instruction cache.
Description

This function returns the number of lines per way in the instruction cache.
Remarks

None.

Preconditions

None.

Example

unsi gned int size;
size = SYS_DEVCON I nstructi onCacheLi nesPer WayGet () ;

Function
size_t SYS_DEVCON_InstructionCacheLinesPerWayGet(void)

SYS DEVCON_InstructionCacheSizeGet Function

Returns the total number of bytes in the instruction cache.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 126

Volume V: MPLAB Harmony Framework System Service Libraries Help

File
sys_devcon.h

C
size_t SYS DEVCON I nstructionCacheSi zeGet ();

Returns
The total number of bytes in the instruction cache.
Description
This function returns the total number of bytes in the instruction cache.
Remarks
None.
Preconditions
None.

Example

unsi gned int size;
size = SYS_DEVCON I nstructi onCacheSi zeGet () ;

Function
size_t SYS_DEVCON_InstructionCacheSizeGet(void)

d) Data Types and Constants

SYS_DEVCON_HANDLE Type

Identifies a particular registered event instance.
File

sys_devcon.h

C
typedef int8_t SYS DEVCON HANDLE;

Description

Device Control System Service Library

SYS DEVCON Handle. This event handle identifies a registered instance of an event. Every time the application that tries to access the

parameters with respect to a particular event, shall used this event handle to refer to that event.

Remarks

None.

SYS _DEVCON_INIT Structure
Identifies the system device control initialize structure.
File

sys_devcon.h

C
typedef struct {
SYS_MODULE_INI'T nodul el nit;
} SYS_DEVCON INT;
Members
Members Description
SYS_MODULE_INIT modulelnit; System module initialization

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

127

Volume V: MPLAB Harmony Framework System Service Libraries Help

Description

SYS DEVCON Initialize structure

This structure identifies the system device control initialize structure.
Remarks

None.

SYS_DEVCON_INDEX_0 Macro
Device Control System Service index definitions.
File
sys_devcon.h
C
#define SYS_DEVCON INDEX 0 O
Description
SYS Device Control Module Index Numbers
These constants provide Device Control System Service index definitions.
Remarks

These constants should be used in place of hard-coded numeric literals.

SYS CACHE_COHERENCY Enumeration
System L1 cache coherency settings.

File
sys_devcon.h

C

typedef enum {
SYS_CACHE_WRI TETHROUGH_NO WRI TEALLOCATE = 0,
SYS_CACHE_WRI TETHROUGH W\RI TEALLOCATE = 1,
SYS_CACHE_DI SABLE = 2,
SYS_CACHE_W\RI TEBACK_WRI TEALLOCATE = 3

} SYS_CACHE_COHERENCY;

Description

SYS_CACHE_COHERENCY enumeration

This enumeration defines the supported system L1 cache coherency settings.
Remarks

Used to read or write cache coherency policy for ksegO.

SYS POWER_MODE Enumeration
System power mode settings.

File
sys_devcon.h

C

typedef enum {
SYS_POAER_MODE_| DLE,
SYS_PONER_MODE_SLEEP
} SYS_POWER_MODE;
Description

SYS_POWER_MODE enumeration
This enumeration defines the supported system power mode settings.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Device Control System Service Library

128

Volume V: MPLAB Harmony Framework

Remarks

None.

Files

Files

Name

sys_devcon.h

Description

Description

System Service Libraries Help Device Control System Service Library

Device Control (DEVCON) System Service interface definition.

This section lists the source and header files used by the library.

sys_devcon.h

Device Control (DEVCON) System Service interface definition.

Enumerations

Functions

LR AR R AR SR SR R R R R R R R R R

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ <

<

© 2013-2017 Microchip Technology Inc.

Name Description
SYS_CACHE_COHERENCY System L1 cache coherency settings.
SYS_POWER_MODE System power mode settings.

Name Description

SYS_DEVCON_CacheClean
SYS_DEVCON_CacheCoherencyGet
SYS_DEVCON_CacheCoherencySet
SYS_DEVCON_CacheFlush
SYS_DEVCON_Cachelnit
SYS_DEVCON_CacheSync
SYS_DEVCON_DataCacheAssociativityGet
SYS_DEVCON_DataCacheClean
SYS_DEVCON_DataCacheFlush
SYS_DEVCON_DataCachelnvalidate
SYS_DEVCON_DataCacheLineSizeGet
SYS_DEVCON_DataCacheLinesPerWayGet
SYS_DEVCON_DataCacheLock
SYS_DEVCON_DataCacheSizeGet
SYS_DEVCON_Deinitialize
SYS_DEVCON_Initialize

SYS_DEVCON_InstructionCacheAssociativityGet
SYS_DEVCON_InstructionCacheFlush
SYS_DEVCON_InstructionCachelnvalidate
SYS_DEVCON_InstructionCacheLineSizeGet
SYS_DEVCON_InstructionCacheLinesPerWayGet
SYS_DEVCON_InstructionCacheLock
SYS_DEVCON_InstructionCacheSizeGet
SYS_DEVCON_JTAGDisable
SYS_DEVCON_JTAGEnable
SYS_DEVCON_PerformanceConfig

SYS_DEVCON_PowerModeEnter
SYS_DEVCON_REeinitialize

SYS_DEVCON_Status
SYS_DEVCON_SystemLock

Writes back and invalidates an address range in either cache.
Returns the current cache coherency attribute for ksegO.

Sets the cache coherency attribute for ksegO.

Flushes the L1 cache.

Initializes the L1 cache.

Synchronizes the instruction and data caches.

Returns the number of ways in the data cache.

Writes back and invalidates an address range in the data cache.
Flushes the L1 data cache.

Invalidates an address range in the data cache.

Returns the data cache line size.

Returns the number of lines per way in the data cache.

Fetches and locks a block of data in the data cache.

Returns the total number of bytes in the data cache.
Deinitializes the specific module instance of the DEVCON module

Initializes data for the instance of the Device Control module and opens the
specific module instance.

Returns the number of ways in the instruction cache.

Flushes (invalidates) the L1 instruction cache.

Invalidates an address range in the instruction cache.

Returns the instruction cache line size.

Returns the number of lines per way in the instruction cache.
Fetches and locks a block of instructions in the instruction cache.
Returns the total number of bytes in the instruction cache.
Disables the JTAG port on the device.

Enables the JTAG port on the device.

Configures the PFM wait states and Prefetch Cache module for maximum
performance.

Puts the device in a low-power state.

Reinitializes and refreshes the hardware for the instance of the Device Control
module.

Returns status of the specific instance of the Device Control module.
Performs a system lock sequence by writing to the SYSKEY register.

MPLAB Harmony v2.06 129

Volume V: MPLAB Harmony Framework

@ SYS_DEVCON_SystemUnlock
@ SYS_DEVCON_Tasks
@ SYS_DEVCON_TraceDisable
@ SYS_DEVCON_TraceEnable
Macros
Name
SYS_DEVCON_INDEX_0
Structures
Name
SYS_DEVCON_INIT
Types
Name
SYS_DEVCON_HANDLE
Description

Device Control System Service Interface Definition

System Service Libraries Help Direct Memory Access (DMA) System Service

Performs a system unlock sequence by writing to the SYSKEY register.
Maintains the system Device Control state machine.

Disables the trace output port on the device.

Enables the trace output port on the device.

Description
Device Control System Service index definitions.

Description
Identifies the system device control initialize structure.

Description
Identifies a particular registered event instance.

This file contains the interface definition for the Device Control System Service. It provides a way to interact with the Device Control subsystem to
manage the device control requests supported by the system.

File Name
sys_devcon.h
Company

Microchip Technology Inc.

Direct Memory Access (DMA) System Service Library

This section describes the Direct Memory Access (DMA) System Service Library.

Introduction

This library provides an interface to interact with the DMA subsystem to control and manage the data transfer between different peripherals and/or

memory without intervention from the CPU.

Description

The Direct Memory Access (DMA) controller is a bus master module that is useful for data transfers between different peripherals without
intervention from the CPU. The source and destination of a DMA transfer can be any of the memory-mapped modules. For example, memory, or
one of the Peripheral Bus (PBUS) devices such as the SPI, UART, and so on.

Using the Library

This topic describes the basic architecture of the DMA System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_dma. h

The interface to the DMA System Service library is defined in the sys_dma. h header file. This file is included by the syst em h file. Any C
language source (. c) file that uses the DMA System Service Library should include syst em h.

Please refer to the What is MPLAB Harmony? section for how the DMA System Service interacts with the framework.

Abstraction Model

This model explains how the system interfaces with the DMA System Service and the application.

Description

This library provides an abstraction of the DMA subsystem that is used by device drivers, middleware libraries and applications to transmit and

receive data.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 130

Volume V: MPLAB Harmony Framework

DMA System Service

System Service Libraries Help

DMA Software Abstraction Block Diagram

Driver, Middleware, or
Application

DMA System Service

Initizlization and Task
Channel Setup and
Management
Globzl Control and Status

DMA Peripheral Library

Direct Memory Access (DMA) System Service

The DMA system services provide support for initializing the DMA controller, managing the transfer state machine, setup/management of
channels, and global module control and status management.

Initialization and Tasks

Each software module (device driver, middleware, or application) that needs to use the DMA for data transfer must enable the DMA controller. This
is normally done by calling the initialization routine of the DMA subsystem in the module's initialization routine, which is called by the SYS_Initialize
service. The initialization routine returns a DMA module object, which should be used as a parameter in the call to Task routines.

The Task routines implement the data transfer state machine for synchronous and asynchronous data transfer operations. If Asynchronous
(interrupt) mode of operation is desired, the Task routine (SYS_DMA_Tasks) should be called from the respective channel ISR. If Synchronous
mode of operation if desired, the Task routine (SYS_DMA_Tasks) should be called from the SYS_Tasks function.

Channel Setup and Management

Any module that needs to use the DMA system service must request for channel allocation. An allocated channel is used to setup the channel
parameters like the mode of operation(Basic, CRC, chaining etc). Setup the transfer trigger types(Synchronous/Asynchronous). Add a transfer by
Setting up the source, destination address and transfer sizes. The DMA transfer starts either forcefully or based on events according to the setting.
The channel status events are used to manage the data transfer.

Global Control and Status Management

Provides for control and status of the DMA module. The user can suspend a DMA operation or alternatively resume an already suspended
operation. The status of last DMA operation can also be retrieved.

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the DMA module.

Library Interface Section ' Description

Initialization and Task These functions initialize and enable the DMA subsystem and manage the task State machine.

Functions

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

131

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Channel Setup and These DMA Channel and Setup Management functions enable:
Management Functions « Channel Allocation and Release

» Setting up of a channel for basic and advanced modes of operations

» Channel Enable/Disable

* Adding a data transfer

» Synchronous data transfer start/abort

» Asynchronous data transfer start/abort

* Channel Busy status

* Channel Computed CRC

e Setting the transfer event trigger callback

Global Control and Status | These DMA functions enable global control and status.
Functions

How the Library Works

Initialization and Tasks
Describes the functions that can be used for DMA initialization, and provides examples of their usage.

Description

Initialization Function Usage

The DMA subsystem is initialized by calling the initialization routine. The routine also enables the DMA module.
Function Name: SYS_DMA _Initialize

Example
/1 To Enable the Stop in Idle node feature

SYS MODULE _OBJ obj ect Handl e;
SYS DMA INIT initParam

i nitParamsidl = SYS DMA SI DL_ENABLE;

obj ectHandl e = SYS DMA | nitialize((SYS MODULE | NI T*)&i nitParamm);
i f (SYS_MODULE_OBJ_| NVALI D == obj ect Handl €)

{
/'l Handl e error

}

Task Function Usage
The task routine implements the data transfer state machine and returns a callback on the completion, abortion, or error in a data transfer.
Function Name: SYS_DMA_Tasks

Example
/] 'objectHandl e’ Returned from SYS_DVA Initialize
/'l Following is the DVA Channel 3 ISR

void __| SR(_DVA3_VECTOR, ipl1AUTO _I ntHandl er SysDmaChO(voi d)
{

}

SYS_DMA Tasks(obj ect Handl e, DVA CHANNEL_3);

Use SYS_DMA_Tasks(objectHandle) for devices that have a common interrupt vector for all DMA channels.
Note:

Function Name: SYS_DMA_TasksError

Example

/1 '"object' Returned from SYS DVA Initialize
while (true)
{

SYS_DVA TasksError (object);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 132

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

/1l Do other tasks

The SYS_DMA_TasksError function should be used in Synchronous (polling) mode only. This function should not be called from
Note: anISR.

Function Name: SYS_DMA_TasksISR

Example
/1 '"object' Returned from SYS DVA Initialize
/1 Channel 3 is setup for receiving data by USART peripheral in interrupt node

/'l Followi ng is the DVA Channel 3 ISR

void __ | SR(_DVA3_VECTOR, i pl 5) _InterruptHandl er BT _USART_RX_DMA CHANNEL(voi d)

{
SYS DMA Tasks! SR(obj ect, DMA_CHANNEL_3);

}

The SYS_DMA_TasksISR function should be used in Asynchronous (interrupt) mode only. This function should not be called from
Note: the SYS_Tasks function.

Function Name: SYS_DMA_TasksErrorISR

Example
/1 'object' Returned from SYS_DVA Initialize

/1 Channel 3 is setup for receiving data by USART peripheral in interrupt node
/1 Following is the DVA Channel 3 ISR

void __ | SR(_DVA3_VECTOR, i pl 5) _InterruptHandl er _BT_USART_RX_DMA_CHANNEL(voi d)
{
SYS DVA TasksError| SR(obj ect, DMA CHANNEL_3);

}

The SYS_DMA_TasksErrorISR function should be used in Asynchronous (interrupt) mode only. This function should not be called
Note: from the SYS_Tasks function.

Channel Setup and Management
Describes the functions that can be used for DMA channel setup and management, and provides examples of their usage.

Description

Channel Allocation and Release Functions

Channel Allocate and Release functions allocate/release a particular channel from the available channels on the particular device.

Channel Allocation Function

Channel Allocate function takes a parameter specifying the requested channel number. If the requested channel is available the function allocates
the channel and returns a channel handle. If the user is not particular about any specific channel, the user can specify DMA_CHANNEL_ANY
enumerator values. When DMA_CHANNEL_ANY values are specified an available channel is allocated and a channel handle is returned. The
function returns an invalid channel handle SYS_DMA_CHANNEL_HANDLE_INVALID when the requested channel is not available for allocation.

The valid channel handle returned by this function must be used in all subsequent DMA channel function calls.
Function Name: SYS_DMA_ChannelAllocate

Example 1

/* The follow ng exanpl es requests for allocation of a channel handle wi th Channel nunber 2 */
SYS_DVA_CHANNEL_HANDLE handl e

DMVA_CHANNEL channel ;

channel = DMA CHANNEL_2;

handl e = SYS_DMA Channel Al | ocat e(channel) ;

Example 2
/* The follow ng exanpl e requests for allocation of a channel handle with no choice of channel number */

SYS_DMA_CHANNEL_HANDLE handl e

DIVA_CHANNEL channel ;

channel = DMA CHANNEL_ANY;

handl e = SYS_DMA Channel Al | ocat e(channel);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 133

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Precondition: DMA should be initialized by calling SYS_DMA _Initialize.

Channel Release Function

Channel Release function Deallocates and frees the DMA channel specified by the channel handle.
Function Name: SYS_DMA_ChannelRelease

Example

/* The follow ng exanpl e requests for release of a channel handle with Channel nunber 2 */
DVA_CHANNEL channel ;

SYS DMA CHANNEL_HANDLE handl e;

channel = DMA_CHANNEL_2;

handl e = SYS_DMA Channel Al | ocat e(channel) ;

SYS_DMA Channel Rel ease(handl e) ;

Precondition: DMA should be initialized by calling SYS_DMA _Initialize.

Channel Setup Functions
The DMA subsystem supports the following modes of operations. The setting up of these modes of operation can be done by the following
functions.
» Basic Transfer Mode
» Pattern Match Abort Mode
¢ Channel Chaining Mode
» Channel Auto Enable Mode
* CRC Mode

The operation modes are not mutually exclusive.
Note:

General Channel Setup Function

This function sets up the channel for the supported operating modes. The function does the following:
e Sets up the channel priority

« Enables the specified mode

e Sets up the DMA asynchronous transfer mode

If the DMA channel transfer is intended to be synchronous, the parameter 'eventSrc' (asynchronous trigger source) can be specified as
‘DMA_TRIGGER_SOURCE_NONE'. When the channel trigger source is specified as ‘DMA_TRIGGER_SOURCE_NONE’, The DMA channel
transfer needs to be forcefully started by calling the respective function.

1. Enabling of the available operation mode is not mutually exclusive. More than one operation mode can be enabled by bitwise
Notes: ORing the operating mode enable parameter.

2. To setup the specific features of the supported operation modes the corresponding function needs to be called after calling
this function.

Function Name: SYS_DMA_ChannelSetup

Example
/* Configure channel nunber, priority and enabl es basic and CRC node */
SYS_DMA_CHANNEL_HANDLE handl e;

DMVA_CHANNEL channel ;

SYS_DMA CHANNEL_OP_MODE nodeEnabl e;

DVA_TRI GGER_SOURCE event Src;

channel = DVA _CHANNEL_2;

nodeEnabl e = (SYS_DVA_CHANNEL_OP_MODE_BASI C | SYS_DMA CHANNEL_OP_MODE_CRC) ;
event Src = DVA_TRI GGER_USART_1_TRANSM T,

handl e = SYS _DMA Channel Al | ocat e(channel) ;

SYS_DMA Channel Set up(handl e, nbdeEnabl e, event Src);
Precondition: DMA should be initialized by calling SYS_DMA_Initialize.

Pattern Match Abort Mode Function
This function sets up the termination of DMA operation when the specified pattern is matched. Additionally on supported devices, the function also
sets up the ignoring of part of a pattern (8-bit) from match abort pattern (16-bit).
Before calling this function the pattern match termination mode must have been enabled by calling the general channel setup function
Function Name: SYS_DMA_ChannelSetupMatchAbortMode

Example 1
/* The following code is for a device with 8-bit pattern value and no support for pattern match ignore
feature */

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 134

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

SYS_DMA_CHANNEL_HANDLE handl e;
DMA_CHANNEL channel ;
uint16_t pattern;
DVA_PATTERN_LENGTH I ength
SYS_DMA_CHANNEL_| GNORE_MATCH i gnor e;

ui nt8_t i gnorePattern;
channel = DVA _CHANNEL_2;

priority = DVA _CHANNEL_PRI ORI TY_1;

pattern = 0x00; //Stop transfer on detection of a NULL character

| ength = DVA_PATTERN_LENGTH_NONE;

i gnore = SYS_DMA_CHANNEL_| GNORE_MATCH DI SABLE;

i gnorePattern = 0;

handl e = SYS DMA Channel Al | ocat e(channel) ;

SYS_DMA_Channel Set upMat chAbort Mode(handl e, pattern, |ength, ignoreEnable, ignorePattern);
Example 2

/* The followi ng code is for a device with 16-bit pattern value and support for pattern natch ignore
feature */

SYS_DVA_CHANNEL_HANDLE handl e;

DVA_CHANNEL channel ;

uint16_t pattern;

DVA_PATTERN_LENGTH | ength

SYS DMA CHANNEL_| GNORE_MATCH i gnor e;

uint8_t i gnorePattern;

priority = DVA CHANNEL_PRI ORI TY_1;

channel = DIVA_CHANNEL_2;

pattern = OxODOA; //Stop transfer on detection of '\r\n'

| ength = DVA_PATTERN_NMATCH_LENGTH_2BYTES;

i gnore = SYS_DVA_CHANNEL_| GNORE_NMATCH_ENABLE;

i gnorePattern 0x00; \\ Any null character between the termination pattern '\r' and '\n'
handl e SYS _DMA _Channel Al | ocat e(channel) ;

SYS_DMA _Channel Set upMat chAbor t Mode(handl e, pattern, length, ignore, ignorePattern);

Preconditions:
1. DMA should be initialized by calling SYS_DMA_Initialize.
2. Channel should be setup and pattern match mode enabled by calling SYS_DMA_ChannelSetup.

CRC Operation Mode Setup Function

is ignored.

This function sets up the CRC computation features of the channel. Before calling this function the CRC mode must have been enabled by calling

the general channel setup function
Function Name: SYS_DMA_ChannelSetupCRCMode

Example

/* DMA cal cul ation using the CRC background node */
SYS DVA CHANNEL _HANDLE handl e;
DVA_CHANNEL channel ;

SYS_DMA_CHANNEL_OPERATI ON_MODE_CRC cr c;

channel = DMA_CHANNEL_2;

crc.type = DVA_CRC_LFSR;

crc. node = SYS_DVA CHANNEL _CRC_MODE_BACKGROUND;
crc. polyLength = 16;

crc. bitOder = DVA CRC BI T_ORDER _LSB;

crc. byteOrder = DMA CRC BYTEORDER_NO_SWAPPI NG
crc.witeOrder = SYS DVA CRC WRI TE_ORDER_MNAI NTAI N;

crc.data = OxFFFF;
crc. xorBi t Mask = 0x1021;
handl e = SYS_DMA Channel Al | ocat e(channel) ;

SYS_DMA Channel CRCSet (handl e, crc);

Preconditions:

1. DMA should be initialized by calling SYS_DMA_Initialize.

2. Channel should be setup and CRC mode enabled by calling SYS_DMA_ChannelSetup.

Channel Enable/Disable Functions

The Enable/Disable functions allow to enable/disable a channel on the run.

When a data transfer is added by calling SYS_DMA_ChannelTransferAdd, the channel is automatically enabled.
Note:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

135

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Function Name: SYS_DMA_ChannelEnable

Example

SYS_DMA_CHANNEL_HANDLE handl e;

DIVA_CHANNEL channel ;

channel = DMA CHANNEL_2;

handle = SYS_DMA Channel Al | ocat e(channel) ;
SYS_DMA_Channel Enabl e(handl e) ;

Precondition: DMA should be initialized by calling SYS_DMA _Initialize.
Function Name: SYS_DMA_ChannelDisable

Example
SYS_DVA CHANNEL_HANDLE handl e;
DIVA_CHANNEL channel ;

channel = DVA CHANNEL 2;
handl e = SYS_DMA Channel Al | ocat e(channel) ;
SYS_DMA_Channel Di sabl e(handl e) ;

Precondition: DMA should be initialized by calling SYS_DMA_Initialize.

Channel Data Transfer Function
This function adds a data transfer to a DMA channel and Enables the channel to start data transfer. The source and the destination addresses,
source and destination lengths, The number of bytes transferred per cell event are set and the channel is enabled to start the data transfer.
Function Name: SYS_DMA_ChannelTransferAdd

Example
/* Add 10 bytes of data transfer to UART */
SYS DVA CHANNEL_HANDLE handl e;

uint8_t buf [10];

voi d *srcAddr;

voi d *dest Addr ;

size_t srcSi ze;

size_t dest Si ze;

size_t cell Si ze;
DIVA_CHANNEL channel ;

channel = DMA_CHANNEL_2;

srcAddr = (uint8_t *) buf;

srcSize = 10;

dest Addr = (uin8_t*) &URTXREG //Uart 2 TX register is the DVA destination
dest Si ze = 1;

cell Size = 1;

handle = SYS_DVMA Channel Al | ocat e(channel);

SYS_DMA Channel Tr ansf er Add(handl e, srcAddr, srcSi ze, dest Addr, dest Si ze, cel | Si ze) ;
Preconditions:

1. DMA should be initialized by calling SYS_DMA_Initialize.

2. Channel should be setup and enabled by calling SYS_DMA_ChannelSetup.

Synchronous Data Transfer Start/Abort Functions

These functions allows to force start/abort data transfer on the selected channel.

The DMA should have been set up, transfer added before calling these functions.
Note:

Function Name: SYS_DMA_ChannelForceStart

Example
SYS_DVA CHANNEL_HANDLE handl e;
DVA_CHANNEL channel ;

channel = DMA CHANNEL_2;
handl e = SYS_DVMA Channel Al | ocat e(channel);
SYS_DMA Channel ForceStart (handl e) ;

Function Name: SYS_DMA_ChannelForceAbort

Example

SYS DVMA CHANNEL_HANDLE handl e;

DMVA_CHANNEL channel ;

channel = DA _CHANNEL_2;

handl e = SYS_DMA_Channel Al | ocat e(channel) ;
SYS _DMA_Channel For ceAbort (handl e) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 136

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Asynchronous Data Transfer Abort Function

This function sets an event source and enables cell transfer abort event for the same for the selected channel.

Asynchronous data transfer is started in general channel setup function. A channel is setup for asynchronous data transfer by
Note: default when the appropriate trigger source is specified in general channel setup function call.

Function Name: SYS_DMA_ChannelAbortEventSet
Example

SYS
DMVA_
DVA_

DVA_CHANNEL_HANDLE handl e;
CHANNEL channel ;
TRI GGER_SOURCE event Src;

channel = DVMA CHANNEL_2;
event Src = DVA _TRI GGER_CTMJ;
handle = SYS_DMA Channel Al | ocat e(channel) ;

SYS_

DMA_Channel Abort Event Set (handl e, eventSrc);

Preconditions:
1. DMA should be initialized by calling SYS_DMA_Initialize.
2. Channel should be setup and enabled by calling SYS_DMA_ChannelSetup.

Channel Busy Status Function

This function gets the busy status of the selected channel.
Function Name: SYS_DMA_ChannellsBusy

Example

SYS DVMA CHANNEL_HANDLE handl e;

DMVA_CHANNEL channel ;

bool busySt at ;

channel = DMA_CHANNEL_2;

handle = SYS_DVMA Channel Al | ocat e(channel);

busyStat = SYS _DVA Channel | sBusy(handl e);
Precondition: DMA should be initialized by calling SYS_DMA_Initialize.

Channel Computed CRC Function

This function gets the computed CRC.

The CRC generator must have been previously set up by calling the CRC mode setup function.
Note:

To get the computed CRC value this function must be called after the block transfer completion event.
Function Name: SYS_DMA_ChannelGetCRC

Example

SYS _DMA CHANNEL_HANDLE handl e;

DMA_CHANNEL channel ;

ui nt 32_t conput edCRC,

channel = DVA_CHANNEL_2;

handl e = SYS_DMA Channel Al | ocat e(channel) ;

conput edCRC = SYS_DMA Channel CRCSet () ;
Precondition: DMA should be initialized by calling SYS_DMA_Initialize.

Channel Transfer Event Handler Set Function

This function allows to set an event handler for the transfer complete, abort or error events
Function Name: SYS_DMA_ChannelTransferEventHandlerSet
Example

SYS
DMVA_

DVA_CHANNEL_HANDLE handl e;
CHANNEL channel ;

MY_APP_OBJ nyAppQbj ; /1 Application specific object
channel = DMA CHANNEL_2;
handl e = SYS_DMA Channel Al | ocat e(channel) ;

SYS

DMA_Channel Tr ansf er Event Handl er Set (handl e, APP_DMASYSTr ansf er Event Handl er, (uintptr_t) &mnyAppQbj);

/'l Event Processing Technique. Event is received when the transfer is processed.

voi d APP_DMASYSTr ansf er Event Handl er (SYS_DVA_TRANSFER_EVENT event, SYS_DVA_CHANNEL_HANDLE handl e,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

137

Volume V: MPLAB Harmony Framework System Service Libraries Help

uintptr_t contextHandl e)

{
swi tch(event)
{
case SYS DMA TRANSFER EVENT_ COVPLETE:
/1 This nmeans the data was transferred.
br eak;
case SYS _DVA TRANSFER EVENT_ERROR:
/1 Error handling here.
br eak;
defaul t:
br eak;
}
}

Precondition: DMA should be initialized by calling SYS_DMA _Initialize.

Channel Error Get Function

This function returns the error associated with the channel access.
Function Name: SYS_DMA_ChannelErrorGet

Example
SYS DMA CHANNEL_HANDLE handl e;
DVA_CHANNEL channel ;
channel = DVMA CHANNEL_2;
handl e = SYS_DMA Channel Al | ocat e(channel);
/1 Do Channel setup and Transfer Add.
/1 In the Even Handl er Check if there was an Error
i f (SYS_DVA_ERROR_ADDRESS_ERROR == SYS_DMA Channel Error Get (handl e))
{
/'l There was an address error.
/1 Do error handling here.

}
Precondition: DMA should be initialized by calling SYS_DMA_Initialize.

Global Control and Status

Global Control and Status Function Usage:

Suspend/Resume Functions

Direct Memory Access (DMA) System Service

These functions allows an enabled DMA module to suspend DMA operations. Operation of the suspended module can also be resumed using

these functions.
Function Name: SYS_DMA_Suspend

Example 1
SYS_DMA _Suspend() ;

Precondition: DMA should be initialized by calling SYS_DMA_Initialize.
Function Name: SYS_DMA_Resume

Example 2
SYS_DMA _Resume() ;

Precondition: DMA should be initialized by calling SYS_DMA_Initialize.

Busy Status Function
This function gets the busy status of DMA module.

Function Name: SYS_DMA_IsBusy

Example
bool busyStat;
busyStat = SYS DMA | sBusy();

Precondition: DMA should be initialized by calling SYS_DMA_Initialize.

Memory to Memory Transfer
Provides a code example for a memory to memory data transfer.

Description

The following code is a typical usage example of using the DMA System Service for a memory to memory data transfer.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

138

Volume V: MPLAB Harmony Framework System Service Libraries Help

/* Destination Menory Address pointer */

uint8_t *pDmaSr c;
/* Source Menory Address pointer */

ui nt 8_t * pDmaDst ;
/* Transfer Size */

size_t txferSize;

/* Maxi mum Transfer Size */

#defi ne MAX_TRANSFER_SI ZE 100
/* The data pattern to be transferred*/
#def i ne SOURCE_TRANSFER_PATTERN "W

1B A R R EE LR

The bel ow routine sets up a nmenory to nenory data transfer. It also
regi sters an event handl er which is called when the data transfer
conpl etes */

voi d SYS_DVA TEST_ Menory2Menory(voi d)

{
ui nt 8_t *pSrcTenp;
ui nt32_t i ndex;
SYSDMA INT dmalnit;
SYS_DMA CHANNEL_HANDLE channel Handl e;

/* Initializing source and destination variables */

pDmaSr c = (uint8_t *) NULL;

pDmaDst = (uint8_t *) NULL;

pSrcTenp = (uint8_t *) NULL;

txferSize = MAX_TRANSFER_SI ZE;

pDmaSr ¢ = (uint8_t*) nalloc(txferSize);
pDmaDst = (uint8_t*) nalloc(txferSize);
pSrcTenp = pDmaSrc;

if(((uint8_t*) NULL != pDmaSrc) && ((uint8_t*) NULL != pDnaDst))
{
/* Initialize the source menory block with the pattern */
for(index=0; index < txferSize; index++)

{
}

*pSrcTenp++= SOURCE_TRANSFER PATTERN;

/* Initialize the DVA system service */
dnalnit.sidl = SYS DVA S| DL_DI SABLE;
sysCbj = SYS DVA Initialize((SYS_MODULE INT*)&dJnmalnit);

/* Allocate a DVA channel */
channel Handl e = SYS_DVA Channel Al | ocat e(DVA_CHANNEL_1);
i f (SYS_DVA CHANNEL_HANDLE | NVALI D ! = channel Handl e)

{
/* Register an event handler for the channel */
SYS_DMA _Channel Tr ansf er Event Handl er Set (channel Handl e,
Sys_DMA Men2Mem Event _Handl er, (uintptr_t)&sysContext);
/* Setup the channel */
SYS_DMA_Channel Set up(channel Handl e,
SYS_DVA CHANNEL_OP_MODE BASI C,
DVA_TRI GGER_SOURCE_NONE) ;
/* Add the menory block transfer request */
SYS_DMA Channel Tr ansf er Add(channel Handl e, pDmaSr c, t xf er Si ze,
pDmaDst , t xf er Si ze, t xf er Si ze) ;
/* Start the DVA transfer */
SYS_DMA_Channel ForceSt art (channel Handl e) ;
}
el se
{

/* Channel Handl e not available */

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Direct Memory Access (DMA) System Service

139

Volume V: MPLAB Harmony Framework

System Service Libraries Help

Direct Memory Access (DMA) System Service

/* Below is an Event handler for the registered menory to nenory DVA channel */

static void Sys_DVA Men2Mem Event _Handl er (SYS_DMA TRANSFER_EVENT event,

{

SYS_DMA_CHANNEL_HANDLE handl e, uintptr_t contextHandl e)

int32_t fail=0;
ui nt 32_t i ndex;

/* Success event */
i f (SYS_DVMA TRANSFER EVENT_COVPLETE == event)

{
/* Verify the contents of destination block natches the
* menory contents of the source block */
for(index=0; index < txferSize; index++)
{
i f (*pDmaSrc++! =*pDmaDst ++) // conpare the buffers
{
fail = -1;
}
}
if(o==fail)
{
/* Transfer Success */
}
el se
{
/* Transfer Failed */
}
}

/* Failure Event */

el se i f(SYS_DVA TRANSFER EVENT_ABORT == event)
{

}

Configuring the Library

The configuration of the DMA System Service is based on the file syst em confi g. h

This header file contains the configuration selection for the DMA system service. Based on the selections made, the DMA System Service may
support the selected features. These configuration settings will apply to all instances of the DMA System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

Building the Library

This section lists the files that are available in the Direct Memory Access (DMA) System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is

<install-dir>/framework/systenf dma.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

© 2013-2017 Microchip Technology Inc.

sys_dma. h

Source File Name Description

MPLAB Harmony v2.06

DMA System Service Library API header file.

140

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Required File(s)

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
= MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.
Source File Name Description
/src/sys_dma. c DMA System Service Library implementation.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.
Source File Name Description

N/A There are no optional files for the DMA System Service Library.

Module Dependencies

The DMA System Service Library does not depend on any other modules.

Library Interface

a) Initialization and Task Functions

Name Description
¢ SYS_DMA_TasksError This function is deprecated. Use SYS_DMA_Tasks function.
¢ SYS_DMA Initialize Initializes and Enables the DMA Controller.
@ SYS_DMA_ TasksErrorlSR This function is deprecated. Use SYS_DMA_Tasks function.
@ SYS_DMA_TasksISR This function is deprecated. Use SYS_DMA_Tasks function.

b) Channel Setup and Management Functions

Name Description

¢ SYS_DMA_ChannelAbortEventSet Sets an event source and enables cell transfer abort event for the same for
the selected channel.

L] SYS_DMA_ChannelAllocate Allocates the specified DMA channel and returns a handle to it.

¢ SYS_DMA_ChannelDisable Disables a channel.

¢ SYS_DMA_ChannelEnable Enables a channel.

¢ SYS_DMA_ChannelForceAbort Force abort of transfer on the selected channel.

¢ SYS_DMA_ChannelForceStart Force start of transfer on the selected channel.

@ SYS_DMA_ChannellsBusy Returns the busy status of the specified DMA channel.

¢ SYS_DMA_ChannelRelease Deallocates and frees the channel specified by the handle.

@ SYS_DMA_ChannelSetupMatchAbortMode Setup the pattern match abort mode.

@ SYS_DMA_ChannelTransferAdd Adds a data transfer to a DMA channel and Enables the channel to start data
transfer.

@ SYS_DMA_ChannelErrorGet This function returns the error(if any) associated with the last client request.

@ SYS_DMA_ChannelTransferEventHandlerSet This function allows a DMA system service client to set an event handler.

¢ SYS_DMA_ChannelCRCGet Returns the computed CRC.

¢ SYS_DMA_ChannelCRCSet Sets up the CRC operation mode.

¢ SYS_DMA_ChannelSetup Setup the DMA channel parameters.

¢ SYS_DMA_ChannelDestinationTransferredSizeGet Returns the number of bytes transferred to destination.

¢ SYS_DMA_ChannelSourceTransferredSizeGet Returns the number of bytes transferred from source.

¢ SYS_DMA_ChannelTransferSet Sets up a data transfer to a DMA channel.

@ SYS_DMA_ChannelResume Resume DMA operation on the specified DMA channel.

¢ SYS_DMA_ChannelSuspend Suspend DMA operation on the specified DMA channel.

¢) Global Control and Status Functions

Name Description
@ SYS_DMA_IsBusy Returns the busy status of the DMA module.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 141

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

SYS_DMA_Resume Resume DMA operations.
SYS_DMA_Suspend Suspend DMA transfers.

d) Data Types and Constants

Name Description
SYS_DMA_CHANNEL_TRANSFER_EVENT_HANDLER Pointer to a DMA System service Transfer Event handler function.

Description

This section describes the APIs of the DMA System Service Library.
Refer to each section for a detailed description.

a) Initialization and Task Functions

SYS_DMA_TasksError Function

This function is deprecated. Use SYS_DMA_Tasks function.
File

sys_dma.h
C

voi d SYS_DMA TasksError (SYS_MODULE_OBJ object);

Function
void SYS_DMA_TasksError(SYS_MODULE_OBJ object)

SYS_DMA_Initialize Function
Initializes and Enables the DMA Controller.
File
sys_dma.h
C
SYS MODULE OBJ SYS DMVA Initialize(const SYS MODULE INIT * const init);
Returns
If successful, returns a valid handle to the DMA module object. Otherwise, it returns SYS_MODULE_OBJ_INVALID.
Description

This function Enables the DMA module. Enable/Disable stop in idle mode feature based on the passed parameter value.
This function initializes the DMA module making it ready for clients to open and use it. The initialization data is specified by the init parameter.

Remarks
This function must be called before any other DMA systems service routines are called.
Not all features are available on all micro-controllers.

Preconditions

None.

Example

SYS_MODULE_OBJ obj ect Handl e;
SYS DMA INIT initParam

initParam sidl = SYS DVA S| DL_ENABLE;
obj ectHandl e = SYS DVA |nitialize(DRV_I2S | NDEX 1,
(SYS_MODULE_I NI T*) i ni t Paran) ;
if (SYS_MODULE_OBJ_| NVALI D == obj ect Handl e)
{
/1 Handl e error

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 142

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

}
Parameters
Parameters Description
init Pointer to the data structure containing any data necessary to initialize the hardware. This
pointer may be null if no data is required and default initialization is to be used.
Function

SYS_MODULE_OBJ SYS_DMA_Initialize(const SYS_MODULE_INIT * const init)

SYS DMA_TasksErrorISR Function

This function is deprecated. Use SYS_DMA_Tasks function.
File

sys_dma.h

C
voi d SYS _DMA TasksErrorl SR(SYS MODULE OBJ obj ect, DVA CHANNEL activeChannel);

Function
void SYS_DMA_TasksErrorISR(SYS_MODULE_OBJ object, DMA_CHANNEL activeChannel)

SYS DMA_TasksISR Function

This function is deprecated. Use SYS_DMA_Tasks function.
File

sys_dma.h

C
voi d SYS_DMA Tasksl SR(SYS_MODULE_OBJ obj ect, DVA CHANNEL activeChannel);

Function
void SYS_DMA_TasksISR(SYS_MODULE_OBJ object, DMA_CHANNEL activeChannel)

b) Channel Setup and Management Functions

SYS_DMA_ChannelAbortEventSet Function

Sets an event source and enables cell transfer abort event for the same for the selected channel.
File

sys_dma.h
C

voi d SYS_DMA Channel Abort Event Set (SYS_DVA CHANNEL_HANDLE handl e, DVA TRI GGER_SOURCE event Src);
Returns

None.
Description

This functions enables a cell transfer abort event for the selected source event.
Remarks

If the parameter 'eventSrc' is specified as DMA_TRIGGER_SOURCE_NONE the current DMA transfer will be aborted. The behavior is a same as
calling SYS_DMA_ChannelForceAbort.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must have been called to setup and enable the required features. The

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 143

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

function 'SYS_DMA_ChannelTransferAdd' to add a transfer.

Example
/1 "handle' is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

/'l pDmaSrc, pDmaDst is the source,destination address

/'l txferSrcSize, txferDesSize is the source,destination transfer size
/1 cellSize is the cell size

MY_APP_0OBJ nyAppQbj ;

/1 Cient registers an event handler with service. This is done once

SYS_DMA Channel Tr ansf er Event Handl er Set (handl e, APP_DMATr ansf er Event Handl e,
(uintptr_t)&myAppQhj);

SYS _DMA_Channel Set up(handl e, SYS_DMA_CHANNEL_OP_MODE_BASI C,
DMA_TRI GGER_SOURCE_NONE) ;

SYS_DMA Channel Tr ansf er Add(handl e, pDmaSr c, t xf er SrcSi ze,
pDmaDst , t xf er DesSi ze, cel | Si ze) ;

SYS_DMA_Channel Abort Event Set (handl e, DVMA_TRI GGER_CTMJ) ;
SYS_DMA Channel ForceStart (handl e);

i f (SYS_DMA_CHANNEL_HANDLE_| NVALI D == handl €)
{

}

/1 Error handling here
/'l Event Processing Technique. Event is received when
/1 the transfer is processed.

voi d APP_DMATr ansf er Event Handl e(SYS_DMA TRANSFER EVENT event,
SYS DMA CHANNEL_HANDLE handl e, uintptr_t contextHandl e)

{
swi tch(event)
{
case SYS_DVA_TRANSFER_EVENT_ABORT:
/1 This neans the data was transferred.
br eak;
case SYS_DVA_TRANSFER_EVENT_ERROR:
/1 Error handling here.
i f(SYS_DVA_ERROR_ADDRESS_ERROR == DRV_I| 2S_Error Get (nyl 2SHandl e))
{
/'l There was an address error.
/1 Do error handling here.
}
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
eventSrc The event causing the cell transfer abort

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 144

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Function
void SYS_DMA_ChannelAbortEventSet

(
SYS_DMA_CHANNEL_HANDLE handle,

DMA_TRIGGER_SOURCE eventSrc
)

SYS DMA_ChannelAllocate Function
Allocates the specified DMA channel and returns a handle to it.
File
sys_dma.h
C
SYS_DMA CHANNEL_HANDLE SYS _DWMA Channel Al | ocat e(DMA_CHANNEL channel) ;

Returns

The channel handle for the requested channel number.

If an error occurs, the return value is SYS_DMA_CHANNEL_HANDLE_INVALID. Error can occur.
« if the requested channel number is invalid.

» if the requested channel number is not free.

Description

This function opens the specified DMA channel and provides a handle that must be provided to all other client-level operations to identify the caller

and the DMA channel.

Remarks

The handle returned is valid until the SYS_DMA_ChannelRelease routine is called. This function must be called before any other DMA channel

Setup and management routines are called

Preconditions

Function SYS_DMA_Initialize must have been called before calling this function.

Example

DMA_CHANNEL channel ;
SYS_DVA_CHANNEL_HANDLE handl e

channel = DMA CHANNEL_2;

handl e = SYS_DMA Channel Al | ocat e(channel) ;

i f (SYS_DVA CHANNEL_HANDLE | NVALI D == handl e)
{

}

el se

{
}

Parameters

/1 Failed to allocate the channel

/'l Proceed with setting up the channel and adding the transfer

Parameters Description

channel Channel number requested for allocation. When channel number specified is
DMA_CHANNEL_ANY a random channel is allocated for DMA transfers.

Function
SYS_DMA_CHANNEL_HANDLE SYS_DMA_ChannelAllocate (DMA_CHANNEL channel)

SYS DMA_ChannelDisable Function

Disables a channel.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

145

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

File

sys_dma.h
C

voi d SYS_DMA Channel Di sabl e(SYS_DVA CHANNEL_HANDLE handl e) ;
Returns

None.
Description

This function disables a channel.
Remarks

None.
Preconditions

DMA should have been initialized by calling SYS_DMA_ Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must have been called to setup and enable the required features. A DMA
channel should have been enabled either by calling 'SYS_DMA_ChannelTransferAdd' or 'SYS_DMA_ChannelEnable’

Example

/1 "handle' is a valid handle returned
/'l by the SYS_DVA Channel Al l ocate function.

SYS_DMA_Channel Di sabl e(handl e) ;

Parameters

Parameters Description

handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
Function

void SYS_DMA_ChannelDisable(SYS_DMA_CHANNEL_HANDLE handle)

SYS _DMA_ChannelEnable Function
Enables a channel.
File
sys_dma.h
C
voi d SYS_DMA Channel Enabl e(SYS_DVA CHANNEL_HANDLE handl e) ;
Returns
None.
Description
This function enables a channel.
Remarks

This function may not required to be called when starting DMA setup (by SYS_DMA_ChannelSetup) and transfer Add (by
SYS_DMA_ChannelTransferAdd). But may be needed to be called in the registered callback to enable the channel and continue the data transfer
with the existing transfer parameters previously set with 'SYS_DMA_ChannelTransferAdd'. The DMA channel is by default disabled on the
completion of block transfer(callback generated)

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must have been called to setup and enable the required features.

Example

/1 "handle' is a valid handle returned
/'l by the SYS _DVA Channel Al | ocate function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 146

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

SYS_DMA Channel Enabl e(handl e) ;

Parameters

Parameters Description

handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
Function

void SYS_DMA_ChannelEnable(SYS_DMA_CHANNEL_HANDLE handle)

SYS DMA_ChannelForceAbort Function

Force abort of transfer on the selected channel.
File

sys_dma.h
C

voi d SYS_DMA_Channel For ceAbort (SYS_DMA_CHANNEL_HANDLE handl e) ;
Returns

None.
Description

The function aborts a DMA transfer to occur for the selected channel.
Remarks

This function must be used to abort the DMA transfer when the channel has been setup(by calling SYS_DMA_ChannelSetup) with the eventSrc as
DMA_TRIGGER_SOURCE_NONE. and SYS_DMA_ChannelAbortEventSet has not been called.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must have been called to setup and enable the required features. The
function 'SYS_DMA_ChannelTransferAdd' to add a transfer.

Example

/1 "handle' is a valid handle returned
/1 by the SYS_DMA Channel Al l ocate function.

/'l pDmaSrc, pDmaDst is the source,destination address
/'l txferSrcSize, txferDesSize is the source, destination transfer size

/'l cellSize is the cell size

MY_APP_0BJ ny AppQbj ;
/1 Cient registers an event handler with service. This is done once

SYS_DMA Channel Tr ansf er Event Handl er Set (handl e, APP_DMATr ansf er Event Handl e,
(uintptr_t)&myAppQoj);

SYS _DMA_Channel Set up(handl e, SYS_DMA_CHANNEL_OP_MODE_BASI C,
DMA_TRI GGER_SOURCE_NONE) ;

SYS _DMA_Channel Tr ansf er Add(handl e, pDmaSr c, t xf er SrcSi ze,
pDmaDst , t xf er DesSi ze, cel | Si ze) ;

SYS_DMA Channel ForceStart (handl e) ;

i f (SYS_DMA_CHANNEL_HANDLE | NVALI D == handl e)
{

}

/1 Error handling here

/1 Cient may need to abort a transfer

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 147

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

SYS_DMA_Channel For ceAbort (handl e) ;

/'l Event Processing Technique. Event is received when
/1 the transfer is processed.

voi d APP_DMATr ansf er Event Handl e(SYS_DMA TRANSFER EVENT event,
SYS_DMA CHANNEL_HANDLE handl e, uintptr_t contextHandle)

{
swi tch(event)
{
case SYS DMA TRANSFER_EVENT_ABORT:
/1 This neans the data was transferred.
br eak;
case SYS DMA TRANSFER_EVENT_ERROR:
/1 Error handling here.
i f (SYS_DVA ERROR_ADDRESS ERROR == DRV_|2S Error Get (nyl 2SHandl e))
{
/1l There was an address error.
/1 Do error handling here.
}
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
Function

void SYS_DMA_ChannelForceAbort(SYS_DMA_CHANNEL_HANDLE handle)

SYS DMA_ChannelForceStart Function
Force start of transfer on the selected channel.
File
sys_dma.h
C
voi d SYS_DMA Channel ForceStart (SYS_DMA_CHANNEL_HANDLE handl e) ;
Returns
None.

Description

The function force start a DMA transfer to occur for the selected channel.

Remarks

This function must be used to start the DMA transfer when the channel has been setup(by calling SYS_DMA_ChannelSetup) with the eventSrc as
DMA_TRIGGER_SOURCE_NONE.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must have been called to setup and enable the required features. The
function 'SYS_DMA_ChannelTransferAdd' to add a transfer.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 148

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Example

/1 "handle' is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

/'l pDmaSrc, pDmaDst is the source,destination address

/'l txferSrcSize, txferDesSize is the source,destination transfer size
/'l cellSize is the cell size

MY_APP_OBJ ny AppQoj ;

/1l Cient registers an event handler with service. This is done once

SYS_DMA_Channel Tr ansf er Event Handl er Set (handl e, APP_DNMATr ansf er Event Handl e,
(uintptr_t)&nyAppQbj);

SYS_DMA_Channel Set up(handl e, SYS_DMA_CHANNEL_OP_MODE_BASI C,
DMA_TRI GGER_SOURCE_NONE) ;

SYS_DMA_Channel Tr ansf er Add(handl e, pDnaSr c, t xf er SrcSi ze,
pDmaDst , t xf er DesSi ze, cel | Si ze) ;

SYS DMA Channel ForceStart (handl e) ;

i f (SYS_DMA_CHANNEL_HANDLE_| NVALI D == handl e)
{

}

/'l Error handling here
/'l Event Processing Technique. Event is received when
/1 the transfer is processed.

voi d APP_DMATr ansf er Event Handl e(SYS_DVA_TRANSFER_EVENT event,
SYS_DMA CHANNEL_HANDLE handl e, uintptr_t contextHandl e)

{
swi tch(event)
{
case SYS DMA TRANSFER EVENT_COVWPLETE:
// This nmeans the data was transferred.
br eak;
case SYS DMA TRANSFER EVENT_ERROR:
/1 Error handling here.
i f (SYS_DVMA ERROR ADDRESS ERROR == DRV_| 2S Error Get (nyl 2SHandl e))
{
/'l There was an address error.
/1 Do error handling here.
}
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
Function

void SYS_DMA_ChannelForceStart(SYS_DMA_CHANNEL_HANDLE handle)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 149

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS DMA_ChannellsBusy Function
Returns the busy status of the specified DMA channel.
File
sys_dma.h
C
bool SYS DMA Channel | sBusy(SYS_DMA CHANNEL_HANDLE handl e) ;

Returns

bool - true, if the selected DMA channel is active or enabled
« false, if the selected DMA channel is inactive or disabled

Description

This function returns the busy status of the selected DMA channel

Remarks

Direct Memory Access (DMA) System Service

This feature may not be available on all devices. Refer to the specific device data sheet to determine availability.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling SYS_DMA_ChannelAllocate.

Example
bool busySt at ;

busySt at = SYS _DMA Channel Get Busy(handl e) ;
Parameters

Parameters Description

handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.

Function
bool SYS_DMA_ChannellsBusy(SYS_DMA_CHANNEL_HANDLE handle)

SYS_DMA_ChannelRelease Function
Deallocates and frees the channel specified by the handle.
File
sys_dma.h

C
voi d SYS_DMA Channel Rel ease(SYS_DVA CHANNEL_HANDLE handl e) ;

Returns

None.

Description

This function deallocates an allocated-channel of the DMA module, invalidating the handle.

Remarks

After calling this routine, the handle passed in "handle" must not be used with any of the remaining service's routines. A new handle must be

obtained by calling SYS_DMA_ChannelAllocate before the caller may use the service again

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling SYS_DMA_ChannelAllocate

Example

DMA_CHANNEL channel ;
SYS_DVA_CHANNEL_HANDLE handl e;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

150

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

channel = DMA CHANNEL_2;
handl e = SYS_DMA Channel Al | ocat e(channel) ;
SYS_DMA_Channel Rel ease(handl e) ;

Parameters

Parameters Description

handle A valid allocated-channel handle, returned from the service's Allocate routine
Function

void SYS_DMA_ChannelRelease(SYS_DMA_CHANNEL_HANDLE handle)

SYS _DMA_ChannelSetupMatchAbortMode Function
Setup the pattern match abort mode.

File
sys_dma.h

Cc

voi d SYS_DMA Channel Set upMat chAbort Mode(SYS_DVA CHANNEL_HANDLE handl e, uint16_t pattern, DVA PATTERN LENGTH
I ength, SYS_DMA CHANNEL_| GNORE_MATCH ignore, uint8_t ignorePattern);

Returns
None.
Description

This function sets up the termination of DMA operation when the specified pattern is matched. Additionally on supported parts the function also
sets up the ignoring of part of a pattern(8-bit) from match abort pattern(16-bit).

Remarks

The parameter 'pattern’ (8-bit or 16-bit) is device-specific. Not all features are available on all devices. Refer to the specific device data sheet for
details.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must be called to enable
SYS_DMA_CHANNEL_OP_MODE_MATCH_ABORT before setting up pattern match mode features.

Example

/| Exanmple 1
/1 The following code is for a device with an 8-bit pattern value and no
/'l support for pattern match ignore feature

/1 *handle'" is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

uint16_t pattern;

DVA_PATTERN_LENGTH | engt h;

SYS_DVA CHANNEL_| GNORE_NVATCH i gnore;

uint8_t i gnor ePattern;

pattern = 0x00; //Stop transfer on detection of a NULL character
| ength = DVA_PATTERN_LENGTH_NONE;

i gnore = SYS_DVA_CHANNEL_| GNORE_MATCH DI SABLE;

i gnorePattern = 0;

SYS_DMA_Channel Set upMat chAbort Mode(handl e, pattern, |ength,
i gnoreEnabl e, ignorePattern);

/| Exanple 2
/1 The following code is for a device with a 16-bit pattern value and
/1 support for pattern match ignore feature

/1 "handle' is a valid handle returned

/'l by the SYS _DVA Channel Al | ocate function.
uint16_t pattern;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 151

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

DVA_PATTERN_LENGTH | engt h;

SYS_DVA CHANNEL_| GNORE_MATCH i gnore;

uint8_t i gnor ePattern;

pattern = OxODOA; //Stop transfer on detection of 'rn'
| ength = DVA_PATTERN MATCH_LENGTH_2BYTES;

i gnore = SYS_DVA_CHANNEL_| GNORE_MATCH_ENABLE;

i gnorePattern = 0x00; \ Any null character between the termi nation pattern
\ 'r'" and 'n' is ignored.
SYS_DMA Channel Set upMat chAbort Mode(handl e, pattern, |ength,
i gnore, ignorePattern);

Parameters

Parameters Description

handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.

pattern The pattern that needs to be matched to abort a DMA transfer.

length Match pattern length can be 1-byte or 2-byte.

ignore Enable/Disable a byte between a 2-byte pattern match.

ignorePattern The part of the pattern(8-bit) that needs to be ignored from the match abort pattern(16-bit)
Function

void SYS_DMA_ChannelSetupMatchAbortMode

(
SYS_DMA_CHANNEL_HANDLE handle,

uintl6_t pattern,

DMA_PATTERN_LENGTH length,
SYS_DMA_CHANNEL_IGNORE_MATCH ignore,
uint8_t ignorePattern

)

SYS DMA_ChannelTransferAdd Function

Adds a data transfer to a DMA channel and Enables the channel to start data transfer.
File

sys_dma.h

C

voi d SYS_DMA_Channel Tr ansf er Add(SYS_DVA_CHANNEL_HANDLE handl e, const void * srcAddr, size_t srcSize, const
void * destAddr, size_t destSize, size_t cellSize);

Returns

None.

Description

This function adds a data transfer characteristics for a DMA channel. The The source and the destination addresses, source and destination
lengths, The number of bytes transferred per cell event are set. It also enables the channel to start data transfer.

If the requesting client registered an event callback with the service, the service will issue a SYS_DMA_TRANSFER_EVENT_COMPLETE or
SYS_DMA_TRANSFER_EVENT_ABORT event if the transfered was processed successfully of SYS_DMA_TRANSFER_EVENT_ERROR event if
the transfer was not processed successfully.

Remarks

For PIC32MZ series of devices, if the source/destination addresses are RAM memory addresses, the the source/destination buffers should be
made coherent to avoid the cache coherency issues. For example:

uint8_t buffer[1024];

/1 The buffer can be nade coherent by adding the 'coherent' attribute, as follows:

uint8 t _ attribute_ ((coherent)) _ attribute_ ((aligned(16))) buffer[1024];

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must have been called to setup and enable the required features.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 152

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Example
/1 Add 10 bytes of data transfer to UART TX

/1 "handle' is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

MY_APP_OBJ nmy AppQoj ;
uint8_t buf[10];
voi d *srcAddr;
voi d *dest Addr;
size_t srcSi ze;
size_t dest Si ze;
size_t cell Si ze;
sr cAddr = (uint8_t *) buf;
srcSi ze = 10;

dest Addr = (uin8_t*) &UR2TXREG
dest Si ze = 1;

cell Si ze = 1;

/'l User registers an event handler with systemservice. This is done once

SYS_DMA Channel Tr ansf er Event Handl er Set (handl e, APP_DMASYSTr ansf er Event Handl er,
(uintptr_t)&myAppQbj);

SYS _DMA Channel Tr ansf er Add(handl e, srcAddr, srcSi ze, dest Addr, dest Si ze, cel | Si ze) ;

i f (SYS_DMA_CHANNEL_HANDLE_| NVALI D == handl e)
{

}

/'l Error handling here
/'l Event Processing Technique. Event is received when
/1 the transfer is processed.

voi d APP_DMASYSTr ansf er Event Handl er (SYS_DVA_TRANSFER_EVENT event,
SYS_DMA_CHANNEL_HANDLE handl e, uintptr_t contextHandl e)

{
swi tch(event)
{
case SYS_DVA TRANSFER_EVENT_COWVPLETE:
/1 This nmeans the data was transferred.
br eak;
case SYS _DVA TRANSFER_EVENT_ ERROR:
/1 Error handling here.
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
srcAddr Source of the DMA transfer
srcSize Size of the source
destAddr Destination of the DMA transfer
destSize Size of the destination
cellSize Size of the cell
Function

void SYS_DMA_ChannelTransferAdd

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 153

Volume V: MPLAB Harmony Framework System Service Libraries Help

(

SYS_DMA_CHANNEL_HANDLE handle,
const void *srcAddr, size_t srcSize

const void *destAddr, size_t destSize,
size_t cellSize

)

SYS DMA_ChannelErrorGet Function
This function returns the error(if any) associated with the last client request.

File

Direct Memory Access (DMA) System Service

sys_dma.h

C
SYS _DVMA _ERROR SYS DMA Channel Error Get (SYS_DVA CHANNEL_HANDLE handl e) ;

Returns
A SYS_DMA_ERROR type indicating last known error status.

Description
This function returns the error(if any) associated with the last client request. If the service send a SYS_DMA_TRANSFER_EVENT_ERROR to the
client, the client can call this function to know the error cause. The error status will be updated on every operation and should be read frequently
(ideally immediately after the service operation has completed) to know the relevant error status.

Remarks

It is the client's responsibility to make sure that the error status is obtained frequently. The service will update the error status regardless of

whether this has been examined by the client.

Preconditions

The SYS_DMA_Initialize routine must have been called for the DMA sub system. SYS_DMA_ChannelAllocate must have been called to obtain a

valid opened channel handle.

Example

/1 "handle' is a valid handle returned
/'l by the SYS _DVA Channel Al | ocate function.

/'l pDmaSrc, pDmaDst is the source,destination address

/'l txferSrcSize, txferDesSize is the source,destination transfer size
/'l cellSize is the cell size

MY_APP_OBJ nyAppQbj ;

/1l Cient registers an event handler with service. This is done once

SYS_DMA_Channel Tr ansf er Event Handl er Set (handl e, APP_DNMATr ansf er Event Handl e,

(uintptr_t)&nyAppCbj);

SYS DMA Channel Set up(handl e, SYS DMA CHANNEL_OP_MODE BASI C,
DVA_TRI GGER_SOURCE_NONE) ;

SYS _DMA Channel Transf er Add(handl e, pDmaSr c, t xf er SrcSi ze,
pDmaDst , t xf er DesSi ze, cel | Si ze);

SYS_DMA_Channel ForceStart (handl e) ;

i f (SYS_DMA_CHANNEL_HANDLE_| NVALI D == handl e)
{

}

/'l Error handling here

/'l Event Processing Technique. Event is received when
/'l the transfer is processed.

voi d APP_DMATr ansf er Event Handl e(SYS_DVMA_TRANSFER _EVENT event,
SYS_DMA CHANNEL_HANDLE handl e, uintptr_t contextHandl e)

{

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

154

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

swi tch(event)

{
case SYS DMA TRANSFER EVENT_COWPLETE:
/1 This neans the data was transferred.
br eak;
case SYS DMA TRANSFER EVENT_ERROR:
/1 Error handling here.
i f (SYS_DVMA ERROR ADDRESS ERROR == SYS_DMA Channel Error Get (handl e))
/1 There was an address error.
/1 Do error handling here.
}
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
Function

SYS_DMA_ERROR SYS_DMA_ChannelErrorGet(SYS_DMA_CHANNEL_HANDLE handle)

SYS DMA_ChannelTransferEventHandlerSet Function
This function allows a DMA system service client to set an event handler.
File
sys_dma.h

Cc

voi d SYS_DMA Channel Tr ansf er Event Handl er Set (SYS_DMA CHANNEL_HANDLE handl e, const
SYS_DMA CHANNEL_TRANSFER EVENT_HANDLER event Handl er, const uintptr_t contextHandl e);

Returns

None.

Description

This function allows a client to set an event handler. The client may want to receive transfer related events in cases when it uses non-blocking
read and write functions. The event handler should be set before the client intends to perform operations that could generate events.

This function accepts a contextHandle parameter. This parameter could be set by the client to contain (or point to) any client specific data object
that should be associated with this DMA channel.

Remarks

None.
Preconditions
DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling SYS_DMA_ChannelAllocate.

Example

/1 "handle' is a valid handle returned
/1 by the SYS _DVA Channel Al | ocate function.

MY_APP_OBJ nyAppQbj ;
uint8_t buf[10];
voi d *srcAddr;
voi d *dest Addr ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 155

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

size_t srcSi ze;
size_t dest Si ze;
size_t cell Si ze;
srcAddr = (uint8_t *) buf;
srcSi ze = 10;

dest Addr = (uin8_t*) &U2TXREG
dest Si ze = 1;

cel |l Si ze =1

channel Handl e = SYS_DMA Channel Al | ocat e(channel) ;
/'l User registers an event handler with system service. This is done once

SYS _DMA Channel Tr ansf er Event Handl er Set (handl e, APP_DMASYSTr ansf er Event Handl er,
(uintptr_t)&myAppQbj) ;

SYS _DMA_Channel Transf er Add(handl e, srcAddr, srcSi ze, dest Addr, dest Si ze, cel | Si ze);

i f (SYS_DMA_CHANNEL_HANDLE | NVALI D == handl e)
{

}

/1 Error handling here

/'l Event Processing Technique. Event is received when
/1 the transfer is processed.

voi d APP_DMASYSTr ansf er Event Handl er (SYS_DVA TRANSFER_EVENT event,
SYS_DMA CHANNEL_HANDLE handl e, uintptr_t contextHandl e)

{
switch(event)
{
case SYS_DVA TRANSFER_EVENT_COWVPLETE:
/1 This neans the data was transferred.
br eak;
case SYS_DVA TRANSFER_EVENT_ ERROR:
/'l Error handling here.
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle A valid channel handle, returned from the system service's Allocate routine
eventHandler Pointer to the event handler function.
contextHandle Value identifying the context of the application/driver/middleware that registered the event
handling function.
Function

void SYS_DMA_ChannelTransferEventHandlerSet

(
SYS_DMA_CHANNEL_HANDLE handle,

const SYS_DMA_CHANNEL_TRANSFER_EVENT_HANDLER eventHandler,
const uintptr_t contextHandle

)

SYS _DMA_ChannelCRCGet Function

Returns the computed CRC.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 156

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

File

sys_dma.h
C

uint32_t SYS DMA Channel CRCGet () ;
Returns

uint32_t - The Computed CRC.
Description

This function returns the computed CRC
Remarks

To get the computed CRC value this function must be called after the block transfer completion event (i.e., after getting and processing the
callback registered with SYS_DMA_ChannelTransferEventHandlerSet).

This feature may not be available on all devices. Refer to the specific device data sheet to determine availability.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must be called to enable SYS_DMA_CHANNEL_OP_MODE_CRC before
setting up the CRC mode. The CRC generator must have been previously setup using SYS_DMA_ChannelCRCSet.

Example
ui nt 32_t conput edCRC,
conput edCRC = SYS DMA Channel CRCGet () ;
Function

uint32_t SYS_DMA_ChannelCRCGet(void)

SYS _DMA_ChannelCRCSet Function
Sets up the CRC operation mode.
File
sys_dma.h
C
voi d SYS_DMA_Channel CRCSet (SYS_DMA CHANNEL_HANDLE handl e, SYS_DMA CHANNEL_OPERATI ON_MODE_CRC crc);
Returns
None.
Description
This function sets up the CRC computation features.
Remarks
This feature may not be available on all devices. Refer to the specific device data sheet to determine availability.
Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must be called to enable SYS_DMA_CHANNEL_OP_MODE_CRC before
setting up the CRC mode.

Example

/I Exanple 1
/1 DNA cal cul ation using the CRC background node

/1 "handle' is a valid handle returned

/1 by the SYS _DVA Channel Al | ocate function.
SYS _DMA CHANNEL_OPERATI ON_MODE _CRC crc;
crc.type = DVA_CRC_LFSR;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 157

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

crc. node

crc. polyLength
crc. bitOrder
crc. byt eOrder
crc.witeOder
crc.data

crc. xor Bi t Mask

SYS_DMA_CHANNEL _CRC_MODE_BACKGROUND;
16;

DVA_CRC_BI T_ORDER_LSB;

DVA_CRC BYTEORDER _NO_SWAPPI NG;

= SYS_DMA_CRC WRI TE_ORDER MAI NTAI N;

OxFFFF,;
0x1021;

SYS DMA Channel CRCSet (handl e, crc);

Parameters

Parameters
handle
cre.type
crc.mode
crc.polyLength
crc.bitOrder
crc.byteOrder
crc.writeOrder
crc.data
crc.xorBitMask

Function

Description

Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
CRC will calculate an IP header checksum or an LFSR CRC.

Compute the CRC in Background/Append mode.

Denotes the length of the polynomial.

CRC is calculated LSb/MSb first.

Byte selection order input pre-CRC Generator

Write byte order selection post-CRC computation

Computed/Seed CRC

Enable/Disable XOR bit mask on the corresponding bits when mode is LFSR

void SYS_DMA_ChannelCRCSet

(

SYS_DMA_CHANNEL_HANDLE handle,
SYS_DMA_CHANNEL_OPERATION_MODE_CRC crc

)

SYS DMA_ChannelSetup Function

Setup the DMA channel parameters.

File
sys_dma.h

C

voi d SYS_DMA_Channel Set up(SYS_DVA_CHANNEL_HANDLE handl e, SYS_DVA_CHANNEL_OP_MODE nodeEnabl e,
DVA_TRI GGER_SOURCE event Src);

Returns

None.

Description

This function sets up the DMA channel parameters. It sets the channel priority and enables the mode of operations for the current system design.

Remarks

If SYS_DMA_CHANNEL_OP_MODE_MATCH_ABORT, SYS_DMA_CHANNEL_OP_MODE_CHAIN or SYS_DMA_CHANNEL_OP_MODE_CRC
mode of operation is enabled, then corresponding mode setup API's needs to be called to set the related parameters.

If the parameter 'eventSrc' is specified as DMA_TRIGGER_SOURCE_NONE then SYS_DMA_ChannelForceStart must be called to start the DMA

channel transfer.

Not all features are available on all microcontrollers.

Preconditions

DMA should have been initialized by calling SYS_DMA_ Initialize. DMA channel should have been allocated by calling SYS_DMA_ChannelAllocate.

Example

/1 *handle'" is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

SYS_DMA CHANNEL _OP_MODE nodeEnabl e;

DMA_TRI GGER_SOURCE

event Src;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 158

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

channel = DVA_CHANNEL _2;
nodeEnabl e = (SYS_DVA CHANNEL_OP_MODE_BASI C | SYS_DWVA CHANNEL_OP_MODE_CRC) ;
event Src = DVA TRI GGER_USART_1 TRANSM T,;

/'l Setup channel nunber, and enabl es basic and CRC node
SYS_DMA Channel Set up(handl e, npdeEnabl e, event Src);

Parameters
Parameters Description
handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
priority The priority to be associated to the channel.
modeEnable The supported operating modes to be enabled. This parameter can be logically ORed to
specify multiple options.
eventSrc The event causing the cell transfer start.
Function

void SYS_DMA_ChannelSetup

(
SYS_DMA_CHANNEL_HANDLE handle,

SYS_DMA_CHANNEL_OP_MODE modeEnable
DMA_TRIGGER_SOURCE eventSrc
)

SYS_DMA_ChannelDestinationTransferredSizeGet Function
Returns the number of bytes transferred to destination.
File
sys_dma.h
C
size_t SYS_DMA Channel Desti nati onTransf erredSi zeGet (SYS_DMA CHANNEL_HANDLE handl e) ;
Returns
size_t - Returns the number of bytes received from the submitted size.

Description

When a data transfer request is submitted. At any time while the transmission is in progress the size of the amount of data transferred to
destination can be known by calling this function.

Remarks

None.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. Data transfer should have been initiated by calling SYS_DMA_ChannelTransferAdd or
SYS_DMA_ChannelTransferSet.

Example

/1 *handle' is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

MY_APP_OBJ nmy AppQoj ;
uint8_t buf[10];

voi d *srcAddr;

voi d *dest Addr;
size_t srcSi ze;
size_t dest Si ze;
size_t cell Si ze;
size_t transferredSi ze;
srcAddr = (uin8_t*) &U2RXREG
srcSi ze = 1;

dest Addr = (uint8_t *) buf ;

dest Si ze 10;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 159

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

cell Si ze = 1;
channel Handl e = SYS_DVA Channel Al | ocat e(channel) ;
/'l User registers an event handler with system service. This is done once

SYS_DMA Channel Tr ansf er Event Handl er Set (handl e, APP_DMASYSTr ansf er Event Handl er,
(uintptr_t)&myAppQbj);

SYS _DMA Channel Tr ansf er Add(handl e, srcAddr, srcSi ze, dest Addr, dest Si ze, cel | Si ze) ;

i f (SYS_DMA_CHANNEL_HANDLE_| NVALI D == handl e)
{

}

[/ Error handling here

/1 The data is being transferred after adding the transfer to the DVA channel.

/'l The user can get to know dynamically the anmount of data

/] transmitted to destination by calling SYS DVA Channel Destinati onTransferredSi zeGet
transferredSi ze = SYS_DVA_Channel Desti nati onTransf erredSi zeGet (channel Handl e) ;

Parameters

Parameters Description

handle A valid channel handle, returned from the system service's Allocate routine
Function

size_t SYS_DMA_ChannelDestinationTransferredSizeGet(SYS_DMA_CHANNEL_HANDLE handle)

SYS_DMA_ChannelSourceTransferredSizeGet Function
Returns the number of bytes transferred from source.
File
sys_dma.h
C
size_t SYS_DMA Channel Sour ceTr ansf erredSi zeGet (SYS_DVA CHANNEL_HANDLE handl e) ;
Returns
size_t - Returns the number of bytes transferred from the submitted size.

Description

When a data transfer request is submitted. At any time while the transmission is in progress the size of the amount of data transferred from source
can be known by calling this function.

Remarks

None.

Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. Data transfer should have been initiated by calling SYS_DMA_ChannelTransferAdd or
SYS_DMA_ChannelTransferSet.

Example

/1 "handle'" is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

MY_APP_CBJ ny AppQbj ;
uint8_t buf[10];

voi d *srcAddr;

voi d *dest Addr;
size_t srcSi ze;

size_t dest Si ze;

size_t cell Si ze;

size_t transferredSize;
sr cAddr = (uint8_t *) buf;

srcSi ze 10;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 160

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

dest Addr = (uin8_t*) &RTXREG
dest Si ze = 1;
cel | Si ze = 1;

channel Handl e = SYS_DWMA Channel Al | ocat e(channel) ;
/'l User registers an event handler with systemservice. This is done once

SYS_DMA Channel Tr ansf er Event Handl er Set (handl e, APP_DMASYSTr ansf er Event Handl er,
(uintptr_t)&myAppQbj) ;

SYS_DMA Channel Tr ansf er Add(handl e, srcAddr, srcSi ze, dest Addr, dest Si ze, cel | Si ze) ;

i f (SYS_DMA_CHANNEL_HANDLE_| NVALI D == handl e)
{

}

/1 Error handling here

/1 The data is being transferred after adding the transfer to the DVA channel.
/'l The user can get to know dynanmically the amount of data

/1 transmitted from source by calling SYS DVA Channel Sour ceTransf erredSi zeGet
transferredSi ze = SYS_DMA_Channel Sour ceTr ansf erredSi zeGet (channel Handl e) ;

Parameters

Parameters Description

handle A valid channel handle, returned from the system service's Allocate routine
Function

size_t SYS_DMA_ChannelSourceTransferredSizeGet(SYS_DMA_CHANNEL_HANDLE handle)

SYS _DMA_ChannelTransferSet Function
Sets up a data transfer to a DMA channel.

File
sys_dma.h

c

voi d SYS_DMA Channel Tr ansf er Set (SYS_DMA CHANNEL_HANDLE handl e, const void * srcAddr, size_t srcSize, const
void * destAddr, size_t destSize, size_t cellSize);

Returns

None.

Description

This function sets up data transfer characteristics for a DMA channel. The The source and the destination addresses, source and destination
lengths, The number of bytes transferred per cell event are set. This function does not enables the DMA channel. The channel has to be explicitly
enabled to start the data transfer. The above functions could be used in situations where in the user intends to setup transfer parameters but do
not intend to enable the channel immediately. For example to chain to DMA channels in a cyclic order where the channels remains disabled. The
channel is enabled automatically by the DMA when the transfer trigger condition occurs.

