
USB Libraries Help

MPLAB Harmony Integrated Software Framework

© 2013-2018 Microchip Technology Inc. All rights reserved.

Volume V: MPLAB Harmony Framework Reference
This volume provides API reference information for the framework libraries included in your installation of MPLAB Harmony.

Description

This volume is a programmer reference that details the interfaces to the libraries that comprise MPLAB Harmony and
explains how to use the libraries individually to accomplish the tasks for which they were designed.

Volume V: MPLAB Harmony Framework

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 2

USB Libraries Help

This section provides descriptions of the USB libraries that are available in MPLAB Harmony.

USB Device Library

This section provides information on the USB Device libraries that are available in MPLAB Harmony.

USB Device Library - Getting Started

This section provides information for getting started with the USB Device Library.

Introduction

Provides an introduction to the MPLAB Harmony USB Device Library

Description

The MPLAB Harmony USB Device Library (referred to as the USB Device Library) provides embedded application developers with a framework to
design and develop a wide variety of USB Devices. A choice of Full Speed only or Full Speed and Hi-Speed USB operations are available,
depending on the selected PIC32 microcontroller. The USB Device Library facilitates development of standard USB devices through function
drivers that implement standard USB Device class specification. Vendor USB devices can be implemented via USB Device Layer Endpoint
functions. The USB Device Library is modular, thus allowing application developers to readily design composite USB devices. The USB Device
Library is a part of the MPLAB Harmony installation and is accompanied by demonstration applications that highlight library usage. These
demonstrations can also be modified or updated to build custom applications. The USB Device Library also features the following:

• Support for different USB device classes (CDC, Audio, HID, MSD, and Vendor)

• Supports multiple instance of the same class in a composite device

• Supports multiple configurations at different speeds

• Supports Full-Speed and High-Speed operation

• Supports multiple USB peripherals (allows multiple device stacks)

• Modular and Layered architecture

• Supports deferred control transfer responses

• Completely non-blocking

• Supports both polled and interrupt operation

• Works readily in an RTOS application

This document serves as a getting started guide and provides information on the following:

• USB Device Library architecture

• USB Device Library - application interaction

• Creating your own USB device

 Note:
It is assumed that the reader is familiar with the USB 2.0 specification (available at www.usbif.org). While the document, for the
sake completeness, does cover certain aspects of the USB 2.0 protocol, it is recommended that the reader refer to the
specification for a complete description of USB operation.

USB Device Library Architecture

Describes the USB Device Library Architecture.

Description

The USB Device Library features a modular and layered architecture, as illustrated in the following figure.

USB Device Library Architecture

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 3

http://www.usbif.org

As seen in the figure, the USB Device Library consists of the following three major components.

USB Controller Driver (USBCD)

The USBCD manages the state of the USB peripheral and provides the Device Layer with structured data access methods to the USB. It also
provides the Device_layer with USB events. The USBCD is a MPLAB Harmony driver and uses the MPLAB Harmony framework components (the
USB peripheral Library, the Interrupt System Service) for its operation. It supports only one client per instance of the USB Peripheral. This client
would typically be the Device Layer. In case of multiple USB peripherals, the USBCD can manage multiple USB peripherals, each being accessed
by one client. The driver is accessed exclusively by the Device Layer in the USB Device Layer Architecture. It is initialized by the Device Layer
(when the Device Layer is initialized) and in case of polling operation, its Tasks routine is called by the Device Layer. The USBCD provides
functions to:

• Enable, disable and stall endpoints

• Schedule USB transfers

• Attach or detach the device

• Control resume signalling

The USB Controller Driver can be configured for Polled or Interrupt mode. Configuring the driver for Interrupt mode configures the Device Stack for
Device mode operation. Configuring the driver for Polled mode configures the USB Device Stack for Polled mode operation. An USB device can
be designed using either the polled or interrupt mode. However, it is recommended that the USB Controller Driver (and therefore the USB Device
Stack) be configured for Interrupt mode. This reduces the impact of other application components on the operation of the Device Stack.
Configuring for Interrupt mode also ensure timely stack event generation and stack response to bus events on the USB.

Device Layer

The Device Layer responds to the enumeration requests issued by the USB Host. It has exclusive access to an instance of the USBCD and the
control endpoint (Endpoint 0). When the Host issues a class specific control transfer request, the Device Layer will analyze the setup packet of the
control transfer and will route the control transfer to the appropriate function driver. The Device Layer must be initialized with the following data:

• Master Descriptor Table - This is a table of all the configuration descriptors and string descriptors.

• Function Driver Registration Table - This table contains information about the function drivers in the application

• USBCD initialization information - This specifies the USB peripheral interrupt, the USB Peripheral instance and Sleep mode operation options

The Device Layer initializes all function drivers that are registered with it when it receives a Set Configuration (for a supported configuration) from
the Host. It deinitializes the function drivers when a USB reset event occurs. It initializes the USBCD, opens it and registers a event handler to
receive USB events. The Device Layer can also be opened by the application (the application becomes a client to the Device Layer). The
application can then receive bus and device events and respond to control transfer requests. The Device Layer provides events to the application
such as device configured or device reset. Some of these events are notification-only events, while other events require the application to take
action.

Function Drivers

The Function Drivers implements various USB device classes as per the class specification. The USB Device Library architecture can support
multiple instances of a function driver. An example would be a USB CDC device that emulates two serial ports. Function drivers provide an
abstracted and an easy to use interface to the application. The application must register an event handler with the function driver to receive
function driver events and must respond to some of these events with control transfer read/write functions. Function drivers access the bus

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 4

through the Device Layer.

USB Device Library - Application Interaction

Describes how the application must interact with the USB Device Stack.

Description

 Note:
Additional information on program, data, and stack memory requirements, and a list of USB application configurations is available
in the USB Demonstrations section.

The following figure highlights the steps that the application must follow to use the USB Device Library.

Application Interaction with Device Layer

The application must first initialize the Device Layer. As a part of the Device Layer initialization process, the Device Layer initialization structure
must be defined which in turn requires the following data structures to be designed

• The master descriptor table

• The function driver registration table

The following figure shows a pictorial representation of the data that forms the Device Layer initialization structure. Additional information on
Device Layer initialization is available in the Device Layer Help File.

Device Layer Initialization

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 5

After successful initialization of the Device_layer, the application can open the Device_layer and register a Device_layer event handler. The
Device_layer event handler receives device level events such as device configured, device deconfigured, device reset and device suspended. The
device configured event and deconfigured event are important. The application can use the device deconfigured event to reinitialize its internal
state machine. When the application receives a device configured event, it must register event handlers for each function driver that is relevant to
the configuration that was set. The function driver event handler registration must be done in the device configured event context because the
Device_layer acknowledges the set configuration request from the host when it exits the device configured event handler context. The application
at this point should be ready to respond to function driver events.

 Note:
Not registering the function driver event handler in the Device_layer configured event could cause the device to not respond to the
host requests and therefore, be non-compliant.

Once configured, the device is now ready to serve its intended function on the USB. The application interacts with the Device_layer and function
drivers through API function and event handlers. The application must be aware of function driver events which require application response. For
example, the USB_DEVICE_CDC_EVENT_SET_LINE_CODING event from the USB CDC Function Driver requires the application to respond
with a USB_DEVICE_ControlRead function. This function provides the buffer to receive the line coding parameters that the Host sends in the data
stage of the Set Line Coding control transfer.

The following figure shows the application interaction with Device_layer and function driver after the device has been configured.

Application - Device Layer Interaction after device configuration

In the previous figure, the application should have registered the Device_layer event handler before attaching the device on the bus. It should have

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 6

registered the function driver event handler before exiting the device configured - Device_layer event. The application will then receive function
driver instance specific events via the function driver event handlers.

Deferring Control Transfer Responses

Class-specific control transfer related function driver events require the application to complete the data stage and/or the status of the control
transfer. The application does this by using the Device Layer Control Transfer API to complete the Control Read/Write transfers. The application
may typically be able the complete required data processing, and to continue (or end) the control transfer within the function driver event handler
context. However, there could be cases where the required control transfer data processing may require hardware access or extended
computation. Performing extended processing or waiting for external hardware within the function driver event handler context is not
recommended as the USB 2.0 Specification places restrictions on the control transfer response time.

In cases where the application is not ready to respond to control transfer requests within the function driver event handler context, the USB Device
Library provides the option of deferring the response to the control transfer event. The application can respond to the control transfer request after
exiting the handler function. The application must still observe the USB 2.0 Specification control transfer timing requirements while responding to
the control transfer. Deferring the response in such a manner provides the application with flexibility to analyze the control transfer without
degrading the performance of the device on the USB.

Creating Your Own USB Device

Describes how to create a USB device with the MPLAB Harmony USB Device Library.

Description

The first step in creating a USB device is identifying whether the desired device function fits into any of the standard USB device class functions.
Using standard USB classes may be advantageous as major operating systems feature Host driver support for standard USB devices. However,
the application may not want to tolerate the overhead associated with standard USB device class protocols, in which case, a Vendor USB device
can be implemented. A Vendor USB device can be implemented by using the USB Device Layer Endpoint functions; however, these devices will
require custom USB host drivers for their operation. Having identified the device class to be used, the following approaches are available for
developing a USB device by using the USB Device Library.

Use the Available Library Demonstration Applications

The USB Device Library release package contains a set of demonstration applications that are representative of common USB devices. These can
be modified easily to include application specific initialization and application logic. The application logic must be non-blocking and could be
implemented as a state machine. Note that the function names and file names referred to in the following section are the those used in the USB
Device Library demonstration applications.

• The application specific initialization can be called in the APP_Initialize function (in the app.c file). The APP_Initialize function is called from
the SYS_Initialize function, which in turn is called when the device comes out of Power-on Reset (POR).

• The application logic is implemented as a state machine in the APP_Tasks function (in the app.c file). The application logic can interact with
the function driver and the Device_layer by using available API calls.

• The application logic can track device events by processing the events in the application USB device event handler function
(APP_USBDeviceEventHandler function in app.c).

Build a USB Device Library Application Using the MPLAB Harmony Configurator (MHC)

In a case where the available demonstration applications do not meet the end application requirements, a USB device can be created by building a
USB Device Library application from scratch. It is recommended to use the Microchip Harmony Configurator (MHC) to generate a USB Device
project. Using the MHC ensures that the correct and required MPLAB Harmony framework files are included in the project. The following section
outlines the steps to follow to generate the project using the MHC.

Before You Begin

The following process assumes that the MHC plug-in, com-microchip-mplab-module-mhc.nbm, which is located in
<install-dir>/utilities/mhc, is installed in MPLAB X IDE. If the MHC plug-in is not already installed, refer to Installing a Plug-in Module
for information.

Step 1: Create a New MPLAB X IDE Project

In MPLAB X IDE, select File > New Project to open the New Project dialog and in Categories: select Microchip Embedded and in Projects: select
MPLAB Harmony Project, and then click Next.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 7

Step 2: Specify Project Name, Location and PIC32 Device Type

In the New Project dialog, specify the Project Location, Project Name, and the Target Device, and then click Finish.

Step 3: Start the MPLAB Harmony Configurator

Open the MHC by selecting Tools > Embedded > MPLAB Harmony Configurator. The initial view is shown in the following figure.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 8

Step 4: Select Device Configuration and configure the fields as required

Step 5: MPLAB Harmony Framework Configuration

Expand the MPLAB Harmony Framework Configuration and select USB Library, and then select Use USB Stack. Doing this will also
automatically include other MPLAB Harmony Framework components, that are required by the USB Stack into the project. Select USB Device and
configure the different parameters as desired.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 9

Step 6: MPLAB Harmony Framework Configuration

Expand USB Device Instance 0 and configure parameters as desired.

Step 7: MPLAB Harmony Framework Configuration

For a PIC32MZ device, expand MPLAB Harmony Framework Configuration >Drivers >Timer and select the Timer Module ID as TMR_ID_2.

Step 8: Configure Interrupt Priorities

The interrupt priorities of the following modules should be configured as per application needs.

For PIC32MX devices:

• USB Device Layer

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 10

For PIC32MZ devices:

• USB Device Layer

• Timer Driver

Step 9: Generate code

Click Generate to generate the code for this configuration.

Step 10: Add application specific information

The following components should be manually added to the generated code:

• USB Descriptors, Function Driver Registration table, USB Device Layer Master Descriptor Table. These data structures should be placed in
system_init.c. Refer to the USB Device Layer Library section for more information.

• Application initialization steps should be implemented in APP_Initialize function in app.c

• Application Tasks routine should be implemented in APP_Tasks function in app.c

Step 11: Create a USB Device Layer Event Handler

The application should create a Device Layer Event Handler which will handle all the events generated by the Device Layer. The following code
shows a list of all possible events that are generated by the Device Layer. The code can be used in the application and updated to meet the
application requirements. Refer to the USB Device Layer Library section for more details on the Device Layer Event Handling. The
USB_DEVICE_Attach function can be called to attach the device on the USB when the USB_DEVICE_EVENT_POWER_DETECTED event
occurs.

This code example shows how the application can set a Device Layer Event Handler.
 // Application states
 typedef enum
 {
 //Application's state machine's initial state.
 APP_STATE_INIT=0,
 APP_STATE_SERVICE_TASKS,
 APP_STATE_WAIT_FOR_CONFIGURATION,
 } APP_STATES;

 USB_DEVICE_HANDLE usbDeviceHandle;
 APP_STATES appState;

 // This is the application device layer event handler function.

 USB_DEVICE_EVENT_RESPONSE APP_USBDeviceEventHandler
 (
 USB_DEVICE_EVENT event,
 void * pData,
 uintptr_t context
)
 {
 USB_SETUP_PACKET * setupPacket;
 switch(event)
 {
 case USB_DEVICE_EVENT_POWER_DETECTED:
 // This event in generated when VBUS is detected. Attach the device
 USB_DEVICE_Attach(usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_POWER_REMOVED:
 // This event is generated when VBUS is removed. Detach the device
 USB_DEVICE_Detach (usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_CONFIGURED:
 // This event indicates that Host has set Configuration in the Device.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST:
 // This event indicates a Control transfer setup stage has been completed.
 setupPacket = (USB_SETUP_PACKET *)pData;

 // Parse the setup packet and respond with a USB_DEVICE_ControlSend(),
 // USB_DEVICE_ControlReceive or USB_DEVICE_ControlStatus().

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 11

 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT:
 // This event indicates that a Control transfer Data has been sent to Host.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:
 // This event indicates that a Control transfer Data has been received from Host.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_ABORTED:
 // This event indicates a control transfer was aborted.
 break;

 case USB_DEVICE_EVENT_SUSPENDED:
 break;

 case USB_DEVICE_EVENT_RESUMED:
 break;

 case USB_DEVICE_EVENT_ERROR:
 break;

 case USB_DEVICE_EVENT_RESET:
 break;

 case USB_DEVICE_EVENT_SOF:
 // This event indicates an SOF is detected on the bus. The USB_DEVICE_SOF_EVENT_ENABLE
 // macro should be defined to get this event.
 break;
 default:
 break;
 }
 }

Step 12: Function Driver Event Handling

The application should create a Function Driver Event Handler which will handle all the events generated by the Function Driver. Refer to the
Event Handling topic in the applicable function driver documentation for more details on the Function Driver Event Handling.

Step 13: Opening the Device Layer

The application should open the Device Layer in the Application tasks routine and register an event handler with the Device Layer. The Device
Layer will generate events when the event handler is registered.

The following code shows an example for how to the open the Device Layer.
void APP_Tasks (void)
 {
 // Check the application's current state.
 switch (appState)
 {
 // Application's initial state.
 case APP_STATE_INIT:
 // Open the device layer
 usbDeviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0,
 DRV_IO_INTENT_READWRITE);

 if(usbDeviceHandle != USB_DEVICE_HANDLE_INVALID)
 {
 // Register a callback with device layer to get event notification
 USB_DEVICE_EventHandlerSet(usbDeviceHandle,
 APP_USBDeviceEventHandler, 0);
 appState = APP_STATE_WAIT_FOR_CONFIGURATION;
 }
 else
 {
 // The Device Layer is not ready to be opened. We should try
 // gain later.
 }
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 12

 case APP_STATE_SERVICE_TASKS:
 break;

 // The default state should never be executed.
 default:
 break;
 }
 }

USB Device Stack Porting Guide

This section provides information for porting a MLA USB Device to MPLAB Harmony.

Introduction

This topic provides information for porting a MLA USB Device to MPLAB Harmony.

Source Files to Include

This topic provides information on the source files to be included when porting a MLA USB device project to MPLAB Harmony.

Description

The following table lists the source files that must be included for MLA based and MPLAB Harmony based USB device projects. In MLA there is no
separate controller driver implementation. Both enumeration functionality and controller driver is implemented in the usb_device.c file. In the
MPLAB Harmony USB Device Stack, the controller driver is implemented in the drv_usb.c and drv_usb_device.c files, and enumeration
functionality is implemented in the usb_device.c file.

MLA MPLAB Harmony Description

usb_device.c usb_device.c In MLA, this file contains enumeration functionality and controller
driver implementations.

In MPLAB Harmony, this file implements enumeration functionality
only.

usb_function_xxx.c

(Where xxx stands for function
driver name such as hid, msd,
etc.)

usb_device_xxx.c

(Where xxx stands for function driver
name such as hid, msd, etc.)

Contains all function driver implementations.

usb_descriptors.c system_init.c Contains USB stack configurations.

N/A drv_usb.c and drv_usb_device.c USB peripheral driver implementation.

Initializing the USB Device Stack

This topic provides initialization information when porting a MLA USB device project to MPLAB Harmony.

Description

In MLA, initializing the USB device stack consists of calling USB functions in the sequence shown in the following flow chart.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 13

The USBDeviceInit function will initialize the USB Device stack. USBDeviceAttach function will attach the device to bus. USBDeviceTasks function
will run the stack task routine.

In the MPLAB Harmony USB Device Stack, initializing the USB device stack consists of calling USB functions in the sequence shown in the
following chart.

The USB_DEVICE_Initialize function will initialize the USB device stack. On successful initialization, this function returns a valid system object.
This system object is passed to the USB_DEVICE_Tasks function. This function is called periodically in the MPLAB Harmony SYS_Tasks function
to maintain the state of the USB Device.

Configuring the Stack

This topic provides stack configuration information when porting a MLA USB device project to MPLAB Harmony.

Description

To configure the stack in MLA, USB descriptors have to be defined in the usb_descriptors.c file. The configuration is done in usb_config.h.
Whereas in MPLAB Harmony, USB descriptors are defined in system_init.c. The MPLAB Harmony USB Device Stack configuration is done in
system_config.h. Aside from descriptors, users must also define a function registration table and a master descriptor table in
system_init.c. Refer to the specific USB Device section for more information on the function registration table and the master descriptor table.

Calling the Device Layer API

Provides information on calling the Device Layer API functions.

Description

In the Microchip Library of Applications (MLA), the application does not have to explicitly open the Device Layer to invoke the Device Layer API.
The Device Layer APIs do not require a client handle.

The MPLAB Harmony USB Device Stack supports multiple instances and therefore requires a client handle. The USB_DEVICE_Open function
opens a Device Layer instance and returns a application client handle to the instance of the Device Layer that was opened. This handle is then
passed to Device Layer API to specify the instance of Device Layer to be accessed.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 14

Event Handling

This topic provides event handling information when porting a MLA USB device project to MPLAB Harmony.

Description

In MLA, users handle events inside the USER_USB_CALLBACK_EVENT_HANDLER function. Whereas in MPLAB Harmony, the user application
client will have to register an event handler with the USB device stack using the USB_DEVICE_EventHandlerSet function. All USB bus events are
then forwarded to this user registered event handler function.

The following code shows an example of registering the event handler for the MPAB Harmony stack using the USB_DEVICE_EventHandlerSet
function. In the example, the USB_DEVICE_EventHandlerSet function is the application event handler.
/* Open the Device Layer */

USB_DEVICE_HANDLE usbDeviceHandle;

usbDeviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0, DRV_IO_INTENT_READWRITE);

/* Register an event handler */

USB_DEVICE_EventHandlerSet(usbDeviceHandle, APP_USBDeviceEventHandler, 0);

The following code shows the implementation of the APP_USBDeviceEventHandler function.
void APP_USBDeviceEventHandler (USB_DEVICE_EVENT event, void * eventData, uintptr_t context)
{
 switch (event)
 {
 case USB_DEVICE_EVENT_SOF:

 break;

 case USB_DEVICE_EVENT_RESET:

 break;

 case USB_DEVICE_EVENT_CONFIGURED:

 break;

 case USB_DEVICE_EVENT_POWER_DETECTED:

 /* VBUS was detected. We can attach the device */
 USB_DEVICE_Attach(appData.deviceHandle);
 break;

 case USB_DEVICE_EVENT_POWER_REMOVED:

 /* VBUS is not available any more. Detach the device. */
 USB_DEVICE_Detach(appData.deviceHandle);
 break;

 case USB_DEVICE_EVENT_SUSPENDED:

 break;

 case USB_DEVICE_EVENT_RESUMED:

 break;

 case USB_DEVICE_EVENT_ERROR:

 break;

 default:
 break;
 }
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 15

Initializing and Communicating with the Endpoint

This topic provides endpoint initialization and communication information when porting a MLA USB device project to MPLAB Harmony.

Description

In MLA, user applications explicitly initialize the required endpoints and can directly read and write to the endpoints. The following code shows how
MLA initializes the endpoints in an event handler when the device is configured.

For MPLAB Harmony, the user application only manages endpoints directly for Generic USB device implementations. For standard USB devices,
the USB device layer initializes the endpoint and any communication to an endpoint must occur through function driver APIs. The USB
device_layer initializes the endpoint based on the information provided by the user in the configurations descriptor. The USB device_layer does
this by parsing the descriptors table at run time. So the user does not have to explicitly enable or disable the endpoint.

Handling Endpoint 0 (EP0) Packets

This topic provides information for handling Endpoint 0 packets when porting a MLA USB device project to MPLAB Harmony.