Remarks

For PIC32MZ series of devices, if the source/destination addresses are RAM memory addresses, the the source/destination buffers should be
made coherent to avoid the cache coherency issues. For example:
uint8_t buffer[1024];
/'l The buffer can be nmade coherent by adding the 'coherent' attribute, as follows:
uint8_t _ attribute__ ((coherent)) __attribute_ ((aligned(16))) buffer[1024];
Preconditions
DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling
SYS_DMA_ChannelAllocate. The function SYS_DMA_ChannelSetup must have been called to setup and enable the required features.
Example

/'l Set up 10 bytes of data transfer to UART TX

/1 "handle'" is a valid handle returned
/1 by the SYS_DVA Channel Al | ocate function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 161

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

MY_APP_CBJ nmy AppQoj ;
uint8_t buf[10];
voi d *srcAddr;
voi d *dest Addr ;
size_t srcSi ze;
size_t dest Si ze;
size_t cell Si ze;
sr cAddr = (uint8_t *) buf;
srcSi ze = 10;

dest Addr = (uin8_t*) &U2TXREG
dest Si ze = 1;

cell Si ze = 1;

/'l User registers an event handler with systemservice. This is done once

SYS_DMA Channel Tr ansf er Event Handl er Set (handl e, APP_DMASYSTr ansf er Event Handl er,
(uintptr_t)&myAppQbj) ;

SYS_DMA Channel Tr ansf er Set (handl e, srcAddr, srcSi ze, dest Addr, dest Si ze, cel | Si ze) ;
SYS_DMA_Channel Enabl e(handl e) ;

i f (SYS_DMA_CHANNEL_HANDLE | NVALI D == handl e)
{

}

/1 Error handling here
/'l Event Processing Technique. Event is received when
/1 the transfer is processed.

voi d APP_DMASYSTr ansf er Event Handl er (SYS_DVA TRANSFER_EVENT event,
SYS_DMA CHANNEL_HANDLE handl e, uintptr_t contextHandl e)

{
switch(event)
{
case SYS_DVA TRANSFER_EVENT_COWVPLETE:
/1 This means the data was transferred.
br eak;
case SYS_DVA TRANSFER_EVENT_ ERROR:
/'l Error handling here.
br eak;
defaul t:
br eak;
}
}
Parameters
Parameters Description
handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
srcAddr Source of the DMA transfer
srcSize Size of the source
destAddr Destination of the DMA transfer
destSize Size of the destination
cellSize Size of the cell
Function

void SYS_DMA_ChannelTransferSet

(
SYS_DMA_CHANNEL_HANDLE handle,

const void *srcAddr, size_t srcSize
const void *destAddr, size_t destSize,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 162

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

size_t cellSize

)

SYS DMA_ChannelResume Function
Resume DMA operation on the specified DMA channel.
File
sys_dma.h
C
voi d SYS_DMA Channel Resune(SYS_DVA CHANNEL_HANDLE handl e) ;
Returns
None.
Description
This function resumes the DMA operation on the DMA channel specified by the channel handle.
Remarks
This feature may not be available on all devices. Refer to the specific device data sheet to determine availability.
Preconditions
DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling SYS_DMA_ChannelAllocate.

Example
SYS_DMA_Channel Resune(handl e) ;

Parameters

Parameters Description

handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
Function

void SYS_DMA_ChannelResume(SYS_DMA_CHANNEL_HANDLE handle)

SYS_DMA_ChannelSuspend Function
Suspend DMA operation on the specified DMA channel.
File
sys_dma.h
C
voi d SYS_DMA_Channel Suspend(SYS_DVA_CHANNEL_HANDLE handl e) ;
Returns
None.
Description
This function suspends the DMA operation on the DMA channel specified by the channel handle.
Remarks
This feature may not be available on all devices. Refer to the specific device data sheet to determine availability.
Preconditions
DMA should have been initialized by calling SYS_DMA_Initialize. DMA channel should have been allocated by calling SYS_DMA_ChannelAllocate.

Example
SYS DMA Channel Suspend(handl e) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 163

Volume V: MPLAB Harmony Framework System Service Libraries Help Direct Memory Access (DMA) System Service

Parameters

Parameters Description

handle Handle of the DMA channel as returned by the SYS_DMA_ChannelAllocate function.
Function

void SYS_DMA_ChannelSuspend(SYS_DMA_CHANNEL_HANDLE handle)

¢) Global Control and Status Functions

SYS DMA _IsBusy Function

Returns the busy status of the DMA module.
File

sys_dma.h
C

bool SYS DMA | sBusy();

Returns

Boolean
e true - The DMA module is active
« false - The DMA module is inactive and disabled

bool busysStat;
busyStat = SYS DMA | sBusy();

Description

This function returns the busy status of the DMA module
Remarks

This feature may not be available on all devices. Refer to the specific device data sheet to determine availability.
Preconditions

DMA should have been initialized by calling SYS_DMA_Initialize.

Function
bool SYS_DMA_IsBusy(void)

SYS DMA_Resume Function
Resume DMA operations.
File
sys_dma.h
C
void SYS_DVA Resune();
Returns
None.
Description
This function disables DMA suspend. It resumes the DMA operation suspended by calling SYS_DMA_Suspend. The DMA operates normally.
Remarks

None

Preconditions
DMA should have been initialized by calling SYS_DMA_Initialize.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 164

Volume V: MPLAB Harmony Framework System Service Libraries Help

Example
SYS_DVA Resune();

Function
void SYS_DMA_Resume(void)

SYS_DMA_Suspend Function
Suspend DMA transfers.

File
sys_dma.h

C
void SYS_DMA Suspend();

Returns

None.

Description

This function suspends DMA transfers to allow CPU uninterrupted access to data bus

Remarks

None

Preconditions
DMA should have been initialized by calling SYS_DMA_Initialize.

Example
SYS_DMA Suspend();

Function
void SYS_DMA_Suspend(void)

d) Data Types and Constants

SYS_DMA_CHANNEL_TRANSFER_EVENT_HANDLER Type
Pointer to a DMA System service Transfer Event handler function.

File
sys_dma.h

C

Direct Memory Access (DMA) System Service

typedef void (* SYS_DVA CHANNEL TRANSFER EVENT HANDLER) (SYS_DMA TRANSFER EVENT event,

SYS DMA CHANNEL_HANDLE handl e, uintptr_t contextHandl e);

Description

DMA System service Transfer Event Handler Function
This data type defines a DMA System service Transfer Event Handler Function.

A DMA system service client must register an transfer event handler function of this type to receive transfer related events from the system service.
If the event is SYS_DMA_TRANSFER_EVENT_COMPLETE, this means that the data was transferred successfully. The channelHandle

parameter contains the channel handle of the channel on which the transfer was processed.

If the event is SYS_DMA_TRANSFER_EVENT_ERROR, this means that the data was not transferred successfully. TThe channelHandle

parameter contains the channel handle of the channel on which the transfer had failed.

The contextHandle parameter contains the context handle that was provided by the client at the time of registering the event handler. This context
handle can be anything that the client consider helpful or necessary to identify the client context object associated with the channel of the system
service that generated the event.

The event handler function executes in an interrupt context when DMA is setup to start operation by an interrupt trigger source. It is recommended

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 165

Volume V: MPLAB Harmony Framework

System Service Libraries Help

Direct Memory Access (DMA) System Service

of the application to not perform process intensive operations with in this function.

Remarks

None.

Files

Files

Name
sys_dma.h

Description

This section lists the source and header files used by the library.

sys_dma.h

Description

DMA System Service.

DMA System Service.

Functions

LR SR AR AR R R R R R R R R R R R R

¢ ¢ ¢ ¢ ¢ ¢ ¢ @ <

Types

Description

Name
SYS_DMA_ChannelAbortEventSet

SYS_DMA_ChannelAllocate
SYS_DMA_ChannelCRCGet
SYS_DMA_ChannelCRCSet

SYS_DMA_ChannelDestinationTransferredSizeGet

SYS_DMA_ChannelDisable
SYS_DMA_ChannelEnable
SYS_DMA_ChannelErrorGet
SYS_DMA_ChannelForceAbort
SYS_DMA_ChannelForceStart
SYS_DMA_ChannellsBusy
SYS_DMA_ChannelRelease
SYS_DMA_ChannelResume
SYS_DMA_ChannelSetup
SYS_DMA_ChannelSetupMatchAbortMode
SYS_DMA_ChannelSourceTransferredSizeGet
SYS_DMA_ChannelSuspend
SYS_DMA_ChannelTransferAdd

SYS_DMA_ChannelTransferEventHandlerSet
SYS_DMA_ChannelTransferSet

SYS_DMA _Initialize

SYS_DMA_IsBusy

SYS_DMA_Resume

SYS_DMA_Suspend

SYS_DMA_TasksError
SYS_DMA_TasksErrorISR
SYS_DMA_TasksISR

Name

Description

Sets an event source and enables cell transfer abort event for the same for
the selected channel.

Allocates the specified DMA channel and returns a handle to it.
Returns the computed CRC.

Sets up the CRC operation mode.

Returns the number of bytes transferred to destination.
Disables a channel.

Enables a channel.

This function returns the error(if any) associated with the last client request.
Force abort of transfer on the selected channel.

Force start of transfer on the selected channel.

Returns the busy status of the specified DMA channel.
Deallocates and frees the channel specified by the handle.
Resume DMA operation on the specified DMA channel.

Setup the DMA channel parameters.

Setup the pattern match abort mode.

Returns the number of bytes transferred from source.

Suspend DMA operation on the specified DMA channel.

Adds a data transfer to a DMA channel and Enables the channel to start data
transfer.

This function allows a DMA system service client to set an event handler.
Sets up a data transfer to a DMA channel.

Initializes and Enables the DMA Controller.

Returns the busy status of the DMA module.

Resume DMA operations.

Suspend DMA transfers.

This function is deprecated. Use SYS_DMA_Tasks function.

This function is deprecated. Use SYS_DMA_Tasks function.

This function is deprecated. Use SYS_DMA_Tasks function.

Description

SYS_DMA_CHANNEL_TRANSFER_EVENT_HANDLER Pointer to a DMA System service Transfer Event handler function.

DMA System Service Library Interface Definition

This file contains the interface definition for the DMA System Service. It provides a way to interact with the DMA subsystem to manage the data

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 166

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

transfer between different peripherals and/or memory without intervention from the CPU.

File Name

sys_dma.h

Company

Microchip Technology Inc.

File System Service Library

This section describes the File System Service Library.

Introduction

Introduction to the MPLAB Harmony File System (FS).

Description

The MPLAB Harmony File System (FS) provides file system services to MPLAB Harmony based applications. The architecture of the File System
Service is shown in the following figure.

File System Architecture

p
Application
\
4 N\ T AT
File System Service (sys_fs) < Virtual File System
.) ©
c
Q
Q
Q
©
m MPFS | Others % Native File System
<
2
N
File System Media Manager s Media manager

\.
|
|
|
|

m SD Card | USB Media driver

The File System Service provides an application programming interface (API) through which a utility or user program requests services of a file
system. Some file system APIs may also include interfaces for maintenance operations, such as creating or initializing a file system and verifying
the file system for integrity.

The File System service is really a framework designed to support multiple file systems (native file system) and multiple media in the same
application. Examples of native file systems are FAT12,FAT16, FAT32, and the Microchip File System (MPFS) among others. MPFS is a read-only
file system, which is used to store the files that do not change for example Web pages, images, etc. Each of these native file systems have a
common set of APIs that can be used to access the files of that particular native file system.

The File System Service abstracts the native file system calls and provides a common interface to the user/application layer. For example, while
the application layer requests for a file read or write from a disk, due to the presence of the this abstraction, the application need not be bothered
about the native file system implemented on that disk. Instead, the application can call the read/write API of the File System, which in turn
translates to the read/write command of the native file system used on the required disk.

This simplifies the implementation of the higher application layer and also provides a mechanism to add more native file system to the File System
framework in the future.

"File System Service" and "sys_fs" are synonymous.
Note:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 167

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

File System Service Library Porting Guide
This section provides information for porting an existing File System (FS) application that uses legacy MLA code to MPLAB Harmony.

Description

Differences between the legacy MLA code and MPLAB Harmony are described and examples are provided in the following topics:
* [Initialization

* System Configuration
e Mounting a Volume

e Opening a File

* Reading a File

e Writing a File

* Closing a File

e File EOF

* File Tell

» File Seek

e SYS_FS Tasks

Comparison of APl Names

This topic lists the API names for MLA versus the API name in MPLAB Harmony.

Description
API Name in MLA APl Name in MPLAB Harmony
N/A SYS_FS_Mount
N/A SYS_FS_Unmount
N/A SYS_FS_FileError
FSinit SYS_FS_Initialize
N/A SYS_FS_Tasks
Fsfclose SYS_FS_FileClose
Fsfeof SYS_FS_FileEOF
FSfread SYS_FS_FileRead
FSftell SYS_FS_FileTell
FSfwrite SYS_FS_FileWrite
N/A SYS_FS_FileSize
wFSfopen SYS_FS_FileOpen
N/A SYS_FS_FileStat
FSfseek SYS_FS_FileSeek

Initialization

This topic describes the differences in initialization.

Description

MLA Initialization (Legacy code):

In legacy MLA code, the initialization involves modification of the header file Har dwar ePr of i | e. h. The header file has definitions for the SPI
modules used (SPI1 or SPI2), configuration for SPI module, clock frequency, pin mapping for SD card, and pin remapping for SPI (SDI, SDO and
SCLK pins). The following two images illustrate these modifications.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 168

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

1 ae ' 3 1

}| HardwareProfieh

23

24 gelif defined (_ PIC32MX_)

25 // Registers for the SPI module you want tQ_use

2s #define MDD USE_SPI 1 j.. Definitions for SPl modules to
27 //%#define MDD USE_SPI_2

28 - be used

29 //SPI Configuration

30 $define SPI_START_CFG_1 (PRI_PRESCAL_64_1 | SEC_PRESCAL_S8_1 | MASTER_ENABLE_ON | SPI_CKZ_ON | SPI_SMP_ON)
31 tdefine SPI_START_CFG_2 (SPI_ENABLE) Configuration of SPl module
32

33 // Define the SPI fregquency and SPI baud rate

34 a #define SPI_FREQUENCY (20000000)

35

36 $if defined MDD_USE_SPI_1

37 // Description: SD-SPI Chip Select Output bit

38 ¢define SD_CS LATBbits .LATB1

39 // Description: SD-SPI Chip Select TRIS bit

40 #¢define SD_CS_TRIS TRISBbits TRISB1

41

42 // Description: SD-SPI Card Detect Input bit

43 ¢define SD_CD PORTFbits.RFO : Pin mapping for SD card
44 // Description: SD-SPI Card Detect TRIS bit

45 #¢define SD_CD_TRIS TRISFbits.TRISFO

46

47 // Description: SD-SPI Write Protect Check Input bit

48 $define SD_WE PORTFbits.RF1

43 // Description: SD-SPI Write Protect Check TRIS bit

S0 ¢define SD_WE_TRIS TRISFbits.TRISF1

51 >

52 // Description: The main SPI control register

// Description: The definition for the SPI baud rate generator register (PIC32)
#¢define SPIBRG SPI1BRG

// Tris pins for SCK/SDI/SDO lines
(] // Tris pins for SCK/SDI/SDO lines —_—

$if defined(__32MX460FS12L_)
// Description: The TRIS bit for the SCK pin

¢define SPICLOCK TRISDbits . TRISD1O
// Description: The TRIS bit for the SDI pin
#¢define SPIIN TRISCbits.TRISCY
// Description: The TRIS bit for the SDO pin Device specific
¢define SPIOUT TRISDbits . TRISDO ~——— SPI pin
$else // example: PIC32MX360FS1ZL remapping
// Description: The TRIS bit for the SCK pin based on
¢define SPICLOCK TRISFbits . TRISFE ugdefine”
// Description: The TRIS bit for the SDI pin
#define SPIIN TRISFbits .TRISE?7
// Description: The TRIS bit for the SDO pin
¢define SPIOUT TRISFbits .TRISF8 J
$endif
//SPI library functions SPI module
$¢define putcSPI putcSPIl number specific
$define getcSPI getcSPIl

functions based

¢define OpenSPI (configl, config2) CpenSPIl (configl, config2) .
on “#define”

$elif defined MDD_USE_SPI_2
// Description: SD-SPI Chip Select Output bit
§¢define SD_CS LATBbits.LATBS

Inside the main function, the initialization of interrupts and the clock occurs in a series of function calls. Then, the media detect function is called for
the media used. Later, the FS init function is called, which internally performs the disk mount, and if the mount process and FS initialization is
successful, the functions returns as '1".

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 169

Volume V: MPLAB Harmony Framework

System Service Libraries Help

File

System Service Library

g e
i Demtration‘&cl
1177
178 Bint main (void) X X
179 || ¢ main() function
180] FSFILE * pointer;
181 $if defined (SUPPORT_LFN
182 char count = 20;
183 F $endif
184 char * pointerZ;
185 SearxchRec rec;
1186 unsigned char attributes;
1187 unsigned char size = 0, i;
188 B
189 // Turn on the interrupts
1190 INTEnableSystemMultiVectoredInt
191 SYSTEMConfigPexrformance (GetSystemClock ;
192 mOSCSetPBDIV (OSC_PB_DIV_2) ; Clock and interrupt
193 //Initialize the RICC s _eae_pe .
Fer BteeInic. - initialization
195 while (RtccGetClkStat () !=RTCC_CLK_ON);// wait forx| the SOSC to be actually running and RICC to have its clock source
196 // could wajt here at most 32ms
197 RtccOpen (0x10073000, 0x07011602,
198
. , .
13: vhile (IMDD_MedisDetect()): Media detection and FS
01 // Initialize the library initialization
0z] while (!FSInit());
03
04 ¢$ifdef ALLOW_WRITES
0s // Create a file
06 pointer = wFSfopen const unsigned short int *)astrl(0), "w");

MPLAB Harmony Initialization:

In the case of MPLAB Harmony, the initialization is done by the SYS_Initialize function, which is called from the main function.

Inside the SYS_Initialize function, the BSP, interrupt, clock, port remapping, driver initialization, FS initialization and application-specific
initialization is done. All initialization is done by calling specific system function calls, as shown in the following image. For more information, refer
to the demonstration code provided as a part of the MPLAB Harmony release package.

(&) system_int.c =
BE-8-ReSEPes aulon uas

S8
59
60
61
62
63
64
65
66
67
68
69
70
7n
72\~

SYS_Initialize (NU

while(true)

return :L-\::I_F."

SYS_Tasks():

I main (void)

n"y:

CODE (MAIN_RETURN_SUCCESS):

»
()
=
7
1

221

T

228
229
230
231
232
233
234
235
236
237
238

239 -

{

}

void SYS Initialize (void* data)

BSP_Initialize():
-

SYS_INT Initialize():

5YS_PORTS_RemapOutput (PORTS_ID_0,
SYS_PORTS_RemapInpuc (PORTS_ID 0, I

_VECTOR

eralClock = 100000

_VECTOR

Initialization of BSP for specific demo board

TPUT_FUNC_SDO2, OUTPUT_PIN_RPGS):
e S
Initialization of

-- Ports
br_se: Interrupt
. —Clock

bR_sP:

iL3)

- Allinitialization done by eL3)

" system calls. No
“#defines”

R

(SYS_

appDrvObjects.
(SY.

= DRV_SPI_Inifialize (DRV_SPI
*) 6drvSPIInit)

= DRV_SDCARD_Initialize (DR
T *)&drvSDCARDIniE);

—

L. Driver Initialization

—

SYS_FS_Initialize((const void «) sysFsInit): FSInitialization

APP_Initialize ():

Any application specific initialization

The SPI module selection and configuration of the SPI module is done through the SPI driver initialization structure. Similarly, the selection of pins
related to SD card functionality and the selection of the SPI clock frequency is done through the SD card driver initialization structure. The
initialization structures are passed as input parameters during driver initialization function calls. There are no #def i ne used, as was done in the
case of legacy MLA code.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

170

Volume V: MPLAB Harmony Framework

1] system_initc =

RR-B-AFE PSR (U0 | & a2

System Service Libraries Help

103 Structure containing the initialization
104 const DRV_SPI_INIT drvSPIInit = parametersforspl driver

105 & ¢

106 .moduleInitc.sys.pov ES ate = SYS MODULE POWER_RUN E-‘:;'SPI module used
107 .8pild = SPI_ID 2, < —_—

108 .spiMode = DRV_SPI_MODE_MASTER,

109 .2piProtocolType = DRV_SPI_PROTOCOL_TYPE_STANDARD,

110 .commWidth = SPI_COMMUNICATION_WIDTH_8BITS,

111 .baudRate = 100000,

112 .bufferType = DRV_SPI_BUFFER_TYPE_STANDARD,

113 .rxInterruptMode = 0, SPI module
114 .txInterruptMode = 0, setting
115 .clockMode = DRV_SPI_CLOCK MODE_IDLE_LOW_EDGE_FALL,

116 .inputSamplePhase = SPI_INPUT_SAMPLING_PHASE_AT_END,

117 txInterruptSource = INI_SOURCE_SPI_2 TRANSMIT,

118 .rxInterruptSource = INT_SOURCE_SPI_2_ RECEIVE,

119 .errinterruptSource = INT_SOURCE_SPI_2_ERROR,

120 L 3; -

121

122 -~ T drvSDCARDInit =

1233 ¢)

124 w t = PORT_CHANNEL_F,

125 Position = PORTS_BIT_POS_1,

126 = PORT_CHANNEL_J, Pins used for
127 csition = PORTS BIT POS S,

128 = PORT CHANNEL B, - SDcardand
129 Position = PORTS_BIT_POS 14, SPI frequency
130 .sdca:dSpeed-’z = 20000000, forSD card
131 .spild = SPI_ID_2,

132 -~ }: —r

File System Service Library

Since MPLAB Harmony supports multiple file systems, there is a structure which needs to be defined and then passed as an input parameter to

the SYS_FS_Init function.

E] system_init.c

i
it

RER-EB- QTSR FPELD e 0| &

143

144 const SYS5_F
145 ¢

1486 {

147 .nativeFileSystemType = FAT,

148 .nativeFileSystemFunctions = &FatFsFunctions

wm
w
=

RATION TABLE sysFSInit [5YS

151 .nativeFileSystemType = MPFS2,|
152 .nativeFileSystemFunctions = &MPFSFunctions

155| % };

System Configuration
This topic describes differences in system configuration.

Description
system_config.h file in MPLAB Harmony:

L B I B e e

The file syst em confi g. h contains the various system configurations required to run an application. Examples of system configurations related

to, but not limited to drivers are:

« SPI driver configuration: such as DRV_SPI_INSTANCES_NUMBER, DRV_SPI_CLIENTS_NUMBER, DRV_SPI_INTERRUPT_MODE,

DRV_SPI_BUFFER_SIZE, efc.

» SD Card driver configuration: such as DRV_SDCARD_INSTANCES_NUMBER, DRV_SDCARD_CLIENTS_NUMBER,

DRV_SDCARD_QUEUE_POOL_SIZE, efc.

These configurations are required to configure the drivers used for the FS. Since the driver concept was not present in the legacy MLA code, this
is a new addition to MPLAB Harmony. To get detailed information about each of the configuration parameter, please refer to the specific driver

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2

.06

171

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

documentation.
Media manager configuration:

e SYS_FS_MEDIA_NUMBER - Number of media that will be used in the application. For example, if the application uses SD card and Mass
storage device the SYS_FS_MEDIA_NUMBER should be defined as 2.

e SYS_FS_VOLUME_NUMBER - Number of volumes that will be used in the application. MPLAB Harmony supports multi-partitioned media. If
the application uses a SD card that has three partitions and a Mass storage device, which has one partition, the SYS_FS_VOLUME_NUMBER
should be defined as 4.

» Clock related configurations are present in the file, which are used to set the clock for the device

File system related configuration:

e SYS_FS_MAX_FILE_SYSTEM_TYPE - Number of native file system that will be used in the application. MPLAB Harmony supports multiple
native file systems. If the application uses two file systems, FAT FS and MPFS2, SYS_FS_MAX_FILE_SYSTEM_TYPE should be defined as 2.

e SYS_FS_MAX_FILES - Maximum number of files that will be opened by the application at a time
* Other application-specific configuration settings
SYS_Tasks in MPLAB Harmony:

In the case of MPLAB Harmony, certain tasks need to be executed periodically. These tasks are executed from a common function called
SYS_Tasks, which is in turn called from the main loop (while(1)) loop. While the concept of running certain functions from the main loop is not new,
the legacy MLA demonstration code did not have any functions that had to run from the main loop. However, in case of MPLAB Harmony, it is
mandatory that certain tasks should be running periodically from the main loop.

In the case of the FS application, tasks that have to run from SYS_Tasks function are:

e SYS_FS Tasks - This task maintains the working of the SYS_FS layer and other file system related layers. It is extremely essential that this
function runs periodically from the SYS_Tasks function.

» Driver task - Consider a case where the FS application uses a SD card; there is no hardware module that controls the SD card. In such a case,
the task routine for the SD card must run from SYS_Tasks. This is required so that the internal driver mechanism for the SD card continues
working.

* Any other application related task

% system_tasks.c ® }

RPEB-8-ATSFE PSR
g8 :

g9
390
91
92| -
93
94 void SYS Tasks (void)
95 [¢

96
97 SYS_FS_Tasks():

8
(=}

99 g
100 DRV_SDCARD Tasks (appDrvObjects.d
101
102
103 APP Tasks ()
104
105 - 1}

I
M.
8

@ H|

Mounting a Volume
This topic describes differences when mounting a volume.

Description

Mounting a Volume in MLA versus MPLAB Harmony:

In MLA, the complete mounting of a volume was achieved by calling the two functions, MDD_MediaDetect and FSInit, until the function returns
success. The features of mounting a volume in MLA were:

« There are two functions that completely achieve the mounting process
* Both functions were of input type as "void" (no input argument)
« Both functions were called in blocking mode

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 172

Volume V: MPLAB Harmony Framework

System Service Libraries Help File System Service Library

1383 //Initialize the RICC

134 Rtecelnit

135 while (RtccGetClkStat () !=RTCC_CLK ON);// wai actually runni
156 32ms
197 RtccOpen (0x10073000, 0x07011602, 0);

138

158 while (!MDD_MediaDetect

200

201 // Initialize the library

202 =] while !FSInit

203

204 gifdef ALLOW_WRITES

205 // Create a file

206 pointer = wEFSfopen conat unsigned short int *)astrl[0], "w");

207 if (pointer == NULL

208 while(1l);

In MPLAB Harmony, the mounting of a volume is achieved by calling the SYS_FS_Mount function until the function returns success. The features
of mounting a volume in MPLAB Harmony are:

SYS_FS_Mount function includes both media detection and mounting the volume. Please note that, MPLAB Harmony FS still needs the
function SYS_FS_Initialize to be called during system initialization. Though the name SYS_FS_Initialize seems similar to the MLA function
FSinit, the task achieved by calling these functions are very different.

¢« SYS_FS_Initialize (MPLAB Harmony function) - Just does the initialization of SYS_FS layer. It does not do any mounting of volumes.
« FSInit (MLA function) - Did the initialization of FS and also did mount the disk.

SYS_FS_Mount function accepts input parameter such as devName, mntName, fileSystemType, etc. To know each of the parameter in detail,
pleas refer to the documentation of the SYS_FS_Mount function.

SYS_FS_Mount has to be running in a non-blocking mode. The following image shows an application where SYS_FS_Mount is called from the
state machine implementation. This is required as the implementation of the state machine allows the SYS_Tasks function to be run

periodically. This is quite different from the earlier implementations of MLA.
140
141 STLYCh(apDDa!’,&.rV ace)
142 {
143 case APP_MOUNT_DISK:

144 1T (SYS_FS_Mount ("/ds il kal”, ' t yDx ", FAT, 0, NULL) '= 0)

145 {

146 [-]

147 +

148

149 appData.state = APP_MOUNT_DISK:
150 }

151 else

152 {

153

154

155 appData.state = APP_UNMOUNT_DISK:
156 }

157 break;

1ee

Opening a File
This topic describes differences when opening a file.

Description
Opening afile in MLA versus MPLAB Harmony:

Opening a file remains similar for both MLA and MPLAB Harmony. However, a critical difference in MPLAB Harmony is that, while opening the file,
the complete path of the file must be specified. In addition, the path must be preceded by the string / mt / . The complete path is required because
the MPLAB Harmony FS implements a multi-partition media support. Therefore, the file path should include the name of volume (assigned media
partition), and from where the file is to be opened. For more details, please refer to the documentation of the SYS_FS_FileOpen function. The

following two figures illustrate opening a file in MLA as opposed to MPLAB Harmony.

In MLA, the error in opening a file was indicated by the file open function returning a NULL, while, in MPLAB harmony, the file open returns

SYS_FS_HANDLE_INVALID.

244 gendif

245 r

246 // Open file 1 in read mode

247 pointer = wFSfopen const unsigned short int *)astrl([0], "xr");
248 if (pointer == NULL

249 while(1l);

250

251 if (wFSrename conat unsigned short int *)astr3([0], pointer
252 while(1l);

253

254 // Read cne four-byte cobject

255 if (FSfread (receiveBuffer, 4, 1, pointer =1

256 while (1) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

173

Volume V: MPLAB Harmony Framework System Service Libraries Help

Figure 1: Opening a File in MLA

173

174 case APP_OPEN FILE:

175

176 appData.fileHandle = SY5_FS_FileOpen("/mnt/myDrive/FILE TOO LONG NAME
177 (SYS_FS5_FILE_OPEN_READ)):

178 if (appData.fileHandle == SYS_FS_HANDLE INVALID)

179 {

180 * Could not open the file. Error out*

181 appData.state = APP_ERROR;

182 }

183 else

184 {

10cC mrmamTlm e F2 7 a T AT - -_— OVC TC T VTaNmawm Il o e e s TS vem TTTT TAN

Figure 2: Opening a File in MPLAB Harmony

Reading a File

This topic describes the differences between legacy MLA code for FS and MPLAB Harmony FS, while reading a file.

Description

Reading afile in MLA versus MPLAB Harmony:

File System Service Library

Reading a file remains similar for both MLA and MPLAB Harmony, as depicted in the following figures. The smaller differences are that, the name
of the function to read the file is different, the order of parameters passed are different, and MPLAB Harmony only takes three parameters. The

MPLAB Harmony function only enables byte based access.

Although both the MLA and MPLAB Harmony file read functions return the number of bytes read, the MPLAB Harmony functions also return '-1" if

there were any errors while reading the file.

Demonstration3.c

253

254 // Read one four-byte object

255 if (FSfread (receiveBuffer, 4, 1, pointex 1

256 while (1

257

258 // Check if this is the end of the file- it shouldn't be
259 if (FSfeof (pointerx

Figure 1: Reading a File in MLA

StartPage 2| (¥ app.c u|(¥manc x|

RER-8- 5B, ae 5|4 68
201
202 if (SYS_FS_FileRead((void *)appData.data, 512, appData.fileHandle) == -1)
203 {

204 [
205 |
206
207 SYS_FS_FileClose (appData.fileHandle);
208 appData.state = APP_ERROR;

209 }

Figure 2: Reading a File in MPLAB Harmony

Writing a File

This topic describes the differences between legacy MLA code for FS and MPLAB Harmony FS, while writing to a file.

Description

Writing to a file in MLA versus MPLAB Harmony:

Writing to a file remains similar for both MLA and MPLAB Harmony, as depicted in the following figures. The smaller differences are that the name
of the function to write to the file is different, the order of parameters passed are different, and MPLAB Harmony only takes three parameters. The

MPLAB Harmony function only enables byte based access.

Although both the MLA and MPLAB Harmony file read functions return the number of bytes written, the MPLAB Harmony functions also return '-1'

if there were any errors while writing to the file.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

174

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Demonstration3.c | FSIO.h|

208 while (1);

209

210 // Write 21 l-byte cbjects from sendBuffer intc the file
211 if (FSfwrite (sendBuffer, 1, 21, pointer) != Z1

212 while (1);

213

Figure 1: Writing to a File in MLA

StartPage | app.c | manc m)
BE-8-ALSFE L A0 6| a8
212 - If , €
213 if(SYS_FS_FileWrite((const void ~)appData.data, 512, appData.fileHandlel) == -1)
214 {
215 (-

e

Figure 2: Writing to a File in MPLAB Harmony

Closing a File
This topic describes the differences between legacy MLA code for FS and MPLAB Harmony FS, while closing a file.
Description

Closing a file in MLA versus MPLAB Harmony:

Closing a file remains similar for both MLA and MPLAB Harmony, as depicted in the following figures. The smaller difference is that the name of
the function is different.
I 4

Demonstration3.c | FSIO.h

27

28 // Close the file

29 if (FSfclose (pecinter
30 while (1) ;

31

Figure 1: Closing a File in MLA

StartPage & Eappc ul@m&\.c 8}
BRE-8-ATFE PR a0 5| a8

229 * Close both files *

230 SYS_FS_FileClose (appData.fileHandle);

231 SYS_FS_FileClose (appData.fileHandlel);
232 * The test was successful. Lets idle. *
222 arvrmNasra orsara = ADD TNTE.

Figure 2: Closing a File in MPLAB Harmony

File EOF
This topic describes the differences between legacy MLA code for FS and MPLAB Harmony FS, while checking for end of file.
Description

Checking for EOF in MLA versus MPLAB Harmony:

The EOF function remains similar for both MLA and MPLAB Harmony, as depicted in the following figures. The smaller difference is that the name
of the function is different.

Demonstration3.c | FSI0.h

257

258 // Check if this is the end of the file- it shouldn't be
258 if (FSfeof (pointer

260 while(1);

-~

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 175

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Figure 1: EOF in MLA

:swlPeoe a|@apc u|Fjmanc =
EB-8-AtS@Pe Ao s s
219 }
220 else if(SYS_FS_FileEOF (appData.fileHandle) == 1)
221 {
222 t t
223 appData.state = APP_CLOSE_FILE;

Figure 2: EOF in MPLAB Harmony

File Tell

This topic describes the differences between legacy MLA code for FS and MPLAB Harmony FS, while checking for file pointer (tell).
Description

Checking for file pointer (tell) in MLA versus MPLAB Harmony:

The function to check for file pointer (tell) remains similar for both MLA and MPLAB Harmony, as depicted in the following figures. The smaller
difference is that the name of the function is different.

Demonstration3.c | FSI0.h

213 [

214 // FSftell returns the file's current position
215 if (FSftell (pecintex) != 21

216 while(1);

iy,

Figure 1: Tell Function in MLA

StartPage % |(3] app.c sc]@sys_fs.h 8|
RER-E- A AtSFEFeR(c 0 5|
155
156 tell = SYS_FS_FileTell (fileHandle);
157
158 case APP_OPEN FILE 2:

Figure 2: Tell Function in MPLAB Harmony

File Seek
This topic describes the differences between legacy MLA code for FS and MPLAB Harmony FS, while performing a file seek.

Description

File seek in MLA versus MPLAB Harmony:

The function to perform file seek remains similar for both MLA and MPLAB Harmony, as depicted in the following figures. The smaller difference is
that the name of the function is different.

Demonstration3.c | FSIO.h|

217

218 // FSfseek sets the position one byte before the end

218 // It can alsc set the position of a file forward from the
220 // beginning or forward from the current position

221 if (FSfseek(pointer, 1, SEEK_ENI

222 while (1) ;

222

Figure 1: File Seek in MLA

:smPage u[@ appc u[Pjsysfoh u
IRPE-8-A_SB LU/ 5| & 46

209 case APP_DO_FILE_SEEK:

210 if (SYS_FS_FileSeek(appData.fileHandle 2, -10, SYS_FS_SEEK END) != -10)
211 {

212 * Fil k t Y T

213 appData.=state = APP ERROR;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 176

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Figure 2: File Seek in MPLAB Harmony

SYS FS Tasks
This topic describes the differences between legacy MLA code for FS and MPLAB Harmony FS with respect to the SYS_FS_Tasks function.

Description

SYS FS_Tasks in MLA Versus MPLAB Harmony:

MPLAB Harmony needs the SYS_FS_Tasks function to be running periodically from the SYS_Tasks function. The MLA code did not have any
such function that had to be running periodically.

Start Page szvmapp.c savmsys_fs.h uﬁﬂsystem_tasls.c %
RB-B-AdFB|FER (AT |4 dE
93
94 void SYS Tasks (void)
95 & ¢
96
97 SYS_FS_Tasks():
98
99
100 APP_Tasks ():
101
102 - 1}

ans

Figure 1: Running SYS_FS_Tasks Function from SYS_Tasks

Using the Library
This topic describes the basic architecture of the File System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_fs. h

The interface to the File System Service library is defined in the sys_f s. h header file. This file is included by the system.h file. Any C language
source (. ¢) file that uses the File System Service Library should include syst em h.

Please refer to the What is MPLAB Harmony? section for how the File System Service interacts with the framework.

Abstraction Model
This topic describes the abstraction model of the MPLAB Harmony File System.

Description

The FS framework features a modular and layered architecture, as shown in the following figure.
FS Framework Architecture

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 177

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

-
Application
\
4 N - _A_ '
File System Service (sys_fs) < Virtual File System
\. y ©
c
Q
Q.
Q
©
FAT MPFS | Others % Native File System
@
=
R E
File System Media Manager VI Media manager
) -2
m SD Card | USB Media driver

As seen in the figure, the FS Framework consists of the following major blocks:

« The Driver for the physical media has to be included as a part of the FS Framework. This layer provides a low-level interface to access the
physical media. This layer also enables multiple instances of media. Examples of drivers are:
* NVM driver — To access files using NVM (Flash memory)
« SPI driver — To access files from SD card, which interfaces using the SPI peripheral

* The Media driver provides a mechanism to access the media as "sectors". Sectors are the smallest storage element accessed by a file system
and are contiguous memory locations. Typically, each sector has 512 bytes. Depending on the requirement, in some cases, the driver and
media driver could be combined as one layer.

* The Media manager implements a disk and sector based media access mechanism. It also performs disk allocated/deallocated on media
attach/detach. Due to the implementation of this layer, the FS Framework can support multiple disks. The media manager detects and
analyzes a media based on its Master Boot Record (MBR). Therefore, it is mandatory for the media to have a MBR for it to work with the FS.

* The Native file system implements support for the media file system format. Examples of native file systems are: FAT12, FAT32, and MPFS,
among other. At present, only the FAT and MPFS files systems are supported by the FS framework; however, more native file systems can be
included.

e The Virtual file system (or SYS_FS) layer provides a file system independent file system operation interface. This layer translates virtual file
systems calls to native file system calls. Due to this layer, applications can now support multiple file systems. Interfaces provided by this layer,
but not limited to, include:

¢ SYS_FS_mount
« SYS_FS_open

¢ SYS_FS read

e SYS_FS write

¢ SYS_FS_close

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the File System
module.

Library Interface Section Description
File and Directory Operation Functions Provides file and directory operation interface routines.
General Operation Functions Provides general operation interface routines.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 178

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

How the Library Works
This topic provides information on how the MPLAB Harmony File System works.

Description

The MPLAB Harmony File System (FS) provides embedded application developers with a file system framework for retrieving and storing data
from various media.

The MPLAB Harmony file system is designed to support multiple file systems (native file systems) and multiple media at the same time. Examples
of native file systems are FAT12, FAT32, MPFS, and JFS, among others. Each of these native file systems has a common set of APIs that can be
used to access the files of that particular native file system. The FS is a part of the MPLAB Harmony installation and is accompanied by
demonstration applications that highlight usage. These demonstrations can also be modified or updated to build custom applications.

FS features include the following:

« Support for multiple file system (FAT, MPFS)

* Supports multiple physical media (NVM, SD card)

* More physical media can be interfaced with the FS, once the driver is available for the media
e Modular and Layered architecture

Application Interaction
This topic describes how an application must interact with the File System.

Description

The interaction of various layers is shown in the following figure.

Application Interaction with FS Framework

(SYS_FS)
File open/ read/ write

|

Native File system

!

Media manager

| ! |

Disk — 0 (NVM Disk — 1 (NVM Disk — 2 (SD
Media) Media) card Media)

In the process of using the FS Framework, the application must first mount the media drive for the FS Framework to access the media. Unless the
mounting process returns successfully, the application should continue trying to mount the drive. If the drive is not attached, the mounting process
will fail. In such a situation, the application should not proceed further unless the mounting is success.

Application Mounts a Drive

Drive Mount
(SYS_FS_Mount) -—

Is Drive
Mount
Success?

Once the drive is mounted, the application code can then open the file from the drive with different attributes (such as read-only or write). If the file
open returns a valid handle, the application can proceed further. Otherwise, the application will enter an error state. The reason for an invalid

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 179

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

handle could be that the application was trying to read a file from the drive that does not exist. Another reason for an invalid handle is when the
application tries to write to a drive that is write-protected.

Once the file is opened, the valid file handle is further used to read/write data to the file. Once the required operation is performed on the file, the
file can then be closed by the application by passing the file handle. The following figure illustrates the process.

Further File System Operations

File Open

Is file
handle
valid?

NO Error opening
the file

File Read/ Write

|

File Close

Using the File System
This topic describes how to use the File System.

Description

Use the Available Library Demonstration Applications

The FS framework release package contains a set of demonstration applications that are representative of common scenario (single/multi-media
and single/multi-native file systems). These demonstrations can be easily modified to include application-specific initialization and application logic.
The application logic must be non-blocking and could be implemented as a state machine.

» The application specific initialization can be called in the SYS_Initialize function (in the syst em_i ni t . ¢ file). The SYS_lInitialize function is
called when the device comes out of Power-on Reset (POR).

* The application logic can be called in the SYS_Tasks function (in the syst em t asks. c file). The application logic can interact with the FS
layer by using relevant API calls, as provided in the APP_Tasks (in the app. c file)

Building a FS Application from Scratch

In a case where the available demonstration applications do not meet the end application requirements, an application to use the FS framework
can be created from scratch. The following figure shows a flowchart for the steps that need to be performed.

Steps to Create a FS Application

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 180

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Create MPLAB Project and
add required files

Initialize the drivers an the
system clock, interrupt

Based on the
requirement (interrupt
vs. polled, call the
driver handle from the
interrupt service
routine, or from a while
loop

Create a while(1) loop
to call the driver tasks
and also the application
tasks

Step 1:
Create a MPLAB Project and add the required FS framework files to the project. The following files are needed to build the a FS project

* system confi g. h - This file should contain the compile time configuration macros for the Driver, Media Layer, and FS layer. The file also
contains the clock speed setting, which is set for the microcontroller.

» system.nit.c — This file should contain the initial settings for each driver. It should also call the functions required to initialize different
drivers to be used by the FS.

« ff.c,diskio.c,npfs.c,sys_fs.c,sys_fs_nedi a_nanager. c — These files are part of the FS, which must be included in the project
e sys_int_pic32.candplib_int_pic32.c - These files implement the system interrupt service that is required by the FS

e sys_ports. c —Ifthe FSis using a SD card as media, this file needs to be included (for Chip Select)

e Driver — The driver for media to be used by FS should also be included

* Application specific files - These file will implement the application logic

Step 2:

Since the MPLAB Harmony drivers included with the File System operate in interrupt mode, a driver Handler should be defined as follows:
/* Use this for PIC32MX */
void __ ISR (_SPI1_VECTOR ipl4) _InterruptHandl er_SPl_stub (void)

{
}

DRV_SPI _Tasks((SYS_MODULE_OBJ) appDr vQbj ect s. dr vSPI Obj ect) ;

/* Use this for PIC32MZ */
void __ ISR (_SPI2_RX VECTOR ipl4) _InterruptHandl er_SPI_RX stub (void)

{
DRV_SPI _Tasks((SYS_MODULE_0OBJ) appDr vQbj ect s. dr vSPI Cbj ect) ;
}
void _ ISR (_SPI2_TX VECTOR ipl4) _InterruptHandl er_SPI_TX stub (void)
{
DRV_SPI _Tasks((SYS_MODULE_0OBJ) appDr vQbj ect s. dr vSPI Cbj ect) ;
}
Step 3:

The application should create a whi | e(1) loop that continuously updates the driver layer State Machine and the application state machine. This
requires the application state machine to be non-blocking.

/* This while(l) loop will continuously update the driver |ayer state machine and the application state
machi ne */

whi | e(1)
{

/* Task routine for sys_ fs */
SYS_FS Tasks();

/* Call the SDCARD Task */
DRV_SDCARD_Tasks(appDr vObj ect s. dr vSDCARDObj ect) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 181

Volume V: MPLAB Harmony Framework System Service Libraries Help

}

/* Call the application's tasks routine */
APP_Tasks ();

Step 4:

If interrupt-based operation is needed, the interrupts need to be enabled first. The application should then initialize the driver layer. Refer to the
driver specific documentation regarding usage.
/* Initialize the interrupt system */

SYS INT Initialize();

/* Initialize the global interrupts */
SYS_|I NT_Enabl e();

/* set priority for SPI interrupt source */
SYS I NT_VectorPrioritySet (I NT_VECTOR SPI1, |NT_PRI ORI TY_LEVEL3);

/* set sub-priority for SPI interrupt source */
SYS_ | NT_Vect or SubprioritySet (I NT_VECTOR_SPI 1, | NT_SUBPRI ORI TY_LEVEL3);

/* Initialize the global interrupts */
SYS_|I NT_Enabl e();

/*

Initialize the SPI driver */

appDrvoj ects. drvSPl Ghject = DRV_SPI _Initialize(DRV_SPI_I NDEX O,

/-k

(SYS_MODULE_INIT *)&rvSPl I nit);

Initialize the SDCARD driver*/

appDr vObj ect s. dr vSDCARDObj ect = DRV_SDCARD | ni ti al i ze(DRV_SDCARD | NDEX_0,

(SYS_MODULE_I NI T *) &dr vSDCARDI ni t) ;

Step 5:

The application code can be implemented as a non-blocking state machine inside the APP_TASKS function, as shown in the following example for
an application to read a file and write the content into another newly created file.

File System Service Library

The input file TEST. JPGis not provided with the release package. It could be any arbitrary JPEG file chosen by the user, and then suitably
renamed to TEST. JPG. The reason for choosing a JPEG file for test purposes is that the duplicate file TEST1. JPGcreated by the FS
demonstration could be easily verified for correctness by inserting the SD card in the computer and opening the TEST1. JPGfile.

void APP_Tasks (void)

{

/* The application task state machine */

swi t ch(appDat a. st at e)

{
case APP_MOUNT_DI SK:

i f(SYS_FS Mount ("/dev/ mctbl kal", "/mt/nyDrive", FAT, 0, NULL)

{
/* The di sk could not be mounted. Try
* nmounting again until success. */
appDat a. state = APP_MOUNT_DI SK;

}

el se

{
/* Mount was successful. Open a file.
* Let the switch case fall through. */
appDat a. state = APP_OPEN_FI LE;

}

br eak;

case APP_OPEN FI LE:

appData.fil eHandl e = SYS_FS Fil eQpen("/ mt/nyDrivel/ TEST. JPG',

(FA_READ));
i f(appData.fileHandl e == SYS_FS_HANDLE_| NVALI D)
{
/* Could not open the file. Error out*/
appDat a. state = APP_ERROR,
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

1= 0)

182

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

el se
{
appData.fileHandl el = SYS FS Fil eQpen("/ mt/ nyDrive/ TEST1. JPG',
(FA_WRI TE| FA_CREATE_ALVWAYS)) ;
i f(appData.fileHandl e == SYS_FS_HANDLE_| NVALI D)

{
/* Could not open the file. Error out*/
appDat a. state = APP_ERROR;
}
el se
{
/* Check the file to be read */
appDat a. state = APP_CHECK_FI LE;
}
}
br eak;

case APP_CHECK FI LE:
/* check the size of file */
fileSize = SYS_FS Fil eSi ze(appData. fil eHandl e);
/* since, we will read 512 bytes at a tine, find the nunber of tines, the read has to be
perforned */
sectorCounter = integral Sector = (fileSize/512);
/* find the renmaining bytes */
bal anceSector = (fileSi ze¥%12);

appDat a. state = APP_READ_WRI TE_TO FI LE;
br eak;
case APP_READ WRI TE_TO FI LE:
i f(SYS_FS_Fil eRead((void *)appData.data, 512, appData.fileHandle) == -1)
{ /* There was an error while reading the file.

* Close the file and error out. */

SYS FS Fil eC ose(appData.fil eHandl e);
appDat a. state = APP_ERROR;

}
else if(SYS_FS FileWite((const void *)appData.data, 512, appData.fil eHandl el) == -1)
{
/* Wite was not successful. Close the file
* and error out.*/
SYS_FS Fil eC ose(appData.fil eHandl el);
appDat a. state = APP_ERROR,
}
el se
{
sect or Counter - -;
/* if entire integral sectors are witten, wite the bal ance sector*/
i f(sectorCounter == 0)
{
i f(SYS_FS Fil eRead((void *)appDat a. data, bal anceSector, appData.fileHandle) == -1)
{
/* There was an error while reading the file.
* Close the file and error out. */
SYS_FS Fil ed ose(appbata. fil eHandl e);
appDat a. state = APP_ERROR,
else i f(SYS_FS FileWite((const void *)appData.data, bal anceSector,
appData. fil eHandl el) == -1)
{
/* Wite was not successful. Close the file
* and error out.*/
SYS_FS Fil eC ose(appData.fil eHandl el);
appDat a. state = APP_ERROR;
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 183

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

el se
{
appDat a. state = APP_CLOSE_FI LE;
}
}
}
br eak;

case APP_CLOSE_FI LE:
/* Cose both files */
SYS_FS Fil ed ose(appbata. fil eHandl e);
SYS_FS Fil el ose(appData.fil eHandl el);
/* The test was successful. Lets idle. */
appDat a. state = APP_I DLE;
br eak;

case APP_I| DLE:
/* The application cones here when the denonstration
has conpl eted successfully. Switch on green LED. */
BSP_Swi t chONLED(LED_2) ;
br eak;
case APP_ERROR
/* The application cones here when the denonstration
has failed. Switch on the red LED. */
BSP_Swi t chONLED(LED 1) ;
br eak;
defaul t:
br eak;

}

} //End of APP_Tasks

Configuring the Library

Lists and describes the library configuration macros.

Macros
Name Description
SYS_FS_AUTOMOUNT_ENABLE Enable/Disable Auto Mount Feature of File system
SYS_FS_MAX_FILE_SYSTEM_TYPE Number of file systems used in the application
SYS_FS_MAX_FILES Number of simultaneous files access
SYS_FS_MEDIA_MAX_BLOCK_SIZE Media Sector Size information
SYS_FS_MEDIA_NUMBER Number of media used in the application
SYS_FS_VOLUME_NUMBER This macro defines number of volumes used in the application
Description

The configuration of the File System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the File System service. Based on the selections made, the File System Service may
support the selected features. These configuration settings will apply to all instances of the File System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

SYS_FS_AUTOMOUNT_ENABLE Macro
Enable/Disable Auto Mount Feature of File system
File
sys_fs_config_template.h

C
#def i ne SYS_FS_AUTOMOUNT_ENABLE 1

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 184

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Description

Enable/Disable Auto Mount Feature of File system
Enable/Disable Auto Mount Feature of File system

Remarks

None.

SYS_FS_MAX _FILE_SYSTEM_TYPE Macro
Number of file systems used in the application

File
sys_fs_config_template.h

C
#define SYS_FS_MAX_FI LE_SYSTEM TYPE 1

Description

Number of File system types
Number of fil systems used in the application

Remarks

None.

SYS_FS_MAX_FILES Macro
Number of simultaneous files access
File
sys_fs_config_template.h

C
#define SYS FS_MAX_FI LES 1

Description

Number of simultaneous files access
Number of simultaneous files access

Remarks

None.

SYS_FS_MEDIA_MAX_BLOCK_SIZE Macro
Media Sector Size information

File
sys_fs_config_template.h

C
#def i ne SYS_FS_MEDI A_MAX_BLOCK_SI ZE 512

Description

Media Sector Size information
Media Sector Size information

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 185

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

SYS_FS_MEDIA_NUMBER Macro
Number of media used in the application
File
sys_fs_config_template.h
C
#define SYS_FS_MEDI A_NUMBER 1
Description

Number of media used in the application
Number of media used in the application

Remarks

None.

SYS_FS_VOLUME_NUMBER Macro

This macro defines number of volumes used in the application
File

sys_fs_config_template.h

C
#define SYS FS_VOLUVE NUMBER 1

Description

Number of Volumes
This macro defines the number of volumes used in the application

Remarks

None.

Building the Library
This section lists the files that are available in the File System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenifs.

Interface File(s)

vouis | All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
- MHC when the library is selected for use.

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

I'sys_fs.h This file contains function and type declarations required to Interact with the MPLAB Harmony File
System Framework.

/fat_fs/src/file_system ff.h| FAT File System module include file. This file should be included when using the FAT File System.

/' npf s/ npfs.h This file contains the interface definition for handling the Microchip File System (MPFS). This file should
be included when using MPFS.

Required File(s)

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 186

Volume V: MPLAB Harmony Framework

Source File Name
/src/dynam c/sys_fs.c
/ src/ dynam ¢/ sys_fs_nedi a_nanager.c

/fat_fs/src/file_system ff.c

/fat_fs/src/hardware_access/ di skio.c

I npfs/src/npfs.c

System Service Libraries Help File System Service Library

Description
This file contains implementation of File System interfaces.
This file contains implementation File System Media Manager functions.

This file implements the FAT File system functions. This file should be included when using
FAT File System.

Low-level disk I/O module for FAT File System. This file should be included when using FAT
File System.

This file implements the MPFS functions. This file should be included when using MPFS.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.
Source File Name Description
N/A There are no optional files for this library.
Module Dependencies

The File System Service Library depends on the following modules:

NVM Driver Library (if media is NVM)

Secure Digital (SD) Card Driver Library (if media is a SD Card)

SPI Driver Library (if media is a SD Card)
Device Control System Service Library
Interrupt System Service Library

Ports System Service Library

Clock System Service Library

Library Interface

a) File and Directory Operation Functions

Name

SYS_FS_FileClose
SYS_FS_FileEOF
SYS_FS_FileOpen
SYS_FS_FileSeek
SYS_FS_FileSize

SYS _FS_FileTell
SYS_FS_FileNameGet
SYS_FS_FilePrintf
SYS_FS_FileTestError
SYS_FS_FileDirectoryModeSet
SYS_FS_FileDirectoryRemove

SYS_FS_FileDirectoryTimeSet
SYS_FS_FileTruncate
SYS_FS_FileCharacterPut
SYS_FS_FileStringGet
SYS_FS_FileStringPut
SYS_FS_Error
SYS_FS_FileError
SYS_FS_FileRead
SYS_FS_FileWrite

SYS_FS_DirectoryChange
SYS_FS_DirectoryMake
SYS_FS_DirClose

© ¢ ¢ ¢ ¢ ¢ ¢ ¢ O O Q| Q¢ O ¢ OO ¢ ¢ 0000 0 <«

© 2013-2017 Microchip Technology Inc.

Description

Closes a file.

Checks for end of file.

Opens a file.

Moves the file pointer by the requested offset.
Returns the size of the file in bytes.
Obtains the file pointer position.
Reads the file name.

Writes a formatted string into a file.
Checks for errors in the file.

Sets the mode for the file or directory.
Removes a file or directory.

SYS_FS_FileDirectoryRenameMove |Renames or moves a file or directory.

Sets or changes the time for a file or directory.
Truncates a file

Writes a character to a file.

Reads a string from the file into a buffer.
Writes a string to a file.

Returns the last error.

Returns the file specific error.

Read data from the file.

Writes data to the file.

SYS_FS_CurrentWorkingDirectoryGet | Gets the current working directory

Changes to a the directory specified.
Makes a directory.
Closes an opened directory.

MPLAB Harmony v2.06

187

Volume V: MPLAB Harmony Framework

LR R R R R

SYS_FS_DirOpen
SYS_FS_DirRead
SYS_FS_DirSearch
SYS_FS_FileSync
SYS_FS_DirRewind
SYS_FS_FileStat

b) General Operation Functions

LR AR AR AR SR R R R R R R

Name

SYS_FS_Initialize
SYS_FS_Mount
SYS_FS_Tasks
SYS_FS_Unmount
SYS_FS_CurrentDriveGet
SYS_FS_CurrentDriveSet
SYS_FS_DriveLabelGet
SYS_FS_DriveLabelSet
SYS_FS_DriveFormat
SYS_FS_DrivePartition
SYS_FS_DriveSectorGet
SYS_FS_EventHandlerSet

c) Data Types and Constants

Description

Name
SYS_FS_ERROR

System Service Libraries Help

Open a directory

Reads the files and directories of the specified directory.
Searches for a file or directory.

Flushes the cached information when writing to a file.
Rewinds to the beginning of the directory.

Gets file status.

Description

Initializes the file system abstraction layer (sys_fs layer).
Mounts the file system.

Maintains the File System tasks and functionalities.
Unmounts the file system.

Gets the current drive

Sets the drive.

Gets the drive label.

Sets the drive label

Formats a drive.

Partitions a physical drive (media).

Obtains total number of sectors and number of free sectors for the specified drive.

Allows a client to identify an event handling function for the file system to call back when
mount/unmount operation has completed.

Description
Lists the various error cases.

SYS_FS_FILE_OPEN_ATTRIBUTES Lists the various attributes (modes) in which a file can be opened.

SYS_FS_FILE_SEEK_CONTROL
SYS_FS_FILE_SYSTEM_TYPE

SYS_FS_FSTAT
SYS_FS_FUNCTIONS
SYS_FS_HANDLE

SYS_FS_REGISTRATION_TABLE

SYS_FS_RESULT
FAT_FS_MAX_LFN
FAT_FS_MAX_SS

FAT FS_USE_LFN

SYS_FS_HANDLE_INVALID

SYS_FS_FILE_DIR_ATTR
SYS_FS_TIME
SYS_FS_FORMAT
SYS_FS_EVENT

SYS_FS_EVENT_HANDLER

Lists the various modes of file seek.

Enumerated data type identifying native file systems supported.
File System status

SYS FS Function signature structure for native file systems.
This type defines the file handle.

The sys_fs layer has to be initialized by passing this structure with suitably initialized
members.

Lists the various results of a file operation.

Maximum length of the Long File Name.

Lists the definitions for FAT file system sector size.

Lists the definitions for FAT file system LFN selection.

Invalid file handle

Enumerated data type identifying the various attributes for file/directory.
The structure to specify the time for a file or directory.

Specifes the partitioning rule.

Identifies the possible file system events.

Poainter to the File system Handler function.

This section describes the APIs of the File System Service Library.

Refer to each section for a detailed description.

a) File and Directory Operation Functions

SYS _FS_FileClose Function

Closes a file.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

File System Service Library

188

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

File
sys_fs.h
C
SYS_FS RESULT SYS_FS Fil ed ose(SYS_FS HANDLE handl e) ;

Returns

SYS_FS_RES_SUCCESS - File close operation was successful. SYS_FS_RES_FAILURE - File close operation failed. The reason for the failure
can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description
This function closes an opened file.
Remarks
None.
Preconditions
A valid file handle must be obtained before closing a file.

Example

SYS_FS HANDLE fi |l eHandl e;
fileHandl e = SYS FS Fil eQpen("/ mt/ nmyDrivel/ FI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

if(fileHandl e ! = SYS_FS HANDLE | NVALI D)

/1l File open is successful

}
SYS_FS Fil eC ose(fil eHandl e);
Parameters

Parameters Description
handle A valid handle, which was obtained while opening the file.

Function
SYS_FS_RESULT SYS_FS_FileClose

SYS_FS_HANDLE handle

SYS FS_FileEOF Function
Checks for end of file.
File
sys_fs.h
C
bool SYS FS_Fil eEOF(SYS_FS_HANDLE handl e) ;

Returns

On success returns true indicating that the file pointer has reached the end of the file. On failure returns false. This could be due to file pointer
having not reached the end of the file. Or due to an invalid file handle. The reason for the failure can be retrieved with SYS_FS_Error or
SYS_FS_FileError.

Description

Checks whether or not the file position indicator is at the end of the file.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 189

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Preconditions

A valid file handle must be obtained before knowing a EOF.

Example

SYS_FS_HANDLE fi | eHandl e;
bool eof;

fileHandl e = SYS_FS_Fil eQpen("/ mt/ nmyDrive/ FlI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

if(fileHandl e !'= SYS _FS HANDLE | NVALI D)
{

}

/1 File open is successful

eof = SYS_FS Fil eEO-(fil eHandl e);

i f(eof == fal se)
{
/|l Check the error state using SYS_FS FileError
}
Parameters
Parameters Description
handle file handle obtained during file Open.
Function

bool SYS_FS_FileEOF

(
SYS_FS_HANDLE handle

SYS FS_FileOpen Function
Opens a file.

File
sys_fs.h

C

SYS_FS HANDLE SYS_FS Fil eOpen(const char* fname, SYS FS_FlILE_OPEN _ATTRI BUTES attri butes);

Returns

On success - A valid file handle will be returned On failure - SYS_FS_HANDLE_INVALID. The reason for the failure can be retrieved with
SYS_FS_Error.

Description

This function opens a file with the requested attributes.
Remarks

None.
Preconditions

Prior to opening a file, the name of the volume on which the file resides should be known and the volume should be mounted.
Example

SYS_FS HANDLE fi |l eHandl e;

fileHandl e = SYS FS Fil eQpen("/ mt/ nmyDrive/ FlI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 190

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

if(fileHandl e !'= SYS_FS HANDLE | NVALI D)

{
/'l File open succeeded.
}
el se
{
/'l File open failed.
}

/1 Using SYS_FS CurrentDriveSet () function.
SYS_FS_HANDLE fil eHandl e;
SYS_FS CurrentDriveSet ("/mt/nyDrive");

fileHandl e = SYS_FS_Fil eCpen("FILE. JPG', (SYS FS FILE_CPEN_READ));
if(fileHandl e ! = SYS_FS HANDLE | NVALI D)

{
/'l File open succeeded.
}
el se
{
/'l File open failed.
}
Parameters
Parameters Description
fname The name of the file to be opened along with the path. The fname
format is as follows "Imnt/volumeName/dirName/fileName". volumeName is the name of the volume/drive.
dirName is the name of the directory under which the file is located. fileName is the name of
the file to be opened. The "/mnt/volumeName" portion from the fName can be omitted if the
SYS_FS_CurrentDriveSet () has been invoked to set the current drive/volume.
attributes Access mode of the file, of type SYS_FS_FILE_OPEN_ATTRIBUTES
Function

SYS_FS_HANDLE SYS_FS_FileOpen
(

const char* fname,
SYS _FS_FILE_OPEN_ATTRIBUTES attributes

SYS_FS_FileSeek Function
Moves the file pointer by the requested offset.
File
sys_fs.h
C
int32_t SYS FS Fil eSeek(SYS FS HANDLE fildes, int32_t offset, SYS FS FILE SEEK CONTROL whence);
Returns

On success - The number of bytes by which file pointer is moved (0 or positive number) On Failure - (-1) If the chosen offset value was (-1), the
success or failure can be determined with SYS_FS_Error.

Description

This function sets the file pointer for a open file associated with the file handle, as follows: whence = SYS_FS_SEEK_SET - File offset is set to
offset bytes from the beginning. whence = SYS_FS_SEEK_CUR - File offset is set to its current location plus offset. whence =
SYS_FS_SEEK_END - File offset is set to the size of the file plus offset. The offset specified for this option should be negative for the file pointer to
be valid.

Trying to move the file pointer using SYS_FS_FileSeek, beyond the range of file will only cause the pointer to be moved to the last location of the
file.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 191

Volume V: MPLAB Harmony Framework

Remarks

None.

Preconditions

System Service Libraries Help File System Service Library

A valid file handle must be obtained before seeking a file.

Example

SYS_FS HANDLE fi |l eHandl e;
int status;

fileHandl e = SYS_FS_Fil eCpen("/ mt/ nyDrive/ FI LE. JPG',

(SYS_FS_FI LE_OPEN READ));

if(fileHandl e != SYS_FS HANDLE | NVALI D)

{
}

/'l File open is successful

status = SYS_FS Fil eSeek(fil eHandl e,

if((status !'= -1) && (status == 5))
{

}

Parameters

/'l Success

Parameters
handle
offset
whence
Function
int32_t SYS_FS_FileSeek

(
SYS_FS_HANDLE handle,

int32_t offset,
SYS_FS_FILE_SEEK_CONTROL whence

SYS_FS_FileSize Function
Returns the size of the file in bytes.
File
sys_fs.h
C

5, SYS FS SEEK CUR);

Description
A valid file handle obtained during file open.

The number of bytes which act as file offset. This value could be a positive or negative value.

Type of File Seek operation as specified in SYS_FS_FILE_SEEK_CONTROL.

int32_t SYS FS FileSize(SYS_FS_HANDLE handl e);

Returns

On success returns the size of the file in bytes. On failure returns -1. The reason for the failure can be retrieved with SYS_FS_Error or

SYS_FS_FileError.

Description

This function returns the size of the file as pointed by the handle.

Remarks

None.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

192

Volume V: MPLAB Harmony Framework System Service Libraries Help

Preconditions

A valid file handle must be obtained before knowing a file size.

Example

SYS_FS HANDLE fi | eHandl e;
long fileSize;

fileHandl e = SYS_FS_Fil eQpen("/ mt/ nmyDrive/ FlI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

if(fileHandl e !'= SYS _FS HANDLE | NVALI D)
{

}

/1 File open is successful

fileSize = SYS_FS Fil eSize(fil eHandl e);

if(fileSize = -1)
{

}

Parameters

/'l Success

Parameters Description

handle File handle obtained during file Open.

Function
int32_t SYS_FS_FileSize

(
SYS_FS_HANDLE handle

SYS _FS_FileTell Function
Obtains the file pointer position.
File
sys_fs.h

C
int32_t SYS_FS FileTel | (SYS_FS HANDLE handl e)

Returns

File System Service Library

On success returns the current file position. On failure returns -1. The reason for the failure can be retrieved with SYS_FS_Error or

SYS_FS_FileError.

Description

Obtains the current value of the file position indicator for the file pointed to by handle.

Remarks
None.
Preconditions

A valid file handle must be obtained before performing a file tell.

Example
SYS_FS HANDLE fi |l eHandl e;
int32_t tell;

fileHandl e = SYS FS Fil eQpen("/ mt/ nyDrivel/ FI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

193

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

if(fileHandl e ! = SYS_FS_HANDLE_| NVALI D)

{
/'l File open is successful
}
tell = SYS FS FileTell (fil eHandl e);
if(tell 1=-1)
{
/'l Success
}
Parameters
Parameters Description
handle File handle obtained during file Open.
Function

int32_t SYS_FS_FileTell

(
SYS_FS_HANDLE handle

SYS FS_FileNameGet Function
Reads the file name.
File
sys_fs.h
C
bool SYS FS_Fil eNaneGet (SYS_FS_HANDLE handl e, uint8_t* cNane, uintl6_t wlLen);

Returns

Returns true if the file name was read successfully. Returns false if the file name was not read successfully. The reason for the failure can be
retrieved with SYS_FS_Error.

Description

This function reads the file name of a file that is already open.
Remarks

None.
Preconditions

The file handle referenced by handle is already open.

Example

SYS_FS HANDLE fi |l eHandl e;
bool stat;
uint8_t fil eName[255];

fileHandl e = SYS FS Fil eQpen("/ mt/ nyDrivel/ FI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

if(fileHandl e ! = SYS_FS HANDLE | NVALI D)
{

}

/'l File open is successful

stat = SYS_FS Fil eNameGet (fileHandle, fileNanme, 8);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 194

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

if(stat == fal se)
{
/1 file not |ocated based on handl e passed
/'l Check the error state using SYS_FS FileError
}
Parameters
Parameters Description
handle File handle obtained during file Open.
cName Where to store the name of the file.
wlLen The maximum length of data to store in cName.
Function

bool SYS_FS_FileNameGet

(
SYS_FS_HANDLE handle,

uint8_t* cName,
uintl6_t wLen

);

SYS_FS_FilePrintf Function
Writes a formatted string into a file.
File
sys_fs.h
C

SYS FS RESULT SYS FS FilePrintf(SYS_FS HANDLE handl e, const char * string, ...);

Returns

SYS_FS_RES_SUCCESS - Formatted string write operation was successful. SYS_FS_RES_FAILURE - Formatted string write operation was
unsuccessful. The reason for the failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function writes a formatted string into a file.
Remarks

None.
Preconditions

The file into which a string has to be written, must exist and should be open.

Example

SYS_FS_RESULT res;
SYS_FS HANDLE fi |l eHandl e;

fileHandl e = SYS FS Fil eOpen("/mt/nyDrivel/ FILE. txt", (SYS_FS FILE _OPEN WRI TE_PLUS)):

if(fileHandl e ! = SYS_FS HANDLE | NVALI D)
{

}

/'l File open is successful

/'l Wite a string

res = SYS FS FilePrintf(fileHandl e, "%", 1234);
if(res !'= SYS_FS_RES_SUCCESS)

{

}

/'l wite operation failed.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 195

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Parameters
Parameters Description
handle File handle to which formatted string is to be written.
string Pointer to formatted string which has to be written into file.
Function

SYS_FS_RESULT SYS_FS_FilePrintf

SYS_FS_HANDLE handle,
const char *string,

SYS_FS_FileTestError Function
Checks for errors in the file.
File
sys_fs.h
C
bool SYS FS Fil eTest Error (SYS_FS_HANDLE handl e) ;

Returns

On success returns false indicating that the file has no errors. On failure returns true. The reason for the failure can be retrieved with
SYS_FS_Error or SYS_FS_FileError.

Description

This function checks whether or not file has any errors.
Remarks

None.
Preconditions

A valid file handle must be obtained before passing to the function

Example

SYS_FS HANDLE fi |l eHandl e;
bool err;

fileHandl e = SYS_FS_Fil eCpen("/ mt/ nyDrive/ FI LE. JPG', (SYS_FS_FILE_OPEN READ));

if(fileHandl e ! = SYS_FS HANDLE | NVALI D)
{

}

/'l File open is successful

err = SYS FS FileTestError(fileHandle);

if(err == true)
{
/'l either file has error, or there
/1 was an error in working with the "SYS FS FileTestError" function
}
Parameters
Parameters Description
handle file handle obtained during file Open.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 196

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Function

bool SYS_FS_FileTestError

(
SYS_FS_HANDLE handle

SYS _FS_FileDirectoryModeSet Function
Sets the mode for the file or directory.

File
sys_fs.h

C

SYS FS RESULT SYS FS Fil eDirectoryMdeSet (const char* path, SYS FS FILE DIR ATTR attr, SYS FS FILE DI R ATTR

mask) ;

Returns

SYS_FS_RES_SUCCESS - Mode set operation was successful. SYS_FS_RES_FAILURE - Mode set operation was unsucessful. The reason for

the failure can be retrieved with SYS_FS_Error.
Description

This function sets the mode for a file or directory from the specified list of attributes.
Remarks

None.
Preconditions

The file or directory for which the mode is to be set must exist.

Example

/'l Set read-only flag, clear archive flag and others are retained.
SYS FS FileDirectoryMdeSet ("file.txt", SYS FS ATTR_ RDO SYS FS ATTR RDO | SYS FS ATTR_ARC);

Parameters
Parameters Description
path Path for the file/directory, for which the mode is to be set.
attr Attribute flags to be set in one or more combination of the type SYS_FS_FILE_DIR_ATTR.
The specified flags are set and others are cleared.
mask Attribute mask of type SYS_FS_FILE_DIR_ATTR that specifies which attribute is changed.
The specified attributes are set or cleared.
Function

SYS_FS_RESULT SYS_FS_FileDirectoryModeSet
(

const char* path,
SYS_FS_FILE_DIR_ATTR attr,
SYS_FS_FILE_DIR_ATTR mask

SYS_FS_FileDirectoryRemove Function
Removes a file or directory.

File
sys_fs.h

C
SYS_ FS RESULT SYS FS Fil eDirectoryRenpbve(const char* path);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

197

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Returns

SYS_FS_RES_SUCCESS - Indicates that the file or directory remove operation was successful. SYS_FS_RES_FAILURE - Indicates that the file
or directory remove operation was unsuccessful. The reason for the failure can be retrieved with SYS_FS_Error.

Description

This function removes a file or directory as specified by the path.
Remarks

None.

Preconditions

e The disk has to be mounted before a directory could be removed.
» The file or directory to be removed has to present.
* The file/sub-directory must not have read-only attribute (AM_RDO), or the function will be rejected with FR_DENIED.
e The sub-directory must be empty and must not be current directory, or the function will be rejected with FR_DENIED.
* The file/sub-directory must not be opened.
Example
SYS_FS_RESULT res;

res = SYS_FS FileDirectoryRenove("Dirl");

if(res == SYS FS_RES_FAI LURE)

{
/1 Directory renpve operation failed
}
/...
/...
Parameters
Parameters Description
path Path of the File or directory to be removed.
Function

SYS_FS_RESULT SYS_FS_FileDirectoryRemove
(

const char* path

);

SYS_FS_FileDirectoryRenameMove Function
Renames or moves a file or directory.
File
sys_fs.h
C
SYS FS RESULT SYS FS Fil eDirectoryRenaneMve(const char * ol dPath, const char * newPath);

Returns

SYS_FS_RES_SUCCESS - Rename/move operation was successful. SYS_FS_RES_FAILURE - Rename/move operation was unsucessful. The
reason for the failure can be retrieved with SYS_FS_Error.