Description

Standard device requests are handled by device stack in both MLA and MPLAB Harmony. The difference lies in handling class specific requests.
In MLA, the class specific requests are forwarded to the application as EP0 events and application forwards them to appropriate function driver.
The following code shows how the application forwards them to appropriate function driver in the event handler.

For the MPLAB Harmony USB Device Stack, EP0 events are generated from the appropriate function driver as meaningful events. For example,
the HID function driver in MPLAB Harmony parses the EP0 packet to generate events like USB_DEVICE_HID_EVENT_GET_IDLE,
USB_DEVICE_HID_EVENT_SET_REPORT, and USB_DEVICE_HID_EVENT_SET_IDLE, etc.

The following code shows how the event handler callback is registered with the HID function driver using the USB_DEVICE_HID_EventHandlerSet
function. This is done in the Device Layer USB_DEVICE_EVENT_CONFIGURED event.
case USB_DEVICE_EVENT_CONFIGURED:
 /* Set the flag indicating device is configured. */
 appData.deviceConfigured = true;

 /* Save the other details for later use. */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 16

 appData.configurationValue = ((USB_DEVICE_EVENT_DATA_CONFIGURED*)
 eventData)->configurationValue;

 /* Register application HID event handler */
 USB_DEVICE_HID_EventHandlerSet(USB_DEVICE_HID_INDEX_0, APP_USBDeviceHIDEventHandler,
 (uintptr_t)&appData);

The following code shows the implementation of the HID event handler function in the application. Note how the HID function driver converts EP0
requests to a HID class-specific control transfer event.
USB_DEVICE_HID_EVENT_RESPONSE APP_USBDeviceHIDEventHandler
(
 USB_DEVICE_HID_INDEX iHID,
 USB_DEVICE_HID_EVENT event,
 void * eventData,
 uintptr_t userData
)
{
 USB_DEVICE_HID_EVENT_DATA_REPORT_SENT * reportSent;
 USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED * reportReceived;

 /* Check type of event */
 switch (event)
 {

 case USB_DEVICE_HID_EVENT_SET_IDLE:

 /* For now we just accept this request as is. We acknowledge
 * this request using the USB_DEVICE_HID_ControlStatus()
 * function with a USB_DEVICE_CONTROL_STATUS_OK flag */

 USB_DEVICE_ControlStatus(appData.usbDevHandle, USB_DEVICE_CONTROL_STATUS_OK);

 /* Save Idle rate received from Host */
 appData.idleRate = ((USB_DEVICE_HID_EVENT_DATA_SET_IDLE*)eventData)->duration;
 break;

USB Device Stack Porting Example

Provides information on porting a MLA Device Stack demonstration application to the MPLAB Harmony USB Device Stack.

Description

With the introduction of MPLAB Harmony, PIC32MX USB device applications can now be developed using either the USB Device Stack available
in Microchip Application Libraries (MLA) v2013-06-15 or the USB Device Stack in the latest version of MPLAB Harmony

In a case where an existing or a partially developed MLA-based USB Device application needs to be migrated to use the MPLAB Harmony USB
Device Stack, the migration process is not a one-to-one process, as there are API level differences between the MLA and MPLAB Harmony USB
Device Stack. This guide provides a detailed step-by-step comparison between a MLA USB Device and a MPLAB Harmony USB Device
application, with an objective to enable the application migration process.

An existing v2013-06-15 MLA USB Device Stack example, the “Device – CDC – Basic Demo” will be compared with the MPLAB Harmony USB
Device cdc_com_port_single demonstration application. The outline of the comparative analysis is as follows:

• Highlight framework level similarities and differences between the MLA and MPLAB Harmony USB Device Stack

• Analyze and compare the files included in the MLA “Device – CDC – Basic Demo” demonstration application project to the files included in the
MPLAB Harmony USB Device Stack cdc_com_port_single demonstration application

• Analyze and compare the PIC32 Device Fuse Configuration macros, USB Device Stack Configuration, USB Device Stack API and application
API in the MLA “Device – CDC – Basic Demo” demonstration application source code with their equivalents in the MPLAB Harmony USB
Device cdc_com_port_single demonstration application project

The projects to be compared are available in the MLA USB Device and MPLAB Harmony USB Device demonstration applications folders.

Prerequisites

Describes the prerequisites for using this porting example.

Description

Ensure that the following software is installed:

• Microchip Libraries for Applications v2013-06-15

• The latest version of MPLAB Harmony (available by visiting: www.microchip.com/harmony)

In addition, knowledge of common project-related operations and settings in MPLAB X IDE, as well as familiarity with the MLA USB Solutions and

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 17

http://www.microchip.com/harmony

the USB protocol is assumed.

USB Device Stack in MLA and MPLAB Harmony

In this section, the key similarities and differences between the USB Device Stack in MLA and MPLAB Harmony are discussed.

Description

Similarities

The key similarities between the USB Device Stack in MLA and MPLAB Harmony are:

• Both solutions support Interrupt and Polled mode operation

• Both solutions require configuration macros to control/define functional aspects of the device stack

• Both solutions contain module Tasks routines that need to be invoked either in a while(1) application superloop and/or in the USB Interrupt
Service Routine (ISR)

• In both solutions, the function drivers and Device Layer are implemented as separate modules

Differences

The key differences between the USB Device Stack in MLA and MPLAB Harmony are listed in the following table.

MPLAB Harmony MLA

In MPLAB Harmony, the complete user application is factored into System and Application
code sections. The code sections are implemented in separate source code files. This
represents the MPLAB Harmony Application paradigm.

There is no such factoring in MLA.

In MPLAB Harmony, the USB peripheral management is performed by a USB Controller
Driver. This is implemented separately.

The MLA USB Device stack combines the
implementation of Device Layer and controller
driver into one file.

In MPLAB Harmony, the USB Device Layer is a MPLAB Harmony module and requires the
application to open it to access the Device Layer functions.

This is not required in MLA.

In MPLAB Harmony, Device Layer API is factored into System and Client functions. The
application calls the client functions along with the Device Layer Handle.

There is no such factoring in the MLA Device
Layer implementation.

In MPLAB Harmony, function driver API require the specification of an instance index. This is typically not required in MLA.

In MPLAB Harmony, the USB Device Stack uses System Services to access shared system
resources.

The MLA does not contain a formal
implementation of such system services.

In MPLAB Harmony, the Device Layer initializes the function driver based on the configuration
set by the host. This process does not require application intervention.

In MLA, the application must add code for the
Set Configuration Event handling routine to
invoke the initialize routine of the required
function driver.

MLA and MPLAB Harmony USB Device Stack Files

This section analyzes the files included in the MLA "Device – CDC – Basic Demo" demonstration application MPLAB X IDE project and identifies
the equivalent MPLAB Harmony USB Device Stack and Framework files in the MPLAB Harmony USB Device cdc_com_port_single demonstration
MPLAB X IDE project.

The MLA "Device – CDC – Basic Demo" demonstration application MPLAB X IDE project is located in the following MLA installation path:
microchip_solutions_v2013-06-15/USB/Device - CDC - Basic Demo/Firmware/MPLAB.X.

The MPLAB Harmony cdc_com_port_single project is located in the
<install-dir>/apps/usb/device/cdc_com_port_single/firmware/cdc_com_port_single.X.

Description

The following table lists the source (.c) files and header (.h) configuration files in the MLA "Device – CDC – Basic Demo" demonstration
application project and their MPLAB Harmony counterparts (along with their paths). The parent folder for MPLAB Harmony framework files, unless
otherwise specified, is <install-dir>/framework. The table also contains files which are exclusively required by the MPLAB Harmony
project.

Classification MLA USB Device
Stack Application

MPLAB Harmony USB Device Stack Application

USB Device Layer
Implementation

usb_device.c /usb/usb_device.c

USB Device CDC Function
Driver

usb_function_cdc.c /usb/src/dynamic/usb_device_cdc.c

/usb/src/dynamic/usb_device_cdc_acm.c

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 18

Application main file main.c main.c

app.c

app.h (see Note)

USB Device Descriptors usb_descriptors.c system_init.c

(See System Configuration in this table.)

USB Device Stack
Configuration

usb_config.h system_config.h

(See System Configuration in this table.)

Hardware Specification HardwareProfile.h

HardwareProfile –
PIC32 USB Starter
Kit.h

(See Board Support Package in this table.)

Board Support Package N/A bsp/pic32mx_usb_sk2/bsp_sys_init.c

bsp/pic32mx_usb_sk2/bsp_config.h

System Services N/A system/int/src/sys_int_pic32.c

system/devcon/src/sys_devcon.c

system/devcon/src/pic32mx/sys_devcon_pic32mx.c

PIC32MX USB Driver N/A driver/usb/usbfs/src/dynamic/drv_usb.c

driver/usb/usbfs/src/dynamic/drv_usb_device.c

System Configuration (see
Note)

N/A system_config.h

system_init.c

system_interrupt.c

system_tasks.c

system_definitions.h

Peripheral Library N/A <install-dir>/bin/framework/peripheral/PIC32MX795F512L_peripherals
.a

 Note:
These files, which are not a part of the MPLAB Harmony Framework, are application-specific and must be coded to meet the
needs of the application.

Source Code Analysis

Provides code comparison information.

Description

In this section, the MLA "Device – CDC – Basic Demo" demonstration application source code will be compared to the MPLAB Harmony
cdc_com_port_single demonstration application source code. The MLA "Device – CDC – Basic Demo" demonstration application logic
implementation can be classified into the following components

• Fuse configuration and Initialization

• Demonstration Application Logic

• Event Handling

• Invoking the Task Routine

• USB Descriptors

• Device Stack Configuration

The following sections discuss the comparison of these components with the MPLAB Harmony USB Device Stack and MPLAB Harmony
application paradigm.

Fuse Configuration and Initialization

Provides information on fuse configuration and initialization.

Description

The microcontroller fuse configuration in the MLA “Device – CDC – Basic Demo” demonstration application is implemented in the project main.c
file.

Open the MLA “Device – CDC – Basic Demo” project in MPLAB X IDE and open the main.c file. Browse to line 277 of the file. This code region
defines the fuse configuration macros while using the PIC32 USB Starter Kit II. The following screen capture shows this code.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 19

In the MPLAB Harmony cdc_com_port_single project, locate the system configuration files. These files are located in the
<install-dir>/app/system_config logical project folder. Within this folder, expand the pic32mx_usb_sk2_int_dyn configuration folder,
as shown in the following figure.

Open system_init.c and review the fuse configurations. In MPLAB Harmony projects, the device fuse configuration macros are implemented in
the system_init.c file. This file is a MPLAB Harmony system configuration file and is configuration-specific.

Continue with analysis of the MLA USB Demo main.c file. Navigate to line 488 of this file. This code region contains the application main function.
The InitializeSystem function call at line 491 initializes the system. Further analysis of the InitializeSystem function indicates that this function (see
line 648 of the file) configures the PIC32MX Cache and Flash Wait state for maximum performance for 60 MHz operating frequency, calls
application specific user initialization function UserInit (see line 763) and then initializes the device stack by calling USBDeviceInit function (see line
765).

The following table lists the initialization related functions of the MLA USB Demonstration Application and their respective functional equivalent
functions in the MPLAB Harmony USB Demonstration Application.

MLA USB Demonstration Application Function Equivalent MPLAB Harmony USB Demonstration Application Function

InitializeSystem SYS_Initialize

SYSTEMConfigPerformance SYS_DEVCON_PerformanceConfig

UserInit APP_Initialize

mInitAllLEDs

mInitAllSwitches

BSP_Initialize

USBDeviceInit USB_DEVICE_Initialize

The usbDevInitData and sysDevconInit data structures in MPLAB Harmony system_init.c are initialization data structures for the MPLAB
Harmony USB Device Layer and the Device Control System Service, respectively. Please note that unlike the MLA USB Device Layer, the MPLAB
Harmony USB Device Layer requires the specification of an endpoint table (see the endpointTable array declaration in system_init.c). The
size of this table should be USB_DEVICE_ENDPOINT_TABLE_SIZE. This table (actually a byte array) should be aligned at 512 bytes address
boundary.

The MPLAB Harmony Interrupt System Service functions, SYS_INT_VectorPrioritySet and SYS_INT_Enable,set the USB Interrupt Vector Priority
and enable the global interrupts respectively. The USB_DEVICE_Initialize function initializes the USB Device Layer. The APP_Initialize function
initializes the application data structure.

Demonstration Application Logic

Provides information on the demonstration application logic.

Description

The application logic in the MLA "Device – CDC – Basic Demo" demonstration application is implemented in the ProcessIO function (see line 819
of the project main.c file). This function is called periodically via the application while(1) loop (see line 521 of main.c). The ProcessIO function

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 20

calls the getsUSBUSART, putrsUSBUSART, and putUSBUSART functions to transfer data over the CDC Device Interface. The
USBUSARTIsTxTrfReady function checks if the CDC function driver is ready to accept data for transmission. The CDCTxService function
maintains the CDC function driver transmit state machine and is called periodically through the ProcessIO function (see line 870 of main.c).

In the MPLAB Harmony project, the appData object defined in the app.h file serves as a container for all application global data. The
APP_StateReset function in the app.c file is called by the application and returns true if the device is not configured. This then causes the
application state machine to reset.

The MPLAB Harmony application logic state machine (the APP_Tasks function) is implemented in app.c. The MPLAB Harmony USB Device
Stack requires the application logic to be coded as a state machine that yields to the system periodically. In this state machine, the MPLAB
Harmony USB Device Stack application must first open the USB Device Layer to access the functionality of the Device Layer. This is done through
the USB_DEVICE_Open function. This step is not required in the MLA USB Device Stack application. The MPLAB Harmony USB Device Stack
application can then wait for the device to be configured.

In the MPLAB Harmony USB Device application, the device is attached to the bus when VBUS power is detected. This is done by calling the
USB_DEVICE_Attach function in the USB_DEVICE_EVENT_POWER_DETECTED function in APP_USBDeviceEventHandler function. The
equivalent MLA USB Device Stack function is the USBDeviceAttach function. The USB_DEVICE_CDC_Read and USB_DEVICE_CDC_Write
functions are called to transfer data over the CDC interface. The following table lists some of the MLA USB CDC function driver routines and their
equivalents in the MPLAB Harmony CDC Function Driver API.

MLA USB CDC
Function Driver Routine

MPLAB Harmony CDC Function Driver Routine

getsUSBUSART USB_DEVICE_CDC_Read

putUSBUSART USB_DEVICE_CDC_Write

putrsUSBUSART USB_DEVICE_CDC_Write

CDCTxService No equivalent routine. In the MPLAB Harmony USB Device Stack Framework, function driver state machine is
updated by the Device Layer.

USBUSARTIsTxTrfReady No equivalent routine. In the MPLAB Harmony USB Device Stack Framework, all data transfers are scheduled in a
queue. The application does not need to check if the transmit state machine is ready. The application must use
function driver events to check when a transfer is complete.

In the MLA USB CDC Function Driver, the getsUSBUSART function returns zero if no data has been received. In MPLAB Harmony CDC Function
driver, the application must schedule a read with the USB_DEVICE_CDC_Read function, and then wait for the read complete event.

In the MLA USB CDC Function Driver, the application uses the USBUSARTIsTxTrfReady function to check if the CDC function is ready to transmit
data. In the MPLAB Harmony CDC Function driver, the application does not need to check for transmit status. It schedules a write transfer request
through the USB_DEVICE_CDC_Write function. If the request is added successfully to the queue, the application receives a valid transfer handle.
The completion the transfer is indicated by an event. The MPLAB Harmony USB_DEVICE_CDC_Read and the USB_DEVICE_CDC_Write
functions add transfer requests to a queue. The size of the queue is configurable. The MLA USB CDC Function driver does not support queuing.

Event Handling

Provides information on handling Device Layer events.

Description

The MLA USB Device Layer provides events to the application. In the MLA "Device – CDC – Basic Demo" demonstration application, the USB
Device Layer application event handle, USER_USB_CALLBACK_EVENT_HANDLER, is implemented at line 1427 of the project main.c file. The
MLA USB CDC function driver does not provide events to the application.

The MPLAB Harmony USB Device Layer Event handler is implemented in the APP_USBDeviceEventHandler function. The following table lists the
MLA USB Device Layer Event and the equivalent MPLAB Harmony USB Device Layer Events. The MPLAB Harmony USB Device Layer features
additional events that facilitate application device state management. Refer to the USB Device Layer Library documentation for more details.

MLA USB Device Layer Events MPLAB Harmony USB Device Layer Events

EVENT_CONFIGURED USB_DEVICE_EVENT_CONFIGURED

EVENT_SET_DESCRIPTOR The USB Device Layer implementation in the MPLAB Harmony v0.80.xx installs Set Descriptor requests
from the Host. The USB Device Layer implementation in the MPLAB Harmony v1.0 will provide this event
to the application as USB_DEVICE_EVENT_SET_DESCRIPTOR event.

EVENT_EP0_REQUEST USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST

EVENT_ATTACH USB_DEVICE_EVENT_POWER_DETECTED

EVENT_TRANSFER_TERMINATED USB_DEVICE_EVENT_CONTROL_TRANSFER_ABORTED

EVENT_TRANSFER Not Applicable for standard device types. The USB Device Layer implementation in the MPLAB Harmony
v1.0 will provide a USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE and a
USB_DEVICE_ENDPOINT_WRITE_COMPLETE event for Generic device implementations.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 21

EVENT_SOF USB_DEVICE_EVENT_SOF

EVENT_RESUME USB_DEVICE_EVENT_RESUMED

EVENT_SUSPEND USB_DEVICE_EVENT_SUSPENDED

EVENT_BUS_ERROR USB_DEVICE_EVENT_ERROR

EVENT_TRANSFER_TERMINATED The USB Device Layer implementation in the MPLAB Harmony does not provide this event.

• The MLA USB Device Layer Event Handler function is fixed and needs to be specified for the code to compile. The MPLAB Harmony USB
Device Layer Event Handler is Device Layer instance specific and is set through the USB_DEVICE_EventHandlerSet function. This function is
called after the device layer is opened successfully in the APP_Tasks function.

• The MLA USB Device Layer Event Handler implementation must invoke the required function driver initialization routine in the
EVENT_CONFIGURED event. This is not required in the MPLAB Harmony USB Device Layer Event Handler. The MPLAB Harmony USB
Device Layer internally initializes all the function drivers associated with the configuration that the USB Host has set. The application should
instead register event handlers with all the initialized function drivers.

• The MLA USB Device Layer Event Handler implementation must handle class specific control requests in the EVENT_EP0_REQUEST event
response. The MPLAB Harmony USB Device Layer internally routes class specific requests directly to the function drivers. This process does
not require application intervention. The MPLAB Harmony USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST event is
generated when device layer receives a control transfer that is cannot be handled by the Device Layer or the Function Driver.

The MLA CDC Function Driver Interface is not event based and hence does not require an event handler. The MPLAB CDC Function Driver
Interface is event based and requires a function driver instance specific event handler to be registered. This event handler is registered through the
USB_DEVICE_CDC_EventHandlerSet function. The event handler should be registered in the Device Layer Set Configuration Event

Invoking the Tasks Routine

Provides information on how to invoke the Task Routine.

Description

Refer to line 502 of MLA "Device – CDC – Basic Demo" demonstration application file, main.c. This section of the code invokes the MLA USB
Device Layer Task Routine, the USBDeviceTasks function, in the application while(1) superloop if the Device Stack is configured for Polled
mode. If the Device Stack is configured for Interrupt mode operation, the USBDeviceTasks function is called (see line 664 of the usb_device.c
file) in the USB Interrupt Service Routine. The MLA USB Device Stack features only one Task routine function.

The USB Device Layer Tasks routine in the MPLAB Harmony USB Device Stack is implemented by the USB_DEVICE_Tasks function. This
function must be always be called in the SYS_Tasks function, regardless of whether the USB Device Stack is configured for Polled or Interrupt
mode of operation. The MPLAB Harmony USB Device Stack defines an additional Interrupt mode specific task routine, the
USB_DEVICE_Tasks_ISR function, that must be called from the USB Peripheral Interrupt Service Routine (ISR). This function should only be
called in the USB Peripheral ISR. The USB Peripheral ISR is implemented in the system_interrupt.c file.

USB Device Descriptors

The USB Device Descriptors in the MLA "Device – CDC – Basic Demo" demonstration application are defined in the usb_descriptors.c file.
This file contains the USB Device, Configuration, and String Descriptors.

Description

The USB Device Descriptors in the MLA “Device – CDC – Basic Demo” demonstration application are defined in the usb_descriptors.c file.
This file contains the USB Device, Configuration and String Descriptors.

The USB Device, Configuration, and String Descriptors. USB Descriptors in a MPLAB Harmony USB Device Stack Demonstration Application are
specified in the system_init.c file. Some of the macros (those that define endpoint and direction) used in the "Device – CDC – Basic Demo"
demonstration application USB descriptors are not used in the MPLAB Harmony cdc_com_port_single USB Descriptors.

The system_init.c file also contains additional data structures needed by the MPLAB Harmony USB Device Stack. These are:

• Function Driver registration table (funcRegistrationTable), which provisions functions drivers to be included in this USB device

• Master Descriptor table (usbMasterDescriptor), which provides information configuration and the string descriptors to the USB Device Layer

• Table of speed specific configuration descriptors (fullSpeedConfigDescSet)

• CDC function driver initialization data structure (cdcInit). This structure contains the size of the CDC read and write, and the serial state
notification send queues.

 Note:
The MLA USB Device layer does not require the specification of the data structures.

Device Stack Configuration

The USB Device Stack configuration in the MLA "Device – CDC – Basic Demo" demonstration application is defined in the project-specific
usb_config.h file, located in the Project firmware folder.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 22

Description

The USB Device Stack configuration in the MPLAB Harmony cdc_com_port_single demonstration application needs to be specified in the
system_config.h file. This includes the configuration for the USB Controller Driver, Device Layer, and CDC Function Driver. The following table
shows the MLA USB Device Stack Configuration macros and their equivalent MPLAB Harmony USB Device Stack Configuration Macros.