Description
This function renames or moves a file or directory.
Remarks
This function cannot move files/ directory from one drive to another. Do not rename/ move files which are open.

Preconditions

The file or directory to be renamed or moved must exist. This function cannot move files or directories from one drive to another. Do not rename or

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 198

Volume V: MPLAB Harmony Framework System Service Libraries Help

move files that are open.

Example
SYS_FS_RESULT res;

/'l rename "file.txt" to "renaned file.txt"

res = SYS FS Fil eDirectoryRenaneMve("file.txt", "renanmed_file.txt");
if(res !'= SYS FS RES SUCCESS)
{
/'l Renane operation failed.
}
/1 Now, nove "renamed_file.txt" inside directory "Dir1"
res = SYS FS Fil eDirectoryRenaneMve("renaned_file.txt", "Dirl/renanmed_file.txt");
if(res != SYS_FS_RES_SUCCESS)
{
/'l File nove operation fail ed.
}
Parameters
Parameters Description
oldPath Path for the file/directory, which has to be renamed/moved.
newPath New Path for the file/directory.
Function

SYS_FS_RESULT SYS_FS_FileDirectoryRenameMove
(

const char *oldPath,
const char *newPath

);

SYS_FS_FileDirectoryTimeSet Function
Sets or changes the time for a file or directory.
File
sys_fs.h
C

SYS FS RESULT SYS FS FileDirectoryTi neSet (const char* path, SYS FS TIME * tine);

Returns

File System Service Library

SYS_FS_RES_SUCCESS - Set time operation was successful. SYS_FS_RES_FAILURE - Set time operation was unsucessful. The reason for

the failure can be retrieved with SYS_FS_Error.
Description

This function sets or change the time for a file or directory.
Remarks

None.
Preconditions

The file/directory for which time is to be set must exist.

Example

voi d setTi me(voi d)

{
SYS_FS_RESULT res;

SYS FS TIME tineg;
time. packedTine = O;

/1 Al FAT FS tinmes are calculated based on 0 = 1980

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

199

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

tine.discreteTine.year = (2013 - 1980); // Year is 2013
tine. discreteTine.nmonth = 8; /1 Month (August)
time.discreteTine.day = 9; /1 Day (9)
time.discreteTinme. hour = 15; /'l 3 PM
time.discreteTinme.mnute = 06; /1 06 m nutes
tine. di screteTine.second = 00; /1 00 seconds

res = SYS FS FileDirectoryTi neSet ("file.txt", &ine);
if(res = SYS_FS_RES SUCCESS)

{
/1 time change has gone w ong
}
}
Parameters
Parameters Description
path A path for the file/directory, for which the time is to be set.
ptr Pointer to the structure of type SYS_FS_TIME, which contains the time data to be set.
Function

SYS_FS_RESULT SYS_FS_FileDirectoryTimeSet
(

const char* path,
SYS_FS_TIME *time

SYS FS_FileTruncate Function
Truncates a file
File
sys_fs.h
C
SYS FS RESULT SYS FS Fil eTruncat e(SYS_FS HANDLE handl e) ;
Returns

SYS_FS_RES_SUCCESS - File truncate operation was successful. SYS_FS_RES_FAILURE - File truncate operation was unsuccessful. The
reason for the failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function truncates the file size to the current file read/write pointer. This function has no effect if the file read/write pointer is already pointing to
end of the file.

Remarks

None.

Preconditions

A valid file handle has to be passed as input to the function. The file has to be opened in a mode where writes to file is possible (such as read plus
or write mode).

Example

SYS_FS HANDLE fi |l eHandl e;
size_t nbytes;

size_t bytes_read;

SYS FS RESULT res;

fileHandl e = SYS FS Fil eQpen("/ mt/ nmyDrive/ FlI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

if(fileHandl e != SYS_FS HANDLE | NVALI D)
{

}

/'l File open is successful

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 200

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

/'l Read the file content

nbytes = si zeof (buf);

bytes_read = SYS_FS _Fil eRead(buf, nbytes, fileHandle);
/1 Truncate the file

res = SYS FS FileTruncate(fil eHandl e);

if(res !'= SYS_FS RES SUCCESS)

{

}

/1l Truncation fail ed.

SYS FS Fil eC ose(fil eHandl e);
Parameters

Parameters Description
handle A valid handle which was obtained while opening the file.

Function
SYS_FS_RESULT SYS_FS_FileTruncate

SYS_FS_HANDLE handle

SYS_FS_FileCharacterPut Function
Writes a character to a file.
File
sys_fs.h
C
SYS_FS RESULT SYS_FS Fil eCharact er Put (SYS_FS_HANDLE handl e, char data);
Returns

SYS_FS_RES_SUCCESS - Write operation was successful. SYS_FS_RES_FAILURE - Write operation was unsuccessful. The reason for the
failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description
This function writes a character to a file.
Remarks
None.
Preconditions
The file into which a character has to be written, has to be present and should have been opened.

Example

SYS FS RESULT res;
SYS_FS_HANDLE fil eHandl e;

fileHandl e = SYS FS_Fil eOpen("/mt/nyDrivel FI LE. JPG', (SYS_FS_FI LE_OPEN WRI TE_PLUS));
if(fileHandle !'= SYS FS _HANDLE_| NVALI D)
{

}

/'l File open is successful

/1 Wite a character to the file.
res = SYS FS Fil eCharacterPut(fileHandle, 'c');
if(res !'= SYS FS_RES SUCCESS)

/1 Character wite operation fail ed.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 201

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Parameters

Parameters Description
handle file handle to which the character is to be written.
data character to be written to the file.
Function
SYS_FS_RESULT SYS_FS_FileCharacterPut

SYS_FS_HANDLE handle,
char data

);

SYS_FS_FileStringGet Function
Reads a string from the file into a buffer.
File
sys_fs.h
C
SYS_FS RESULT SYS_FS FileStringGet (SYS _FS HANDLE handl e, char* buff, uint32_t |len);
Returns

SYS_FS_RES_SUCCESS - String read operation was successful. SYS_FS_RES_FAILURE - String read operation was unsuccessful. The reason
for the failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function reads a string of specified length from the file into a buffer. The read operation continues until
1. 'n'is stored
2. reached end of the file or
3. the buffer is filled with len - 1 characters.
The read string is terminated with a '0".
Remarks

None.
Preconditions
The file from which a string has to be read, has to be present and should have been opened.

Example

SYS_FS_RESULT res;
SYS FS HANDLE fil eHandl e;
char buffer[100];

fileHandl e = SYS_FS_Fil eOpen("/mt/nyDrive/ FI LE. JPG', (SYS_FS_FI LE_OPEN WRI TE_PLUS));
if(fileHandl e ! = SYS_FS_HANDLE | NVALI D)
{

}

/'l File open is successful

/! Read a string fromthe file.
res = SYS FS FileStringGet(fileHandl e, buffer, 50);
if(res !'= SYS FS RES SUCCESS)

{
/1String read operation fail ed.
}
Parameters
Parameters Description
handle Handle of the file from which string is to be read.
buff Buffer in which the string is to be stored.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 202

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

len length of string to be read.

Function
SYS_FS_RESULT SYS_FS_FileStringGet

SYS_FS_HANDLE handle,
char* buff,
uint32_t len
);

SYS FS_FileStringPut Function
Writes a string to a file.
File
sys_fs.h
C
SYS FS RESULT SYS FS Fil eStringPut (SYS_FS HANDLE handl e, const char * string);

Returns

SYS_FS_RES_SUCCESS - String write operation was successful. SYS_FS_RES_FAILURE - String write operation was unsuccessful. The
reason for the failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function writes a string into a file. The string to be written should be NULL terminated. The terminator character will not be written.
Remarks

None.
Preconditions

The file into which a string has to be written, has to be present and should have been opened.

Example

SYS_FS RESULT res;
SYS_FS HANDLE fi |l eHandl e;

fileHandl e = SYS_FS_Fil eCpen("/mt/nyDrive/ FI LE. JPG', SYS_FS_FI LE_OPEN_ WRI TE_PLUS));
if(fileHandl e != SYS_FS HANDLE | NVALI D)
{

}

/'l File open is successful

/'l Wite a string

res = SYS FS FileStringPut(fileHandle, "Hello World");
if(res !'= SYS_FS RES SUCCESS)

{

}

Parameters

/1 String wite operation failed.

Parameters Description
handle File handle to which string is to be written.
string Pointer to the null terminated string which has to be written into file.
Function
SYS_FS_RESULT SYS_FS_FileStringPut

SYS_FS_HANDLE handle,
const char *string

);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 203

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

SYS_FS_Error Function
Returns the last error.
File
sys_fs.h
C
SYS FS ERROR SYS FS Error();
Returns
Error code of type SYS_FS_ERROR.
Description

When a file system operation fails, the application can know the reason of failure by calling the SYS_FS_Error. This function only reports the errors
which are not file (or file handle) specific. For example, for functions such as SYS_FS_Mount and SYS_FS_FileOpen, which do not take handle,
any errors happening inside such function calls could be reported using SYS_FS_Error function. Even for functions, which take handle as its input
parameters, the SYS_FS_Error function can be used to report the type of error for cases where the passed handle itself is invalid.

Remarks
None.

Preconditions

This function has to be called immediately after a failure is observed while doing a file operation. Any subsequent failure will overwrite the cause of
previous failure.

Example

SYS_FS HANDLE fi |l eHandl e;
SYS_FS ERRCR err;

fileHandl e = SYS FS Fil eQpen("/ mt/ nmyDrive/ FlI LE. JPG',
(SYS_FS_FI LE_OPEN_READ)) ;

if(fileHandl e == SYS_FS HANDLE_| NVALI D)

{
/1 1f failure, now know the specific reason for failure
err = SYS FS Error();
}
Function

SYS_FS_ERROR SYS_FS_Error
(

void

)

SYS_FS_FileError Function
Returns the file specific error.
File
sys_fs.h
C
SYS_FS ERROR SYS_FS Fil eError (SYS_FS_HANDLE handl e) ;
Returns

Error code of type SYS_FS_ERROR.

Description

For file system functions which accepts valid handle, any error happening in those functions could be retrieved with SYS_FS_FileError. This
function returns errors which are file specific.

Please note that if an invalid handle is passed to a file system function, in such a case, SYS_FS_FileError will not return the correct type of error,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 204

Volume V: MPLAB Harmony Framework System Service Libraries Help

as the handle was invalid. Therefore, it would be prudent to check the errors using the SYS_FS_Error function.

Remarks

None.

Preconditions

File System Service Library

This function has to be called immediately after a failure is observed while doing a file operation. Any subsequent failure will overwrite the cause of

previous failure.

Example

const char *buf = "Hello World";
size_t nbytes;

size_t bytes_witten;
SYS_FS_HANDLE fd;

SYS FS ERROR err;

bytes_witten = SYS_FS FileWite((const void *)buf, nbytes,

if(bytes_witten == -1)
{
/1 error while witing file
/1 find the type (reason) of error
err = SYS FS FileError(fd);
}
Parameters
Parameters Description
handle A valid file handle
Function

SYS_FS_ERROR SYS_FS_FileError

SYS_FS_HANDLE handle

SYS FS_FileRead Function
Read data from the file.

File
sys_fs.h

C

size_t SYS FS Fil eRead(SYS_FS_HANDLE handl e, void * buf, size_t nbyte);

Returns

fd);

On success returns the number of bytes read successfully(0 or positive number). On failure returns -1. The reason for the failure can be retrieved

with SYS_FS_Error or SYS_FS_FileError.

Description

This function attempts to read nbyte bytes of data from the file associated with the file handle into the buffer pointed to by buf.

Remarks

None.

Preconditions

A valid file handle must be obtained before reading a file.

Example

char buf[20];

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

205

Volume V: MPLAB Harmony Framework

size_t nbytes;
size_t bytes_read;
SYS_FS_HANDLE fd;

nbytes = sizeof (buf);
bytes_read = SYS FS Fil eRead(fd, buf,

Parameters

Parameters
handle
buf
nbyte
Function
size_t SYS_FS_FileRead

(

SYS_FS_HANDLE handle,
void *buf,
size_t nbyte

);

SYS _FS_FileWrite Function
Writes data to the file.

File
sys_fs.h

C

size_t SYS FS FileWite(SYS FS HANDLE handl e, const void * buf, size_t nbyte);

Returns

System Service Libraries Help

nbyt es) ;

Description

File handle obtained during file open.
Pointer to buffer into which data is read.
Number of bytes to be read

File System Service Library

On success returns the number of bytes written successfully(0 or positive number). On failure returns -1. The reason for the failure can be

retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function attempts to write nbyte bytes from the buffer pointed to by buf to the file associated with the file handle.

Remarks
None.
Preconditions
A valid file handle must be obtained before writing a
Example
;:.o.nst char *buf = "Hello World";
size_t nbytes;

size_t bytes_witten;
SYS_FS_HANDLE fd;

bytes witten = SYS FS FileWite(fd,

Parameters

Parameters
handle

buf

nbyte

© 2013-2017 Microchip Technology Inc.

file.

(const void *)buf, nbytes);

Description

File handle obtained during file open.

Pointer to buffer from which data is to be written
Number of bytes to be written

MPLAB Harmony v2.06

206

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Function
size_t SYS_FS_FileWrite

(
SYS_FS_HANDLE handle,

const void *buf,
size_t nbyte

);

SYS_FS_CurrentWorkingDirectoryGet Function
Gets the current working directory
File
sys_fs.h
C
SYS_FS RESULT SYS_FS Current WrkingDirectoryGet(char * buff, uint32_t len);

Returns

SYS_FS_RES_SUCCESS - Get current working directory operation was successful. SYS_FS_RES_FAILURE - Get current working directory
operation was unsucessful. The reason for the failure can be retrieved with SYS_FS_Error.

Description
This function gets the current working directory path along with the working drive.
Remarks

None.

Preconditions

At least one disk must be mounted.

Example

SYS_FS_RESULT res;
char buffer[16];

swi tch(appSt at e)
{
case TRY_MOUNT:
i f (SYS_FS_Mount ("/dev/ mtbl kal"*, "/mmt/nyDrive", FAT, 0, NULL) != SYS FS RES SUCCESS)

{
// Failure, try nounting again

}

el se

{
/1 Mount was successful. Create a directory.
appState = CREATE_D R

}

br eak;

case CREATE DR
res = SYS_FS DirectoryMake("Dirl1");
if(res == SYS_FS RES_FAI LURE)

{
/1 Directory creation failed
appState = ERROR

}

el se

{
/1 Directory creation was successful. Change to the new
/1 directory.
appState = CHANGE_DI R

}

br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 207

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

case CHANGE DI R
res = SYS FS DirectoryChange("Dirl1");
if(res == SYS_FS RES_FAI LURE)

{
/'l Directory change failed
appState = ERROR;

}

el se

{
/1 Directory change was successful. Get current working
/] directory
appState = GET_CWD,

}

br eak;

case GET_OWD:
res = SYS_FS CurrentWrkingDirectoryCet (buffer, 15);
if(res == SYS_FS _RES_FAI LURE)

{
/] Get current directory operation failed
appState = ERROR
}
br eak;
}
Parameters
Parameters Description
buff Pointer to a buffer which will contain the name of the current working directory and drive, once
the function completes.
len Size of the buffer.
Function

SYS_FS_RESULT SYS_FS_CurrentWorkingDirectoryGet
(

char *buff,
uint32_t len
);

SYS_FS_DirectoryChange Function
Changes to a the directory specified.
File
sys_fs.h
C
SYS_FS RESULT SYS FS DirectoryChange(const char* path);

Returns

SYS_FS_RES_SUCCESS - Indicates that the directory change operation was successful. SYS_FS_RES_FAILURE - Indicates that the directory
change operation was unsuccessful. The reason for the failure can be retrieved with SYS_FS_Error.

Description

This function changes the present directory to a new directory.
Remarks

None.
Preconditions

The disk has to be mounted and the directory to be changed must exist.

Example
SYS FS RESULT res;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 208

Volume V: MPLAB Harmony Framework System Service Libraries Help

res = SYS_FS DirectoryChange("Dirl");

if(res == SYS FS_RES_FAI LURE)
{

}

Parameters

/1 Directory change failed

Parameters Description

path Path of the directory to be changed to.

Function

SYS_FS_RESULT SYS_FS_DirectoryChange
(

const char* path

);

SYS_FS_DirectoryMake Function
Makes a directory.

File
sys_fs.h

C
SYS_FS RESULT SYS_FS DirectoryMake(const char* path);

Returns

File System Service Library

SYS_FS_RES_SUCCESS - Indicates that the creation of the directory was successful. SYS_FS_RES_FAILURE - Indicates that the creation of

the directory was unsuccessful. The reason for the failure can be retrieved with SYS_FS_Error.

Description

This function makes a new directory as per the specified path.

Remarks

None.

Preconditions

The disk has to be mounted before a directory could be made.

Example
SYS_FS _RESULT res;

res = SYS_FS DirectoryMake("Dirl1");

if(res == SYS_FS _RES_FAI LURE)
{

}

Parameters

/1 Directory nake failed

Parameters Description
path Path of the new directory

Function

SYS_FS_RESULT SYS_FS_DirectoryMake
(

const char* path

);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

209

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS _FS_DirClose Function
Closes an opened directory.
File
sys_fs.h

C
SYS FS RESULT SYS FS DirC ose(SYS_FS HANDLE handl e) ;

Returns

File System Service Library

SYS_FS_RES_SUCCESS - Directory close operation was successful. SYS_FS_RES_FAILURE - Directory close operation was unsuccessful.

The reason for the failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function closes a directory that was opened earlier opened with the SYS_FS_DirOpen function.

Remarks

None.

Preconditions

A valid directory handle must be obtained before closing the directory.

Example
SYS_FS_HANDLE di r Handl e;

dirHandl e = SYS_FS DirOpen("/mt/nmyDrive/Dirl");

i f(dirHandl e != SYS_FS_HANDLE | NVALI D)
{

}

/1 Directory open is successful

/1 Performrequired operation on the directory

/'l Cose the directory

i f(SYS_FS_Dird ose(dirHandl e) == SYS_FS_RES_FAI LURE)
{

}

Parameters

/1 Cl ose operation fail ed.

Parameters Description

handle directory handle obtained during directory open.

Function
SYS_FS_RESULT SYS_FS_DirClose

SYS_FS_HANDLE handle

SYS_FS_DirOpen Function
Open a directory

File
sys_fs.h

C
SYS_FS HANDLE SYS_FS DirOpen(const char* path);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

210

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Returns

On success a valid handle to the directory will be returned. On failure SYS_FS_HANDLE_INVALID will be returned. The reason for the failure can
be retrieved with SYS_FS_Error.

Description

This function opens the requested directory.
Remarks

None
Preconditions

The volume on which the directory is present should be mounted.
Example

SYS_FS_HANDLE di r Hand! e;

dirHandl e = SYS_FS DirOpen("/mt/nmyDrive/Dirl");
/1 For root directory, end with a "/"
/1 dirHandl e = SYS FS DirQpen("/ mt/ myDrivel");

i f(dirHandl e !'= SYS_FS_HANDLE | NVALI D)

{
/1 Directory open is successful
}
Parameters
Parameters Description
path Path to the directory along with the volume name. The string of volume and directory name
has to be preceded by "/mnt/*. Also, the volume name and directory name has to be
separated by a slash "/". If the directory specified is only the root directory, the path has to be
ended with "/".
Function

SYS_FS_HANDLE SYS_FS_DirOpen
(

const char* path

);

SYS FS_DirRead Function
Reads the files and directories of the specified directory.
File
sys_fs.h
C
SYS FS_RESULT SYS FS_DirRead(SYS_FS HANDLE handl e, SYS_FS_FSTAT * stat);

Returns

SYS_FS_RES_SUCCESS - Indicates that the directory read operation was successful. End of the directory condition is indicated by setting the
fname and Ifname(if Ifname is used) fields of the SYS_FS_FSTAT structure to '0'

SYS_FS_RES_FAILURE - Indicates that the directory read operation was unsuccessful. The reason for the failure can be retrieved with
SYS_FS_Error or SYS_FS_FileError.

Description
This function reads the files and directories specified in the open directory.

Remarks

None.

Preconditions

A valid directory handle must be obtained before reading a directory.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 211

Volume V: MPLAB Harmony Framework

Example

SYS_FS HANDLE di r Handl e;
SYS_FS _FSTAT stat;

char 1 ongFil eNang[300] ;
uintptr_t |ongFileSize;

System Service Libraries Help File System Service Library

dirHandl e = SYS_FS DirOpen("/mt/myDrive/Dirl");

i f(dirHandl e != SYS FS_HANDLE | NVALI D)

{
}

/1 1f

/1 Directory open is successful

long file nane is used,

/'l structure needs to be initialized with address of proper

stat.|fnane = | ongFi | eNane;
stat.|fsize = 300;

i f (SYS_FS _DirRead(dirHandl e,
{

}

el se

{

&stat)

/1 Directory read failed.

/1 Directory read succeeded.
if ((stat.lfnanme[0] ==
{

'0') && (stat.fnane[0] ==

the follow ng el ements of the "stat"

buf fer.

== SYS_FS_RES FAI LURE)

10))

/'l reached the end of the directory.

}

el se

{

/'l continue reading the directory.

}
}

Parameters

Parameters
handle
stat

Function
SYS_FS_RESULT SYS_FS_DirRead

SYS_FS_HANDLE handle,
SYS_FS_FSTAT *stat

SYS_FS_DirSearch Function
Searches for a file or directory.
File
sys_fs.h

© 2013-2017 Microchip Technology Inc.

Description
Directory handle obtained during directory open.

Pointer to SYS_FS_FSTAT, where the properties of the open directory will be populated after
the SYS_FS_DirRead function returns successfully. If LFN is used, then the "Ifname" member
of the SYS_FS_FSTAT structure should be initialized with the address of a suitable buffer and
the "Ifsize" should be initialized with the size of the buffer. Once the function returns, the
buffer whose address is held in "Ifname" will have the file name(long file name)

The file system supports 8.3 file name(Short File Name) and also long file name. 8.3
filenames are limited to at most eight characters, followed optionally by a filename extension
consisting of a period . and at most three further characters. If the file name fits within the 8.3
limits then generally there will be no valid LFN for it.

The stat structure's fname field will contain the SFN and if there is a valid LFN entry for the file
then the long file name will be copied into Ifname member of the structure.

MPLAB Harmony v2.06 212

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

C

SYS FS RESULT SYS_FS DirSearch(SYS_FS HANDLE handl e, const char * nane, SYS FS FILE DIR ATTR attr,
SYS_FS _FSTAT * stat);

Returns

SYS_FS_RES_SUCCESS - Indicates that the file or directory was found. The stat parameter will contain information about the file or directory.
SYS_FS_RES_FAILURE - Indicates that the file or directory was not found. The reason for the failure can be retrieved with SYS_FS_Error or
SYS_FS_FileError.

Description

This function searches for the requested file or directory. The file or directory is specified in the attr parameter, which is of type
SYS_FS_FILE_DIR_ATTR.

Remarks
None.
Preconditions
A valid directory handle must be obtained before searching the directory.

Example

SYS_FS HANDLE di r Handl e;
SYS_FS_FSTAT stat;

char | ongFi | eNane[300] ;
uintptr_t longFileSize;

dirHandle = SYS_FS DirOpen("/mt/myDrive/Dirl");

i f(dirHandl e !'= SYS_FS_HANDLE | NVALI D)
{

}

/1 Directory open is successful

/1 1f long file name is used, the followi ng elenents of the "stat"
/] structure needs to be initialized with address of proper buffer.
stat.|fnane = | ongFi | eNane;

stat.|fsize = 300;

i f (SYS_FS_DirSearch(dirHandle, "FIL*.*", SYS FS _ATTR ARC, &tat) == SYS_FS_RES FAI LURE)

{
/1 Specified file not found

}
el se
/'l File found. Read the conplete file nane from"stat.|fnane" and
/1 other file parameters fromthe "stat" structure
}
Parameters
Parameters Description
handle directory handle obtained during directory open.
name name of file or directory needed to be searched. The file
name can have wild card entries as follows « - Indicates the rest of the filename or extension can vary (e.g. FILE.*)
? Indicates that one character in a filename can vary (e.g. F?LE.T?T)
attr Attribute of the name of type SYS_FS_FILE_DIR_ATTR. This attribute specifies whether to
search a file or a directory. Other attribute types could also be specified.
stat Empty structure of type SYS_FS_FSTAT, where the properties of the file/directory will be
populated. If LFN is used, then the "lIfname" member of the SYS_FS_FSTAT structure should
be initialized with address of suitable buffer. Also, the "Ifsize" should be initialized with the size
of buffer. Once the function returns, the buffer whose address is held in "Ifname" will have the
file name (long file name).
Function

SYS_FS_RESULT SYS_FS_DirSearch

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 213

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

SYS_FS_HANDLE handle,
const char * name,

SYS_FS_FILE_DIR_ATTR attr,

SYS_FS_FSTAT *stat

SYS_FS_FileSync Function
Flushes the cached information when writing to a file.
File
sys_fs.h
C
SYS_FS_RESULT SYS_FS Fil eSync(SYS_FS_HANDLE handl e);

Returns

SYS_FS_RES_SUCCESS - File sync operation was successful. SYS_FS_RES_FAILURE - File sync operation was unsuccessful. The reason for
the failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function flushes the cached information when writing to a file. The SYS_FS_FileSync function performs the same process as
SYS_FS_FileClose function; however, the file is left open and can continue read/write/seek operations to the file.

Remarks

None.

Preconditions
A valid file handle has to be passed as input to the function. The file which has to be flushed, has to be present and should have been opened in
write mode.

Example

SYS FS _RESULT res;

SYS FS HANDLE fil eHandl e;

const char *buf = "Hello World";
size_t nbytes;

size_t bytes witten;

fileHandl e = SYS_FS_Fil eOpen("/mt/nyDrive/ FI LE. JPG', (SYS_FS_FILE_OPEN WRI TE_PLUS));
if(fileHandle !'= SYS FS HANDLE | NVALI D)

/'l File open is successful

}

/1 Wite data to the file
bytes_ witten = SYS FS FileWite((const void *)buf, nbytes, fileHandle);

/1 Flush the file

res = SYS FS FileSync(fil eHandl e);
if(res !'= SYS FS RES SUCCESS)

{

}

Parameters

/'l renam ng has gone wrong

Parameters Description
handle valid file handle

Function
SYS_FS_RESULT SYS_FS_FileSync

SYS_FS_HANDLE handle

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 214

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

SYS _FS_DirRewind Function
Rewinds to the beginning of the directory.
File
sys_fs.h
C
SYS_FS_RESULT SYS_FS_Di r Rewi nd(SYS_FS_HANDLE handl €) ;
Returns

SYS_FS_RES_SUCCESS - Directory rewind operation was successful. SYS_FS_RES_FAILURE - Directory rewind operation was unsuccessful.
The reason for the failure can be retrieved with SYS_FS_Error or SYS_FS_FileError.

Description

This function rewinds the directory to the start. Once a search of directory or directory read is completed, the rewind function is used to begin
searching the directory from the start.

Remarks
None.
Preconditions
A valid directory handle must be obtained before reading a directory.

Example

SYS_FS HANDLE di r Handl e;
SYS _FS_FSTAT stat;

char | ongFi |l eNang[300] ;
uintptr_t longFileSize;

dirHandl e = SYS_FS DirOpen("/mt/myDrive/Dirl");

i f(dirHandl e !'= SYS_FS_HANDLE | NVALI D)
{

}

/1 Directory open is successful

/1 1f long file name is used, the following elenents of the "stat"
/] structure needs to be initialized with address of proper buffer.
stat.|fnane = | ongFi | eNane;

stat.|fsize = 300;

i f (SYS_FS DirRead(dirHandl e, &tat) == SYS_FS_RES_FAI LURE)
{

}

/1 Directory read operation fail ed.
/1 Do nore search
/1 Do sone nore search
/1 Now, rewind the directory to begin search fromstart

i f (SYS_FS_Di rRewi nd(dirHandl e) == SYS_FS_RES_FAI LURE)
{

}

Parameters

/1 Directory rewind failed.

Parameters Description
handle directory handle obtained during directory open.

Function
SYS_FS_RESULT SYS_FS_DirRewind

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 215

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

SYS_FS_HANDLE handle

SYS_FS_FileStat Function
Gets file status.
File
sys_fs.h
C
SYS FS RESULT SYS FS Fil eStat(const char * fname, SYS FS FSTAT * buf);

Returns

SYS_FS_RES_SUCCESS - File stat operation was successful. SYS_FS_RES_FAILURE - File stat operation was unsuccessful. The reason for
the failure can be retrieved with SYS_FS_Error.

Description

This function obtains information about a file associated with the file name, and populates the information in the structure pointed to by buf. This
function can read the status of file regardless of whether a file is opened or not.

Remarks
None.
Preconditions
Prior to opening a file, the name of the volume on which the file resides should be known and the volume should be mounted.
Example
SYS FS fStat fileStat;

i f (SYS_FS FileStat("/mt/nyDrivel FILE TXT", &fileStat) == SYS FS RES SUCCESS)

{
/'l Successfully read the status of file "FILE TXT"
}
Parameters
Parameters Description
fname Name of the file with the path and the volume name. The string of volume and file name has
to be preceded by "/mnt/". Also, the volume name and file name has to be separated by a
slash "/".
buf pointer to SYS_FS_FSTAT structure.
Function

SYS_FS_RESULT SYS_FS_FileStat
(

const char *fname,
SYS_FS_FSTAT *buf

b) General Operation Functions

SYS_FS_Initialize Function

Initializes the file system abstraction layer (sys_fs layer).
File

sys_fs.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 216

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

C
SYS FS RESULT SYS FS Initialize(const void* initData);

Returns
SYS_FS_RES_SUCCESS - SYS FS Layer was initialized successfully. SYS_FS_RES_FAILURE - SYS FS Layer initialization failed. The reason
for the failure can be retrieved with SYS_FS_Error.

Description

This function initializes the abstraction layer (sys_fs layer) and sets up the necessary parameters.

Preconditions

This is the first function to be called during usage of sys_fs. Calling other functions of sys_fs without initializing the sys_fs will cause unpredictable
behavior.

Example

/'l This code shows an exanple of how the SYS FSis initialized
/1 Only one file systemis used

#define SYS_FS_MAX_FI LE_SYSTEM TYPE 1

/1 Function pointer table for FAT FS
const SYS_FS FUNCTI ONS Fat FsFunctions =

{
. mount = f _nount,
.unmount = f_unnount,
.open = f_open,
.read = f_read,
.write =f wite,
.cl ose = f_cl ose,
. seek = f_I seek,
.tell =f_tell,
. eof = f_eof,
. si ze = f_size,
.fstat = f_stat,
b
const SYS FS REG STRATI ON_TABLE sysFSInit [SYS FS MAX FILE SYSTEM TYPE | =
{
{
.hativeFi| eSyst enifype = FAT,
.hativeFil eSystenfFuncti ons = &Fat FsFuncti ons
}
b
SYS FS Initialize((const void *)sysFSInit);
Parameters
Parameters Description
initData Pointer to an array of type SYS_FS_REGISTRATION_TABLE. The number of elements of
array is decided by the definition SYS_FS_MAX_FILE_SYSTEM_TYPE. If the application
uses one file system (say only FAT FS), SYS_FS_MAX_FILE_SYSTEM_TYPE is defined to
be 1. Otherwise, if the application uses 2 file systems (say FAT FS and MPFS2),
SYS_FS_MAX_FILE_SYSTEM_TYPE is defined to be 2.
Function

SYS_FS_RESULT SYS_FS_|Initialize
(

const void* initData

);

SYS_FS_Mount Function

Mounts the file system.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 217

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

File
sys_fs.h

C

SYS FS RESULT SYS FS Mount (const char * devNane, const char * nount Name, SYS FS FILE SYSTEM TYPE
filesystentype, unsigned |ong nmountflags, const void * data);

Returns

SYS_FS_RES_SUCCESS - Mount was successful. SYS_FS_RES_FAILURE - Mount was unsuccessful. The reason for the failure can be
retrieved with SYS_FS_Error.

Description

The mount command attaches the file system specified to a volume. The call to the mount should be non blocking in nature. The application code
has to allow the SYS_FS_Tasks to run periodically while calling the SYS_FS_Mount function. If the SYS_FS_Mount is called in a blocking mode,
then the SYS_Tasks() never gets a chance to run and therefore, the media will not be analyzed and finally, the SYS_FS_Mount will never
succeed. This will result in a deadlock.

There is no mechanism available for the application to know if the specified volume (devName) is really attached or not. The only available
possibility is to keep trying to mount the volume (with the devname), until success is achieved.

It is prudent that the application code implements a time-out mechanism while trying to mount a volume (by calling SYS_FS_Mount). The trial for
mount should continue at least 10 times before before assuming that the mount will never succeed. This has to be done for every new volume to
be mounted.

The standard names for volumes (devName) used in the MPLAB Harmony file system is as follows: NVM - "nvm" "media number" "volume
number" SD card - "mmcblk" "media number" "volume number" MSD - "sd" "media number" “volume number"

Where, "media number" a, b, c... depends on the number of the type of connected media, and where, "volume number" 1, 2, 3... depends on the
number of partitions in that media.

The convention for assigning names to volumes is further described below with examples:

If a SD card (with four partitions) is attached to the system, and assuming all four partitions are recognized, there will be four devNames:
1. mmcblkal

2. mmcblka2

3. mmcblka3 and

4. mmcblkad

Subsequently, if NVM media is attached that has only one partition, the devname will be: nvmal.

Later, if another SD card is attached to the system that has one partition, the devname will be mmcblkb1.

Finally, there will be six volume names (or devNames), which are available for the application to be mounted and used for the file system.

Remarks
None
Preconditions

The "devName" name for the volume has to be known. The file system type with which each of the volumes are formatted has to be known. Trying
to mount a volume with a file system which is different from what the volume is actually formatted, will cause mount failure.

Example
swi tch(appSt at e)
{
case TRY_MOUNT:
i f (SYS_FS_Mount ("/dev/ mhbl kal”, "/mt/nyDrive", FAT, 0, NULL) != SYS FS RES SUCCESS)
{
/] Failure, try nounting again
}
el se
{
/1 Mount was successful. Do further file operations
appState = DO_FURTHER _STUFFS;
}
br eak;
}
Parameters
Parameters Description
devName The device name (name of volume) which needs to be mounted. The devName has to be

preceded by the string "/dev/".

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 218

Volume V: MPLAB Harmony Framework

mountName

filesystemtype
mountflags

data

Function
SYS_FS_RESULT SYS_FS_Mount
(

const char *devName,
const char *mountName,

System Service Libraries Help File System Service Library

Mount name for the device to be mounted. This is a name provided by the user. In future,
while accessing the mounted volume (say, during SYS_FS_FileOpen operation), the
mountName is used to refer the path for file. The mount name has to be preceded by the
string "/mnt/"

Native file system of SYS_FS_FILE_SYSTEM_TYPE type.

Mounting control flags. This parameter is reserved for future enhancements. Therefore,
always pass zero.

The data argument is interpreted by the different file systems. This parameter is reserved for
future enhancements. Therefore, always pass NULL.

SYS_FS_FILE_SYSTEM_TYPE filesystemtype,

unsigned long mountflags,
const void *data

);

SYS_FS_Tasks Function

Maintains the File System tasks and functionalities.

File

sys_fs.h
C

voi d SYS_FS_Tasks();
Returns

None.

Description

This function is used to run the various tasks and functionalities of sys_fs layer.

Remarks

This function is not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks).

Preconditions

The SYS_FS_Initialize routine must have been called before running the tasks.

Example

void SYS Tasks (void)

{
SYS FS Tasks ();
/'l Do other tasks

}

Function
void SYS_FS_Tasks
(

void

);

SYS FS_Unmount Function
Unmounts the file system.

File
sys_fs.h

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 219

Volume V: MPLAB Harmony Framework

C

System Service Libraries Help File System Service Library

SYS_FS RESULT SYS_FS Unnount (const char * nount Nane);

Returns

SYS_FS_RES_SUCCESS - Unmount was successful. SYS_FS_RES_FAILURE - Unmount was unsuccessful. The reason for the failure can be

retrieved with SYS_FS_Error.

Description

This function removes (unmounts) the attachment of the volume from the file system.

Preconditions

The volume name has to be know in order to pass as input to Unmount. The specified volume name to be unmounted should have been already

mounted.

Example

i f (SYS_FS_Unnount ("/ mt/nyDrive")

{
}
el se

{
}

Parameters

/] Failure, try unnounting again

/1 Unnmount was successful.

Parameters
mountName

Function
SYS_FS_RESULT SYS_FS_Unmount
(

const char *mountName

);

SYS_FS_CurrentDriveGet Function
Gets the current drive

File
sys_fs.h

C

| = SYS_FS_RES_SUCCESS)

Description

Mount name for the volume to be unmounted. The mount name has to be preceded by the
string "/mnt/".

SYS_FS RESULT SYS_FS CurrentDriveGet(char* buffer);

Returns

SYS_FS_RES_SUCCESS - Current drive get operation was successful. SYS_FS_RES_FAILURE - Current drive get operation was unsucessful.
The reason for the failure can be retrieved with SYS_FS_Etrror.

Description

This function gets the present drive being used. The drive information is populated in the buffer.

Remarks
None.
Preconditions
The disk has to be mounted.

Example

SYS FS RESULT res;
char buffer[255];

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

220

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

res = SYS FS CurrentDriveGet (buffer);
if(res == SYS_FS_RES FAI LURE)
{

}

Parameters

/'l Operation failed.

Parameters Description
buffer Pointer to buffer which will hold the name of present drive being used.
Function

SYS_FS_RESULT SYS_FS_CurrentDriveGet
(

char* buffer

);

SYS_FS_CurrentDriveSet Function
Sets the drive.
File
sys_fs.h
C
SYS_FS RESULT SYS_FS CurrentDriveSet(const char* path);
Returns

SYS_FS_RES_SUCCESS - Current drive set operation was successful. SYS_FS_RES_FAILURE - Current drive set operation was unsuccessful.
The reason for the failure can be retrieved with SYS_FS_Error.

Description

This function sets the present drive to the one as specified by the path. By default, the drive mounted last becomes the current drive for the
system. This is useful for applications where only one drive (volume) is used. In such an application, there is no need to call the
SYS_FS_CurrentDriveSet function. However, in the case of an application where there are multiple volumes, the user can select the current drive
for the application by calling this function.

Remarks

None.
Preconditions

The disk has to be mounted.
Example

SYS_FS _RESULT res;

res = SYS FS CurrentDriveSet("/mt/myDrive");
if(res == SYS_FS RES_FAI LURE)
{

}

Parameters

/'l Drive change failed

Parameters Description
path Path for the drive to be set.
Function

SYS_FS_RESULT SYS_FS_CurrentDriveSet
(

const char* path

);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 221

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

SYS_FS_DriveLabelGet Function
Gets the drive label.
File
sys_fs.h
C
SYS FS RESULT SYS FS DrivelLabel Get (const char* drive, char * buff, uint32_t * sn);

Returns

SYS_FS_RES_SUCCESS - Drive label information retrieval was successful. SYS_FS_RES_FAILURE - Drive label information retrieval was
unsucessful. The reason for the failure can be retrieved with SYS_FS_Error.

Description

This function gets the label for the drive specified. If no drive is specified, the label for the current drive is obtained.
Remarks

None.
Preconditions

At least one disk must be mounted.

Example

SYS FS RESULT res;
char buffer[255];
uint32_t serial No;

swi t ch(appSt at e)

case TRY_MOUNT:
i f (SYS_FS_Mount ("/dev/ mtbl kal", "/mmt/nyDrive", FAT, 0, NULL) != SYS FS RES SUCCESS)

{
/] Failure, try nmounting again

}

el se

{
/1 Mount was successful. Get |abel now
appState = GET_LABEL;

}

br eak;

case GET_LABEL:
res = SYS FS DriveLabel Get ("/ mt/nyDrive", buffer, &serial No);

if(res == SYS FS_RES_FAI LURE)

{
/'l Fetching drive |label information failed
}
/...
/...
br eak;
}
Parameters
Parameters Description
drive Pointer to buffer which will hold the name of drive being for which the label is requested. If this
string is NULL, then then label of the current drive is obtained by using this function.
buff Buffer which will hold the string of label.
sn Serial number of the drive. If this information is not needed, it can be set as NULL.
Function

SYS_FS_RESULT SYS_FS_DriveLabelGet

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 222

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

(

const char* drive,
char *bulff,
uint32_t *sn

);

SYS_FS_DrivelLabelSet Function
Sets the drive label

File
sys_fs.h

C
SYS_FS RESULT SYS_FS DrivelLabel Set (const char * drive, const char * |abel);

Returns

SYS_FS_RES_SUCCESS - Drive label set operation was successful. SYS_FS_RES_FAILURE - Drive label set operation was unsucessful. The
reason for the failure can be retrieved with SYS_FS_Error.

Description

This function sets the label for the drive specified. If no drive is specified, the label for the current drive is set.
Remarks

None.
Preconditions

At least one disk must be mounted.
Example

SYS FS RESULT res;

swi tch(appSt at e)

{
case TRY_MOUNT:
i f (SYS_FS_Mount ("/dev/ mtbl kal", "/mt/myDrive", FAT, 0, NULL) != SYS_FS RES_ SUCCESS)
{
/] Failure, try nmounting again
}
el se
{
/1 Mount was successful. Get |abel now
appState = GET_LABEL;
}
br eak;
case GET_LABEL:
res = SYS_FS Drivelabel Set ("/mt/nyDrive", "MY_LABEL");
if(res == SYS_FS_RES FAI LURE)
{
/'l Drive |abel get failed
}
/...
/...
br eak;
}
Parameters
Parameters Description
drive Pointer to string that holds the name of drive being for which the label is to be set. If this string
is NULL, the label of the current drive is set by using this function.
label Pointer to string which contains the label to be set.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 223

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Function
SYS_FS_RESULT SYS_FS_DriveLabelSet
(

const char* drive,
const char *label

);

SYS_FS_DriveFormat Function
Formats a drive.

File
sys_fs.h

C

SYS_FS RESULT SYS_FS DriveFornmat (const char* drive, SYS_FS FORVAT fmt, uint32_t clusterSize);

Returns

SYS_FS_RES_SUCCESS - Drive format was successful. SYS_FS_RES_FAILURE - Drive format was unsucessful. The reason for the failure can
be retrieved with SYS_FS_Error.

Description

This function formats a logic drive (create a FAT file system on the logical drive), as per the format specified.

If the logical drive that has to be formatted has been bound to any partition (1-4) by multiple partition feature, the FAT volume is created into the
specified partition. In this case, the second argument fmt is ignored. The physical drive must have been partitioned prior to using this function.

Remarks
None.
Preconditions
At least one disk must be mounted. The physical drive must have already been partitioned.
Example
SYS_FS_RESULT res;
swi t ch(appSt at e)

case TRY_MOUNT:
i f (SYS_FS_Mount ("/dev/ mebl kal", "/mt/nmyDrive", FAT, 0, NULL) != SYS_FS_RES_SUCCESS)

{
/1 Failure, try nounting again

}

el se

{
/1 Mount was successful. Fornmat now.
appSt ate = FORVAT_DRI VE;

}

br eak;

case FORVAT_DRI VE:
res = SYS_FS DriveFormat ("/mt/nyDrive", SYS FS FORMAT_SFD, 0);
if(res == SYS FS_RES_FAI LURE)

{
/1 Format of the drive fail ed.
}
/...
br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 224

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

Parameters
Parameters Description
drive Pointer to buffer which will hold the name of drive being for which the format is to be done. If
this string is NULL, then then current drive will be formatted. It is important to end the drive
name with a "/".
fmt Format type.
clusterSize Cluster size. The value must be sector (size * n), where n is 1 to 128 and power of 2. When a
zero is given, the cluster size depends on the volume size.
Function

SYS_FS_RESULT SYS_FS_DriveFormat
(

const char* drive,
SYS_FS_FORMAT fmt,
uint32_t clusterSize

);

SYS_FS_DrivePartition Function
Partitions a physical drive (media).
File
sys_fs.h
C
SYS FS RESULT SYS FS DrivePartition(const char * path, const uint32_t partition[], void * work);
Returns

SYS_FS_RES_SUCCESS - Partition was successful. SYS_FS_RES_FAILURE - Partition was unsuccessful. The reason for the failure can be
retrieved with SYS_FS_Error.

Description

This function partitions a physical drive (media) into requested partition sizes. This function will alter the MBR of the physical drive and make it into
multi partitions. Windows operating systems do not support multi partitioned removable media. Maximum 4 partitions can be created on a media.

Remarks

None

Preconditions

Prior to partitioning the media, the media should have a valid MBR and it should be mounted as a volume with the file system.

Example

/1
/1 Initially, consider the case of a SD card that has only one partition.
/1
SYS_FS_RESULT res;

/'l Following 4 elenment array specifies the size of 2 partitions as

/1l 256MB (=524288 sectors). The 3rd and 4th partition are not created
/'l since, the sizes of those are zero.

uint32_t plist[] = {524288, 524288, 0, 0};

/'l Work area for function SYS_FS DrivePartition
char wor k[FAT_FS_MAX_SS];

swi tch(appSt at e)
case TRY_MOUNT:
i f (SYS_FS_Mount ("/dev/ mtbl kal", "/mt/myDrive", FAT, 0, NULL) != SYS_FS RES SUCCESS)
{

}

/1 Failure, try nmounting again

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 225

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

el se

{
/1 Mount was successful. Partition now.
appState = PARTI TI ON_DRI VE;

}

br eak;

case PARTI TI ON_DRI VE:
res = SYS FS DrivePartition("/mt/myDrive", plist, work);
if(res == SYS_FS_RES_FAI LURE)

{
/] Drive partition went w ong

}

el se

{
[/ Partition was successful. Power cycle the board so that
// all partitions are recognized. Then try nounting both
/] partitions.

}

br eak;

defaul t:
br eak;

}

/1
//The follow ng code is after the SD card is partitioned and then
/I power ed ON.

/1
SYS_FS _RESULT res;

swi tch(appSt at e)

case TRY_MOUNT_1ST_PARTI TI ON:
i f (SYS_FS Mount ("/dev/ rmtbl kal®, “/mt/myDrivel®, FAT, 0, NULL) !'= SYS _FS_RES SUCCESS)

{
/'l Failure, try nounting again
appState = TRY_MOUNT_1ST_PARTI Tl ON;
}
el se
{
/1 Mount was successful. Munt second partition.
appState = TRY_MOUNT_2ND_PARTI Tl ON;
}
br eak;

case TRY_MOUNT_2ND_PARTI Tl ON:
i f (SYS_FS_Mount ("/dev/ mtbl ka2", "/mmt/nyDrive2", FAT, 0, NULL) != SYS FS RES SUCCESS)

{
/1 Failure, try nmounting again
appState = TRY_MOUNT_2ND_PARTI TI O\
}
el se
{
/'l Mount was successful. Try formating first partition.
appState = TRY_FORMATI NG _1ST_PARTI Tl O\;
}
br eak;

case TRY_FORMATI NG 1ST_PARTI TI ON:
i f (SYS_FS DriveFormat ("/mt/myDrivel/", SYS FS FORMAT FDISK, 0) == SYS FS RES_FAI LURE)

{
/1 Failure
}
el se
{
/1 Try formating second partitions.
appState = TRY_FORVATI NG 2ND_PARTI TI ON,
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 226

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

case TRY_FORVATI NG 2ND_PARTI Tl ON:
i f (SYS_FS_DriveFormat ("/mt/myDrive2/", SYS FS _FORMAT FDISK, 0) == SYS FS RES_FAI LURE)

{
/] Failure
}
el se
{
/1 Use both partitions as 2 separate vol unes.
}
defaul t:
br eak;
}
Parameters
Parameters Description
path Path to the volume with the volume name. The string of volume name has to be preceded by
"Imnt/". Also, the volume name and directory name has to be separated by a slash "/".
partition Array with 4 items, where each items mentions the sizes of each partition in terms of number
of sector. Oth element of array specifies the number of sectors for first partition and 3rd
element of array specifies the number of sectors for fourth partition.
work Pointer to the buffer for function work area. The size must be at least FAT_FS_MAX_SS
bytes.
Function

SYS_FS_RESULT SYS_FS_DrivePartition
(

const char *path,
const uint32_t partition[],
void * work

);

SYS_FS_DriveSectorGet Function

Obtains total number of sectors and number of free sectors for the specified drive.
File

sys_fs.h

C
SYS_FS RESULT SYS_FS DriveSectorGet(const char * path, uint32_t * total Sectors, uint32_t * freeSectors);

Returns

SYS_FS_RES_SUCCESS - Sector information get operation was successful. SYS_FS_RES_FAILURE - Sector information get operation was
unsucessful. The reason for the failure can be retrieved with SYS_FS_Error.

Description

Function to obtain the total number of sectors and number of free sectors in a drive (media).
Remarks

None.
Preconditions

The drive for which the information is to be retrieved should be mounted.

Example

uint32_t total Sectors, freeSectors;
SYS FS RESULT res;

i f (SYS_FS_Mount ("/dev/ rmtbl kal®, "/rmmt/myDrive", FAT, 0, NULL) !'= SYS_FS_RES SUCCESS)
{

}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 227

/1 Failure, try nounting again

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

el se
{
/'l Mount was successful.
/1 Do other FS stuffs.
}
/'l Performusual FS tasks.
Il....
...

/'l Now, deternmine the total sectors and free sectors
res = SYS FS DriveSectorGet ("/mt/ myDrive", &otal Sectors, & reeSectors);
if(res == SYS_FS_RES FAl LURE)

{
/1 Sector information get operation fail ed.
}
Parameters
Parameters Description
path Path to the volume with the volume name. The string of volume name must be preceded by
“Imnt/". Also, the volume name and directory name must be separated by a slash "/".
totalSectors Pointer to a variable passed to the function, which will contain the total number of sectors
available in the drive (media).
freeSectors Pointer to a variable passed to the function, which will contain the free number of sectors
available in the drive (media).
Function

SYS_FS_RESULT SYS_FS_DriveSectorGet
(

const char* path,
uint32_t *totalSectors,
uint32_t *freeSectors

);

SYS_FS_EventHandlerSet Function
Allows a client to identify an event handling function for the file system to call back when mount/unmount operation has completed.
File
sys_fs.h
C
voi d SYS_FS Event Handl er Set (const void * eventHandl er, const uintptr_t context);
Returns
None.

Description

This function allows a client to identify an event handling function for the File System to call back when mount/unmount operation has completed.
The file system will pass mount name back to the client by calling "eventHandler" when AutoMount feature is enabled for File system.

Remarks

On Mount/Un-Mount of a volume all the registered clients will be notified. The client should check if the mount name passed when event handler is
called is the one it is expecting and then proceed as demonstrated in above example.

If the client does not want to be notified when the mount/unmount operation has completed, it does not need to register a callback.
This API is Available only when SYS_FS_AUTOMOUNT_ENABLE is set to true.

Preconditions
The SYS_FS_Initialize() routine must have been called.

Example

/1 Cient registers an event handler with file system This is done once.
SYS_FS_Event Handl er Set (APP_SysFSEvent Handl er, (uintptr_t)NULL);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 228

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

/'l Event Processing Technique. Event is received when operation is done.
voi d APP_SysFSEvent Handl er
(

SYS_FS_EVENT event,

voi d* event Dat a,

uintptr_t context

)
{
switch(event)
{
case SYS_FS _EVENT_MOUNT:
if(strcmp((const char *)eventData,"/mt/ nmyDrivel") == 0)
{
gSDCar dMount Fl ag = true;
else if(strcmp((const char *)eventData,"/mt/ nmyDrive2") == 0)
{
gNVMVbunt Fl ag = true;
}
br eak;
case SYS_FS_EVENT_UNMOUNT:
if(strcnp((const char *)eventData,"/mt/nyDrivel") == 0)
{
gSDCar dMount Fl ag = fal se;
}
else if(strcmp((const char *)eventData,"/mt/ myDrive2") == 0)
{
gNVMVbunt Fl ag = fal se;
}
br eak;
case SYS_FS _EVENT_ERROR:
br eak;
}
}
Parameters
Parameters Description
eventHandler Pointer to the event handler function implemented by the user
context The value of parameter will be passed back to the client unchanged, when the eventHandler
function is called. It can be used to identify any client specific data object that identifies the
instance of the client module (for example, it may be a pointer to the client module's state
structure).
Function

void SYS_FS_EventHandlerSet
(

const void * eventHandler,
const uintptr_t context

);

c) Data Types and Constants

SYS_FS_ERROR Enumeration
Lists the various error cases.

File
sys_fs.h

C

typedef enum {
SYS_FS ERROR_ KX = 0,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 229

Volume V: MPLAB Harmony Framework

SYS_FS_ERROR DI SK_ERR
SYS_FS_ERROR_| NT_ERR,
SYS_FS_ERROR_NOT_READY,
SYS_FS_ERROR NO FI LE,
SYS_FS_ERROR_NO_PATH,

SYS_FS_ERROR_| NVALI D_NAME,
SYS_FS_ERROR_DENI ED,
SYS_FS_ERROR_EXI ST,

SYS_FS_ERROR_| NVALI D_OBJECT,
SYS_FS_ERROR_WRI TE_PROTECTED,
SYS_FS_ERROR_| NVALI D_DRI VE,
SYS_FS_ERROR_NOT_ENABLED,
SYS_FS_ERROR_NO_FI LESYSTEM
SYS_FS_ERROR_FORMAT ABORTED,
SYS_FS_ERROR_TI MEOUT,
SYS_FS_ERROR_LOCKED,
SYS_FS_ERROR_NOT_ENOUGH_CORE,
SYS_FS_ERROR_TOO_MANY_COPEN_FI LES,
SYS_FS_ERROR_| N\VALI D_PARAMETER,
SYS_FS_ERROR_NOT_ENOUGH_FREE_VOLUME,
SYS_FS_ERROR_FS_NOT_SUPPORTED,
SYS_FS_ERROR_FS_NOT_MATCH W TH_VOLUME,

SYS_FS_ERROR _NOT_SUPPORTED_| N_NATI VE_FS

} SYS_FS ERROR
Members

Members

SYS_FS_ERROR_OK =0
SYS_FS_ERROR_DISK_ERR
SYS_FS_ERROR_INT_ERR
SYS_FS_ERROR_NOT_READY
SYS_FS_ERROR_NO_FILE
SYS_FS_ERROR_NO_PATH
SYS_FS_ERROR_INVALID_NAME
SYS_FS_ERROR_DENIED
SYS_FS_ERROR_EXIST
SYS_FS_ERROR_INVALID_OBJECT
SYS_FS_ERROR_WRITE_PROTECTED
SYS_FS_ERROR_INVALID_DRIVE
SYS_FS_ERROR_NOT_ENABLED
SYS_FS_ERROR_NO_FILESYSTEM
SYS_FS_ERROR_FORMAT_ABORTED
SYS_FS_ERROR_TIMEOUT
SYS_FS_ERROR_LOCKED
SYS_FS_ERROR_NOT_ENOUGH_CORE
SYS_FS_ERROR_TOO_MANY_OPEN_FILES
SYS_FS_ERROR_INVALID_PARAMETER
SYS_FS_ERROR_NOT_ENOUGH_FREE_VOLUME
SYS_FS_ERROR_FS_NOT_SUPPORTED

SYS_FS_ERROR_FS_NOT_MATCH_WITH_VOLUME |(22) Requested native file system does not match the format of volume

System Service Libraries Help

Description

Success

(1) A hard error occurred in the low level disk 1/O layer
(2) Assertion failed

(3) The physical drive cannot work

(4) Could not find the file

(5) Could not find the path

(6) The path name format is invalid

(7) Access denied due to prohibited access or directory full
(8) Access denied due to prohibited access

(9) The file/directory object is invalid

(10) The physical drive is write protected

(11) The logical drive number is invalid

(12) The volume has no work area

(13) There is no valid volume

(14) The Format() aborted due to any parameter error

(15) Could not get a grant to access the volume within defined period

(16) The operation is rejected according to the file sharing policy
(17) LFN working buffer could not be allocated

(18) Number of open files

(19) Given parameter is invalid

(20) Too many mounts requested. Not enough free volume available
(21) Requested native file system is not supported

SYS_FS_ERROR_NOT_SUPPORTED_IN_NATIVE_FS (23) Function not supported in native file system layer

Description

File Error enumeration

File System Service Library

This enumeration lists the various error cases. When the application calls for a file system function which has a return type of SYS_FS_RESULT

and if the return value is SYS_FS_RES_FAILURE, the application can know the specific reason for failure by calling the SYS_FS_FileError

function. The return value of SYS_FS_FileError function will be one of the enumeration of type SYS_FS_ERROR.

Remarks

None.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

230

Volume V: MPLAB Harmony Framework

System Service Libraries Help File System Service Library

SYS FS FILE_OPEN_ATTRIBUTES Enumeration

Lists the various attributes (modes) in which a file can be opened.

File
sys_fs.h
C

typedef enum {
SYS FS FI LE_OPEN _READ = 0,
SYS_FS_FI LE_OPEN_WRI TE,
SYS_FS_FI LE_OPEN_APPEND,
SYS FS FI LE OPEN READ PLUS,
SYS_FS_FI LE_OPEN WRI TE_PLUS,

SYS_FS_FI LE_OPEN_APPEND_PLUS

} SYS_FS FI LE_OPEN_ATTRI BUTES;
Members

Members
SYS_FS_FILE_OPEN_READ =0

SYS_FS_FILE_OPEN_WRITE

SYS_FS_FILE_OPEN_APPEND

SYS_FS_FILE_OPEN_READ_PLUS

SYS_FS_FILE_OPEN_WRITE_PLUS

SYS_FS_FILE_OPEN_APPEND_PLUS

Description

File open attributes

Description

reading the file = possible, if file exists. reading the file = file open returns error, if file does not
exist. writing to the file = not possible. Write operation returns error

reading the file = not possible. Read operation returns error. writing to the file = possible. If file
exists, write happens from the beginning of the file, overwriting the existing content of the file.
writing to the file = If file does not exist, a new file will be created and data will be written into
the newly created file.

reading the file = not possible. Read operation returns error writing to the file = possible. If file
exists, write happens from the end of the file, preserving the existing content of the file. writing
to the file = If file does not exist, a new file will be created and data will be written into the
newly created file.

reading the file = possible, if file exists. reading the file = file open returns error, if file does not
exist. writing to the file = possible, if file exists, staring from the beginning of the file
(overwriting). writing to the file = file open returns error, if file does not exist.

reading the file = possible, if file exists. reading the file = If file does not exist, a new file will be
created. writing to the file = possible. If file exists, write happens from the beginning of the file,
overwriting the existing content of the file. writing to the file = If file does not exist, a new file
will be created and data will be written into the newly created file.

reading the file = possible, if file exists. File read pointer will be moved to end of the file in this
mode. reading the file = If file does not exist, a new file will be created. writing to the file =
possible. If file exists, write happens from the end of the file, preserving the existing content of
the file. writing to the file = If file does not exist, a new file will be created and data will be
written into the newly created file.

This enumeration lists the various attributes (modes) in which a file can be opened.

Remarks

None.

SYS FS FILE_SEEK_CONTROL Enumeration

Lists the various modes of file seek.
File

sys_fs.h
C

typedef enum {
SYS FS_SEEK_SET,
SYS_FS_SEEK_CUR,
SYS_FS_SEEK_END

} SYS_FS_FI LE_SEEK_CONTROL;

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06 231

Volume V: MPLAB Harmony Framework System Service Libraries Help
Members
Members Description
SYS_FS_SEEK_SET Set file offset to input number of bytes from the start of file
SYS_FS_SEEK_CUR Set file offset to its current location plus input number of bytes
SYS_FS_SEEK_END Set file offset to size of the file plus input number of bytes
Description

File Seek control

File System Service Library

This enumeration lists the various modes of file seek. When the application calls the SYS_FS_FileSeek function, it specifies the kind of seek that

needs to be performed.

Remarks

None.

SYS FS FILE_SYSTEM_TYPE Enumeration
Enumerated data type identifying native file systems supported.
File
sys_fs.h

C

typedef enum {
UNSUPPORTED_FS = 0,
FAT,
MPFS2

} SYS_FS _FI LE_SYSTEM TYPE;

Members

Members Description
UNSUPPORTED_FS =0 Unsupported File System
FAT FAT FS native File system
MPFS2 MPFS2 native File system

Description

File System type

These enumerated values identify the native file system supported by the SYS FS.
Remarks

None.

SYS_FS_FSTAT Structure
File System status

File
sys_fs.h

C

typedef struct {
uint32_t fsize;
uintl6_t fdate;
uintl6_t ftinme;
uint8_t fattrib;
char fnane[13];
char * | fnaneg;
uint32_t |fsize;

} SYS_FS_FSTAT;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

232

Volume V: MPLAB Harmony Framework

Members

Members

uint32_t fsize;
uintl6_t fdate;
uintl6_t ftime;
uint8_t fattrib;
char fname[13];

char * Ifname;

uint32_t Ifsize;

Description

SYS FS File status structure

This structure holds the various status of a file. The SYS_FS_FileStat () populates the contents of this structure.

Remarks

None.

SYS_FS_FUNCTIONS Structure

System Service Libraries Help

Description

File size

Last modified date

Last modified time

Attribute

Short file name (8.3 format)
Pointer to the LFN buffer
Size of LFN buffer in TCHAR

SYS FS Function signature structure for native file systems.

File
sys_fs.h
C

typedef struct {

nt (*
nt (*
nt (*
nt (*
nt (*
nt (*
nt (*

ui nt 32_

mount) (uint8_t vol);
unnmount) (uint8_t vol);

open) (uintptr_t handle, const char* path, uint8_t node);

read) (uintptr_t fp, void* buff, uint32_t btr, uint32_t *br);
wite)(uintptr_t fp, const void* buff, uint32_t btw, uint32_t* bw);

close)(uintptr_t fp);
seek) (uintptr_t handl e, uint
t (* tell)(uintptr_t handle)

bool (* eof)(uintptr_t handle);
uint32_t (* size)(uintptr_t handle);
i fstat)(const char* path, uintptr_t fno);

int (*
int (*
int (*
int (*
int (*
int (*
int (*
int (*
int (*
int (*
i
i
i

nt (*

Members

Members

nkdi r) (const char *path);
chdir)(const char *path);
renove) (const char *path);
getl abel) (const char *path,
setl abel) (const char *Iabel)
truncate) (uintptr_t handle);
curr\D) (char* buff, uint32_t
chdrive)(uint8_t drive);
chnode) (const char* path, ui
chtinme)(const char* path, ui
renane) (const char *ol dPat h,
sync) (uintptr_t fp);

(* getstrn)(char* buff, int

32_t offset);

char *buff, uint32_t *sn);
|l en);

nt8_t attr, uint8_t mask);
ntptr_t ptr);

const char *newPat h);

len, uintptr_t handle);

putchr)(char c, uintptr_t handle);

putstrn)(const char* str, ui

ntptr_t handle);

formattedprint)(uintptr_t handle, const char *str, ...);
bool (* testerror)(uintptr_t handle);

format Di sk) (uint8_t vol, uint8_t sfd, uint32_t au);
openDir)(uintptr_t handle, const char *path);

readDir) (uintptr_t handle, uintptr_t stat);

closeDir)(uintptr_t handle);
partitionDisk)(uint8_t pdrv,

int (* mount)(uint8_t vol);

© 2013-2017 Microchip Technology Inc.

const uint32_t szt[], void* work);
getd uster)(const char *path, uint32_t *tot_sec, uint32_t *free_sec);
, FUNCTI ONS;

Description

Function pointer of native file system for mounting a volume

MPLAB Harmony v2.06

File System Service Library

233

Volume V: MPLAB Harmony Framework

int (* unmount)(uint8_t vol);

int (* open)(uintptr_t handle, const char* path,
uint8_t mode);

int (* read)(uintptr_t fp, void* buff, uint32_t btr,
uint32_t *br);

int (* write)(uintptr_t fp, const void* buff, uint32_t
btw, uint32_t* bw);

int (* close)(uintptr_t fp);
int (* seek)(uintptr_t handle, uint32_t offset);

uint32_t (* tell)(uintptr_t handle);
bool (* eof)(uintptr_t handle);

uint32_t (* size)(uintptr_t handle);

int (* fstat)(const char* path, uintptr_t fno);
int (* mkdir)(const char *path);

int (* chdir)(const char *path);

int (* remove)(const char *path);

int (* getlabel)(const char *path, char *buff,
uint32_t *sn);

int (* setlabel)(const char *label);
int (* truncate)(uintptr_t handle);
int (* currwD)(char* buff, uint32_t len);

int (* chdrive)(uint8_t drive);

int (* chmode)(const char* path, uint8_t attr,
uint8_t mask);

int (* chtime)(const char* path, uintptr_t ptr);

int (* rename)(const char *oldPath, const char
*newPath);

int (* sync)(uintptr_t fp);

char * (* getstrn)(char* buff, int len, uintptr_t
handle);

int (* putchr)(char c, uintptr_t handle);
int (* putstrn)(const char* str, uintptr_t handle);

int (* formattedprint)(uintptr_t handle, const char
*str, ...);

bool (* testerror)(uintptr_t handle);

int (* formatDisk)(uint8_t vol, uint8_t sfd, uint32_t
au);

int (* openDir)(uintptr_t handle, const char *path);
int (* readDir)(uintptr_t handle, uintptr_t stat);
int (* closeDir)(uintptr_t handle);

int (* partitionDisk)(uint8_t pdrv, const uint32_t
szt[], void* work);

int (* getCluster)(const char *path, uint32_t
*tot_sec, uint32_t *free_sec);

Description

System Service Libraries Help

Function pointer of native file system for unmounting a volume
Function pointer of native file system for opening a file

Function pointer of native file system for reading a file
Function pointer of native file system for writing to a file

Function pointer of native file system for closing a file

Function pointer of native file system for moving the file pointer by a
« desired offset

Function pointer of native file system for finding the position of the
« file pointer

Function pointer of native file system to check if the end of file is
¢ reached

Function pointer of native file system to know the size of file

Function pointer of native file system to know the status of file
Function pointer of native file system to create a directory
Function pointer of native file system to change a directory
Function pointer of native file system to remove a file or directory
Function pointer of native file system to get the volume label

Function pointer of native file system to set the volume label
Function pointer of native file system to truncate the file
Function pointer of native file system to obtain the current working

« directory
Function pointer of native file system to set the current drive

Function pointer of native file system to change the attribute for file
¢ or directory

Function pointer of native file system to change the time for a file or
« directory

Function pointer of native file system to rename a file or directory

Function pointer of native file system to flush file
Function pointer of native file system to read a string from a file

Function pointer of native file system to write a character into a file

Function pointer of native file system to write a string into a file

Function pointer of native file system to print a formatted string to
o file

Function pointer of native file system to test an error in a file

Function pointer of native file system to format a disk

Function pointer of native file system to open a directory

Function pointer of native file system to read a directory

Function pointer of native file system to close an opened directory
Function pointer of native file system to partition a physical drive

Function pointer of native file system to get total sectors and free
* sectors

SYS FS Function signature structure for native file systems

File System Service Library

The SYS FS layer supports functions from each native file system layer. This structure specifies the signature for each function from native file
system (parameter that needs to be passed to each function and return type for each function). If a new native file system is to be integrated with
the SYS FS layer, the functions should follow the signature.

The structure of function pointer for the two native file systems: FAT FS and MPFS2 is already provided in the respective source files for the native
file system. Hence the following structure is not immediately useful for the user. But the explanation for the structure is still provided for advanced
users who would wish to integrate a new native file system to the MPLAB Harmony File System framework.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

234

Volume V: MPLAB Harmony Framework System Service Libraries Help

Remarks

None.

SYS_FS_HANDLE Type
This type defines the file handle.
File
sys_fs.h

C
typedef uintptr_t SYS FS HANDLE;

Description
SYS FS File Handle

This type defines the file handle. File handle is returned by the File Open function on successful operation.

Remarks

None.

SYS_FS_REGISTRATION_TABLE Structure
The sys_fs layer has to be initialized by passing this structure with suitably initialized members.

File

File System Service Library

sys_fs.h
C
typedef struct {
SYS FS FI LE _SYSTEM TYPE nati veFi | eSyst enilype;
const SYS_FS FUNCTIONS * nativeFil eSyst enfuncti ons;
} SYS_FS _REG STRATI ON_TABLE;
Members
Members Description
SYS_FS_FILE_SYSTEM_TYPE Native file system of type SYS_FS_FILE_SYSTEM_TYPE
nativeFileSystemType;
const SYS_FS_FUNCTIONS * Pointer to the structure of type SYS_FS_FUNCTIONS which has the list of
nativeFileSystemFunctions;
Description
SYS_FS_REGISTRATION_TABLE structure
When the SYS FS layer is initialized, it has to know the type of native file system it has to support and the list of functions for native file system.
The members of this structure can be initialized with suitable values and then passed on to SYS_FS_Initialize initialization function. Please refer to
the example code provided for SYS_FS_Initialize.
Remarks

None.

SYS FS RESULT Enumeration
Lists the various results of a file operation.
File
sys_fs.h

C

typedef enum {
SYS_FS_RES_SUCCESS
SYS _FS_RES FAl LURE
} SYS_FS RESULT;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

235

Volume V: MPLAB Harmony Framework System Service Libraries Help

Members
Members Description
SYS_FS_RES_SUCCESS =0 Operation succeeded
SYS_FS_RES_FAILURE =-1 Operation failed
Description

File operation result enum

File System Service Library

This enumeration lists the various results of a file operation. When a file operation function is called from the application, and if the return type of

the function is SYS_FS_RESULT, then the enumeration below specifies the possible values returned by the function.

Remarks

None.

FAT_FS_MAX_LFN Macro
Maximum length of the Long File Name.
File
sys_fs.h

C
#def i ne FAT_FS MAX_LFN 255

Description
FAT File System LFN (Long File Name) max length

Defines the maximum length of file name during LFN selection. Set the value to 255.

Remarks

None.

FAT_FS_MAX_SS Macro
Lists the definitions for FAT file system sector size.
File
sys_fs.h
C
#define FAT_FS MAX_SS 512

Description

FAT File System Sector size
Maximum sector size to be handled. Always set the value of sector size to 512

Remarks

None.

FAT_FS_USE_LFN Macro

Lists the definitions for FAT file system LFN selection.
File

sys_fs.h

C
#def i ne FAT_FS USE_LFN 1

Description

FAT File System LFN (long file name) selection
The FAT_FS_USE_LFN option switches the LFN support. Set the value to 1.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

236

Volume V: MPLAB Harmony Framework System Service Libraries Help

Remarks

None.

SYS_FS_HANDLE_INVALID Macro
Invalid file handle

File
sys_fs.h

C
#define SYS_FS HANDLE | NVALI D ((SYS_FS HANDLE) (- 1))

Description
SYS FS File Invalid Handle

This value defines the invalid file handle. Invalid file handle is returned on an unsuccessful File Open operation.

Remarks

None.

SYS_FS _FILE_DIR_ATTR Enumeration
Enumerated data type identifying the various attributes for file/directory.

File

sys_fs.h
C
typedef enum {
SYS_FS _ATTR_RDO = 0x01,
SYS_FS_ATTR HI D = 0x02,
SYS _FS _ATTR SYS = 0x04,
SYS_FS_ATTR VOL = 0x08,
SYS_FS_ATTR LFN = OxOF,
SYS FS ATTR DIR = 0x10,
SYS_FS_ATTR_ARC = 0x20,
SYS_FS_ATTR_MASK = O0x3F
} SYS FS FILE D R ATTR
Members
Members Description
SYS_FS_ATTR_RDO = 0x01 Read only
SYS_FS_ATTR_HID = 0x02 Hidden
SYS_FS_ATTR_SYS = 0x04 System
SYS_FS_ATTR_VOL = 0x08 Volume label
SYS_FS_ATTR_LFN = OxOF LFN entry
SYS_FS_ATTR_DIR = 0x10 Directory
SYS_FS_ATTR_ARC = 0x20 Archive
SYS_FS_ATTR_MASK = 0x3F Mask of defined bits
Description
File or directory attribute
These enumerated values are the possible attributes for a file or directory.
Remarks

None.

SYS_FS_TIME Union

The structure to specify the time for a file or directory.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

File System Service Library

237

Volume V: MPLAB Harmony Framework System Service Libraries Help

File
sys_fs.h

C

typedef union {

struct discreteTime {
unsi gned second : 5;
unsigned mnute : 6
unsi gned hour : 5;
unsi gned day : 5;
unsi gned nonth : 4;
unsi gned year : 7;

struct tineDate {
uintl1l6_t tine;
uint1l6_t date;
}
ui nt 32_t packedTi ne;
} SYS_FS_TI ME;

Members
Members Description
unsigned second : 5; Second / 2 (0..29)
unsigned minute : 6; Minute (0..59)
unsigned hour : 5; Hour (0..23)
unsigned day : 5; Day in month(1..31)
unsigned month : 4; Month (1..12)
unsigned year : 7; Year from 1980 (0..127)
uintl6_t time; Time (hour, min, seconds)
uintl6_t date; Date (year, month, day)
uint32_t packedTime; Combined time information in a 32-bit value
Description

SYS FS File time structure
This structure holds the date and time to be used to set for a file or directory.

File System Service Library

bits 31-25: Year from 1980 (0..127) bits 24-21: Month (1..12) bits 20-16: Day in month(1..31) bits 15-11: Hour (0..23) bits 10-5 : Minute (0..59) bits

4-0: Seconds /2 (0..29)

Remarks

None.

SYS _FS_FORMAT Enumeration
Specifes the partitioning rule.

File
sys_fs.h

C

typedef enum {
SYS_FS _FORVAT_FDI SK = 0,
SYS_FS _FORMAT_SFD = 1

} SYS_FS_FORVAT;

Members
Members Description
SYS_FS_FORMAT_FDISK =0 Format disk with multiple partition
SYS_FS_FORMAT_SFD =1 Format disk with single partition
Description

File formating partition rule

This type specifies the partitioning rule. When SYS_FS_FORMAT_FDISK format is specified, a primary partition occupying the entire disk space is

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

238

Volume V: MPLAB Harmony Framework System Service Libraries Help File System Service Library

created and then an FAT volume is created on the partition. When SYS_FS_FORMAT_SFD format is specified, the FAT volume starts from the
first sector of the physical drive.

The SYS_FS_FORMAT_FDISK partitioning is usually used for hard disk, MMC, SDC, CFC and U Disk. It can divide a physical drive into one or
more partitions with a partition table on the MBR. However Windows does not support multiple partition on the removable media. The
SYS_FS_FORMAT_SFD is non-partitioned method. The FAT volume starts from the first sector on the physical drive without partition table. It is
usually used for floppy disk, micro drive, optical disk, and super-floppy media.

SYS_FS_EVENT Enumeration
Identifies the possible file system events.
File
sys_fs.h
C

typedef enum {
SYS_FS_EVENT_MOUNT,
SYS_FS_EVENT_UNMOUNT,
SYS_FS_EVENT_ERROR

} SYS_FS_EVENT;

Members
Members Description
SYS_FS_EVENT_MOUNT Media has been mounted successfully.
SYS_FS_EVENT_UNMOUNT Media has been unmounted successfully.
SYS_FS_EVENT_ERROR There was an error during the operation
Description

SYS FS Media Events
This enumeration identifies the possible events that can result from a file system.

Remarks

One of these values is passed in the "event" parameter of the event handling callback function that client registered with the file system by setting
the event handler when media mount or unmount is completed.

SYS_FS_EVENT_HANDLER Type
Pointer to the File system Handler function.
File
sys_fs.h
C
typedef void (* SYS_FS_EVENT_HANDLER) (SYS_FS _EVENT event, void* eventData, uintptr_t context);
Returns
None.

Description

File System Event Handler function pointer

This data type defines the required function signature for the file system event handling callback function. A client must register a pointer to an
event handling function whose function signature (parameter and return value types) match the types specified by this function pointer in order to
receive event call backs from the file system.

Remarks
None.
Parameters
Parameters Description
event Identifies the type of event
eventData Handle returned from the media operation requests
context Value identifying the context of the application that registered the event handling function

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 239

Volume V: MPLAB Harmony Framework

Files

Files

Name
sys_fs.h

sys_fs_config_template.h

Description

System Service Libraries Help File System Service Library

Description

Functions and type declarations required to interact with the MPLAB Harmony File System
Service.

File System Service configuration templates.

This section lists the source and header files used by the library.

sys_fs.h

Functions and type declarations required to interact with the MPLAB Harmony File System Service.

Enumerations

Name
SYS_FS_ERROR
SYS_FS_EVENT

SYS_FS_FILE_DIR_ATTR

Description

Lists the various error cases.

Identifies the possible file system events.

Enumerated data type identifying the various attributes for file/directory.

SYS_FS_FILE_OPEN_ATTRIBUTES Lists the various attributes (modes) in which a file can be opened.

SYS_FS_FILE_SEEK_CONTROL
SYS_FS_FILE_SYSTEM_TYPE

SYS_FS_FORMAT
SYS_FS_RESULT

Functions

Name

SYS_FS_DirClose

SYS_FS_DirectoryMake
SYS_FS_DirOpen
SYS_FS_DirRead
SYS_FS_DirRewind
SYS_FS_DirSearch
SYS_FS_DriveFormat
SYS_FS_DriveLabelGet
SYS_FS_DriveLabelSet
SYS_FS_DrivePartition

SYS_FS_Error

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o O <

SYS_FS_FileClose

SYS_FS_FileEOF
SYS_FS_FileError
SYS_FS_FileNameGet

LR AR R R R R R R

© 2013-2017 Microchip Technology Inc.

SYS_FS_CurrentDriveGet
SYS_FS_CurrentDriveSet
SYS_FS_CurrentWorkingDirectoryGet Gets the current working directory

SYS_FS_DirectoryChange

SYS_FS_DriveSectorGet

SYS_FS_EventHandlerSet

SYS_FS_FileCharacterPut

SYS_FS_FileDirectoryModeSet
SYS_FS_FileDirectoryRemove
SYS_FS_FileDirectoryRenameMove
SYS_FS_FileDirectoryTimeSet

Lists the various modes of file seek.

Enumerated data type identifying native file systems supported.
Specifes the partitioning rule.

Lists the various results of a file operation.

Description
Gets the current drive
Sets the drive.

Closes an opened directory.

Changes to a the directory specified.

Makes a directory.

Open a directory

Reads the files and directories of the specified directory.
Rewinds to the beginning of the directory.

Searches for a file or directory.

Formats a drive.

Gets the drive label.

Sets the drive label

Partitions a physical drive (media).

Obtains total number of sectors and number of free sectors for the specified drive.
Returns the last error.

Allows a client to identify an event handling function for the file system to call back when
mount/unmount operation has completed.

Writes a character to a file.

Closes a file.

Sets the mode for the file or directory.
Removes a file or directory.

Renames or moves a file or directory.

Sets or changes the time for a file or directory.
Checks for end of file.

Returns the file specific error.

Reads the file name.

MPLAB Harmony v2.06 240

Volume V: MPLAB Harmony Framework

System Service Libraries Help

@ SYS_FS_FileOpen Opens a file.
¢ SYS_FS_FilePrintf Writes a formatted string into a file.
@ SYS_FS_FileRead Read data from the file.
¢ SYS_FS_FileSeek Moves the file pointer by the requested offset.
¢ SYS_FS_FileSize Returns the size of the file in bytes.
¢ SYS_FS_FileStat Gets file status.
@ SYS_FS_FileStringGet Reads a string from the file into a buffer.
@ SYS_FS_FileStringPut Writes a string to a file.
¢ SYS_FS_FileSync Flushes the cached information when writing to a file.
¢ SYS_FS_FileTell Obtains the file pointer position.
¢ SYS_FS_FileTestError Checks for errors in the file.
¢ SYS_FS_FileTruncate Truncates a file
¢ SYS_FS_FileWrite Writes data to the file.
@ SYS_FS_Initialize Initializes the file system abstraction layer (sys_fs layer).
¢ SYS_FS_Mount Mounts the file system.
¢ SYS_FS_Tasks Maintains the File System tasks and functionalities.
] SYS_FS_Unmount Unmounts the file system.
Macros
Name Description
FAT_FS_MAX_LFN Maximum length of the Long File Name.
FAT_FS_MAX_SS Lists the definitions for FAT file system sector size.
FAT_FS USE_LFN Lists the definitions for FAT file system LFN selection.
SYS_FS_HANDLE_INVALID Invalid file handle
Structures
Name Description
SYS_FS_FSTAT File System status
SYS_FS_FUNCTIONS SYS FS Function signature structure for native file systems.
SYS_FS_REGISTRATION_TABLE |The sys_fs layer has to be initialized by passing this structure with suitably initialized
members.
Types
Name Description
SYS_FS_EVENT_HANDLER Pointer to the File system Handler function.
SYS_FS_HANDLE This type defines the file handle.
Unions
Name Description
SYS_FS_TIME The structure to specify the time for a file or directory.
Description

File System Service Library Interface Declarations and Types
This file contains function and type declarations required to interact with the MPLAB Harmony File System Service.

File Name
sys_fs.h
Company

File System Service Library

Microchip Technology Inc.

sys_fs_config_template.h

File System Service configuration templates.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 241

Volume V: MPLAB Harmony Framework System Service Libraries Help Input System Service Library

Macros
Name Description
SYS_FS_AUTOMOUNT_ENABLE Enable/Disable Auto Mount Feature of File system
SYS_FS_MAX_FILE_SYSTEM_TYPE Number of file systems used in the application
SYS_FS_MAX_FILES Number of simultaneous files access
SYS_FS_MEDIA_MAX_BLOCK_SIZE Media Sector Size information
SYS_FS_MEDIA_NUMBER Number of media used in the application
SYS_FS_VOLUME_NUMBER This macro defines number of volumes used in the application
Description

File System Service Configuration Templates
This file contains constants to configure the File System Service.

File Name
sys_fs_config_template.h
Company

Microchip Technology Inc.

Input System Service Library

This section describes the Input System Service Library.

Introduction

This library provides an Input service with a convenient C language interface. The Input System Service is a successor to the Touch System
Service. It improves touch event responsiveness and adds support for multi-touch gestures, such as two finger zoom/pinch. Keyboard and mouse
events are also supported.

Description

The Input System Service Library provides a simple API for the user to access input events of the underlying touch screen by using the configured
input touch driver. The Input System Service also allows simple callback registration to notify the Aria Graphics library of input events.

The Input System Service Library provides simple APIs to allow any input event provider (e.g. touch, keyboard, mouse, or application) to inject
events into the input system. It also provides abstract callback listener registration which allows any interested listener within the application to
receive events as they are broadcast. The Aria Graphics library is one such listener.

The Input System Service replaces the Touch System Service in release v2.06.

Using the Library
This topic describes the basic architecture of the Input System Service Library and provides information and examples on its use.

Description

Interface Header File: . / f ramewor k/ syst enf i nput/ sys_i nput. h
The interface to the Input System Service library is defined in the sys_i nput . h header file.
Please refer to the What is MPLAB Harmony? section for how the Input System Service interacts with the framework.

Abstraction Model
This topic provides a description of the software abstraction for the Input System Service.

Description

This topic provides a callback registration API to touch events from input devices such as Touch screens. These registered callbacks allow the
user to get event activity from various, potentially disparate, input devices and execute code upon event receipt.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 242

Volume V: MPLAB Harmony Framework System Service Libraries Help Input System Service Library

Application/Aria Library

Input System Service Input System Service

Callback Registrar Event Callback

Input System Service

Keyboard Driver Event Queue

USB Mouse Driver

The Input System Service provides an application programming interface (API) through which a user program or library (e.g. Aria Graphics Library)
request events of an Input Driver.

The Input System Service is essentially a framework designed to support multiple input drivers (servers) and multiple input users (clients). Existing
supporting touch drivers are the ADC Touch Driver and the mXT336T Driver. Each of these drivers share a common set of Input System Service
APIs used to send its events to the Input System Service queue.

The Input System Service is a thin layer which abstracts the low-level details of an input device Input Drivers and provides a common high-level
interface to the user/application layer. For example, Touch ADC driver implements a software touch controller and senses a touch down differently
than a mXT336T 12C message-based architecture. However, the Input system drivers translates the “touch down” event into an Input System
service event outside the scope of the application.

This service simplifies the implements of the higher application layer and provides a mechanism to add more input events in the future.

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services. The library interface routines are
divided into various sub-sections, which address one of the blocks or the overall operation of the Input System Service module.

Configuring the Library

MPLAB Harmony Configurator configuration tree when the Input System Service is enabled.
No configuration is required for the Input System Service.

Building the Library

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/system/input.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

sys_input.h Input System Service Library APl HEader file.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC when the library is selected
for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.
Source File Name Description

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 243

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Source File Name Description
./src/sys_input.c Input System Service Library implementation
Isrc/sys_input_listener.c Initializes an input listener structure

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.
Source File Name Description

N/A No optional files are available for the library

Module Dependencies
The Input System Service Library is not dependent upon other modules.

Interrupt System Service Library

This section describes the Interrupt System Service Library.

Introduction

Interrupt System Service for Microchip Microcontrollers

This library provides a low-level abstraction of the Interrupt System Service Library that is available on the Microchip family of PIC32
microcontrollers with a convenient C language interface. It can be used to simplify low-level access to the module without the necessity of
interacting directly with the module's registers, thereby hiding differences from one microcontroller variant to another.

Description

This library implements the Interrupt System Service. It is part of the system services that provides support for processing interrupts. The Interrupt
System provides support for initializing the processor's interrupt controller, registering Interrupt Service Routines (ISRs) and managing interrupts.
These features enable making efficient and dynamic applications, drivers, and middleware that respond to external events as they occur in real
time.

Application(s)
OSAL Plug-in || Plug-in || Driver
& Middleware
System
Services Middleware Driver
SYS Driver || Driver (| Driver || Driver || Driver
Interrupt

| wreue || pLib || PLib || PLib || PLib || PLib |

Using the Library
This topic describes the basic architecture of the Interrupt System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_int. h

The interface to the Interrupt System Service library is defined in the sys_i nt . h header file, which is included by the sys. h system service
header file. Any C language source (. ¢) file that uses the Interrupt System Service library should include sys. h.

Please refer to the What is MPLAB Harmony? section for how the library interacts with the framework.
Abstraction Model

This library provides an abstraction of the interrupt subsystem that is used by device drivers, middleware libraries and applications to receive and
control interrupts in real time.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 244

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Description

Driver, Middleware, or
Application

Interrupt System
Service

| Initialization, ISR, & |

! BSPSupport |

Interrupt Peripheral
Library

Interrupt System Service

The interrupt system services provide support for initializing the processor's interrupt controller, managing Interrupt Service Routines (ISRs) and
managing interrupts.

Initialization

Each software module (device driver, library, or application) that needs to receive an interrupt must enable that interrupt itself. This is normally
done in the module's initialization routine which is called by the SYS_Initialize service.

A module that intends to use an interrupt must first register the Tasks function that is to be called when the desired source causes an interrupt.
Then, it must enable that source, once it is ready to start receiving interrupts.

If the interrupt system service is configured for static usage, the routine that dynamically registers the Tasks function will be nulled out by a macro
(generating no run-time code) and, instead, the Tasks routine must be called statically from the function that implements the raw ISR vector. How
this is done is different for each processor family, as explained in the following section.

Interrupt Service Routine (ISR)

Each software module (device driver, library, or application) that needs to receive an interrupt must implement a Tasks routine to handle that
interrupt. In order for the module to operate in an interrupt-driven mode, the Tasks routine must be called from within the appropriate "raw"
Interrupt Service Routine (ISR).

How the raw ISR is implemented is highly dependent upon the specific processor being used. Libraries are available that implement raw ISRs for
each processor family in a way that allows dynamic registration and deregistration of Tasks routines. These libraries maintain tables that associate
the Tasks routine registered by the SYS INIT service with each interrupt source in the system.

Alternately, in a statically-linked system implementation, the ISR may be implemented by the system designer or integrator (in the
configuration-specific syst em i nt er r upt . c file). Such "static" ISR implementations must identify the source of the interrupt then directly call the

appropriate module's Tasks routine. This requires knowledge of the modules that have been included in the system and cannot be implemented in
advance as a library.

It is also possible, in a highly optimized system (or to support highly resource-restricted parts), to implement the logic of the
Note: module's Tasks routine directly in the raw ISR. However, this method is not recommended unless absolutely necessary to meet
system timing requirements.

Board Support Packages (BSPs)

If the processor is affixed directly to the board, the BSP may also implement any required "raw" ISRs, eliminating the need for the system designer
or integrator to implement the ISR(s) himself. Refer to the documentation for the BSP in use for details on what initialization and ISR support it
provides. This support is not implemented by the Interrupt System Services library.

Library Overview

Refer to the System Service Introduction section for how the system services operates in a system.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Interrupt System
Service.

Library Interface Section Description
Interrupt System Setup Functions Provides processor specific initialization of the interrupt system
Global Interrupt Management Functions Provide interface routines to enable/disable all interrupts on the system

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 245

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Interrupt Source Management Functions Provides setup and status routines for:
e Setting up the source enable configuration
* Querying the source interrupt status

How the Library Works

The Interrupt System Service Library can be used by a device driver, middleware layer, or application to provide access to, and control over,
interrupts to the processor.

Description

The following diagram describes the major components of the usage model.

Source Setup and Interrupt

Initialization > Handling

Not all modes are available on all devices. Please refer to the specific device data sheet to determine the modes supported for
Note: your device.

Interrupt System Setup

The Interrupt System Service library must be initialized by calling the SYS_INT_Initialize function. If the MPLAB Harmony dynamic initialization
service is used, the SYS_INT_Initialize function will be called automatically when the SYS_Initialize function is called. In a statically initialized
system, the system designer or integrator must implement the SYS_Initialize function and that function must call SYS_INT_Initialize before
initializing any modules that might require use if the interrupt system service. Once the library has been initialized, call the function
SYS_INT_Enable to enable interrupts to the processor. However, before enabling the generation of interrupts to the processor, each individual

module (driver, library, or application) must have a "Tasks" routine to in place (either registered with SYS_INT_DynamicRegister or statically linked

to the raw ISR) to handle the interrupt before it enables its own interrupt.

Example: Initializing the System Interrupt Library
SYS_INT_Initialize();

/1 Initialize all interrupt-aware software nodul es
SYS | NT_Enabl e() ;

Critical Sections

Critical Sections
Critical sections of code are small sections of code that must execute atomically, with no possibility of being interrupted. To support this, the
following technique can be used.
Global Interrupt Management provides routines to create a global critical section of code.
Global Critical Section

If no interrupts of any kind can be allowed within a critical section of code, the following routines can be used to ensure this.
* SYS_INT_Disable: To start a critical section, all interrupts are disabled with the call of this function

* SYS_INT_Enable : To end a critical section, interrupts are enabled from the interrupt controller to the core

* SYS_INT_IsEnabled: Status to indicate if whether or interrupts are currently enabled

Example: Global Critical Section
bool fl ag;
flag = SYS_INT_Disable();

/1 Do sonething critical
if (flag)

SYS_ | NT_Enabl e();
}

Source Interrupt Management provides interface routines to create local critical sections.
Local Critical Sections

Normally, it is not necessary to globally disable all possible interrupts. For example, in a driver for a specific device, it is not normally important if

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 246

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

an unrelated interrupt occurs in the middle of a critical section of code. However, if the interrupt for the source that the driver manages must not
occur within a critical section of code, it can be protected using the following technique.

Example: Local Critical Section

bool fl ag;

/1 interrupt source enable status before disable is called
flag = SYS_| NT_Sour ceDi sabl e(MY_DRI VER_| NTERRUPT_SOURCE) ;

/1 Do sonething critical

if (flag)
{

}

SYS | NT_Sour ceEnabl e(MY_DRI VER_| NTERRUPT_SOURCE) ;

These methods of protecting critical sections is usually implemented as part of an Operating System Abstraction Layer (OSAL), so

Note: itis not normally necessary to use these examples explicitly. Normally, the OSAL will provide single functions or macros that
implement this functionality. So, if available, an OSAL method is preferred over implementing the critical section code as shown in
the previous examples.

Source Interrupt Management

The driver, middleware, or application's interrupt-handling Tasks routine must do two things at a minimum, in the following order.
1. Remove the cause of the interrupt.
2. Clear the interrupt source by calling the function SYS_INT_SourceStatusClear.

Exactly what actions are necessary to remove the cause of an interrupt is completely dependent on the source of the interrupt. This is normally the
main purpose of the driver itself and is beyond the scope of this section. Refer to the documentation for the peripheral being managed.

A The cause of the interrupt must be removed before clearing the interrupt source or the interrupt may reoccur immediately after the
) source is cleared potentially causing an infinite loop. An infinite loop may also occur if the source is not cleared before the
Warning interrupt-handler returns.

Example: Handling Interrupts
voi d DRV_MYDEV_Tasks(SYS_MODULE_OBJ object)

{
/'l Renmove the cause of the interrupt
/...
/1 Clear Interrupt source
SYS_| NT_Sour ceSt at usC ear (myl nt Sour cel D) ;
}

The value of nyl nt Sour cel Dis usually either a static or dynamic configuration option. Refer to the documentation for the
Note: specific device driver to identify how to define the interrupt source ID.

Testing Interrupt

Sometimes it is necessary to cause an interrupt in software, possibly for testing purposes. To support this, the function SYS_INT_SourceStatusSet
is provided.

Example: Causing an Interrupt in Software
SYS | NT_Sour ceSt at usSet (MY_DRI VER_| NTERRUPT_SOURCE) ;

This feature is not available for all interrupt sources on all Microchip microcontrollers. Refer to the specific device data sheet to
Note: determine whether it is possible for software to set a specific interrupt source.

Configuring the Library
This section provides information on configuring the Interrupt System Service Library.

Description

To use the Interrupt System Service Library, the following must be correctly configured:
e Select the Appropriate Processor

 |Initialize the Interrupt System Service

* Configure the Raw ISR Support

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 247

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Select the Appropriate Processor

The following data types are dependent on the processor selection and are actually defined in the Interrupt Peripheral Library for the specific
microcontroller being used.

* INT_SOURCE

e INT_PRIORITY

e INT_SUBPRIORITY

These data types are configured by selecting the appropriate processor in MPLAB X IDE, which adds the "mprocessor" option to the compiler
command line to identify the correct processor and processor-specific implementation of the peripheral library to use. Since the Interrupt System
Service Library is part of the Microchip Firmware Framework, it will be built with the correct definition of these data types.

Initialize the Interrupt System Service

There are two ways to initialize the interrupt system service, depending on whether you are using a static configuration or a dynamic configuration.
For a Dynamic configuration the constant SYS_INT_DYNAMIC needs to be defined. This makes the SYS_INT_DynamicRegister and
SYS_INT_DynamicDeregister functions available. The required driver tasks routines need to be registered using SYS_INT_DynamicRegister
function.

For a Static configuration, the system designer or integrator must implement the SYS_INT_Initialize function. This function's purpose is to perform
any actions necessary to initialize the interrupt subsystem and interrupt controller on the specific processor and system, usually interacting directly
with the Interrupt Peripheral Library to accomplish these tasks.

Configure the Raw ISR Support

In some systems, there may only be a single actual (raw) ISR to handle all interrupts. In this sort of system, most of the Interrupt System Service
Library may be implemented in software, with only the highest level interrupt being supported by hardware. In other systems, all interrupts may be
supported by separate ISRs and vector selection and prioritization will be supported by hardware.

ISRs may be dynamically linked to specific interrupt sources or they may be statically linked at build time. If a dynamic interrupt library is used (by
defining the constant SYS_| NT_DYNAM C), the calls to the SYS_INT_DynamicRegister function will register a pointer to the given Tasks routine for
each registered interrupt source in an internal table. The dynamic library will then determine the source of the interrupt and call the given Tasks
routine.

If a static configuration is desired, the "raw" ISR support must be implemented so that it directly calls (using static, build-time linkage) the
appropriate module's Tasks routine. This requires the system implementer or integrator to implement the raw ISR, but it reduces the amount of
overhead necessary to handle interrupts, reducing both interrupt latency and code size.

Static Configuration

When statically configuring raw ISR support, the system implementer or integrator must directly implement the raw ISRs in an appropriate manner
for the selected processor. The raw ISR, must then call the appropriate Tasks routine to properly handle and clear the interrupt source.

Description

A static configuration of the raw ISR support for MPLAB Harmony requires processor-family-specific knowledge. Or, more accurately, it requires
compiler-specific knowledge. The following example shows how to implement a raw ISR for the PIC32 family of devices. Refer to the compiler
manual for details of how to implement an ISR.

Raw ISR Responsibilities:

« Identify the interrupt source

e Call the appropriate module's Tasks routine

The first thing a raw ISR must do is identify the source of the interrupt. Each interrupt source has its own interrupt "vector". This means that the
only time a specific ISR is called is when a specific source has caused an interrupt. Therefore, the raw ISR can assume that every time it is called,
its source has caused an interrupt. Once the raw ISR has identified the interrupt source, it must call the appropriate module's Tasks routine to
service and clear the interrupt.

Example: PIC32 Timerl Raw ISR

void _ ISR (_TIMER 1_VECTOR) _InterruptHandl er_TMR 1_stub(void)
{

/* Call the timer driver's "Tasks" routine */
DRV_TMR Tasks (gTMRObj ect);
}
In the example, gTMRObiject holds the return value from the DRV_TMR_Initialize function.

The SYS_INT_DynamicRegister and SYS_INT_DynamicDeregister functions are macro switched to compile away to nothing if a static
configuration is chosen.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 248

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Dynamic Configuration

When dynamically configuring raw ISR support, the system implementer or integrator must register each interrupt-driven driver or module's Tasks
routine with the dynamic system interrupt service for the appropriate interrupt source. The dynamic SYS INT service will then ensure that the
appropriate Tasks routine is called when an interrupt occurs.

Description

When using the dynamic system interrupt (SYS INT) service, it is not necessary to implement raw ISRs for interrupt-driven modules. The
processor-family-specific, dynamic SYS INT implementation provided with MPLAB Harmony implements the raw ISRs so the system developer or
integrator does not have to. Instead, the system developer must register the module's Tasks" routine using the SYS_ModuleRegister function after
registering the module in the module registration routine (described in the SYS INIT documentation). The following example shows how a module
must register its ISR Tasks routine.

Example: Dynamic Registration of an Interrupt-Driven Module
/'l Register the TMR driver's "Tasks" routine with the SYS INT service
SYS | NT_Dynami cRegi st er (obj ect, DRV_TMR Tasks, PLIB_| NT_SOURCE TI MER 1);

The module init routine must register the module's Tasks routine with the SYS INT service instead of the SYS TASKS service. To do this, it calls
the SYS_INT_DynamicRegister function, passing in the object (the same object handle returned by the module's initialization routine), along with a
pointer to the module's Tasks routine and the interrupt source with which it will be associated.

Dynamic interrupt registration functionality is currently not supported in the Interrupt System Service.
Note:

Building the Library
This section lists the files that are available in the Interrupt System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenlint.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_int.h Interrupt System Service Library API header file.

Required File(s)

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
- MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/sys_int_pic32.c Interrupt System Service Library implementation.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A No optional files are available for this library.

Module Dependencies

The Interrupt System Service does not depend on any other modules.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 249

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Library Interface

a) Interrupt System Setup Functions

Name Description

SYS_INT _Initialize Configures and initializes the interrupt subsystem.
SYS_INT_DynamicDeregister Deregisters the current ISR from the given interrupt source.
SYS_INT_DynamicRegister Registers an Interrupt "Tasks" Routine for the specified interrupt source or trap).

SYS_INT_ShadowRegisterAssign |Assigns a shadow register set for an interrupt priority level.
SYS_INT_ShadowRegisterGet Gets the shadow register set assigned for an interrupt priority level.
SYS_INT_StatusGetAndDisable Disables interrupts to the processor and return the previous status.

¢ ¢ ¢ ¢ ¢ ¢ <&

SYS_INT_StatusRestore Restores the processor status.

b) Global Interrupt Management Functions

Name Description
¢ SYS_INT_Disable Disables interrupts to the processor.
¢ SYS_INT_Enable Enables global interrupts to the processor.
¢ SYS_INT_IsEnabled Identifies if interrupts are currently enabled or disabled at the top level.
¢ SYS_INT_ExternallnterruptTriggerSet | Sets the external interrupt trigger type.

¢) Interrupt Source Management Functions

Name Description
@ SYS_INT_SourceDisable Disables the specified source from generating interrupts to the processor.
@ SYS_INT_SourceEnable Enables the specified source to generate interrupts to the processor.
¢ SYS_INT_SourcelsEnabled Identifies if the specified source is enabled or disabled.
¢ SYS_INT_SourceStatusClear Clears the interrupt request for the specified interrupt source.
¢ SYS_INT_SourceStatusGet Determines the status of the specified interrupt source.
¢ SYS_INT_SourceStatusSet Sets the specified interrupt source.
¢ SYS_INT_VectorPrioritySet Sets the given interrupt vector to the specified priority.
@ SYS_INT_VectorSubprioritySet Sets the specified interrupt vector to the given sub priority.

d) Data Types and Constants

Name Description

SYS_INT_TASKS_POINTER Pointer to an interrupt-handling "Tasks" routine.
INT_EXTERNAL_EDGE_TRIGGER Lists the available external interrupt trigger options.
SYS_INT_PROCESSOR_STATUS |CPU Processor status

Description

This section describes the APIs of the Interrupt System Service Library.
Refer to each section for a detailed description.

a) Interrupt System Setup Functions

SYS_INT _Initialize Function

Configures and initializes the interrupt subsystem.
File

sys_int.h

C
void SYS_INT Initialize();

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

250

Volume V: MPLAB Harmony Framework System Service Libraries Help

Description

This function configures and initializes the interrupt subsystem appropriately for the current system design.

Remarks

None.

Interrupt System Service Library

The System Interrupt library must be initialized by calling the SYS_INT _lInitialize routine. This is normally done in the "SYS_Initialize" routine
before any interrupt support is used. If the dynamic interrupt system service is not used, the "SYS_Initialize" routine must be implemented by the
system designer or integrator as required by the system design and is not implemented by the System Interrupt library. The global interrupts are
enabled as a part the call to "SYS_INT_lInitialize". However, before enabling the generation of interrupts to the processor, each individual module
(driver, library, or application) must have a "Tasks" routine to in place (statically linked to the raw ISR) to handle the interrupt before it enables it's

own interrupt.

Example: Initializing the System Interrupt Library
SYS INT_Initialize();

Preconditions

None.

Example

/'l Initialize the interrupt system This needs to done in the initialization

/'l code.
SYS_ INT_Initialize();

Function
void SYS_INT_Initialize (void)

SYS_INT_DynamicDeregister Function
Deregisters the current ISR from the given interrupt source.
File
sys_int.h

C
voi d SYS_|I NT_Dynani cDer egi st er (I NT_SOURCE source);

Returns

None.

Description

This function deregisters the current Interrupt Service Routine (ISR), if any, from the specified interrupt source.

Remarks

It is safe to call this routine, even of no ISR has been registered for the given interrupt source.

Calling this routine is optional. If the system is designed such that the given ISR is expected to always be available once the system has been

initialized, this routine does not need to be called.
Preconditions
SYS_INT_lInitialize must have been called.

Example
SYS_|I NT_Dynanmi cDer egi ster (SYS_I NT_TI MER 1) ;

Parameters

Parameters Description

source Identifier for the desired interrupt source
Function

void SYS_INT_DynamicDeregister (INT_SOURCE source)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

251

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

SYS_INT_DynamicRegister Function

Registers an Interrupt "Tasks" Routine for the specified interrupt source or trap).
File

sys_int.h

C
voi d SYS_I NT_Dynami cRegi st er (I NT_SOURCE source, SYS_|INT_TASKS_ PO NTER tasks, SYS_MODULE_OBJ object);

Returns

None.

Description

This function registers an Interrupt "Tasks" Routine for the specified interrupt source or trap).

Remarks

This routine only generates executable code when a driver is configured to register dynamically its "Tasks" routine with the system interrupt
service. However, it should be called even if the ISR-to-source association is defined statically at compile time to maintain source code
compatibility. A device driver normally registers its own ISR from its initialization routine.

In the example code, the macros MY_DRIVER_INTERRUPT_SOURCE would be defined in the appropriate configuration header, which would be
included by the driver source file where the "DRV_MYDEV_Tasks" routine and the MyParam data would be defined.

It is safe to call this routine without first calling SYS_INT_DynamicDeregister, even if a previous ISR has been registered. The effect will be that the
new ISR supplants the old one.

The System Interrupt library must be initialized by calling the SYS_INT_Initialize routine. This is normally done in the "SYS_Initialize" routine
before any interrupt support is used.

If the dynamic interrupt system service is not used, the "SYS_Initialize" routine must be implemented by the system designer or integrator as
required by the system design and is not implemented by the System Interrupt library.

Once the library has been initialized, call the function SYS_INT_Enable to enable interrupts to the processor. However, before enabling the
generation of interrupts to the processor, each individual module (driver, library, or application) must have a "Tasks" routine to in place (either
registered with SYS_INT_DynamicRegister or statically linked to the raw ISR) to handle the interrupt before it enables it's own interrupt.

Example: Initializing the System Interrupt Library

/1 Initialize the interrupt system

SYS INT_Initialize();

/1 Initialize all interrupt-aware software nodul es
SYS_| NT_Enabl e();

Preconditions
SYS_INT_lInitialize must have been called.

Example

SYS INT_Initialize();
SYS_| NT_Dynam cRegi st er (MY_DRI VER_| NTERRUPT_SOURCE, DRV_MYDEV_Tasks, MyQbject);

Parameters
Parameters Description
source Identifier for the desired interrupt source
tasks Pointer to the tasks routine
object Handle to the module instance
Function
void SYS_INT_DynamicRegister(INT_SOURCE source,

SYS_INT_TASKS_POINTER tasks,
SYS_MODULE_OBJ object)

SYS_INT_ShadowRegisterAssign Function

Assigns a shadow register set for an interrupt priority level.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 252

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

File

sys_int.h
C

voi d SYS_I NT_ShadowRegi st er Assi gn(I NT_PRI ORI TY_LEVEL priority, |NT_SHADOW REG STER shadowRegi ster);
Returns

None.
Description

The function assigns a shadow register set for an interrupt priority level.
Remarks

This feature may not be available on all devices.
Preconditions

None.

Example
SYS_| NT_ShadowRegi st er Assi gn(| NT_PRI ORI TY_LEVEL5, | NT_SHADOW REG STER 5);

Parameters
Parameters Description
priority Interrupt priority level for which the shadow register set has to be assigned.
shadowRegister Shadow register set number.

Function

void SYS_INT_ShadowRegisterAssign (INT_PRIORITY_LEVEL priority,
INT_SHADOW_REGISTER shadowRegister)

SYS_INT_ShadowRegisterGet Function
Gets the shadow register set assigned for an interrupt priority level.
File
sys_int.h
C
I NT_SHADOW REG STER SYS_| NT_ShadowRegi st er Get (| NT_PRI ORI TY_LEVEL priority);
Returns
None.
Description
The function gets the shadow register set assigned for an interrupt priority level.
Remarks
This feature may not be available on all devices. Refer to the specific device data sheet to determine availability.
Preconditions
None.
Example
| NT_SHADOW REQ STER shadowReg;

shadowReg = SYS_I NT_ShadowRegi ster Get (| NT_PRI ORI TY_LEVELS);

Parameters
Parameters Description
priority Interrupt priority level for which the shadow register set has to be assigned.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 253

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Function

INT_SHADOW_REGISTER SYS_INT_ShadowRegisterGet (INT_MODULE_D index,
INT_PRIORITY_LEVEL priority)

SYS_ INT_StatusGetAndDisable Function
Disables interrupts to the processor and return the previous status.
File
sys_int.h
C
SYS_| NT_PROCESSOR_STATUS SYS_| NT_St at usGet AndDi sabl e() ;

Returns
*« SYS_INT_PROCESSOR_STATUS - 32 hit value holding the processor status before disabling the interrupt

Description

This function disables interrupts to the processor at the top level. This function can be called to prevent any source from being able to generate an

interrupt. It returns the processor status (which includes global interrupt status and Interrupt Priority status) before disabling the interrupts.

Remarks

Previous Master interrupt status can be found by checking Oth bit of the returned value.

This function should be paired with the use of SYS_INT_StatusRestore(). The value returned from this function should be passed into
SYS_INT_StatusRestore() function.

Preconditions

SYS_INT_Initialize must have been called.

Example
SYS_| NT_PROCESSOR_STATUS processor St at us;
/| Save the processor status (which includes global interrupt status)

/'l and Disable the global interrupts
processor Status = SYS_| NT_St at usGet AndDi sabl e();

{
}

/1 Do sonething critical

/] set the processor status back to the one which was there before
/1 disabling the global interrupt
SYS_| NT_St at usRest or e(processor St at us) ;

Function
SYS_INT_PROCESSOR_STATUS SYS_INT_StatusGetAndDisable (void)

SYS_INT_StatusRestore Function
Restores the processor status.

File
sys_int.h

C
voi d SYS_ | NT_St at usRest or e(SYS_| NT_PROCESSOR_STATUS processor St at us) ;

Returns

None.

Description

This function sets the processor status based on the 32 bit value passed as a parameter. Oth bit of the status is for Master Interrupt status.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

254

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Remarks

This function should be paired with the use of SYS_INT_GetStateAndDisable(). The value returned from SYS_INT_GetStateAndDisable() should
be passed into this function.

Preconditions

None.

Example
SYS_| NT_PROCESSOR_STATUS processor St at us;

processor Status = SYS | NT_Get St at eAndDi sabl e() ;

{ /1 do sone critical work

}SYS_I NT_St at usRest or e(processor St at us) ;
Parameters

Parameters Description

processorStatus value returned from previous call to SYS_INT_StatusGetAndDisable().
Function

void SYS_INT_StatusRestore (SYS_INT_PROCESSOR_STATUS processorStatus)

b) Global Interrupt Management Functions

SYS _INT_Disable Function
Disables interrupts to the processor.
File
sys_int.h
C
bool SYS | NT_Di sabl e();

Returns

true - Global Interrupts are enabled (before the call to disable) false - Global Interrupts are disabled (before the call to disable)

Description

This function disables interrupts to the processor at the top level. This function can be called to prevent any source from being able to generate an
interrupt. It returns the global interrupt status before disabling the interrupts.

Remarks
This API will be deprecated. Use "SYS_INT_StatusGetAndDisable" instead.

Preconditions

SYS_INT_lInitialize must have been called.

Example

/'l Interrupt enable status
bool fl ag;
/1 Disable the global interrupts
flag = SYS_INT_Disable();
/1 Do sonething critical
/1 Check if interrupts were disabl ed/ enabl ed
if (flag)
{
/1 enable the global interrupts if they were enabl ed before the
/1 call to SYS_INT_Disable()
SYS | NT_Enabl e();

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 255

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Function
bool SYS_INT_Disable (void)

SYS_INT_Enable Function
Enables global interrupts to the processor.
File
sys_int.h
C
voi d SYS_| NT_Enabl e();
Returns
None.

Description

This function enables interrupts to the processor at the top level, allowing any currently enabled source to generate an interrupt. This function must
be called before any source will be able to generate an interrupt.

Remarks
SYS_INT_Enable is called from the SYS_INT_Initialize() function.
Preconditions

None.

Example

/1 Check if global interrupts are enabl ed
i f(!SYS_INT_IsEnabled())

{
/| Enable the global interrupts.
SYS | NT_Enabl e();
}
Function

void SYS_INT_Enable (void)

SYS _INT_IsEnabled Function

Identifies if interrupts are currently enabled or disabled at the top level.
File

sys_int.h
C

bool SYS I NT_IsEnabl ed();

Returns

» true - If the interrupts are currently enabled
« false - If the interrupts are currently disabled

Description

This function identifies if interrupts are enabled or disabled at the top level.
Remarks

None.
Preconditions

SYS_INT_Initialize must have been called.

Example

/'l Check if global interrupts are enabl ed

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 256

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

if (SYS_INT_IsEnabled())

{
/1 Interrupt enable status
bool fl ag;
/1 Disable the global interrupts.
flag = SYS_INT_Di sabl e();
}
Function

bool SYS_INT_IsEnabled (void)

SYS_INT_ExternallnterruptTriggerSet Function
Sets the external interrupt trigger type.

File
sys_int.h

C

voi d SYS | NT_External I nterruptTriggerSet (| NT_EXTERNAL_ SOURCES source, | NT_EXTERNAL_EDGE TRI GGER
edgeTri gger);

Returns

None.
Description

This function sets the External interrupt trigger type. User can set for multiple sources in a single call.
Remarks

Not supported for all interrupt sources. Check the specific data sheet to know the supported interrupt sources.
Preconditions

None.

Example

SYS | NT_External I nterrupt Tri gger Set (| NT_EXTERNAL_| NT_SOURCEO| | NT_EXTERNAL_| NT_SOURCEO,
I NT_EDGE_TRI GGER RI SING) ;

Parameters

Parameters Description

source Identifier for the desired interrupt source
Function

void SYS_INT_ExternalinterruptTriggerSet (INT_EXTERNAL_SOURCES source,
INT_EXTERNAL_EDGE_TRIGGER edgeTrigger)

c) Interrupt Source Management Functions

SYS _INT_SourceDisable Function

Disables the specified source from generating interrupts to the processor.
File

sys_int.h

C
bool SYS | NT_Sour ceDi sabl e(| NT_SOURCE source);

Returns

» true - The Interrupt source is enabled (before the call to SYS_INT_SourceDisable)
« false - The Interrupt source is disabled (before the call to SYS_INT_SourceDisable)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 257

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Description

This function disables the given source from generating interrupts the processor when events occur.lt returns the interrupt source enable/disable
status before disabling the interrupt source.

Remarks
None.

Preconditions

SYS_INT_lInitialize must have been called.

Example
/1 interrupt source enabl e/ disabl e status.
bool flag
/1 Initialize the interrupt system This needs to done in the initialization
/'l code.

SYS_ INT_Initialize();

/1 Disable the interrupt source

flag = SYS_ | NT_Sour ceDi sabl e(| NT_SOURCE_PARALLEL_PORT) ;

/'l before enabling the source check the enabl e/ di sabl e status

if(flag)
{
SYS_| NT_Sour ceEnabl e(| NT_SOURCE_PARALLEL_PORT) ;

}
Parameters

Parameters Description

source Identifier for the desired interrupt source.
Function

bool SYS_INT_SourceDisable (INT_SOURCE source)

SYS _INT_SourceEnable Function
Enables the specified source to generate interrupts to the processor.
File
sys_int.h
C
voi d SYS_| NT_Sour ceEnabl e(| NT_SOURCE source);
Returns
None.
Description
This function enables the specified source to generate interrupts to the processor when events occur.
Remarks
An Interrupt Service Routine (ISR) for the given interrupt source must be ready to receive the call before the source is enabled.
Preconditions
SYS_INT_lInitialize must have been called and an ISR must have been registered for the source.

Example

/1 Initialize the interrupt system This needs to done in the initialization
/'l code.

SYS INT Initialize();

/1 Enable the interrupt source

SYS_| NT_Sour ceEnabl e(| NT_SOURCE_PARALLEL_PORT) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 258

Volume V: MPLAB Harmony Framework System Service Libraries Help

Parameters

Parameters Description

source Identifier for the desired interrupt source
Function

void SYS_INT_SourceEnable (INT_SOURCE source)

SYS_INT_SourcelsEnabled Function
Identifies if the specified source is enabled or disabled.
File
sys_int.h
C
bool SYS | NT_Sour cel sEnabl ed(| NT_SOURCE source);

Returns

» true - If the given source is currently enabled.
« false - If the given source is currently disabled.

Description

This function identifies if the specified source is currently enabled or is currently disabled.

Remarks

None.
Preconditions
SYS_INT_lInitialize must have been called.

Example

[/ Initialize the interrupt system This needs to done in the initialization

/'l code.

SYS_INT_Initialize();

/1 Check if the required interrupt source is enabled

if (SYS_INT_Sourcel sEnabl ed(| NT_SOURCE_PARALLEL_PORT))
{

/'l App code
}
Parameters
Parameters Description
source Identifier for the desired interrupt source.
Function

bool SYS_INT_SourcelsEnabled (INT_SOURCE source)

SYS_INT_SourceStatusClear Function

Clears the interrupt request for the specified interrupt source.
File

sys_int.h

C
voi d SYS_| NT_SourceSt at usC ear (| NT_SOURCE source);

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Interrupt System Service Library

259

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Description

This function clears the interrupt request for the specified interrupt source.
Remarks

None.
Preconditions

SYS_INT _Initialize must have been called.

Example

/1 Initialize the interrupt system This needs to done in the initialization
/'l code.

SYS INT_Initialize();

/] Check if the interrupt source flag is set

if (SYS_INT_SourceStatusGet (| NT_SOURCE_PARALLEL_PORT))

/1l Clear the interrupt flag
SYS_| NT_Sour ceSt at usd ear (| NT_SOURCE_PARALLEL_PORT) ;

}
Parameters

Parameters Description

source Identifier for the desired interrupt source
Function

void SYS_INT_SourceStatusClear (INT_SOURCE source)

SYS_INT_SourceStatusGet Function
Determines the status of the specified interrupt source.
File
sys_int.h
C
bool SYS_ | NT_SourceSt at usGet (| NT_SOURCE source);
Returns

e true - If the given interrupt source is currently set
« false - If the given interrupt source is not currently set

Description

This function determines the current status of the interrupt source.
Remarks

Works even if the interrupt source or interrupts in general have not been enabled, so it can be used for polling implementations.
Preconditions

SYS_INT_Initialize must have been called.

Example

/'l Initialize the interrupt system This needs to done in the initialization
/'l code.

SYS_ INT_Initialize();

/] Check if the required interrupt source is set

if (SYS_INT_SourceStatusGet (| NT_SOURCE_PARALLEL_PORT))

{

}

/1 Handl e interrupt

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 260

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

Parameters

Parameters Description

source Identifier for the desired interrupt source
Function

bool SYS_INT_SourceStatusGet (INT_SOURCE source)

SYS_INT_SourceStatusSet Function
Sets the specified interrupt source.

File
sys_int.h

C
voi d SYS_| NT_Sour ceSt at usSet (| NT_SOURCE source);

Returns

None.

Description

This function sets the specified interrupt source, causing the processor to be interrupted if interrupts are enabled, the source has been enabled,
and the priority is higher than the current priority.

Remarks

Not supported for all interrupt sources. Check the specific data sheet for software clear only interrupt sources.

The driver, middleware, or application's interrupt-handling "Tasks" routine must do two things at a minimum, in the following order.
1. Remove the cause of the interrupt

2. Clear the interrupt source by calling the function SYS_INT_SourceStatusClear

Exactly what actions are necessary to remove the cause of an interrupt is completely dependent on the source of the interrupt. This is normally the
main purpose of the driver itself and is beyond the scope of this section. Refer to the documentation for the peripheral being managed.

WARNING! The cause of the interrupt must be removed before clearing the interrupt source or the interrupt may re-occur immediately after the
source is cleared potentially causing an infinite loop. An infinite loop may also occur if the source is not cleared before the interrupt-handler returns.

Example: Handling Interrupts
voi d DRV_MYDEV_Tasks(SYS_MODULE_OBJ object)

{
/'l Rermove the cause of the interrupt
/...
/1 Clear Interrupt source
SYS_| NT_Sour ceSt at usC ear (myl nt Sour cel D) ;
}

Note: the value of "myIntSourcelD" is usually either a static or dynamic configuration option. Refer to the documentation for the specific device
driver to identify how to define the interrupt source ID.

Testing Interrupt

Some times it is necessary to cause an interrupt in software, possibly for testing purposes. To support this, the function
SYS_INT_SourceStatusSet is provided.

Example: Causing an Interrupt in Software
SYS_| NT_Sour ceSt at usSet (MY_DRI VER_| NTERRUPT_SQURCE) ;

Note: This feature is not available for all interrupt sources on all Microchip microcontrollers. Refer to the data sheet for the microcontroller being
used to determine if it is possible for software to set a specific interrupt source.

Preconditions

SYS_INT_lInitialize must have been called and an ISR must have been registered for the source (if interrupts and the source are enabled).

Example

/1 Initialize the interrupt system This needs to done in the initialization
/'l code.

SYS INT_Initialize();

/'l Check if interrupt source flag is set

if (!SYS_INT_SourceStatusGet (| NT_SOURCE_PARALLEL_PORT))

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 261

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

{
/'l Set the interrupt source flag
SYS | NT_Sour ceSt at usSet (| NT_SOURCE_PARALLEL_PORT) ;
}
Parameters
Parameters Description
source Identifier for the desired interrupt source
Function

void SYS_INT_SourceStatusSet (INT_SOURCE source)

SYS_INT_VectorPrioritySet Function

Sets the given interrupt vector to the specified priority.
File

sys_int.h
C

void SYS_ INT_VectorPrioritySet (I NT_VECTOR vector, INT_PRIORITY_LEVEL priority);
Returns

None.
Description

This routine sets the given interrupt vector to the specified priority.
Remarks

This feature is not supported on all devices. Refer to the specific device data sheet or family reference manual to determine whether this feature is
supported.

In the example code, the macros MY_DRIVER_INTERRUPT_VECTOR, MY_DRIVER_ISR_PRIORITY would be defined appropriately during
configuration.

Preconditions

SYS_INT_Initialize must have been called.

Example
#def i ne MY_DRI VER | NTERRUPT_VECTOR | NT_VECTOR T1
#defi ne MY_DRI VER | SR PRIORI TY | NT_PRI ORI TY_LEVEL2
/1 Initialize the interrupt system This needs to done in the initialization
/] code.

SYS INT_Initialize();
/'l Assign priority to the interrupt vector
SYS | NT_VectorPrioritySet (MY_DRl VER | NTERRUPT_VECTOR, MY_DRI VER | SR PRI ORI TY) ;

Parameters
Parameters Description
vector Identifier for the desired interrupt vector
priority Priority (if supported)

Function

void SYS_INT_VectorPrioritySet (INT_VECTOR vector, INT_PRIORITY_LEVEL priority)

SYS _INT_VectorSubprioritySet Function
Sets the specified interrupt vector to the given sub priority.
File

sys_int.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 262

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

C
voi d SYS_| NT_Vect or SubprioritySet (I NT_VECTOR vector, |NT_SUBPRI ORI TY_LEVEL subpriority);
Returns
None.
Description
This function sets the specified interrupt vector to the specified sub-priority.
Remarks

This feature is not supported on all devices. Refer to the specific device data sheet or family reference manual to determine whether this feature is
supported.

In the example code, the macros MY_DRIVER_INTERRUPT_VECTOR, MY_DRIVER_ISR_SUB_PRIORITY would be defined appropriately
during configuration.

Preconditions

SYS_INT_lInitialize must have been called.

Example
#define MY_DRI VER_| NTERRUPT_VECTOR | NT_VECTOR T1
#define MY_DRI VER_| SR_PRI ORI TY | NT_PRI ORI TY_LEVEL?2

#define MY_DRI VER | SR SUB_ PRIORITY | NT_SUBPRI ORI TY_LEVEL1

/1 Initialize the interrupt system This needs to done in the initialization

/'l code.

SYS INT_Initialize();

/'l Assign priority to the interrupt vector

SYS_INT_VectorPrioritySet(MY_DR VER | NTERRUPT_VECTOR, MY_DRI VER | SR _PRI ORI TY) ;

/1 Assign sub-priority to the interrupt vector

SYS | NT_Vect or Subpri oritySet (MY_DRI VER | NTERRUPT_VECTOR, MY_DRI VER | SR_SUB PRI ORI TY) ;

Parameters
Parameters Description
vector Identifier for the desired interrupt vector
subpriority Subpriority (if supported)

Function

void SYS_INT_VectorSubprioritySet(INT_VECTOR vector,
INT_SUBPRIORITY_LEVEL subpriority)

d) Data Types and Constants

SYS_INT_TASKS_POINTER Type
Pointer to an interrupt-handling "Tasks" routine.
File
sys_int.h
C
typedef void (* SYS_INT_TASKS PO NTER) (SYS_MODULE _OBJ obj ect);

Description
Interrupt Tasks Routine Pointer
This data type defines a pointer to an interrupt-handling "Tasks" routine. The form of a tasks routine is as follows:
void My_Tasks (SYS_MODULE_OBJ object);
Where "MyTasks" is the name of the tasks routine and object is a Handle to the module instance.

Remarks

"Tasks" is normally defined by a device driver, middleware, or system layer.
The term Interrupt Service Routine (ISR) is used for the "raw" ISR code that is either located directly at the interrupt vector address or whose

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 263

Volume V: MPLAB Harmony Framework System Service Libraries Help Interrupt System Service Library

address is loaded from the interrupt vector. The term "Tasks" routine is used to identify the driver-specific routine that is called by the actual ISR to
perform the tasks necessary to handle and clear the interrupt.

INT_EXTERNAL_EDGE_TRIGGER Enumeration
Lists the available external interrupt trigger options.

File
sys_int.h

C

typedef enum {
I NT_EDGE_TRI GGER FALLI NG,
| NT_EDGE_TRI GGER _RI SI NG

} | NT_EXTERNAL_EDGE_TRI GGER,

Members
Members Description
INT_EDGE_TRIGGER_FALLING External interrupt trigger on falling edge
INT_EDGE_TRIGGER_RISING External interrupt trigger on rising edge
Description

Interrupt external edge selection.
This enumeration lists all of the available external interrupt trigger options.

Remarks

None.

SYS_INT_PROCESSOR_STATUS Type
CPU Processor status

File
sys_int.h

C
typedef uint32_t SYS_ | NT_PROCESSOR _STATUS;

Description

Interrupt Processor Status
This data type holds the status of CPU register 2

Remarks

None.

Files

Files

Name Description
sys_int.h Interrupt System Service.

Description

This section lists the source and header files used by the library.

sys_int.h

Interrupt System Service.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 264

Volume V: MPLAB Harmony Framework

Enumerations

Functions

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 o O 0| <

Types

Description

Interrupt System Service Library Interface Definition

Name

System Service Libraries Help

Description

INT_EXTERNAL_EDGE_TRIGGER Lists the available external interrupt trigger options.

Name

SYS_INT_Disable
SYS_INT_DynamicDeregister
SYS_INT_DynamicRegister
SYS_INT_Enable

Description
Disables interrupts to the processor.
Deregisters the current ISR from the given interrupt source.

Registers an Interrupt "Tasks" Routine for the specified interrupt source or trap).

Enables global interrupts to the processor.

SYS_INT_ExternalinterruptTriggerSet | Sets the external interrupt trigger type.

SYS_INT_lInitialize
SYS_INT_IsEnabled
SYS_INT_ShadowRegisterAssign
SYS_INT_ShadowRegisterGet
SYS_INT_SourceDisable
SYS_INT_SourceEnable
SYS_INT_SourcelsEnabled
SYS_INT_SourceStatusClear
SYS_INT_SourceStatusGet
SYS_INT_SourceStatusSet
SYS_INT_StatusGetAndDisable
SYS_INT_StatusRestore
SYS_INT_VectorPrioritySet
SYS_INT_VectorSubprioritySet

Name

Configures and initializes the interrupt subsystem.

Identifies if interrupts are currently enabled or disabled at the top level.
Assigns a shadow register set for an interrupt priority level.

Gets the shadow register set assigned for an interrupt priority level.

Disables the specified source from generating interrupts to the processor.

Enables the specified source to generate interrupts to the processor.
Identifies if the specified source is enabled or disabled.

Clears the interrupt request for the specified interrupt source.
Determines the status of the specified interrupt source.

Sets the specified interrupt source.

Disables interrupts to the processor and return the previous status.
Restores the processor status.

Sets the given interrupt vector to the specified priority.

Sets the specified interrupt vector to the given sub priority.

Description

SYS_INT_PROCESSOR_STATUS | CPU Processor status

SYS_INT_TASKS_POINTER

Pointer to an interrupt-handling "Tasks" routine.

Memory System Service Library

This file contains the interface definition for the Interrupt System Service. It provides a way to interact with the interrupt subsystem to manage the
occurrence of interrupts for sources supported by the system.

File Name
sys_int.h

Company

Microchip Technology Inc.

Memory System Service Library

This section describes the Memory System Service Library.

Introduction

Introduction to the Memory System Service.

Description

The Memory System Service provides support for the initialization of external memory and external memory controllers. It is configured to run in
static mode by the MPLAB Harmony Configurator (MHC). When an external memory interface is enabled by MHC, the initialization code for the

controller is generated and added to the system initialization sequence in the application. The specific timing parameters for the external memory
to be used are selected by the user via MHC.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

265

Volume V: MPLAB Harmony Framework System Service Libraries Help Memory System Service Library

Using the Library

This topic describes the basic architecture of the Memory System Service Library and provides information and examples on its use.
Description

Interface Header File: sys_menory. h

The interface to the Memory System Service library is defined in the sys_menory. h header file, which is included by the syst em h system
service header file. Any C language source (. c) file that uses the Memory System Service library should include syst em h.

Please refer to the What is MPLAB Harmony? section for how the library interacts with the framework.

Abstraction Model
Provides information on the abstraction model for the Memory System Service.

Description

The Memory System Service manages the initialization of interfaces to external memory devices on some PIC32 microcontrollers. The initialization
is performed during the system initialization sequence, so the memory is available to the application when the application tasks are initiated. The
memory devices accessed via the interfaces initialized by this service are mapped into the virtual address space, and once initialized, are
accessed directly just like internal SRAM. The type and number of external memory devices, as well as the virtual address mapping may vary
between devices. Please refer to the specific device data sheet for details of a particular device.

The following figure provides the abstraction model for the Memory System Service.

Memory System Service Abstraction Model

PIC32 Microcontroller

SDRAM Controller

EBI Controller SDRAM PHY

External SRAM External SDRAM

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Memory System
Service.

How the Library Works

The Memory System Service Library can be used by a device driver, middleware layer, or application to provide access to, and control over,
interrupts to the processor.

Description

Initialization

Once the service is initialized, there is no further run-time configuration or operation required. The external memory is simply accessed via virtual
address, just like internal SRAM. Therefore, there is a single API that manages the initialization of the selected external memory devices:
SYS_MEMORY _Initialize.

The SYS_MEMORY _Initialize API will invoke the initialization function(s) of external memory devices enabled via MHC. There are presently two

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 266

Volume V: MPLAB Harmony Framework System Service Libraries Help Memory System Service Library

external memory controllers supported on some PIC32 microcontrollers, the External Bus Interface (EBI) and the SDRAM controller. The EBI can
interface with external asynchronous SRAM or NOR Flash, while the SDRAM controller can interface with external DDR2 SDRAM.
SYS_MEMORY_EBI _Initialize();

SYS_MEMORY_DDR I nitialize();

Configuring the Library

The configuration of the Memory System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Memory System service. Based on the selections made, the Memory System Service
may support the selected features. These configuration settings will apply to all instances of the Memory System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

Building the Library
This section lists the files that are available in the Memory System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/franework/systen menory.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_menory. h Memory System Service Library API header file.

Required File(s)

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
- MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.
Source File Name Description
N/A No source files are available for this library.
Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.
Source File Name Description

N/A No optional files are available for this library.

Module Dependencies

The Memory System Service is not dependent upon other modules.

Library Interface

a) Functions and Macros

Name Description
L] SYS_MEMORY_Initialize Initializes and Enables the External Memory Controller(s).
DDR_SIZE Memory System Service Configuration Options

Description

This section describes the APIs of the Memory System Service Library.

a) Functions and Macros

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 267

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS_MEMORY _Initialize Function

Initializes and Enables the External Memory Controller(s).
File

sys_memory.h
C

void SYS_MEMORY_Initialize();
Returns

None.
Description

This function Enables the external memory controller module(s).
Remarks

This routine must be called before any attempt to access external memory.

Not all features are available on all devices. Refer to the specific device data sheet to determine availability.

Preconditions
None.

Example
SYS MEMORY_|nitialize(NULL);

Memory System Service Library

Parameters
Parameters Description
data Pointer to the data structure containing any data necessary to initialize the hardware. This
pointer may be null if no data is required and default initialization is to be used.
Function

void SYS_MEMORY_Initialize (void * data)

DDR_SIZE Macro
File
sys_memory.h

C
#define DDR_SIZE (32 * 1024 *1024)

Description

Memory System Service Configuration Options

Files

Files

Name Description

sys_memory.h Memory System Service Implementation.

Description

This section lists the source and header files used by the library.

sys_memory.h

Memory System Service Implementation.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

268

Volume V: MPLAB Harmony Framework

Functions
Name
@ SYS_MEMORY _Initialize
Macros
Name
DDR_SIZE
Description

Memory System Service Implementation

System Service Libraries Help

Description

Initializes and Enables the External Memory Controller(s).

Description
Memory System Service Configuration Options

Messaging System Service Library

The Memory System Service provides a simple interface to manage the memory controllers. This file implements the core interface routines for the

Memory System Service.
File Name

sys_memory.h
Company

Microchip Technology Inc.

Messaging System Service Library

This section describes the Messaging System Service Library.

Introduction

This library provides intra-process and inter-process communication by the sending and receiving of simple messages. The format of these
messages is under developer control, providing flexibility to tune message format for each application. The number and size of message queues is
under developer control, with a message priority scheme implemented by multiple queues. Each priority queue has an configurable size. The
number of message types and the number of receiving mailboxes is also configurable.

Description

This library provides intra-process and inter-process communication by the sending and receiving of simple messages. The format of these
messages is under developer control, providing flexibility to tune message format for each application. The number and size of message queues is
under developer control, with a message priority scheme implemented by multiple queues. Each priority queue has an configurable size. The
number of message types and the number of receiving mailboxes is also configurable.

Consider an application that combines graphics on a display screen, with a touch overlay on top of the screen, and several buttons. System
messages can be used by touch software to alert the graphics part of the application to update the screen as well as alert other parts of the
application to perhaps change the audio volume whenever a slider value has changed. This is easily supported by the Messaging System Services

Library.

Using the Library

This topic describes the basic architecture of the Messaging System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_mnsg. h

The interface to the Messaging System Service library is defined in the sys_nsg. h header file, which is included by the syst em h system
service header file. Any C language source (. c) file that uses the Messaging System Service library should include syst em h.

Please refer to the What is MPLAB Harmony? section for how the library interacts with the framework.

Abstraction Model

This library provides an abstraction of the messaging subsystem that is used by device drivers, middleware libraries and applications to receive

and control interrupts in real time.

This library uses cal | oc to allocate memory for:

* Message queues for each priority as part of SYS_MSG_Initialize

* Mailbox definition objects
* Message type objects

If calls to cal | oc fails to allocate the needed memory then object handles are returned with a value of SYS_0BJ_HANDLE_| NVALI D.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

269

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Messaging
System Service module

Library Interface Section Description

Initialization, Tasks, and Versioning Functions Provides configuration and control functions.
Mailbox Functions Provides mailbox APIs.

Message Type Functions Provides messaging type APIs.

Message Send/Receive Functions Provides messaging send and receive APIs.
Utility Functions Provides messaging utility APIs.

How the Library Works

The Messaging System Service Library can be used by a device driver, middleware layer, or application to provide access to, and control over,
interrupts to the processor.

Description

Not all modes are available on all devices. Please refer to the specific device data sheet to determine the modes supported for
Note: your device.

The following example can be run on any PIC32 starter kit:
#i ncl ude <sys/ appi o. h>
#i ncl ude <CGenericTypeDefs. h>

#i ncl ude "systeni cormon/sys_nodul e. h"
#i ncl ude "systeni nmsg/ sys_nsg. h"
#i ncl ude "systeni nsg/src/sys_msg_|l ocal . h"

/1 Strawman cal | back functions for three nail boxes
voi d nmyCal | BackO(SYS_MSG OBJECT *pMessage)

{
DBPRI NTF(" Cal | BackO: : Message Type: %, nSource: %\r\n"
" param 0: %, paranil: %l, paramR: % \r\n",
pMessage- >nMessageTypel D,
pMessage- >nSour ce, pMessage- >par and,
pMessage- >par anil, pMessage->paranf
)
}
voi d nmyCal | Backl(SYS_MSG OBJECT *pMessage)
{
DBPRI NTF(" Cal | Backl:: Message Type: %, nSource: %d\r\n"
" param 0: %, paranil: %l, param®: % \r\n",
pMessage- >nMessageTypel D,
pMessage- >nSour ce, pMessage- >par an,
pMessage- >paranil, pMessage->paranf
)
}
voi d nmyCal | Back2(SYS_MSG OBJECT *pMessage)
{
DBPRI NTF(" Cal | Back2: : Message Type: %, nSource: %d\r\n"
" param 0: %, paranil: %l, paramR2: % \r\n",
pMessage- >nMessageTypel D,
pMessage- >nSour ce, pMessage- >par an,
pMessage- >par anil, pMessage->paranf
)
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 270

Volume V: MPLAB Harmony Framework System Service Libraries Help

int nmain(void)

{

Il

SYS_MSG_MESSAG NG_OBJECT 0SysMsg;

SYS_OBJ_HANDLE hSysMsg, hMsgType[5], hMail box[3];
SYS_MSG_| NSTANCE i SysMsg = SYS_MSG 0;

SYS_MSG _OBJECT nyMessage[5] ;

{/1 SYS_MsG Initialize

}

uint8_t nQSizes[] = SYS _MSG BUFFER S| ZES;

Messaging System Service Library

/1 Initialize the nmessaging system This needs to done in the initialization code.

hSysMsg = SYS _MSG I nitialize(i SysMsg, SYS_MSG_MAX_ PRI ORI TY+1, nQSi zes) ;

SYS ASSERT(SYS_OBJ_HANDLE_ | NVALID ! = hSysMsg, "Bad hSysMsg!");

/'l Create the nessage types to be used

11l
hMsgType[0]
hMsgType[1]
hMsgType[2]
hMsgType[3]
hMsgType[4]

I D cPriority
SYS_MSG TypeCreat e(i SysMsg, 1<<0, 0);
SYS_MSG TypeCreat e(i SysMsg, 1<<1, 1);
SYS _MSG TypeCreat e(i SysMsg, 1<<2, 2);
SYS _MSG TypeCreat e(i SysMsg, 1<<3, 3);
SYS_MSG _TypeCreat e(i SysMsg, 1<<4, 4);

/] Create the muil boxes to be used

hMai | box[0]
hMai | box[1]
hMai | box[2]

SYS_MSB_Mai | boxOpen(i SysMsg, &nyCal | BackO);
SYS _MSB_Mai | boxOpen(i SysMsg, &nmyCal | Backl);
SYS_MSB_Mai | boxOpen(i SysMsg, &nmyCal | Back2);

I dentify which nessages are of interest for each nuil box.

SYS_MSG_Mai | boxMsgAdd(hvai | box[0], hMsgType[0]) ;

SYS_MSG _Mai | boxMsgAdd(hMai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<1));
SYS_MSG_Mai | boxMsgAdd(hivai | box[0], SYS_MSG_ | D2hMsgType(i SysMsg, 1<<2));
SYS_MSG_Mai | boxMsgAdd(hvai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<3));
SYS_MSG_Mai | boxMsgAdd(hMai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<4));

SYS_MSG_Mai | boxMsgAdd(hvai | box[1], hMsgType[0]) ;
SYS_MSG Mai | boxMsgAdd(hMai | box[2], hMsgType[0]) ;

{//Send and receive nessages
SYS _MSGQ ELEMENT *pCQEl enent ;
SYS MsSG OBJECT *pMessage;
SYS MSG RESULTS nyResul t;
SYS_MSG _QUEUE_STATUS qSt at us[5] ;
uintlé_t iPriority;

for (iPriority=0;iPriority<=SYS MSG MAX PRIORITY;iPriority++)

{
myMessage[i Priority].nSource = SYS MSG MAX PRIORITY-i Priority;
nmyMessage[i Priority].nMessageTypel D = 1<<iPriority;
nyMessage[i Priority].paranD = i Priority;
nyMessage[i Priority].paranl = O;
nyMessage[i Priority].paran2 = 0;

}

nmyMessage[4] . paranl = O;
nyResult = SYS _MSG MessageSend(i SysMsg, &myMessage[4]);
SYS ASSERT(nmyResult == SYS _MSG _SENT, "Message not sent!");

myMessage[4] . par anil++;
nmyResult = SYS _MSG MessageSend(i SysMsg, &myMessage[4]);
SYS ASSERT(nmyResult == SYS _MSG_SENT, "Message not sent!");

myMessage[4] . par anil++;
myResult = SYS MSG MessageSend(i SysMsg, &myMessage[4]);
SYS_ASSERT(nyResult == SYS_MSG_SENT, "Message not sent!");

nyMessage[4] . par anll++;
myResult = SYS _MSG MessageSend(i SysMsg, &myMessage[4]);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

271

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

SYS_ASSERT(nyResult == SYS_MSG_SENT, "Message not sent!");

nyResult = SYS_MSG MessageSend(i SysMsg, &nyMessage[4]); // Should fail, queue full!
SYS_ASSERT(nmyResult == SYS_MSG _NOT_SENT, "Result should NOT Be Sent!");

nyMessage[3] . paranll = nmyMessage[4] . par ant;

nyMessage[3] . par anil++;

nyResult = SYS_MSG MessageSend(i SysMsg, &nyMessage[3]);
SYS_ASSERT(nmyResult == SYS_MSG_SENT, "Message not sent!");

nmyMessage[3] . par anil++;
nyResult = SYS _MSG MessageSend(i SysMsg, &myMessage[3]);
SYS ASSERT(nmyResult == SYS _MSG _SENT, "Message not sent!");

nmyMessage[2] . paranll = nmyMessage[3] . parant;

nmyMessage[2] . par antl++;

nyResult = SYS _MSG MessageSend(i SysMsg, &myMessage[2]);
SYS ASSERT(nmyResult == SYS MSG _SENT, "Message not sent!");

myMessage[2] . par anil++;
nmyResult = SYS _MSG MessageSend(i SysMsg, &myMessage[2]);
SYS ASSERT(nmyResult == SYS _MSG_SENT, "Message not sent!");

nmyMessage[1] . paranll = nmyMessage[2] . par ani;

myMessage[1] . par antl++;

nmyResult = SYS _MSG MessageSend(i SysMsg, &myMessage[l]);
SYS_ASSERT(nmyResul t == SYS_MSG_SENT, "Message not sent!");

myMessage[1] . par anil++;
myResult = SYS MSG MessageSend(i SysMsg, &myMessage[l]);
SYS_ASSERT(nyResult == SYS_MSG_SENT, "Message not sent!");

nyMessage[0] . paranl = nyMessage[1] . par ant;

myMessage[O] . par anil++;

myResult = SYS MSG MessageSend(i SysMsg, &myMessage[O0]);
SYS_ASSERT(nyResult == SYS_MSG_SENT, "Message not sent!");

nyMessage[0] . par anlL++;
myResult = SYS_MSG MessageSend(i SysMsg, &myMessage[O0]);
SYS_ASSERT(nmyResult == SYS_MSG_SENT, "Message not sent!");

nyMessage[0] . par anil++;
nyResult = SYS_MSG MessageSend(i SysMsg, &nryMessage[O0]);
SYS_ASSERT(nmyResult == SYS_MSG_SENT, "Message not sent!");

/'l Preenptively read all Mailbox Zero nessages
while (NULL != (pMessage = SYS _MSG Mai | boxMessagesGet (hMai | box[0])))

{
/1 "Process" nessage.
DBPRI NTF(" Mai | box Zero: Message Type: %, nSource: %\r\n"
" param 0: %, paranil: %l, paramR2: % \r\n",
pMessage- >nMessageTypel D,
pMessage- >nSour ce, pMessage- >par an0,
pMessage- >par anll, pMessage->paranf
)
}

/'l Deliver messages for all nmail boxes.
DBPRI NTF("\r\nGot Messages: %l\r\n", SYS MSG Got Messages(i SysMsg));
for (iPriority=0;iPriority<=SYS MSG MAX PRIORITY;iPriority++)
{
gStatus[iPriority] =
SYS MSG _QueueSt at us((SYS_OBJ_HANDLE) i SysMsg, i Priority);
}
DBPRI NTF(" Queue Status (4:-1:0): %, %, %, %, %\r\n\r\n",
gStatus[4],qStatus[3],qStatus[2], gqStatus[1],qStatus[0]);
while ((pQEl enent = SYS _MSG MessageRecei ve(i SysMsg)) !'= NULL)

{
SYS_MSG_MessageDel i ver (i SysMsg, pQEl enent) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 272

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

for (iPriority=0;iPriority<=SYS_MSG MAX_PRIORITY;iPriority++)
{
gStatus[iPriority] =
SYS_MSG_QueuesSt at us((SYS_OBJ_HANDLE) i SysMsg, i Priority);
}
DBPRI NTF(" Queue Status (4:-1:0): %, %, %, %, %\r\n\r\n",
gStatus[4],qStatus[3],qStatus[2], gqStatus[1],qgStatus[0]);

}

DBPRI NTF(" Got Messages: %\ r\n", SYS MSG Got Messages(i SysMsQ));
}
return O;

Configuring the Library

The file sys_nsg_confi g. h file provides configuration parameters that the implementer can use to adapt the Messaging System Service Library
to a particular application.

Macros
Name Description
SYS_MSG_BUFFER_SIZES define SYS_MSG_BUFFER_SIZES {4, 4, 4,4, 1
SYS_MSG_MAX_MAILBOXES Specifies the maximum number of mailboxes possible.
SYS_MSG_MAX_MSGS_DELIVERED |Specifies the maximum number of messages delivered per each call to SYS_MSG_Tasks.
SYS_MSG_MAX_PRIORITY Specifies the maximum message priority.
SYS_MSG_MAX_TYPES Specifies the maximum number of message types possible.
_SYS_MSG_CONFIG_TEMPLATE__H | Thisis macro _SYS_MSG_CONFIG_TEMPLATE__H.

Description

By default, the system message format provides 64 bits of information in a message:
typedef union

{

struct

{
uint16_t paranD; // Message paraneter zero
uint16_t paranil; // Message paraneter one
uint16_t paran®; // Message paraneter two
uint16_t nMessageTypel D; // Message type identifier

h

struct

{
uint16_t nSource; // Message source identifier
uintptr_t * pbData; // Pointer to additional nmessage data

h

} SYS_MSG _OBJECT;
The only required field in the message format definition is nMessageTypel D. However, it does not need to be 16 bits long.

The maximum number of mailboxes is defined by:
#defi ne SYS_MSG_MAX_MAI LBOXES (32)

The minimum number of mailboxes is one.

The maximum number of message types is defined by:
#defi ne SYS_MSG MAX_TYPES (32)

The minimum number of message types is one.