MLA USB Device Stack Configuration Macros MPLAB Harmony USB Device Stack Configuration
Macros

USB_EP0_BUFF_SIZE USB_DEVICE_EP0_BUFFER_SIZE

USB_MAX_NUM_INT The number of the interface used by a function driver
instance is specified via an entry in the Function Driver
Registration Table (in system_init.c).

USB_USER_DEVICE_DESCRIPTOR This USB Device Descriptor is specified via the Master
Descriptor Table (in system_init.c).

USB_PING_PONG_MODE Not applicable. The USB Controller is always configured
for maximum performance (full ping pong).

USB_POLLING

USB_INTERRUPT

DRV_USB_INTERRUPT_MODE. Should be set to true
for Interrupt mode and false for Polled mode.

USB_PULLUP_OPTION Not applicable.

USB_TRANSCEIVER_OPTION Not applicable.

USB_SPEED_OPTION This is defined via the USB_DEVICE_INIT data structure
at Device Layer Initialization in system_init.c.

USB_ENABLE_STATUS_STAGE_TIMEOUTS Not applicable.

USB_SUPPORT_DEVICE Specified via DRV_USB_DEVICE_SUPPORT and
DRV_USB_HOST_SUPPORT. These can be set to true
to enable the required feature.

USB_ENABLE_ALL_HANDLERS Not applicable. All Device Layer events are provided via
one event handler registered dynamically.

USB_USE_CDC Not applicable. Function Drivers are provisioned via an
entry in the Function Driver Registration Table (in
system_init.c).

CDC_COMM_INTF_ID

CDC_COMM_EP

CDC_COMM_IN_EP_SIZE

CDC_DATA_INTF_ID

CDC_DATA_EP

CDC_DATA_OUT_EP_SIZE

CDC_DATA_IN_EP_SIZE

Not applicable. The number of the interface used by a
function driver instance is specified via an entry in the
Function Driver Registration Table (in
system_init.c). The Device Layer obtains endpoint
information for a specific instance of the CDC driver from
the USB Configuration Descriptor.

USB_CDC_SUPPORT_ABSTRACT_CONTROL_MANAGEMENT_CAPABILITIES_D1 Not applicable. Features are defined by the CDC Class
specific descriptors.

The MPLAB Harmony USB Device Stack requires specification of other configuration macros. Refer to the USB Device Library and the USB Driver
Libraries sections for additional information.

USB Audio 1.0 Device Library

This section describes the USB Audio 1.0 Device Library.

Introduction

This section provides information on library design, configuration, usage and the library interface for the USB Audio 1.0 Device Library.

Description

The MPLAB Harmony USB Audio 1.0 Device Library (also referred to as the Audio 1.0 Function Driver or library) features routines to implement a
USB Audio 1.0 Device. Examples of Audio USB Devices include USB Speakers, microphones, and voice telephony. The library provides a
convenient abstraction of the USB Audio 1.0 Device specification and simplifies the implementation of USB Audio 1.0 Devices.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 23

Using the Library

This topic describes the basic architecture of the Audio 1.0 Function Driver and provides information and examples on its use.

Abstraction Model

Describes the Abstraction Model of the USB Audio 1.0 Device Library.

Description

The Audio 1.0 Function Driver offers various services to the USB Audio 1.0 device to communicate with the host by abstracting USB specification
details. It must be used along with the USB Device_layer and USB controller to communicate with the USB host. Figure 1 shows a block diagram
of the MPLAB Harmony USB Device Stack Architecture and where the Audio 1.0 Function Driver is placed.

Figure 1: USB Device 1.0 Audio Device Driver

The USB controller driver takes the responsibility of managing the USB peripheral on the device. The USB 1.0 Device Layer handles the device
enumeration, etc. The USB Device 1.0 Layer forwards all Audio-specific control transfers to the Audio 1.0 Function Driver. The Audio 1.0 Function
Driver interprets the control transfers and requests application's intervention through event handlers and a well-defined set of functions. The
application must respond to the Audio events either in or out of the event handler. Some of these events are related to Audio 1.0 Device Class
specific control transfers. The application must complete these control transfers within the timing constraints defined by USB.

Library Overview

The USB Audio 1.0 Device Library mainly interacts with the system, its clients and function drivers, as shown in the Abstraction Model.

The library interface routines are divided into sub-sections, which address one of the blocks or the overall operation of the USB Audio 1.0 Device
Library.

Library Interface Section Description

Functions Provides event handler, read/write, and transfer cancellation functions.

How the Library Works

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 24

Initializing the Library

Describes how the USB Audio 1.0 Device driver is initialized.

Description

The Audio 1.0 Function Driver instance for a USB device configuration is initialized by the Device Layer when the configuration is set by the host.
This process does not require application intervention. Each instance of the Audio 1.0 Function Driver should be registered with the Device_layer
through the Device Layer Function Driver Registration Table. The Audio 1.0 Function Driver requires a initialization data structure to be specified.
This is a USB_DEVICE_AUDIO_INIT data type that specifies the size of the read and write queues. The funcDriverInit member of the function
driver registration table entry of the Audio 1.0 Function Driver instance should point to this initialization data structure. The
USB_DEVICE_AUDIO_FUNCTION_DRIVER object is a global object provided by the Audio 1.0 Function Driver and provides the Device Layer
with an entry point into the Audio 1.0 Function Driver. The following code shows an example of how the Audio 1.0 Function Driver can be
registered with the Device Layer.
/* This code shows an example of how an Audio 1.0 Function Driver instances
 * can be registered with the Device Layer via the Device Layer Function Driver
 * Registration Table. In this case Device Configuration 1 consists of one
 * Audio 1.0 Function Driver instance. */

/* The Audio 1.0 Function Driver requires an initialization data structure that
 * specifies the read and write buffer queue sizes. Note that these settings are
 * also affected by the USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED configuration
 * macro. */

const USB_DEVICE_AUDIO_INIT audioDeviceInit =
{
 .queueSizeRead = 1,
 .queueSizeWrite = 1
};

const USB_DEVICE_FUNC_REGISTRATION_TABLE funcRegistrationTable[1] =
{
 {
 .speed = USB_SPEED_FULL, // Supported speed
 .configurationValue = 1, // To be initialized for Configuration 1
 .interfaceNumber = 0, // Starting interface number.
 .numberOfInterfaces = 2, // Number of interfaces in this instance
 .funcDriverIndex = 0, // Function Driver instance index is 0
 .funcDriverInit = &audioDeviceInit, // Function Driver does not need initialization data
structure
 .driver = USB_DEVICE_AUDIO_FUNCTION_DRIVER // Pointer to Function Driver - Device Layer interface
functions
 },
};

The following figure illustrates the typical sequence that is followed in the application when using the Audio 1.0 Function Driver.

Typical USB Audio 1.0 Device Sequence

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 25

1. Call set of APIs to initialize USB Device Layer (refer to the USB Device Layer Library section for details about these APIs).

2. The Device Layer provides a callback to the application for any USB Device events like attached, powered, configured, etc. The application
should receive a callback with an event USB_DEVICE_EVENT_CONFIGURED to proceed.

3. Once the Device Layer is configured, the application needs to register a callback function with the Audio 1.0 Function Driver to receive Audio
Control transfers, and also other Audio 1.0 Function Driver events. Now the application can use Audio 1.0 Function Driver APIs to communicate
with the USB Host.

Event Handling

Describes Audio 1.0 Function Driver event handler registration and event handling.

Description

Registering a Audio 1.0 Function Driver Callback Function

While creating a USB Audio 1.0 Device application, an event handler must be registered with the Device Layer (the Device Layer Event Handler)
and every Audio 1.0 Function Driver instance (Audio 1.0 Function Driver Event Handler). The application needs to register the event handler with
the Audio 1.0 Function Driver:

• For receiving Audio Control Requests from Host like Volume Control, Mute Control, etc.

• For handling other events from USB Audio 1.0 Device Driver (e.g., Data Write Complete or Data Read Complete)

The event handler should be registered before the USB device layer_acknowledges the SET CONFIGURATION request from the USB Host. To
ensure this, the callback function should be set in the USB_DEVICE_EVENT_CONFIGURED event that is generated by the device_layer. The
following code example shows how this can be done.
/* This a sample Application Device Layer Event Handler
 * Note how the USB Audio 1.0 Device Driver callback function
 * USB_DEVICE_AUDIO_EventHandlerSet()
 * is registered in the USB_DEVICE_EVENT_CONFIGURED event. */

void APP_USBDeviceEventHandler(USB_DEVICE_EVENT event,
 void * pEventData, uintptr_t context)
{
 switch (event)
 {
 case USB_DEVICE_EVENT_RESET:
 case USB_DEVICE_EVENT_DECONFIGURED:

 // USB device is reset or device is deconfigured.
 // This means that USB device layer is about to deinitialize
 // all function drivers.

 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 26

 case USB_DEVICE_EVENT_CONFIGURED:

 /* check the configuration */
 if (((USB_DEVICE_EVENT_DATA_CONFIGURED *)
 (eventData))->configurationValue == 1)
 {

 USB_DEVICE_AUDIO_EventHandlerSet
 (USB_DEVICE_AUDIO_INDEX_0,
 APP_USBDeviceAudioEventHandler ,
 (uintptr_t)NULL);

 /* mark that set configuration is complete */
 appData.isConfigured = true;

 }
 break;

 case USB_DEVICE_EVENT_SUSPENDED:

 break;

 case USB_DEVICE_EVENT_RESUMED:
 case USB_DEVICE_EVENT_POWER_DETECTED:
 /* VBUS has been detected */
 USB_DEVICE_Attach(appData.usbDeviceHandle);
 break;
 case USB_DEVICE_EVENT_POWER_REMOVED:
 /*VBUS is not available anymore. */
 USB_DEVICE_Detach(appData.usbDeviceHandle);
 break;
 case USB_DEVICE_EVENT_ERROR:
 default:
 break;
 }
}

Event Handling

The Audio 1.0 Function Driver provides events to the application through the event handler function registered by the application. These events
indicate:

• Completion of a read or a write data transfer

• Audio Control Interface requests

• Completion of data and the status stages of Audio Control Interface related control transfer

The Audio Control Interface Request events and the related control transfer events typically require the application to respond with the Device
Layer Control Transfer routines to complete the control transfer. Based on the generated event, the application may be required to:

• Respond with a USB_DEVICE_ControlSend function, which is completes the data stage of a Control Read Transfer

• Respond with a USB_DEVICE_ControlReceive function, which provisions the data stage of a Control Write Transfer

• Respond with a USB_DEVICE_ControlStatus function, which completes the handshake stage of the Control Transfer. The application can
either STALL or Acknowledge the handshake stage through the USB_DEVICE_ControlStatus function.

The following table shows the CDC Function Driver Control Transfer related events and the required application control transfer actions.

Audio 1.0 Function Driver Control Transfer Event Required Application Action

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_CUR

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MIN

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MAX

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_RES

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MEM

Identify the control type using the associated event data. If a data stage
is expected, use the USB_DEVICE_ControlReceive function to receive
expected data. If a data stage is not required or if the request is not
supported, use the USB_DEVICE_ControlStatus function to
Acknowledge or Stall the request.

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_CUR

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MIN

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MAX

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_RES

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MEM

Identify the control type using the associated event data. Use the
USB_DEVICE_ControlSend function to send the expected data. If the
request is not supported, use the USB_DEVICE_ControlStatus function
to Stall the request.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 27

USB_DEVICE_AUDIO_EVENT_ENTITY_GET_STAT Identify the entity type using the associated event data. Use the
USB_DEVICE_ControlSend function to send the expected data. If the
request is not supported, use the USB_DEVICE_ControlStatus function
to Stall the request.

USB_DEVICE_AUDIO_CONTROL_TRANSFER_DATA_RECEIVED Acknowledge or stall using the USB_DEVICE_ControlStatus function.

USB_DEVICE_AUDIO_CONTROL_TRANSFER_DATA_SENT Action not required.

USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_UNKNOWN Interpret the setup packet and use the Device layer Control transfer
functions to complete the transfer.

The application must analyze the wIndex field of the event data (received with the control transfer event) to identify the entity that is being
addressed. The application must be aware of all entities included in the application and their IDs. Once identified, the application can then type
cast the event data to entity type the specific control request type. For example, if the Host sends a control request to set the volume of the Audio
device, the following occurs in this order:

1. The Audio 1.0 Function Driver will generate a USB_DEVICE_AUDIO_EVENT_CONTROL_SET_CUR event.

2. The application must type cast the event data to a USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR type and check the entityID
field.

3. The entityID field will be identified by the application as a Feature Unit.

4. The application must now type cast the event data type as a USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST data type and check the
controlSelector field.

5. If the controlSelector field is a USB_AUDIO_VOLUME_CONTROL, the application can then call the USB_DEVICE_AUDIO_ControlReceive
function to receive the new volume settings.

Based on the type of event, the application should analyze the event data parameter of the event handler. This data member should be type cast
to an event specific data type. The following table shows the event and the data type to use while type casting. Note that the event data member is
not required for all events

Audio 1.0 Function Driver Event Related Event Data Type

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_CUR USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR *

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MIN USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_SET_MIN *

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MAX USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_SET_MAX *

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_RES USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_SET_RES *

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MEM USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_SET_MEM *

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_CUR USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_GET_CUR *

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MIN USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_GET_MIN *

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MAX USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_GET_MAX *

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_RES USB_DEVICE_AUDIO_EVENT_CONTROL_GET_RES

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MEM USB_DEVICE_AUDIO_EVENT_ DATA_CONTROL_GET_MEM *

USB_DEVICE_AUDIO_EVENT_ENTITY_GET_STAT USB_DEVICE_AUDIO_EVENT_ DATA_ENTITY_GET_STAT *

USB_DEVICE_AUDIO_CONTROL_TRANSFER_DATA_RECEIVED NULL

USB_DEVICE_AUDIO_CONTROL_TRANSFER_DATA_SENT NULL

USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_UNKNOWN USB_SETUP_PACKET *

USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE *

USB_DEVICE_AUDIO_EVENT_READ_COMPLETE USB_DEVICE_AUDIO_EVENT_ DATA_READ_COMPLETE *

USB_DEVICE_AUDIO_EVENT_INTERFACE_SETTING_CHANGED USB_DEVICE_AUDIO_EVENT_
DATA_INTERFACE_SETTING_CHANGED *

Handling Audio Control Requests:

When the Audio 1.0 Function Driver receives an Audio Class Specific Control Transfer Request, it passes this control transfer to the application as
a Audio 1.0 Function Driver event. The following code example shows how to handle an Audio Control request.
// This code example shows handling Audio Control requests. The following code
// handles a Mute request (both SET and GET) received from a USB Host.

void APP_USBDeviceAudioEventHandler
(
 USB_DEVICE_AUDIO_INDEX iAudio ,
 USB_DEVICE_AUDIO_EVENT event ,
 void * pData,
 uintptr_t context

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 28

)
{
 USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED *interfaceInfo;
 USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE *readEventData;
 uint8_t entityID;
 uint8_t controlSelector;
 if (iAudio == 0)
 {
 switch (event)
 {
 case USB_DEVICE_AUDIO_EVENT_INTERFACE_SETTING_CHANGED:

 /* We have received a request from USB host to change the
 * Interface-Alternate setting. The application should be aware
 * of the association between alternate settings and the device
 * features to be enabled.*/

 interfaceInfo = (USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED *)pData;
 appData.activeInterfaceAlternateSetting = interfaceInfo->interfaceAlternateSetting;
 appData.state = APP_USB_INTERFACE_ALTERNATE_SETTING_RCVD;
 break;

 case USB_DEVICE_AUDIO_EVENT_READ_COMPLETE:
 /* We have received an audio frame from the Host.
 Now send this audio frame to Audio Codec for Playback. */
 break;

 case USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE:
 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_CUR:

 /* This is an example of handling Audio control request. In this
 * case the control request is targeted to the Mute Control in
 * a feature unit entity. This event indicates that the current
 * value needs to be set. */

 entityID = ((USB_AUDIO_CONTROL_INTERFACE_REQUEST*)pData)->entityID;
 if (entityID == APP_ID_FEATURE_UNIT)
 {
 controlSelector = ((USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST*)pData)->controlSelector;
 if (controlSelector == USB_AUDIO_MUTE_CONTROL)
 {
 /* It is confirmed that this request is targeted to the
 * mute control. We schedule a control transfer receive
 * to get data from the host. */

 USB_DEVICE_ControlReceive(appData.usbDevHandle, (void *) &(appData.dacMute), 1);
 appData.currentAudioControl = APP_USB_AUDIO_MUTE_CONTROL;
 }
 }
 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_CUR:

 /* This event occurs when the host is requesting a current
 * status of control */

 entityID = ((USB_AUDIO_CONTROL_INTERFACE_REQUEST*)pData)->entityID;
 if (entityID == APP_ID_FEATURE_UNIT)
 {
 controlSelector = ((USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST*)pData)->controlSelector;
 if (controlSelector == USB_AUDIO_MUTE_CONTROL)
 {
 /* Use the control send function to send the status of
 * the control to the host */
 USB_DEVICE_ControlSend(appData.usbDevHandle, (void *)&(appData.dacMute), 1);
 }
 }

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 29

 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MIN:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MIN:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MAX:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MAX:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_RES:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_RES:
 case USB_DEVICE_AUDIO_EVENT_ENTITY_GET_MEM:

 /* In this example, all of these control requests are not
 * supported. So these are stalled. */
 USB_DEVICE_ControlStatus (appData.usbDevHandle, USB_DEVICE_CONTROL_STATUS_ERROR);
 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 /* This event occurs when data has been received in a control
 * transfer */

 USB_DEVICE_ControlStatus(appData.usbDevHandle, USB_DEVICE_CONTROL_STATUS_OK);
 if (appData.currentAudioControl == APP_USB_AUDIO_MUTE_CONTROL)
 {
 appData.state = APP_MUTE_AUDIO_PLAYBACK;
 appData.currentAudioControl = APP_USB_CONTROL_NONE;
 }
 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_SENT:
 break;
 default:
 break;
 }
 }
}

Transferring Data

Describes how to send/receive data to/from USB Host using this USB Audio 1.0 Device Driver.

Description

The USB Audio 1.0 Device Driver provides functions to send and receive data.

Receiving Data

The USB_DEVICE_AUDIO_Read function schedules a data read. When the host transfers data to the device, the Audio 1.0 Function Driver
receives the data and invokes the USB_DEVICE_AUDIO_EVENT_READ_COMPLETE event. This event indicates that audio data is now available
in the application specified buffer.

The Audio 1.0 Function Driver supports buffer queuing. The application can schedule multiple read requests. Each request is assigned a unique
buffer handle, which is returned with the USB_DEVICE_AUDIO_EVENT_READ_COMPLETE event. The application can use the buffer handle to
track completion to queued requests. Using this feature allows the application to implement audio buffering schemes such as ping-pong buffering.

Sending Data

The USB_DEVICE_AUDIO_Write schedules a data write. When the host sends a request for the data, the Audio 1.0 Function Driver transfers the
data and invokes the USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE event.

The Audio 1.0 Function Driver supports buffer queuing. The application can schedule multiple write requests. Each request is assigned a unique
buffer handle, which is returned with the USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE event. The application can use the buffer handle to
track completion to queued requests. Using this feature allows the application to implement audio buffering schemes such as ping-pong buffering.

Configuring the Library

Describes how to configure the USB Audio 1.0 Device Driver.

Macros

Name Description

USB_DEVICE_AUDIO_INSTANCES_NUMBER Specifies the number of Audio Function Driver instances.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 30

USB_DEVICE_AUDIO_MAX_ALTERNATE_SETTING Specifies the maximum number of Alternate Settings per streaming
interface.

USB_DEVICE_AUDIO_MAX_STREAMING_INTERFACES Specifies the maximum number of Audio Streaming interfaces in an
Audio Function Driver instance.

USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED Specifies the combined queue size of all Audio function driver
instances.

Description

The application designer must specify the following configuration parameters while using the USB Audio 1.0 Device Driver. The configuration
macros that implement these parameters must be located in the system_config.h file in the application project and a compiler include path (to
point to the folder that contains this file) should be specified.

USB_DEVICE_AUDIO_INSTANCES_NUMBER Macro

Specifies the number of Audio Function Driver instances.

File

usb_device_audio_v1_0_config_template.h

C
#define USB_DEVICE_AUDIO_INSTANCES_NUMBER

Description

USB device Audio Maximum Number of instances

This macro defines the number of instances of the Audio Function Driver. For example, if the application needs to implement two instances of the
Audio Function Driver (to create two composite Audio Device) on one USB Device, the macro should be set to 2. Note that implementing a USB
Device that features multiple Audio interfaces requires appropriate USB configuration descriptors.

Remarks

None.

USB_DEVICE_AUDIO_MAX_ALTERNATE_SETTING Macro

Specifies the maximum number of Alternate Settings per streaming interface.

File

usb_device_audio_v1_0_config_template.h

C
#define USB_DEVICE_AUDIO_MAX_ALTERNATE_SETTING

Description

Maximum number of Alternate Settings

This macro defines the maximum number of Alternate Settings per streaming interface. If the Audio Device features multiple streaming interfaces,
this configuration constant should be equal to the the maximum number of alternate required amongst the streaming interfaces.

Remarks

None.

USB_DEVICE_AUDIO_MAX_STREAMING_INTERFACES Macro

Specifies the maximum number of Audio Streaming interfaces in an Audio Function Driver instance.

File

usb_device_audio_v1_0_config_template.h

C
#define USB_DEVICE_AUDIO_MAX_STREAMING_INTERFACES

Description

Maximum Audio Streaming Interfaces

This macro defines the maximum number of streaming interfaces in an Audio Function Driver instance. In case of multiple Audio Function Driver

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 31

instances, this constant should be equal to the maximum number of interfaces amongst the Audio Function Driver instances.

Remarks

None.

USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED Macro

Specifies the combined queue size of all Audio function driver instances.

File

usb_device_audio_v1_0_config_template.h

C
#define USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED

Description

USB device Audio Combined Queue Size

This macro defines the number of entries in all queues in all instances of the Audio function driver. This value can be obtained by adding up the
read and write queue sizes of each Audio Function driver instance. In a simple single instance USB Audio device application, that does not require
buffer queuing, the USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED macro can be set to 2. Consider a case of a Audio function driver
instances, with has a read queue size of 2 and write queue size of 3, this macro should be set to 5 (2 + 3).

Remarks

None.

Building the Library

This section lists the files that are available in the USB Audio 1.0 Device Library.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_device_audio_v1_0.h This header file must be included in every source file that needs to invoke USB Audio 1.0 Device Driver
APIs.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_device_audio_v1_0.c This file contains all of functions, macros, definitions, variables, datatypes, etc., that
are specific to the USB Audio Specification v1.0 implementation of the Audio 1.0
Function Driver.

/src/dynamic/usb_device_audio_read_write.c Contains implementation of the Audio 1.0 Function Driver read and write functions.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB Audio 1.0 Device Library depends on the following modules:

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 32

• USB Device Library

Library Interface

a) Functions

Name Description

USB_DEVICE_AUDIO_EventHandlerSet This function registers an event handler for the specified Audio function driver instance.

USB_DEVICE_AUDIO_Read This function requests a data read from the USB Device Audio Function Driver Layer.

USB_DEVICE_AUDIO_TransferCancel This function cancels a scheduled Audio Device data transfer.

USB_DEVICE_AUDIO_Write This function requests a data write to the USB Device Audio Function Driver Layer.

USB_DEVICE_AUDIO_StatusSend This function requests a Status write to the USB Device Audio Function Driver Layer.

b) Data Types and Constants

Name Description

USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE USB Device Audio Function Driver event handler
response type none.

USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID USB Device Audio Function Driver invalid transfer
handle definition.

USB_DEVICE_AUDIO_EVENT USB Device Audio Function Driver events.

USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE USB Device Audio Function Driver audio read and
write complete event data.

USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE USB Device Audio Function Driver audio read and
write complete event data.

USB_DEVICE_AUDIO_EVENT_HANDLER USB Device Audio event handler function pointer
type.

USB_DEVICE_AUDIO_EVENT_RESPONSE USB Device Audio Function Driver event callback
response type.

USB_DEVICE_AUDIO_INDEX USB Device Audio function driver index.

USB_DEVICE_AUDIO_RESULT USB Device Audio Function Driver USB Device
Audio result enumeration.

USB_DEVICE_AUDIO_TRANSFER_HANDLE USB Device Audio Function Driver transfer handle
definition.

USB_DEVICE_AUDIO_FUNCTION_DRIVER USB Device Audio Function Driver function pointer.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_
GET_CUR.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_
GET_MAX.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_
GET_MEM.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_
GET_MIN.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_
GET_RES.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR USB Device Audio Function Driver set and get
request data.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_S
ET_MAX.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_S
ET_MEM.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_S
ET_MIN.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_S
ET_RES.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 33

USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED USB Device Audio Function Driver alternate interface
setting event data.

USB_DEVICE_AUDIO_INIT USB Device Audio Function Driver initialization data
structure.

USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT This is type
USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GE
T_STAT.

USB_DEVICE_AUDIO_TRANSFER_ABORT_NOTIFY USB Audio Transfer abort notification enable

USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLETE USB Device Audio Function Driver Status Send
complete event data.

Description

This section describes the Application Programming Interface (API) functions of the USB Device Audio 1.0 Library.

Refer to each section for a detailed description.

a) Functions

USB_DEVICE_AUDIO_EventHandlerSet Function

This function registers an event handler for the specified Audio function driver instance.

File

usb_device_audio_v1_0.h

C
USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_EventHandlerSet(USB_DEVICE_AUDIO_INDEX instanceIndex,
USB_DEVICE_AUDIO_EVENT_HANDLER eventHandler, uintptr_t context);

Returns

• USB_DEVICE_AUDIO_RESULT_OK - The operation was successful

• USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_INVALID - The specified instance does not exist.

• USB_DEVICE_AUDIO_RESULT_ERROR_PARAMETER_INVALID - The eventHandler parameter is NULL

Description

This function registers a event handler for the specified Audio function driver instance. This function should be called by the application when it
receives a SET CONFIGURATION event from the device layer. The application must register an event handler with the function driver in order to
receive and respond to function driver specific events and control transfers. If the event handler is not registered, the device layer will stall function
driver specific commands and the USB device may not function.

Remarks

None.

Preconditions

This function should be called when the function driver has been initialized as a result of a set configuration.

Example
// The following code shows an example for registering an event handler. The
// application specifies the context parameter as a pointer to an
// application object (appObject) that should be associated with this
// instance of the Audio function driver.

USB_DEVICE_AUDIO_RESULT result;

USB_DEVICE_AUDIO_EVENT_RESPONSE APP_USBDeviceAUDIOEventHandler
(
 USB_DEVICE_AUDIO_INDEX instanceIndex ,
 USB_DEVICE_AUDIO_EVENT event ,
 void* pData,
 uintptr_t context
)
{
 // Event Handling comes here

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 34

 switch(event)
 {
 ...
 }

 return(USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE);
}

result = USB_DEVICE_AUDIO_EventHandlerSet (USB_DEVICE_AUDIO_INSTANCE_0 ,
 &APP_USBDeviceAUDIOEventHandler, (uintptr_t) &appObject);

if(USB_DEVICE_AUDIO_RESULT_OK != result)
{
 // Do error handling here
}

Parameters

Parameters Description

instance Instance of the Audio Function Driver.

eventHandler A pointer to event handler function.

context Application specific context that is returned in the event handler.

Function

USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_EventHandlerSet

(

USB_DEVICE_AUDIO_INDEX instance ,

USB_DEVICE_AUDIO_EVENT_HANDLER eventHandler ,

uintptr_t context

);

USB_DEVICE_AUDIO_Read Function

This function requests a data read from the USB Device Audio Function Driver Layer.

File

usb_device_audio_v1_0.h

C
USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_Read(USB_DEVICE_AUDIO_INDEX instanceIndex,
USB_DEVICE_AUDIO_TRANSFER_HANDLE* transferHandle, uint8_t interfaceNumber, void * data, size_t size);

Returns

• USB_DEVICE_AUDIO_RESULT_OK - The read request was successful. transferHandle

contains a valid transfer handle.

• USB_DEVICE_AUDIO_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue

is full. The read request could not be added.

• USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified

instance is not configured yet.

• USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_INVALID - The specified instance

was not provisioned in the application and is invalid.

Description

This function requests a data read from the USB Device Audio Function Driver Layer. The function places a requests with driver, the request will
get serviced as data is made available by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination of
the request is indicated by the USB_DEVICE_AUDIO_EVENT_READ_COMPLETE event. The amount of data read and the transfer handle
associated with the request is returned along with the event. The transfer handle expires when event handler for the
USB_DEVICE_AUDIO_EVENT_READ_COMPLETE exits. If the read request could not be accepted, the function returns an error code and
transferHandle will contain the value USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID.

Remarks

While the using the Audio Function Driver with PIC32MZ USB module, the audio buffer provided to the USB_DEVICE_AUDIO_Read function

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 35

should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The function driver should have been configured.

Example
// Shows an example of how to read. This assumes that
// device had been configured. The example attempts to read
// data from interface 1.

USB_DEVICE_AUDIO_INDEX instanceIndex;
USB_DEVICE_AUDIO_TRANSFER_HANDLE transferHandle;
unit8_t interfaceNumber;
unit8_t rxBuffer[192]; // Use this attribute for PIC32MZ __attribute__((coherent, aligned(16)))
USB_DEVICE_AUDIO_RESULT readRequestResult;

instanceIndex = 0; //specify the Audio Function driver instance number.
interfaceNumber = 1; //Specify the Audio Streaming interface number.

readRequestResult = USB_DEVICE_AUDIO_Read (instanceIndex, &transferHandle,
 interfaceNumber, &rxBuffer, 192);

if(USB_DEVICE_AUDIO_RESULT_OK != readRequestResult)
{
 //Do Error handling here
}

// The completion of the read request will be indicated by the
// USB_DEVICE_AUDIO_EVENT_READ_COMPLETE event. The transfer handle
// and the amount of data read will be returned along with the
// event.

Parameters

Parameters Description

instance USB Device Audio Function Driver instance.

transferHandle Pointer to a USB_DEVICE_AUDIO_TRANSFER_HANDLE type of variable. This variable will
contain the transfer handle in case the read request was successful.

interfaceNum The USB Audio streaming interface number on which read request is to placed.

data pointer to the data buffer where read data will be stored. In case of PIC32MZ device, this
buffer should be located in coherent memory and should be aligned a 16 byte boundary.

size Size of the data buffer. Refer to the description section for more details on how the size
affects the transfer.

Function

USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_Read

(

USB_DEVICE_AUDIO_INDEX instanceIndex ,

USB_DEVICE_AUDIO_TRANSFER_HANDLE* transferHandle,

uint8_t interfaceNum ,

void * data ,

size_t size

);

USB_DEVICE_AUDIO_TransferCancel Function

This function cancels a scheduled Audio Device data transfer.

File

usb_device_audio_v1_0.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 36

C
USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_TransferCancel(USB_DEVICE_AUDIO_INDEX instanceIndex,
USB_DEVICE_AUDIO_TRANSFER_HANDLE transferHandle);

Returns

• USB_DEVICE_AUDIO_RESULT_OK - The transfer will be canceled completely or partially.

• USB_DEVICE_AUDIO_RESULT_ERROR - The transfer could not be canceled because it has either completed, the transfer handle is invalid
or the last transaction is in progress.

Description

This function cancels a scheduled Audio Device data transfer. The transfer could have been scheduled using the USB_DEVICE_AUDIO_Read,
USB_DEVICE_AUDIO_Write, or the USB_DEVICE_AUDIO_SerialStateNotificationSend functions. If a transfer is still in the queue and its
processing has not started, the transfer is canceled completely. A transfer that is in progress may or may not get canceled depending on the
transaction that is presently in progress. If the last transaction of the transfer is in progress, the transfer will not be canceled. If it is not the last
transaction in progress, the in-progress will be allowed to complete. Pending transactions will be canceled. The first transaction of an in progress
transfer cannot be canceled.

Remarks

None.

Preconditions

The USB Device should be in a configured state.

Example
// The following code snippet cancels a AUDIO transfer.

USB_DEVICE_AUDIO_TRANSFER_HANDLE transferHandle;
USB_DEVICE_AUDIO_RESULT result;

result = USB_DEVICE_AUDIO_TransferCancel(instanceIndex, transferHandle);

if(USB_DEVICE_AUDIO_RESULT_OK == result)
{
 // The transfer cancellation was either completely or
 // partially successful.
}

Parameters

Parameters Description

instanceIndex AUDIO Function Driver instance index.

transferHandle Transfer handle of the transfer to be canceled.

Function

USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_TransferCancel

(

USB_DEVICE_AUDIO_INDEX instanceIndex,

USB_DEVICE_AUDIO_TRANSFER_HANDLE transferHandle

);

USB_DEVICE_AUDIO_Write Function

This function requests a data write to the USB Device Audio Function Driver Layer.

File

usb_device_audio_v1_0.h

C
USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_Write(USB_DEVICE_AUDIO_INDEX instanceIndex,
USB_DEVICE_AUDIO_TRANSFER_HANDLE * transferHandle, uint8_t interfaceNumber, void * data, size_t size);

Returns

• USB_DEVICE_AUDIO_RESULT_OK - The read request was successful. transferHandle

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 37

contains a valid transfer handle.

• USB_DEVICE_AUDIO_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue

is full. The write request could not be added.

• USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified

instance is not configured yet.

• USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_INVALID - The specified instance

was not provisioned in the application and is invalid.

Description

This function requests a data write to the USB Device Audio Function Driver Layer. The function places a requests with driver, the request will get
serviced as data is requested by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination of the request
is indicated by the USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE event. The amount of data written and the transfer handle associated
with the request is returned along with the event in writeCompleteData member of the pData parameter in the event handler.

The transfer handle expires when event handler for the USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE exits. If the write request could not
be accepted, the function returns an error code and transferHandle will contain the value USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID.

Remarks

While the using the Audio Function Driver with the PIC32MZ USB module, the audio buffer provided to the USB_DEVICE_AUDIO_Write function
should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The function driver should have been configured.

Example
// Shows an example of how to write audio data to the audio streaming
// interface . This assumes that device is configured and the audio
// streaming interface is 1.

USB_DEVICE_AUDIO_INDEX instanceIndex;
USB_DEVICE_AUDIO_TRANSFER_HANDLE transferHandle;
unit8_t interfaceNumber;
unit8_t txBuffer[192]; // Use this attribute for PIC32MZ __attribute__((coherent, aligned(16)))
USB_DEVICE_AUDIO_RESULT writeRequestResult;

instanceIndex = 0; //specify the Audio Function driver instance number.
interfaceNumber = 1; //Specify the Audio Streaming interface number.

writeRequestResult = USB_DEVICE_AUDIO_Write (instanceIndex, &transferHandle,
 interfaceNumber, &txBuffer, 192);

if(USB_DEVICE_AUDIO_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

// The completion of the write request will be indicated by the
// USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE event. The transfer handle
// and transfer size is provided along with this event.

Parameters

Parameters Description

instance USB Device Audio Function Driver instance.

transferHandle Pointer to a USB_DEVICE_AUDIO_TRANSFER_HANDLE type of variable. This variable will
contain the transfer handle in case the write request was successful.

interfaceNum The USB Audio streaming interface number on which the write request is to placed.

data pointer to the data buffer contains the data to be written. In case of PIC32MZ device, this
buffer should be located in coherent memory and should be aligned a 16 byte boundary.

size Size of the data buffer.

Function

USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_Write

(

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 38

USB_DEVICE_AUDIO_INDEX instance ,

USB_DEVICE_AUDIO_TRANSFER_HANDLE* transferHandle,

uint8_t interfaceNum ,

void * data ,

size_t size

);

USB_DEVICE_AUDIO_StatusSend Function

This function requests a Status write to the USB Device Audio Function Driver Layer.

File

usb_device_audio_v1_0.h

C
USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_StatusSend(USB_DEVICE_AUDIO_INDEX instanceIndex,
USB_DEVICE_AUDIO_TRANSFER_HANDLE* transferHandle, USB_AUDIO_INTERRUPT_STATUS_WORD* status);

Returns

• USB_DEVICE_AUDIO_RESULT_OK - The Status send request was successful. transferHandle contains a valid transfer handle.

• USB_DEVICE_AUDIO_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue is full. The status send request could not be
added.

• USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

• USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function requests a status write to the USB Device Audio Function Driver Layer. The function places a requests with driver to arm the status
interrupt Endpoint with the status provided, the request will get serviced as data is requested by the USB Host. A handle to the request is returned
in the transferHandle parameter. The termination of the request is indicated by the USB_DEVICE_AUDIO_EVENT_STATUS_SEND_COMPLETE
event.

The transfer handle expires when event handler for the USB_DEVICE_AUDIO_EVENT_STATUS_SEND_COMPLETE exits. If the Status Send
request could not be accepted, the function returns an error code and transferHandle will contain the value
USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID.

Remarks

While the using the Audio Function Driver with PIC32MZ USB module, the audio buffer provided to the USB_DEVICE_AUDIO_StatusSend
function should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
USB_AUDIO_INTERRUPT_STATUS_WORD statusWord __attribute__((coherent, aligned(16)));

Preconditions

The USB Device should be in a configured state. The USB Configuration descriptor must contain Status interrupt Endpoint descriptor.

Example

 // Shows an example of how to Submit Status Send request to Host. This assumes
 // that device has been configured.

 USB_DEVICE_AUDIO_INDEX instanceIndex;
 USB_DEVICE_AUDIO_TRANSFER_HANDLE transferHandle;
 // Following must have __attribute__((coherent, aligned(16))) for PIC32MZ
 USB_AUDIO_INTERRUPT_STATUS_WORD statusWord;
 USB_DEVICE_AUDIO_RESULT statusSendResult;

 //specify the Audio Function driver instance number.
 instanceIndex = 0;

 // Fill in Status Word
 statusWord.bOriginator = 0x01; //ID of the terminal
 statusWord.originator = 0x00; //Audio Control interface
 statusWord.memoryContentsChanged = 1; //Memory contents changed
 statusWord.interruptPending = 1; //Interrupt is pending

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 39

 statusSendResult = USB_DEVICE_AUDIO_StatusSend (instanceIndex, &transferHandle,
 &statusWord);

 if(USB_DEVICE_AUDIO_RESULT_OK != statusSendResult)
 {
 //Do Error handling here
 }

 // The completion of the read request will be indicated by the
 // USB_DEVICE_AUDIO_EVENT_STATUS_SEND event. The transfer handle
 // will be returned along with the event.

Parameters

Parameters Description

instance USB Device Audio Function Driver instance.

transferHandle Pointer to a USB_DEVICE_AUDIO_TRANSFER_HANDLE type of variable. This variable will
contain the transfer handle in case the write request was successful.

status pointer to the data buffer contains the Status. In case of PIC32MZ device, this buffer should
be located in coherent memory and should be aligned a 16 byte boundary.

Function

USB_DEVICE_AUDIO_RESULT USB_DEVICE_AUDIO_StatusSend

(

USB_DEVICE_AUDIO_INDEX instanceIndex,

USB_DEVICE_AUDIO_TRANSFER_HANDLE* transferHandle,

USB_AUDIO_INTERRUPT_STATUS_WORD* status

);

b) Data Types and Constants

USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE Macro

USB Device Audio Function Driver event handler response type none.

File

usb_device_audio_v1_0.h

C
#define USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE

Description

USB Device Audio Function Driver Event Handler Response None

This is the definition of the Audio Function Driver event handler response type none.

Remarks

Intentionally defined to be empty.

USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID Macro

USB Device Audio Function Driver invalid transfer handle definition.

File

usb_device_audio_v1_0.h

C
#define USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID

Description

USB Device Audio Function Driver Invalid Transfer Handle Definition

This definition defines a Invalid USB Device Audio Function Driver Transfer Handle. A Invalid Transfer Handle is returned by the
USB_DEVICE_Audio_Write , USB_DEVICE_Audio_Read, functions when the request was not successful.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 40

Remarks

None.

USB_DEVICE_AUDIO_EVENT Enumeration

USB Device Audio Function Driver events.

File

usb_device_audio_v1_0.h

C
typedef enum {
 USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE,
 USB_DEVICE_AUDIO_EVENT_READ_COMPLETE,
 USB_DEVICE_AUDIO_EVENT_STATUS_SEND_COMPLETE,
 USB_DEVICE_AUDIO_EVENT_INTERFACE_SETTING_CHANGED,
 USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_RECEIVED,
 USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_SENT,
 USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_UNKNOWN,
 USB_DEVICE_AUDIO_EVENT_CONTROL_SET_CUR,
 USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MIN,
 USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MAX,
 USB_DEVICE_AUDIO_EVENT_CONTROL_SET_RES,
 USB_DEVICE_AUDIO_EVENT_ENTITY_SET_MEM,
 USB_DEVICE_AUDIO_EVENT_CONTROL_GET_CUR,
 USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MIN,
 USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MAX,
 USB_DEVICE_AUDIO_EVENT_CONTROL_GET_RES,
 USB_DEVICE_AUDIO_EVENT_ENTITY_GET_MEM,
 USB_DEVICE_AUDIO_EVENT_ENTITY_GET_STAT
} USB_DEVICE_AUDIO_EVENT;

Members

Members Description

USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE This event occurs when a write operation scheduled by calling the
USB_DEVICE_AUDIO_Write() function has completed. The pData
member in the event handler will point to
USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE type.

USB_DEVICE_AUDIO_EVENT_READ_COMPLETE This event occurs when a read operation scheduled by calling the
USB_DEVICE_AUDIO_Read() function has completed. The pData
member in the event handler will point to
USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE type.

USB_DEVICE_AUDIO_EVENT_STATUS_SEND_COMPLETE This event occurs when a status write opearttion is complete which
was scheduled using the USB_DEVICE_AUDIO_StatusSend()
function. The pData parameter in the event handler will point to the
USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLE
TE
type.

USB_DEVICE_AUDIO_EVENT_INTERFACE_SETTING_CHANGED This event occurs when the Host requests the Audio USB device
to set an alternate setting on an interface present in this audio
function. An Audio USB Device will typically feature a default
interface setting and one or more alternate interface settings. The
pData member in the event handler will point to
USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_C
HANGED
type. This contains the index of the interface whose setting must
be changed and the index of the alternate setting. The application
may enable or disable audio functions based on the interface
setting.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 41

USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_RECEIVED This event occurs when the data stage of a control write transfer
has completed. This would occur after the application would
respond with a USB_DEVICE_ControlReceive function, which may
possibly have been called in response to a
USB_DEVICE_AUDIO_EVENT_ENTITY_SETTINGS_RECEIVED
event This event notifies the application that the data is received
from Host and is available at the location passed by the
USB_DEVICE_ControlReceive function. If the received data is
acceptable to the application, it should acknowledge the data by
calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_OK flag.The application can
reject the received data by calling the
USB_DEVICE_ControlStatus function with the
USB_DEVICE_CONTROL_STATUS_ERROR flag. The pData
parameter will be NULL.

USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_SENT This event occurs when the data stage of a control read transfer
has completed. This would occur when the application has called
the USB_DEVICE_ControlSend function to complete the data
stage of a control transfer. The event indicates that the data has
been transmitted to the host. The pData parameter will be NULL.

USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_UNKNOWN This event occurs when the Audio function driver receives a control
transfer request that could not be decoded by Audio Function
driver.The pData parameter will point to a USB_SETUP_PACKET
type containing the SETUP packet. The application must analyze
this SETUP packet and use the USB_DEVICE_ControlSend or
USB_DEVICE_ControlReceive or the
USB_DEVICE_ControlStatus functions to advance the control
transfer or complete it.

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_CUR This event occurs when the Host sends an Audio Control specific
Set Current Setting Attribute Control Transfer request to an Audio
Device Control. The pData member in the event handler will point
to USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus and USB_DEVICE_ControlReceive
functions.

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MIN This event occurs when the Host sends an Audio Control specific
Set Minimum Setting Attribute Control Transfer request to an Audio
Device Control. The pData member in the event handler will point
to USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus and USB_DEVICE_ControlReceive
functions.

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MAX This event occurs when the Host sends an Audio Control specific
Set Maximum Setting Attribute Control Transfer request to an
Audio Device Control. The pData member in the event handler will
point to
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus and USB_DEVICE_ControlReceive
functions.

USB_DEVICE_AUDIO_EVENT_CONTROL_SET_RES This event occurs when the Host sends an Audio Control specific
Set Resolution Attribute Control Transfer request to an Audio
Device Control. The pData member in the event handler will point
to USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus USB_DEVICE_ControlSend and/or
USB_DEVICE_ControlReceive functions.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 42

USB_DEVICE_AUDIO_EVENT_ENTITY_SET_MEM This event occurs when the Host sends an Audio Entity specific
Set Memory Space Attribute Control Transfer request to an Audio
Device Entity. The pData member in the event handler will point to
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus USB_DEVICE_ControlSend and/or
USB_DEVICE_ControlReceive functions.

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_CUR This event occurs when the Host sends an Audio Control specific
Get Current Setting Attribute Control Transfer request to an Audio
Device Control. The pData member in the event handler will point
to USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus and USB_DEVICE_ControlSend
functions.

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MIN This event occurs when the Host sends an Audio Control specific
Get Minimum Setting Attribute Control Transfer request to an
Audio Device Control. The pData member in the event handler will
point to
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus and USB_DEVICE_ControlSend
functions.

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MAX This event occurs when the Host sends an Audio Control specific
Get Maximum Setting Attribute Control Transfer request to an
Audio Device Control. The pData member in the event handler will
point to
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus and USB_DEVICE_ControlSend
functions.

USB_DEVICE_AUDIO_EVENT_CONTROL_GET_RES This event occurs when the Host sends an Audio Control specific
Get Resolution Setting Attribute Control Transfer request to an
Audio Device Control. The pData member in the event handler will
point to
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus and USB_DEVICE_ControlSend
functions.

USB_DEVICE_AUDIO_EVENT_ENTITY_GET_MEM This event occurs when the Host sends an Audio Entity specific
Get Memory Space Attribute Control Transfer request to an Audio
Device Entity. The pData member in the event handler will point to
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM
type. The application must use the entityID, interface, endpoint and
the wValue field in the event data to determine the entity and
control type and then respond to the control transfer with a
USB_DEVICE_ControlStatus or USB_DEVICE_ControlSend
functions.

USB_DEVICE_AUDIO_EVENT_ENTITY_GET_STAT This event occurs when the Host sends a Audio Entity specific Get
Status Control Transfer request to an Audio Device Entity. The
pData member in the event handler will point to
USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT type.
The application mus use the entityID, interface, endpoint and the
wValue field in the event data to determine the entity and control
type and then respond to the control transfer with a
USB_DEVICE_ControlSend and or USB_DEVICE_ControlStatus
functions.

Description

USB Device Audio Function Driver Events

These events are specific to a USB Device Audio Function Driver instance. An event may have some data associated with it. This is provided to
the event handling function. Each event description contains details about this event data (pData) and other parameters passed along with the

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 43

event, to the event handler.

Events associated with the Audio Function Driver Specific Control Transfers require application response. The application should respond to these
events by using the USB_DEVICE_ControlReceive, USB_DEVICE_ControlSend and USB_DEVICE_ControlStatus functions.

Calling the USB_DEVICE_ControlStatus function with a USB_DEVICE_CONTROL_STATUS_ERROR will stall the control transfer request. The
application would do this if the control transfer request is not supported. Calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_OK will complete the status stage of the control transfer request. The application would do this if the control
transfer request is supported.

The following code shows an example of a possible event handling scheme.
// This code example shows all USB Audio Function Driver possible events and
// a possible scheme for handling these events. In this case event responses
// are not deferred.

void APP_USBDeviceAudioEventHandler
(
 USB_DEVICE_AUDIO_INDEX instanceIndex ,
 USB_DEVICE_AUDIO_EVENT event ,
 void * pData,
 uintptr_t context
)
{
 switch (event)
 {
 case USB_DEVICE_AUDIO_EVENT_READ_COMPLETE:

 // This event indicates that a Audio Read Transfer request
 // has completed. pData should be interpreted as a
 // USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE pointer type.
 // This contains the transfer handle of the read transfer
 // that completed and amount of data that was read.

 break;

 case USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE:

 // This event indicates that a Audio Write Transfer request
 // has completed. pData should be interpreted as a
 // USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE pointer type.
 // This contains the transfer handle of the write transfer
 // that completed and amount of data that was written.

 break;

 case USB_DEVICE_AUDIO_EVENT_STATUS_SEND_COMPLETE:
 // This event indicates that a Audio Status Write Transfer
 // request on the interrupt Endpoint has been completed. pData
 // should be interpreted as a
 // USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLETE pointer type.
 // This contains the transfer handle of the transfer.

 break;

 case USB_DEVICE_AUDIO_EVENT_INTERFACE_SETTING_CHANGED:

 // This event occurs when the host sends Set Interface request
 // to the Audio USB Device. pData will be a pointer to a
 // USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED. This
 // contains the interface number whose setting was
 // changed and the index of the alternate setting.
 // The application should typically enable the audio function
 // if the interfaceAlternateSettting member of pData is greater
 // than 0.

 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_UNKNOWN:

 // This event indicates that the Audio function driver has

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 44

 // received a control transfer which it cannot decode. pData
 // will be a pointer to USB_SETUP_PACKET type pointer. The
 // application should decode the packet and take the required
 // action using the USB_DEVICE_ControlStatus(),
 // USB_DEVICE_ControlSend() and USB_DEVICE_ControlReceive()
 // functions.

 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_SENT:

 // This event indicates the data send request associated with
 // the latest USB_DEVICE_ControlSend() function was
 // completed. pData will be NULL.

 case USB_DEVICE_AUDIO_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 // This event indicates the data receive request associated with
 // the latest USB_DEVICE_ControlReceive() function was
 // completed. pData will be NULL. The application can either
 // acknowledge the received data or reject it by calling the
 // USB_DEVICE_ControlStatus() function.

 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_CUR:

 // This event indicates that the host is trying to set the
 // current setting attribute of a control. The data type will be
 // USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR type. The
 // application should identify the entity type based on the
 // entity ID. This mapping is application specific. The
 // following example assumes entity type to be a Feature Unit.

 if(APP_EntityIdentify(((USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR *)pData)->entityID)
 == APP_AUDIO_ENTITY_FEATURE_UNIT)
 {
 // The entity type is a feature unit. Type cast pData as
 // a USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST type and find
 // identify the control selector. This example shows the
 // handling for VOLUME control

 switch(((USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST *)pData)->controlSelector)
 {
 case USB_AUDIO_VOLUME_CONTROL:
 // This means the host is trying to set the volume.
 // Use the USB_DEVICE_ControlReceive() function to
 // receive the volume settings for each channel.

 USB_DEVICE_ControlReceive(usbDeviceHandle, volumeSetting,
 ((USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST *)pData)->wLength);
 default:
 // Only volume control is supported in this example.
 // So everything else is stalled.
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_ERROR);
 }
 }
 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_CUR:

 // This event indicates that the host is trying to get the
 // current setting attribute of a control. The data type will be
 // USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR type. The
 // application should identify the entity type based on the
 // entity ID. This mapping is application specific. The
 // following example assumes entity type to be a Feature Unit.

 if(APP_EntityIdentify(((USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR *)pData)->entityID)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 45

 == APP_AUDIO_ENTITY_FEATURE_UNIT)
 {
 // The entity type is a feature unit. Type cast pData as
 // a USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST type and find
 // identify the control selector. This example shows the
 // handling for VOLUME control

 switch(((USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST *)pData)->controlSelector)
 {
 case USB_AUDIO_VOLUME_CONTROL:
 // This means the host is trying to get the volume.
 // Use the USB_DEVICE_ControlReceive() function to
 // receive the volume settings for each channel.

 USB_DEVICE_ControlSend(usbDeviceHandle, volumeSetting,
 ((USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST *)pData)->wLength);
 default:
 // Only volume control is supported in this example.
 // So everything else is stalled.
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_ERROR);
 }
 }
 break;

 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MAX:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MIN:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_RES:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_SET_MEM:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MAX:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MIN:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_RES:
 case USB_DEVICE_AUDIO_EVENT_CONTROL_GET_MEM:
 // In this example these request are not supported and so are
 // stalled.
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_ERROR);
 break;

 default:
 break;
 }

 return(USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE);
}

Remarks

The application can defer responses to events triggered by control transfers. In that, the application can respond to the control transfer event after
exiting the event handler. This allows the application some time to obtain the response data rather than having to respond to the event
immediately. Note that a USB host will typically wait for an event response for a finite time duration before timing out and canceling the event and
associated transactions. Even when deferring response, the application must respond promptly if such time-out have to be avoided.

USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE Structure

USB Device Audio Function Driver audio read and write complete event data.

File

usb_device_audio_v1_0.h

C
typedef struct {
 USB_DEVICE_AUDIO_TRANSFER_HANDLE handle;
 uint16_t length;
 uint8_t interfaceNum;
 USB_DEVICE_AUDIO_RESULT status;
} USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE, USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 46

Members

Members Description

USB_DEVICE_AUDIO_TRANSFER_HANDLE
handle;

Transfer handle associated with this

• read or write request
uint16_t length; Indicates the amount of data (in bytes) that was

• read or written
uint8_t interfaceNum; Interface Number

USB_DEVICE_AUDIO_RESULT status; Completion status of the transfer

Description

USB Device Audio Function Driver Read and Write Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_AUDIO_EVENT_READ_COMPLETE,
USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE, events.

Remarks

None.

USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE Structure

USB Device Audio Function Driver audio read and write complete event data.

File

usb_device_audio_v1_0.h

C
typedef struct {
 USB_DEVICE_AUDIO_TRANSFER_HANDLE handle;
 uint16_t length;
 uint8_t interfaceNum;
 USB_DEVICE_AUDIO_RESULT status;
} USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE, USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE;

Members

Members Description

USB_DEVICE_AUDIO_TRANSFER_HANDLE
handle;

Transfer handle associated with this

• read or write request
uint16_t length; Indicates the amount of data (in bytes) that was

• read or written
uint8_t interfaceNum; Interface Number

USB_DEVICE_AUDIO_RESULT status; Completion status of the transfer

Description

USB Device Audio Function Driver Read and Write Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_AUDIO_EVENT_READ_COMPLETE,
USB_DEVICE_AUDIO_EVENT_WRITE_COMPLETE, events.

Remarks

None.

USB_DEVICE_AUDIO_EVENT_HANDLER Type

USB Device Audio event handler function pointer type.

File

usb_device_audio_v1_0.h

C
typedef USB_DEVICE_AUDIO_EVENT_RESPONSE (* USB_DEVICE_AUDIO_EVENT_HANDLER)(USB_DEVICE_AUDIO_INDEX
instanceIndex , USB_DEVICE_AUDIO_EVENT event , void * pData, uintptr_t context);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 47

Description

USB Device Audio Event Handler Function Pointer Type.

This data type defines the required function signature USB Device Audio Function Driver event handling callback function. The application must
register a pointer to an Audio Function Driver events handling function whose function signature (parameter and return value types) match the
types specified by this function pointer in order to receive event call backs from the Audio Function Driver. The function driver will invoke this
function with event relevant parameters. The description of the event handler function parameters is given here.

instanceIndex - Instance index of the Audio Function Driver that generated the event.

event - Type of event generated.

pData - This parameter should be typecast to an event specific pointer type based on the event that has occurred. Refer to the
USB_DEVICE_AUDIO_EVENT enumeration description for more details.

context - Value identifying the context of the application that registered the event handling function.

Remarks

The event handler function executes in the USB interrupt context when the USB Device Stack is configured for interrupt based operation. It is not
advisable to call blocking functions or computationally intensive functions in the event handler. Where the response to a control transfer related
event requires extended processing, the response to the control transfer should be deferred and the event handler should be allowed to complete
execution.

USB_DEVICE_AUDIO_EVENT_RESPONSE Type

USB Device Audio Function Driver event callback response type.

File

usb_device_audio_v1_0.h

C
typedef void USB_DEVICE_AUDIO_EVENT_RESPONSE;

Description

USB Device Audio Function Driver Event Handler Response Type

This is the return type of the Audio Function Driver event handler.

Remarks

None.

USB_DEVICE_AUDIO_INDEX Type

USB Device Audio function driver index.

File

usb_device_audio_v1_0.h

C
typedef uintptr_t USB_DEVICE_AUDIO_INDEX;

Description

USB Device Audio Function Driver Index

This definition uniquely identifies a Audio Function Driver instance.

Remarks

None.

USB_DEVICE_AUDIO_RESULT Enumeration

USB Device Audio Function Driver USB Device Audio result enumeration.

File

usb_device_audio_v1_0.h

C
typedef enum {

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 48

 USB_DEVICE_AUDIO_RESULT_OK,
 USB_DEVICE_AUDIO_RESULT_ERROR_TRANSFER_QUEUE_FULL,
 USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_INVALID,
 USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_NOT_CONFIGURED,
 USB_DEVICE_AUDIO_RESULT_ERROR_PARAMETER_INVALID,
 USB_DEVICE_AUDIO_RESULT_ERROR_INVALID_INTERFACE_ID,
 USB_DEVICE_AUDIO_RESULT_ERROR_INVALID_BUFFER,
 USB_DEVICE_AUDIO_RESULT_ERROR_ENDPOINT_HALTED,
 USB_DEVICE_AUDIO_RESULT_ERROR_TERMINATED_BY_HOST,
 USB_DEVICE_AUDIO_RESULT_ERROR
} USB_DEVICE_AUDIO_RESULT;

Members

Members Description

USB_DEVICE_AUDIO_RESULT_OK The operation was successful

USB_DEVICE_AUDIO_RESULT_ERROR_TRANSFER_QUEUE_FULL The transfer queue is full and no new transfers can be scheduled

USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_INVALID The specified instance is not provisioned in the system

USB_DEVICE_AUDIO_RESULT_ERROR_INSTANCE_NOT_CONFIGURED The specified instance is not configured yet

USB_DEVICE_AUDIO_RESULT_ERROR_PARAMETER_INVALID The event handler provided is NULL

USB_DEVICE_AUDIO_RESULT_ERROR_INVALID_INTERFACE_ID Interface number passed to the read or write function is invalid.

USB_DEVICE_AUDIO_RESULT_ERROR_INVALID_BUFFER A NULL buffer was specified in the read or write function

USB_DEVICE_AUDIO_RESULT_ERROR_ENDPOINT_HALTED Transfer terminated because host halted the endpoint

USB_DEVICE_AUDIO_RESULT_ERROR_TERMINATED_BY_HOST Transfer terminated by host because of a stall clear

USB_DEVICE_AUDIO_RESULT_ERROR General Error

Description

USB Device Audio Function Driver USB Device Audio Result enumeration.

This enumeration lists the possible USB Device Audio Function Driver operation results.

Remarks

None.

USB_DEVICE_AUDIO_TRANSFER_HANDLE Type

USB Device Audio Function Driver transfer handle definition.

File

usb_device_audio_v1_0.h

C
typedef uintptr_t USB_DEVICE_AUDIO_TRANSFER_HANDLE;

Description

USB Device Audio Function Driver Transfer Handle Definition

This definition defines a USB Device Audio Function Driver Transfer Handle. A Transfer Handle is owned by the application but its value is
modified by the USB_DEVICE_AUDIO_Write, USB_DEVICE_AUDIO_Read functions. The transfer handle is valid for the life time of the transfer
and expires when the transfer related event had occurred.

Remarks

None.

USB_DEVICE_AUDIO_FUNCTION_DRIVER Macro

USB Device Audio Function Driver function pointer.

File

usb_device_audio_v1_0.h

C
#define USB_DEVICE_AUDIO_FUNCTION_DRIVER

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 49

Description

USB Device Audio Function Driver Function Pointer

This is the USB Device Audio Function Driver function pointer. This should registered with the device layer in the function driver registration table.

Remarks

None.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 50

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR Type

USB Device Audio Function Driver set and get request data.

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR;

Description

USB Device Audio Function Driver Set and Get request data.

This data type defines the data structure returned by the driver along with the USB_DEVICE_AUDIO_EVENT_CONTROL_SET_XXX,
USB_DEVICE_AUDIO_EVENT_ENTITY_SET_MEM, USB_DEVICE_AUDIO_EVENT_CONTROL_GET_XXX and
USB_DEVICE_AUDIO_EVENT_ENTITY_GET_MEM events.

Remarks

None.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES Type

File

usb_device_audio_v1_0.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 51

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES.

USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED Structure

USB Device Audio Function Driver alternate interface setting event data.

File

usb_device_audio_v1_0.h

C
typedef struct {
 uint8_t interfaceNumber;
 uint8_t interfaceAlternateSetting;
} USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED;

Members

Members Description

uint8_t interfaceNumber; Interface number of the interface who setting is to be changed

uint8_t interfaceAlternateSetting; Alternate setting number

Description

USB Device Audio Function Driver Alternate Interface Setting Event Data.

This data type defines the data structure returned by the driver along with
USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED.

Remarks

None.

USB_DEVICE_AUDIO_INIT Structure

USB Device Audio Function Driver initialization data structure.

File

usb_device_audio_v1_0.h

C
typedef struct {
 size_t queueSizeRead;
 size_t queueSizeWrite;
 size_t queueSizeStatusSend;
} USB_DEVICE_AUDIO_INIT;

Members

Members Description

size_t queueSizeRead; Size of the read queue for this instance

• of the Audio function driver
size_t queueSizeWrite; Size of the write queue for this instance

• of the Audio function driver
size_t queueSizeStatusSend; Queue Size for the Status send request for this instance of the Audio function driver

Description

USB Device Audio Function Driver Initialization Data Structure

This data structure must be defined for every instance of the Audio Function Driver. It is passed to the Audio function driver, by the Device Layer,
at the time of initialization. The funcDriverInit member of the Device Layer Function Driver registration table entry must point to this data structure
for an instance of the Audio function driver.

Remarks

The queue sizes that are specified in this data structure are also affected by the USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 52

configuration macro.

USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT Type

File

usb_device_audio_v1_0.h

C
typedef USB_AUDIO_CONTROL_INTERFACE_REQUEST USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT;

Description

This is type USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT.

USB_DEVICE_AUDIO_TRANSFER_ABORT_NOTIFY Macro

USB Audio Transfer abort notification enable

File

usb_device_audio_v1_0_config_template.h

C
#define USB_DEVICE_AUDIO_TRANSFER_ABORT_NOTIFY

Description

USB Audio Transfer abort notification

This macro enabled USB Audio Transfer abort notifications. Whenever a scheduled transfer request is aborted due to Device Unplug or Host
resets the device, the transfer complete event with status as aborted would be send to application's event handler.

Remarks

None.

USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLETE Structure

USB Device Audio Function Driver Status Send complete event data.

File

usb_device_audio_v1_0.h

C
typedef struct {
 USB_DEVICE_AUDIO_TRANSFER_HANDLE handle;
 USB_DEVICE_AUDIO_RESULT status;
} USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLETE;

Members

Members Description

USB_DEVICE_AUDIO_TRANSFER_HANDLE
handle;

Transfer handle associated with Status Send request

USB_DEVICE_AUDIO_RESULT status; Completion status of the transfer

Description

USB Device Audio Function Driver Status Send Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_AUDIO_EVENT_STATUS_SEND_COMPLETE event.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 53

Files

Files

Name Description

usb_device_audio_v1_0.h USB Device Audio function Driver Interface

usb_device_audio_v1_0_config_template.h USB device Audio Class configuration definitions template

Description

This section lists the source and header files used by the library.

usb_device_audio_v1_0.h

USB Device Audio function Driver Interface

Enumerations

Name Description

USB_DEVICE_AUDIO_EVENT USB Device Audio Function Driver events.

USB_DEVICE_AUDIO_RESULT USB Device Audio Function Driver USB Device Audio result enumeration.

Functions

Name Description

USB_DEVICE_AUDIO_EventHandlerSet This function registers an event handler for the specified Audio function driver instance.

USB_DEVICE_AUDIO_Read This function requests a data read from the USB Device Audio Function Driver Layer.

USB_DEVICE_AUDIO_StatusSend This function requests a Status write to the USB Device Audio Function Driver Layer.

USB_DEVICE_AUDIO_TransferCancel This function cancels a scheduled Audio Device data transfer.

USB_DEVICE_AUDIO_Write This function requests a data write to the USB Device Audio Function Driver Layer.

Macros

Name Description

USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE USB Device Audio Function Driver event handler response type none.

USB_DEVICE_AUDIO_FUNCTION_DRIVER USB Device Audio Function Driver function pointer.

USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID USB Device Audio Function Driver invalid transfer handle definition.

Structures

Name Description

USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED USB Device Audio Function Driver alternate interface
setting event data.

USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE USB Device Audio Function Driver audio read and
write complete event data.

USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLETE USB Device Audio Function Driver Status Send
complete event data.

USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE USB Device Audio Function Driver audio read and
write complete event data.

USB_DEVICE_AUDIO_INIT USB Device Audio Function Driver initialization data
structure.

Types

Name Description

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 54

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR USB Device Audio Function Driver set and get request data.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN.

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES This is type
USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES.

USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT This is type
USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT.