Message priorities run from zero to SYS_M5G_MAX_PRI ORI TY, which is defined by:
#define SYS_MSG MAX PRIORITY (4)

For each message priority from 0,1, to SYS_MSG_MAX_PRIORITY a queue is created. The size of each queue is defined by:
/1 Message Priority: O 1 2 3 4
#defi ne SYS_MSG BUFFER_SI ZES { 64, 32, 16, 8, 4}
In this example there are five priorities, 0, 1, ..4, and the sizes of each message queue is provided in the definition of SYS_MSB_BUFFER_SIZES.
Then, this information is used when initializing the Messaging System Service in the application start-up code:
SYS_OBJ_HANDLE hSysMsg;
{/1SYS_M5G I nitialize
uint16_t nQSizes[] = SYS_MSG BUFFER Sl ZES;
hSysMsg = SYS_MSG I nitialize(SYS_MSG MAX_PRI ORI TY+1, nQSi zes) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 273

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

SYS_ASSERT(SYS_OBJ_HANDLE | NVALID != hSysMsg, "Bad hSysMsg!");

SYS MSG_BUFFER_SIZES Macro
File
sys_msg_config.h

C
#define SYS MBG BUFFER SI ZES { 16 }

Description
define SYS_MSG_BUFFER_SIZES { 4, 4, 4,4, 1

SYS_MSG_MAX_MAILBOXES Macro
Specifies the maximum number of mailboxes possible.
File
sys_msg_config.h
C
#define SYS MBG MAX_MAI LBOXES (2)
Description

System Messaging Max Number of Mailboxes
Specifies the maximum number of mailboxes possible.

Remarks

Minimum number is 1 mailbox.

SYS_MSG_MAX_MSGS_DELIVERED Macro
Specifies the maximum number of messages delivered per each call to SYS_MSG_Tasks.
File
sys_msg_config.h
C
#define SYS_MSG MAX_MSGS_DELI VERED (1)
Description

System Messaging Maximum Number of Messages Delivered per call to SYS_MSG_Tasks

Specifies the maximum number of messages delivered per each call to SYS_MSG_Tasks. If zero then all message queues are emptied before the
tasks routine finishes execution.

Remarks

0 implies all queues are empty after SYS_MSG_Tasks is done.

SYS_MSG_MAX_PRIORITY Macro
Specifies the maximum message priority.
File
sys_msg_config.h

C
#def i ne SYS_MSG_MAX_PRI ORI TY (0)

Description

System Messaging Maximum Priority

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 274

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Specifies the maximum message priority.

Remarks
Message priorities run from 0 to SYS_MSG_MAX_PRIORITIES. The number of message queues is SYS_MSG_MAX_PRIORITIES+1.

SYS_MSG_MAX_TYPES Macro

Specifies the maximum number of message types possible.
File

sys_msg_config.h
C

#define SYS_MBG_MAX_TYPES (2)

Description

System Messaging Max Number of Message Types
Specifies the maximum number of message types possible.

Remarks

Minimum number is 1.

_SYS_MSG_CONFIG_TEMPLATE__H Macro
File
sys_msg_config.h

C
#define _SYS MSG CONFI G TEMPLATE _H

Description
This is macro _SYS_MSG_CONFIG_TEMPLATE__H.

Building the Library
This section lists the files that are available in the Messaging System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenl nsg.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_nsg. h Messaging System Service Library API header file.
I'src/sys_msg_l ocal . h System messaging local declarations and definitions.
/config/sys_nmsg _config.h System messaging configuration.

Required File(s)

(ruis) MHC All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC

- when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/sys_msg. c Messaging System Service Library implementation.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 275

Volume V: MPLAB Harmony Framework

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name

N/A

Description

System Service Libraries Help

No optional files are available for this library.

Module Dependencies

The Messaging System Service is not dependent upon other modules.

Library Interface

a) Initialization, Tasks, and Versioning Functions

Name
SYS_MSG_Deinitialize
SYS_MSG_Initialize
SYS_MSG_Tasks

b) Mailbox Functions

LR R R R R ¢

Name
SYS_MSG_MailboxMessagesGet
SYS_MSG_MailboxMsgAdd
SYS_MSG_MailboxMsgRemove
SYS_MSG_MailboxClose
SYS_MSG_MailboxOpen
SYS_MSG_MailboxReinit

c) Message Type Functions

Name
SYS_MSG_TypeCreate
SYS_MSG_TypeRemove

d) Message Send/Receive Functions

LR SR SR

Name
SYS_MSG_GotMessages
SYS_MSG_MessageDeliver
SYS_MSG_MessageReceive
SYS_MSG_MessageSend

e) Utility Functions

f) Data Types

Name
SYS_MSG_ID2hMsgType
SYS_MSG_QueueStatus

and Constants

Name

SYS_MSG_INIT
SYS_MSG_INSTANCE
SYS_MSG_OBJECT
SYS_MSG_QUEUE_STATUS
SYS_MSG_RECEIVE_CALLBACK
SYS_MSG_RESULTS

SYS MSGQ ELEMENT

SYS_MSG_MAILBOXES_ADDONE

Description

Deinitializes System Messaging Instance.
Configures and initializes the messaging subsystem.
System Messaging Service Tasks routine.

Description

Gets queued messages for a mailbox.

Adds a message type to the list of messages received by a mailbox.
Removes a message type from the list of messages received by a mailbox.

Closes (destroys) a mailbox previously opened with SYS_MSG_MailboxOpen.

Opens a system messaging mailbox.
Reinitializes a previously opened mailbox.

Description
Creates a new message type.
Removes an existing message type.

Description

Returns true if system messaging has undelivered messages, false otherwise.

Delivers messages to mailboxes.
Receives the next message in the message queues.
Sends a message, as defined by a message structure.

Description

Translates message type identifier into handle of corresponding message type object.

Returns the message queue status for a given message priority.

Description

Messaging System Service Library

Contains all the data necessary to initialize an instance of the System Messaging Service.

System Messaging instances numbering is from 0,1, to SYS_MSG_MAX_INSTANCE.

This is type SYS_MSG_OBJECT.

Messaging queue status enumeration.

Pointer to the System message received callback function.
Enumeration of message send results.

Defines queue element for message queue belonging to each priority.
don't need to round up the number of bitmaps

SYS_MSG_NUM_MAILBOX_BITMAPS This is macro SYS_MSG_NUM_MAILBOX_BITMAPS.

SYS_OBJ_HANDLE_INVALID

© 2013-2017 Microchip Technology Inc.

This is macro SYS_OBJ_HANDLE_INVALID.

MPLAB Harmony v2.06

276

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

SYS_OBJ_HANDLE_STATIC This is macro SYS_OBJ_HANDLE_STATIC.

SYS_OBJ_HANDLE SYS_MODULE_OBJ was poorly named. It should be SYS_MODULE_OBJ_HANDLE or
something shorter. For brevity, it was renamed to SYS_OBJ_HANDLE.

Description

This section describes the APIs of the Messaging System Service Library.
Refer to each section for a detailed description.

a) Initialization, Tasks, and Versioning Functions

SYS_MSG_Deinitialize Function
Deinitializes System Messaging Instance.
File
sys_msg.h
C
void SYS _MSG Deinitialize(SYS_OBJ_HANDLE handl eSysMsg) ;
Returns
None.
Description
This function deinitializes the System Messaging Instance and frees up allocated memory for it.
Remarks
None.
Preconditions
None.

Example

SYS _OBJ_HANDLE hSysMsg;
uintl1l6_t nQSizes[] = SYS_MSG BUFFER_SI ZES;

/1 Initialize the messaging system This needs to done in the initialization code.
/| Choose System Messagi ng instance that supports 8 byte nmessages
hSysMsg = SYS_MSG I nitialize(SYS_MSG 8Bytes, SYS MSG MAX_PRI ORI TY+1, nQSi zes) ;

if (SYS_OBJ_HANDLE_| NVALI D == hSysMsg)
{

}

/1l Handl e error

/'l Rermove this instance.
SYS MSG Deinitialize(hSysMsg);

Parameters

Parameters Description

hSysMsg handle to System Messaging Object for instance to be removed.
Function

void SYS_MSG_Deinitialize (SYS_OBJ_HANDLE hSysMsg)

SYS_MSG_Initialize Function

Configures and initializes the messaging subsystem.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 277

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

File

sys_msg.h
C

SYS _OBJ_HANDLE SYS MSG Initialize(const SYS MSG | NSTANCE i SysMsg, SYS OBJ_HANDLE plnitializeSysMsg);
Returns

Handle to the System Messaging object created. Returns SYS_OBJ_HANDLE_INVALID if allocation of data structure fails. Returns
SYS_OBJ_HANDLE_INVALID if pointer to initialization data structure is NULL.

Description

This function configures and initializes the messaging subsystem appropriately for the current system design.
Remarks

None.
Preconditions

None.

Example

SYS_OBJ_HANDLE hSysMsg;
SYS MSG INIT slnitSysMsg = { 0, (SYS_MSG MAX PRI ORITY+1), { SYS MSG BUFFER SIZES } };
/luintl6_t nQSizes[] = SYS_MSG BUFFER_SI ZES;

/1 Initialize the nmessaging system This needs to done in the initialization code.
/1l Choose System Messagi ng instance that supports 8 byte nmessages
hSysMsg = SYS MSG Initialize(SYS_MSG 8Bytes, &l nitSysMsg);

i f (SYS_OBJ_HANDLE_| NVALI D == hSysMsg)

{
/'l Handl e error
}
Parameters
Parameters Description
iSysMsg Index of System Messaging Service to be initialized.
pInitSysMsg Pointer to System Messaging initialization data structure. If NULL default config values are
used.
Function

SYS_OBJ_HANDLE SYS_MSG_lnitialize (const SYS_MSG_INSTANCE iSysMsg,
SYS_OBJ_HANDLE pinitSysMsg)

SYS_MSG_Tasks Function
System Messaging Service Tasks routine.
File
sys_msg.h
C
voi d SYS_MSG Tasks(SYS_OBJ_HANDLE handl eSysMsg) ;

Returns
None.
Description

This function is the System Messaging Service Tasks routine.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 278

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Preconditions

hSysMsg must have been returned from a call to SYS_MSG_ Initialize.

Example

while (SYS_MSG Got Messages(i SysMsg))
{

}

Parameters

SYS_MSG Tasks(hSysMsg) ;

Parameters Description
hSysMsg handle to System Messaging Object.

Function
void SYS_MSG_Tasks (SYS_OBJ_HANDLE hSysMsg)

b) Mailbox Functions

SYS _MSG_MailboxMessagesGet Function
Gets queued messages for a mailbox.
File
sys_msg.h
C
SYS_MSG OBJECT * SYS_MSG _Mai | boxMessagesGet (SYS_OBJ_HANDLE hMai | box) ;
Returns

Pointer to next message in the queue(s) that is of interest to the mailbox. Function returns NULL if no messages are found in the queue.
Description

This function gets the queued messages for a mailbox. Messages returned by this function will not be received via the mailbox's callback function.
Remarks

None.
Preconditions

hMailbox provided by call to SYS_MSG_MailboxOpen.

Example

SYS_M5G_OBJECT *pNext Message;
while (NULL != (pNext Message = SYS_MSG Mai | boxMessagesGet (hMyMai | box)))

{
/] Process nessage at *pNext Message.
}
Parameters
Parameters Description
hMailbox Object handle to mailbox
Function

SYS_MSG_OBJECT *SYS_MSG_MailboxMessagesGet(SYS_OBJ_HANDLE hMailbox)

SYS_MSG_MailboxMsgAdd Function

Adds a message type to the list of messages received by a mailbox.
File

sys_msg.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 279

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

C
voi d SYS_MSG _Mai | boxMsgAdd(SYS_OBJ_HANDLE hMai | box, SYS OBJ_HANDLE hMsgType);
Returns

None.

Description

This function adds a message type to the list of messages received by a mailbox.

Remarks

When the message type handle is unknown but the message ID is known use SYS_MSG_ID2hMsgType to provide the message type handle. See
code example.

Preconditions
hMailbox provided by call to SYS_MSG_MailboxOpen.

Example

const SYS_MSG | NSTANCE i SysMsg;
SYS_OBJ_HANDLE hMsgType[5], hMail box[3];

/| Create three nuil boxes

hMai | box[0] = SYS_MSG_Mai | boxOpen(i SysMsg, &nyCal | BackO);
hMai | box[1] SYS_MSG_Mai | boxOpen(i SysMsg, &nmyCal | Backl);
hMai | box[2] = SYS_MSG _Mai | boxOpen(i SysMsg, &nyCal | Back2);

/'l Create five nmessage types

/1 Message ID: :Priority
hMsgType[0] = SYS_MSG TypeCreat e(i SysMsg, 1<<0, 0);
hMsgTypel[1] SYS_MSG TypeCreat e(i SysMsg, 1<<1, 1) ;

hMsgType[2] = SYS_MSG TypeCreat e(i SysMsg, 1<<2, 2);
hMsgType[3] = SYS_MSG TypeCreat e(i SysMsg, 1<<3, 3) ;
hMsgType[4] = SYS_MSG TypeCreat e(i SysMsg, 1<<4, 4);

/1 Add nessages to each mail box

SYS_MSG_Mai | boxMsgAdd(hvai | box[0] , hMsgType[0]) ;
SYS_MSG_Mai | boxMsgAdd(hMai | box[1], hMsgType[1]);
SYS_MSG Mai | boxMsgAdd(hMai | box[2], hMsgType[2]) ;

SYS_MSG_Mai | boxMsgAdd(hvai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<1));
SYS_MSG_Mai | boxMsgAdd(hMvai | box[0] , SYS_MSG | D2hMsgType(i SysMvsg, 1<<2));
SYS_MSG_Mai | boxMsgAdd(hMai | box[0] , SYS_MSG | D2hMsgType(i SysMsg, 1<<3));
SYS_MSG _Mai | boxMsgAdd(hMai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<4));

Parameters

Parameters Description

hMailbox Object handle to mailbox

hMsgType Handle to message type of interest for this mailbox.
Function

void SYS_MSG_MailboxMsgAdd(SYS_OBJ_HANDLE hMailbox, SYS_OBJ_HANDLE hMsgType)

SYS _MSG_MailboxMsgRemove Function

Removes a message type from the list of messages received by a mailbox.
File

sys_msg.h

C
voi d SYS_MSG_Mai | boxMsgRenove(SYS_OBJ_HANDLE hMai | box, SYS_OBJ_HANDLE hMsgType);

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 280

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Description

This function removes a message type from the list of messages received by a mailbox.

Remarks

When the message type handle is unknown but the message ID is known use SYS_MSG_ID2hMsgType to provide the message type handle. See
code example.

Preconditions
hMailbox provided by call to SYS_MSG_MailboxOpen.

Example

const SYS_MSG_| NSTANCE i SysMsg;
SYS_OBJ_HANDLE hMsgType[5], hMail box[3];

/1 Create three mail boxes

hMai | box[0] = SYS_MSG_Mai | boxOpen(i SysMsg, &nyCal | BackO);
hMai | box[1] = SYS_MSG _Mai | boxOpen(i SysMsg, &nyCal | Backl);
hMai | box[2] = SYS_MSG _Mai | boxOpen(i SysMsg, &nyCal | Back2);

/1 Create five message types

/1 Message ID: :Priority
hMsgType[0] = SYS_MSG TypeCreat e(i SysMsg, 1<<0, 0);
hMsgType[1] SYS_MSG TypeCreat e(i SysMsg, 1<<1, 1);
hMsgTypel 2] SYS _MSG TypeCreat e(i SysMsg, 1<<2, 2);
hMsgTypel 3] SYS_MSG _TypeCreat e(i SysMsg, 1<<3, 3);
hMsgType[4] = SYS_MSG TypeCreat e(i SysMsg, 1<<4, 4);

/1 Add nessages to each mail box

SYS_MSG _Mai | boxMsgAdd(hMai | box[0], hMsgType[0]) ;
SYS_MSG_Mai | boxMsgAdd(hivai | box[1], hMsgType[1]);
SYS_MSG_Mai | boxMsgAdd(hvai | box[2], hMsgType[2]);

SYS_MSG_Mai | boxMsgAdd(hMai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<1));
SYS_MSG_Mai | boxMsgAdd(hMai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<2));
SYS_MSG_Mai | boxMsgAdd(hMai | box[0], SYS_MSG | D2hMsgType(i SysMsg, 1<<3));
SYS_MSG_Mai | boxMsgAdd(hivai | box[0], SYS_MSG_ | D2hMsgType(i SysMsg, 1<<4));

Parameters

Parameters Description

hMailbox Object handle to mailbox

hMsgType Handle to message type to be ignored by this mailbox.
Function

void SYS_MSG_MailboxMsgRemove(SYS_OBJ_HANDLE hMailbox, SYS_OBJ_HANDLE hMsgType)

SYS_MSG_MailboxClose Function

Closes (destroys) a mailbox previously opened with SYS_MSG_MailboxOpen.
File

sys_msg.h

C
voi d SYS_MSG Mai | boxd ose(SYS_OBJ_HANDLE hMai | box) ;

Returns

None.
None.

Description

This function closes (destroys) a mailbox previously opened with SYS_MSG_MailboxOpen.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 281

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Preconditions
hMailbox provided by call to SYS_MSG_MailboxOpen.
Example
SYS_OBJ_HANDLE hMyMai | box;

hMyMai | box = SYS_MSG Mai | boxOpen(i SysMsg, &nyCal | BackFunction);
SYS_MSG_Mai | boxd ose(hMyMai | box) ;

Parameters

Parameters Description

hMailbox Handle to mailbox that is to be closed (destroyed).
Function

void SYS_MSG_MailboxClose(SYS_OBJ_HANDLE hMailbox)

SYS_MSG_MailboxOpen Function
Opens a system messaging mailbox.

File
sys_msg.h

C

SYS_OBJ_HANDLE SYS_MSG Mai | boxOpen(const SYS_MSG | NSTANCE i SysMsg, SYS_MSG RECEI VE_CALLBACK
msgCal | BackFuncti on);

Returns

Handle to new system messaging mailbox.
Description

This function opens a system messaging mailbox, providing a message callback function that is called whenever a message is received.
Remarks

A null callback function disables messaging callbacks.

Preconditions

iSysMsg must have been used in a call to SYS_MSG_ Initialize. Message callback function will not be called until SYS_MSG_MailboxSignUp has
been used to sign up the mailbox for messages of interest.

Example
SYS_OBJ_HANDLE hMyMai | box;

hMyMai | box = SYS_MSG _Mai | boxQpen(i SysMsg, &nyCal | BackFunction);
if (SYS_OBJ_HANDLE | NVALID == SYS _MSG TypeRenove)
{

}

Parameters

/1 Handl e error

Parameters Description
iISysMsg Index of System Messaging Service instance.
msgCallBackFunction pointer to message callback function

Function

SYS_OBJ_HANDLE SYS_MSG_MailboxOpen(const SYS_MSG_INSTANCE iSysMsg,
SYS_MSG_RECEIVE_CALLBACK msgCallBackFunction);

SYS MSG_MailboxReinit Function

Reinitializes a previously opened mailbox.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 282

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

File

sys_msg.h
C

voi d SYS_MSG _Mai | boxRei ni t (SYS_OBJ_HANDLE hMai | box, SYS_MSG RECEI VE_CALLBACK nsgCal | BackFuncti on);
Returns

None.
Description

This function reinitializes a previously opened mailbox by providing a new callback function and clearing all message type assignments.
Remarks

A null callback function disables messaging callbacks.
Preconditions

hMailbox provided by call to SYS_MSG_MailboxOpen.
Example

SYS _OBJ_HANDLE hMyMai | box;

hMyMai | box = SYS_MSG _Mai | boxOQpen(i SysMsg, &nyCal | BackFunction);
SYS_MSG_Mai | boxRei ni t (hMyMai | box, ¬ her Cal | BackFunction);

Parameters
Parameters Description
hMailbox Object handle to mailbox
msgCallBackFunction pointer to new message callback function
Function

void SYS_MSG_MailboxReinit(SYS_OBJ_HANDLE hMailbox,
SYS_MSG_RECEIVE_CALLBACK msgCallBackFunction);

¢) Message Type Functions

SYS _MSG_TypeCreate Function
Creates a new message type.

File
sys_msg.h

C

SYS_OBJ_HANDLE SYS_MSG TypeCreat e(const SYS_MSG | NSTANCE i SysMsg, uint8_t nMessageTypel D, uint8_t
nMessagePriority);

Returns
Handle to new message type definition.
Description
This function creates a new message type, defining an integer message type and priority.
Remarks
None.
Preconditions
iSysMsg must have been used in a call to SYS_MSG_ Initialize.

Example
SYS_OBJ_HANDLE hMsgType;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 283

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

hMsgType = SYS _MSG TypeCreate(iSysMsg, 1, 3);
if (SYS_OBJ_HANDLE | NVALI D == hMsgType)

{
/1 Handl e error
}
Parameters
Parameters Description
iSysMsg Index of System Messaging Service instance.
nMessageTypelD Integer message type identifier
nMessagePriority Message priority, between 0 and SYS_MSG_MAX_PRIORITIES
Function

SYS_OBJ_HANDLE SYS_MSG_TypeCreate(const SYS_MSG_INSTANCE iSysMsg,
uint8_t nMessageTypelD,
uint8_t nMessagePriority)

SYS_MSG_TypeRemove Function
Removes an existing message type.
File
sys_msg.h
C
voi d SYS_MSG TypeRenove(SYS_OBJ_HANDLE hMsgType);
Returns

None.

Description

This function removes an existing message type.

Remarks

When the message type handle is unknown but the message ID is known use SYS_MSG_ID2hMsgType to provide the message type handle. See
code example.

Preconditions

None.

Example

SYS_OBJ_HANDLE hMsgType;
hMsgType = SYS _MSG TypeCreate(iSysMsg, 1, 3);
SYS_MSG _TypeRenmove(hMsgType);

Alternately:
SYS_OBJ_HANDLE hMsgType;
hMsgType = SYS_MSG TypeCreate(iSysMsg, 1, 3);
SYS_MSG TypeRenove(SYS MSG | D2hMsgType(i SysMsg, 1));

Parameters

Parameters Description

hMsgType Handle to message type that is to be removed
Function

void SYS_MSG_TypeRemove(SYS_OBJ_HANDLE hMsgType)

d) Message Send/Receive Functions

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 284

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS _MSG_GotMessages Function

Returns true if system messaging has undelivered messages, false otherwise.
File

sys_msg.h
C

bool SYS MSG Got Messages(const SYS_MSG | NSTANCE i SysMsg) ;

Returns

e true - Undelivered system messages exist
« false - No undelivered system messages exist

Description

This function returns the status when system messaging has undelivered messages.
Remarks

None.
Preconditions

iSysMsg must have been used in a call to SYS_MSG_ Initialize.

Example
DBPRI NTF("rnGot Messages: %drn", SYS _MSG Got Messages(i SysMsg)) ;

while ((pNext Message = SYS_MSG MessageRecei ve(i SysMsg)) != NULL)

{
SYS_MSG_MessageDel i ver (i SysMsg, pNext Message) ;
DBPRI NTF("rn");
}
DBPRI NTF(" Got Messages: %drn", SYS_MSG _Got Messages(i hSysMsg)) ;
Parameters
Parameters Description
iISysMsg Index of System Messaging Service instance.
Function

bool SYS_MSG_GotMessages(const SYS_MSG_INSTANCE iSysMsg)

SYS_MSG_MessageDeliver Function
Delivers messages to mailboxes.

File
sys_msg.h

C

Messaging System Service Library

voi d SYS_MSG MessageDel i ver (const SYS_MSG | NSTANCE i SysMsg, SYS _MSGQ ELEMENT * pQEl enent) ;

Returns

None.

Description

This function delivers messages to mailboxes, and removes the message from the queue when done.

Remarks

None.

Preconditions

iSysMsg must have been used in a call to SYS_MSG_ Initialize.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

285

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Example

SYS_MSGQ _ELEMENT *pQEl enment ;
SYS _M5G _OBJECT next Message;
while ((pQEl enent = SYS _MSG MessageRecei ve(i SysMsg)) !'= NULL)

{
/1 In case you desire to exanm ne nessage before delivering it.
next Message = pQEl enent - >sMessage;
/1 Deliver nessage to all interested nuil boxes
SYS _MSG MessageDel i ver (i SysMsg, pQEl enent) ;
}
Parameters
Parameters Description
iISysMsg Index of System Messaging Service instance.
pQElement pointer to queue element to be delivered.
Function

void SYS_MSG_MessageDeliver(const SYS_MSG_INSTANCE iSysMsg, SYS_MSGQ_ELEMENT *pQElement);

SYS_MSG_MessageReceive Function

Receives the next message in the message queues.
File

sys_msg.h
C

SYS_MSGQ ELEMENT * SYS_MSG MessageRecei ve(const SYS_MSG | NSTANCE i SysMsg) ;
Returns

Pointer to next message, as found in a message queue element, NULL if there are no messages.
Description

This function receives the next message in the message queues, returning NULL if the queues are empty.
Remarks

None.
Preconditions

iSysMsg must have been used in a call to SYS_MSG_ Initialize.

Example

SYS_MSGQ _ELEMENT *pCEl enent ;

SYS_MSG_OBJECT next Message;

while ((pQEl enent = SYS MSG MessageRecei ve(i SysMsg)) != NULL)

{
/1 In case you desire to exani ne nessage before delivering it.
next Message = pQEl enent - >sMessage;

/1 Deliver nmessage to all interested nuil boxes
SYS_MSG _MessageDel i ver (i SysMsg, pQEl enent) ;
}
Parameters
Parameters Description
iISysMsg Index of System Messaging Service instance.
Function

SYS_MSGQ_ELEMENT *SYS_MSG_MessageReceive(const SYS_MSG_INSTANCE iSysMsg)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

286

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

SYS _MSG_MessageSend Function

Sends a message, as defined by a message structure.
File

sys_msg.h
C

SYS MSG RESULTS SYS _MSG MessageSend(const SYS MSG | NSTANCE i SysMsg, SYS MSG OBJECT * pMessage);
Returns

Message result from SYS_MSG_RESULTS enumeration.
Description

This function sends a message, as defined by a message structure.
Remarks

None.
Preconditions

iSysMsg must have been used in a call to SYS_MSG_ Initialize.

Example

SYS_M5G_OBJECT nyMessage;
SYS _M5G RESULTS nyMessageSt at us;
SYS_OBJ_HANDLE hMyMsgType;

hMMsgType = SYS_MSG TypeCreate(i SysMsg, 1, 3);
i f (SYS_OBJ_HANDLE | NVALI D == hMyMsgType)
{

}

/'l Handl e error

myMessage. hMsgType = hMyMsgType;
myMessage. nSource = nyMsgSour ce;
myMessage. par aml = par anet er OneVal ue;
nmyMessage. par anl = par anet er TwoVal ue;

myMessageSt at us = SYS_MSG _MessageSend(i SysMsg, &ryMessage) ;
SYS_ASSERT(nmyMessageStatus > 0, "Bad nessage status!");

Parameters
Parameters Description
iSysMsg Index of System Messaging Service instance.
pMessage Pointer to message definition.

Function

SYS_MSG_RESULTS SYS_MSG_MessageSend(const SYS_MSG_INSTANCE iSysMsg,
SYS_MSG_OBJECT *pMessage)

e) Utility Functions

SYS _MSG_ID2hMsgType Function

Translates message type identifier into handle of corresponding message type object.
File

sys_msg.h

C
SYS _OBJ_HANDLE SYS MSG | D2hMsgType(const SYS MSG | NSTANCE i SysMsg, uint8_t nMessageTypel D);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 287

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Returns

Handle to message type definition object corresponding to the message type identifier. Returns NULL if the message type is not defined.
Description

This function translates the message type identifier into the handle of the corresponding message type object.
Remarks

This function is useful in situations where the message type identifier is known but the message type handle is not. This allows applications to
statically define message type IDs and use them in code instead of having to wait until message handles are known and then dynamically sharing
message handles via global variables.

Preconditions

iSysMsg must have been used in a call to SYS_MSG_ Initialize.

Example
#defi ne MY_MESSAGE TYPE ID 1;

/'l Create nmessage type

SYS _OBJ_HANDLE hMsgType;

uint8 t nPriority = 3;

hMsgType = SYS_MSG TypeCreate(i SysMsg, MY_MESSAGE TYPE_ID, nPriority);
if (SYS_OBJ_HANDLE | NVALI D == hMsgType)

{

}

/'l Handl e error

/'l Rermpbve nessage type without knowi ng nessage type handle
SYS _MSG TypeRenove(i SysMsg, SYS _MSG | D2hMsgType(i SysMsg, MY_MESSAGE TYPE | D)) ;

Parameters
Parameters Description
iSysMsg Index of System Messaging Service instance.
nMessageTypelD Integer message type identifier.

Function

SYS_OBJ_HANDLE SYS_MSG_ID2hMsgType(const SYS_MSG_INSTANCE iSysMsg,
uint8_t nMessageTypelD)

SYS_MSG_QueueStatus Function
Returns the message queue status for a given message priority.
File
sys_msg.h
C
SYS_MSG_QUEUE_STATUS SYS_MSG QueueSt at us(const SYS_MSG | NSTANCE i SysMsg, uint8_t nMessagePriority);
Returns
Number of messages in queue if not full or SYS_MSG_QUEUE_FULL if full. If message priority is not legal, returns SYS_MSG_QUEUE_BAD.
Description
This function returns the message queue status for a given message priority.
Remarks
None.
Preconditions
iSysMsg must have been used in a call to SYS_MSG_ Initialize.

Example

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 288

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Parameters

Parameters Description

iISysMsg Index of System Messaging Service instance.

nMessagePriority message priority of interest, from zero to SYS_MSG_MAX_PRIORITIES.
Function

SYS_MSG_QUEUE_STATUS SYS_MSG_QueueStatus(const SYS_MSG_INSTANCE iSysMsg, uint8_t nMessagePriority)

f) Data Types and Constants

SYS_MSG_INIT Structure

Contains all the data necessary to initialize an instance of the System Messaging Service.
File

sys_msg.h

C

typedef struct {
uint8_t nMaxMsgsDel i ver ed;
uint8_t nMessagePriorities;
uint1l6_t * nQSizes;

} SYS_ MSGINT;

Members
Members Description
uint8_t nMaxMsgsDelivered; Maximum number of messages delivered per call to SYS_MSG_Tasks
uint8_t nMessagePriorities; Number of message priorities desired
uintlé_t * nQSizes; Array of queue sizes for priorities 0,1,...SYS_MSG_MAX_PRIORITY
Description

System Messaging Service Initialization Data
This data type contains all of the data necessary to initialize an instance of the System Messaging Service.
Remarks

A pointer to a structure of this format containing the desired initialization data must be passed into the SYS_MSG_Initialize routine. If
nMaxMsgsDelivered == 0. ALL messages in priority queues are delivered each time SYS_MSG_Tasks is called.

SYS_MSG_INSTANCE Enumeration

System Messaging instances numbering is from 0,1, to SYS_MSG_MAX_INSTANCE.
File

sys_msg.h

C

typedef enum {
SYS_MSG 0,
SYS_MSG 1,
SYS_MSG 2,
SYS_MSG 3,
SYS_NSG 4,
SYS_MSG_NUM_| NSTANCES
} SYS_MBG | NSTANCE;

Description

Enumeration of the Allowable of System Messaging Instances
System Messaging instances numbering is from 0,1, to SYS_MSG_MAX_INSTANCE.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 289

Volume V: MPLAB Harmony Framework

Remarks

None.

SYS_MSG_OBJECT Structure

File
sys_msg.h
C

typedef struct {
uni on {
struct {

ui nt8_t nMessageTypel D,

uint8_t nSource;
uintl1l6_t parand;
uint16_t parant;
uint16_t paran;
}
struct {
uint16_t dunmy;

uintl1l6_t nSizeDat a;
uintptr_t * pData;

}
}
} SYS _MSG OBJECT;
Members

Members

uint8_t nMessageTypelD;
uint8_t nSource;

uintl6_t paramo;

uintl6_t parami;

uintl6_t paramz2;

uintl6_t nSizeData;
uintptr_t * pData;

Description

System Service Libraries Help

Description

Message type identifier

Message source identifier
Message parameter zero
Message parameter one

Message parameter two

Size of data that pData identifies
Pointer to additional message data

This is type SYS_MSG_OBJECT.

SYS _MSG_QUEUE_STATUS Enumeration

Messaging queue status enumeration.

File
sys_msg.h

C

typedef enum {
SYS_MBG_QUEUE_BAD,
SYS_MSG_QUEUE_FULL,
SYS_MSG_QUEUE_EMPTY

} SYS_MSG _QUEUE_STATUS;

Members

Members
SYS_MSG_QUEUE_BAD
SYS_MSG_QUEUE_FULL
SYS_MSG_QUEUE_EMPTY

Description

System Messaging Queue Status Enumeration

Description

QUEUE Status: full
QUEUE Status: full
QUEUE Status: empty

Messaging System Service Library

This enumeration provides the messaging queue status. Positive values indicate the number of messages in the queue.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

290

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

Remarks

None.

SYS_MSG_RECEIVE_CALLBACK Type

Pointer to the System message received callback function.
File

sys_msg.h

C
typedef void (* SYS_MSG RECEI VE_CALLBACK) (SYS_MsG OBJECT *pMessage) ;

Description

Pointer to the System Message Received Callback Function

This data type is a pointer to the function provided for each system messaging mailbox that is called when a system message is received for each

mailbox.

SYS _MSG_RESULTS Enumeration
Enumeration of message send results.
File
sys_msg.h

C

typedef enum {
SYS_MSG NOT_SENT_QFULL,
SYS_MSG _BAD PRI ORI TY,
SYS_MSG _BAD_ MSGTYPE,
SYS_MBG_NOT_SENT,
SYS_MSG_SENT

} SYS_MSG RESULTS;

Members
Members Description
SYS_MSG_NOT_SENT_QFULL Message could not be sent, no room available in priority queues
SYS_MSG_BAD_PRIORITY Message could not be sent, Message Message priority bad
SYS_MSG_BAD_MSGTYPE Message could not be sent, Message type bad
SYS_MSG_NOT_SENT Message could not be sent, no other information available
SYS_MSG_SENT Message sent

Description

System Messaging Results Enumeration
This enumeration provides message send results.

Remarks
SYS_MSG_SENT aligns with SYS_MSGQ_Success. SYS_MSG_NOT_SENT aligns with SYS_MSGQ_Failure

SYS_MSGQ_ELEMENT Structure

Defines queue element for message queue belonging to each priority.
File

sys_msg.h

C

typedef struct {

SYS_M5G _OBJECT sMessage;

uint16_t mail boxl nterestBi t Map[SYS_MSG_NUM_NAI LBOX_BI TMAPS] ;
} SYS_MSGQ ELEMENT;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

291

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library
Members

Members Description

SYS_MSG_OBJECT sMessage; System Message Bit map for mailboxes interested in this message type, modified as each

mailbox is notified.

Description

System Messaging Queues Element

This data type defines the queue element for the message queue belonging to each priority.

Remarks

None.

SYS_MSG_MAILBOXES_ADDONE Macro
File
sys_msg.h

C
#def i ne SYS_MSG_MAI LBOXES_ADDONE 0

Description

don't need to round up the number of bitmaps

SYS_MSG_NUM_MAILBOX_BITMAPS Macro
File
sys_msg.h

C

#def i ne SYS_MSG_NUM MAI LBOX_BI TMAPS (SYS_MSG MAX_MAI LBOXES/ 16 + SYS_MSG_MAI LBOXES_ADDONE)

Description
This is macro SYS_MSG_NUM_MAILBOX_BITMAPS.

SYS_OBJ_HANDLE_INVALID Macro
File
sys_msg.h

C
#define SYS OBJ_HANDLE | NVALID ((SYS OBJ_HANDLE) -1)

Description
This is macro SYS_OBJ_HANDLE_INVALID.

SYS_OBJ_HANDLE_STATIC Macro
File
sys_msg.h

C
#def i ne SYS_OBJ_HANDLE_STATIC ((SYS_OBJ_HANDLE) 0)

Description
This is macro SYS_OBJ_HANDLE_STATIC.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

292

Volume V: MPLAB Harmony Framework System Service Libraries Help Messaging System Service Library

SYS_OBJ_HANDLE Type

SYS_MODULE_OBJ was poorly named. It should be SYS_MODULE_OBJ_HANDLE or something shorter. For brevity, it was renamed to
SYS_OBJ_HANDLE.

File
sys_msg.h

C
typedef uintptr_t SYS_OBJ_HANDLE;

Description

SYS_MODULE_OBJ Rename

SYS_MODULE_OBJ was poorly named. It should be SYS_MODULE_OBJ_HANDLE or something shorter. For brevity, it was renamed to
SYS_OBJ_HANDLE.

Remarks

None.

Files

Files

Name Description
sys_msg.h System Service for the messaging module.
sys_msg_config.h System Messaging Configuration definitions file

Description

This section lists the source and header files used by the library.

sys_msg.h
System Service for the messaging module.

Enumerations

Name Description
SYS_MSG_INSTANCE System Messaging instances numbering is from 0,1, to SYS_MSG_MAX_INSTANCE.
SYS_MSG_QUEUE_STATUS Messaging queue status enumeration.
SYS_MSG_RESULTS Enumeration of message send results.
Functions
Name Description
¢ SYS_MSG_Deinitialize Deinitializes System Messaging Instance.
@ SYS_MSG_GotMessages Returns true if system messaging has undelivered messages, false otherwise.
¢ SYS_MSG_ID2hMsgType Translates message type identifier into handle of corresponding message type object.
¢ SYS_MSG_Initialize Configures and initializes the messaging subsystem.
@ SYS_MSG_MailboxClose Closes (destroys) a mailbox previously opened with SYS_MSG_MailboxOpen.
@ SYS_MSG_MailboxMessagesGet | Gets queued messages for a mailbox.
¢ SYS_MSG_MailboxMsgAdd Adds a message type to the list of messages received by a mailbox.
¢ SYS_MSG_MailboxMsgRemove Removes a message type from the list of messages received by a mailbox.
¢ SYS_MSG_MailboxOpen Opens a system messaging mailbox.
¢ SYS_MSG_MailboxReinit Reinitializes a previously opened mailbox.
¢ SYS_MSG_MessageDeliver Delivers messages to mailboxes.
@ SYS_MSG_MessageReceive Receives the next message in the message queues.
@ SYS_MSG_MessageSend Sends a message, as defined by a message structure.
¢ SYS_MSG_QueueStatus Returns the message queue status for a given message priority.
¢ SYS_MSG_Tasks System Messaging Service Tasks routine.
] SYS_MSG_TypeCreate Creates a new message type.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

293

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

¢ SYS_MSG_TypeRemove Removes an existing message type.

Macros

Name Description
SYS_MSG_MAILBOXES_ADDONE don't need to round up the number of bitmaps
SYS_MSG_NUM_MAILBOX_BITMAPS This is macro SYS_MSG_NUM_MAILBOX_BITMAPS.

SYS_OBJ_HANDLE_INVALID This is macro SYS_OBJ_HANDLE_INVALID.
SYS_OBJ_HANDLE_STATIC This is macro SYS_OBJ_HANDLE_STATIC.
Structures
Name Description
SYS_MSG_INIT Contains all the data necessary to initialize an instance of the System Messaging Service.
SYS_MSG_OBJECT This is type SYS_MSG_OBJECT.
SYS_MSGQ_ELEMENT Defines queue element for message queue belonging to each priority.
Types
Name Description
SYS_MSG_RECEIVE_CALLBACK |Pointer to the System message received callback function.
SYS_OBJ_HANDLE SYS_MODULE_OBJ was poorly named. It should be SYS_MODULE_OBJ_HANDLE or
something shorter. For brevity, it was renamed to SYS_OBJ_HANDLE.
Description

Messaging System Service Library Interface Definitions
This file contains the interface definition for the messaging system service. It provides a way to interact with the messaging subsystem.

File Name
sys_msg.h

Company

Microchip Technology Inc.

sys_msg_config.h

System Messaging Configuration definitions file

Macros
Name Description
_SYS_MSG_CONFIG_TEMPLATE__H This is macro _SYS_MSG_CONFIG_TEMPLATE__ H.
SYS_MSG_BUFFER_SIZES define SYS_MSG_BUFFER_SIZES {4, 4, 4,4, 1
SYS_MSG_MAX_MAILBOXES Specifies the maximum number of mailboxes possible.
SYS_MSG_MAX_MSGS_DELIVERED |Specifies the maximum number of messages delivered per each call to SYS_MSG_Tasks.
SYS_MSG_MAX_PRIORITY Specifies the maximum message priority.
SYS_MSG_MAX_TYPES Specifies the maximum number of message types possible.
Description

System Messaging Configuration Definitions
These definitions statically define the operation of the System Messaging service.

File Name

sys_msg_config.h

Company
Microchip Technology Inc.

Ports System Service Library

This section describes the Ports System Service Library.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 294

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Introduction

This library provides an interface to manage and control general purpose input or output ports controlled by the Ports modules on the Microchip
families of microcontrollers.

Description

One challenge designers of general purpose microcontroller devices face is to provide a large set of available peripheral features on parts with a
limited number of I/O pins. To help meet this challenge and to provide flexibility for board designers, many devices provide an ability to route 1/0
signals for selected peripherals to different /O pins. However, in some cases, general purpose /O (GPIO) pins must be used to implement the
desired functionality under direct software control. The purpose of the ports system service is to provide direct control if general purpose 1/O pins
and to support the selection of the desired peripheral functionality for supported 1/O pins and ports.

General purpose I/O pins can be controlled individually, but they are also grouped together in sets and can be controlled together as a unit. These
groups of GPIO pins are called "ports" on Microchip microcontrollers and this library provides the ability to read and write data patterns to or from
them in sets or as individual pins. In addition peripheral 10 routing and pin/port control, this library provides the ability to select and configure
several other features of the 1/0 pins and ports available on Microchip microcontrollers, as follows.

Other Features

« Individual output pin/port open-drain enable/disable

* Individual input pin/port pull-up enable/disable

* Monitor select inputs and generate interrupt on mismatch condition [Change Notification]
* Operate during Sleep and Idle modes

« Port line Analog/Digital Selection

» Port slew rate control

Trademarks and Intellectual Property are property of their respective owners. Customers are responsible for obtaining appropriate

Note: licensing or rights before using this software. Refer to the MPLAB Harmony Software License Agreement for complete licensing
information. A copy of this agreement is available in the <i nst al | - di r >/ doc folder of your MPLAB Harmony installation.

Using the Library
This topic describes the basic architecture of the Ports System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_ports. h

The interface to the Ports System Service Library is defined in the sys_port s. h header file, which is included by the sys. h header file.
Any C language source (. ¢) file that uses the Ports System Service must include sys. h.

Please refer to the What is MPLAB Harmony? section for how the library interacts with the framework.

Abstraction Model

This library provides a low-level abstraction of the Ports System Service Library. This topic describes how that abstraction is modeled in software
and introduces the library's interface.

Description

This model explains how the system interfaces with the Ports System Service and the application as illustrated in the following diagram.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 295

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

APPLICATION (= Mswrem

1[

PORTS SYSTEM
SERVICE

1l

PORTS PLIB

General Purpose I/O

All port pins have three registers directly associated with their operation as digital /0. The Data Direction register determines whether the pin is an
input or an output. If the data direction bit is a '1', the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch
register, read the latch, while writes to the latch, write the latch. Reads from the port, read the port pins, while writes to the port pins, write the latch.

7\

Read Latch
Data Bus
o >
Write Latch I/O Pin
ot Port
CK %
Data Latch
D Q
White
Direction
ok
Ditection Latch Input
Buffer
Read p |
Ditection
l Q D

EN
Read Port DO —‘

The pull-ups act as a current source or sink source connected to the pin, and eliminates the need for external resistors when push-button or
keypad devices are connected. These pull-ups prevent floating state of the pins by providing voltage to it. These features are available on some
pins and some parts. Please refer to the specific device data sheet for further information.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up
resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

The input change notification function of the I/O ports allows the microcontrollers to generate interrupt requests to the processor in response to a
change of state on selected input pins. This feature is capable of detecting input change of states even in Sleep mode, when the clocks are
disabled.

The Alternate Pin Function selections are used to steer specific peripheral input and output functions between different pins.

The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of x times the standard
to minimize EMI. The reduced transition time is the default slew rate for all ports.

Peripheral Pin Select

Available Pins:
The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 296

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

Available Peripherals:

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and
SPI), general purpose timer clock inputs, timer-related peripherals (Input Capture and Output Compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral’s
function requires special 1/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include 12C among others.
A similar requirement excludes all modules with analog inputs, such as the A/D converter. A key difference between remappable and
non-remappable peripherals is that remappable peripherals are not associated with a default 1/0O pin. The peripheral must always be assigned to a
specific 1/0 pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral
is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given /O pin, it takes priority over all other digital 1/0 and digital communication peripherals
associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any
analog functions associated with the pin.

Input
Remapping

Output
Remapping

EE— —_—>
—_— —_—
Input M Input Output M Output
Function — 7 U | Remappable Remappable | ™ U [function
| X Pin Pin i X
—_— —_—
E— —>

Input Mapping:
The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral
dictates to which pin it will be mapped.

Remavvable Invut Example for USART 1 Receive
U1TRXR<6:0>

N

Y

RPO
X |
RP1
U1TRX input
to peripheral
—>

e o o 3%

pu)
Y
\:ooow

For input only, peripheral pin select functionality does not have priority over 1/O port settings. Therefore, when configuring
Note: Remappable Pin for input,the corresponding bit in the 1/O port register must also be configured for input (set to '1").

Output Mapping:

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated
with a particular pin dictates the peripheral output to be mapped.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 297

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Multiplexing of Remappable Output for RPn

RPnR<5:0>
Default
0
U1TX Output 1
U1TRTS Output 2
RPN
e |Output Data |
. >—X
L
QEI2CCMP Output 48
REFCLK Output 49

Mapping Limitations:

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or
hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of
the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such
mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Ports System
Service Library.

Library Interface Section Description

Pin Control Functions Port bit/pin read/write/toggle/clear/set interfaces.

Ports Control Functions Port access read/write/toggle/clear/set interfaces.

Change Notification Functions Interface routines for Port line change notification.

Peripheral Pin Select Functions Interface routines for mapping the digital input/output to a specific PPS Remappable
input/output pin.

How the Library Works

Pin Control

Pins Functions Usage

* Pin Read: Port pin can be read at bit/pin level using SYS_PORTS_PinRead with appropriate parameters

« Pin Write: Port pin can be written at bit/pin level using SYS_PORTS_PinWrite with appropriate parameters
e Pin Clear: Port pin can be cleared at bit/pin level using SYS_PORTS_PinClear with appropriate parameters
« Pin Set: Port pin can be set at bit/pin level using SYS_PORTS_PinSet with appropriate parameters

« Pin Direction Control: Port pin direction can be set at bit/pin level using SYS_PORTS_PinDirectionSelect with appropriate parameters. The
Direction information can be obtained through the interface SYS_PORTS_DirectionGet.

* Pin Toggle: Port pin can be toggled at bit/pin level using SYS_PORTS_PinToggle with appropriate parameters

e Pin Open Drain: Port pin can be enabled open drain functionality at bit/pin level using SYS_PORTS_PinOpenDrainEnable with appropriate
parameters. Similarly, the Port pin can be disabled open drain functionality at bit/pin level using SYS_PORTS_PinOpenDrainDisable with
appropriate parameters.

Example:
/1 PORT Direction setting for output

SYS_PORTS_Pi nDi r ect i onSel ect (MY_PORTS_| NSTANCE, SYS_PORTS_DI RECTI ON_OUTPUT, MY_CHANNEL, MY_PI NNUM ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 298

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

/1 PORT Direction setting for input

SYS_PORTS_Pi nDi recti onSel ect (MY_PORTS_I NSTANCE, SYS_PORTS_DI RECTI ON_I NPUT, MY_CHANNEL, MY_PI NNUM ;
/1 Witing a value into a PORT

SYS_PORTS_Pi nWite(MY_PORTS | NSTANCE, My_CHANNEL, MY_PINNUM MY_VALUE);

/'l Reading back the previously witten val ue

bool readData = SYS_PORTS_Pi nRead(MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM ;
/1 Cearing the PORT

SYS_PORTS_Pi nCl ear (MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM ;

/1 Setting the port

SYS_PORTS_Pi nSet (MY_PORTS_I NSTANCE, MY_CHANNEL, MY_PI NNUM ;

/1 Toggling a PORT

SYS_PORTS_Pi nToggl e(MY_PORTS_| NSTANCE, MY_CHANNEL, My_PI NNUM ;

Not all features are available on all devices. Please refer to the specific device data sheet to determine availability.
Note:

Ports Control

Port Functions Usage

* Port Read: Ports can be read at byte/word level using the interface SYS_PORTS_Read with appropriate parameters

« Port Write: Ports can be written to at byte/word level using the interface SYS_PORTS_Write appropriate parameters

* Port Clear: Ports can be cleared at byte/word level using the interface SYS_PORTS_Clear with appropriate parameters
« Port Set: Ports can be set at byte/word level using the interface SYS_PORTS_Set with appropriate parameters

« Port Direction Control: Ports direction can be set at byte/word level using the interface SYS_PORTS_DirectionSelect with appropriate
parameters. The Direction information can be obtained through the interface SYS_PORTS_DirectionGet.

* Port Toggle: Ports can be toggled at byte/word level using the interface SYS_PORTS_Toggle with appropriate parameters

e Port Open Drain: Ports can be enabled open drain functionality at byte/word level using the interface SYS_PORTS_OpenDrainEnable with

appropriate parameters. Similarly, the Ports can be disabled open drain functionality at byte/word level using the interface
SYS_PORTS_OpenDrainDisable with appropriate parameters.

Example:

/1 PORT Direction setting for output

SYS_PORTS_DirectionSel ect (MY_PORTS_| NSTANCE, SYS_PORTS_DI RECTI ON_QUTPUT, MY_CHANNEL,

(PORTS_DATA_NASK) OXFFFF) ;

/1 PORT Direction setting for input

SYS_PORTS_DirectionSel ect (MY_PORTS_| NSTANCE, SYS_PORTS_DI RECTI ON_I NPUT, MY_CHANNEL,

(PORTS_DATA_NASK) OXFFFF) ;

/!l Witing a value into a PORT

SYS_PORTS_Wite(MY_PORTS_I NSTANCE, MY_CHANNEL, (PORTS_DATA_TYPE)0x1234)

/'l Reading back the previously witten val ue

PORTS_DATA_TYPE readData = SYS_PORTS_Read(My_PORTS_I NSTANCE, MY_CHANNEL) ;

/1 Cearing the PORT

SYS_PORTS_d ear (MY_PORTS_I NSTANCE, MY_CHANNEL, (PORTS_DATA_MASK) Ox00FF) ;

/1 Setting the port

SYS_PORTS_Set (MY_PORTS_| NSTANCE, MY_CHANNEL, 0x1234, (PORTS_DATA NMASK) 0x00FF);

/1 Toggling a PORT

SYS_PORTS_Toggl e(MY_PORTS_| NSTANCE, MY_CHANNEL, (PORTS_DATA MASK) OxOOFF) ;

Not all features are available on all devices. Please refer to the specific device data sheet to determine availability.
Note:

Change Notification

Change Notification Feature Usage

The change natification feature can be enabled using "SYS_PORTS_ChangeNotificationEnable". This routine performs the following operations:

* Change notification can be disabled after the successful usage using the interface SYS_PORTS_ChangeNotificationDisable

« Certain microcontrollers support the global control over the change notification feature using the following interfaces
SYS_PORTS_ChangeNotificationGlobalEnable and SYS_PORTS_ChangeNotificationGlobalDisable

» If there are any requirements to control the pull-ups SYS_PORTS_ChangeNotificationPullUpEnable and
SYS_PORTS_ChangeNotificationPullUpDisable could be used

Change Notification Operation in Sleep and Idle Modes

The change notification module continues to operate during Sleep or Idle mode. Its operation can be enabled and disabled using the interfaces

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

299

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

SYS_PORTS_ChangeNotificationIinldleModeEnable and SYS_PORTS_ChangeNotificationIinldleModeDisable, respectively.

Example:

/1 Enabling the global change notification

SYS_PORTS_ChangeNoti fi cati ond obal Enabl e(MYy_PORTS_| NSTANCE) ;

/'l Enabling weak pull-ups for the change notification PIN 10

SYS_PORTS_ChangeNot i fi cati onPul | UpEnabl e(MY_PORTS | NSTANCE, PORTS_CHANGE NOTI CE_PI N _10);

/'l Enabling change notification on PIN 10

SYS_PORTS_ChangeNot i fi cati onEnabl e(MY_PORTS_| NSTANCE, PORTS_CHANGE_NOTI CE_PI N_10, SYS_PORTS_PULLUP_ENABLE) ;
/] Enabling the change notification in idle node.

SYS_PORTS_ChangeNoti fi cati onl nl dl eModeEnabl e(MY_PORTS_| NSTANCE) ;

Not all features are available on all devices. Please refer to the specific device data sheet to determine availability.
Note:

Peripheral Pin Select

Ports Remapping or Peripheral Pin Select Usage

Input/Output Function Remapping:
The SYS_PORTS_Remaplnput and SYS_PORTS_RemapOutput functions with appropriate parameters can be used to remap a particular port pin
as input/output for a peripheral.

Example:

/'l Remapping input function '"Input Capture 1' to the Remappabl e input pin ' RPD2'
SYS_PORTS_Remapl nput (PORTS_ID 0, | NPUT_FUNC_IC1, I NPUT_PIN_RPD2);

/1 Remappi ng out put function 'UART1 Transnmit' to the Remappabl e output pin 'RPA14'
SYS_PORTS_Remapl nput Qut put (PORTS_I D_0, OUTPUT_FUNC_U1TX, OUTPUT_PI N_RPA14);

Not all features are available on all devices. Please refer to the specific device data sheet to determine availability.
Note:

Miscellaneous

Other Usage

Slew Rate:

Slew rate of a particular port can be controlled though the interfaces SYS_PORTS_SlewRateSetReduced and
SYS_PORTS_SlewRateSetStandard.

Open Drain:

Peripheral based open drain can be controlled through the interfaces SYS_PORTS_PeripheralOpenDrainEnable and
SYS_PORTS_PeripheralOpenDrainDisable.

Not all features are available on all devices. Please refer to the specific device data sheet to determine availability.
Note:

Special Considerations

Note on Ports Usage:

1. Setting a port pin as an analog input also requires that the corresponding direction be set. If the direction is set to output, the digital output level
(VOH or VOL) will be outputted.

2. When reading the port register, all pins configured as analog input channels will read as cleared.

3. Pins configured as digital inputs will not output an analog input. Analog levels on any pin that is defined as a digital input may cause the input
buffer to consume current that exceeds the device specifications.

4. Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.
Considerations for the Peripheral Pin Select:

The ability to control Peripheral Pin Select options introduces several considerations into application design that could be overlooked. This is
particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device’s default (Reset) state, all Peripheral Pin
Select inputs are tied to Vss and all Peripheral Pin Select outputs are disconnected. This situation requires the user to initialize the device with the
proper peripheral configuration before any other application code is executed. For application safety, however, it is best to lock the configuration
after writing to the control registers.

A final consideration is that Peripheral Pin Select functions neither override analog inputs, nor reconfigure pins with analog functions for digital 1/0.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 300

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

If a pin is configured as an analog input on device Reset, it must be explicitly reconfigured as digital I/O when used with a Peripheral Pin Select.

Not all features are available on all devices. Please refer to the specific device data sheet to determine availability.
Note:

Configuring the Library

The configuration of the Ports System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Ports System Service. Based on the selections made, the Ports System Service may
support the selected features. These configuration settings will apply to all instances of the Ports System Service.

This header can be placed anywhere, the path of this header needs to be present in the include search path for a successful build. Refer to the
Applications Help section for more details.

Building the Library
This section lists the files that are available in the Ports System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systeniports.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_ports. h Ports System Service Library API header file.

Required File(s)

i All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
N MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/ srclsys_ports.c Ports System Service Library implementation.
Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The Reset System Service Library depends on the following modules:
» Ports Peripheral Library
« Device Control Peripheral Library

Library Interface

a) Pin Control Functions

Name Description
¢ SYS_PORTS_PinModeSelect Enables the selected pin as analog or digital.
Implementation: Dynamic
¢ SYS_PORTS_PinOpenDrainDisable Disables the open-drain functionality for the selected pin.
Implementation: Dynamic
¢ SYS_PORTS_PinOpenDrainEnable Enables the open-drain functionality for the selected pin.

Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 301

Volume V: MPLAB Harmony Framework

@ SYS_PORTS_PinPullUpDisable

¢ SYS_PORTS_PinPullUpEnable

@ SYS_PORTS_PinRead

¢ SYS_PORTS_PinSet

L] SYS_PORTS_PinToggle

@ SYS_PORTS_PinWrite

¢ SYS_PORTS_PinClear

¢ SYS_PORTS_PinDirectionSelect
¢ SYS_PORTS_PinLatchedGet

¢ SYS_PORTS_PinPullDownDisable
¢ SYS_PORTS_PinPullDownEnable

b) Ports Control Functions

Name
¢ SYS_PORTS_Clear
¢ SYS_PORTS_DirectionGet
¢ SYS_PORTS_DirectionSelect
¢ SYS_PORTS_OpenDrainDisable
¢ SYS_PORTS_OpenDrainEnable
@ SYS_PORTS_Read
@ SYS_PORTS_Set
¢ SYS_PORTS_Toggle
o SYS_PORTS_Write
@ SYS_PORTS_Initialize

¢) Change Notification Functions

System Service Libraries Help Ports System Service Library

Disables the pull-up functionality for the selected pin.
Implementation: Dynamic

Enables the pull-up functionality for the selected pin.
Implementation: Dynamic

Reads the selected digital pin.

Implementation: Dynamic

Sets the selected digital pin/latch.

Implementation: Dynamic

Toggles the selected digital pin.

Implementation: Dynamic

Writes the selected digital pin.

Implementation: Dynamic

Clears the selected digital pin.

Implementation: Dynamic

Enables the direction for the selected pin.
Implementation: Dynamic

Reads the data driven on the selected digital pin.
Implementation: Dynamic

Disables the pull-down functionality for the selected pin.
Implementation: Dynamic

Enables the pull-down functionality for the selected pin.
Implementation: Dynamic

Description

Clears the selected digital port.

Implementation: Dynamic

Reads the direction for the selected port.
Implementation: Dynamic

Enables the direction for the selected port.
Implementation: Dynamic

Disables the open-drain functionality for the selected port.
Implementation: Dynamic

Enables the open-drain functionality for the selected port.
Implementation: Dynamic

Reads the data from the 1/O port.

Implementation: Dynamic

Sets the selected digital port/latch based on the mask.
Implementation: Dynamic

Toggles the selected digital port pins.
Implementation: Dynamic

Writes the data to the 1/O port.

Implementation: Dynamic

Initializes PORT Pins/Channels.

Implementation: Static/Dynamic

Name Description

@ SYS_PORTS_ChangeNotificationDisable Disables the change notification for the selected port.
Implementation: Dynamic

¢ SYS_PORTS_ChangeNotificationEnable Enables the change notification for the selected port.
Implementation: Dynamic

@ SYS_PORTS_ChangeNotificationGlobalDisable Globally disables the change notification for the selected port.
Implementation: Dynamic

¢ SYS_PORTS_ChangeNotificationGlobalEnable Globally enables the change notification for the selected port.
Implementation: Dynamic

@ SYS_PORTS_ChangeNotificationInldleModeDisable | Disables the change natification for the selected port in Sleep or Idle mode.

© 2013-2017 Microchip Technology Inc.

Implementation: Dynamic

MPLAB Harmony v2.06 302

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

¢ SYS_PORTS_ChangeNotificationIinldleModeEnable | Enables the change notification for the selected port in Sleep or Idle mode.
Implementation: Dynamic

¢ SYS_PORTS_ChangeNotificationPullUpDisable Disables a weak pull-up on the change notification pin.
Implementation: Dynamic

¢ SYS_PORTS_ChangeNotificationPullUpEnable Enables a weak pull-up on the change notification pin.

Implementation: Dynamic

d) Peripheral Pin Select Functions

Name Description
@ SYS_PORTS_Remaplnput Input/Output (I/0) function remapping.
Implementation: Dynamic
¢ SYS_PORTS_RemapOutput Input/Output (1/O) function remapping.
Implementation: Dynamic
SYS_PORTS_InterruptEnable Enables the selected interrupt for the selected port pin.

SYS_PORTS_InterruptStatusGet | Reads the interrupt status from the 1/O port.
Implementation: Dynamic
¢ SYS_PORTS_LatchedGet Reads the data driven on the 1/O port.
Implementation: Dynamic

Description

This section describes the APIs of the Ports System Service Library.
Refer to each section for a detailed description.

a) Pin Control Functions

SYS PORTS_PinModeSelect Function

Enables the selected pin as analog or digital.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_Pi nModeSel ect (PORTS_MODULE_| D i ndex, PORTS _ANALOG PIN pin, PORTS_PI N MODE node);
Returns

None.
Description

This function enables the selected pin as analog or digital.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the

/'l application devel oper.

/1 MY_PIN - PORTS_ANALOG _PI N_ANO

/1 MY_PIN_MODE - PORTS_PI N_MODE_ANALOG

SYS_PORTS_Pi nModSYS_PORTS_Pi nvbdeSel ect eSel ect (MY_PORTS_| NSTANCE, MY_PIN, MY_PI N_MODE);

Parameters
Parameters Description
index Identifier for the device instance to be configured
pin Possible values of PORTS_ANALOG_PIN

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 303

Volume V: MPLAB Harmony Framework System Service Libraries Help

mode Possible values of PORTS_PIN_MODE

Function

void SYS_PORTS_PinModeSelect (PORTS_MODULE_ID index,
PORTS_ANALOG_PIN pin,
PORTS_PIN_MODE mode)

SYS _PORTS_PinOpenDrainDisable Function

Disables the open-drain functionality for the selected pin.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_Pi nQpenDr ai nDi sabl e(PORTS_MODULE_| D i ndex, PORTS_CHANNEL channel ,
Returns

None.
Description

This function disables the open-drain functionality for the selected pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

SYS_PORTS_Pi nOpenDr ai nDi sabl e(MY_PORTS_| NSTANCE, MY_PI NNUM ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinOpenDrainDisable (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS bitPos)

SYS PORTS_PinOpenDrainEnable Function

Enables the open-drain functionality for the selected pin.
Implementation: Dynamic

File
sys_ports.h

C
voi d SYS_PORTS_Pi nOpenDr ai nEnabl e(PORTS_MODULE_|I D i ndex, PORTS_CHANNEL channel ,

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Ports System Service Library

PORTS_BI T_PCS bi t Pos) ;

PORTS_BI T_PCS bit Pos);

304

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Description

This function enables the open-drain functionality for the selected pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

SYS_PORTS_Pi nOpenDr ai nEnabl e(MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM) ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinOpenDrainEnable (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS bitPos)

SYS PORTS_PinPullUpDisable Function
Disables the pull-up functionality for the selected pin.
Implementation: Dynamic
File
sys_ports.h
C
voi d SYS_PORTS_Pi nPul | UpDi sabl e(PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_BIT_POCS bit Pos);
Returns
None.
Description
This function disables the pull-up functionality for the selected pin.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/'l application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

SYS_PORTS_Pi nPul | UpDi sabl e(MY_PORTS_| NSTANCE, MY_PI NNUM ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 305

Volume V: MPLAB Harmony Framework System Service Libraries Help

Function

void SYS_PORTS_PinPullUpDisable (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS hitPos)

SYS_PORTS_PinPullUpEnable Function
Enables the pull-up functionality for the selected pin.
Implementation: Dynamic
File
sys_ports.h
C
voi d SYS_PORTS_Pi nPul | UpEnabl e(PORTS_MODULE | D i ndex, PORTS_CHANNEL channel,
Returns
None.
Description
This function enables the pull-up functionality for the selected pin.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/| application devel oper.

/1 MY_PINNUM - PORTS PIN_10

SYS_PORTS_Pi nPul | UpEnabl e(MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM) ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinPullUpEnable (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS bitPos)

SYS_PORTS_PinRead Function

Reads the selected digital pin.
Implementation: Dynamic

File
sys_ports.h
C

Ports System Service Library

PORTS_BI T_PCS bit Pos);

bool SYS_PORTS_Pi nRead(PORTS_MODULE_| D i ndex, PORTS_CHANNEL channel, PORTS_BI T_PCS bit Pos);

Returns
The status of the port pin.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

306

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Description

This function reads the selected digital pin, not the Latch.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the

/1 application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

bool bitStatus = SYS PORTS_Pi nRead(MY_PORTS_I NSTANCE, MY_CHANNEL, MY_PI NNUM ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

bool SYS_PORTS_PinRead (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS hitPos)

SYS PORTS_PinSet Function
Sets the selected digital pin/latch.
Implementation: Dynamic
File
sys_ports.h
C
voi d SYS_PORTS_Pi nSet (PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_BI T_PCS bit Pos);
Returns
None.
Description
This function sets the selected digital pin/latch.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/'l application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

SYS_PORTS_Pi nSet (MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 307

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Function

void SYS_PORTS_PinSet(PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS hitPos)

SYS_PORTS_PinToggle Function

Toggles the selected digital pin.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_Pi nToggl e(PORTS_MODULE | D i ndex, PORTS_CHANNEL channel, PORTS BI T_PGCS bit Pos);
Returns

None.
Description

This function toggles the selected digital pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/| application devel oper.

/1 MY_PINNUM - PORTS PIN_10

SYS_PORTS_Pi nToggl e(MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinToggle (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS bitPos)

SYS_PORTS_PinWrite Function

Writes the selected digital pin.
Implementation: Dynamic

File
sys_ports.h

C
voi d SYS_PORTS_Pi nWite(PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_BI T_POS bitPos, bool value);

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 308

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Description

This function writes the selected digital pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

SYS _PORTS _PinWite(MY_PORTS | NSTANCE, MY_CHANNEL, MY_PINNUM val ue);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
value Value to be written to the specific pin/latch:
¢ true - Sets the bit
« false - Clears the bit
Function

void SYS_PORTS_PinWrite (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,

PORTS_BIT_POS bitPos

bool value)

SYS_PORTS_PinClear Function

Clears the selected digital pin.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_Pi nC ear (PORTS_MODULE | D i ndex, PORTS_CHANNEL channel, PORTS BI T_PGCS bit Pos);
Returns

None.
Description

This function clears the selected digital pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

/1 MY_PINNUM - PORTS_I O PIN_10

SYS_PORTS_Pi nCl ear (MY_PORTS_| NSTANCE, MY_CHANNEL, My_PI NNUM) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 309

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinClear (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS hitPos)

SYS PORTS_PinDirectionSelect Function

Enables the direction for the selected pin.
Implementation: Dynamic

File
sys_ports.h

C

voi d SYS_PORTS_Pi nDirecti onSel ect (PORTS_MODULE_I D i ndex, SYS_PORTS_PI N_DI RECTI ON pi nDi r, PORTS_CHANNEL
channel , PORTS BI T_PCS bit Pos);

Returns

None.

Description

This function enables the direction for the selected pin.

Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.

Preconditions

None.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the

/1 application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

SYS _PORTS _PI N DI RECTION pinDir;

pi nDir = SYS_PORTS_DI RECTI ON_| NPUT;

SYS_PORTS_Pi nDi recti onSel ect (MY_PORTS_| NSTANCE, pinDir, MY_CHANNEL, MY_PI NNUM ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
pinDir Pin direction
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinDirectionSelect (PORTS_MODULE_ID index,
SYS_PORTS_PIN_DIRECTION pinDir,

PORTS_CHANNEL channel,

PORTS_BIT_POS hitPos)

SYS PORTS_PinLatchedGet Function

Reads the data driven on the selected digital pin.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 310

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Implementation: Dynamic
File

sys_ports.h
C

bool SYS PORTS_Pi nLat chedGet (PORTS_MODULE | D i ndex, PORTS_CHANNEL channel, PORTS BI T_PGCS bit Pos);
Returns

The status of the data driven on the port pin.
Description

This function reads the data driven on the selected digital output pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/| application devel oper.

/1 MY_PINNUM - PORTS _PIN_10

status = SYS_PORTS_Pi nLat chedGet (MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

bool SYS_PORTS_PinLatchedGet (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS bitPos)

SYS PORTS_PinPullDownDisable Function

Disables the pull-down functionality for the selected pin.
Implementation: Dynamic

File
sys_ports.h

C
voi d SYS_PORTS_Pi nPul | DownDi sabl e(PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_BI T_POS bit Pos);

Returns
None.
Description
This function disables the pull-down functionality for the selected pin.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.
Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 311

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

/| application devel oper.
/1 MY_PINNUM - PORTS PIN 10
SYS_PORTS_Pi nPul | DownDi sabl e(MY_PORTS_| NSTANCE, MY_PI NNUM ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinPullDownDisable (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS hitPos)

SYS PORTS_PinPullDownEnable Function

Enables the pull-down functionality for the selected pin.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_Pi nPul | DownEnabl e(PORTS_MODULE_ | D i ndex, PORTS_CHANNEL channel, PORTS BIT_POS bit Pos);
Returns

None.
Description

This function enables the pull-down functionality for the selected pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_|I NSTANCE, is the ports instance selected for use by the
/'l application devel oper.

/1 MY_PINNUM - PORTS_PIN_10

SYS_PORTS_Pi nPul | DownEnabl e(MY_PORTS_| NSTANCE, MY_CHANNEL, MY_PI NNUM) ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
Function

void SYS_PORTS_PinPullDownEnable (PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_BIT_POS hitPos)

b) Ports Control Functions

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 312

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

SYS PORTS_Clear Function
Clears the selected digital port.
Implementation: Dynamic
File
sys_ports.h
C
voi d SYS_PORTS_Cl ear (PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_DATA MASK cl ear Mask) ;
Returns
None.
Description
This function clears the selected digital port.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 \Where MY_PORTS_I NSTANCE, is the ports instance selected for use by the
/| application devel oper.

PORTS_DATA_MASK cl ear Mask = (PORTS_DATA_NMASK) OxO0O0FF;

SYS_PORTS_C ear (MY_PORTS_| NSTANCE, MY_CHANNEL, clearMask);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
clearMask Identifies the bits to be cleared

Function

void SYS_PORTS_Clear (PORTS_MODULE_ID index, PORTS_CHANNEL channel,
PORTS_DATA_MASK clearMask)

SYS_PORTS_ DirectionGet Function

Reads the direction for the selected port.
Implementation: Dynamic

File
sys_ports.h

C
PORTS_DATA_MASK SYS PORTS_Di recti onGet (PORTS_MODULE_ | D i ndex, PORTS_CHANNEL channel);

Returns
Direction of the port.
Description
This function reads the direction for the selected port.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 313

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/'l application devel oper.

PORTS_DATA MASK val ue;

val ue = SYS PORTS DirectionGet(MY_PORTS_| NSTANCE, My_CHANNEL);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
Function

PORTS_DATA_MASK SYS_PORTS_DirectionGet(PORTS_MODULE_ID index, PORTS_CHANNEL channel)

SYS_PORTS DirectionSelect Function

Enables the direction for the selected port.
Implementation: Dynamic

File
sys_ports.h

Cc

voi d SYS_PORTS_DirectionSel ect (PORTS_MODULE_I D i ndex, SYS_PORTS_PI N_DI RECTI ON pi nDi r, PORTS_CHANNEL
channel , PORTS_DATA NASK mask) ;

Returns

None

Description

This function enables the direction for the selected port.

Remarks

None.

Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

SYS_PORTS_PI N_DI RECTI ON pi nDi r;

pi nDir = SYS_PORTS_DI RECTI ON_| NPUT;

PORTS_DATA_MASK nmyMask = (PORTS_DATA_MASK) Ox00FF;

SYS _PORTS DirectionSel ect (MY_PORTS | NSTANCE, pinDir, MY_CHANNEL, myMask);

Parameters
Parameters Description
index Identifier for the device instance to be configured
pinDir Pin direction
channel Identifier for the PORT channel: A, B, C, etc.
mask Mask for the direction of width PORTS_DATA_MASK
Function

void SYS_PORTS_DirectionSelect(PORTS_MODULE_ID index,
SYS_PORTS_PIN_DIRECTION pinDir,
PORTS_CHANNEL channel,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 314

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

PORTS_DATA_MASK mask)

SYS _PORTS_OpenDrainDisable Function

Disables the open-drain functionality for the selected port.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_OpenDr ai nDi sabl e(PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_DATA MASK nask);
Returns

None.
Description

This function disables the open-drain functionality for the selected port.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/| application devel oper.
SYS_PORTS_Peri pheral OpenDr ai nDi sabl e(MY_PORTS_| NSTANCE, My_CHANNEL, (PORTS_DATA_MASK) Ox00FF);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
mask Mask of type PORTS_DATA_MASK

Function

void SYS_PORTS_OpenDrainDisable(PORTS_MODULE_ID index, PORTS_CHANNEL channel,
PORTS_DATA_MASK mask)

SYS PORTS_ OpenDrainEnable Function

Enables the open-drain functionality for the selected port.
Implementation: Dynamic

File
sys_ports.h

C
voi d SYS_PORTS_OpenDr ai nEnabl e(PORTS_MODULE | D i ndex, PORTS_CHANNEL channel, PORTS_DATA MASK nask);

Returns
None.
Description
This function enables the open-drain functionality for the selected port.

Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 315

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/'l application devel oper.
SYS_PORTS_(penDr ai nEnabl e(MY_PORTS_| NSTANCE, MY_CHANNEL, (PORTS_DATA MASK) OXOOFF);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
mask Mask of type PORTS_DATA_MASK

Function

void SYS_PORTS_OpenDrainEnable(PORTS_MODULE_ID index, PORTS_CHANNEL channel,
PORTS_DATA_MASK mask)

SYS PORTS_Read Function

Reads the data from the 1/O port.

Implementation: Dynamic
File

sys_ports.h
C

PORTS_DATA_TYPE SYS_PORTS Read(PORTS_MODULE | D i ndex, PORTS_CHANNEL channel);
Returns

Returns the data read from the port.
Description

This function reads the data from the I/O port.
Remarks

None.
Preconditions

The direction of the port to be set as input.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

PORTS_DATA_TYPE r eadDat a;

readData = SYS_PORTS Read(MY_PORTS_| NSTANCE, MY_CHANNEL);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
Function

PORTS_DATA_TYPE SYS_PORTS_Read(PORTS_MODULE_ID index, PORTS_CHANNEL channel)

SYS PORTS_ Set Function

Sets the selected digital port/latch based on the mask.
Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 316

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

File
sys_ports.h

Cc

voi d SYS_PORTS_Set (PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_DATA TYPE val ue, PORTS_DATA_MASK
mask) ;

Returns
None.

Description

This function Sets the selected digital port/latch relative to the mask.

This function "AND" value and mask parameters and then set the bits in the port channel that were set in the result of the ANDing operation.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.

Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

/1 MY_VALUE - 0x1234

PORTS_DATA_MASK nyMask = (PORTS_DATA_MASK) OXOOFF;

/1 Set the MY_CHANNEL bit positions 2,4 and 5 (0x0034 = b0000 0000 0011 0100)
SYS_PORTS_Set (MY_PORTS_| NSTANCE, MY_CHANNEL, MY_VALUE, myMask);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
value Consists of information about which port bit has to be set
mask Identifies the bits which could be intended for setting
Function

void SYS_PORTS_Set(PORTS_MODULE_ID index, PORTS_CHANNEL channel,
PORTS_DATA_TYPE value,
PORTS_DATA_MASK mask)

SYS PORTS Toggle Function

Toggles the selected digital port pins.
Implementation: Dynamic

File
sys_ports.h

C
voi d SYS_PORTS _Toggl e(PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_DATA MASK t oggl eMask);

Returns
None.
Description

This function toggles the selected digital port pins.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 317

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/'l application devel oper.

PORTS_DATA MASK t oggl eMask = (PORTS_DATA MASK) 0x00FF;

SYS_PORTS_Toggl e(MY_PORTS_| NSTANCE, MY_CHANNEL, toggl eMask);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
toggleMask Identifies the bits to be toggled

Function

void SYS_PORTS_Toggle(PORTS_MODULE_ID index, PORTS_CHANNEL channel,
PORTS_DATA_MASK toggleMask)

SYS PORTS_ Write Function

Writes the data to the I/O port.
Implementation: Dynamic

File

sys_ports.h
C

void SYS PORTS Wite(PORTS MODULE I D i ndex, PORTS CHANNEL channel, PORTS_DATA TYPE val ue);
Returns

None.
Description

This function writes the data to the 1/O port.
Remarks

None.
Preconditions

The direction of the port to be set as output.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

PORTS_DATA TYPE writ eDat a;

SYS PORTS Wite(MY_PORTS | NSTANCE, MY_CHANNEL, MY_VALUE);

Parameters

Parameters Description

index Identifier for the device instance to be configured

channel Identifier for the PORT channel: A, B, C, etc.

value Value to be written into a port of width PORTS_DATA_TYPE
Function

void SYS_PORTS_Write(PORTS_MODULE_ID index,
PORTS_CHANNEL channel,
PORTS_DATA_TYPE value)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 318

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

SYS PORTS Initialize Function

Initializes PORT Pins/Channels.
Implementation: Static/Dynamic

File
sys_ports.h
C
void SYS PORTS Initialize();
Returns
None.
Description
This function initializes different port pins/channels to the desired state. It also remaps the pins to the desired specific function.
Remarks
This API must be be called at the time of system initialization to initialize the ports pins.
Preconditions
None.
Example
SYS_PORTS Initialize();
Function
void SYS_PORTS_Initialize()

¢) Change Notification Functions

SYS PORTS_ChangeNotificationDisable Function
Disables the change notification for the selected port.
Implementation: Dynamic
File
sys_ports.h
C
voi d SYS_PORTS_ChangeNoti fi cati onDi sabl e(PORTS_MODULE_I D i ndex, PORTS_CHANGE NOTI CE_PI N pi nNunj ;
Returns
None.
Description
This function disables the change notification for the selected port.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 \Where MY_PORTS_I NSTANCE, is the ports instance selected for use by the
/'l application devel oper.

PORTS_CHANGE_NOTI CE_PI N pi nNum

SYS_PORTS_ChangeNot i fi cati onDi sabl e(i ndex, pinNum);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 319

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Parameters
Parameters Description
index Identifier for the device instance to be configured
pinNum Possible values of PORTS_CHANGE_NOTICE_PIN
Function

void SYS_PORTS_ChangeNoatificationDisable(PORTS_MODULE_ID index,
PORTS_CHANGE_NOTICE_PIN pinNum)

SYS PORTS_ChangeNotificationEnable Function

Enables the change notification for the selected port.
Implementation: Dynamic

File
sys_ports.h

C

voi d SYS_PORTS_ChangeNoti fi cati onEnabl e(PORTS_MODULE_I D i ndex, PORTS_CHANGE_NOTI CE_PI N pi nNum
SYS_PORTS_PULLUP_PULLDOWN_STATUS val ue) ;

Returns
None.
Description
This function enables the change natification for the selected port.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 Where MY_PORTS_ | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

SYS_PORTS_PULLUP_PULLDOAN_STATUS val ue;

PORTS_CHANGE_NOTI CE_PI N pi nNum

SYS _PORTS ChangeNoti fi cati onEnabl e(index, pinNum value);

Parameters
Parameters Description
index Identifier for the device instance to be configured
value Pull-up enable or disable value
pinNum Possible values of PORTS_CHANGE_NOTICE_PIN
Function

void SYS_PORTS_ChangeNotificationEnable(PORTS_MODULE_ID index,
PORTS_CHANGE_NOTICE_PIN pinNum,
SYS_PORTS_PULLUP_PULLDOWN_STATUS value)

SYS PORTS_ChangeNotificationGlobalDisable Function

Globally disables the change notification for the selected port.
Implementation: Dynamic

File

sys_ports.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 320

Volume V: MPLAB Harmony Framework System Service Libraries Help

C
voi d SYS_PORTS_ChangeNoti fi cati ond obal Di sabl e(PORTS_MODULE_|I D i ndex) ;

Returns
None.
Description
This function globally disables the change notification for the selected port.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.
SYS_PORTS_ChangeNot i fi cati ond obal Di sabl e(MY_PORTS_| NSTANCE) ;

Function
void SYS_PORTS_ChangeNotificationGlobalDisable(PORTS_MODULE_ID index);

SYS PORTS_ChangeNotificationGlobalEnable Function

Globally enables the change natification for the selected port.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_ChangeNoti fi cati ond obal Enabl e(PORTS_MODULE_I D i ndex) ;
Returns

None.
Description

This function globally enables the change notification for the selected port.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_I| NSTANCE, is the ports instance selected for use by the
/1 application devel oper.
SYS_PORTS_ChangeNoti fi cati ond obal Enabl e(MY_PORTS_| NSTANCE) ;

Function
void SYS_PORTS_ChangeNatificationGlobalEnable(PORTS_MODULE_ID index)

SYS _PORTS_ChangeNotificationInldleModeDisable Function

Disables the change notification for the selected port in Sleep or Idle mode.
Implementation: Dynamic

File
sys_ports.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Ports System Service Library

321

Volume V: MPLAB Harmony Framework System Service Libraries Help

C

voi d SYS_PORTS_ChangeNoti ficati onl nl dl eMbdeD sabl e(PORTS_MODULE | D i ndex) ;

Returns

None.
Description

This function disables the change natification for the selected port in Sleep or Idle mode.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.
SYS_PORTS_ChangeNot i fi cati onl nl dl eMbdeDi sabl e(MY_PORTS_I NSTANCE) ;

Function
void SYS_PORTS_ChangeNotificationInldleModeDisable(PORTS_MODULE_ID index);

SYS PORTS_ChangeNotificationinldleModeEnable Function

Enables the change natification for the selected port in Sleep or Idle mode.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_ChangeNoti fi cati onl nl dl eModeEnabl e(PORTS_MODULE_I D i ndex) ;
Returns

None.
Description

This function enables the change natification for the selected port in Sleep or Idle mode.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS_I| NSTANCE, is the ports instance selected for use by the
/1 application devel oper.
SYS_PORTS_ChangeNot i fi cati onl nl dl eModeEnabl e(MY_PORTS_I NSTANCE) ;

Function
void SYS_PORTS_ChangeNaotificationInldleModeEnable(PORTS_MODULE_ID index);

SYS_PORTS_ChangeNotificationPullUpDisable Function

Disables a weak pull-up on the change notification pin.
Implementation: Dynamic

File
sys_ports.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Ports System Service Library

322

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

C
voi d SYS_PORTS_ChangeNoti fi cati onPul | UpDi sabl e(PORTS_MODULE_|I D i ndex, PORTS_CHANGE NOTI CE_PI N pi nNunj ;
Returns
None.
Description
This function Disables a weak pull-up on the change natification pin.
Remarks
Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions
None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/1 application devel oper.

/1 MY_PI NNUM - PORTS_CHANGE_NOTI CE_PI N_10

SYS_PORTS_ChangeNot i fi cati onPul | UpDi sabl e(MY_PORTS_| NSTANCE, MY_PI NNUM) ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
pinNum Possible values of PORTS_CHANGE_NOTICE_PIN
Function

void SYS_PORTS_ChangeNotificationPullUpDisable (PORTS_MODULE_ID index,
PORTS_CHANGE_NOTICE_PIN pinNum)

SYS PORTS_ChangeNotificationPullUpEnable Function

Enables a weak pull-up on the change notification pin.
Implementation: Dynamic

File

sys_ports.h
C

voi d SYS_PORTS_ChangeNoti fi cati onPul | UpEnabl e(PORTS_MODULE_I D i ndex, PORTS_CHANGE_NOTI CE_PI N pi nNunj ;
Returns

None.
Description

This function enables a weak pull-up on the change notification pin.
Remarks

Not all features are available on all devices. Refer to the specific device data sheet for availability.
Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/| application devel oper.

/1 MY_PI NNUM - PORTS_CHANGE_NOTI CE_PI N_10

SYS_PORTS_ChangeNot i fi cati onPul | UpEnabl e(MY_PORTS_| NSTANCE, MY_PI NNUM) ;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 323

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Parameters
Parameters Description
index Identifier for the device instance to be configured
pinNum Possible values of PORTS_CHANGE_NOTICE_PIN
Function

void SYS_PORTS_ChangeNotificationPullUpEnable (PORTS_MODULE_ID index,
PORTS_CHANGE_NOTICE_PIN pinNum)

d) Peripheral Pin Select Functions

SYS PORTS_Remaplnput Function

Input/Output (I/0) function remapping.
Implementation: Dynamic

File
sys_ports.h

C

voi d SYS PORTS Remapl nput (PORTS_MODULE_I D i ndex, PORTS_REMAP_| NPUT_FUNCTI ON function, PORTS REMAP_| NPUT_PI N
remapPi n);

Returns

None.
Description

This function controls the I/O function remapping.
Remarks

This feature may not be available on all devices. Please refer to the specific device data sheet to determine availability or use
SYS_PORTS_ExistsRemaplnputOutput in your application to determine whether this feature is available.

Preconditions

None.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/'l application devel oper.

/'l Remapping input function 'Input Capture 1' to the Remappable pin ' RPD2'
SYS_PORTS_Renapl nput (MY_PORTS | NSTANCE, | NPUT_FUNC | C1, | NPUT_PIN RPD2);

Parameters

Parameters Description

index Identifier for the device instance to be configured
Function

void SYS_PORTS_Remaplnput(PORTS_MODULE_ID index,
PORTS_REMAP_INPUT_FUNCTION function,
PORTS_REMAP_INPUT_PIN remapPin)

One of the possible values of PORTS_REMAP_INPUT_FUNCTION
remapPin - One of the possible values of PORTS_REMAP_INPUT_PIN

SYS_PORTS_RemapOutput Function

Input/Output (I/0) function remapping.
Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 324

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

File
sys_ports.h

Cc

void SYS_PORTS_RenmapCQut put (PORTS_MODULE_I D i ndex, PORTS_REMAP_OUTPUT_FUNCTI ON functi on,
PORTS_REMAP_QUTPUT_PI N r enmapPi n) ;

Returns

None.
Description

This function controls the I/O function remapping.
Remarks

This feature may not be available on all devices. Please refer to the specific device data sheet to determine availability or use
SYS_PORTS_ExistsRemaplnputOutput in your application to determine whether this feature is available.

Preconditions

None.

Example

/1 Where MY_PORTS_I NSTANCE, is the ports instance selected for use by the

/1 application devel oper.

/1 Remappi ng out put function 'UART3 Transnit' to the Remappabl e pin ' RPA14'
SYS_PORTS_Remapl nput Qut put (MY_PORTS_| NSTANCE, OUTPUT_FUNC_U3TX, OUTPUT_PI N_RPA14);

Parameters

Parameters Description

index Identifier for the device instance to be configured
Function

void SYS_PORTS_RemapOutput(PORTS_MODULE_ID index,
PORTS_REMAP_OUTPUT_FUNCTION function,
PORTS_REMAP_OUTPUT_PIN remapPin)

One of the possible values of PORTS_REMAP_OUTPUT_FUNCTION
remapPin - One of the possible values of PORTS_REMAP_OUTPUT_PIN

SYS PORTS InterruptEnable Function
Enables the selected interrupt for the selected port pin.
File
sys_ports.h

C

voi d SYS_PORTS_I nterrupt Enabl e(PORTS_MODULE_I D i ndex, PORTS_CHANNEL channel, PORTS_BI T_POS bi t Pos,
PORTS_PI N_| NTERRUPT_TYPE pi nl nt er r upt Type) ;

Returns

None.
Description

This function enables the selected interrupt for the selected port pin.
Remarks

None.

Preconditions

Select the pull-up or pull-down as required.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 325

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

Example

SYS_PORTS_| nt er r upt Enabl e(MY_PORTS_| NSTANCE, MY_PORTS_CHANNEL, MY_PORT_BI T_PCS,
PORTS_PI N_| NTERRUPT BOTH_EDGE) ;

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
bitPos Possible values of PORTS_BIT_POS
pininterruptType Interrupt type from PORTS_PIN_INTERRUPT_TYPE set
Function

void SYS_PORTS_ InterruptEnable

(

PORTS_MODULE_ID index,

PORTS_CHANNEL channel,

PORTS_BIT_POS bitPos,
PORTS_PIN_INTERRUPT_TYPE pininterruptType

)

SYS_PORTS_InterruptStatusGet Function

Reads the interrupt status from the /O port.
Implementation: Dynamic

File

sys_ports.h
C

PORTS_DATA TYPE SYS_PORTS I nterrupt St at usGet (PORTS_MODULE_| D i ndex, PORTS_CHANNEL channel);
Returns

Returns the interrupt status of the port channel.
Description

This function reads the interrupt status from the I/O port.
Remarks

None.
Preconditions

The interrupts should have been configured.

Example

/1 Where MY_PORTS_| NSTANCE, is the ports instance selected for use by the

/| application devel oper.

PORTS_DATA_TYPE channel St at us;

channel Status = SYS _PORTS InterruptStatusGet(MY_PORTS | NSTANCE, MyY_CHANNEL);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
Function

PORTS_DATA_TYPE SYS_PORTS_ InterruptStatusGet

(
PORTS_MODULE_ID index,
PORTS_CHANNEL channel

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 326

Volume V: MPLAB Harmony Framework System Service Libraries Help Ports System Service Library

SYS PORTS LatchedGet Function

Reads the data driven on the I/O port.
Implementation: Dynamic

File

sys_ports.h
C

PORTS_DATA TYPE SYS_PORTS_Lat chedGet (PORTS_MODULE_| D i ndex, PORTS_CHANNEL channel);
Returns

Returns the data driven on the port.
Description

This function reads the data driven on the 1/O port.
Remarks

None.
Preconditions

The direction of the port to be set as output.

Example

/1 Where MY_PORTS | NSTANCE, is the ports instance selected for use by the
/| application devel oper.

PORTS_DATA_TYPE dri venDat a;

drivenData = SYS PORTS LatchedGet(MY_PORTS | NSTANCE, MY_CHANNEL);

Parameters
Parameters Description
index Identifier for the device instance to be configured
channel Identifier for the PORT channel: A, B, C, etc.
Function

PORTS_DATA_TYPE SYS_PORTS_LatchedGet(PORTS_MODULE_ID index, PORTS_CHANNEL channel)

e) Data Types and Constants

Files
Files

Name Description

sys_ports.h Ports System Service interface definitions
Description

This section lists the source and header files used by the library.

sys_ports.h
Ports System Service interface definitions
Functions

Name Description
¢ SYS_PORTS_ChangeNotificationDisable Disables the change notification for the selected port.
Implementation: Dynamic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 327

Volume V: MPLAB Harmony Framework

¢ SYS_PORTS_ChangeNotificationEnable

¢ SYS_PORTS_ChangeNotificationGlobalDisable

¢ SYS_PORTS_ChangeNotificationGlobalEnable

L] SYS_PORTS_ChangeNotificationIinldleModeDisable
¢ SYS_PORTS_ChangeNotificationInldleModeEnable
@ SYS_PORTS_ChangeNotificationPullUpDisable

¢ SYS_PORTS_ChangeNotificationPullUpEnable

¢ SYS_PORTS_Clear

¢ SYS_PORTS_DirectionGet

¢ SYS_PORTS_DirectionSelect

¢ SYS_PORTS_Initialize

SYS_PORTS_InterruptEnable
SYS_PORTS_InterruptStatusGet

¢ SYS_PORTS_LatchedGet

¢ SYS_PORTS_OpenDrainDisable

¢ SYS_PORTS_OpenDrainEnable

¢ SYS_PORTS_PinClear

¢ SYS_PORTS_PinDirectionSelect

¢ SYS_PORTS_PinLatchedGet

@ SYS_PORTS_PinModeSelect

¢ SYS_PORTS_PinOpenDrainDisable
¢ SYS_PORTS_PinOpenDrainEnable
¢ SYS_PORTS_PinPullDownDisable
¢ SYS_PORTS_PinPullDownEnable
@ SYS_PORTS_PinPullUpDisable

L] SYS_PORTS_PinPullUpEnable

@ SYS_PORTS_PinRead

@ SYS_PORTS_PinSet

@ SYS_PORTS_PinToggle

© 2013-2017 Microchip Technology Inc.

System Service Libraries Help

Ports System Service Libl

Enables the change natification for the selected port.
Implementation: Dynamic

Globally disables the change notification for the selected port.
Implementation: Dynamic

Globally enables the change notification for the selected port.
Implementation: Dynamic

rary

Disables the change natification for the selected port in Sleep or Idle mode.

Implementation: Dynamic

Enables the change notification for the selected port in Sleep or Idle mode.
Implementation: Dynamic

Disables a weak pull-up on the change notification pin.
Implementation: Dynamic

Enables a weak pull-up on the change notification pin.
Implementation: Dynamic

Clears the selected digital port.

Implementation: Dynamic

Reads the direction for the selected port.
Implementation: Dynamic

Enables the direction for the selected port.
Implementation: Dynamic

Initializes PORT Pins/Channels.

Implementation: Static/Dynamic

Enables the selected interrupt for the selected port pin.
Reads the interrupt status from the 1/O port.
Implementation: Dynamic

Reads the data driven on the 1/O port.

Implementation: Dynamic

Disables the open-drain functionality for the selected port.
Implementation: Dynamic

Enables the open-drain functionality for the selected port.
Implementation: Dynamic

Clears the selected digital pin.

Implementation: Dynamic

Enables the direction for the selected pin.
Implementation: Dynamic

Reads the data driven on the selected digital pin.
Implementation: Dynamic

Enables the selected pin as analog or digital.
Implementation: Dynamic

Disables the open-drain functionality for the selected pin.
Implementation: Dynamic

Enables the open-drain functionality for the selected pin.
Implementation: Dynamic

Disables the pull-down functionality for the selected pin.
Implementation: Dynamic

Enables the pull-down functionality for the selected pin.
Implementation: Dynamic

Disables the pull-up functionality for the selected pin.
Implementation: Dynamic

Enables the pull-up functionality for the selected pin.
Implementation: Dynamic

Reads the selected digital pin.

Implementation: Dynamic

Sets the selected digital pin/latch.

Implementation: Dynamic

Toggles the selected digital pin.

Implementation: Dynamic

MPLAB Harmony v2.06

328

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

¢ SYS_PORTS_PinWrite Writes the selected digital pin.
Implementation: Dynamic

¢ SYS_PORTS_Read Reads the data from the 1/O port.
Implementation: Dynamic

¢ SYS_PORTS_Remaplnput Input/Output (1/0O) function remapping.
Implementation: Dynamic

@ SYS_PORTS_RemapOutput Input/Output (1/O) function remapping.
Implementation: Dynamic

¢ SYS_PORTS_Set Sets the selected digital port/latch based on the mask.
Implementation: Dynamic

@ SYS_PORTS_Toggle Toggles the selected digital port pins.
Implementation: Dynamic

¢ SYS_PORTS_Write Writes the data to the I/O port.

Implementation: Dynamic

Description

Ports System Service Interface Definition

This file contains the interface definition for the Ports system service. It provides a way to interact with the Ports subsystem to manage the timing
requests supported by the system

File Name

sys_ports.h

Company

Microchip Technology Inc.

Random Number Generator (RNG) System Service Library

This section describes the Random Number Generator (RNG) System Service Library.

Introduction
This library provides a Random Number Generator (RNG) service with a convenient C language interface.

Description

The Random Number Generator (RNG) System Service provides a simple C-language interface for generating random numbers at both
pseudo-random and cryptographic strengths.

Using the Library
This topic describes the basic architecture of the RNG System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_random h
The interface to the RNG System Service library is defined in the sys_r andom h header file.
Please refer to the What is MPLAB Harmony? section for how the RNG System Service interacts with the framework.

Abstraction Model
This topic provides a description of the software abstraction for the RNG System Service.

Description

This model explains how the system interfaces with the RNG System Service and the application, as illustrated in the following diagram.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 329

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

Application

RNG System Service

Crypto RNG Library

- -

Random Numbers

Hardware TRNG/PRNG |
(where available) |

Random numbers are often desired in systems in order to provide a change in the system that cannot necessarily be predicted. For example, a
game might use random numbers for a dice roll or a playing card shuffle. Another example is when a collision occurs in an Ethernet network. A
delay is inserted in the next attempt to communicate on the network, and the length of the delay is determined by a random number.

Pseudo Random Numbers (PRN)

Due to the deterministic nature of computer systems, it is actually very difficult to produce true randomness in number generation. For many
systems, a pseudo-random number is sufficient. Typically, the pseudo-random number is generated via a Linear Feedback Shift Register (LFSR).
The LFSR takes a seed value, and generates a new number typically by having taps on the LFSR in different places and XORing the bits together.
This new bit is appended to the beginning of the number after the original number has been shifted one bit to the right.

And example of a LFSR is shown in the following figure.

—bl 0110001010001100101010100001001 (each digit in a box) |

Y
1

(==

3

Cryptographically-secure Pseudo Random Numbers (CSPRN)

Because pseudo-random numbers can be predicted if an attacker knows the setup of the LFSR, it is desired in certain applications to have a way
of minimizing the predictability of the random numbers. To accomplish this, a sub-set of PRNGs are run through statistical tests to determine their
security in cryptographic applications. A Cryptographically-secure Pseudo Random Number generator is one that has passed all such statistical

tests.

True Random Number Generator (TRNG)

To provide seed values for the PRNG, and in applications that require true randomness, there are hardware options for a true random number
generator (TRNG). These generators use ring oscillators and the inherent thermal noise within silicon to create the individual bits of a number.
Because of the nature of these oscillators, it is not possible to predict the generated numbers.

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.
The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Random

Number Generator module.

Library Interface Section Description

Random Number Generator Functions Provides system module APIs. Device initialization, deinitialization, reinitialization and
status functions.

Data Types and Constants Device-specific enumerations, structures, and constants.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 330

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

How the Library Works
Describes how the RNG Library works.

Description

Service Initialization

To begin using the Random Number System Service, it is necessary to initialize the service using the SYS_RANDOM_Initialize function.

Example:

/1 Initialization data for the RNG

SYS RANDOM INIT rnglnit = { 0x12345678, NULL, 32 };
/1 Initialize the System Random Service
SYS_RANDOM I nitialize(O, rnglnit);

Pseudo-Random Numbers

The Pseudo-Random Number functions use the C-language functions seed() and rand() to provide the pseudo-random numbers.

Example:

/'l Seed the PRNG

SYS_RANDOM PseudoSeedSet (0x876543210) ;

/1 Cet a Pseudo-random Number

ui nt 32_t myRandomNum = SYS_RANDOM PseudoGet () ;

Cryptographic Pseudo-Random Numbers

The Cryptographic Random Number functions use the Crypto RNG library functions to seed and generate numbers. On PIC32 devices with a
PRNG/TRNG module, it will use the hardware to generate the numbers.

Example:

/1 Get a 32-bit Crypto Random Nunber

ui nt 32_t myRandomNum = SYS_RANDOM Crypt 0Get () ;

/1 Fill an array of random nunbers

ui nt 32_t nmyRandomNunmAr r ay[10] ;

SYS_RANDOM Crypt 0Bl ockGet (myRandomNunmAr ray, 10);
/1 Get a 1-byte Random Nunber

uint8_t myRandonByte = SYS_RANDOM Crypt oByt eGet ();

Configuring the Library

Macros

Name Description
SYS_RANDOM_CRYPTO_SEED_SIZE

Description

The configuration of the RNG System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Random Number Generator System Service. Based on the selections made, the
Random Number Generator System Service may support the selected features. These configuration settings will apply to all instances of the
Random Number Generator System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

SYS_RANDOM_CRYPTO_SEED_SIZE Macro
File
sys_random_config_template.h

C
#def i ne SYS_RANDOM CRYPTO SEED_S| ZE (256/ 8)

Description
Cryptographic Quality Seed Value

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 331

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

Building the Library
This section lists the files that are available in the Random Number Generator System Service Library.

Description

The following three tables list and describe the header (. h) and source (. ¢) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenfrandom

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_random h Random Number Generator System Service Library API header file.

Required File(s)

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
A MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

I'src/ sys_random c Random Number Generator System Service Library implementation.
Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A No optional files are available for this system service.

Module Dependencies

The Random Number Generator System Service is dependent upon the following modules:
« Cryptographic (Crypto) Library

Library Interface

a) Random Number Generator Functions

Name Description
¢ SYS_RANDOM_CryptoBlockGet Generates a sequence of random bytes using the cryptographic quality Random Number
Generator.
@ SYS_RANDOM_CryptoByteGet Returns a random byte from the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_CryptoEntropyAdd |Adds randomness to the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_CryptoGet Returns a random 32 bit value from the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_CryptoSeedSet Reseeds the cryptographic quality Random Number Generator.
@ SYS_RANDOM_CryptoSeedSizeGet | Reseeds the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_Deinitialize Deinitializes the Random Number Generator system service.
¢ SYS_RANDOM_ Initialize Initializes the Random Number Generator system service.
¢ SYS_RANDOM_PseudoGet Returns a random value from the Pseudo-random Number Generator.
@

SYS_RANDOM_PseudoSeedSet Reseeds the Pseudo-random Number Generator.

b) Data Types and Constants

Name Description
SYS_RANDOM_INIT Random Number Generator Service Initialization Data

Description
This section describes the APIs of the RNG System Service Library.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 332

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

Refer to each section for a detailed description.

a) Random Number Generator Functions

SYS RANDOM_CryptoBlockGet Function

Generates a sequence of random bytes using the cryptographic quality Random Number Generator.
File

sys_random.h
C

voi d SYS_RANDOM CryptoBl ockGet (void * buffer, size_t size);
Returns

None.
Description

This function uses the Cryptographic-quality Random Number Generator to fill a block of data with random numbers.
Remarks

When run, it will fill the memory starting at buffer with size bytes of random numbers.
Preconditions

System service must be initialized by calling SYS_RANDOM_ Initialize before this function is called.
Example

#def i ne RNG DATA SIZE 32

uint8_t randonDat a[RNG_DATA_SI ZE] ;
SYS_MODULE_OBJ rngbj ect ;

rngCbj ect = SYS RANDOM I nitialize();

SYS_RANDOM Crypt oBl ockGet ((voi d *)randonDat a, RNG DATA Sl ZE);

Parameters
Parameters Description
buffer Pointer to the memory location to fill with random data.
size The amount of random data, in bytes, to put in memory.
Function

void SYS_RANDOM_CryptoBlockGet(uint8_t buffer, size_t bufferSize);

SYS_RANDOM_CryptoByteGet Function

Returns a random byte from the cryptographic quality Random Number Generator.
File

sys_random.h

C
uint8_t SYS_RANDOM Crypt oByt eGet () ;

Returns

Returns one byte of cryptographic-quality random data.

Description

This function returns a single byte from the Cryptographic-quality Random Number Generator.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 333

Volume V: MPLAB Harmony Framework

Remarks

None.

Preconditions

System service must be initialized by calling SYS_RANDOM _ Initialize before this function is called.

Example

uint8_t randonDat a;
SYS_MODULE_OBJ rngbj ect ;

rngtbj ect = SYS RANDOM I nitialize();

System Service Libraries Help

randonDat a = SYS_RANDOM Crypt oByt eGet () ;

Function
uint8_t SYS_RANDOM_CryptoByteGet(void);

SYS_RANDOM_CryptoEntropyAdd Function

Adds randomness to the cryptographic quality Random Number Generator.

File
sys_random.h

C

voi d SYS_RANDOM Crypt oEnt ropyAdd(uint8_t data);

Returns

None.

Description

Random Number Generator (RNG) System

This function adds entropy to the Cryptographic-quality Random Number Generator in order to adjust the randomness of the generated numbers.

Remarks

This function currently does not function.
Preconditions

None.

Example
SYS MODULE _OBJ rngQhj ect ;

rngCbject = SYS RANDOM I nitialize();

SYS_RANDOM Cr ypt oEnt r opyAdd(23) ;

Parameters

Parameters
data

Function

Description

8-bit value to add to the entropy calculation.

void SYS_RANDOM_CryptoEntropyAdd(uint8_t data);

SYS _RANDOM_CryptoGet Function

Returns a random 32 bit value from the cryptographic quality Random Number Generator.

File
sys_random.h

C
uint32_t SYS_RANDOM CryptoGet ();

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

334

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

Returns

32-bit random number.
Description

This function returns a 32-bit random number from the Cryptographic- quality Random Number Generator.
Remarks

On PIC32MZ devices with a hardware Random Number Generator, this function returns a value from that generator. Other devices will use a
software library to generate the random number.

Preconditions
System service must be initialized by calling SYS_RANDOM _ Initialize before this function is called.

Example

SYS_MODULE_OBJ rngbj ect ;
ui nt 32_t rngDat a;

rngCbj ect = SYS RANDOM I nitialize();
rngbData = SYS_RANDOM Crypt oGet () ;

Function
uint32_t SYS_RANDOM_CryptoGet(void);

SYS_RANDOM_CryptoSeedSet Function
Reseeds the cryptographic quality Random Number Generator.
File
sys_random.h
C
voi d SYS_RANDOM Crypt oSeedSet (void * seed, size_t size);
Returns
None.

Description

This function inserts a seed value into the Cryptographic-quality Random Number Generator. The value will be used to generate the next random
number.

Remarks
None.
Preconditions
System service must be initialized by calling SYS_RANDOM _ Initialize before this function is called.

Example

SYS_MODULE_OBJ rngbj ect ;
uint8_t rngSeed[SYS_RANDOM CRYPTO SEED Sl ZE] ;

rngOhj ect = SYS RANDOM I nitialize();
/1 Fill the rngSeed
SYS_RANDOM Crypt oSeedSet (rngSeed, sizeof (rngSeed));

Parameters

Parameters Description

seed Pointer to the memory location containing the new seed.

size Must be less or equal to SYS_RANDOM_CRYPTO_SEED_SIZE
Function

void SYS_RANDOM_CryptoSeedSet(void *seed, size_t size);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 335

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

SYS RANDOM_CryptoSeedSizeGet Function
Reseeds the cryptographic quality Random Number Generator.
File
sys_random.h

C
size_t SYS _RANDOM Crypt 0SeedSi zeGet () ;

Returns

Returns the size (in bytes) of the most recently set seed value for the cryptographic strength random number generator.
Description

This function returns the current size of the seed used in the Cryptographic- quality Random Number Generator.
Remarks

None.
Preconditions

System service must be initialized by calling SYS_RANDOM _ Initialize before this function is called.

Example

SYS_MODULE_OBJ rngbj ect ;
size_t seedSi ze;

rngObj ect = SYS _RANDOM I nitialize();
seedSi ze = SYS_RANDOM Cr ypt 0SeedSi zeGet () ;

Function
size_t SYS_RANDOM_CryptoSeedSizeGet(void);

SYS_RANDOM_Deinitialize Function

Deinitializes the Random Number Generator system service.
File

sys_random.h
C

voi d SYS_RANDOM Deinitialize(SYS_MODULE_OBJ object);
Returns

None.
Description

This function deinitializes the Random Number Generator system service.
Remarks

None.
Preconditions

System service must be initialized by calling SYS_RANDOM _ Initialize before this function is called.
Example

SYS_MODULE_OBJ rngbj ect ;

rngCbj ect = SYS RANDOM I nitialize();

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 336

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

Parameters

Parameters Description

object SYS RANDOM object handle, returned from SYS_RANDOM_ Initialize
Function

void SYS_RANDOM_Deinitialize(SYS_MODULE_OBJ object);

SYS_RANDOM_Initialize Function
Initializes the Random Number Generator system service.
File

sys_random.h

C
SYS_MODULE_OBJ SYS _RANDOM | nitialize(const SYS MODULE | NDEX i ndex, const SYS MODULE INIT * const init);
Returns
If successful, returns a valid handle to an object. Otherwise, it returns SYS_MODULE_OBJ_INVALID.
Description
This function initializes the Random Number System service, including seeding the Pseudo Random Number Generator, the Crypto RNG library,
and setting the seed size.
Remarks

None.
Preconditions
None.
Example
SYS_MODULE_OBJ rngbj ect ;

rngObj ect = SYS _RANDOM I nitialize();
SYS_RANDOM Dei nitialize(rngQbject);

Parameters
Parameters Description
index Module instance index.
init initialization data for the random system service (cast of a pointer to a SYS_RANDOM_INIT
structure to a SYS_MODULE_INDEX structure pointer).
Function

SYS_MODULE_OBJ SYS_RANDOM_Initialize(const SYS_RANDOM_INIT* const randominit);

SYS_RANDOM_PseudoGet Function

Returns a random value from the Pseudo-random Number Generator.
File

sys_random.h

C
uint32_t SYS_RANDOM PseudoGet () ;

Returns

A 32-bit pseudo-random number.

Description

This function returns one 32-bit Pseudo-random Number.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 337

Volume V: MPLAB Harmony Framework System Service Libraries Help

Remarks

None.

Preconditions

None.

Example
ui nt32_t rngNunber;

rngNunber = SYS_RANDOM PseudoCet () ;

Function
uint32_t SYS_RANDOM_PseudoGet(void);

SYS RANDOM_PseudoSeedSet Function
Reseeds the Pseudo-random Number Generator.
File
sys_random.h

C
voi d SYS_RANDOM PseudoSeedSet (ui nt 32_t seed);

Returns

None.

Description

Random Number Generator (RNG) System

This function inserts a seed value into the Pseudo-Random Number Generator. The value will be used to generate the next random number.

Preconditions
None.
Example
uint32_t rngSeed = 0x12345678;

SYS_RANDOM PseudoSeedSet (rngSeed) ;
Renar ks: None.

Parameters

Parameters Description

seed 32-bit value to use as the seed for the Pseudo RNG.
Function

void SYS_RANDOM_PseudoSeedSet(uint32_t seed);

b) Data Types and Constants

SYS_RANDOM_INIT Structure
File
sys_random.h

C

typedef struct {
uint32_t seedPseudo;
void * seedCrypto;
size_t seedCryptoSi ze;
} SYS_RANDOM I NI T;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

338

Volume V: MPLAB Harmony Framework System Service Libraries Help Random Number Generator (RNG) System

Description

Random Number Generator Service Initialization Data

Files
Files
Name Description
sys_random.h Random Number Generator System Service interface definition.
sys_random_config_template.h Configuration options template file for the Random Number Generator system service.
Description

This section lists the source and header files used by the library.

sys_random.h

Random Number Generator System Service interface definition.

Functions
Name Description
¢ SYS_RANDOM_CryptoBlockGet Generates a sequence of random bytes using the cryptographic quality Random Number
Generator.
¢ SYS_RANDOM_CryptoByteGet Returns a random byte from the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_CryptoEntropyAdd |Adds randomness to the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_CryptoGet Returns a random 32 bit value from the cryptographic quality Random Number Generator.
@ SYS_RANDOM_CryptoSeedSet Reseeds the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_CryptoSeedSizeGet | Reseeds the cryptographic quality Random Number Generator.
¢ SYS_RANDOM_Deinitialize Deinitializes the Random Number Generator system service.
¢ SYS_RANDOM_Initialize Initializes the Random Number Generator system service.
¢ SYS_RANDOM_PseudoGet Returns a random value from the Pseudo-random Number Generator.
L] SYS_RANDOM_PseudoSeedSet Reseeds the Pseudo-random Number Generator.
Structures
Name Description
SYS_RANDOM_INIT Random Number Generator Service Initialization Data
Description

Random Number Generator (RNG) System Service Interface Definition
This file contains the interface definition for the Random Number Generator System Service.

File Name

sys_random.h

Company

Microchip Technology Inc.

sys_random_config_template.h
Configuration options template file for the Random Number Generator system service.
Macros

Name Description
SYS_RANDOM_CRYPTO_SEED_SIZE
Description

Random Number Generator System Service Configuration Definitions Template

This file contains example definitions of configuration options for the random number generator system service. It is for documentation purposes
only. Do not include it directly source files.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 339

Volume V: MPLAB Harmony Framework System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

File Name
sys_random_config_template.h
Company

Microchip Technology Inc.

Real-Time Clock and Calendar (RTCC) System Service Library

This section describes the Real-Time Clock and Calendar (RTCC) System Service Library.

Introduction
This library provides a Real-Time Clock and Calendar (RTCC) service with a convenient C language interface.

Description

The Real-Time Clock and Calender (RTCC) System Service Library provides a simple API for the user to access real-time functionality of the
underlying device by using the register addresses and bit positions particular to the device so as not to burden the user with tracking down the
specific values. The RTCC also allows simple callback storage for implementing callback support for alarm events.

Using the Library
This topic describes the basic architecture of the RTCC System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_rtcc. h
The interface to the RTCC System Service library is defined in the sys_rt cc. h header file.
Please refer to the What is MPLAB Harmony? section for how the RTCC System Service interacts with the framework.

Abstraction Model
This topic provides a description of the software abstraction for the RTCC System Service.

Description

This simple service provides an API access to Real-Time Clock and Calendar functions. These calls allow the user to set and get time, date, and
alarms. All function registers and addressing are handled by the RTCC system driver leaving the user to only specify the need time and date
parameters. Callbacks can be used to execute code upon alarms. Helper functions allow conversion from BCD coded numbers used by some
RTCC calls to number of seconds and back to BCD.

Function Calls, Return Values, and Callbacks

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.
The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the RTCC module.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 340

Volume V: MPLAB Harmony Framework System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

How the Library Works
Describes how the RTCC System Service Library works.

Description

The library uses specific underlying calls to the RTCC features of the device giving the user correct and useful access.

To begin using the RTCC System Service, it is necessary to initialize the service using the SYS_RTCC_Initialize function, as shown in the
following code example.
sysObj .sysRtcc = SYS RTCC | nitialize(NULL);

Building the Library
This section lists the files that are available in the RTCC System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenmrtcc.

Interface File(s)
This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_rtcc.h RTCC System Service Library API header file.

Required File(s)

e MHC All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC

e when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/'srcl/sys_rtcc.c RTCC System Service Library implementation.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A No optional files are available for this system service.

Module Dependencies

The RTCC System Service is not dependent upon any modules.

Configuring the Library

The configuration of the RTCC System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the RTCC System Service. Based on the selections made, the RTCC System Service may
support the selected features. These configuration settings will apply to all instances of the RTCC System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

Library Interface

a) RTCC Functions

Name Description
SYS_RTCC_AlarmDateGet Gets the Real-Time Clock Calendar alarm date.
SYS_RTCC_AlarmDateSet Sets the Real-Time Clock Calendar alarm date.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 341

Volume V: MPLAB Harmony Framework

SYS_RTCC_AlarmDisable
SYS_RTCC_AlarmEnable
SYS_RTCC_AlarmRegister
SYS_RTCC_AlarmTimeGet
SYS_RTCC_AlarmTimeSet
SYS_RTCC_DateGet
SYS_RTCC_DateSet
SYS_RTCC_Start
SYS_RTCC_Stop
SYS_RTCC_Tasks
SYS_RTCC_TimeBCD2Seconds
SYS_RTCC_TimeGet
SYS_RTCC_TimeSeconds2BCD
SYS_RTCC_TimeSet
SYS_RTCC_Initialize

¢ ¢ ¢ ¢ ¢ | ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ O <

b) Data Types and Constants

Name
SYS_RTCC_ALARM_CALLBACK
SYS_RTCC_ALARM_HANDLE
SYS _RTCC_BCD_DATE
SYS_RTCC_BCD_TIME
SYS_RTCC_STATUS

System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

Disables the RTCC alarm.

Enables RTCC alarm.

Sets the callback function for an alarm.

Gets the Real-Time Clock Calendar alarm time.

Sets the Real-Time Clock Calendar alarm time.

Gets the Real-Time Clock Calendar date.

Sets the Real-Time Clock Calendar date.

Starts the Real-Time Clock Calendar.

Stops the Real-Time Clock Calendar.

Maintains the RTCC System Service state machine and implements its ISR.
Helper function for time.

Obtains the Real-Time Clock Calendar time.

Helper function for time.

Sets the Real-Time Clock Calendar time.

Real-Time Clock Calendar System Service initialization function.

Description

Use to register a callback with the RTCC.
Holds a handle for an alarm.

Holds a date in BCD format.

Holds a time in BCD format.

Return value of status for most RTCC calls.

SYS_RTCC_ALARM_HANDLE_INVALID This is macro SYS_RTCC_ALARM_HANDLE_INVALID.

% _SYS_RTCC_OBJ_STRUCT
SYS_RTCC_OBJECT
RTCC_PLIB_ID
Description

This is type SYS_RTCC_OBJECT.
This is type SYS_RTCC_OBJECT.
This is macro RTCC_PLIB_ID.

This section describes the APIs of the RTCC System Service Library.

Refer to each section for a detailed description.

a) RTCC Functions

SYS_RTCC_AlarmDateGet Function
Gets the Real-Time Clock Calendar alarm date.
File
sys_rtcc.h

C

SYS_RTCC_STATUS SYS_RTCC Al ar nDat eGet (SYS_RTCC_BCD_DATE * date)

Returns

SYS_RTCC_STATUS type (see above).
Description

The function gets the time for the RTCC alarm.
Preconditions

None.

Example
SYS_RTCC_BCD_DATE dat €;

SYS_RTCC_STATUS status = SYS_RTCC_Al ar nDat eGet (&dat e) ;

if (status != SYS_RTCC _STATUS_(K)

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Volume V: MPLAB Harmony Framework System Service Libraries Help

{

/'l error!

Real-Time Clock and Calendar (RTCC) System

}
Parameters

Parameters Description

*date pointer to date type (see description of SYS_RTCC_BCD_DATE)
Function

SYS_RTCC_STATUS SYS_RTCC_AlarmDateGet(SYS_RTCC_BCD_DATE *date)

SYS_RTCC_AlarmDateSet Function
Sets the Real-Time Clock Calendar alarm date.
File
sys_rtcc.h

C
SYS_RTCC_STATUS SYS_RTCC Al ar nDat eSet (SYS_RTCC_BCD DATE dat €) ;

Returns
SYS_RTCC_STATUS type (see above).

Description

The function sets the time for the RTCC alarm. The date for the alarm does not include the year. If the year is included it will be ignored.

Preconditions

None.

Example

SYS_RTCC _BCD_DATE date = 0x00020100;

SYS_RTCC_STATUS status = SYS_RTCC_Al ar nDat eSet (date) ;
if (status !'= SYS RTCC STATUS OK)

{

}

/'l error!

Parameters

Parameters Description

date date is in BCD format (see description of SYS_RTCC_BCD_DATE)
Function

SYS_RTCC_STATUS SYS_RTCC_AlarmDateSet(SYS_RTCC_BCD_DATE date)

SYS_RTCC_AlarmDisable Function
Disables the RTCC alarm.

File
sys_rtcc.h

C
SYS_RTCC_STATUS SYS RTCC Al arnDi sabl e() ;

Returns
SYS_RTCC_STATUS type (see above).

Description
The function disables the alarm in the RTCC.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

343

Volume V: MPLAB Harmony Framework System Service Libraries Help

Preconditions
None.

Example
SYS_RTCC_STATUS status = SYS_RTCC Al arnDi sabl e();
if (status != SYS_RTCC STATUS_(K)
{
}

Function
SYS_RTCC_STATUS SYS_RTCC_AlarmDisable(void)

/'l error!

SYS_RTCC_AlarmEnable Function

Enables RTCC alarm.
File

sys_rtcc.h
C

SYS_RTCC_STATUS SYS_RTCC_Al ar nEnabl e() ;
Returns

SYS_RTCC_STATUS type (see above).
Description

The function enables the alarm in the RTCC.
Preconditions

None.

Example

SYS_RTCC_STATUS status = SYS_RTCC_Al ar nEnabl e();
if (status != SYS _RTCC_STATUS_CX)
{

}

Function
SYS_RTCC_STATUS SYS_RTCC_AlarmEnable(void)

/'l error!

SYS_RTCC_AlarmRegister Function
Sets the callback function for an alarm.

File
sys_rtcc.h

C

Real-Time Clock and Calendar (RTCC) System

SYS_RTCC_ALARM HANDLE SYS RTCC Al ar nRegi st er (SYS_RTCC_ALARM CALLBACK cal | back, uintptr_t context);

Returns
SYS_RTCC_ALARM_HANDLE type (see above).

Description

This function sets the callback function that will be called when the RTCC alarm is reached.

Preconditions

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

344

Volume V: MPLAB Harmony Framework System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

Example

SYS_RTCC_ALARM HANDLE handl e = SYS_RTCC_Al ar nRegi ster (nyCal | back, NULL);
if (handle == SYS_RTCC_ALARM HANDLE_ | NVALI D)

{
/'l error!
}
Parameters
Parameters Description
*callback a pointer to the function to be called when alarm is reached.
context a pointer to user defined data to be used when the callback function is called. NULL can be
passed in for no data needed.
Function

SYS_RTCC_ALARM_HANDLE SYS_RTCC_AlarmRegister(SYS_RTCC_ALARM_CALLBACK *callback,
uintptr_t context);

SYS RTCC_AlarmTimeGet Function

Gets the Real-Time Clock Calendar alarm time.
File

sys_rtcc.h
C

SYS_RTCC _STATUS SYS RTCC Al ar nili meGet (SYS_RTCC BCD_TIME * tine);
Returns

SYS_RTCC_STATUS type (see above).
Description

The function gets the time from the RTCC alarm.
Preconditions

None.

Example

SYS_RTCC BCD _TI ME ti ne;
SYS_RTCC_STATUS status = SYS_RTCC_Al ar nili meGet (&t i ne) ;
if (status != SYS _RTCC_STATUS_CX)

{
/'l error!
}
Parameters
Parameters Description
*time a pointer to the time type (see description of SYS_RTCC_BCD_TIME)
Function

SYS_RTCC_STATUS SYS_RTCC_AlarmTimeGet(SYS_RTCC_BCD_TIME *time)

SYS_RTCC_AlarmTimeSet Function
Sets the Real-Time Clock Calendar alarm time.
File
sys_rtcc.h

C
SYS_RTCC_STATUS SYS_RTCC Al ar nTi neSet (SYS_RTCC BCD TIME tinme, bool enable);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 345

Volume V: MPLAB Harmony Framework System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

Returns

SYS_RTCC_STATUS type (see above).
Description

The function sets the time for the RTCC alarm.
Preconditions

None.

Example

SYS RTCC BCD _TI ME tine = 0x00001000; /'l ten seconds
SYS_RTCC_STATUS status = SYS_RTCC_Al ar nili neSet (tinme, true);
if (status !'= SYS RTCC_STATUS_ OK)

{

}

Il error!

Parameters
Parameters Description
time time is in BCD format (see description of SYS_RTCC_BCD_TIME)
enable if true, the alarm is enabled

Function

SYS_RTCC_STATUS SYS_RTCC_AlarmTimeSet(SYS_RTCC_BCD_TIME time, bool enable)

SYS_RTCC_DateGet Function

Gets the Real-Time Clock Calendar date.
File

sys_rtcc.h
C

SYS_RTCC _STATUS SYS RTCC Dat eGet (SYS_RTCC BCD DATE * date);
Returns

SYS_RTCC_STATUS type (see above).
Description

The function gets the date from the RTCC in BCD format.
Preconditions

None.

Example

SYS_RTCC_BCD_DATE dat e;
SYS _RTCC _STATUS status = SYS_RTCC Dat eGet (&dat €) ;
if (status != SYS RTCC STATUS OK)

{
/1 error!
}
Parameters
Parameters Description
*date a pointer to a date type (see description of SYS_RTCC_BCD_DATE)
Function

SYS_RTCC_STATUS SYS_RTCC_DateGet(SYS_RTCC_BCD_DATE *date)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 346

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS RTCC_DateSet Function

Sets the Real-Time Clock Calendar date.
File

sys_rtcc.h
C

SYS_RTCC STATUS SYS RTCC Dat eSet (SYS_RTCC BCD DATE date);
Returns

SYS_RTCC_STATUS type (see above).
Description

The function sets the date for the RTCC in BCD format.
Preconditions

None.

Example

SYS_RTCC _BCD_DATE date = 0x15121201;
SYS_RTCC_STATUS status = SYS_RTCC Dat eSet (date);
if (status !'= SYS_RTCC_STATUS_CX)

{

}

/'l error!

Real-Time Clock and Calendar (RTCC) System

Parameters

Parameters Description

date date is in BCD format (see description of SYS_RTCC_BCD_DATE)
Function

SYS_RTCC_STATUS SYS_RTCC_DateSet(SYS_RTCC_BCD_DATE date)

SYS_RTCC_Start Function

Starts the Real-Time Clock Calendar.
File

sys_rtcc.h
C

SYS_RTCC _STATUS SYS RTCC Start();
Returns

SYS_RTCC_STATUS type (see above).
Description

The function starts the RTCC.
Remarks

If the RTCC was running it continues.
Preconditions

The clock source should be selected.

Example

SYS_RTCC_STATUS status = SYS_RTCC Start();
if (status != SYS RTCC STATUS OK)
{

}

Il error!

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

347

Volume V: MPLAB Harmony Framework System Service Libraries Help

Function
SYS_RTCC_STATUS SYS_RTCC_Start(void)

SYS_RTCC_Stop Function

Stops the Real-Time Clock Calendar.
File

sys_rtcc.h
C

SYS_RTCC_STATUS SYS RTCC Stop();
Returns

SYS_RTCC_STATUS type (see above).
Description

The function stops the RTCC.
Preconditions

None.

Example

SYS_RTCC STATUS status = SYS RTCC Stop();
if (status != SYS_RTCC _STATUS OK)

{
/1 error!
}
Function

SYS_RTCC_STATUS SYS_RTCC_Stop(void)

SYS_RTCC_Tasks Function

Maintains the RTCC System Service state machine and implements its ISR.
File

sys_rtcc.h

C
voi d SYS_RTCC Tasks(SYS _MODULE OBJ object);

Returns

None.

Description

Real-Time Clock and Calendar (RTCC) System

This function is used to maintain the internal state machine of the RTCC System Service. It should be always be called from the 'Sys_Tasks'

function.

Remarks

This function is normally not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks) or by the appropriate raw ISR.

Preconditions

The SYS_RTCC_Initialize function must have been called for the specified TMR driver instance.

Example

SYS_MODULE_0OBJ obj ect ; /'l Returned from SYS_RTCC Initialize

while (true)

{
SYS RTCC Tasks (object);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

348

Volume V: MPLAB Harmony Framework System Service Libraries Help

/1l Do other tasks

Real-Time Clock and Calendar (RTCC) System

}
Parameters

Parameters Description

object SYS RTCC object handle, returned from SYS_RTCC_Initialize
Function

void SYS_RTCC_Tasks (SYS_MODULE_OBJ object)

SYS RTCC_TimeBCD2Seconds Function
Helper function for time.

File
sys_rtcc.h

C
uint32_t SYS_RTCC_Ti meBCD2Seconds(SYS_RTCC BCD TI ME tine);

Returns

The number of seconds represented by the BCD value.

Description

This function returns the number of seconds when given a BCD encoded time value (see SYS_RTCC_BCD_TIME typedef above).

Preconditions
None.

Example

uint32_t seconds_left;
seconds_l eft = SYS _RTCC Ti meBCD2Seconds(0x00002200) ;

Parameters

Parameters Description

time a SYS_RTCC_BCD_TIME value.
Function

uint32_t SYS_RTCC_TimeBCD2Seconds(SYS_RTCC_BCD_TIME time)

SYS RTCC_TimeGet Function
Obtains the Real-Time Clock Calendar time.
File
sys_rtcc.h
C
SYS_RTCC_STATUS SYS RTCC Ti meGet (SYS_RTCC BCD TIME * tine);
Returns
SYS_RTCC_STATUS type (see above).

Description

The function obtains the time from the RTCC.
Preconditions

None.
Example

SYS_RTCC BCD_TI ME ti me;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

349

Volume V: MPLAB Harmony Framework System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

SYS_RTCC STATUS status = SYS _RTCC_Ti meSet (& i ne);
if (status != SYS_RTCC _STATUS OK)
{

}

Parameters

/'l error!

Parameters Description
*time a pointer to a time type (see description of SYS_RTCC_BCD_TIME)

Function
SYS_RTCC_STATUS SYS_RTCC_TimeGet(SYS_RTCC_BCD_TIME *time)

SYS _RTCC_TimeSeconds2BCD Function

Helper function for time.
File

sys_rtcc.h
C

SYS_RTCC _BCD _TI ME SYS_RTCC Ti neSeconds2BCD(ui nt 32_t seconds);
Returns

A SYS_RTCC_BCD_TIME type value in BCD of the number of seconds given.
Description

This function returns the BCD encoded time value for the given number of seconds.
Preconditions

None.

Example

SYS_RTCC BCD TIME tine;
time = SYS_RTCC_Ti meSeconds2BCD(1000) ;
SYS_RTCC_Al ar nili neSet (time, true);

Parameters

Parameters Description

seconds number of seconds to convert.
Function

SYS_RTCC_BCD_TIME SYS_RTCC_TimeSeconds2BCD(uint32_t seconds)

SYS RTCC_TimeSet Function
Sets the Real-Time Clock Calendar time.
File
sys_rtcc.h

C
SYS_RTCC_STATUS SYS RTCC Ti meSet (SYS_RTCC BCD TIME tinme, bool start);

Returns
SYS_RTCC_STATUS type (see above).

Description
The function sets the time for the RTCC.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 350

Volume V: MPLAB Harmony Framework System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

Preconditions

None.

Example

SYS_RTCC BCD TIME time = 0x23121200;
SYS_RTCC_STATUS status = SYS_RTCC TineSet (tine, true);
if (status != SYS RTCC STATUS OK)

{
/'l error!
}
Parameters
Parameters Description
time time is in BCD format - see description of SYS_RTCC_BCD_TIME
start if true, the RTCC is also started
Function

SYS_RTCC_STATUS SYS_RTCC_TimeSet(SYS_RTCC_BCD_TIME time, bool start)

SYS_RTCC lInitialize Function

Real-Time Clock Calendar System Service initialization function.
File

sys_rtcc.h

C
SYS MODULE_OBJ SYS_RTCC Initialize();

Returns

SYS_MODULE_OBJ.

Description

This function initializes the RTCC Service. It ensures that RTCC is stable and places the RTCC service in its initial state so that the service's state
machine(s) can run.

Remarks

This function must be called from the SYS_Initialize function. This function loops and blocks until RTCC is stable.

Preconditions

None

Example
sysbj .sysRtcc = SYS RTCC Initialize();

Function
SYS_MODULE_OBJ SYS_RTCC_lInitialize (const SYS_MODULE_INIT * const init)

b) Data Types and Constants

SYS _RTCC_ALARM_CALLBACK Type
Use to register a callback with the RTCC.

File
sys_rtcc.h

C
typedef void (* SYS_RTCC_ALARM CALLBACK) (SYS_RTCC_ALARM HANDLE handl e, uintptr_t context);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 351

Volume V: MPLAB Harmony Framework System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

Description

SYS_RTCC_ALARM_CALLBACK

When the alarm is asserted, a callback can be activated. Use SYS_RTCC_ALARM_CALLBACK as the function pointer to register the callback
with the alarm.

Remarks

The callback should look like: void callback(handle, context); Make sure the return value and parameters of the callback are correct.

SYS_RTCC_ALARM_HANDLE Type
Holds a handle for an alarm.

File
sys_rtcc.h

C
typedef uintptr_t SYS RTCC_ALARM HANDLE;

Description

SYS_RTCC_ALARM_HANDLE
SYS_RTCC_ALARM_HANDLE holds a handle to an alarm.

Remarks
Use SYS_RTCC_ALARM_HANDLE to receive a handle from AlarmRegister function.

SYS_RTCC_BCD_DATE Type
Holds a date in BCD format.

File
sys_rtcc.h

C
typedef uint32_t SYS RTCC_BCD DATE;

Description

SYS_RTCC_BCD_DATE
Each nibble: [year10][yearl][mnth10][mnth1][day10][day1][xxxx][DOTW] (Day Of The Week).

Remarks

Fill this in manually: date.year10 = 1; or use helper function.

SYS_RTCC_BCD_TIME Type
Holds a time in BCD format.

File
sys_rtcc.h

C
typedef uint32_t SYS_RTCC_BCD TI Mg

Description

SYS_RTCC_BCD_TIME
Each nibble: [hour10][hour1][mins10][mins1][secs10][secs1][xxxx][xxxX].

Remarks

Fill this in manually: time.secs1 = 5; or use helper function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 352

Volume V: MPLAB Harmony Framework

SYS _RTCC_STATUS Enumeration
Return value of status for most RTCC calls.
File
sys_rtcc.h

C

typedef enum {
SYS_RTCC_STATUS_ X = 0,
SYS_RTCC_STATUS_NOT_READY,
SYS_RTCC_STATUS_NO_DEVI CE,
SYS_RTCC STATUS | N_USE

} SYS_RTCC_STATUS;

Description
SYS_RTCC_STATUS

System Service Libraries Help Real-Time Clock and Calendar (RTCC) System

A member is returned based on the results (status) of the call made to a SYS_RTCC_xxxx function.

Remarks

Status should be checked after a call to see if the call executed okay and returns with a value of SYS_RTCC_STATUS_OK.

SYS_RTCC_ALARM_HANDLE_INVALID Macro

File
sys_rtcc.h

C

#def i ne SYS_RTCC_ALARM HANDLE_| NVALI D ((SYS_RTCC_ALARM HANDLE) 0)

Description

This is macro SYS_RTCC_ALARM_HANDLE_INVALID.

SYS_RTCC_OBJECT Structure

File
sys_rtcc.h

C

typedef struct _SYS RTCC OBJ_STRUCT {
SYS_RTCC_STATUS st at us;
SYS _RTCC_ALARM CALLBACK cal | back;
uintptr_t context;
SYS _RTCC_ALARM HANDLE handl e;
I NT_SQURCE i nt errupt Sour ce;

} SYS_RTCC_OBJECT;

Members
Members
SYS_RTCC_STATUS status;
SYS_RTCC_ALARM_CALLBACK callback;
uintptr_t context;
SYS_RTCC_ALARM_HANDLE handle;
INT_SOURCE interruptSource;
Description
This is type SYS_RTCC_OBJECT.

© 2013-2017 Microchip Technology Inc.

Description

Object status

Call back function for RTCC. Happens at ALARMED
Client data (Event Context) that will be passed to callback
RTCC Alarm handle

Interrupt source

MPLAB Harmony v2.06

353

Volume V: MPLAB Harmony Framework

RTCC_PLIB_ID Macro

File
sys_rtcc.h

C

#define RTCC PLIB_ID RTCC_ ID 0

Description

This is macro RTCC_PLIB_ID.

Files

Files

Name
sys_rtcc.h

Description

System Service Libraries Help

Description

Interface definition of the Real-Time Clock and Calendar System Service (RTCC).

This section lists the source and header files used by the library.

sys_rtcc.h

Interface definition of the Real-Time Clock and Calendar System Service (RTCC).

Enumerations

Functions

© ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 O 0| <

Macros

Name
SYS_RTCC_STATUS

Name
SYS_RTCC_AlarmDateGet
SYS_RTCC_AlarmDateSet
SYS_RTCC_AlarmDisable
SYS_RTCC_AlarmEnable
SYS_RTCC_AlarmRegister
SYS_RTCC_AlarmTimeGet
SYS_RTCC_AlarmTimeSet
SYS_RTCC_DateGet
SYS_RTCC_DateSet
SYS_RTCC_Initialize
SYS_RTCC_Start
SYS_RTCC_Stop
SYS_RTCC_Tasks
SYS_RTCC_TimeBCD2Seconds
SYS_RTCC_TimeGet
SYS_RTCC_TimeSeconds2BCD
SYS_RTCC_TimeSet

Name
RTCC_PLIB_ID

Description
Return value of status for most RTCC calls.

Description

Gets the Real-Time Clock Calendar alarm date.
Sets the Real-Time Clock Calendar alarm date.
Disables the RTCC alarm.

Enables RTCC alarm.

Sets the callback function for an alarm.

Gets the Real-Time Clock Calendar alarm time.
Sets the Real-Time Clock Calendar alarm time.
Gets the Real-Time Clock Calendar date.

Sets the Real-Time Clock Calendar date.
Real-Time Clock Calendar System Service initialization function.
Starts the Real-Time Clock Calendar.

Stops the Real-Time Clock Calendar.

Maintains the RTCC System Service state machine and implements its ISR.

Helper function for time.

Obtains the Real-Time Clock Calendar time.
Helper function for time.

Sets the Real-Time Clock Calendar time.

Description
This is macro RTCC_PLIB_ID.

SYS_RTCC_ALARM_HANDLE_INVALID This is macro SYS_RTCC_ALARM_HANDLE_INVALID.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Real-Time Clock and Calendar (RTCC) System

354

Volume V: MPLAB Harmony Framework System Service Libraries Help Reset System Service Library

Structures

Name Description
G _SYS_RTCC_OBJ_STRUCT This is type SYS_RTCC_OBJECT.

SYS_RTCC_OBJECT This is type SYS_RTCC_OBJECT.

Types
Name Description
SYS_RTCC_ALARM_CALLBACK |Use to register a callback with the RTCC.
SYS_RTCC_ALARM_HANDLE Holds a handle for an alarm.
SYS_RTCC_BCD_DATE Holds a date in BCD format.
SYS_RTCC_BCD_TIME Holds a time in BCD format.

Description

Interface definition of the RTCC System Service.

This file defines the interface for the Real-Time Clock and Calendar (RTCC) System Service. The Real-Time Clock allows events to be triggered
by time and date.

File Name
sys_rtcc.h
Company

Microchip Technology Inc.

Reset System Service Library

This section describes the Reset System Service Library.

Introduction
This library provides an interface to manage the Reset module on the Microchip family of microcontrollers during different modes of operation.

Description

The Reset System Service Library is a MPLAB Harmony system service that can be used to identify the reason for the most recent processor
reset, manage the system's reset reason status flags, and even cause a reset under software control if the processor in use supports that
functionality.

Using the Library
This topic describes the basic architecture of the Reset System Service and provides information and examples on its use.

Description

Interface Header File: sys_reset. h
The interface to the Clock System Service is defined in the sys_r eset . h header file, which is included by the sys. h header file.
Any C language source (. c) file that uses the Reset System Service must include sys. h.

Abstraction Model
This topic describes the basic abstraction model and functionality of the Reset System Service.

Description

The Reset System Service Library provides the following functionality:
e Microcontroller Reset Reason Management
« Triggering Software Reset

When one of the sources described in the following section asserts a reset request or the software requests a reset using this library, the
microcontroller will be immediately reset.

The following figure illustrates the hardware abstraction model for the reset system service,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 355

Volume V: MPLAB Harmony Framework System Service Libraries Help Reset System Service Library

JMCLR N\

PowerOn \

Watch Dog \

Brown Out

Configuration System Reset
Mismatch

Software Reset l

Trap Conflict /

lllegal Op code 7

Reset Sources

e /MCLR: Whenever the /MCLR pin is driven low, the device asynchronously asserts reset. The processor continues to use the existing clock
source that was in use before the /IMCLR Reset occurred.

« Power On [POR]: A power-on event generates an internal power-on reset pulse when a VDD rise is detected above POR voltage. In particular,
VDD must fall below POR voltage before a new POR is initiated.

e Watch Dog Timer [WDT]: Whenever a watchdog timer time-out occurs, the device asynchronously asserts system reset. The clock source
remains unchanged. Note that a WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

« Brown Out: If the voltage supplied to the internal regulator is inadequate to maintain a regulated level, the regulator reset circuitry will generate
a Brown-Out Reset (BOR). Brown out reset is applicable only when the regulator is enabled.

e Configuration Mismatch: To maintain the integrity of the stored configuration values, all device configuration bits are implemented as a
complementary set of register bits. For each bit, as the actual value of the register is written as ‘1’, a complementary value, ‘0’, is stored in its
corresponding background register and vice versa. The bit pairs are compared every time, including sleep mode. During this comparison, if the
configuration bit values are not found opposite to each other, a configuration mismatch event is generated which causes a device reset.

« Software Reset: Whenever the reset instruction or a reset sequence is executed, the device asserts system reset. This reset state does not
reinitialize the clock. The clock source that is in effect prior to the reset instruction or reset sequence execution remains in effect.

« Trap Conflict: A trap conflict reset occurs when a hard and a soft trap occur at the same time.
« lllegal Opcode: A device reset is generated if the device attempts to execute an illegal opcode value that was fetched from program memory.

For more information on the electrical specifications, refer to the "Electrical Characteristics" chapter of the specific device data
Note: sheet.

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

The library interface routines are divided into the following sub-sections, which address one of the blocks or the overall operation of the Reset
System Service Library.

Library Interface Section Description

Functions Provides functions to read the reset reason and clear the respective status, to trigger
the software reset, and reset the NMI delay count.

How the Library Works

Reset Reason Management
Describes how to use the library to identify and clear the reason a reset occurred.

Description

Reset Reason

Other software modules may identify the reason for the most recent system reset using the SYS_RESET_ReasonGet function. After obtaining the
reset reason, its status flag can be cleared using the SYS_RESET_ReasonClear function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 356

Volume V: MPLAB Harmony Framework System Service Libraries Help Reset System Service Library

Example: Identifying and Clearing Reset Reason
RESET_REASON r easonType;

reasonType = SYS _RESET_ReasonCet ();
i f(reasonType == RESET_REASON MCLR)

{
/| Take some reset reason specific action
/1
/'l Cear the reset reason status flag
SYS RESET_ReasonCl ear (RESET_REASON MCLR);
}

Example: Clearing Multiple Reset Reasons

/1 Clear multiple reason flags
SYS_RESET_Reasond ear (RESET_REASON_MCLR| RESET_REASON_POWERCN) ;

/1l Clear all current reason flags
SYS RESET_ReasonCl ear (RESET_REASON ALL);

Not every reset reason is supported by every device, refer to the device specific information for more information.
Note:

Triggering a Software Reset
Describes how to use the Reset System Service Library to cause a system reset.

Description

Software Reset Trigger

Software can trigger the a system reset by using the SYS_RESET_SoftwareReset function.

Example
SYS_RESET_Sof t war eReset () ;

On devices that support software reset functionality, this routine never returns. Execution continues from the reset vector,
Note: following the reset. On devices that do not support software reset, calling this routine will give a build warning and execution will
continue immediately following this function.

Configuring the Library
Describes how to configure the system reset library.

Description
The configuration of the Reset System Service is affected by the following:
* Processor Selection
* System Configuration

Processor Selection

Different processors support different reset reasons. Not all reset reasons are defined for all processors. Refer to the specific device data sheet or
family reference manual for the processor in use to identify which reset reasons it supports.

System Configuration

Many MPLAB Harmony libraries provide configuration options that can be selected by defining their desired values at build-time using the
C-language preprocessor "#define" statement. To obtain these definitions, MPLAB Harmony libraries include a file named "system_config.h" that
must be defined as part of the over-all system configuration and placed in the compiler's include file search path.

Refer to the Applications Help section for more details.

System Reset Library Configuration Options

This library does not support any build-time configuration items.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 357

Volume V: MPLAB Harmony Framework

Building the Library

System Service Libraries Help

This section lists the files that are available in the Reset System Service Library.

Description

The following three tables list and describe the header (. h) and source (. ¢) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenfreset.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name

sys_reset.h

Required File(s)

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name
/srclsys_reset.c

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

Description

Reset System Service Library API header file.

Description

Reset System Service Library implementation.

N/A There are no optional files for this library.

Module Dependencies

The Reset System Service Library depends on the following modules:

* Reset Peripheral Library
« Device Control Peripheral Library

Library Interface

a) Functions

Name
SYS_RESET_ReasonClear
SYS_RESET_ReasonGet
SYS_RESET_SoftwareReset
SYS_RESET_NMlIDelayCountSet

¢ ¢ ¢ <

Data Types and Constants

Name
SYS RESET_H
SYS_RESET_PART_SPECIFIC

Description

Description

Clears the status flag for the specified reset reason.
Returns the reason for the reset.

Triggers a software reset.

Sets the Delay for WDT/DMT NMI reset events.

Description
This is macro SYS_RESET_H.
This is macro SYS_RESET_PART_SPECIFIC.

This section describes the APIs of the Reset System Service Library.

Refer to each section for a detailed description.

a) Functions

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Reset System Service Library

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
A MHC when the library is selected for use.

358

Volume V: MPLAB Harmony Framework System Service Libraries Help Reset System Service Library

SYS RESET_ReasonClear Function
Clears the status flag for the specified reset reason.
File
sys_reset.h
C
voi d SYS_RESET_Reasond ear (RESET_REASON r eason) ;
Returns
None.
Description
This function clears the specified status flag(s) that were previously set by the processor to identify the reason for the most recent reset.
Remarks
None.
Preconditions

Hardware should have set the reset reason.

Example
/'l To clear a single reset reason,
SYS_RESET_Reasond ear (RESET_REASON MCLR);

/'l To clear nmore than one reason,
SYS_RESET_Reasond ear (RESET_REASON _MCLR| RESET_REASON_POAERON) ;

/1l To clear all the reasons,
SYS _RESET_Reasond ear (RESET_REASON ALL);

Parameters

Parameters Description

reason One of the possible values of the enum RESET_REASON
Function

void SYS_RESET_ReasonClear(RESET_REASON reason)

SYS _RESET_ReasonGet Function
Returns the reason for the reset.

File
sys_reset.h

C
RESET_REASON SYS_RESET_ReasonCet () ;

Returns

A value identifying the reason for the most recent reset.
Description

This function identifies the reason that the most recent reset occurred.
Remarks

None.

Preconditions

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 359

Volume V: MPLAB Harmony Framework System Service Libraries Help

Example

RESET_REASON r easonType;
reasonType = SYS_RESET_ReasonCet ();

Function
RESET_REASON SYS_RESET_ReasonGet(void)

SYS RESET SoftwareReset Function
Triggers a software reset.

File
sys_reset.h

C
voi d SYS_RESET_Sof t war eReset () ;

Returns
None.
Description
This function triggers a processor.
Remarks
The software reset feature must be supported by the processor in use.
Preconditions
None.

Example
SYS RESET_Sof t war eReset () ;

Function
void SYS_RESET_SoftwareReset(void)

SYS _RESET_NMIDelayCountSet Function
Sets the Delay for WDT/DMT NMI reset events.
File
sys_reset.h

C
voi d SYS_RESET_NM Del ayCount Set (RESET_NM _COUNT_TYPE nmi _count);

Returns

None

Description

Reset System Service Library

This function sets the NMI counter value, that is equivalent to the number of SYSCLK cycles needed for the device Reset to occur when a

WDT/DMT NMI event is triggered. This NMI reset counter is only applicable to these two specific NMI events only.

Remarks

The NMI feature must be supported by the processor in use.

Preconditions

None.

Example
SYS_RESET_NM Del ayCount Set (0x54);

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

360

Volume V: MPLAB Harmony Framework System Service Libraries Help Reset System Service Library

Parameters
Parameters Description
nmi_count NMI counter value.
Function

void SYS_RESET_NMIDelayCountSet(RESET_NMI_COUNT_TYPE nmi_count)

Data Types and Constants

SYS_RESET_H Macro

File
sys_reset.h

C
#define SYS RESET_H

Description
This is macro SYS_RESET_H.

SYS RESET_PART_SPECIFIC Macro
File

sys_reset.h

C
#def i ne SYS_RESET_PART_SPECI FI C

Description
This is macro SYS_RESET_PART_SPECIFIC.

Files

Files

Name Description
sys_reset.h Reset System Service interface definition.

Description

sys_reset.h

Reset System Service interface definition.