USB_DEVICE_AUDIO_EVENT_HANDLER USB Device Audio event handler function pointer type.

USB_DEVICE_AUDIO_EVENT_RESPONSE USB Device Audio Function Driver event callback response type.

USB_DEVICE_AUDIO_INDEX USB Device Audio function driver index.

USB_DEVICE_AUDIO_TRANSFER_HANDLE USB Device Audio Function Driver transfer handle definition.

Description

USB Device Audio Function Driver Interface

This file describes the USB Device Audio Function Driver interface. This file should be included by the application if it needs to use the Audio
Function Driver API.

File Name

usb_device_audio.h

Company

Microchip Technology Inc.

usb_device_audio_v1_0_config_template.h

USB device Audio Class configuration definitions template

Macros

Name Description

USB_DEVICE_AUDIO_INSTANCES_NUMBER Specifies the number of Audio Function Driver instances.

USB_DEVICE_AUDIO_MAX_ALTERNATE_SETTING Specifies the maximum number of Alternate Settings per streaming
interface.

USB_DEVICE_AUDIO_MAX_STREAMING_INTERFACES Specifies the maximum number of Audio Streaming interfaces in an
Audio Function Driver instance.

USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED Specifies the combined queue size of all Audio function driver
instances.

USB_DEVICE_AUDIO_TRANSFER_ABORT_NOTIFY USB Audio Transfer abort notification enable

Description

USB Device Audio Class Configuration Definitions

This file contains configurations macros needed to configure the Audio Function Driver. This file is a template file only. It should not be included by
the application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_device_audio_v1_0_config_template.h

Company

Microchip Technology Inc.

USB Audio 2.0 Device Library

This section describes the USB Audio 2.0 Device Library.

Introduction

This section provides information on library design, configuration, usage and the library interface for the USB Audio 2.0 Device Library.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 55

Description

The MPLAB Harmony USB Audio 2.0 Device Library (also referred to as the Audio 2.0 Function Driver or library) features routines to implement a
USB Audio 2.0 Device. Examples of Audio USB 2.0 Devices include USB Speakers, microphones, and voice telephony. The library provides a
convenient abstraction of the USB Audio 2.0 Device specification and simplifies the implementation of USB Audio 2.0 Devices.

Using the Library

This topic describes the basic architecture of the Audio 2.0 Function Driver and provides information and examples on its use.

Abstraction Model

Describes the Abstraction Model of the USB Audio 2.0 Device Library.

Description

The Audio 2.0 Function Driver offers various services to the USB Audio 2.0 device to communicate with the host by abstracting USB specification
details. It must be used along with the USB Device_layer and USB controller to communicate with the USB host. Figure 1 shows a block diagram
of the MPLAB Harmony USB Device Stack Architecture and where the Audio 2.0 Function Driver is placed.

Figure 1: USB Device Audio Device Driver

The USB controller driver takes the responsibility of managing the USB peripheral on the device. The USB Device Layer handles the device
enumeration, etc. The USB Device Layer forwards all Audio-specific control transfers to the Audio 2.0 Function Driver. The Audio 2.0 Function
Driver interprets the control transfers and requests application's intervention through event handlers and a well-defined set of API. The application
must respond to the Audio events either in or out of the event handler. Some of these events are related to Audio 2.0 Device Class specific control
transfers. The application must complete these control transfers within the timing constraints defined by USB.

Library Overview

The USB Audio 2.0 Device Library mainly interacts with the system, its clients and function drivers, as shown in the Abstraction Model.

The library interface routines are divided into sub-sections, which address one of the blocks or the overall operation of the USB Audio 2.0 Device
Library.

Library Interface Section Description

Functions Provides event handler, read/write, and transfer cancellation functions.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 56

How the Library Works

Initializing the Library

Describes how the USB Audio 2.0 Device driver is initialized.

Description

The Audio 2.0 Function Driver instance for a USB device configuration is initialized by the Device Layer when the configuration is set by the host.
This process does not require application intervention. Each instance of the Audio 2.0 Function Driver should be registered with the Device_layer
through the Device Layer Function Driver Registration Table. The Audio 2.0 Function Driver requires a initialization data structure to be specified.
This is a USB_DEVICE_AUDIO_2_0_INIT data type that specifies the size of the read and write queues. The funcDriverInit member of the function
driver registration table entry of the Audio 2.0 Function Driver instance should point to this initialization data structure. The
USB_DEVICE_AUDIO_2_0_FUNCTION_DRIVER object is a global object provided by the Audio 2.0 Function Driver and provides the Device
Layer with an entry point into the Audio 2.0 Function Driver. The following code shows an example of how the Audio 2.0 Function Driver can be
registered with the Device Layer.
/* This code shows an example of how an Audio 2.0 function driver instances
 * can be registered with the Device Layer via the Device Layer Function Driver
 * Registration Table. In this case Device Configuration 1 consists of one
 * Audio 2.0 function driver instance. */

/* The Audio 2.0 Function Driver requires an initialization data structure that
 * specifies the read and write buffer queue sizes. Note that these settings are
 * also affected by the USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED configuration
 * macro. */

const USB_DEVICE_AUDIO_2_0_INIT audioDeviceInit =
{
 .queueSizeRead = 1,
 .queueSizeWrite = 1
};

const USB_DEVICE_FUNC_REGISTRATION_TABLE funcRegistrationTable[1] =
{
 {
 .speed = USB_SPEED_FULL, // Supported speed
 .configurationValue = 1, // To be initialized for Configuration 1
 .interfaceNumber = 0, // Starting interface number.
 .numberOfInterfaces = 2, // Number of interfaces in this instance
 .funcDriverIndex = 0, // Function Driver instance index is 0
 .funcDriverInit = &audioDeviceInit, // Function Driver does not need initialization
data structure
 .driver = USB_DEVICE_AUDIO_2_0_FUNCTION_DRIVER // Pointer to Function Driver - Device Layer
interface functions
 },
};

The following figure illustrates the typical sequence that is followed in the application when using the Audio 2.0 Function Driver.

Typical USB Audio 2.0 Device Sequence

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 57

1. Call set of APIs to initialize USB Device Layer (refer to the USB Device Layer Library section for details about these APIs).

2. The Device Layer provides a callback to the application for any USB Device events like attached, powered, configured, etc. The application
should receive a callback with an event USB_DEVICE_EVENT_CONFIGURED to proceed.

3. Once the Device Layer is configured, the application needs to register a callback function with the Audio 2.0 Function Driver to receive Audio
2.0 Control transfers, and also other Audio 2.0 Function Driver events. Now the application can use Audio 2.0 Function Driver APIs to
communicate with the USB Host.

Event Handling

Describes Audio 2.0 Function Driver event handler registration and event handling.

Description

Registering a Audio 2.0 Function Driver Callback Function

While creating a USB Audio 2.0 Device application, an event handler must be registered with the Device Layer (the Device Layer Event Handler)
and every Audio 2.0 Function Driver instance (Audio 2.0 Function Driver Event Handler). The application needs to register the event handler with
the Audio 2.0 Function Driver:

• For receiving Audio 2.0 Control Requests from Host like Volume Control, Mute Control, etc.

• For handling other events from USB Audio 2.0 Device Driver (e.g., Data Write Complete or Data Read Complete)

The event handler should be registered before the USB device layer_acknowledges the SET CONFIGURATION request from the USB Host. To
ensure this, the callback function should be set in the USB_DEVICE_EVENT_CONFIGURED event that is generated by the device_layer. The
following code example shows how this can be done.
/* This a sample Application Device Layer Event Handler
 * Note how the USB Audio 2.0 Device Driver callback function
 * USB_DEVICE_AUDIO_2_0_EventHandlerSet()
 * is registered in the USB_DEVICE_EVENT_CONFIGURED event. */

void APP_UsbDeviceEventCallBack(USB_DEVICE_EVENT event, void * pEventData, uintptr_t context)
{
 uint8_t * configuredEventData;
 switch(event)
 {
 case USB_DEVICE_EVENT_RESET:
 break;
 case USB_DEVICE_EVENT_DECONFIGURED:
 // USB device is reset or device is de-configured.
 // This means that USB device layer is about to de-initialize
 // all function drivers. So close handles to previously opened
 // function drivers.
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 58

 case USB_DEVICE_EVENT_CONFIGURED:
 /* check the configuration */
 /* Initialize the Application */
 configuredEventData = pEventData;
 if(*configuredEventData == 1)
 {
 USB_DEVICE_AUDIO_V2_EventHandlerSet
 (
 0,
 APP_USBDeviceAudioEventHandler ,
 (uintptr_t)NULL
);
 /* mark that set configuration is complete */
 appData.isConfigured = true;
 }
 break;

 case USB_DEVICE_EVENT_SUSPENDED:
 break;

 case USB_DEVICE_EVENT_POWER_DETECTED:
 /* Attach the device */
 USB_DEVICE_Attach (appData.usbDevHandle);
 break;

 case USB_DEVICE_EVENT_POWER_REMOVED:
 /* VBUS is not available. We can detach the device */
 USB_DEVICE_Detach(appData.usbDevHandle);
 break;

 case USB_DEVICE_EVENT_RESUMED:
 case USB_DEVICE_EVENT_ERROR:
 default:
 break;
 }
}

Event Handling

The Audio 2.0 Function Driver provides events to the application through the event handler function registered by the application. These events
indicate:

• Completion of a read or a write data transfer

• Audio 2.0 Control Interface requests

• Completion of data and the status stages of Audio 2.0 Control Interface related control transfer

The Audio 2.0 Control Interface Request events and the related control transfer events typically require the application to respond with the Device
Layer Control Transfer routines to complete the control transfer. Based on the generated event, the application may be required to:

• Respond with a USB_DEVICE_ControlSend function, which is completes the data stage of a Control Read Transfer

• Respond with a USB_DEVICE_ControlReceive function, which provisions the data stage of a Control Write Transfer

• Respond with a USB_DEVICE_ControlStatus function, which completes the handshake stage of the Control Transfer. The application can
either STALL or Acknowledge the handshake stage through the USB_DEVICE_ControlStatus function.

The following table shows the Audio 2.0 Function Driver Control Transfer related events and the required application control transfer actions.

Audio 2.0 Function Driver Control Transfer Event Required Application Action

USB_DEVICE_AUDIO_V2_CUR_ENTITY_SETTINGS_RECEIVED Identify the control type using the associated event data. If a data stage is
expected, use the USB_DEVICE_ControlReceive function to receive
expected data. If a data stage is not required or if the request is not
supported, use the USB_DEVICE_ControlStatus function to Acknowledge
or Stall the request.

USB_DEVICE_AUDIO_V2_RANGE_ENTITY_SETTINGS

_RECEIVED

Identify the control type using the associated event data. If a data stage is
expected, use the USB_DEVICE_ControlReceive function to receive
expected data. If a data stage is not required or if the request is not
supported, use the USB_DEVICE_ControlStatus function to Acknowledge
or Stall the request.

USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER

_DATA_RECEIVED

Acknowledge or stall using the USB_DEVICE_ControlStatus function.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 59

USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER

_DATA_SENT

Action not required.

The application must analyze the wIndex field of the event data (received with the control transfer event) to identify the entity that is being
addressed. The application must be aware of all entities included in the application and their IDs. Once identified, the application can then type
cast the event data to entity type the specific control request type. For example, if the Host sends a control request to set the clock source for the
Audio 2.0 device, the following occurs in this order:

1. The Audio 2.0 Function Driver will generate a USB_DEVICE_AUDIO_V2_CUR_ENTITY_SETTINGS_RECEIVED event.

2. The application must type cast the event data to a USB_AUDIO_V2_CONTROL_INTERFACE_REQUEST type and check the entityID field.

3. The entityID field will be identified by the application as a Clock Source.

4. The application must now type cast the event data type as a USB_AUDIO_V2_CLOCKSOURCE_CONTROL_REQUEST data type and check
the controlSelector field.

5. If the controlSelector field is AUDIO_V2_CS_SAM_FREQ_CONTROL, the application can then call the USB_DEVICE_ControlReceive function
to receive the clock source.

Based on the type of event, the application should analyze the event data parameter of the event handler. This data member should be type cast
to an event specific data type. The following table shows the event and the data type to use while type casting. Note that the event data member is
not required for all events.

Audio 2.0 Function Driver Event Related Event Data Type

USB_DEVICE_AUDIO_V2_CUR_ENTITY_SETTINGS_RECEIVED USB_AUDIO_V2_CONTROL_INTERFACE_REQUEST*

USB_DEVICE_AUDIO_V2_RANGE_ENTITY_SETTINGS

_RECEIVED

USB_AUDIO_V2_CONTROL_INTERFACE_REQUEST*

USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER

_DATA_RECEIVED

NULL

USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER

_DATA_SENT

NULL

USB_DEVICE_AUDIO_V2_EVENT_INTERFACE_SETTING_CHANGED USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTE
RFACE
*

USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE *

USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE *

Handling Audio Control Requests:

When the Audio 2.0 Function Driver receives an Audio 2.0 Class Specific Control Transfer Request, it passes this control transfer to the
application as a Audio 2.0 Function Driverevent. The following code example shows how to handle an Audio 2.0 Control request.
void APP_USBDeviceAudioEventHandler
(
 USB_DEVICE_AUDIO_V2_INDEX iAudio ,
 USB_DEVICE_AUDIO_V2_EVENT event ,
 void * pData,
 uintptr_t context
)
{
 USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERFACE * interfaceInfo;
 USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE * readEventData;
 USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE * writeEventData;
 USB_AUDIO_V2_CONTROL_INTERFACE_REQUEST* controlRequest;
 if (iAudio == 0)
 {
 switch (event)
 {
 case USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE:
 readEventData = (USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE *)pData;
 //We have received an audio frame from the Host.
 //Now send this audio frame to Audio Codec for Playback.

 break;

 case USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE:

 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 60

 case USB_DEVICE_AUDIO_V2_EVENT_INTERFACE_SETTING_CHANGED:
 //We have received a request from USB host to change the Interface-
 //Alternate setting.
 interfaceInfo = (USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERFACE *)pData;
 appData.activeInterfaceAlternateSetting = interfaceInfo->interfaceAlternateSetting;
 appData.state = APP_USB_INTERFACE_ALTERNATE_SETTING_RCVD;

 break;
 case USB_DEVICE_AUDIO_V2_CUR_ENTITY_SETTINGS_RECEIVED:
 controlRequest = (USB_AUDIO_V2_CONTROL_INTERFACE_REQUEST*) setupPkt;
 USB_AUDIO_V2_CLOCKSOURCE_CONTROL_REQUEST* clockSourceRequest;

 switch(controlRequest->entityID)
 {
 case APP_ID_CLOCK_SOURCE:
 clockSourceRequest = (USB_AUDIO_V2_CLOCKSOURCE_CONTROL_REQUEST*) controlRequest;
 switch(clockSourceRequest->controlSelector)
 {
 case AUDIO_V2_CS_SAM_FREQ_CONTROL:
 {
 if ((controlRequest->bmRequestType & 0x80) == 0)
 {
 //A control write transfer received from Host. Now receive data from Host.
 USB_DEVICE_ControlReceive(appData.usbDevHandle, (void *) &(appData.clockSource),
4);
 appData.currentAudioControl = APP_USB_AUDIO_CLOCKSOURCE_CONTROL;
 }
 else
 {
 /*Handle Get request*/
 USB_DEVICE_ControlSend(appData.usbDevHandle, (void *)&(appData.clockSource), 4);
 appData.currentAudioControl = APP_USB_CONTROL_NONE;
 }
 }

}
 break;

 case USB_DEVICE_AUDIO_V2_RANGE_ENTITY_SETTINGS_RECEIVED:

 break;

 case USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:
 USB_DEVICE_ControlStatus(appData.usbDevHandle, USB_DEVICE_CONTROL_STATUS_OK);
 switch (appData.currentAudioControl)
 {
 case APP_USB_AUDIO_MUTE_CONTROL:
 {
 appData.state = APP_MUTE_AUDIO_PLAYBACK;
 appData.currentAudioControl = APP_USB_CONTROL_NONE;
 }
 break;
 case APP_USB_AUDIO_CLOCKSOURCE_CONTROL:
 {
 // Handle Clock Source Control here.
 appData.state = APP_CLOCKSOURCE_SET;
 appData.currentAudioControl = APP_USB_CONTROL_NONE;
 }
 break;
 case APP_USB_AUDIO_CLOCKSELECT_CONTROL:
 {
 // Handle Clock Source Control here.
 appData.currentAudioControl = APP_USB_CONTROL_NONE;

 }
 break;
 }
 break;
 case USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_SENT:

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 61

 break;
 default:
 SYS_ASSERT (false , "Invalid callback");
 break;
 } //end of switch (callback)
 }//end of if if (iAudio == 0)
}//end of function APP_AudioEventCallback

Transferring Data

Describes how to send/receive data to/from USB Host using this USB Audio 2.0 Device Driver.

Description

The USB Audio 2.0 Device Driver provides functions to send and receive data.

Receiving Data

The USB_DEVICE_AUDIO_V2_Read function schedules a data read. When the host transfers data to the device, the Audio 2.0 Function Driver
receives the data and invokes the USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE event. This event indicates that audio data is now
available in the application specified buffer.

The Audio 2.0 Function Driver supports buffer queuing. The application can schedule multiple read requests. Each request is assigned a unique
buffer handle, which is returned with the USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE event. The application can use the buffer handle
to track completion to queued requests. Using this feature allows the application to implement audio buffering schemes such as ping-pong
buffering.

Sending Data

The USB_DEVICE_AUDIO_V2_Write schedules a data write. When the host sends a request for the data, the Audio 2.0 Function Driver transfers
the data and invokes the USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE event.

The Audio 2.0 Function Driver supports buffer queuing. The application can schedule multiple write requests. Each request is assigned a unique
buffer handle, which is returned with the USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE event. The application can use the buffer
handle to track completion to queued requests. Using this feature allows the application to implement audio buffering schemes such as ping-pong
buffering.

Configuring the Library

Macros

Name Description

USB_DEVICE_AUDIO_V2_INSTANCES_NUMBER Specifies the number of Audio 2.0 Function Driver instances.

USB_DEVICE_AUDIO_V2_MAX_ALTERNATE_SETTING Specifies the maximum number of Alternate Settings per
streaming interface.

USB_DEVICE_AUDIO_V2_MAX_STREAMING_INTERFACES Specifies the maximum number of Audio 2.0 Streaming interfaces
in an Audio 2.0 Function Driver instance.

USB_DEVICE_AUDIO_V2_QUEUE_DEPTH_COMBINED Specifies the combined queue size of all Audio 2.0 function driver
instances.

Description

The application designer must specify the following configuration parameters while using the USB Audio 2.0 Device Driver. The configuration
macros that implement these parameters must be located in the system_config.h file in the application project and a compiler include path (to
point to the folder that contains this file) should be specified.

USB_DEVICE_AUDIO_V2_INSTANCES_NUMBER Macro

Specifies the number of Audio 2.0 Function Driver instances.

File

usb_device_audio_v2_0_config_template.h

C
#define USB_DEVICE_AUDIO_V2_INSTANCES_NUMBER

Description

USB device Audio 2.0 Maximum Number of instances

This macro defines the number of instances of the Audio 2.0 Function Driver. For example, if the application needs to implement two instances of

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 62

the Audio 2.0 Function Driver (to create two composite Audio Device) on one USB Device, the macro should be set to 2. Note that implementing a
USB Device that features multiple Audio 2.0 interfaces requires appropriate USB configuration descriptors.

Remarks

None.

USB_DEVICE_AUDIO_V2_MAX_ALTERNATE_SETTING Macro

Specifies the maximum number of Alternate Settings per streaming interface.

File

usb_device_audio_v2_0_config_template.h

C
#define USB_DEVICE_AUDIO_V2_MAX_ALTERNATE_SETTING

Description

Maximum number of Alternate Settings

This macro defines the maximum number of Alternate Settings per streaming interface. If the Audio 2.0 Device features multiple streaming
interfaces, this configuration constant should be equal to the the maximum number of alternate required amongst the streaming interfaces.

Remarks

None.

USB_DEVICE_AUDIO_V2_MAX_STREAMING_INTERFACES Macro

Specifies the maximum number of Audio 2.0 Streaming interfaces in an Audio 2.0 Function Driver instance.

File

usb_device_audio_v2_0_config_template.h

C
#define USB_DEVICE_AUDIO_V2_MAX_STREAMING_INTERFACES

Description

Maximum Audio 2.0 Streaming Interfaces

This macro defines the maximum number of streaming interfaces in an Audio 2.0 Function Driver instance. In case of multiple Audio 2.0 Function
Driver instances, this constant should be equal to the maximum number of interfaces amongst the Audio 2.0 Function Driver instances.

Remarks

None.

USB_DEVICE_AUDIO_V2_QUEUE_DEPTH_COMBINED Macro

Specifies the combined queue size of all Audio 2.0 function driver instances.

File

usb_device_audio_v2_0_config_template.h

C
#define USB_DEVICE_AUDIO_V2_QUEUE_DEPTH_COMBINED

Description

USB device Audio 2.0 Combined Queue Size

This macro defines the number of entries in all queues in all instances of the Audio 2.0 function driver. This value can be obtained by adding up
the read and write queue sizes of each Audio Function driver instance. In a simple single instance USB Audio 2.0 device application, that does not
require buffer queuing, the USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED macro can be set to 2. Consider a case of a Audio 2.0 function
driver instances, with has a read queue size of 2 and write queue size of 3, this macro should be set to 5 (2 + 3).

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 63

Building the Library

This section lists the files that are available in the USB Audio 2.0 Device Library.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_device_audio_v2_0.h This header file must be included in every source file that needs to invoke USB Audio 2.0 Device Driver
APIs.

usb_audio_v2_0.h This header file must be included when the audio 2.0 descriptor macros are used.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_device_audio_v2_0.c This file contains all of functions, macros, definitions, variables, datatypes, etc., that
are specific to the USB Audio v2.0 Specification implementation of the Audio 2.0
Function Driver.