Functions
Name Description
@ SYS_RESET_NMIDelayCountSet | Sets the Delay for WDT/DMT NMI reset events.
@ SYS_RESET_ReasonClear Clears the status flag for the specified reset reason.
¢ SYS_RESET_ReasonGet Returns the reason for the reset.
¢ SYS_RESET_SoftwareReset Triggers a software reset.
Macros
Name Description
SYS_RESET_H This is macro SYS_RESET_H.

SYS_RESET_PART_SPECIFIC This is macro SYS_RESET_PART_SPECIFIC.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 361

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Description

Reset System Service Interface Definition

This file contains the interface definition for the Reset System Service. It provides a way to interact with the Reset subsystem to manage the
system resets and their status.

File Name
sys_reset.h
Company

Microchip Technology Inc.

Timer System Service Library

This section describes the Timer System Service Library.

Introduction
This library provides interfaces to manage alarms and/or delays.

Description

The Timer System Service Library is capable of providing periodic or one-shot alarm delays to the user. It works as a client for the Timer driver and
opens one of the instances of the driver to perform the activities. The periodicity or the delay is an integer multiple of the Timer driver alarm period.

Using the Library
This topic describes the basic architecture of the Timer System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_tnr. h

The interface to the Timer System Service library is defined in the sys_t nr . h header file, which is included by the sys. h system service header
file. Any C language source (. c) file that uses the Timer System Service library should include sys. h.

Please refer to the What is MPLAB Harmony? section for how the System Service interacts with the framework.

Abstraction Model

The Timer System Service module uses the Timer driver abstraction layer to provide the following functionalities,
» Periodic Callback

¢ One Shot/Single Callback

« Delays

The Timer System Service will work in both the polling and interrupt driven environments; however, Interrupt mode is
Note: recommended.

Description

Abstraction Model

The following diagram depicts the Timer System Service abstraction model.

Hardware Timers

((ﬁu
l@] Lisnlsr Expirations
S N

Timer] Set repeating and non-repeating timers|

Service 1

Libary |
Set Timer . .
Hardware Callbacks

(ISR)
Callback Custainety
Functions

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 362

Volume V: MPLAB Harmony Framework

Periodic Callback

System Service Libraries Help

The following flow diagram depicts the Periodic Callback usage model.

SYS Start

SYS Module
Initializes TMR
SYS Service

Initialize 1s performed
only after a reset or the
service has been
deinitialized.

!

SYS Module
Initializes APP

!

APP Initializes
Periodic
Callback

!

SYS Module
Calls the
—» | Tasks AP| of
TMR SYS
Service, APP,
DRV etc

In case of a interrupt environment, TMR ISR calls the
tasks interface of driver

¢

Is Period
Elapsed ?

One-Shot Callback

Trigger APP
Callback

The following flow diagram depicts the One-Shot Callback usage model.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Timer System Service Library

363

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

SYS Start

Initialize 1s petformed only after
SYS Module a reset or the service has been
Initializes TMR deinitialized.
SYS Service

!

SYS Module
Initializes APP

!

APP Initializes
One shot
Callback

!

SYS Module In case of a interrupt environment, TR ISR calls the tasks
Calls the interface of driver

— | | Tasks API of
TMR SYS

Service, APP,
DRV etc

Is Period
Elapsed ?

Trigger APP
Callback

Delay

The following flow diagram depicts the Delay usage model.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 364

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

SYS Start

Initialize 1s petformed only after a reset or
SYS Module the service has been deinitialized.

Initializes TMR
SYS Service

!

SYS Module
Initializes APP

!

APP Initializes
Delay

!

SYS Module
Calls TMR
SYS Service
Task

!

SYS Module
Calls APP
Task Which
waits till the
Delay elapses

Is Delay
Status
True ?

APP Checks for
the Delay Status

Do Something
after Delay
Elapse

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 365

Volume V: MPLAB Harmony Framework

Library Overview

Please refer to the System Service Introduction for a detailed description of MPLAB Harmony system services.

System Service Libraries Help

Timer System Service Library

The library interface routines are divided into various sub-sections, which address one of the blocks or the overall operation of the Timer System

Service Library.

Library Interface Section

System Level Interaction Functions

Timed Callback Functions

Timed Delay Functions

Miscellaneous Functions

How the Library Works

The library provides interfaces to support:

e System Interactio
» Periodic Callback

n

¢ One shot/Single Callback

* Delays

* Tick count Information

Description

Description

Provides system module APIs. Device initialization, deinitialization, reinitialization and

status functions.

Provides interfaces to handle timed periodic or one shot callbacks

Provides interfaces to handle timed delays

Provides interfaces for timer tick counts, etc.

The following model gives information on interaction between various modules.

The arrows in the diagram indicate the dependencies or support.

SYS I- Application
INIT,
TASKS, I
TMR
TMR Driver
State Machine
INT l
Note:

Module interaction occurs in the following order:
1. The initialization, reinitialization, deinitialization are handled by the SYS INIT module.
2. The Timer System Service Initialization function initializes the library's internal data structures.

3. After the initialization, Timer System Service Tasks function would be called by the SYS Tasks module to open the Timer Driver and do other
configuration activities. Once the Timer driver is ready to be used the Timer System Service Tasks APl makes the system ready to be used by
setting the status of the Timer System Service module to SYS_STATUS_READY.

4. The application can now enable either periodic callback or one-shot callback or enable delays.

1.
Notes:

© 2013-2017 Microchip Technology Inc.

It is possible to have multiple clients access the system timer service, each with different periodic or single callbacks or

delays.

If the underlying Timer Driver uses Interrupt mode, it is the responsibility of the user or the application to ensure that the

Interrupt system module has been initialized and that priorities have been set accordingly.

Ensure that the selected timer clock source is DRV_TMR_CLKSOURCE_INTERNAL, as the Timer System Service will not
function if the timer clock source is external.

MPLAB Harmony v2.06

366

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

System Interaction

Initialization and Reinitialization:

The SYS module performs the initialization and the reinitialization of the Timer System Service. During initialization the following information is
populated into the internal data structures from the init structure SYS_TMR_INIT passed as a parameter:

Initialization Member Description

modul el ni t System module initialization of the power state

drvl ndex Timer driver module/instance index, the same index used to initialize the timer driver

tnrFreq Required System Timer frequency in Hertz, which is the base frequency for all of the system time-keeping.

The SYS_TMR_Initialize API returns a handle of the type SYS_MODULE_OBJ. After this, the object handle returned by the Initialize interface
would be used by the other system interfaces such as SYS_TMR_Reinitialize, SYS_TMR_Deinitialize, SYS_TMR_Status, and SYS_TMR_Tasks.

If an attempt is made to initialize the SYS TMR module if it is already initialized, will safely return without modifying the behavior of
Note: the system.

Example for Timer System Service initialization:
SYS_MODULE_OBJ obj ect Handl e;

SYS. TMRINT initConfig;

/'l Populate the SYS TMR initialization structure

i nitConfig.nodul elnit.val ue = SYS_MODULE_POWER RUN FULL;
i nitConfig.drvlndex = DRV_TMR_| NDEX_O;
initConfig.tnrFreq = 1000;

obj ectHandle = SYS TMR Initialize(SYS TMR INDEX 0, (SYS MODULE INIT *)& nitConfig);
if(SYS_MODULE _OBJ_I NVALI D == obj ect Handl e)
{

}

Sample initialization sequence in polling environment:
void SYS Initialize(SYS_IN T_DATA *data)

/1l Handl e error

{

/* Application Initialization */

App_lnit();

/* Initialize the Timer driver */

drvTnr Object = DRV.TMR Initialize(DRV_TMR INDEX 0, (SYS MODULE INIT *)& nrinitData);

/* Initialize the SYS TMR Modul e */

sysTntQbject = SYS TMR Initialize(SYS TMR INDEX 0, (SYS_ MODULE INIT *)&sysTnrinitData);
}

Sample initialization sequence in an interrupt driven environment:'
void SYS_ Initialize(SYS_IN T_DATA *data)

{

/* Application Initialization */

App_lnit();

/* Initialize the Tiner driver */
drvTnr Qbj ect = DRV_.TMR Initialize(DRV_TMR_INDEX O, (SYS MODULE INIT *)&nrinitData);

/* Initialize the SYS TVMR Modul e */
sysTntrQbject = SYS TMR Initialize(SYS TMR INDEX 0, (SYS MODULE INIT *)&ysTmrinitData);

/* Set the Tiner Interrupt priority, sub-priority if supported by the device */
SYS_INT_VectorPrioritySet (I NT_VECTOR T1, |NT_PRI ORI TY_LEVEL1);
SYS | NT_Vect or SubprioritySet (I NT_VECTOR T1, | NT_SUBPRI ORI TY_LEVEL1);

/* Initialize the interrupt sub system nodule */
SYS_ INT_Initialize();
}
Deinitialization:
The deinitialize operation (SYS_TMR_Deinitialize) places the module in inactive state. Once the initialize operation has been called, the deinitialize

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 367

Volume V: MPLAB Harmony Framework

System Service Libraries Help

Timer System Service Library

operation must be called before the initialize is called again. If the operation requires time to allow the hardware to complete, this will be reported
by the SYS_TMR_Status operation.

Status:

Status of the system timer module can be checked using SYS_TMR_Status interface. After the initialization, reinitialization or the deinitialization
activities the System timer Service status can be retrieved and checked for further actions.

Tasks Routine:

The system will call SYS_TMR_Tasks from System Task Service. This interface gets the system timer module into running mode. This interface
needs to be called after the timer driver is successfully initialized.

Sample call order:

voi d SYS Tasks(void)

{

/* Call Driver TWMR Tasks APl */
DRV_TMR Tasks(drvTnr Obj ect);

/* Call SYS TMR Tasks APl */
SYS_TMR Tasks(sysTnr Qbj ect);

/* Call the Application Tasks */

App_Tasks();

Periodic Callback

This section describes the periodic callback registration and its usage.

The following diagram depicts the interaction across various modules for the periodic callback feature,

call.

Application ITMR Sys Servloe| | TMR Driver
| I
I | | |
| mE TMR Driver {>+
| | Initialization o
| | Driver Obiect | | Driver objectis
| | r|ver| jeC | | required for other
I | | I'| driver calls, say
: : SYS TMR | | | for Tasks.
| | Initialization | |
| | Repitative Cal) : SYS TMR Tasks i i
| | | |
| | '
| TMR Driver Task
: | n\fer asks > :
| —— | L
| T T T
| | | |
[Periodic Callback e !
callback handleis | | Initialization D> [
required for other : Callback : One time :
serive calls, say | aflpac | initialization I
Stopping the periodic] | Handle | |
I | Ly |
4 } ; |
Repitative Call) | | | User callback at|
: CaIIt:)ack I regular intervals!
L _:_ as configured |
] |
| |

Steps involved in registering and using the feature:

1. The Timer System Service should be in a ready state. Use the SYS_TMR_STATUS function to verify that the service is in this state.

2. Register the periodic callback feature using the SYS_TMR_CallbackPeriodic function with the period, a context pointer, and the pointer to the
callback routine. The interface SYS_TMR_CallbackPeriodic returns a valid handle after successful registration.

1. The handle can be later used by the user to stop the periodic callback by the user using the interface
Notes: SYS_TMR_CallbackStop. Based on the periodicity set by the user the respective callback would be triggered repetitively after

it elapses.

2. The period parameter will be adjusted internally to match the Timer System running frequency.

Example:

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

368

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

void SYS Initialize (SYS_IN T_DATA *data)

{
/* Initialize the Timer driver */
drvTnr Qbject = DRV._TMR Initialize (SYS_INDEX, (SYS MODULE INIT *)&nrinitData);
/* Initialize the SYS TMR Modul e */
sysTnr Object = SYS_TMR Initialize (SYS_INDEX, (SYS_MODULE_INT *)&ysTnrinitData);
/* Application Initialization */
App_lnitialize ();
}
voi d SYS_Tasks(void)
{
/* Call Driver TMR Tasks APl */
DRV_TMR Tasks (drvTnr bject);
/* Call SYS TMR Tasks APl */
SYS_TMR Tasks (sysTnr Obj ect);
/* Call the App Tasks */
App_Tasks ();
}
voi d App_Tasks (void)
{
switch (testState)
{
/* VWait in Init state until the SYS TMR Mbdule is in running node */
case TEST_STATE Init:
i f (SYS_STATUS_READY == SYS_TMR St at us(sysTnr Obj ect))
{
/* SYS TMR is in running node */
testState = TEST_STATE_Config_Peri odi c;
}
el se
{
testState = TEST_STATE I nit;
}
br eak;
case TEST_STATE Confi g_Peri odi c:
/* Activate periodic callback */
handl e = SYS_TMR_Cal | backPeri odic (120, 0, &Test_Call back);
testState = TEST_STATE_Count _Read;
br eak;
case TEST_STATE_Count _Read:
testCountl = SYS TMR Ti ckCount Get ();
br eak;
}
}

/1 Call back which will be called repetitively after the configured
/1 time el apses

void Test _Call back (uintptr_t context, uint32_t currTick)

{

}

PORTA = ~PORTA;

One Shot Callback

This section describes the one-shot/single callback registration and its usage.
The following diagram depicts the interaction across various modules for the one-shot callback feature,

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 369

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

(o | [Rsmse

I |
|] TMR Driver > Driver objectis
: : Initiali?ation required for other
| | Driver Object driver calls, say
| : f for Tasks.
I |
' ! SYS TMR
I | —— |
| | Initialization |
| ot | |
Repitati I
| epitative Ca) || SYSTMR Tasks |||
|

|
! | TMR Driver Tasks >
| | |
| — |
I | |

| |

|
One Shoti Callback

|nitia1i?au‘on User callback called
once after the time

[
—
|
|
|
|
|
|
|
|
[
|
|
|
|
|
L
|
[
[
|
[
[
[
[
[
[
[
[

|
|
| |
|
Callpack | | elapsed.
|
|
I
I

Steps involved in registering and using the feature:

1.

Initial requirement is to have the Timer System Service module in the SYS_STATUS_READY state. The user can call the function
SYS_TMR_Status to get the current status information of the module.

. One-shot/Single callback feature can be registered by calling the function SYS_TMR_CallbackSingle with the parameters periodicity of the

callback, a context pointer, and a pointer to the user's callback routine.

Based on the periodicity set by the user, the respective callback would be triggered once after it elapses.

1. The handle can be later used by the user to stop the one-shot callback by the user using the interface
Notes: SYS_TMR_CallbackStop.

2. The period parameter will be adjusted internally to match the Timer System running frequency.

Example:
void SYS Initialize (SYS_IN T_DATA *data)

{

}

/* Initialize the Tiner driver */
drvTntQbject = DRV.TMR Initialize (SYS_INDEX, (SYS MODULE INIT *)&nrinitData);

/* Initialize the SYS TMR Modul e */
sysTntQbject = SYS TMR Initialize (SYS_INDEX, (SYS MODULE INIT *)&sysTnrinitData);

/* Application Initialization */
App_Initialize ();

voi d SYS Tasks(voi d)

{

}

/* Call Driver TMR Tasks APl */
DRV_TMR Tasks (drvTnr bject);

/* Call SYS TMR Tasks APl */
SYS TMR Tasks (sysTnr Object);

/* Call the App Tasks */
App_Tasks ();

void App_Tasks (void)

{

switch (testState)
{

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

370

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

/* Wait in Init state until the SYS TMR Module is in running node */
case TEST_STATE Init:
i f (SYS_STATUS_READY == SYS TMR Stat us(sysTnr Object))

{
/* SYS TMR is in running node */
testState = TEST_STATE_Confi g_Singl e;

}

el se

{
testState = TEST_STATE I nit;

}

br eak;

case TEST_STATE_Confi g_Singl e:
/* Activate one shot/single callback */
handl e = SYS_TMR _Cal | backSi ngl e (120, 0, &Test_Call back);
testState = TEST_STATE_Count _Read;
br eak;

case TEST_STATE_Count _Read:
testCountl = SYS TMR Ti ckCount Get ();
br eak;

}

/1 Callback which will be called repetitively after the configured
/'l time el apses
void Test_Cal | back (uintptr_t context, uint32_t currTick)

{
PORTA = ~PORTA;
}
Delays

This section describes the delay registration and its usage. The mechanism depicted supports only non-blocking delays.
The following diagram depicts the interaction across various modules for the delay feature.

(o | [pRsmses
|
|

| | |
| Bl TMR Driver ,‘>—+- Driver object is
: : Initialikation : required for other
| | Driver Object | | driver calls, say
: : : I'| for Tasks.
I
! ! SYS TMR '
	—	
	Initialization	
itati		
Repitative Call		
optiEve L8 /		_SYS TR Tasks .
I		
TMR Driver Tasks I		
! . . Dl		
.	-	
I | |
I |

|

i I

Delay Start I !

- ay: = | | User can check the |

Delay Flapse || delay status to check |
| : for the elapse configured

| I
| | |

Steps involved in registering and using the feature:

1. Initial requirement is to have the Timer System Service module in the SYS_STATUS_READY state. The user can call the function
SYS_TMR_Status to get the current status information of the module.

2. Delay feature can be registered by calling the function SYS_TMR_DelayMS with the delay parameter.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 371

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

1. The API SYS_TMR_DelayMS returns a valid handle after successful registration. This handle can be later used by the user to
Notes: check the status of the delay using the APl SYS_TMR_DelayStatusGet.

2. The period parameter will be adjusted internally to match the Timer System running frequency.

Example:

case DELAY_START_STATE:
handl e = SYS_TMR Del ayMs (500);
state = DELAY_CHECKSTATE;

br eak;

case DELAY_CHECKSTATE:
if (true == SYS_TMR Del aySt at usGet (handl e))

{
}

el se

{
}

br eak;

state = DELAY_START_STATE;

state = DELAY_CHECKSTATE;

Miscellaneous

Tick Counts Information: The APl SYS_TMR_TickCountGet provides the current tick information.

Examples

Sample Application Tasks

Periodic callback with only one period with 120 ms period:
switch (state)
{
case STATE Init:
i f (SYS_STATUS READY == SYS _TMR St atus(sysTnr Obj ect))
{
state = STATE Confi g_Peri odic;
}
el se
{
state = STATE I|nit;

}

br eak;

case STATE_Config_Peri odic:
handl e = SYS_TMR_Cal | backPeri odic (120, 0, &Test_Call back);
state = STATE Count _Read;

br eak;

case STATE Count _Read:
test Count = SYS_TMR_Ti ckCount Get ();
state = STATE Count _Read;

br eak;

}

Periodic callback with multiple periods 120 ms and 250 ms:
switch (state)
{
case STATE Init:
i f (SYS_STATUS_READY == SYS _TMR St atus(sysTnr Obj ect))
{
state = STATE Confi g_Peri odic;
}
el se
{
state = STATE I|nit;

}

br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 372

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

case STATE Config_Peri odic:
handl el = SYS _TMR _Cal | backPeri odi ¢ (120, 0, &Test_Callbackl);
handl e2 = SYS_TMR Cal | backPeri odi ¢ (250, 0, &Test_Call back2);
state = STATE Count _Read;

br eak;

case STATE_Count _Read:
test Count = SYS_TMR Ti ckCount Get ();
state = STATE Count _Read;

br eak;

}

void Test_Cal | backl (uintptr_t context, uint32_t currTick)
{

/* Assune RAO is connected to one LED */

PORTAbi t s. RAO = ~PORTAbi t s. RAO;

}

void Test_Cal | back2 (uintptr_t context, uint32_t currTick)
{

/* Assunme RAl is connected to another LED */
PORTAbi ts. RAL = ~PORTAbI ts. RAL;

}

One-Shot Callback:
switch (state)

{
case STATE Init:
i f (SYS_STATUS READY == SYS _TMR St atus(sysTnr Obj ect))
{

}

el se

{
}

br eak;

state = STATE Config_Single;

state = STATE I|nit;

case STATE_Config_Single:
SYS_TMR_Cal | backSi ngl e (500, 0, &Test_Call back);
state = STATE Count _Read;

br eak;

case STATE_Count _Read:
test Count = SYS_TMR_Ti ckCount Get ();
state = STATE Count _Read;

br eak;

}

Delay:
switch (state)

{
case STATE Init:

i f (SYS_STATUS READY == SYS TMR St atus(sysTnr Obj ect))
{

}

el se

{
}

br eak;

state = STATE DelayStart;

state = STATE |nit;

case STATE Del ayStart:
dl Handl e = SYS _TMR Del ayMs (500);
state = STATE_ Del ayCheck;

br eak;

case STATE_Del ayCheck:
if (SYS_TMR DELAY_EXPI RED == SYS_TMR Del aySt at usGet (dl Handl e))

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 373

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

state = STATE DelayStart;
el se
state = STATE Del ayCheck;

br eak;

Configuring the Library

Macros

Name Description
_SYS_TMR_CONFIG_TEMPLATE_H This is macro _SYS_TMR_CONFIG_TEMPLATE_H.

Description

The configuration of the Timer System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Timer System Service build. Based on the selections made, the Timer System Service
may support the selected features. These configuration settings will apply to all instances of the Timer System Service.

This header can be placed anywhere, the path of this header needs to be present in the include search path for a successful build. Refer to the
Applications Help section for more details.

_SYS TMR_CONFIG_TEMPLATE_H Macro
File

sys_tmr_config_template.h

C
#define _SYS TMR _CONFI G TEMPLATE_H

Description
This is macro _SYS_TMR_CONFIG_TEMPLATE_H.

Building the Library
This section lists the files that are available in the Timer System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenftinmer.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

sys_tnr.h Timer System Service Library API header file.

Required File(s)

ot All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
- MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynam c/sys_tnr.c Timer System Service Library implementation.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 374

Volume V: MPLAB Harmony Framework

Source File Name

Description

System Service Libraries Help

N/A There are no optional files for this library.

Module Dependencies

The Timer System Service Library depends on the following modules:

» Timer Driver Library

Library Interface

a) System Level Interaction Functions

Name
SYS_TMR_Deinitialize
SYS_TMR_Initialize

SYS_TMR_Status
SYS_TMR_Tasks

b) Timed Callback Functions

Name
SYS_TMR_CallbackStop
SYS_TMR_CallbackPeriodic
SYS_TMR_CallbackSingle

¢) Timed Delay Functions

Name
SYS_TMR_DelayStatusGet
SYS_TMR_DelayMS

d) Timed Object Functions

Name
SYS_TMR_ObjectCountGet
SYS_TMR_ObijectCreate
SYS_TMR_ObjectDelete
SYS_TMR_ObjectReload

LR AR R <

e) Miscellaneous Functions

Name
SYS_TMR_TickCountGet

SYS_TMR_SystemCountGet

¢ ¢ ¢ | ¢ ¢ <

SYS_TMR_ModuleStatusGet

f) Data Types and Constants

Name
SYS_TMR_CALLBACK
SYS_TMR_HANDLE
SYS_TMR_INIT

SYS_TMR_HANDLE_INVALID

SYS_TMR_INDEX_0
SYS_TMR_FLAGS

SYS_TMR_CLIENT_TOLERANCE

SYS_TMR_DRIVER_INDEX
SYS_TMR_FREQUENCY

© 2013-2017 Microchip Technology Inc.

SYS_TMR_TickCountGetLong
SYS_TMR_TickCounterFrequencyGet

Description
Deinitializes the specific module instance of the TMR module

Initializes hardware and data for the instance of the Timer module and opens the specific
module instance.

Returns status of the specific instance of the Timer module.
Maintains the system timer's state machine and implements its ISR.

Description

Stops a periodic timer object.

Creates a permanent timer object that calls back to the client periodically.
Creates a one-shot/single callback timer object.

Description
Checks the status of the previously requested delay timer object.
Creates a timer object that times out after the specified delay.

Description

Returns the current millisecond count of a timer object.
Creates a new timer object.

Deletes an existent timer object.

Reloads an existing timer object.

Description

Provides the current counter value.

Provides the current counter value with 64-bit resolution.
Provides the number of ticks per second

Provides the current system time count value.

SYS_TMR_SystemCountFrequencyGet Provides the current system count frequency.

Returns status of the specific instance of the Timer module.

Description

This data type defines a pointer callback function.

Identifies a client timer object.

Identifies the system timer initialize structure.

Identifies the invalid handle of the system timer.

Timer System Service index definitions.

Defines the types and flags supported by a client timer object.

Sets the accepted client tolerance in %.

Sets the default timer driver object to be used by the system timer service.
Specifies the operating frequency for the system timer, Hz.

MPLAB Harmony v2.06

Timer System Service Library

375

Volume V: MPLAB Harmony Framework System Service Libraries Help

SYS_TMR_FREQUENCY_TOLERANCE |Sets the error tolerance in %.

Timer System Service Library

SYS_TMR_INTERRUPT_NOTIFICATION Activates the notification mechanism from within the timer interrupt.
SYS_TMR_MAX_CLIENT_OBJECTS Sets the maximum number of timer clients that can be active at a given time.
SYS_TMR_MODULE_INIT Sets the default module init value by the system timer service.

SYS_TMR_UNIT_RESOLUTION Specifies the internal units for the time keeping.

Description

This section describes the APIs of the Timer System Service Library.
Refer to each section for a detailed description.

a) System Level Interaction Functions

SYS _TMR_Deinitialize Function

Deinitializes the specific module instance of the TMR module
File

sys_tmr.h
C

void SYS TMR Deinitialize(SYS_MODULE OBJ object);
Returns

None.

Description

This function deinitializes the specific module instance disabling its operation (and any hardware for driver modules). Resets all of the internal data

structures and fields for the specified instance to the default settings.

Remarks

Once the Initialize operation has been called, the De-initialize operation must be called before the Initialize operation can be called again.

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example
SYS_MODULE_0OBJ obj ect ; /'l Returned from SYS TMR Initialize
SYS_STATUS st at us;

SYS TMR Deinitialize (object);
status = SYS TMR Status (object);

i f (SYS_MODULE_UNI NI TI ALI ZED == stat us)

{
/| Check again later if you need to know
/1 when the SYS TMR is deinitialized.
}
Parameters
Parameters Description
object SYS TMR object handle, returned from SYS_TMR_Initialize
Function

void SYS_TMR_Deinitialize (SYS_MODULE_OBJ object)

SYS_TMR_Initialize Function

Initializes hardware and data for the instance of the Timer module and opens the specific module instance.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

376

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

File
sys_tmr.h
C
SYS MODULE _OBJ SYS TMR Initialize(const SYS MODULE | NDEX i ndex, const SYS MODULE INIT * const init);

Returns

If successful, returns a valid handle to an object. Otherwise, it returns SYS_MODULE_OBJ_INVALID. The returned object must be passed as
argument to SYS_TMR_Reinitialize, SYS_TMR_Deinitialize, SYS_TMR_Tasks and SYS_TMR_Status routines.

Description

This function initializes hardware for the instance of the Timer module, using the specified hardware initialization data. It also initializes any internal
data structures.

Remarks

This routine should only be called once during system initialization.

Preconditions

None.
Example
SYS_MODULE_OBJ obj ect Handl g;
SYS TMRINT initConfig;
/'l Populate the timer initialization structure
i ni t Config.nodulelnit.val ue = SYS_MODULE_POWER_RUN_FULL;
initConfig.drvlndex = DRV_TMR_| NDEX_0;
initConfig.tnrFreq = 1000;

obj ectHandle = SYS TMR Initialize (SYS_TMR |INDEX 0, (SYS_MODULE | N T*) & nitConfig);
if (SYS_MODULE_OBJ_| NVALI D == obj ect Handl e)

{
/1 Handl e error

}
Parameters

Parameters Description

index Index for the instance to be initialized

init Pointer to a data structure containing any data necessary to initialize the sys timer. This

pointer may be null if no data is required because static overrides have been provided.
Function
SYS_MODULE_OBJ SYS_TMR_lInitialize (const SYS_MODULE_INDEX index,
const SYS_MODULE_INIT * const init)

SYS _TMR_Status Function

Returns status of the specific instance of the Timer module.
File

sys_tmr.h

C
SYS_STATUS SYS TMR_St at us(SYS_MODULE _OBJ obj ect) ;

Returns
* SYS_STATUS_READY - Indicates that the driver initialization is complete and ready to be used.

Description

This function returns the status of the specific module instance.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 377

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Remarks

Any value greater than SYS_STATUS_READY is also a normal running state in which the driver is ready to accept new operations
¢ SYS_STATUS_ERROR - Indicates that the driver is in an error state.

Any value less than SYS_STATUS_ERROR is also an error state.

e« SYS_MODULE_UNINITIALIZED - Indicates that the driver has been deinitialized.

This value is less than SYS_STATUS_ERROR.

None.

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example
SYS_MODULE_0OBJ obj ect ; /'l Returned from SYS_ TMR Initialize
SYS_STATUS t nr St at us;

tnrStatus = SYS_TMR Status (object);

if (SYS_STATUS ERROR <= tnrStatus)
{

}

Parameters

/'l Handl e error

Parameters Description
object SYS TMR object handle, returned from SYS_TMR_Initialize

Function
SYS_STATUS SYS_TMR_Status (SYS_MODULE_OBJ object)

SYS_TMR_Tasks Function
Maintains the system timer's state machine and implements its ISR.
File
sys_tmr.h
C
void SYS_TMR Tasks(SYS_MODULE OBJ obj ect);
Returns
None.
Description
This function is used to maintain the system timer's internal state machine. It should be always be called from 'Sys_Tasks' function.
Remarks
This function is normally not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks) or by the appropriate raw ISR.
Preconditions
The SYS_TMR_Initialize function must have been called for the specified TMR driver instance.
Example
SYS_MODULE_0OBJ obj ect ; /'l Returned from SYS TMR Initialize

while (true)
{
SYS_TMR Tasks (object);

/1 Do other tasks

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 378

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Parameters

Parameters Description

object SYS TMR object handle, returned from SYS_TMR_Initialize
Function

void SYS_TMR_Tasks (SYS_MODULE_OBJ object)

b) Timed Callback Functions

SYS_TMR_CallbackStop Function
Stops a periodic timer object.
File
sys_tmr.h
C
voi d SYS_TMR_Cal | backSt op(SYS_TMR_HANDLE handl €) ;
Returns
None.
Description
This function deletes a previously created periodic timer object. All the associated resources are released.
Remarks
This function is equivalent to SYS_TMR_ObjectDelete(handle);.
Preconditions
The SYS_TMR_CallbackPeriodic function should have been called to obtain a valid timer handle.

Example

int count, state;
void Test_Call back (uintptr_t context, uint32_t currTick)

{
count ++;
}
voi d Del ayTask ()
{
SYS_TMR_HANDLE handl g;
switch (state)
{
case 1:
handl e = SYS_TMR Cal | backPeriodic (20, 1, Test_Call back);
st at e++;
br eak;
case 2:
if (count > 100)
{
SYS TMR Cal | backStop (handle);
st at e++;
}
count ++;
br eak;
}
}
Parameters
Parameters Description
handle A valid periodic timer handle, returned by a SYS_TMR_CallbackPeriodic call.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 379

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Function
void SYS_TMR_CallbackStop (SYS_TMR_HANDLE handle)

SYS_TMR_CallbackPeriodic Function

Creates a permanent timer object that calls back to the client periodically.
File

sys_tmr.h
C

SYS_TMR_HANDLE SYS _TMR Cal | backPeri odi c(uint32_t periodMs, uintptr_t context, SYS TMR CALLBACK call back);

Returns
A valid timer object handle of type SYS_TMR_HANDLE if the call succeeds. SYS_TMR_HANDLE_INVALID otherwise.

Description

This function creates a timer object that will continuously notify the client once the time-out occurs. The timer object will be deleted by a call to
SYS_TMR_CallbackStop

Remarks

The created timer object is persistent and needs to be deleted with SYS_TMR_CallbackStop when no longer needed.
This function is equivalent to SYS_TMR_ObjectCreate(periodMs, context, callback, SYS_TMR_FLAG_PERIODIC);

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example
SYS_TMR_HANDLE handl e20ns, handl e30ns;

void Test_Call back (uintptr_t context, uint32_t currTick);

handl e20ms SYS_TMR_Cal | backPeriodic (20, 1, Test_Call back);
handl e30ms = SYS_TMR Cal | backPeriodic (20, 2, Test_Call back);

void Test_Call back (uintptr_t context, uint32_t currTick)
{

if (context == 1)

{
/120 s

Parameters

Parameters Description

periodMs Periodic delay in milliseconds

context A client parameter that's passed in the callback function. This will help to identify the callback.
callback Pointer to a callback routine that will be called periodically once the time-out occurs.

Function

SYS_TMR_HANDLE SYS_TMR_CallbackPeriodic (uint32_t periodMs, uintptr_t context,
SYS_TMR_CALLBACK callback)

SYS_TMR_CallbackSingle Function

Creates a one-shot/single callback timer object.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 380

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

File

sys_tmr.h
C

SYS_TMR_HANDLE SYS TMR Cal | backSi ngl e(ui nt32_t periodMs, uintptr_t context, SYS TMR CALLBACK cal |l back);
Returns

A valid timer object handle of type SYS_TMR_HANDLE if the call succeeds. SYS_TMR_HANDLE_INVALID otherwise.

Description

This function creates a self-destroying one-shot/single timer object that will notify the client once the time-out occurs. Once the time-out occurs and
the notification is sent the timer object will be invalidated.

Remarks

The timer object will delete itself and free the associated resources. The SYS_TMR_HANDLE will be no longer valid.
However, SYS_TMR_CallbackStop() can be called to kill the timer object before its time-out expires, if not needed anymore.

This function is equivalent to SYS_TMR_ObjectCreate(periodMs, context, callback, SYS_TMR_FLAG_SINGLE |
SYS_TMR_FLAG_AUTO_DELETE);

Preconditions
The SYS_TMR_Initialize function should have been called before calling this function.

Example

SYS_TMR_HANDLE handl e;
voi d Test_Cal | back20ns (uintptr_t context, uint32_t currTick);

handl e = SYS_ TMR Cal | backSingle (20, 1, Test_Call back20ns);

Parameters
Parameters Description
periodMs Periodic delay in milliseconds
context A client parameter that's passed in the callback function. This will help to identify the callback.
callback Pointer to a callback routine which will be called once
Function

SYS_TMR_HANDLE SYS_TMR_CallbackSingle (uint32_t periodMs, uintptr_t context,
SYS_TMR_CALLBACK callback)

¢) Timed Delay Functions

SYS _TMR_DelayStatusGet Function

Checks the status of the previously requested delay timer object.
File

sys_tmr.h
C

bool SYS _TMR Del aySt at usGet (SYS_TMR_HANDLE handl e) ;

Returns

e true - If the delay is elapsed
» false - If the delay is not elapsed

Description
This function checks the status of the previously requested delay timer object.
Remarks

Once the required delay is achieved and SYS_TMR_DelayStatusGet returns true the SYS_TMR_HANDLE will be no longer valid and the created
timer object is deleted.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 381

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Preconditions
The SYS_TMR_DelayMS function should have been called before calling this function.

Example
SYS_TMR_HANDLE t nr Handl e;

case APP_ADD DELAY:
tnrHandl e = SYS_TMR Del ayMs (50);
state = APP_CHECK_DELAY;
br eak;
case APP_CHECK_DELAY:
if (SYS_TMR Del ayStatusGet (tnrHandle) == true)

{
}

br eak;

state = APP_DELAY_ COMPLETE;

Parameters

Parameters Description

handle A valid timer object handle, returned by SYS_TMR_DelayMS
Function

bool SYS_TMR_DelayStatusGet (SYS_TMR_HANDLE handle)

SYS TMR_DelayMS Function
Creates a timer object that times out after the specified delay.
File
sys_tmr.h
C
SYS_TMR_HANDLE SYS_TMR Del ayMs(ui nt 32_t del ayMs) ;
Returns
A valid timer handler of type SYS_TMR_HANDLE is returned if the call is successful. SYS_TMR_HANDLE_INVALID otherwise.

Description

This function creates a self-destroying timer object that times out after the required delay. The delay status can be checked using
SYS_TMR_DelayStatusGet();

Remarks
Once the required delay is achieved and SYS_TMR_DelayStatusGet() returns true the SYS_TMR_HANDLE will be no longer valid and the created
timer object is deleted.
However, SYS_TMR_CallbackStop() can be called to kill the timer object before its time-out expires, if not needed anymore.
This function is equivalent to SYS_TMR_ObjectCreate(delayMs, 0, 0, SYS_TMR_FLAG_SINGLE | SYS_TMR_FLAG_AUTO_DELETE);

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example
SYS_TMR_HANDLE t nt Handl e;

case APP_ADD DELAY:
tnr Handl e = SYS_TMR Del ayMs (50);
state = APP_CHECK_DELAY;
br eak;
case APP_CHECK DELAY:
if (SYS_TMR Del ayStatusCGet (tnmrHandle) == true)

{

state = APP_DELAY COWPLETE;
}
br eak;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 382

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Parameters

Parameters Description

delayMs Indicates the delay required in milliseconds
Function

SYS_TMR_HANDLE SYS_TMR_DelayMS (uint32_t delayMs)

d) Timed Object Functions

SYS_TMR_ObjectCountGet Function
Returns the current millisecond count of a timer object.
File
sys_tmr.h
C
uint32_t SYS_TMR Obj ect Count Get (SYS_TMR _HANDLE handl e, uint32_t* pRateMs);

Returns

e >0 - the current timer object millisecond count
e =0 - time-out has occurred
e <0 -ifinvalid timer object

Description

This function returns the current count and the time-out values of a timer object, in milliseconds.
Remarks

This function will destroy the auto-delete timer objects if the time-out has occurred.
Preconditions

The SYS_TMR_ObjectCreate function should have been called to get a valid timer object handle.

Parameters
Parameters Description
handle A valid timer handle, returned by a SYS_TMR_ObjectCreate call.
pRateMs pointer to address to store the current object reload rate, in milliseconds. Could be NULL, if
not needed.
Function

uint32_t SYS_TMR_ObjectCountGet (SYS_TMR_HANDLE handle, uint32_t* pRateMs)

SYS_TMR_ObjectCreate Function
Creates a new timer object.

File
sys_tmr.h

C

SYS_TMR_HANDLE SYS TMR Obj ect Create(ui nt32_t periodMs, uintptr_t context, SYS TMR CALLBACK call back,
SYS TMR_FLAGS fl ags);

Returns
A valid timer object handle of type SYS_TMR_HANDLE if the call succeeds. SYS_TMR_HANDLE_INVALID otherwise.

Description

This function creates a new timer object of requested type. If a callback is supplied, it will notify the user once the time-out occurs. The timer object
will be deleted by a call to SYS_TMR_ObjectDelete

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 383

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Remarks

The created timer object needs to be deleted with SYS_TMR_ObjectDelete when no longer needed (unless is auto-delete type).
The auto-delete objects are deleted if the time-out has occurred and the client has been notified, meaning:

* The object has a natification/callback function, which has been called upon time-out.

¢ SYS_TMR_ObjectCountGet()/SYS_TMR_DelayStatusGet has been called

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example
SYS_TMR_HANDLE handl e20ns, handl e30ns;

void Test_Cal | back (uintptr_t context, uint32_t currTick);

handl e20ns
handl e30ms

SYS TMR (bjectCreate (20, 1, Test_Callback, SYS TMR FLAG PERI ODIC);
SYS TMR bjectCreate (30, 2, Test_Callback, SYS TMR FLAG PERI ODIC);

void Test_Cal | back (uintptr_t context, uint32_t currTick)

{
if (context == 1)
{
/120 s
}
el se
{
/130 s
}
}

/1l when done with the tinmer objects
SYS_TMR_(bj ect Del et e(handl e20ns) ;
SYS _TMR_nj ect Del et e(handl e30mns) ;

Parameters
Parameters Description
periodMs Periodic delay in milliseconds
context A client parameter that's passed in the callback function. This will help to identify the callback.
Can be 0 if not needed.
callback Pointer to a callback routine that will be called periodically once the time-out occurs. Can be
NULL if not needed.
flags multiple flags specifying what type of object is created:
*« SYS_TMR_FLAG_PERIODIC - a periodic timer object is requested
¢« SYS_TMR_FLAG_SINGLE - a single timer object is requested
e SYS_TMR_FLAG_AUTO_DELETE - auto-delete object (SYS_TMR_FLAG_SINGLE
only)
Function

SYS_TMR_HANDLE SYS_TMR_ObjectCreate (uint32_t periodMs, uintptr_t context,
SYS_TMR_CALLBACK callback, SYS_TMR_FLAGS flags)

SYS TMR_ObjectDelete Function
Deletes an existent timer object.

File
sys_tmr.h

C
voi d SYS_TMR_(bj ect Del et e(SYS_TMR_HANDLE handl e) ;

Returns

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 384

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Description

This function deletes a timer object and release the associated resources.
Remarks
The created timer objects need to be deleted when it is no longer needed (unless of auto-delete type).

Preconditions
The SYS_TMR_ObjectCreate function should have been called to get a valid timer object handle.

Parameters

Parameters Description

handle A valid timer handle, returned by a SYS_TMR_ObjectCreate call.
Function

void SYS_TMR_ObjectDelete (SYS_TMR_HANDLE handle)

SYS_TMR_ObjectReload Function
Reloads an existing timer object.

File
sys_tmr.h

C

bool SYS TMR Obj ect Rel oad(SYS_TMR HANDLE handl e, uint32_t periodMs, uintptr_t context, SYS TMR_CALLBACK
cal | back) ;

Returns

e true - If the call succeeds
« false - If the call fails

Description

This function changes the parameters for an already existing timer object. The timer object should be valid.
Remarks

The function works for any kind of timer object. It will fail if the timer object was auto-delete type and the time-out has already expired.
Preconditions

The SYS_TMR_ObjectCreate function should have been called to get a valid timer object handle.

Parameters
Parameters Description
handle A valid timer handle, returned by a SYS_TMR_ObjectCreate call.
periodMs Periodic delay in milliseconds
context A client parameter that's passed in the callback function. This will help to identify the callback.
Can be '0' if not needed.
callback Pointer to a callback routine that will be called periodically once the time-out occurs. Can be
NULL if not needed.
Function
bool SYS_TMR_ObjectReload (SYS_TMR_HANDLE handle, uint32_t periodMs,
uintptr_t context, SYS_TMR_CALLBACK callback)

e) Miscellaneous Functions

SYS_TMR_TickCountGet Function

Provides the current counter value.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 385

Volume V: MPLAB Harmony Framework System Service Libraries Help

File

sys_tmr.h
C

uint32_t SYS_TMR_ Ti ckCount Get () ;
Returns

The current system timer tick count value.
Description

This function provides the current tick counter value.
Remarks

None.
Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example

uint32_t count;
count = SYS_TMR_Ti ckCount Get ();

Function
uint32_t SYS_TMR_TickCountGet(void)

SYS _TMR_TickCountGetLong Function
Provides the current counter value with 64-bit resolution.
File
sys_tmr.h

C
uint64_t SYS_TMR_Ti ckCount Get Long() ;

Returns
The current system timer tick count value.

Description

This function provides the current tick counter value as a 64-bit value.

Remarks

None.

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example

uint64_t | Count;
| Count = SYS_TMR_Ti ckCount Get Long ();

Function
uint64_t SYS_TMR_TickCountGetLong(void)

SYS_TMR_TickCounterFrequencyGet Function
Provides the number of ticks per second
File

sys_tmr.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Timer System Service Library

386

Volume V: MPLAB Harmony Framework System Service Libraries Help

C
uint32_t SYS _TMR_Ti ckCount er FrequencyCet () ;
Returns
The current system timer ticks per second.
Description
This function provides the system tick resolution, the number of ticks per second
Remarks

None.

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.
Example

uint32_t tickFrequencyHz;

ti ckFrequencyHz = SYS_TMR_Ti ckCount er FrequencyCGet ();

Function
uint32_t SYS_TMR_TickCounterFrequencyGet (void)

SYS _TMR_SystemCountGet Function
Provides the current system time count value.
File
sys_tmr.h

C
uint64_t SYS _TMR_SystenCount Get () ;

Returns

The current system count value.

Description

Timer System Service Library

This function provides the current system time count value with the greatest possible resolution. It is the number of counts from the system start up

as counted with the system count frequency (SYS_TMR_SystemCountFrequencyGet).
Remarks

None.
Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example

ui nt64_t sysCount;
sysCount = SYS_TMR SystenCount Get ();

/'l the system has been running for sysCount/SYS TMR _Syst enCount FrequencyGet seconds

Function
uinté4_t SYS_TMR_SystemCountGet(void)

SYS_TMR_SystemCountFrequencyGet Function

Provides the current system count frequency.
File

sys_tmr.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

387

Volume V: MPLAB Harmony Framework System Service Libraries Help

C
uint32_t SYS_TMR_Syst enCount Fr equencyCet () ;

Returns

The current system frequency value in Hertz.

Description

Timer System Service Library

This function provides the current system count frequency in Hz. The tick count measurement is based on this value. This is the resolution of the

system time base.
Remarks
None.
Preconditions
The SYS_TMR_Initialize function should have been called before calling this function.

Example

ui nt32_t sysCount Freq;
sysCount Freq = SYS_TMR_Syst enCount FrequencyGet ();

Function
uint32_t SYS_TMR_SystemCountFrequencyGet(void)

SYS_TMR_ModuleStatusGet Function

Returns status of the specific instance of the Timer module.
File

sys_tmr.h

C
SYS_STATUS SYS_TMR Modul eSt at usGet (const SYS_MODULE | NDEX i ndex) ;

Returns

*« SYS_STATUS_READY - Indicates that the service initialization is complete and the timer is ready to be used.

* SYS_STATUS_ERROR - Indicates that the timer service is in an error state

Description

This function returns the status of the specific module instance. It uses the index of the instance rather than an object handle.

Remarks

Any value less than SYS_STATUS_ERROR is also an error state.

* SYS_MODULE_UNINITIALIZED - Indicates that the timer service has been deinitialized
None.

Preconditions

The SYS_TMR_Initialize function should have been called before calling this function.

Example
SYS_STATUS tnrStatus = SYS_TMR Modul eSt at usGet (SYS_TMR_I NDEX_0) ;

if (SYS_STATUS_ERROR <= tnrStatus)

/'l Handl e error

}
Parameters

Parameters Description

object SYS TMR object handle, returned from SYS_TMR_Initialize
Function

SYS_STATUS SYS_TMR_ModuleStatusGet (const SYS_MODULE_INDEX index)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

388

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

f) Data Types and Constants

SYS_TMR_CALLBACK Type
This data type defines a pointer callback function.
File
sys_tmr.h
C
typedef void (* SYS_TMR _CALLBACK) (uintptr_t context, uint32_t currTick);
Description

SYS TMR Callback Function
Defines a pointer to a client notification function that's called when a timer object times out.

Remarks

The client notification function should be kept as short as possible and non blocking. It is meant for some quick operation (like flag setting) and not
for extensive operation. It can be called within interrupt context.

Parameters
Parameters Description
context A client parameter that's passed in the callback function. This will help to identify the callback.
currTick The current system tick when the notification is called.

SYS_TMR_HANDLE Type
Identifies a client timer object.
File
sys_tmr.h
C
typedef uintptr_t SYS TMR_HANDLE;
Description

SYS TMR Handle

This handle identifies a registered instance of a client timer object. Access to a timer object parameters and functionality has to use a valid client
timer handle.

Remarks

None.

SYS_TMR_INIT Structure

Identifies the system timer initialize structure.
File

sys_tmr.h

C

typedef struct {
SYS_MODULE_INI'T nodul el nit;
SYS_MODULE_| NDEX dr vl ndex;
uint32_t tmFreq;

} SYS_ TMRINIT;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 389

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library
Members

Members Description

SYS_MODULE_INIT modulelnit; System module initialization

SYS_MODULE_INDEX drvindex; Driver Module index

uint32_t tmrFreq; System timer required frequency, Hz This is the base frequency for all time keeping
Description

SYS TMR lInitialize structure
This structure identifies the system timer initialize structure.

Remarks

None.

SYS_TMR_HANDLE_INVALID Macro

Identifies the invalid handle of the system timer.
File

sys_tmr.h
C

#define SYS_TMR HANDLE_INVALID ((uintptr_t) -1)
Description

SYS Timer invalid handle macro definition

This enumeration identifies the invalid handle of the system timer.
Remarks

None.

SYS_TMR_INDEX_0 Macro
Timer System Service index definitions.
File
sys_tmr.h
C
#define SYS_ TMR INDEX 0 0
Description
SYS Timer Module Index Numbers
These constants provide Timer System Service index definitions.
Remarks

These constants should be used in place of hard-coded numeric literals.

SYS_TMR_FLAGS Enumeration

Defines the types and flags supported by a client timer object.
File

sys_tmr.h

C

typedef enum {
SYS_TMR_FLAG_PERI ODI C = 0x0001,
SYS_TMR_FLAG SI NGLE = 0x0000,
SYS_TMR_FLAG AUTO DELETE = 0x1000
} SYS_TMR_FLAGS;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

390

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Members
Members Description
SYS_TMR_FLAG_PERIODIC = 0x0001 the timer is of periodic type as the time-out is achieved the timer is reloaded so it will
periodically provide notifications
SYS_TMR_FLAG_SINGLE = 0x0000 the timer is a single shot type it fires just once, when the time-out occurs
SYS_TMR_FLAG_AUTO_DELETE = 0x1000 as time-out occurs, the timer deletes itself only SINGLE and DELAY timer types support this
feature
Description

SYS TMR Flags
This enumerated type describes the types and run time flags supported by a client timer object.

Remarks
Multiple flags can be ORed.

SYS_TMR_CLIENT_TOLERANCE Macro
Sets the accepted client tolerance in %.

File
sys_tmr_config_template.h

C
#def i ne SYS_TMR_CLI ENT_TOLERANCE (10)

Description

Client accepted Tolerance configuration

This macro sets the percentage of the accepted tolerance for the requested client delay. If the system timer cannot achieve a delay within the
specified tolerance it will reject the client request.

Remarks

This error depends on the actual frequency that the system timer uses as a time base.

SYS_TMR_DRIVER_INDEX Macro

Sets the default timer driver object to be used by the system timer service.
File

sys_tmr_config_template.h

C
#define SYS_TMR DRI VER | NDEX (DRV_TMR | NDEX_0)

Description

Default timer driver object configuration
This macro sets the default timer driver object to be used by the system timer service.

Remarks

This value can be overridden by a run time initialization value.

SYS_TMR_FREQUENCY Macro

Specifies the operating frequency for the system timer, Hz.
File

sys_tmr_config_template.h

C
#define SYS_TMR FREQUENCY (1250)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 391

Volume V: MPLAB Harmony Framework System Service Libraries Help Timer System Service Library

Description

System timer running frequency

This macro sets the operating frequency for the system timer, in Hz. All the timing is maintained based on this frequency. This is actually the rate
of the interrupt that's requested to the hardware timer that the system timer uses.

The higher the rate, the better time keeping but the operation of the CPU will be interrupted more frequently (if the underlying timer driver is
working in interrupts) and the result will be a greater overhead. Therefore is is not recommended to go higher than 1 KHz (below 1 ms) when the
timer driver works in interrupts.

Remarks

The system timer cannot obtain timing with a finer resolution than this frequency.
This value can be overridden by a run time initialization value.

The actual running frequency depends on the timer driver running frequency. Select a value that makes sense to minimize the error (see
SYS_TMR_FREQUENCY_TOLERANCE notes).

SYS_TMR_FREQUENCY_TOLERANCE Macro
Sets the error tolerance in %.

File
sys_tmr_config_template.h

C
#define SYS TMR_FREQUENCY_TOLERANCE (10)
Description

Error Tolerance configuration
This macro sets the accepted tolerance percentage for the requested system timer frequency (SYS_TMR_FREQUENCY).

Remarks

This error depends on the time base that the system timer uses (i.e. the underlying timer driver timing frequency). The actual running frequency for
the system timer may be slighlty different from the requested SYS_TMR_FREQUENCY.

SYS_TMR_INTERRUPT_NOTIFICATION Macro
Activates the notification mechanism from within the timer interrupt.

File

sys_tmr_config_template.h

C
#def i ne SYS_TMR_| NTERRUPT_NOTI FI CATI ON (f al se)

Description
Interrupt Notification Mode configuration
This macro enables/disables the notification towards the timer clients to be delivered directly from the underlying time base interrupt routine(the
routine that notifies the system timer itself that another system tick has elapsed).
Enabling interrupt notifications provide a more accurate and responsive callback towards the clients. However the client callbacks need to be non
blocking and as short as possible (the client callback are meant for setting a flag to indicate that further processing is needed and not to execute
lengthy processing inside the callback itself).
 true - Client notification in interrupt enabled
« false - Client notification in interrupt disabled

Remarks

None.

SYS_TMR_MAX_CLIENT_OBJECTS Macro

Sets the maximum number of timer clients that can be active at a given time.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 392

Volume V: MPLAB Harmony Framework System Service Libraries Help

File
sys_tmr_config_template.h
C
#defi ne SYS_TMR_MAX_CLI ENT_OBJECTS (5)

Description

Maximum client timer objects configuration

This macro sets the maximum number of clients that the Timer system service can support.

Remarks

None.

SYS_TMR_MODULE_INIT Macro
Sets the default module init value by the system timer service.
File
sys_tmr_config_template.h

C
#define SYS_TMR MODULE INIT (SYS_MODULE_POAER_RUN_FULL)

Description

Default module init object configuration
This macro sets the default module init value by the system timer service.

Remarks

This value can be overridden by a run time initialization value.

SYS_TMR_UNIT_RESOLUTION Macro
Specifies the internal units for the time keeping.
File

sys_tmr_config_template.h

Timer System Service Library

C
#define SYS_TMR_UNI T_RESCLUTI ON (10000)

Description
System timer internal units resolution
This macro sets the system timer internal time units, in Hz. The higher the value, the better resolution but the range of the delays that can be
obtained is shortened.
A value too low will limit the resolution of delays that can be obtained. In order to be able to obtain milliseconds delays the value should be greater
than 1000 Hz.
The internal timing calculation is done with integer arithmetic so in order to do a precise enough calculation for ms values, a finer time unit needs
to be used.

Remarks

10000 Hz (meaning 0.1 ms units) is the recommended value because the delays than need to be achieved are in the ms range.
The service tries to achieve enough resolution for delays in the range of milliseconds. That means that this value cannot be < 1000 and the service

will fail to initilize if such a value is attempted.

The setting affects the range of delays that can be obtained. delay < (2732 -1)/SYS_TMR_RESOLUTION gives the maximum delay value, in

seconds, that can be achieved For example: delay < 119.3 hours (for SYS_TMR_RESOLUTION == 10000).

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

393

Volume V: MPLAB Harmony Framework

Files

Files

Name
sys_tmr.h
sys_tmr_config_template.h

Description

System Service Libraries Help

Description
Timer System Service interface definition.

Contains configuration definitions that are common to timer system services and aggregates
the configuration files for the system services.

This section lists the source and header files used by the library.

sys_tmr.h
Timer System Service interface definition.
Enumerations

Name
SYS_TMR_FLAGS

Functions

Name
SYS_TMR_CallbackPeriodic
SYS_TMR_CallbackSingle
SYS_TMR_CallbackStop
SYS_TMR_Deinitialize
SYS_TMR_DelayMS
SYS_TMR_DelayStatusGet
SYS_TMR_Initialize

¢ ¢ ¢ ¢ | ¢ €<

SYS_TMR_ModuleStatusGet
SYS_TMR_ObjectCountGet
SYS_TMR_ObijectCreate
SYS_TMR_ObjectDelete
SYS_TMR_ObjectReload
SYS_TMR_Status

SYS_TMR_SystemCountGet
SYS_TMR_Tasks

SYS_TMR_TickCountGet
SYS_TMR_TickCountGetLong

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ O ¢ <

Macros

Name
SYS_TMR_HANDLE_INVALID
SYS_TMR_INDEX_O

Structures

Name
SYS_TMR_INIT

Types

Name
SYS_TMR_CALLBACK
SYS_TMR_HANDLE

© 2013-2017 Microchip Technology Inc.

Description
Defines the types and flags supported by a client timer object.

Description

Creates a permanent timer object that calls back to the client periodically.
Creates a one-shot/single callback timer object.

Stops a periodic timer object.

Deinitializes the specific module instance of the TMR module

Creates a timer object that times out after the specified delay.

Checks the status of the previously requested delay timer object.

Initializes hardware and data for the instance of the Timer module and opens the specific
module instance.

Returns status of the specific instance of the Timer module.
Returns the current millisecond count of a timer object.
Creates a new timer object.

Deletes an existent timer object.

Reloads an existing timer object.

Returns status of the specific instance of the Timer module.

SYS_TMR_SystemCountFrequencyGet Provides the current system count frequency.

Provides the current system time count value.
Maintains the system timer's state machine and implements its ISR.

SYS_TMR_TickCounterFrequencyGet | Provides the number of ticks per second

Provides the current counter value.
Provides the current counter value with 64-bit resolution.

Description
Identifies the invalid handle of the system timer.
Timer System Service index definitions.

Description
Identifies the system timer initialize structure.

Description
This data type defines a pointer callback function.
Identifies a client timer object.

MPLAB Harmony v2.06 394

Timer System Service Library

Volume V: MPLAB Harmony Framework System Service Libraries Help Touch System Service Library

Description

Timer System Service Interface Definition

This file contains the interface definition for the Timer System Service. It provides a way to interact with the Timer subsystem to manage the timing
requests supported by the system.

File Name

sys_tmr.h

Company

Microchip Technology Inc.

sys_tmr_config_template.h

Contains configuration definitions that are common to timer system services and aggregates the configuration files for the system services.

Macros
Name Description
_SYS_TMR_CONFIG_TEMPLATE_H This is macro _SYS_TMR_CONFIG_TEMPLATE_H.
SYS_TMR_CLIENT_TOLERANCE Sets the accepted client tolerance in %.
SYS_TMR_DRIVER_INDEX Sets the default timer driver object to be used by the system timer service.
SYS_TMR_FREQUENCY Specifies the operating frequency for the system timer, Hz.
SYS_TMR_FREQUENCY_TOLERANCE |Sets the error tolerance in %.
SYS_TMR_INTERRUPT_NOTIFICATION |Activates the notification mechanism from within the timer interrupt.
SYS_TMR_MAX_CLIENT_OBJECTS Sets the maximum number of timer clients that can be active at a given time.
SYS_TMR_MODULE_INIT Sets the default module init value by the system timer service.
SYS_TMR_UNIT_RESOLUTION Specifies the internal units for the time keeping.

Description

Timer System Service Configuration Definitions for the Template Version
This file contains configuration definitions that are common to timer system services and aggregates the configuration files for the system services.

File Name
sys_tmr_config_template.h
Company

Microchip Technology Inc.

Touch System Service Library

The Touch System Service is a thin layer specifically for abstracting input from various touch drivers. It is designed to interpret the data from the
touch driver and translate it into single-touch behavior that can be used by other modules in the framework, such as the Graphics Library.

The Touch System Service supports both resistive touch driver (ADC10BIT) and capacitive touch drivers (MTCH6301, MTCH36303, and
mxT336T).

Currently, the Touch System Service is only available to support non-gestural single finger touch screen input.

Introduction

This library provides a a thin layer specifically for abstracting input from various touch drivers, both resistive and capacitive, into a single touch
behavior that can be used by other parts of the application (such as the Graphics Library).

Description

The MPLAB Harmony Graphics Composer is designed to automatically configure the Touch System Service based on the user's
Note: request for touch screen input.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 395

Volume V: MPLAB Harmony Framework System Service Libraries Help Touch System Service Library

Using the Library
This topic describes the basic architecture of the Touch System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_t ouch. h
The interface to the Touch System Service library is defined in the sys_t ouch. h header file.
Please refer to the What is MPLAB Harmony? section for how the Touch System Service interacts with the framework.

Configuring the Library

No configuration is required for the Touch System Service.

Building the Library
This section lists the files that are available in the Touch System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systenitouch.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

Source File Name Description

sys_touch. h Touch System Service Library API header file.

Required File(s)

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
- MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.
Source File Name Description
I'src/sys_touch.c Touch System Service Library implementation.
Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.
Source File Name Description

N/A No optional files are available for the library.

Module Dependencies

The Touch System Service Library is not dependent upon other modules.

Library Interface

a) Functions

Name Description
¢ SYS_TOUCH_CalibrationSet Sets the calibration values for Touch client specified by modulelndex.
¢ SYS_TOUCH._ Initialize Initializes and Enables the Touch Controller.
¢ SYS_TOUCH_Open Opens the touch service specified by the modulelndex and returns a handle to it.
¢ SYS_TOUCH_Tasks Maintains the system service's state machine.
¢ SYS_TOUCH_DrvObjGet Populates the Graphics Object Library (GOL) message structure.
¢ SYS_TOUCH_RegisterObserver Registers an observer to touch events.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 396

Volume V: MPLAB Harmony Framework

b) Data Types and Constants

Name

NVM_READ_FUNC
NVM_SECTORERASE_FUNC
NVM_WRITE_FUNC
SYS_TOUCH_HANDLE
SYS_TOUCH_INDEX
SYS_TOUCH_INIT
SYS_TOUCH_STATUS
SYS_TOUCH_HANDLE_INVALID
TouchShowMessage
SYS_INPUT_DEVICE_TYPE
SYS_INPUT_DEVICE_EVENT
_SYS_TOUCH_H
TOUCH_MSG_0OBJ

Description

System Service Libraries Help Touch System Service Library

Description

typedef for read function pointer

typedef for sector erase function pointer

typedef for write function pointer

Handle for requested Touch interface.

Identifies the Touch System Service module index definitions.
Identifies the touch attributes supported

Identifies the current status/state of touch.

Invalid touch handle.

macro to draw repeating text

Specifies the different user input devices supported in the library.
Specifies the different user input device events supported in the library.
This is macro _SYS_TOUCH_H.

This is type TOUCH_MSG_OBJ.

This section describes the APIs of the Touch System Service Library.

a) Functions

SYS _TOUCH_CalibrationSet Function

Sets the calibration values for Touch client specified by modulelndex.

File
sys_touch.h

C

void SYS_TOUCH Cal i brati onSet (SYS_MODULE_| NDEX nodul el ndex,

Returns

none.

Description

This function sets the calibration values provided by samplePoints for the specified client.

Remarks

None.

Preconditions

Function SYS_TOUCH_Open must have been called before calling this function.

Example

SYS_MODULE_| NDEX nodul el ndex;
SYS_TOUCH_SAMPLE_PO NTS sanpl ePoi nt s;
SYS_TOUCH_Cal i brati onSet (nodul el ndex,

Parameters

Parameters
modulelndex
samplePoints

Function

sanpl ePoi nt s) ;

Description
Identifier for the touch to be opened
sample points

void SYS_TOUCH_CalibrationSet(SYS_MODULE_INDEX moduleindex,

DRV_TOUCH_SAMPLE_POINTS * samplePoints)

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

DRV_TOUCH_SAMPLE_POI NTS * sanpl ePoi nt's) ;

397

Volume V: MPLAB Harmony Framework System Service Libraries Help Touch System Service Library

SYS TOUCH_Initialize Function
Initializes and Enables the Touch Controller.
File
sys_touch.h
C
SYS MODULE OBJ SYS TOUCH I nitialize(const SYS MODULE | NDEX nodul el ndex, const SYS MODULE INIT * const init);
Returns
If successful, returns a valid handle to the DMA module object. Otherwise, it returns SYS_MODULE_OBJ_INVALID.
Description
This function Enables the Touch module. Enable/Disable stop in idle mode feature based on the passed parameter value.
This routine initializes the Touch module making it ready for clients to open and use it. The initialization data is specified by the init parameter.
Remarks
This routine must be called before any other TOUCH systems service routines are called.
Not all features are available on all devices. Refer to the specific device data sheet to determine availability.
Preconditions
None.
Example
SYS_MODULE_OBJ obj ect Handl e;
SYS TOUCH_INI'T touchlnit;

obj ectHandl e = SYS _TOUCH I nitialize(SYS_TOUCH | NDEX 1,
(SYS_MODULE_I NI T*) t ouchl nit);
if (SYS_MODULE_OBJ_| NVALI D == obj ect Handl e)

{
/1 Handl e error
}
Parameters
Parameters Description
init Pointer to the data structure containing any data necessary to initialize the hardware. This
pointer may be null if no data is required and default initialization is to be used.
Function

SYS_MODULE_OBJ SYS_TOUCH_[nitialize (const SYS_MODULE_INIT * const init)

SYS TOUCH_Open Function

Opens the touch service specified by the modulelndex and returns a handle to it.
File

sys_touch.h
C

SYS_TOUCH HANDLE SYS TOUCH Open(SYS_MODULE_I NDEX modul el ndex) ;
Returns

If successful, the routine returns a valid open-instance handle (a number identifying both the caller and the module instance).
If an error occurs, the return value is SYS_TOUCH_HANDLE_INVALID.

Description

This function opens the touch service specified by the index and provides a handle that must be provided to all other client-level operations to
identify the caller.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 398

Volume V: MPLAB Harmony Framework System Service Libraries Help

Remarks

The handle returned is valid until the SYS_TOUCH_lose routine is called.
Preconditions

The SYS_TOUCH_ Initialize function must have been called before calling this function.

Example
SYS_TOUCH_HANDLE handl e;

handl e = SYS_TOUCH_Open(SYS_TOUCH_| NDEX_0) ;
i f (SYS_TOUCH HANDLE | NVALID == handl e)
{

/'l Unable to open the service
/1l May be the service is not initialized or the initialization
/'l is not conplete.

}
Parameters

Parameters Description
modulelndex Identifier for the touch to be opened

Function
SYS_TOUCH_HANDLE SYS_TOUCH_Open(SYS_MODULE_INDEX modulelndex)

SYS TOUCH_Tasks Function
Maintains the system service's state machine.
File
sys_touch.h

C
voi d SYS_TOUCH Tasks(SYS_MODULE_OBJ object);

Returns

None.

Description

Touch System Service Library

This function is used to maintain the Touch system service's internal state machine. This function is specifically designed for non interrupt trigger
implementations(polling mode), and should be used only in polling mode. this function should be called from the SYS_Tasks() function.

Remarks

This function is normally not called directly by an application. It is called by the system's Tasks routine (SYS_Tasks).

Preconditions
Touch should have been initialized by calling SYS_Touch_|Initialize.
Example

/'l 'object' Returned from SYS_Touch_Initialize

while (true)

{
SYS_Touch_Tasks ((object));

/'l Do other tasks

}
Parameters
Parameters Description
object Object handle for the Touch module (returned from SYS_Touch_lInitialize)

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

399

Volume V: MPLAB Harmony Framework System Service Libraries Help

Function
void SYS_Touch_Tasks(SYS_MODULE_OBJ object);

SYS_TOUCH_DrvObjGet Function

Populates the Graphics Object Library (GOL) message structure.
File

sys_touch.h

C
TOUCH_MSG_OBJ* SYS_TOUCH Dr vObj Get (SYS_MODULE_| NDEX nodul el ndex) ;

Returns
None.
Description
This function populates the GOL message structure.
Remarks
None.
Preconditions
None.
Function
(TOUCH_MSG_OBJ*) SYS_TOUCH_DrvObjGet(SYS_MODULE_INDEX modulelndex)

SYS TOUCH_RegisterObserver Function
Registers an observer to touch events.

File
sys_touch.h

C

Touch System Service Library

int SYS_TOUCH Regi st er Cbserver (SYS_MODULE_| NDEX nodul el ndex, void (*callback)(TOUCH MSG OBJ *pMsg));

Returns

none.

Description

This function registers an observer to touch events. The callback function gets called when a valid touch event is detected by the touch system

service.
Remarks
None.
Preconditions
Function SYS_TOUCH_Open must have been called before calling this function.

Example

SYS_MODULE | NDEX nodul el ndex;
voi d cal | backFuncti on(TOUCH_MSG OBJ *pMsg);

SYS_TOUCH_Regi st er Observer (nodul el ndex, cal |l backFunction);

Parameters
Parameters Description
modulelndex Identifier for the touch to be opened

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

400

Volume V: MPLAB Harmony Framework System Service Libraries Help

callback callback function

Function

int SYS_TOUCH_RegisterObserver(SYS_MODULE_INDEX modulelndex,
void (*callback)(TOUCH_MSG_OBJ *pMsqQ));

b) Data Types and Constants

NVM_READ_FUNC Type
File
sys_touch.h

C
typedef uintl6_t (* NVM READ FUNC) (uint32_t);

Description

typedef for read function pointer

NVM_SECTORERASE_FUNC Type

File
sys_touch.h

C
typedef void (* NVM SECTORERASE_FUNC) (uint32_t);

Description

typedef for sector erase function pointer

NVM_WRITE_FUNC Type
File
sys_touch.h

C
typedef void (* NVM WRI TE_FUNC) (uint16_t, uint32_t);

Description

typedef for write function pointer

SYS_TOUCH_HANDLE Type
Handle for requested Touch interface.
File
sys_touch.h

C
typedef uintptr_t SYS TOUCH HANDLE;

Description

Touch System Service handle

Touch System Service Library

A Touch handle is returned by a call to the SYS_TOUCH_Open function. This handle is an identification for the associated touch interface.

The handle once assigned to a client expires when the client calls SYS_TOUCH_Close.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

401

Volume V: MPLAB Harmony Framework

SYS _TOUCH_INDEX Enumeration

System Service Libraries Help

Identifies the Touch System Service module index definitions.

File
sys_touch.h

C

typedef enum {
SYS_TOUCH_| NDEX_0,
SYS_TOUCH | NDEX_1
} SYS TOUCH I NDEX;

Members

Members

SYS_TOUCH_INDEX_0

SYS_TOUCH_INDEX_1
Description

SYS TOUCH Module Index Numbers

Description
First Touch service instance
Second Touch service

These constants provide the Touch System Service index definitions.

Remarks

These constants should be used in place of hard-coded numeric literals.

These values should be passed into the SYS_TOUCH_Initialize and function to identify the driver instance in use.

SYS_TOUCH_INIT Structure
Identifies the touch attributes supported

File

Description
The Module index of the driver to which touch is attached.

This data type defines the touch id and relate with the driver that should be used to initialize touch system.

These functions help to align touch with hardware touch driver specific driver function calls.

sys_touch.h
C

typedef struct {

SYS_MODULE_| NDEX dri ver Modul el ndex;

} SYS_TOUCH INIT;
Members

Members

SYS_MODULE_INDEX driverModulelndex;
Description

Touch System Service Initialization
Remarks

None.

SYS TOUCH_STATUS Enumeration
Identifies the current status/state of touch.
File
sys_touch.h

C

typedef enum {
SYS TOUCH_ERROR = -1,
SYS_TOUCH _UNI NI TI ALI ZED = 0,

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Touch System Service Library

402

Volume V: MPLAB Harmony Framework System Service Libraries Help Touch System Service Library

SYS_TOUCH_BUSY = 1,
SYS_TOUCH_READY = 2
} SYS_TOUCH_STATUS;

Members

Members Description

SYS_TOUCH_ERROR =-1 An unspecified error has occurred.

SYS_TOUCH_UNINITIALIZED =0 The module has not yet been initialized

SYS_TOUCH_BUSY =1 An operation is currently in progress

SYS_TOUCH_READY =2 Any previous operations have succeeded and the service is ready for additional operations
Description

Touch System Service status
Identifies the current status/state of touch.

Remarks

This enumeration is the return type for the status routine.

SYS_TOUCH_HANDLE_INVALID Macro
Invalid touch handle.
File
sys_touch.h
C
#defi ne SYS_TOUCH HANDLE | NVALI D (((SYS_TOUCH HANDLE) -1))

Description

Invalid Touch Handle

If the touch system service is unable to allow an additional clients to use it, it must then return the special value SYS_TOUCH_HANDLE_INVALID.
Callers should check the handle returned for this value to ensure this value was not returned before attempting to call any other driver routines
using the handle.

Remarks

None.

TouchShowMessage Macro
File
sys_touch.h

C
#defi ne TouchShowvessage(pStr, color, x, y, width, height) \
{ \
GFX_Col or Set (gf xI ndex, color); \
whi | e(GFX_Text St ri ngBoxDr aw(gf xI ndex, x,y,w dth, hei ght,pStr, 0, G-X_ALI G\ _LEFT) ==

GFX_STATUS_FAI LURE) ; \
}

Description

macro to draw repeating text

SYS_INPUT_DEVICE_TYPE Enumeration

Specifies the different user input devices supported in the library.
File

sys_touch.h

C
typedef enum {

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 403

Volume V: MPLAB Harmony Framework System Service Libraries Help Touch System Service Library

TYPE_UNKNOMW = 0,
TYPE_KEYBOARD,
TYPE_TQUCHSCREEN

} SYS_I NPUT_DEVI CE_TYPE;

Members
Members Description
TYPE_UNKNOWN =0 Unknown device.
TYPE_KEYBOARD Keyboard.
TYPE_TOUCHSCREEN Touchscreen.
Description

Input Device Type: SYS_INPUT_DEVICE_TYPE
This enumeration specifies the different user input devices supported in the library.

Remarks

Beta. The enum will be relocated to SYS_INPUT when available.

SYS_INPUT_DEVICE_EVENT Enumeration

Specifies the different user input device events supported in the library.
File

sys_touch.h

C

typedef enum {
EVENT_I NVALI D = 0,
EVENT_MOVE,
EVENT_PRESS,
EVENT_STI LLPRESS,
EVENT_RELEASE,
EVENT_KEYSCAN,
EVENT_CHARCODE,
EVENT_SET,
EVENT_SET_STATE,
EVENT_CLR_STATE

} SYS_I NPUT_DEVI CE_EVENT;

Members
Members Description
EVENT_INVALID =0 Invalid event.
EVENT_MOVE Move event.
EVENT_PRESS Press event.
EVENT_STILLPRESS Continuous press event.
EVENT_RELEASE Release event.
EVENT_KEYSCAN Key scan event, parameters for the object ID and keyboard scan code will be sent with this
event in the GFX_GOL_MESSAGE as parameter.
EVENT_CHARCODE Character code event. The actual character code will be sent with this event in the
GFX_GOL_MESSAGE as parameter.
EVENT_SET Generic set event.
EVENT_SET_STATE Generic set state event.
EVENT_CLR_STATE Generic clear state event.
Description

Input device event: INPUT_DEVICE_EVENT
This enumeration specifies the different user input device events supported in the graphics library.

Remarks

None.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 404

Volume V: MPLAB Harmony Framework System Service Libraries Help

_SYS_TOUCH_H Macro
File
sys_touch.h

C
#define _SYS TOUCH H

Description
This is macro _SYS_TOUCH_H.

TOUCH_MSG_OBJ Structure
File

sys_touch.h

C

typedef struct {
uni on {
struct {
uint8_t nMessageTypel D;
uint8_t nSource;
uint1l6_t paranD;
uint16_t parant;
uint16_t paran;

struct {
uint16_t dunmy;
uintl1l6_t nSizeData;
uintptr_t * pData;

}
}
} TOUCH_MsG_0BJ;
Members
Members Description
uint8_t nMessageTypelD; Message type identifier
uint8_t nSource; Message source identifier
uintl6_t paramoO; Message parameter zero
uintl6_t parami; Message parameter one
uintl6_t paramz2; Message parameter two
uintl6_t nSizeData; Size of data that pData identifies
uintptr_t * pData; Pointer to additional message data
Description

This is type TOUCH_MSG_OBJ.

Files
Files

Name Description

sys_touch.h Touch System Service Implementation.
Description

This section lists the source and header files used by the library.

sys_touch.h

Touch System Service Implementation.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Touch System Service Library

405

Volume V: MPLAB Harmony Framework

Enumerations

Functions

¢ ¢ ¢ ¢ ¢ | <

Macros

Structures

Types

Description

Name
SYS_INPUT_DEVICE_EVENT
SYS_INPUT_DEVICE_TYPE
SYS_TOUCH_INDEX
SYS_TOUCH_STATUS

Name
SYS_TOUCH_CalibrationSet
SYS_TOUCH_DrvObjGet
SYS_TOUCH_Initialize
SYS_TOUCH_Open
SYS_TOUCH_RegisterObserver
SYS_TOUCH_Tasks

Name

_SYS_TOUCH_H
SYS_TOUCH_HANDLE_INVALID
TouchShowMessage

Name
SYS_TOUCH_INIT
TOUCH_MSG_0OBJ

Name

NVM_READ_FUNC
NVM_SECTORERASE_FUNC
NVM_WRITE_FUNC
SYS_TOUCH_HANDLE

Touch System Service Implementation

System Service Libraries Help

Description

Watchdog Timer System Service Library

Specifies the different user input device events supported in the library.

Specifies the different user input devices supported in the library.

Identifies the Touch System Service module index definitions.

Identifies the current status/state of touch.

Description

Sets the calibration values for Touch client specified by modulelndex.
Populates the Graphics Object Library (GOL) message structure.

Initializes and Enables the Touch Controller.

Opens the touch service specified by the modulelndex and returns a handle to it.

Registers an observer to touch events.

Maintains the system service's state machine.

Description

This is macro _SYS_TOUCH_H.
Invalid touch handle.

macro to draw repeating text

Description
Identifies the touch attributes supported
This is type TOUCH_MSG_OBJ.

Description

typedef for read function pointer
typedef for sector erase function pointer
typedef for write function pointer
Handle for requested Touch interface.

The Touch System Service provides a simple interface to manage the touch screen drivers. This file implements the core interface routines for the
Touch System Service. This is a resistive touch screen driver that is using the Microchip Graphics Library. The calibration values are automatically
checked (by reading a specific memory location on the non-volatile memory) when initializing the module if the function pointers to the read and
write callback functions are initialized. If the read value is invalid calibration will automatically be executed. Otherwise, the calibration values will be
loaded and used. The driver assumes that the application side provides the read and write routines to a non-volatile memory. If the callback
functions are not initialized, the calibration routine will always be called at startup to initialize the global calibration values. This driver assumes that
the Graphics Library is initialized and will be using the default font of the library.

File Name

sys_touch.c

Company

Microchip Technology Inc.

Watchdog Timer System Service Library

This section describes the Watchdog Timer (WDT) System Service Library.

Introduction

This library provides a low-level abstraction of the Watchdog Timer System Service Library that is available on the Microchip family of
microcontrollers with a convenient C language interface. It can be used to simplify low-level access to the module without the necessity of

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

406

Volume V: MPLAB Harmony Framework System Service Libraries Help Watchdog Timer System Service Library

interacting directly with the module's registers, there by abstracting differences from one microcontroller variant to another.

Description

The primary function of the Watchdog Timer (WDT) is to reset the microcontroller, in the event of a software malfunction, by resetting the device if
it has not been cleared by software. To ensure that application does not hang, the application is required to reset the timer periodically. It can also
be used to wake the device from Sleep or Idle mode. The WDT is a free-running timer which uses the low-power RC oscillator and requires no
external components. Therefore, the WDT will continue to operate even if the system’s primary clock source is stopped.

Using the Library
This topic describes the basic architecture of the Watchdog Timer System Service Library and provides information and examples on its use.

Description

Interface Header File: sys_wdt . h

The interface to the Watchdog Timer System Service library is defined in the sys_wdt . h header file. This file is included by the sys. h file. Any C
language source (. c) file that uses the Watchdog Timer System Service library should include sys. h.

Please refer to the What is MPLAB Harmony? section for how the System Service interacts with the framework.

Abstraction Model

This library provides a low-level abstraction of the Watchdog Timer System Service Library. This topic describes how that abstraction is modeled in
software and introduces the library's interface.

Description

The Watchdog Timer uses the internal Low-Power RC (LPRC) Oscillator as the source of clock. The clock is divided by the configured prescaler
value. There may be one more postscaler divisors and these should be set through the Configuration bits. The divided clock is then used to
increment a counter. If the software does not clear the counter in time, the counter overflows and that will result in reset in normal mode. In Sleep
or Idle mode, the overflow will result in a device wake-up. In Windowed mode, resetting the counter when the count is not in the specified window
will also lead to a reset.

Watchdog Timer Software Abstraction Block Diagram

LPRC Clock division

Clock Seifonal Watchdog .
Prescalar e Timer Qvedio Device

Postscalar Register Wake-up
[~ " apsanal - 1 g }\ .
| Window ey
| check | W ese

Timer Clear

Library Overview

Refer to the System Service Introduction section for how the system services operates in a system.

The library interface routines are divided into various sub-sections, which address one of the blocks of the overall operation of the Watchdog Timer
module.

Library Interface Section Description
Enable and Disable Functions APIs to enable and disable the Watchdog Timer
Clearing the Timer Functions API to clear the Watchdog Timer

How the Library Works
Provides information on how the library works.

Description

Watchdog Timer Initialization:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 407

Volume V: MPLAB Harmony Framework System Service Libraries Help Watchdog Timer System Service Library

For devices that have Windowed mode, use the argument to control the mode. The argument will be discarded for devices that do not have
Windowed mode.

// Enabl e the Watchdog Timer with W ndow npde enabl ed

SYS_WDT_Enabl e(true);

/I Enabl e the Watchdog Tinmer with W ndow node di sabl ed
SYS_WDT_Enabl e(f al se);

/| Some code
SYS_WDT_Di sabl e();

The previous code example will not work if the Watchdog Timer is controlled through the Configuration bits.
Note:

Service the Watchdog Timer:

To ensure the normal operation of the system, the software must periodically clear the Watchdog Timer.
SYS WOT _Tinerd ear();

Not all modes are available on all devices. Please refer to the specific device data sheet to determine the supported modes.
Note:

Configuring the Library

Macros

Name Description
WDT_PLIB_ID Defines the WDT module ID.

Description

The configuration of the Watchdog Timer System Service is based on the file syst em confi g. h.

This header file contains the configuration selection for the Watchdog Timer System Service. Based on the selections made, the Watchdog Timer
System Service may support the selected features. These configuration settings will apply to all instances of the Watchdog Timer System Service.

This header can be placed anywhere; however, the path of this header needs to be present in the include search path for a successful build. Refer
to the Applications Help section for more details.

WDT_PLIB_ID Macro
Defines the WDT module ID.
File
sys_wdt.h

C
#define WDT_PLIB_ID WDT_I D 0

Description

Watchdog timer Peripheral Library ID.
The module ID for the WDT Peripheral Library will be constant as long as there is no more than one WDT in a device.

Remarks

None.

Building the Library
This section lists the files that are available in the Watchdog Timer System Service Library.

Description

The following three tables list and describe the header (. h) and source (. c) files that implement this library. The parent folder for these files is
<install-dir>/framework/systen wdt.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #i ncl ude) by any code that uses this library.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 408

Volume V: MPLAB Harmony Framework System Service Libraries Help Watchdog Timer System Service Library

Source File Name Description

sys_wdt. h Watchdog Timer System Service Library API header file.

Required File(s)

e All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
= MHC when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.
Source File Name Description
I'src/sys_wdt.c Watchdog Timer System Service Library implementation.

Optional File(s)
This table lists and describes the source and header files that may optionally be included if required for the desired implementation.
Source File Name Description

N/A No optional files are available for this library.

Module Dependencies

The Watchdog Timer System Service is not dependent upon other modules.

Library Interface

a) Enable and Disable Functions

Name Description
SYS_WDT_Disable Disables the WDT if it is enabled in software.
SYS_WDT_Enable Enables the WDT. The argument ‘windowModeEnable' will be used only for those devices

that support ‘window mode'. Otherwise, it will be discarded.
b) Clearing the Timer Functions

Name Description
¢ SYS_WDT_TimerClear Reset the WDT.

Description

This section describes the Application Programming Interface (API) functions of the Watchdog Timer System Service.
Refer to each section for a detailed description.

a) Enable and Disable Functions

SYS WDT _Disable Function
Disables the WDT if it is enabled in software.
File
sys_wdt.h
C
voi d SYS WDT_Di sabl e();
Returns

None.

Description

This function disables the WDT if it is enabled in software. If the WDT is enabled through ‘configuration bits' it cannot be disabled using this
function.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 409

Volume V: MPLAB Harmony Framework System Service Libraries Help Watchdog Timer System Service Library

Remarks
The example code doesn't include the settings that should be done through configuration bits.
Preconditions
The WDT should be disabled through ‘configuration bits'.
Example
SYS_WDT_Di sabl e();
Function
void SYS_WDT_Disable (void)

SYS WDT_Enable Function

Enables the WDT. The argument '‘windowModeEnable' will be used only for those devices that support 'window mode'. Otherwise, it will be
discarded.

File
sys_wdt.h
C

voi d SYS_WDT_Enabl e(bool w ndowvbdeEnabl e) ;

Returns

None.

Description

This function enables the WDT. The argument ‘windowModeEnable' will be used only for those devices that support ‘window mode'. Otherwise, the
argument will be discarded. This function could be called multiple times to enable/disable the ‘window mode'.

Remarks

Calling this function is not necessary if the WDT is enabled through Configuration bits.
Preconditions

None.
Example

bool wi ndowMbdeEnabl e = true;

SYS_WDT_Enabl e(wi ndowMbdeEnabl e) ;

Parameters
Parameters Description
windowModeEnable A flag indicates whether to enable/disable the 'window mode'.
¢ true - Enable the 'window mode'
« false - Disable the 'window mode'
Function

void SYS_WDT_Enable (bool windowModeEnable)

b) Clearing the Timer Functions
SYS _WDT_TimerClear Function
Reset the WDT.

File
sys_wdt.h

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 410

Volume V: MPLAB Harmony Framework

C
void SYS WOT TinerC ear();

Returns

None.

Description

System Service Libraries Help

Watchdog Timer System Service Library

This function clears the WDT counter. The WDT should be cleared periodically before the count overflows and forces the device to Reset.

Remarks

Clearing the WDT before the count reaches the window, will cause a reset in Windowed mode.
The example code doesn't include the settings that should be done through Configuration bits.

This feature is not available on all devices. Please refer to the specific device data sheet to determine whether this feature is supported.

Preconditions

None.

Example

/1 Application |oop

whi | e(1)

{
SYS WOT _Tinerdear();
/I user code

}

Function
void SYS_WDT_TimerClear (void)

Files

Files

Name
sys_wdt.h

Description

Description

Watchdog Timer (WDT) System Service interface definition.

This section lists the source and header files used by the library.

sys_wdt.h

Watchdog Timer (WDT) System Service interface definition.

Functions
Name
SYS_WDT_Disable
SYS_WDT_Enable
¢ SYS_WDT_TimerClear
Macros
Name
WDT_PLIB_ID
Description

Description

Disables the WDT if it is enabled in software.

Enables the WDT. The argument ‘windowModeEnable' will be used only for those devices
that support 'window mode'. Otherwise, it will be discarded.

Reset the WDT.

Description
Defines the WDT module ID.

Watchdog Timer System Service Interface Definition

This file contains the interface definition for the WDT System Service. It provides a way to interact with the WDT subsystem to manage the timing

requests supported by the system.

File Name
sys_wdt.h

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

411

Volume V: MPLAB Harmony Framework System Service Libraries Help Watchdog Timer System Service Library

Company

Microchip Technology Inc.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 412

Index

Index

__promptStr macro 57

_SYS_DEBUG_MESSAGE macro 102
_SYS_DEBUG_PRINT macro 103
_SYS_MSG_CONFIG_TEMPLATE__H macro 275
_SYS_RTCC_OBJ_STRUCT structure 353
_SYS_TMR_CONFIG_TEMPLATE_H macro 374
_SYS_TOUCH_H macro 405

A
Abstraction Model 23, 49, 69, 88, 105, 130, 177, 242, 244, 266, 269,
295, 329, 340, 355, 362, 407
Clock System Service Library 23
Command Processor System Service Library 49
Console System Service Library 69
Debug System Service Library 88
Device Control System Service Library 105
DMA System Service Library 130
Interrupt System Service Library 244
Memory System Service Library 266
Messaging System Service Library 269
Ports System Service Library 295
RNG System Service Library 329
RTCC System Service Library 340
Timer System Service Library 362
Watchdog Timer System Service Library 407
Application I/O (ApplO) 72
Application Interaction 179

B
Building the Library 30, 51, 75, 90, 107, 140, 186, 243, 249, 267, 275,
301, 332, 341, 358, 374, 396, 408
Clock System Service Library 30
Command Processor System Service Library 51
Console System Service Library 75
Debug System Service Library 90
Device Control System Service Library 107
DMA System Service Library 140
File System Service Library 186
Interrupt System Service Library 249
Memory System Service Library 267
Messaging System Service Library 275
Ports System Service Library 301
Random Number Generator System Service Library 332
Reset System Service Library 358
RTCC System Service Library 341
Timer System Service Library 374
Touch System Service Library 396
Watchdog Timer System Service Library 408

C

Change Notification 299

Changing the Clock 25

Changing the System Error Level 89
Channel Setup and Management 133
CLK_BUSES_PERIPHERAL enumeration 41
CLK_BUSES_REFERENCE enumeration 42

CLK_SOURCES_PERIPHERAL enumeration 43
CLK_SOURCES_REFERENCE enumeration 43
CLK_SOURCES_SYSTEM enumeration 44

Clock System Service Library 22

Closing a File 175

Command ApplO Console Device Configuration Options 73
Command Processor System Service Library 49
COMMAND_HISTORY_DEPTH macro 58

Comparison of API Names 168

Configuring the Library 27, 50, 73, 90, 107, 140, 184, 243, 247, 267,

273, 301, 331, 341, 357, 374, 396, 408
Clock System Service Library 27
Command Processor System Service Library 50
Console System Service Library 73
Debug System Service Library 90
Device Control System Service Library 107
DMA System Service Library 140
File System Service Library 184
Interrupt System Service Library 247
Memory System Service Library 267
Messaging System Service Library 273
Ports System Service Library 301
Random Number Generator System Service Library 331
RTCC System Service Library 341
Timer System Service Library 374
Touch System Service Library 396
Watchdog Timer System Service Library 408
Console Device Modules 71
Console System Service Library 69
CONSOLE_DEVICE_HANDLE_INVALID macro 86
Core Functionality 50, 106
Core Functions 71
Critical Sections 246

D

DDR_SIZE macro 268

Debug Messages and Error Reporting 89

Debug System Initialization 89

Debug System Service Library 87

Delays 371

Device Control System Service Library 105

Direct Memory Access (DMA) System Service Library 130
Dynamic Configuration 249

E

ESC_SEQ_SIZE macro 58
Examples 372

F

FAT_FS_MAX_LFN macro 236
FAT_FS_MAX_SS macro 236
FAT_FS_USE_LFN macro 236

File EOF 175

File Seek 176

File System Service Library 167

File System Service Library Porting Guide 168
File Tell 176

Files 20, 47, 67, 86, 104, 129, 166, 240, 264, 268, 293, 327, 339, 354,

361, 394, 405, 411

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

413

Index

Clock System Service Library 47

Command Processor System Service Library 67
Console System Service Library 86

Debug System Service Library 104

Device Control System Service Library 129
DMA System Service Library 166

File System Service Library 240

Interrupt System Service Library 264

Memory System Service Library 268

Messaging System Service Library 293

Ports System Service Library 327

Random Number Generator System Service Library 339
Reset System Service 361

RTCC System Service Library 354

System Service Library Overview 20

Timer System Service Library 394

Touch System Service Library 405

Watchdog Timer System Service Library 411

G
Global Control and Status 138

H
How the Library Works 24, 50, 70, 89, 105, 132, 179, 246, 266, 270,
298, 331, 341, 356, 366, 407
Clock System Service Library 24
Command Processor System Service Library 50
Console System Service Library 70
Debug System Service Library 89
Device Control System Service Library 105
DMA System Service Library 132
Interrupt System Service Library 246
Memory System Service Library 266
Messaging System Service Library 270
Ports System Service Library 298
Random Number Generator System Service Library 331
RTCC System Service Library 341
Timer System Service Library 366
Watchdog Timer System Service Library 407

Initialization 24, 168

Initialization and Tasks 132

Input System Service Library 242
INT_EXTERNAL_EDGE_TRIGGER enumeration 264
Interrupt System Service Library 244

Interrupt System Setup 246

Introduction 3, 23, 49, 69, 87, 105, 130, 167, 242, 244, 265, 269, 295,
329, 340, 355, 362, 395, 406

L

L1 Cache 106

Library Interface 7, 30, 51, 76, 90, 108, 141, 187, 250, 267, 276, 301,
332, 341, 358, 375, 396, 409

Clock System Service Library 30

Command Processor System Service Library 51
Console System Service Library 76

Debug System Service Library 90

Device Control System Service Library 108
DMA System Service Library 141

File System Service Library 187

Interrupt System Service Library 250
Memory System Service Library 267
Messaging System Service Library 276
Ports System Service Library 301

Random Number Generator System Service Library 332
RTCC System Service Library 341

System Service Library 7

Timer System Service Library 375

Touch System Service Library 396
Watchdog Timer System Service Library 409

Library Overview 24, 50, 70, 89, 105, 131, 178, 243, 245, 266, 270, 298,

330, 340, 356, 366, 407
Clock System Service Library 24
Command Processor System Service Library 50
Debug System Service Library 89
Device Control System Service Library 105
DMA System Service Library 131
File System Service Library 179
Interrupt System Service Library 245
Memory System Service Library 266
Messaging System Service Library 270
Ports System Service Library 298
Random Number Generator System Service Library 330
RTCC System Service Library 340
System Console System Service Library 70
Timer System Service Library 366
Watchdog Timer System Service Library 407
LINE_TERM macro 58

M

MAIN_RETURN macro 8
MAIN_RETURN_CODE macro 17
MAIN_RETURN_CODES enumeration 12
MAX_CMD_ARGS macro 58
MAX_CMD_GROUP macro 59

Memory System Service Library 265
Memory to Memory Transfer 138
Messaging System Service Library 269
Miscellaneous 300, 372

Mounting a Volume 172

MPLAB Harmony Module System Interface 4

N

NVM_READ_FUNC type 401
NVM_SECTORERASE_FUNC type 401
NVM_WRITE_FUNC type 401

Obtaining System Version Information 7
One Shot Callback 369

Opening a File 173

Oscillator Tuning 26

P

Periodic Callback 368
Peripheral Pin Select 300
Pin Control 298

Ports Control 299

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

414

Index

Ports System Service Library 294
R

Random Number Generator (RNG) System Service Library 329
Reading a File 174

Real-Time Clock and Calendar (RTCC) System Service Library 340
Reset Reason Management 356

Reset System Service Library 355

RTCC_PLIB_ID macro 354

S

Source Interrupt Management 247

Special Considerations 300

Static Configuration 248

STDERR_FILENO macro 84

STDIN_FILENO macro 84

STDOUT_FILENO macro 85

SYS_ASSERT macro 9
SYS_CACHE_COHERENCY enumeration 128
sys_clk.h 47
SYS_CLK_ClockFailureCallbackRegister function 37
SYS_CLK_CONFIG_EXTERNAL_CLOCK macro 29
SYS_CLK_CONFIG_FREQ_ERROR_LIMIT macro 27
SYS_CLK_CONFIG_PRIMARY_XTAL macro 28
SYS_CLK_CONFIG_SECONDARY_XTAL macro 28
SYS_CLK_CONFIG_SYSPLL_INP_DIVISOR macro 28
sys_clk_config_template.h 48
SYS_CLK_CONFIGBIT_USBPLL_DIVISOR macro 28
SYS_CLK_CONFIGBIT_USBPLL_ENABLE macro 29
SYS_CLK_ERROR_HANDLER type 44
SYS_CLK_FRC_TUNING_TYPE type 47
SYS_CLK_FRCTune function 46

SYS_CLK_INIT structure 41

SYS_CLK Initialize function 38
SYS_CLK_PeripheralFrequencyGet function 33
SYS_CLK_PeripheralFrequencySet function 34
SYS_CLK_REFERENCE_SETUP structure 45
SYS_CLK_ReferenceClockSetup function 35
SYS_CLK_ReferenceFrequencyGet function 36
SYS_CLK_ReferenceFrequencySet function 35
SYS_CLK_SecondaryOscillatorDisable function 39
SYS_CLK_SecondaryOscillatorEnable function 40
SYS_CLK_SecondaryOscillatorlsEnabled function 40
SYS_CLK_STATUS enumeration 45
SYS_CLK_SystemFrequencyGet function 31
SYS_CLK_SystemFrequencySet function 32
SYS_CLK_TaskError function 38
SYS_CLK_UPLL_BEFORE_DIV2_FREQ macro 29
SYS_CMD_ADDGRP function 53

SYS_CMD_API structure 60
SYS_CMD_BUFFER_DMA_READY macro 65
SYS_CMD_CallbackFunction type 66
SYS_CMD_CONSOLE_IO_PARAM enumeration 65
SYS_CMD_DATA_RDY_FNC type 61
SYS_CMD_DELETE function 53
SYS_CMD_DESCRIPTOR structure 61
SYS_CMD_DESCRIPTOR_TABLE structure 61
SYS_CMD_DEVICE_LIST structure 62

© 2013-2017 Microchip Technology Inc.

SYS_CMD_DEVICE_MAX_INSTANCES macro 66
SYS_CMD_DEVICE_NODE structure 59
SYS_CMD_EVENT enumeration 67
SYS_CMD_FNC type 62
SYS_CMD_GETC_FNC type 62
SYS_CMD_HANDLE type 63
SYS_CMD_INIT structure 60
SYS_CMD_INIT_DATA structure 63
SYS_CMD_lInitialize function 52
SYS_CMD_MAX_LENGTH macro 59
SYS_CMD_MESSAGE function 54
SYS_CMD_MESSAGE macro 66
SYS_CMD_MSG_FNC type 63
SYS_CMD_PRINT function 54
SYS_CMD_PRINT macro 66
SYS_CMD_PRINT_FNC type 64
SYS_CMD_PUTC_FNC type 64
SYS_CMD_READ_BUFFER_SIZE macro 59
SYS_CMD_READC_FNC type 64
SYS_CMD_READY_TO_READ function 55
SYS_CMD_READY_TO_WRITE function 55
SYS_CMD_RegisterCallback function 56
SYS_CMD_STATE enumeration 65
SYS_CMD_Tasks function 55
SYS_CMDIO_ADD function 57
SYS_CMDIO_GET_HANDLE function 56
sys_command.h 67

sys_common.h 20

sys_console.h 86
SYS_CONSOLE_BUFFER_DMA_READY macro 86
SYS_CONSOLE_Deinitialize function 78
SYS_CONSOLE_DEV_DESC structure 84
SYS_CONSOLE_DEVICE enumeration 83
SYS_CONSOLE_Flush function 82
SYS_CONSOLE_INDEX_0 macro 85
SYS_CONSOLE_INDEX_1 macro 85
SYS_CONSOLE_INDEX_2 macro 85
SYS_CONSOLE_INDEX_3 macro 86
SYS_CONSOLE_INIT structure 84
SYS_CONSOLE_Initialize function 76
SYS_CONSOLE_MESSAGE macro 65
SYS_CONSOLE_OBJECT_INSTANCE structure 83
SYS_CONSOLE_PRINT macro 66
SYS_CONSOLE_Read function 80
SYS_CONSOLE_RegisterCallback function 81
SYS_CONSOLE_Reinitialize function 77
SYS_CONSOLE_Status function 79
SYS_CONSOLE_Tasks function 79
SYS_CONSOLE_Write function 81
SYS_DEBUG macro 98

sys_debug.h 104

SYS_DEBUG_BreakPoint macro 101
SYS_DEBUG_Deinitialize function 91
SYS_DEBUG_ErrorLevelGet function 96
SYS_DEBUG_ErrorLevelSet function 96
SYS_DEBUG_INDEX_0O macro 98
SYS_DEBUG_INIT structure 97
SYS_DEBUG_Initialize function 92

MPLAB Harmony v2.06 415

Index

SYS_DEBUG_Message function 94
SYS_DEBUG_MESSAGE macro 100
SYS_DEBUG_Print function 95

SYS_DEBUG_PRINT macro 101
SYS_DEBUG_Reinitialize function 92
SYS_DEBUG_Status function 93

SYS_DEBUG_Tasks function 94

sys_devcon.h 129

SYS_DEVCON_CacheClean function 116
SYS_DEVCON_CacheCoherencyGet function 117
SYS_DEVCON_CacheCoherencySet function 117
SYS_DEVCON_CacheFlush function 118
SYS_DEVCON_Cachelnit function 118
SYS_DEVCON_CacheSync function 119
SYS_DEVCON_DataCacheAssociativityGet function 122
SYS_DEVCON_DataCacheClean function 120
SYS_DEVCON_DataCacheFlush function 120
SYS_DEVCON_DataCachelnvalidate function 121
SYS_DEVCON_DataCacheLineSizeGet function 122
SYS_DEVCON_DataCacheLinesPerWayGet function 123
SYS_DEVCON_DataCachelock function 121
SYS_DEVCON_DataCacheSizeGet function 123
SYS_DEVCON_Deinitialize function 109
SYS_DEVCON_HANDLE type 127
SYS_DEVCON_INDEX_0 macro 128
SYS_DEVCON_INIT structure 127
SYS_DEVCON_Initialize function 110
SYS_DEVCON_InstructionCacheAssociativityGet function 125
SYS_DEVCON_InstructionCacheFlush function 124
SYS_DEVCON_InstructionCachelnvalidate function 124
SYS_DEVCON_InstructionCacheLineSizeGet function 126
SYS_DEVCON_InstructionCacheLinesPerWayGet function 126
SYS_DEVCON_InstructionCacheLock function 125
SYS_DEVCON_InstructionCacheSizeGet function 126
SYS_DEVCON_JTAGDisable function 114
SYS_DEVCON_JTAGEnable function 114
SYS_DEVCON_PerformanceConfig function 115
SYS_DEVCON_PowerModeEnter function 116
SYS_DEVCON_REeinitialize function 110
SYS_DEVCON_Status function 111
SYS_DEVCON_SystemLock function 113
SYS_DEVCON_SystemUnlock function 113
SYS_DEVCON_Tasks function 112
SYS_DEVCON_TraceDisable function 114
SYS_DEVCON_TraceEnable function 115

sys_dma.h 166
SYS_DMA_CHANNEL_TRANSFER_EVENT_HANDLER type 165
SYS_DMA_ChannelAbortEventSet function 143
SYS_DMA_ChannelAllocate function 145
SYS_DMA_ChannelCRCGet function 156
SYS_DMA_ChannelCRCSet function 157
SYS_DMA_ChannelDestinationTransferredSizeGet function 159
SYS_DMA_ChannelDisable function 145
SYS_DMA_ChannelEnable function 146
SYS_DMA_ChannelErrorGet function 154
SYS_DMA_ChannelForceAbort function 147
SYS_DMA_ChannelForceStart function 148
SYS_DMA_ChannellsBusy function 150

© 2013-2017 Microchip Technology Inc.

SYS_DMA_ChannelRelease function 150
SYS_DMA_ChannelResume function 163
SYS_DMA_ChannelSetup function 158
SYS_DMA_ChannelSetupMatchAbortMode function 151
SYS_DMA_ChannelSourceTransferredSizeGet function 160
SYS_DMA_ChannelSuspend function 163
SYS_DMA_ChannelTransferAdd function 152
SYS_DMA_ChannelTransferEventHandlerSet function 155
SYS_DMA_ChannelTransferSet function 161
SYS_DMA _Initialize function 142
SYS_DMA_IsBusy function 164
SYS_DMA_Resume function 164
SYS_DMA_Suspend function 165
SYS_DMA_TasksError function 142
SYS_DMA_TasksErrorISR function 143
SYS_DMA_TasksISR function 143

SYS_ERROR macro 99

SYS_ERROR_LEVEL enumeration 97
SYS_ERROR_PRINT macro 102

sys_fs.h 240

SYS_FS_AUTOMOUNT_ENABLE macro 184
sys_fs_config_template.h 241
SYS_FS_CurrentDriveGet function 220
SYS_FS_CurrentDriveSet function 221
SYS_FS_CurrentWorkingDirectoryGet function 207
SYS_FS_DirClose function 210
SYS_FS_DirectoryChange function 208
SYS_FS_DirectoryMake function 209
SYS_FS_DirOpen function 210

SYS_FS_DirRead function 211
SYS_FS_DirRewind function 215
SYS_FS_DirSearch function 212
SYS_FS_DriveFormat function 224
SYS_FS_DriveLabelGet function 222
SYS_FS_DriveLabelSet function 223
SYS_FS_DrivePartition function 225
SYS_FS_DriveSectorGet function 227
SYS_FS_ERROR enumeration 229
SYS_FS_Error function 204

SYS_FS_EVENT enumeration 239
SYS_FS_EVENT_HANDLER type 239
SYS_FS_EventHandlerSet function 228
SYS_FS_FILE_DIR_ATTR enumeration 237
SYS_FS_FILE_OPEN_ATTRIBUTES enumeration 231
SYS_FS_FILE_SEEK_CONTROL enumeration 231
SYS_FS_FILE_SYSTEM_TYPE enumeration 232
SYS_FS_FileCharacterPut function 201
SYS_FS_FileClose function 188
SYS_FS_FileDirectoryModeSet function 197
SYS_FS_FileDirectoryRemove function 197
SYS_FS_FileDirectoryRenameMove function 198
SYS_FS_FileDirectoryTimeSet function 199
SYS_FS_FileEOF function 189

SYS_FS_FileError function 204
SYS_FS_FileNameGet function 194
SYS_FS_FileOpen function 190
SYS_FS_FilePrintf function 195

SYS_FS_FileRead function 205

MPLAB Harmony v2.06

416

Index

SYS_FS_FileSeek function 191
SYS_FS_FileSize function 192
SYS_FS_FileStat function 216
SYS_FS_FileStringGet function 202
SYS_FS_FileStringPut function 203
SYS_FS_FileSync function 214
SYS_FS_FileTell function 193
SYS_FS_FileTestError function 196
SYS_FS_FileTruncate function 200
SYS_FS_FileWrite function 206
SYS_FS_FORMAT enumeration 238
SYS_FS_FSTAT structure 232
SYS_FS_FUNCTIONS structure 233
SYS_FS_HANDLE type 235
SYS_FS_HANDLE_INVALID macro 237
SYS_FS_Initialize function 216
SYS_FS_MAX_FILE_SYSTEM_TYPE macro 185
SYS_FS_MAX_FILES macro 185
SYS_FS_MEDIA_MAX_BLOCK_SIZE macro 185
SYS_FS_MEDIA_NUMBER macro 186
SYS_FS_Mount function 217
SYS_FS_REGISTRATION_TABLE structure 235
SYS_FS_RESULT enumeration 235
SYS_FS_Tasks 177

SYS_FS_Tasks function 219

SYS_FS_TIME union 237

SYS_FS_Unmount function 219
SYS_FS_VOLUME_NUMBER macro 186
sys_init.h 22

SYS_Initialize function 10
SYS_INPUT_DEVICE_EVENT enumeration 404
SYS_INPUT_DEVICE_TYPE enumeration 403
sys_int.h 264

SYS_INT_Disable function 255
SYS_INT_DynamicDeregister function 251
SYS_INT_DynamicRegister function 252
SYS_INT_Enable function 256
SYS_INT_ExternallnterruptTriggerSet function 257
SYS_INT_Initialize function 250
SYS_INT_IsEnabled function 256
SYS_INT_PROCESSOR_STATUS type 264
SYS_INT_ShadowRegisterAssign function 252
SYS_INT_ShadowRegisterGet function 253
SYS_INT_SourceDisable function 257
SYS_INT_SourceEnable function 258
SYS_INT_SourcelsEnabled function 259
SYS_INT_SourceStatusClear function 259
SYS_INT_SourceStatusGet function 260
SYS_INT_SourceStatusSet function 261
SYS_INT_StatusGetAndDisable function 254
SYS_INT_StatusRestore function 254
SYS_INT_TASKS_POINTER type 263
SYS_INT_VectorPrioritySet function 262
SYS_INT_VectorSubprioritySet function 262
sys_memory.h 268

SYS_MEMORY_Initialize function 268
SYS_MESSAGE macro 98

sys_module.h 21

© 2013-2017 Microchip Technology Inc.

SYS_MODULE_DEINITIALIZE_ROUTINE type 12
SYS_MODULE_INDEX type 13
SYS_MODULE_INIT union 13
SYS_MODULE_INITIALIZE_ROUTINE type 14
SYS_MODULE_OBJ type 14
SYS_MODULE_OBJ_INVALID macro 18
SYS_MODULE_OBJ_STATIC macro 18
SYS_MODULE_POWER_IDLE_RUN macro 18
SYS_MODULE_POWER_IDLE_STOP macro 19
SYS_MODULE_POWER_OFF macro 19
SYS_MODULE_POWER_RUN_FULL macro 19
SYS_MODULE_POWER_SLEEP macro 20
SYS_MODULE_REINITIALIZE_ROUTINE type 15
SYS_MODULE_STATUS_ROUTINE type 15
SYS_MODULE_TASKS_ROUTINE type 16
sys_msg.h 293

SYS_MSG_BUFFER_SIZES macro 274
sys_msg_config.h 294

SYS_MSG_Deinitialize function 277
SYS_MSG_GotMessages function 285
SYS_MSG_ID2hMsgType function 287
SYS_MSG_INIT structure 289
SYS_MSG._Initialize function 277
SYS_MSG_INSTANCE enumeration 289
SYS_MSG_MailboxClose function 281
SYS_MSG_MAILBOXES_ADDONE macro 292
SYS_MSG_MailboxMessagesGet function 279
SYS_MSG_MailboxMsgAdd function 279
SYS_MSG_MailboxMsgRemove function 280
SYS_MSG_MailboxOpen function 282
SYS_MSG_MailboxReinit function 282
SYS_MSG_MAX_MAILBOXES macro 274
SYS_MSG_MAX_MSGS_DELIVERED macro 274
SYS_MSG_MAX_PRIORITY macro 274
SYS_MSG_MAX_TYPES macro 275
SYS_MSG_MessageDeliver function 285
SYS_MSG_MessageReceive function 286
SYS_MSG_MessageSend function 287
SYS_MSG_NUM_MAILBOX_BITMAPS macro 292
SYS_MSG_OBJECT structure 290
SYS_MSG_QUEUE_STATUS enumeration 290
SYS_MSG_QueueStatus function 288
SYS_MSG_RECEIVE_CALLBACK type 291
SYS_MSG_RESULTS enumeration 291
SYS_MSG_Tasks function 278
SYS_MSG_TypeCreate function 283
SYS_MSG_TypeRemove function 284
SYS_MSGQ_ELEMENT structure 291
SYS_OBJ_HANDLE type 293
SYS_OBJ_HANDLE_INVALID macro 292
SYS_OBJ_HANDLE_STATIC macro 292
sys_ports.h 327

SYS_PORTS_ChangeNotificationDisable function 319
SYS_PORTS_ChangeNotificationEnable function 320
SYS_PORTS_ChangeNotificationGlobalDisable function 320
SYS_PORTS_ChangeNotificationGlobalEnable function 321
SYS_PORTS_ChangeNotificationInldleModeDisable function 321
SYS_PORTS_ChangeNotificationIinldleModeEnable function 322

MPLAB Harmony v2.06

417

Index

SYS_PORTS_ChangeNatificationPullUpDisable function 322
SYS_PORTS_ChangeNotificationPullUpEnable function 323

SYS_RTCC_AlarmDateGet function 342
SYS_RTCC_AlarmDateSet function 343

SYS_PORTS_Clear function 313
SYS_PORTS_DirectionGet function 313
SYS_PORTS_DirectionSelect function 314
SYS_PORTS_Initialize function 319
SYS_PORTS_InterruptEnable function 325
SYS_PORTS_InterruptStatusGet function 326
SYS_PORTS_LatchedGet function 327
SYS_PORTS_OpenDrainDisable function 315
SYS_PORTS_OpenDrainEnable function 315
SYS_PORTS_PinClear function 309
SYS_PORTS_PinDirectionSelect function 310
SYS_PORTS_PinLatchedGet function 310
SYS_PORTS_PinModeSelect function 303
SYS_PORTS_PinOpenDrainDisable function 304
SYS_PORTS_PinOpenDrainEnable function 304
SYS_PORTS_PinPullDownDisable function 311
SYS_PORTS_PinPullDownEnable function 312
SYS_PORTS_PinPullUpDisable function 305
SYS_PORTS_PinPullUpEnable function 306
SYS_PORTS_PinRead function 306
SYS_PORTS_PinSet function 307
SYS_PORTS_PinToggle function 308
SYS_PORTS_PinWrite function 308
SYS_PORTS_Read function 316
SYS_PORTS_Remaplnput function 324
SYS_PORTS_RemapOutput function 324
SYS_PORTS_Set function 316
SYS_PORTS_Toggle function 317
SYS_PORTS_Write function 318
SYS_POWER_MODE enumeration 128
SYS_PRINT macro 99

sys_random.h 339
sys_random_config_template.h 339
SYS_RANDOM_CRYPTO_SEED_SIZE macro 331
SYS_RANDOM_CryptoBlockGet function 333
SYS_RANDOM_CryptoByteGet function 333
SYS_RANDOM_CryptoEntropyAdd function 334
SYS_RANDOM_CryptoGet function 334
SYS_RANDOM_CryptoSeedSet function 335
SYS_RANDOM_CryptoSeedSizeGet function 336
SYS_RANDOM_Deinitialize function 336
SYS_RANDOM_INIT structure 338
SYS_RANDOM._Initialize function 337
SYS_RANDOM_PseudoGet function 337
SYS_RANDOM_PseudoSeedSet function 338
sys_reset.h 361

SYS_RESET_H macro 361
SYS_RESET_NMIDelayCountSet function 360
SYS_RESET_PART_SPECIFIC macro 361
SYS_RESET_ReasonClear function 359
SYS_RESET_ReasonGet function 359
SYS_RESET_SoftwareReset function 360
sys_rtcc.h 354
SYS_RTCC_ALARM_CALLBACK type 351
SYS_RTCC_ALARM_HANDLE type 352
SYS_RTCC_ALARM_HANDLE_INVALID macro 353

© 2013-2017 Microchip Technology Inc.

SYS_RTCC_AlarmDisable function 343
SYS_RTCC_AlarmEnable function 344
SYS_RTCC_AlarmRegister function 344
SYS_RTCC_AlarmTimeGet function 345
SYS_RTCC_AlarmTimeSet function 345
SYS_RTCC_BCD_DATE type 352
SYS_RTCC_BCD_TIME type 352
SYS_RTCC_DateGet function 346
SYS_RTCC_DateSet function 347
SYS_RTCC_Initialize function 351
SYS_RTCC_OBJECT structure 353
SYS_RTCC_Start function 347
SYS_RTCC_STATUS enumeration 353
SYS_RTCC_Stop function 348
SYS_RTCC_Tasks function 348
SYS_RTCC_TimeBCD2Seconds function 349
SYS_RTCC_TimeGet function 349
SYS_RTCC_TimeSeconds2BCD function 350
SYS_RTCC_TimeSet function 350
SYS_STATUS enumeration 17

SYS_Tasks function 10

sys_tmr.h 394

SYS_TMR_CALLBACK type 389
SYS_TMR_CallbackPeriodic function 380
SYS_TMR_CallbackSingle function 380
SYS_TMR_CallbackStop function 379
SYS_TMR_CLIENT_TOLERANCE macro 391
sys_tmr_config_template.h 395
SYS_TMR_Deinitialize function 376
SYS_TMR_DelayMS function 382
SYS_TMR_DelayStatusGet function 381
SYS_TMR_DRIVER_INDEX macro 391
SYS_TMR_FLAGS enumeration 390
SYS_TMR_FREQUENCY macro 391
SYS_TMR_FREQUENCY_TOLERANCE macro 392
SYS_TMR_HANDLE type 389
SYS_TMR_HANDLE_INVALID macro 390
SYS_TMR_INDEX_0 macro 390
SYS_TMR_INIT structure 389
SYS_TMR_Initialize function 376
SYS_TMR_INTERRUPT_NOTIFICATION macro 392
SYS_TMR_MAX_CLIENT_OBJECTS macro 392
SYS_TMR_MODULE_INIT macro 393
SYS_TMR_ModuleStatusGet function 388
SYS_TMR_ObjectCountGet function 383
SYS_TMR_ObjectCreate function 383
SYS_TMR_ObjectDelete function 384
SYS_TMR_ObjectReload function 385
SYS_TMR_Status function 377
SYS_TMR_SystemCountFrequencyGet function 387
SYS_TMR_SystemCountGet function 387
SYS_TMR_Tasks function 378
SYS_TMR_TickCounterFrequencyGet function 386
SYS_TMR_TickCountGet function 385
SYS_TMR_TickCountGetLong function 386
SYS_TMR_UNIT_RESOLUTION macro 393

MPLAB Harmony v2.06

418

Index

sys_touch.h 405

SYS_TOUCH_CalibrationSet function 397 v
SYS_TOUCH_DrvObjGet function 400 Volume V: MPLAB Harmony Framework Reference 2
SYS_TOUCH_HANDLE type 401 W

SYS_TOUCH_HANDLE_INVALID macro 403
SYS_TOUCH_INDEX enumeration 402
SYS_TOUCH_INIT structure 402
SYS_TOUCH_Initialize function 398
SYS_TOUCH_Open function 398
SYS_TOUCH_RegisterObserver function 400
SYS_TOUCH_STATUS enumeration 402
SYS_TOUCH_Tasks function 399
SYS_VersionGet macro 11
SYS_VersionStrGet macro 11

sys_wdt.h 411

SYS_WDT_Disable function 409
SYS_WDT_Enable function 410
SYS_WDT_TimerClear function 410
System Configuration 171

System Functions 70

System Interaction 50, 105, 367

System Service Libraries Help 3

System Service Overview 3

System State Machine 3

system.h 22

T

Timer System Service Library 362
Touch System Service Library 395
TOUCH_MSG_OBJ structure 405
TouchShowMessage macro 403
Triggering a Software Reset 357

U

UART Console Device 72

UART Console Device Configuration Options 74
USB-CDC Console Device 72

USB-CDC Console Device Configuration Options 73
Using Status Functions 26

Using the File System 180

Using the Library 23, 49, 69, 88, 105, 130, 177, 242, 244, 266, 269, 295,
329, 340, 355, 362, 396, 407

Clock System Service Library 23

Command Processor System Service Library 49

Console System Service Library 69

Debug System Service Library 88

Device Control System Service Library 105

DMA System Service Library 130

Interrupt System Service Library 244

Memory System Service Library 266

Messaging System Service Library 269

Port System Service Library 295

RNG System Service Library 329

RTCC System Service Library 340

Timer System Service Library 362

Touch System Service Library 396

Watchdog Timer System Service Library 407
Using the SYS_ASSERT Macro 6

Watchdog Timer System Service Library 406
WDT_PLIB_ID macro 408
Writing a File 174

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

419

	MPLAB Harmony Help
	Volume V: MPLAB Harmony Framework Reference
	System Service Libraries Help
	System Service Overview
	Introduction
	System State Machine
	MPLAB Harmony Module System Interface
	Using the SYS_ASSERT Macro
	Obtaining System Version Information
	Library Interface
	Main Function Support Macro
	MAIN_RETURN Macro

	System Assert Macro
	SYS_ASSERT Macro

	System State Machine Functions
	SYS_Tasks Function
	SYS_Initialize Function

	Version Functions
	SYS_VersionGet Macro
	SYS_VersionStrGet Macro

	Data Types and Constants
	MAIN_RETURN_CODES Enumeration
	SYS_MODULE_DEINITIALIZE_ROUTINE Type
	SYS_MODULE_INDEX Type
	SYS_MODULE_INIT Union
	SYS_MODULE_INITIALIZE_ROUTINE Type
	SYS_MODULE_OBJ Type
	SYS_MODULE_REINITIALIZE_ROUTINE Type
	SYS_MODULE_STATUS_ROUTINE Type
	SYS_MODULE_TASKS_ROUTINE Type
	SYS_STATUS Enumeration
	MAIN_RETURN_CODE Macro
	SYS_MODULE_OBJ_INVALID Macro
	SYS_MODULE_OBJ_STATIC Macro
	SYS_MODULE_POWER_IDLE_RUN Macro
	SYS_MODULE_POWER_IDLE_STOP Macro
	SYS_MODULE_POWER_OFF Macro
	SYS_MODULE_POWER_RUN_FULL Macro
	SYS_MODULE_POWER_SLEEP Macro

	Files
	sys_common.h
	sys_module.h
	system.h
	sys_init.h

	Clock System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Initialization
	Changing the Clock
	Using Status Functions
	Oscillator Tuning

	Configuring the Library
	SYS_CLK_CONFIG_FREQ_ERROR_LIMIT Macro
	SYS_CLK_CONFIG_PRIMARY_XTAL Macro
	SYS_CLK_CONFIG_SECONDARY_XTAL Macro
	SYS_CLK_CONFIG_SYSPLL_INP_DIVISOR Macro
	SYS_CLK_CONFIGBIT_USBPLL_DIVISOR Macro
	SYS_CLK_CONFIGBIT_USBPLL_ENABLE Macro
	SYS_CLK_CONFIG_EXTERNAL_CLOCK Macro
	SYS_CLK_UPLL_BEFORE_DIV2_FREQ Macro

	Building the Library
	Library Interface
	a) System Clock Functions
	SYS_CLK_SystemFrequencyGet Function
	SYS_CLK_SystemFrequencySet Function

	b) Peripheral Clock Functions
	SYS_CLK_PeripheralFrequencyGet Function
	SYS_CLK_PeripheralFrequencySet Function

	c) Reference Clock Functions
	SYS_CLK_ReferenceClockSetup Function
	SYS_CLK_ReferenceFrequencySet Function
	SYS_CLK_ReferenceFrequencyGet Function

	d) Clock Failure Functions
	SYS_CLK_ClockFailureCallbackRegister Function
	SYS_CLK_TaskError Function

	e) Initialization Functions
	SYS_CLK_Initialize Function

	f) Secondary Oscillator Functions
	SYS_CLK_SecondaryOscillatorDisable Function
	SYS_CLK_SecondaryOscillatorEnable Function
	SYS_CLK_SecondaryOscillatorIsEnabled Function

	g) Data Types and Constants
	SYS_CLK_INIT Structure
	CLK_BUSES_PERIPHERAL Enumeration
	CLK_BUSES_REFERENCE Enumeration
	CLK_SOURCES_PERIPHERAL Enumeration
	CLK_SOURCES_REFERENCE Enumeration
	CLK_SOURCES_SYSTEM Enumeration
	SYS_CLK_ERROR_HANDLER Type
	SYS_CLK_REFERENCE_SETUP Structure
	SYS_CLK_STATUS Enumeration
	SYS_CLK_FRCTune Function
	SYS_CLK_FRC_TUNING_TYPE Type

	Files
	sys_clk.h

	Command Processor System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	System Interaction
	Core Functionality

	Configuring the Library
	Building the Library
	Library Interface
	a) System Interaction Functions
	SYS_CMD_Initialize Function
	SYS_CMD_DELETE Function
	SYS_CMD_ADDGRP Function
	SYS_CMD_MESSAGE Function
	SYS_CMD_PRINT Function
	SYS_CMD_READY_TO_READ Function
	SYS_CMD_READY_TO_WRITE Function
	SYS_CMD_Tasks Function
	SYS_CMD_RegisterCallback Function

	b) Command I/O Functions
	SYS_CMDIO_GET_HANDLE Function
	SYS_CMDIO_ADD Function

	c) Data Types and Constants
	_promptStr Macro
	COMMAND_HISTORY_DEPTH Macro
	ESC_SEQ_SIZE Macro
	LINE_TERM Macro
	MAX_CMD_ARGS Macro
	MAX_CMD_GROUP Macro
	SYS_CMD_MAX_LENGTH Macro
	SYS_CMD_READ_BUFFER_SIZE Macro
	SYS_CMD_DEVICE_NODE Structure
	SYS_CMD_INIT Structure
	SYS_CMD_API Structure
	SYS_CMD_DATA_RDY_FNC Type
	SYS_CMD_DESCRIPTOR Structure
	SYS_CMD_DESCRIPTOR_TABLE Structure
	SYS_CMD_DEVICE_LIST Structure
	SYS_CMD_FNC Type
	SYS_CMD_GETC_FNC Type
	SYS_CMD_HANDLE Type
	SYS_CMD_INIT_DATA Structure
	SYS_CMD_MSG_FNC Type
	SYS_CMD_PRINT_FNC Type
	SYS_CMD_PUTC_FNC Type
	SYS_CMD_READC_FNC Type
	SYS_CMD_STATE Enumeration
	SYS_CMD_CONSOLE_IO_PARAM Enumeration
	SYS_CMD_BUFFER_DMA_READY Macro
	SYS_CONSOLE_MESSAGE Macro
	SYS_CONSOLE_PRINT Macro
	SYS_CMD_DEVICE_MAX_INSTANCES Macro
	SYS_CMD_MESSAGE Macro
	SYS_CMD_PRINT Macro
	SYS_CMD_CallbackFunction Type
	SYS_CMD_EVENT Enumeration

	Files
	sys_command.h

	Console System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	System Functions
	Core Functions
	Console Device Modules
	Application I/O (AppIO)
	USB-CDC Console Device
	UART Console Device

	Configuring the Library
	Command AppIO Console Device Configuration Options
	USB-CDC Console Device Configuration Options
	UART Console Device Configuration Options

	Building the Library
	Library Interface
	a) System Functions
	SYS_CONSOLE_Initialize Function
	SYS_CONSOLE_Reinitialize Function
	SYS_CONSOLE_Deinitialize Function
	SYS_CONSOLE_Tasks Function
	SYS_CONSOLE_Status Function

	b) Core Functions
	SYS_CONSOLE_Read Function
	SYS_CONSOLE_Write Function
	SYS_CONSOLE_RegisterCallback Function
	SYS_CONSOLE_Flush Function

	c) Data Types and Constants
	SYS_CONSOLE_OBJECT_INSTANCE Structure
	SYS_CONSOLE_DEVICE Enumeration
	SYS_CONSOLE_DEV_DESC Structure
	SYS_CONSOLE_INIT Structure
	STDERR_FILENO Macro
	STDIN_FILENO Macro
	STDOUT_FILENO Macro
	SYS_CONSOLE_INDEX_0 Macro
	SYS_CONSOLE_INDEX_1 Macro
	SYS_CONSOLE_INDEX_2 Macro
	SYS_CONSOLE_INDEX_3 Macro
	CONSOLE_DEVICE_HANDLE_INVALID Macro
	SYS_CONSOLE_BUFFER_DMA_READY Macro

	Files
	sys_console.h

	Debug System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Debug System Initialization
	Debug Messages and Error Reporting
	Changing the System Error Level

	Configuring the Library
	Building the Library
	Library Interface
	a) System Functions
	SYS_DEBUG_Deinitialize Function
	SYS_DEBUG_Initialize Function
	SYS_DEBUG_Reinitialize Function
	SYS_DEBUG_Status Function
	SYS_DEBUG_Tasks Function
	SYS_DEBUG_Message Function
	SYS_DEBUG_Print Function

	b) Changing System Error Level Functions
	SYS_DEBUG_ErrorLevelGet Function
	SYS_DEBUG_ErrorLevelSet Function

	c) Data Types and Constants
	SYS_DEBUG_INIT Structure
	SYS_ERROR_LEVEL Enumeration
	SYS_DEBUG Macro
	SYS_DEBUG_INDEX_0 Macro
	SYS_MESSAGE Macro
	SYS_ERROR Macro
	SYS_PRINT Macro
	SYS_DEBUG_MESSAGE Macro
	SYS_DEBUG_PRINT Macro
	SYS_DEBUG_BreakPoint Macro
	SYS_ERROR_PRINT Macro
	_SYS_DEBUG_MESSAGE Macro
	_SYS_DEBUG_PRINT Macro

	Files
	sys_debug.h

	Device Control System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	System Interaction
	Core Functionality
	L1 Cache

	Configuring the Library
	Building the Library
	Library Interface
	a) System Interaction Functions
	SYS_DEVCON_Deinitialize Function
	SYS_DEVCON_Initialize Function
	SYS_DEVCON_Reinitialize Function
	SYS_DEVCON_Status Function
	SYS_DEVCON_Tasks Function

	b) Core Functionality Functions
	SYS_DEVCON_SystemLock Function
	SYS_DEVCON_SystemUnlock Function
	SYS_DEVCON_JTAGDisable Function
	SYS_DEVCON_JTAGEnable Function
	SYS_DEVCON_TraceDisable Function
	SYS_DEVCON_TraceEnable Function
	SYS_DEVCON_PerformanceConfig Function
	SYS_DEVCON_PowerModeEnter Function

	c) Cache Functions
	SYS_DEVCON_CacheClean Function
	SYS_DEVCON_CacheCoherencyGet Function
	SYS_DEVCON_CacheCoherencySet Function
	SYS_DEVCON_CacheFlush Function
	SYS_DEVCON_CacheInit Function
	SYS_DEVCON_CacheSync Function
	SYS_DEVCON_DataCacheClean Function
	SYS_DEVCON_DataCacheFlush Function
	SYS_DEVCON_DataCacheInvalidate Function
	SYS_DEVCON_DataCacheLock Function
	SYS_DEVCON_DataCacheAssociativityGet Function
	SYS_DEVCON_DataCacheLineSizeGet Function
	SYS_DEVCON_DataCacheLinesPerWayGet Function
	SYS_DEVCON_DataCacheSizeGet Function
	SYS_DEVCON_InstructionCacheFlush Function
	SYS_DEVCON_InstructionCacheInvalidate Function
	SYS_DEVCON_InstructionCacheLock Function
	SYS_DEVCON_InstructionCacheAssociativityGet Function
	SYS_DEVCON_InstructionCacheLineSizeGet Function
	SYS_DEVCON_InstructionCacheLinesPerWayGet Function
	SYS_DEVCON_InstructionCacheSizeGet Function

	d) Data Types and Constants
	SYS_DEVCON_HANDLE Type
	SYS_DEVCON_INIT Structure
	SYS_DEVCON_INDEX_0 Macro
	SYS_CACHE_COHERENCY Enumeration
	SYS_POWER_MODE Enumeration

	Files
	sys_devcon.h

	Direct Memory Access (DMA) System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Initialization and Tasks
	Channel Setup and Management
	Global Control and Status
	Memory to Memory Transfer

	Configuring the Library
	Building the Library
	Library Interface
	a) Initialization and Task Functions
	SYS_DMA_TasksError Function
	SYS_DMA_Initialize Function
	SYS_DMA_TasksErrorISR Function
	SYS_DMA_TasksISR Function

	b) Channel Setup and Management Functions
	SYS_DMA_ChannelAbortEventSet Function
	SYS_DMA_ChannelAllocate Function
	SYS_DMA_ChannelDisable Function
	SYS_DMA_ChannelEnable Function
	SYS_DMA_ChannelForceAbort Function
	SYS_DMA_ChannelForceStart Function
	SYS_DMA_ChannelIsBusy Function
	SYS_DMA_ChannelRelease Function
	SYS_DMA_ChannelSetupMatchAbortMode Function
	SYS_DMA_ChannelTransferAdd Function
	SYS_DMA_ChannelErrorGet Function
	SYS_DMA_ChannelTransferEventHandlerSet Function
	SYS_DMA_ChannelCRCGet Function
	SYS_DMA_ChannelCRCSet Function
	SYS_DMA_ChannelSetup Function
	SYS_DMA_ChannelDestinationTransferredSizeGet Function
	SYS_DMA_ChannelSourceTransferredSizeGet Function
	SYS_DMA_ChannelTransferSet Function
	SYS_DMA_ChannelResume Function
	SYS_DMA_ChannelSuspend Function

	c) Global Control and Status Functions
	SYS_DMA_IsBusy Function
	SYS_DMA_Resume Function
	SYS_DMA_Suspend Function

	d) Data Types and Constants
	SYS_DMA_CHANNEL_TRANSFER_EVENT_HANDLER Type

	Files
	sys_dma.h

	File System Service Library
	Introduction
	File System Service Library Porting Guide
	Comparison of API Names
	Initialization
	System Configuration
	Mounting a Volume
	Opening a File
	Reading a File
	Writing a File
	Closing a File
	File EOF
	File Tell
	File Seek
	SYS_FS_Tasks

	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Application Interaction
	Using the File System

	Configuring the Library
	SYS_FS_AUTOMOUNT_ENABLE Macro
	SYS_FS_MAX_FILE_SYSTEM_TYPE Macro
	SYS_FS_MAX_FILES Macro
	SYS_FS_MEDIA_MAX_BLOCK_SIZE Macro
	SYS_FS_MEDIA_NUMBER Macro
	SYS_FS_VOLUME_NUMBER Macro

	Building the Library
	Library Interface
	a) File and Directory Operation Functions
	SYS_FS_FileClose Function
	SYS_FS_FileEOF Function
	SYS_FS_FileOpen Function
	SYS_FS_FileSeek Function
	SYS_FS_FileSize Function
	SYS_FS_FileTell Function
	SYS_FS_FileNameGet Function
	SYS_FS_FilePrintf Function
	SYS_FS_FileTestError Function
	SYS_FS_FileDirectoryModeSet Function
	SYS_FS_FileDirectoryRemove Function
	SYS_FS_FileDirectoryRenameMove Function
	SYS_FS_FileDirectoryTimeSet Function
	SYS_FS_FileTruncate Function
	SYS_FS_FileCharacterPut Function
	SYS_FS_FileStringGet Function
	SYS_FS_FileStringPut Function
	SYS_FS_Error Function
	SYS_FS_FileError Function
	SYS_FS_FileRead Function
	SYS_FS_FileWrite Function
	SYS_FS_CurrentWorkingDirectoryGet Function
	SYS_FS_DirectoryChange Function
	SYS_FS_DirectoryMake Function
	SYS_FS_DirClose Function
	SYS_FS_DirOpen Function
	SYS_FS_DirRead Function
	SYS_FS_DirSearch Function
	SYS_FS_FileSync Function
	SYS_FS_DirRewind Function
	SYS_FS_FileStat Function

	b) General Operation Functions
	SYS_FS_Initialize Function
	SYS_FS_Mount Function
	SYS_FS_Tasks Function
	SYS_FS_Unmount Function
	SYS_FS_CurrentDriveGet Function
	SYS_FS_CurrentDriveSet Function
	SYS_FS_DriveLabelGet Function
	SYS_FS_DriveLabelSet Function
	SYS_FS_DriveFormat Function
	SYS_FS_DrivePartition Function
	SYS_FS_DriveSectorGet Function
	SYS_FS_EventHandlerSet Function

	c) Data Types and Constants
	SYS_FS_ERROR Enumeration
	SYS_FS_FILE_OPEN_ATTRIBUTES Enumeration
	SYS_FS_FILE_SEEK_CONTROL Enumeration
	SYS_FS_FILE_SYSTEM_TYPE Enumeration
	SYS_FS_FSTAT Structure
	SYS_FS_FUNCTIONS Structure
	SYS_FS_HANDLE Type
	SYS_FS_REGISTRATION_TABLE Structure
	SYS_FS_RESULT Enumeration
	FAT_FS_MAX_LFN Macro
	FAT_FS_MAX_SS Macro
	FAT_FS_USE_LFN Macro
	SYS_FS_HANDLE_INVALID Macro
	SYS_FS_FILE_DIR_ATTR Enumeration
	SYS_FS_TIME Union
	SYS_FS_FORMAT Enumeration
	SYS_FS_EVENT Enumeration
	SYS_FS_EVENT_HANDLER Type

	Files
	sys_fs.h
	sys_fs_config_template.h

	Input System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	Configuring the Library
	Building the Library

	Interrupt System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Interrupt System Setup
	Critical Sections
	Source Interrupt Management

	Configuring the Library
	Static Configuration
	Dynamic Configuration

	Building the Library
	Library Interface
	a) Interrupt System Setup Functions
	SYS_INT_Initialize Function
	SYS_INT_DynamicDeregister Function
	SYS_INT_DynamicRegister Function
	SYS_INT_ShadowRegisterAssign Function
	SYS_INT_ShadowRegisterGet Function
	SYS_INT_StatusGetAndDisable Function
	SYS_INT_StatusRestore Function

	b) Global Interrupt Management Functions
	SYS_INT_Disable Function
	SYS_INT_Enable Function
	SYS_INT_IsEnabled Function
	SYS_INT_ExternalInterruptTriggerSet Function

	c) Interrupt Source Management Functions
	SYS_INT_SourceDisable Function
	SYS_INT_SourceEnable Function
	SYS_INT_SourceIsEnabled Function
	SYS_INT_SourceStatusClear Function
	SYS_INT_SourceStatusGet Function
	SYS_INT_SourceStatusSet Function
	SYS_INT_VectorPrioritySet Function
	SYS_INT_VectorSubprioritySet Function

	d) Data Types and Constants
	SYS_INT_TASKS_POINTER Type
	INT_EXTERNAL_EDGE_TRIGGER Enumeration
	SYS_INT_PROCESSOR_STATUS Type

	Files
	sys_int.h

	Memory System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works

	Configuring the Library
	Building the Library
	Library Interface
	a) Functions and Macros
	SYS_MEMORY_Initialize Function
	DDR_SIZE Macro

	Files
	sys_memory.h

	Messaging System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works

	Configuring the Library
	SYS_MSG_BUFFER_SIZES Macro
	SYS_MSG_MAX_MAILBOXES Macro
	SYS_MSG_MAX_MSGS_DELIVERED Macro
	SYS_MSG_MAX_PRIORITY Macro
	SYS_MSG_MAX_TYPES Macro

	Building the Library
	Library Interface
	a) Initialization, Tasks, and Versioning Functions
	SYS_MSG_Deinitialize Function
	SYS_MSG_Initialize Function
	SYS_MSG_Tasks Function

	b) Mailbox Functions
	SYS_MSG_MailboxMessagesGet Function
	SYS_MSG_MailboxMsgAdd Function
	SYS_MSG_MailboxMsgRemove Function
	SYS_MSG_MailboxClose Function
	SYS_MSG_MailboxOpen Function
	SYS_MSG_MailboxReinit Function

	c) Message Type Functions
	SYS_MSG_TypeCreate Function
	SYS_MSG_TypeRemove Function

	d) Message Send/Receive Functions
	SYS_MSG_GotMessages Function
	SYS_MSG_MessageDeliver Function
	SYS_MSG_MessageReceive Function
	SYS_MSG_MessageSend Function

	e) Utility Functions
	SYS_MSG_ID2hMsgType Function
	SYS_MSG_QueueStatus Function

	f) Data Types and Constants
	SYS_MSG_INIT Structure
	SYS_MSG_INSTANCE Enumeration
	SYS_MSG_OBJECT Structure
	SYS_MSG_QUEUE_STATUS Enumeration
	SYS_MSG_RECEIVE_CALLBACK Type
	SYS_MSG_RESULTS Enumeration
	SYS_MSGQ_ELEMENT Structure
	SYS_MSG_MAILBOXES_ADDONE Macro
	SYS_MSG_NUM_MAILBOX_BITMAPS Macro
	SYS_OBJ_HANDLE_INVALID Macro
	SYS_OBJ_HANDLE_STATIC Macro
	SYS_OBJ_HANDLE Type

	Files
	sys_msg.h

	Ports System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Pin Control
	Ports Control
	Change Notification
	Peripheral Pin Select
	Miscellaneous
	Special Considerations

	Configuring the Library
	Building the Library
	Library Interface
	a) Pin Control Functions
	SYS_PORTS_PinModeSelect Function
	SYS_PORTS_PinOpenDrainDisable Function
	SYS_PORTS_PinOpenDrainEnable Function
	SYS_PORTS_PinPullUpDisable Function
	SYS_PORTS_PinPullUpEnable Function
	SYS_PORTS_PinRead Function
	SYS_PORTS_PinSet Function
	SYS_PORTS_PinToggle Function
	SYS_PORTS_PinWrite Function
	SYS_PORTS_PinClear Function
	SYS_PORTS_PinDirectionSelect Function
	SYS_PORTS_PinLatchedGet Function
	SYS_PORTS_PinPullDownDisable Function
	SYS_PORTS_PinPullDownEnable Function

	b) Ports Control Functions
	SYS_PORTS_Clear Function
	SYS_PORTS_DirectionGet Function
	SYS_PORTS_DirectionSelect Function
	SYS_PORTS_OpenDrainDisable Function
	SYS_PORTS_OpenDrainEnable Function
	SYS_PORTS_Read Function
	SYS_PORTS_Set Function
	SYS_PORTS_Toggle Function
	SYS_PORTS_Write Function
	SYS_PORTS_Initialize Function

	c) Change Notification Functions
	SYS_PORTS_ChangeNotificationDisable Function
	SYS_PORTS_ChangeNotificationEnable Function
	SYS_PORTS_ChangeNotificationGlobalDisable Function
	SYS_PORTS_ChangeNotificationGlobalEnable Function
	SYS_PORTS_ChangeNotificationInIdleModeDisable Function
	SYS_PORTS_ChangeNotificationInIdleModeEnable Function
	SYS_PORTS_ChangeNotificationPullUpDisable Function
	SYS_PORTS_ChangeNotificationPullUpEnable Function

	d) Peripheral Pin Select Functions
	SYS_PORTS_RemapInput Function
	SYS_PORTS_RemapOutput Function
	SYS_PORTS_InterruptEnable Function
	SYS_PORTS_InterruptStatusGet Function
	SYS_PORTS_LatchedGet Function

	e) Data Types and Constants

	Files
	sys_ports.h

	Random Number Generator (RNG) System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works

	Configuring the Library
	SYS_RANDOM_CRYPTO_SEED_SIZE Macro

	Building the Library
	Library Interface
	a) Random Number Generator Functions
	SYS_RANDOM_CryptoBlockGet Function
	SYS_RANDOM_CryptoByteGet Function
	SYS_RANDOM_CryptoEntropyAdd Function
	SYS_RANDOM_CryptoGet Function
	SYS_RANDOM_CryptoSeedSet Function
	SYS_RANDOM_CryptoSeedSizeGet Function
	SYS_RANDOM_Deinitialize Function
	SYS_RANDOM_Initialize Function
	SYS_RANDOM_PseudoGet Function
	SYS_RANDOM_PseudoSeedSet Function

	b) Data Types and Constants
	SYS_RANDOM_INIT Structure

	Files
	sys_random.h

	Real-Time Clock and Calendar (RTCC) System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works

	Building the Library
	Configuring the Library
	Library Interface
	a) RTCC Functions
	SYS_RTCC_AlarmDateGet Function
	SYS_RTCC_AlarmDateSet Function
	SYS_RTCC_AlarmDisable Function
	SYS_RTCC_AlarmEnable Function
	SYS_RTCC_AlarmRegister Function
	SYS_RTCC_AlarmTimeGet Function
	SYS_RTCC_AlarmTimeSet Function
	SYS_RTCC_DateGet Function
	SYS_RTCC_DateSet Function
	SYS_RTCC_Start Function
	SYS_RTCC_Stop Function
	SYS_RTCC_Tasks Function
	SYS_RTCC_TimeBCD2Seconds Function
	SYS_RTCC_TimeGet Function
	SYS_RTCC_TimeSeconds2BCD Function
	SYS_RTCC_TimeSet Function
	SYS_RTCC_Initialize Function

	b) Data Types and Constants
	SYS_RTCC_ALARM_CALLBACK Type
	SYS_RTCC_ALARM_HANDLE Type
	SYS_RTCC_BCD_DATE Type
	SYS_RTCC_BCD_TIME Type
	SYS_RTCC_STATUS Enumeration
	SYS_RTCC_ALARM_HANDLE_INVALID Macro
	SYS_RTCC_OBJECT Structure
	RTCC_PLIB_ID Macro

	Files
	sys_rtcc.h

	Reset System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Reset Reason Management
	Triggering a Software Reset

	Configuring the Library
	Building the Library
	Library Interface
	a) Functions
	SYS_RESET_ReasonClear Function
	SYS_RESET_ReasonGet Function
	SYS_RESET_SoftwareReset Function
	SYS_RESET_NMIDelayCountSet Function

	Data Types and Constants
	SYS_RESET_H Macro
	SYS_RESET_PART_SPECIFIC Macro

	Files
	sys_reset.h

	Timer System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	System Interaction
	Periodic Callback
	One Shot Callback
	Delays
	Miscellaneous
	Examples

	Configuring the Library
	Building the Library
	Library Interface
	a) System Level Interaction Functions
	SYS_TMR_Deinitialize Function
	SYS_TMR_Initialize Function
	SYS_TMR_Status Function
	SYS_TMR_Tasks Function

	b) Timed Callback Functions
	SYS_TMR_CallbackStop Function
	SYS_TMR_CallbackPeriodic Function
	SYS_TMR_CallbackSingle Function

	c) Timed Delay Functions
	SYS_TMR_DelayStatusGet Function
	SYS_TMR_DelayMS Function

	d) Timed Object Functions
	SYS_TMR_ObjectCountGet Function
	SYS_TMR_ObjectCreate Function
	SYS_TMR_ObjectDelete Function
	SYS_TMR_ObjectReload Function

	e) Miscellaneous Functions
	SYS_TMR_TickCountGet Function
	SYS_TMR_TickCountGetLong Function
	SYS_TMR_TickCounterFrequencyGet Function
	SYS_TMR_SystemCountGet Function
	SYS_TMR_SystemCountFrequencyGet Function
	SYS_TMR_ModuleStatusGet Function

	f) Data Types and Constants
	SYS_TMR_CALLBACK Type
	SYS_TMR_HANDLE Type
	SYS_TMR_INIT Structure
	SYS_TMR_HANDLE_INVALID Macro
	SYS_TMR_INDEX_0 Macro
	SYS_TMR_FLAGS Enumeration
	SYS_TMR_CLIENT_TOLERANCE Macro
	SYS_TMR_DRIVER_INDEX Macro
	SYS_TMR_FREQUENCY Macro
	SYS_TMR_FREQUENCY_TOLERANCE Macro
	SYS_TMR_INTERRUPT_NOTIFICATION Macro
	SYS_TMR_MAX_CLIENT_OBJECTS Macro
	SYS_TMR_MODULE_INIT Macro
	SYS_TMR_UNIT_RESOLUTION Macro

	Files
	sys_tmr.h

	Touch System Service Library
	Introduction
	Using the Library
	Configuring the Library
	Building the Library
	Library Interface
	a) Functions
	SYS_TOUCH_CalibrationSet Function
	SYS_TOUCH_Initialize Function
	SYS_TOUCH_Open Function
	SYS_TOUCH_Tasks Function
	SYS_TOUCH_DrvObjGet Function
	SYS_TOUCH_RegisterObserver Function

	b) Data Types and Constants
	NVM_READ_FUNC Type
	NVM_SECTORERASE_FUNC Type
	NVM_WRITE_FUNC Type
	SYS_TOUCH_HANDLE Type
	SYS_TOUCH_INDEX Enumeration
	SYS_TOUCH_INIT Structure
	SYS_TOUCH_STATUS Enumeration
	SYS_TOUCH_HANDLE_INVALID Macro
	TouchShowMessage Macro
	SYS_INPUT_DEVICE_TYPE Enumeration
	SYS_INPUT_DEVICE_EVENT Enumeration
	TOUCH_MSG_OBJ Structure

	Files
	sys_touch.h

	Watchdog Timer System Service Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works

	Configuring the Library
	WDT_PLIB_ID Macro

	Building the Library
	Library Interface
	a) Enable and Disable Functions
	SYS_WDT_Disable Function
	SYS_WDT_Enable Function

	b) Clearing the Timer Functions
	SYS_WDT_TimerClear Function

	Files
	sys_wdt.h

	Index