/src/dynamic/usb_device_audio2_read_write.c Contains implementation of the audio 2.0 function driver read and write functions.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB Audio 2.0 Device Library depends on the following modules:

• USB Device Library

Library Interface

This section describes the Application Programming Interface (API) functions of the USB Device Audio Library

Refer to each section for a detailed description.

a) Functions

Functions

Name Description

USB_DEVICE_AUDIO_V2_EventHandlerSet This function registers an event handler for the specified Audio function driver
instance.

USB_DEVICE_AUDIO_V2_Read This function requests a data read from the USB Device Audio v2.0 Function Driver
Layer.

USB_DEVICE_AUDIO_V2_TransferCancel This function cancels a scheduled Audio v2.0 Device data transfer.

USB_DEVICE_AUDIO_V2_Write This function requests a data write to the USB Device Audio v2.0 Function Driver
Layer.

Description

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 64

USB_DEVICE_AUDIO_V2_EventHandlerSet Function

This function registers an event handler for the specified Audio function driver instance.

File

usb_device_audio_v2_0.h

C
USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_EventHandlerSet(USB_DEVICE_AUDIO_V2_INDEX instanceIndex,
USB_DEVICE_AUDIO_V2_EVENT_HANDLER eventHandler, uintptr_t context);

Returns

• USB_DEVICE_AUDIO_V2_RESULT_OK - The operation was successful

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_INVALID - The specified instance does not exist.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_PARAMETER_INVALID - The eventHandler parameter is NULL

Description

This function registers a event handler for the specified Audio function driver instance. This function should be called by the application when it
receives a SET CONFIGURATION event from the device layer. The application must register an event handler with the function driver in order to
receive and respond to function driver specific events and control transfers. If the event handler is not registered, the device layer will stall function
driver specific commands and the USB device may not function.

Remarks

None.

Preconditions

This function should be called when the function driver has been initialized as a result of a set configuration.

Example
// The following code shows an example registering an event handler. The
// application specifies the context parameter as a pointer to an
// application object (appObject) that should be associated with this
// instance of the Audio function driver.

USB_DEVICE_AUDIO_V2_RESULT result;

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE APP_USBDeviceAUDIOEventHandler
(
 USB_DEVICE_AUDIO_V2_INDEX instanceIndex ,
 USB_DEVICE_AUDIO_V2_EVENT event ,
 void* pData,
 uintptr_t context
)
{
 // Event Handling comes here

 switch(event)
 {
 ...
 }

 return(USB_DEVICE_AUDIO_V2_EVENT_RESPONSE_NONE);
}

result = USB_DEVICE_AUDIO_V2_EventHandlerSet (USB_DEVICE_AUDIO_V2_INSTANCE_0 ,
 &APP_USBDeviceAUDIOEventHandler, (uintptr_t) &appObject);

if(USB_DEVICE_AUDIO_V2_RESULT_OK != result)
{
 // Do error handling here
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 65

Parameters

Parameters Description

instance Instance of the Audio v2.0 Function Driver.

eventHandler A pointer to event handler function.

context Application specific context that is returned in the event handler.

Function

USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_EventHandlerSet

(

USB_DEVICE_AUDIO_V2_INDEX instance ,

USB_DEVICE_AUDIO_V2_EVENT_HANDLER eventHandler ,

uintptr_t context

);

USB_DEVICE_AUDIO_V2_Read Function

This function requests a data read from the USB Device Audio v2.0 Function Driver Layer.

File

usb_device_audio_v2_0.h

C
USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_Read(USB_DEVICE_AUDIO_V2_INDEX instanceIndex,
USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE* transferHandle, uint8_t interfaceNumber, void * data, size_t size);

Returns

• USB_DEVICE_AUDIO_V2_RESULT_OK - The read request was successful. transferHandle contains a valid transfer handle.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue is full. The read request could not be
added.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is
invalid.

Description

This function requests a data read from the USB Device Audio v2.0 Function Driver Layer. The function places a requests with driver, the request
will get serviced as data is made available by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination
of the request is indicated by the USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE event. The amount of data read and the transfer handle
associated with the request is returned along with the event. The transfer handle expires when event handler for the
USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE exits. If the read request could not be accepted, the function returns an error code and
transferHandle will contain the value USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID.

Remarks

While the using the Audio Function Driver with PIC32MZ USB module, the audio buffer provided to the USB_DEVICE_AUDIO_V2_Read function
should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute, as shown in the following example:
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The function driver should have been configured.

Example
// Shows an example of how to read. This assumes that
// device had been configured. The example attempts to read
// data from interface 1.

USB_DEVICE_AUDIO_V2_INDEX instanceIndex;
USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE transferHandle;
unit8_t interfaceNumber;
// Use this attribute for PIC32MZ __attribute__((coherent, aligned(16)))
unit8_t rxBuffer[192];
USB_DEVICE_AUDIO_V2_RESULT readRequestResult;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 66

instanceIndex = 0; //specify the Audio v2.0 Function driver instance number.
interfaceNumber = 1; //Specify the Audio v2.0 Streaming interface number.

readRequestResult = USB_DEVICE_AUDIO_V2_Read (instanceIndex, &transferHandle,
 interfaceNumber, &rxBuffer, 192);

if(USB_DEVICE_AUDIO_V2_RESULT_OK != readRequestResult)
{
 //Do Error handling here
}

// The completion of the read request will be indicated by the
// USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE event. The transfer handle
// and the amount of data read will be returned along with the
// event.

Parameters

Parameters Description

instance USB Device Audio v2.0 Function Driver instance.

transferHandle Pointer to a USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE type of variable. This variable
will contain the transfer handle in case the read request was successful.

interfaceNum The USB Audio v2.0 streaming interface number on which read request is to placed.

data pointer to the data buffer where read data will be stored. In case of PIC32MZ device, this
buffer should be located in coherent memory and should be aligned a 16 byte boundary.

size Size of the data buffer. Refer to the description section for more details on how the size
affects the transfer.

Function

USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_Read

(

USB_DEVICE_AUDIO_V2_INDEX instanceIndex ,

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE* transferHandle,

uint8_t interfaceNum ,

void * data ,

size_t size

);

USB_DEVICE_AUDIO_V2_TransferCancel Function

This function cancels a scheduled Audio v2.0 Device data transfer.

File

usb_device_audio_v2_0.h

C
USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_TransferCancel(USB_DEVICE_AUDIO_V2_INDEX instanceIndex,
USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE transferHandle);

Returns

• USB_DEVICE_AUDIO_V2_RESULT_OK - The transfer will be canceled completely or partially.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR - The transfer could not be canceled because it has either completed, the transfer handle is
invalid or the last transaction is in progress.

Description

This function cancels a scheduled Audio v2.0 Device data transfer. The transfer could have been scheduled using the
USB_DEVICE_AUDIO_V2_Read, USB_DEVICE_AUDIO_V2_Write, or the USB_DEVICE_AUDIO_V2_SerialStateNotificationSend function. If a
transfer is still in the queue and its processing has not started, the transfer is canceled completely. A transfer that is in progress may or may not
get canceled depending on the transaction that is presently in progress. If the last transaction of the transfer is in progress, the transfer will not be
canceled. If it is not the last transaction in progress, the in-progress will be allowed to complete. Pending transactions will be canceled. The first
transaction of an in progress transfer cannot be canceled.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 67

Remarks

None.

Preconditions

The USB Device should be in a configured state.

Example
// The following code example cancels an Audio transfer.

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE transferHandle;
USB_DEVICE_AUDIO_V2_RESULT result;

result = USB_DEVICE_AUDIO_V2_TransferCancel(instanceIndex, transferHandle);

if(USB_DEVICE_AUDIO_V2_RESULT_OK == result)
{
 // The transfer cancellation was either completely or
 // partially successful.
}

Parameters

Parameters Description

instanceIndex AUDIO v2.0 Function Driver instance index.

transferHandle Transfer handle of the transfer to be canceled.

Function

USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_TransferCancel

(

USB_DEVICE_AUDIO_V2_INDEX instanceIndex,

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE transferHandle

);

USB_DEVICE_AUDIO_V2_Write Function

This function requests a data write to the USB Device Audio v2.0 Function Driver Layer.

File

usb_device_audio_v2_0.h

C
USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_Write(USB_DEVICE_AUDIO_V2_INDEX instanceIndex,
USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE * transferHandle, uint8_t interfaceNumber, void * data, size_t size);

Returns

• USB_DEVICE_AUDIO_V2_RESULT_OK - The read request was successful. transferHandle contains a valid transfer handle.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue is full. The write request could not be
added.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

• USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is
invalid.

Description

This function requests a data write to the USB Device Audio v2.0 Function Driver Layer. The function places a requests with driver, the request will
get serviced as data is requested by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination of the
request is indicated by the USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE event. The amount of data written and the transfer handle
associated with the request is returned along with the event in writeCompleteData member of the pData parameter in the event handler.

The transfer handle expires when event handler for the USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE exits. If the write request could
not be accepted, the function returns an error code and transferHandle will contain the value
USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID.

Remarks

While the using the Audio Function Driver with the PIC32MZ USB module, the audio buffer provided to the USB_DEVICE_AUDIO_V2_Write

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 68

function should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The function driver should have been configured.

Example
// Shows an example of how to write audio data to the audio streaming
// interface. This assumes that device is configured and the audio
// streaming interface is 1.

USB_DEVICE_AUDIO_V2_INDEX instanceIndex;
USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE transferHandle;
unit8_t interfaceNumber;
unit8_t txBuffer[192]; // Use this attribute for PIC32MZ __attribute__((coherent, aligned(16)))
USB_DEVICE_AUDIO_V2_RESULT writeRequestResult;

instanceIndex = 0; //specify the Audio Function driver instance number.
interfaceNumber = 1; //Specify the Audio Streaming interface number.

writeRequestResult = USB_DEVICE_AUDIO_V2_Write (instanceIndex, &transferHandle,
 interfaceNumber, &txBuffer, 192);

if(USB_DEVICE_AUDIO_V2_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

// The completion of the write request will be indicated by the
// USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE event. The transfer handle
// and transfer size is provided along with this event.

Parameters

Parameters Description

instance USB Device Audio Function Driver instance.

transferHandle Pointer to a USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE type of variable. This variable
will contain the transfer handle in case the write request was successful.

interfaceNum The USB Audio streaming interface number on which the write request is to placed.

data pointer to the data buffer contains the data to be written. In case of PIC32MZ device, this
buffer should be located in coherent memory and should be aligned a 16 byte boundary.

size Size of the data buffer.

Function

USB_DEVICE_AUDIO_V2_RESULT USB_DEVICE_AUDIO_V2_Write

(

USB_DEVICE_AUDIO_V2_INDEX instance ,

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE* transferHandle,

uint8_t interfaceNum ,

void * data ,

size_t size

);

b) Data Types and Constants

Enumerations

Name Description

USB_DEVICE_AUDIO_V2_EVENT USB Device Audio v2.0 Function Driver events.

USB_DEVICE_AUDIO_V2_RESULT USB Device Audio Function Driver USB Device Audio v2.0 result enumeration.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 69

Macros

Name Description

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE_NONE USB Device Audio v2.0 Function Driver event handler response type
none.

USB_DEVICE_AUDIO_V2_FUNCTION_DRIVER USB Device Audio v2.0 Function Driver function pointer.

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID USB Device Audio v2.0 Function Driver Invalid Transfer Handle
Definition.

Structures

Name Description

USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE USB Device Audio Function Driver Audio v2.0 read
and write complete event data.

USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERFACE USB Device Audio v2.0 Function Driver alternate
interface setting event data.

USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE USB Device Audio Function Driver Audio v2.0 read
and write complete event data.

USB_DEVICE_AUDIO_V2_INIT USB Device Audio v2.0 Function Driver initialization
data structure.

Types

Name Description

USB_DEVICE_AUDIO_V2_EVENT_HANDLER USB Device Audio v2.0 Event Handler Function Pointer Type.

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE USB Device Audio v2.0 Function Driver event callback response type.

USB_DEVICE_AUDIO_V2_INDEX USB Device Audio v2.0 Function Driver index.

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE USB Device Audio v2.0 Function Driver Transfer Handle Definition.

Description

USB_DEVICE_AUDIO_V2_EVENT Enumeration

USB Device Audio v2.0 Function Driver events.

File

usb_device_audio_v2_0.h

C
typedef enum {
 USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE,
 USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE,
 USB_DEVICE_AUDIO_V2_EVENT_INTERFACE_SETTING_CHANGED,
 USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_RECEIVED,
 USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_SENT,
 USB_DEVICE_AUDIO_V2_CUR_ENTITY_SETTINGS_RECEIVED,
 USB_DEVICE_AUDIO_V2_RANGE_ENTITY_SETTINGS_RECEIVED,
 USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_UNKNOWN
} USB_DEVICE_AUDIO_V2_EVENT;

Members

Members Description

USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE This event occurs when a write operation scheduled by calling
the USB_DEVICE_AUDIO_V2_Write function has completed.
The pData member in the event handler will point to
USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE_DAT
A
type.

USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE This event occurs when a read operation scheduled by calling
the USB_DEVICE_AUDIO_V2_Read function has completed.
The pData member in the event handler will point to
USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE_DAT
A
type.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 70

USB_DEVICE_AUDIO_V2_EVENT_INTERFACE_SETTING_CHANGED This event occurs when the Host requests the Audio v2.0 USB
Device to set an alternate setting on an interface present in
this audio function. An Audio v2.0 USB Device will typically
feature a default interface setting and one or more alternate
interface settings. The pData member in the event handler will
point to the
USB_DEVICE_AUDIO_V2_EVENT_DATA_INTERFACE_SET
TING_CHANGED
type. This contains the index of the interface whose setting
must be changed and the index of the alternate setting. The
application may enable or disable audio functions based on the
interface setting.

USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_RECEIVED This event occurs when the data stage of a control write
transfer has completed. This would occur after the application
would respond with a USB_DEVICE_ControlReceive function,
which may possibly have been called in response to a
USB_DEVICE_AUDIO_V2_EVENT_ENTITY_SETTINGS_REC
EIVED
event This event notifies the application that the data is
received from Host and is available at the location passed by
the USB_DEVICE_ControlReceive function. If the received
data is acceptable to the application, it should acknowledge
the data by calling the USB_DEVICE_ControlStatus function
with a USB_DEVICE_CONTROL_STATUS_OK flag.The
application can reject the received data by calling the
USB_DEVICE_ControlStatus function with the
USB_DEVICE_CONTROL_STATUS_ERROR flag. The pData
parameter will be NULL.

USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_SENT This event occurs when the data stage of a control read
transfer has completed. This would occur when the application
has called the USB_DEVICE_ControlSend function to
complete the data stage of a control transfer. The event
indicates that the data has been transmitted to the host. The
pData parameter will be NULL.

USB_DEVICE_AUDIO_V2_CUR_ENTITY_SETTINGS_RECEIVED This event occurs when the Host sends an Audio 2.0 Control
specific Set Current Setting Attribute Control Transfer request
to an Audio Device Control. The pData member in the event
handler will point to type. The application must use the
entityID, interface, endpoint and the wValue field in the event
data to determine the entity and control type and then respond
to the control transfer with the USB_DEVICE_ControlStatus
and USB_DEVICE_ControlReceive functions.

USB_DEVICE_AUDIO_V2_RANGE_ENTITY_SETTINGS_RECEIVED This event occurs when the Host sends an Audio 2.0 Control
specific Set Range Setting Attribute Control Transfer request
to an Audio Device Control. The pData member in the event
handler will point to type. The application must use the
entityID, interface, endpoint and the wValue field in the event
data to determine the entity and control type and then respond
to the control transfer with a USB_DEVICE_ControlStatus and
USB_DEVICE_ControlReceive functions.

USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_UNKNOWN This event occurs when the Audio v2.0 function driver receives
a control transfer request that could not be decoded by Audio
Function driver.The pData parameter will point to a
USB_SETUP_PACKET type containing the setup packet. The
application must analyze this Setup packet and use the
USB_DEVICE_ControlSend, USB_DEVICE_ControlReceive,
or the USB_DEVICE_ControlStatus function to advance the
control transfer or complete it.

Description

USB Device Audio v2.0 Function Driver Events

These events are specific to a USB Device Audio v2.0 Function Driver instance. An event may have some data associated with it. This is provided
to the event handling function. Each event description contains details about this event data (pData) and other parameters passed along with the
event, to the event handler.

Events associated with the Audio v2.0 Function Driver Specific Control Transfers require application response. The application should respond to
these events by using the USB_DEVICE_ControlReceive(), USB_DEVICE_ControlSend() and USB_DEVICE_ControlStatus() functions.

Calling the USB_DEVICE_ControlStatus() function with a USB_DEVICE_CONTROL_STATUS_ERROR will stall the control transfer request. The
application would do this if the control transfer request is not supported. Calling the USB_DEVICE_ControlStatus() function with a
USB_DEVICE_CONTROL_STATUS_OK will complete the status stage of the control transfer request. The application would do this if the control
transfer request is supported.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 71

The following code shows an example of a possible event handling scheme.
// This code example shows all USB Audio v2.0 Function Driver possible
// events and a possible scheme for handling these events.
// In this case event responses are not deferred.

void APP_USBDeviceAudioEventHandler
(
 USB_DEVICE_AUDIO_V2_INDEX instanceIndex ,
 USB_DEVICE_AUDIO_V2_EVENT event ,
 void * pData,
 uintptr_t context
)
{
 switch (event)
 {
 case USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE:

 // This event indicates that a Audio v2.0 Read Transfer request
 // has completed. pData should be interpreted as a
 // USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE pointer type.
 // This contains the transfer handle of the read transfer
 // that completed and amount of data that was read.

 break;

 case USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE:

 // This event indicates that a Audio v2.0 Write Transfer request
 // has completed. pData should be interpreted as a
 // USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE pointer type.
 // This contains the transfer handle of the write transfer
 // that completed and amount of data that was written.

 break;

 case USB_DEVICE_AUDIO_V2_EVENT_INTERFACE_SETTING_CHANGED:

 // This event occurs when the host sends Set Interface request
 // to the Audio v2.0 USB Device. pData will be a pointer to a
 // USB_DEVICE_AUDIO_V2_EVENT_DATA_INTERFACE_SETTING_CHANGED. This
 // contains the interface number whose setting was
 // changed and the index of the alternate setting.
 // The application should typically enable the audio function
 // if the interfaceAlternateSettting member of pData is greater
 // than 0.

 break;

 case USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_UNKNOWN:

 // This event indicates that the Audio v2.0 function driver has
 // received a control transfer which it cannot decode. pData
 // will be a pointer to USB_SETUP_PACKET type pointer. The
 // application should decode the packet and take the required
 // action using the USB_DEVICE_ControlStatus(),
 // USB_DEVICE_ControlSend() and USB_DEVICE_ControlReceive()
 // functions.

 break;

 case USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_SENT:

 // This event indicates the data send request associated with
 // the latest USB_DEVICE_ControlSend() function was
 // completed. pData will be NULL.

 case USB_DEVICE_AUDIO_V2_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 // This event indicates the data receive request associated with

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 72

 // the latest USB_DEVICE_ControlReceive() function was
 // completed. pData will be NULL. The application can either
 // acknowledge the received data or reject it by calling the
 // USB_DEVICE_ControlStatus() function.

 break;

 case USB_DEVICE_AUDIO_V2_CUR_ENTITY_SETTINGS_RECEIVED:
 // This event indicates the Current entity request has been
 // received.
 USB_AUDIO_CONTROL_INTERFACE_REQUEST* controlRequest;
 controlRequest = (USB_AUDIO_CONTROL_INTERFACE_REQUEST*) setupPkt;
 switch(controlRequest->entityID)
 {
 case APP_ID_CLOCK_SOURCE:
 USB_AUDIO_CLOCKSOURCE_CONTROL_REQUEST*
 clockSourceRequest;
 clockSourceRequest =
 (USB_AUDIO_CLOCKSOURCE_CONTROL_REQUEST*) controlRequest;

 if (clockSourceRequest->bRequest == CUR)
 {
 switch(clockSourceRequest->controlSelector)
 {
 case CS_SAM_FREQ_CONTROL:
 {
 if ((controlRequest->bmRequestType & 0x80)
 == 0)
 {
 //A control write transfer received
 //from Host. Now receive data from Host.
 USB_DEVICE_ControlReceive(
 appData.usbDevHandle,
 void *) &(appData.clockSource),
 4);
 appData.currentAudioControl =
 APP_USB_AUDIO_CLOCKSOURCE_CONTROL;
 }
 else
 {
 //Handle Get request
 USB_DEVICE_ControlSend(
 appData.usbDevHandle,
 (void *)&(appData.clockSource),
 4);
 appData.currentAudioControl =
 APP_USB_CONTROL_NONE;
 }
 }
 break;

 case CS_CLOCK_VALID_CONTROL:
 {
 if ((controlRequest->bmRequestType & 0x80)
 == 0x80)
 {
 //Handle Get request
 USB_DEVICE_ControlSend(
 appData.usbDevHandle,
 (void *)&(appData.clockValid),
 1);
 }
 else
 {
 USB_DEVICE_ControlStatus(
 appData.usbDevHandle,
 USB_DEVICE_CONTROL_STATUS_ERROR);

 }

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 73

 }
 break;

 default:
 //This USB Audio Speaker application does
 //not support any other feature unit request
 //from Host. So Stall if any other feature
 //unit request received from Host.
 USB_DEVICE_ControlStatus (
 appData.usbDevHandle,
 USB_DEVICE_CONTROL_STATUS_ERROR);
 break;

 }
 }

 case USB_DEVICE_AUDIO_V2_RANGE_ENTITY_SETTINGS_RECEIVED:
 // This event indicates the Range entity request has been
 // received.
 USB_AUDIO_CONTROL_INTERFACE_REQUEST* controlRequest;
 controlRequest = (USB_AUDIO_CONTROL_INTERFACE_REQUEST*)setupPkt;
 switch(controlRequest->entityID)
 {
 case APP_ID_CLOCK_SOURCE:
 USB_AUDIO_CLOCKSOURCE_CONTROL_REQUEST* clockSourceRequest;
 clockSourceRequest =
 (USB_AUDIO_CLOCKSOURCE_CONTROL_REQUEST*) controlRequest;
 if (clockSourceRequest->bRequest == RANGE)
 {
 switch(clockSourceRequest->controlSelector)
 {
 case CS_SAM_FREQ_CONTROL:
 {
 if ((controlRequest->bmRequestType & 0x80)
 == 0x80)
 {
 //A control read transfer received from
 // Host. Now send data to Host.
 USB_DEVICE_ControlSend(
 appData.usbDevHandle,
 void *) &(appData.clockSourceRange),
 sizeof(appData.clockSourceRange));
 }
 else
 {
 //Handle Get request
 // USB_DEVICE_ControlReceive(
 appData.usbDevHandle,
 (void *)&(appData.clockSourceRange[0]),
 sizeof(appData.clockSourceRange));
 USB_DEVICE_ControlStatus(
 appData.usbDevHandle,
 USB_DEVICE_CONTROL_STATUS_ERROR);
 }
 }
 break;

 default:
 //This USB Audio Speaker application does
 // not support any other feature unit
 // request from Host. So Stall if any other
 // feature unit request received from Host.
 USB_DEVICE_ControlStatus (
 appData.usbDevHandle,
 USB_DEVICE_CONTROL_STATUS_ERROR);
 break;

 }
 }

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 74

 }

Remarks

The application can defer responses to events triggered by control transfers. In that, the application can respond to the control transfer event after
exiting the event handler. This allows the application some time to obtain the response data rather than having to respond to the event
immediately. Note that a USB host will typically wait for an event response for a finite time duration before timing out and canceling the event and
associated transactions. Even when deferring response, the application must respond promptly if such time-out have to be avoided.

USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE Structure

USB Device Audio Function Driver Audio v2.0 read and write complete event data.

File

usb_device_audio_v2_0.h

C
typedef struct {
 USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE handle;
 uint16_t length;
 uint8_t interfaceNum;
 USB_DEVICE_AUDIO_V2_RESULT status;
} USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE, USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE;

Members

Members Description

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE
handle;

Transfer handle associated with this

• read or write request
uint16_t length; Indicates the amount of data (in bytes) that was

• read or written
uint8_t interfaceNum; Interface Number

USB_DEVICE_AUDIO_V2_RESULT status; Completion status of the transfer

Description

USB Device Audio v2.0 Function Driver Read and Write Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE,
USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE, events.

Remarks

None.

USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERFACE Structure

USB Device Audio v2.0 Function Driver alternate interface setting event data.

File

usb_device_audio_v2_0.h

C
typedef struct {
 uint8_t interfaceNumber;
 uint8_t interfaceAlternateSetting;
} USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERFACE;

Members

Members Description

uint8_t interfaceNumber; Interface number of the interface who setting is to be changed

uint8_t interfaceAlternateSetting; Alternate setting number

Description

USB Device Audio v2.0 Function Driver Alternate Interface Setting Event Data.

This data type defines the data structure returned by the driver along with

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 75

USB_DEVICE_AUDIO_V2_EVENT_DATA_INTERFACE_SETTING_CHANGED.

Remarks

None.

USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE Structure

USB Device Audio Function Driver Audio v2.0 read and write complete event data.

File

usb_device_audio_v2_0.h

C
typedef struct {
 USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE handle;
 uint16_t length;
 uint8_t interfaceNum;
 USB_DEVICE_AUDIO_V2_RESULT status;
} USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE, USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE;

Members

Members Description

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE
handle;

Transfer handle associated with this

• read or write request
uint16_t length; Indicates the amount of data (in bytes) that was

• read or written
uint8_t interfaceNum; Interface Number

USB_DEVICE_AUDIO_V2_RESULT status; Completion status of the transfer

Description

USB Device Audio v2.0 Function Driver Read and Write Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_AUDIO_V2_EVENT_READ_COMPLETE,
USB_DEVICE_AUDIO_V2_EVENT_WRITE_COMPLETE, events.

Remarks

None.

USB_DEVICE_AUDIO_V2_EVENT_HANDLER Type

USB Device Audio v2.0 Event Handler Function Pointer Type.

File

usb_device_audio_v2_0.h

C
typedef USB_DEVICE_AUDIO_V2_EVENT_RESPONSE (* USB_DEVICE_AUDIO_V2_EVENT_HANDLER)(USB_DEVICE_AUDIO_V2_INDEX
instanceIndex , USB_DEVICE_AUDIO_V2_EVENT event , void * pData, uintptr_t context);

Description

USB Device Audio v2.0 Event Handler Function Pointer Type.

This data type defines the required function signature USB Device Audio Function Driver event handling callback function. The application must
register a pointer to an Audio Function Driver events handling function who's function signature (parameter and return value types) match the
types specified by this function pointer in order to receive event call backs from the Audio Function Driver. The function driver will invoke this
function with event relevant parameters. The description of the event handler function parameters is given here.

instanceIndex - Instance index of the Audio v2.0 Function Driver that generated the event.

event - Type of event generated.

pData - This parameter should be type casted to an event specific pointer type based on the event that has occurred. Refer to the
USB_DEVICE_AUDIO_V2_EVENT enumeration description for more details.

context - Value identifying the context of the application that registered the event handling function.

Remarks

The event handler function executes in the USB interrupt context when the USB Device Stack is configured for interrupt based operation. It is not

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 76

advisable to call blocking functions or computationally intensive functions in the event handler. Where the response to a control transfer related
event requires extended processing, the response to the control transfer should be deferred and the event handler should be allowed to complete
execution.

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE Type

USB Device Audio v2.0 Function Driver event callback response type.

File

usb_device_audio_v2_0.h

C
typedef void USB_DEVICE_AUDIO_V2_EVENT_RESPONSE;

Description

USB Device Audio v2.0 Function Driver Event Handler Response Type

This is the return type of the Audio Function Driver event handler.

Remarks

None.

USB_DEVICE_AUDIO_V2_INDEX Type

USB Device Audio v2.0 Function Driver index.

File

usb_device_audio_v2_0.h

C
typedef uintptr_t USB_DEVICE_AUDIO_V2_INDEX;

Description

USB Device Audio v2.0 Function Driver Index

This definition uniquely identifies a Audio v2.0 Function Driver instance.

Remarks

None.

USB_DEVICE_AUDIO_V2_INIT Structure

USB Device Audio v2.0 Function Driver initialization data structure.

File

usb_device_audio_v2_0.h

C
typedef struct {
 size_t queueSizeRead;
 size_t queueSizeWrite;
} USB_DEVICE_AUDIO_V2_INIT;

Members

Members Description

size_t queueSizeRead; Size of the read queue for this instance

• of the Audio function driver
size_t queueSizeWrite; Size of the write queue for this instance

• of the Audio function driver

Description

USB Device Audio v2.0 Function Driver Initialization Data Structure

This data structure must be defined for every instance of the Audio function driver. It is passed to the Audio v2.0 function driver, by the Device
Layer, at the time of initialization. The funcDriverInit member of the Device Layer Function Driver registration table entry must point to this data

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 77

structure for an instance of the Audio function driver.

Remarks

The queue sizes that are specified in this data structure are also affected by the USB_DEVICE_AUDIO_V2_QUEUE_DEPTH_COMBINED
configuration macro.

USB_DEVICE_AUDIO_V2_RESULT Enumeration

USB Device Audio Function Driver USB Device Audio v2.0 result enumeration.

File

usb_device_audio_v2_0.h

C
typedef enum {
 USB_DEVICE_AUDIO_V2_RESULT_OK,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_TRANSFER_QUEUE_FULL,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_INVALID,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_NOT_CONFIGURED,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_PARAMETER_INVALID,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_INVALID_INTERFACE_ID,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_INVALID_BUFFER,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_ENDPOINT_HALTED,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR_TERMINATED_BY_HOST,
 USB_DEVICE_AUDIO_V2_RESULT_ERROR
} USB_DEVICE_AUDIO_V2_RESULT;

Members

Members Description

USB_DEVICE_AUDIO_V2_RESULT_OK The operation was successful

USB_DEVICE_AUDIO_V2_RESULT_ERROR_TRANSFER_QUEUE_FULL The transfer queue is full and no new transfers can be
scheduled

USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_INVALID The specified instance is not provisioned in the system

USB_DEVICE_AUDIO_V2_RESULT_ERROR_INSTANCE_NOT_CONFIGURED The specified instance is not configured yet

USB_DEVICE_AUDIO_V2_RESULT_ERROR_PARAMETER_INVALID The event handler provided is NULL

USB_DEVICE_AUDIO_V2_RESULT_ERROR_INVALID_INTERFACE_ID Interface number passed to the read or write function is invalid.

USB_DEVICE_AUDIO_V2_RESULT_ERROR_INVALID_BUFFER A NULL buffer was specified in the read or write function

USB_DEVICE_AUDIO_V2_RESULT_ERROR_ENDPOINT_HALTED Transfer terminated because host halted the endpoint

USB_DEVICE_AUDIO_V2_RESULT_ERROR_TERMINATED_BY_HOST Transfer terminated by host because of a stall clear

USB_DEVICE_AUDIO_V2_RESULT_ERROR General Error

Description

USB Device Audio v2.0 Function Driver USB Device Audio v2.0 Result enumeration.

This enumeration lists the possible USB Device Audio v2.0 Function Driver operation results.

Remarks

None.

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE Type

USB Device Audio v2.0 Function Driver Transfer Handle Definition.

File

usb_device_audio_v2_0.h

C
typedef uintptr_t USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE;

Description

USB Device Audio v2.0 Function Driver Transfer Handle Definition

This definition defines a USB Device Audio v2.0 Function Driver Transfer Handle. A Transfer Handle is owned by the application but its value is
modified by the USB_DEVICE_AUDIO_V2_Write and USB_DEVICE_AUDIO_V2_Read functions. The transfer handle is valid for the life time of
the transfer and expires when the transfer related event had occurred.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 78

Remarks

None.

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE_NONE Macro

USB Device Audio v2.0 Function Driver event handler response type none.

File

usb_device_audio_v2_0.h

C
#define USB_DEVICE_AUDIO_V2_EVENT_RESPONSE_NONE

Description

USB Device Audio v2.0 Function Driver Event Handler Response None

This is the definition of the Audio v2.0 Function Driver event handler response type none.

Remarks

Intentionally defined to be empty.

USB_DEVICE_AUDIO_V2_FUNCTION_DRIVER Macro

USB Device Audio v2.0 Function Driver function pointer.

File

usb_device_audio_v2_0.h

C
#define USB_DEVICE_AUDIO_V2_FUNCTION_DRIVER

Description

USB Device Audio v2.0 Function Driver Function Pointer

This is the USB Device Audio v2.0 Function Driver Function pointer. This should registered with the device layer in the function driver registration
table.

Remarks

None.

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID Macro

USB Device Audio v2.0 Function Driver Invalid Transfer Handle Definition.

File

usb_device_audio_v2_0.h

C
#define USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID

Description

USB Device Audio v2.0 Function Driver Invalid Transfer Handle Definition

This definition defines a USB Device Audio v2.0 Function Driver Invalid Transfer Handle. A Invalid Transfer Handle is returned by the
USB_DEVICE_Audio_V2_Write and USB_DEVICE_Audio_V2_Read functions when the request was not successful.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 79

Files

Files

Name Description

usb_device_audio_v2_0.h USB Device Audio v2.0 Function Driver interface .

usb_device_audio_v2_0_config_template.h USB device Audio 2.0 Class configuration definitions template

Description

This section lists the source and header files used by the library.

usb_device_audio_v2_0.h

USB Device Audio v2.0 Function Driver interface .

Enumerations

Name Description

USB_DEVICE_AUDIO_V2_EVENT USB Device Audio v2.0 Function Driver events.

USB_DEVICE_AUDIO_V2_RESULT USB Device Audio Function Driver USB Device Audio v2.0 result enumeration.

Functions

Name Description

USB_DEVICE_AUDIO_V2_EventHandlerSet This function registers an event handler for the specified Audio function driver
instance.

USB_DEVICE_AUDIO_V2_Read This function requests a data read from the USB Device Audio v2.0 Function Driver
Layer.

USB_DEVICE_AUDIO_V2_TransferCancel This function cancels a scheduled Audio v2.0 Device data transfer.

USB_DEVICE_AUDIO_V2_Write This function requests a data write to the USB Device Audio v2.0 Function Driver
Layer.

Macros

Name Description

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE_NONE USB Device Audio v2.0 Function Driver event handler response type
none.

USB_DEVICE_AUDIO_V2_FUNCTION_DRIVER USB Device Audio v2.0 Function Driver function pointer.

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID USB Device Audio v2.0 Function Driver Invalid Transfer Handle
Definition.

Structures

Name Description

USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE USB Device Audio Function Driver Audio v2.0 read
and write complete event data.

USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERFACE USB Device Audio v2.0 Function Driver alternate
interface setting event data.

USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE USB Device Audio Function Driver Audio v2.0 read
and write complete event data.

USB_DEVICE_AUDIO_V2_INIT USB Device Audio v2.0 Function Driver initialization
data structure.

Types

Name Description

USB_DEVICE_AUDIO_V2_EVENT_HANDLER USB Device Audio v2.0 Event Handler Function Pointer Type.

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE USB Device Audio v2.0 Function Driver event callback response type.

USB_DEVICE_AUDIO_V2_INDEX USB Device Audio v2.0 Function Driver index.

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE USB Device Audio v2.0 Function Driver Transfer Handle Definition.

Description

USB Device Audio Function Driver Interface

This file describes the USB Device Audio v2.0 Function Driver interface. This file should be included by the application if it needs to use the Audio

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 80

v2.0 Function Driver API.

File Name

usb_device_audio_v2.0.h

Company

Microchip Technology Inc.

usb_device_audio_v2_0_config_template.h

USB device Audio 2.0 Class configuration definitions template

Macros

Name Description

USB_DEVICE_AUDIO_V2_INSTANCES_NUMBER Specifies the number of Audio 2.0 Function Driver instances.

USB_DEVICE_AUDIO_V2_MAX_ALTERNATE_SETTING Specifies the maximum number of Alternate Settings per
streaming interface.

USB_DEVICE_AUDIO_V2_MAX_STREAMING_INTERFACES Specifies the maximum number of Audio 2.0 Streaming interfaces
in an Audio 2.0 Function Driver instance.

USB_DEVICE_AUDIO_V2_QUEUE_DEPTH_COMBINED Specifies the combined queue size of all Audio 2.0 function driver
instances.

Description

USB Device Audio 2.0 Class Configuration Definitions

This file contains configurations macros needed to configure the Audio 2.0 Function Driver. This file is a template file only. It should not be included
by the application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_device_audio_v2_0_config_template_0_config_template.h

Company

Microchip Technology Inc.

USB Device Layer Library

This section describes the USB Device Layer Library.

Introduction

Introduces the MPLAB Harmony USB Device Layer Library.

Description

The MPLAB Harmony USB Device Layer Library (also referred to as the Device Layer) is part of the MPLAB Harmony USB Device Stack. Within
the USB Device Stack, the Device Layer responds to enumeration requests from the Hosts. It receives control transfers from the Host and
responds to these control transfers in case of standard device requests. It dispatches function driver and application specific control transfers to
the respective function drivers and to the application. It provides the application and function drivers with API routines that allow them to respond
and complete a control transfer, with a possibility of deferring such responses. The Device Layer also provides the application with events and
functions that allow the application to track the state of the device.

The Device Layer plays the role of a system in the MPLAB Harmony USB Device Stack. In that, it initializes the USB Driver, the device function
drivers and maintains their state machines by invoking the Tasks routines of these modules. The Device Layer thus treats the USB Driver and
function drivers as sub modules.

The device_layer features the following:

• Supports both USB Full-Speed and Hi-Speed operation

• Based on a modular and event-driven architecture

• Supports the PIC32MX and PIC32MZ families of microcontrollers

• Supports composite USB devices

• Supports different types of function drivers (i.e., CDC, HID, MSD, etc.)

• Supports non-blocking operation and is RTOS friendly

• Designed to integrate readily with other MPLAB Harmony middleware

• Supports both interrupt and polling operation

• Reduces the required application intervention in maintaining the USB state of the device

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 81

• Allows implementation of a multi-configuration USB device

• Functions to implement Generic USB Devices

Using the Library

This topic describes the basic architecture of the USB Device Layer Library and provides information and examples on its use.

Abstraction Model

Describes the Abstraction Model of the USB Device Layer.

Description

The block diagram shows USB Device Layer interaction with USB controller driver, function drivers, user application and the system.

USB Device Layer Software Abstraction Block Diagram

System Interaction

The system is responsible for initializing and deinitializing the device_layer. It is also responsible for calling the USB Device Layer task routine.

Function Driver Interaction

The USB Device Layer interacts with a function driver for following reasons:

• Initializes the function driver when device is configured by the Host. This can happen when the Host issues a set configuration request to the
device. The device_layer initializes only those function drivers that are valid for the selected configuration.

• Deinitializes the function driver when the Host issues a bus reset or when device is detached from the host or when the Host unconfigures the
device by setting configuration value to '0'.

• Function driver and USB Controller Driver task routines are run by the device_layer. This means that these task routines run at the same
priority as a device_layer task.

• Forwards class/interface specific setup requests from host to function drivers for processing. The function drivers can use device layer_APIs to
read and write data to Endpoint 0.

All of these interactions are initiated by the device_layer, and therefore, it is required for a function driver to register a set of standard APIs with the
device_layer for initializing/deinitializing the function driver, for handling control transfers and for running the task routines. Registering of these
callback functions with the device_layer is a compile time step and is done using the function driver registration table. Function driver registration is
explained in subsequent sections.

User Application (Client) Interaction

User application clients can register a callback function with the device_layer to get USB device events. Apart from device events, the clients can
interact with USB device layer_to determine other status such as USB speed and remote wake-up. The Device Layer will forward Control
Transfers whose Recipient field is set to Other, to the application. The application must use the Device Layer Control Transfer Routines to

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 82

complete the control transfer.

Library Overview

The USB device_layer mainly interacts with the system, its clients and function drivers, as shown in the Abstraction Model.

The library interface routines are divided into sub-sections, which address one of the blocks or the overall operation of the USB Device Layer
Library.

Library Interface Section Description

System Interaction Functions Provides system module interfaces, device initialization, deinitialization, reinitialization
and task functions.

Client Core Functions Provides function to register callbacks, mechanism to pass events to clients and
functions to know the status.

Device Power State Management Functions These functions manage the power state of the device (self or bus powered) and
remote wake-up.

Endpoint Management Functions These functions allow the application to manage endpoints (enable, disable and stall).

Device Management Functions These functions allow the application to manage the state of the device (attach,
detach etc.).

Control Transfer Functions These functions allow the application to respond to complete control transfers.

How the Library Works

Library Initialization

Describes how the USB Device Layer must be initialized.

Description

The Device Layer initialization process requires the following components:

• USB Standard Descriptors that define the device functionality. The definitions of these descriptors are defined by the USB 2.0 and Device
Class specification.

• Device Master Descriptor Table

• Function Driver Registration Table

The USB Standard Descriptors that define the device functionality are discussed in detail in the USB 2.0 and Device Class Specifications. The
reader is encouraged to refer to these specifications for a detailed understanding of this topic.

Master Descriptor Table

Describes the USB Device Layer Master Descriptor Table.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 83

Description

As seen in the figure, the Device Master Descriptor Table (specified by the USB_DEVICE_MASTER_DESCRIPTOR data type) is a container for
all descriptor related information that is needed by the Device Layer for its operation. This table contains the following information:

• Pointer to the Full-Speed and High-Speed Device Descriptor

• Number of Full-Speed and High-Speed Configurations

• Pointers to Table of Full-Speed and High-Speed Configuration Descriptors

• Number of String Descriptors

• Pointer to a Table of String Descriptors

• Pointers to Full-Speed and High-Speed Device Qualifier

In a case where a particular item in the Device Master Descriptor Table is not applicable, that entry can be either set to '0' or NULL as applicable.
For example for a Full-Speed-only device, the number of High Speed Configuration should be set to '0' and the pointer to the table of High-Speed
Configuration Descriptors should be set to NULL.

The following code shows an example of a USB Device Master Descriptor design for a Full-Speed USB HID Keyboard.
/**
 * USB Device Layer Master Descriptor Table
 **/
const USB_DEVICE_MASTER_DESCRIPTOR usbMasterDescriptor =
{
 &fullSpeedDeviceDescriptor, /* Full-speed descriptor */
 1, /* Total number of full-speed configurations available */
 &fullSpeedConfigDescSet[0], /* Pointer to array of full-speed configurations descriptors*/

 NULL, /* High-speed device descriptor is not supported*/
 0, /* Total number of high-speed configurations available */
 NULL, /* Pointer to array of high-speed configurations descriptors. Not
supported*/

 3, /* Total number of string descriptors available */
 stringDescriptors, /* Pointer to array of string descriptors */

 NULL, /* Pointer to full-speed device qualifier. Not supported */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 84

 NULL, /* Pointer to high-speed device qualifier. Not supported */
};

The following code shows an example of a USB Device Master Descriptor design for a Full Speed/High Speed USB HID Keyboard.
/**
 * USB Device Layer Master Descriptor Table
 **/
const USB_DEVICE_MASTER_DESCRIPTOR usbMasterDescriptor =
{
 &fullSpeedDeviceDescriptor, /* Full-speed descriptor */
 1, /* Total number of full-speed configurations available */
 &fullSpeedConfigDescSet[0], /* Pointer to array of full-speed configurations descriptors*/

 &highSpeedDeviceDescriptor, /* High-speed descriptor */
 1, /* Total number of high-speed configurations available */
 &highSpeedConfigDescSet[0], /* Pointer to array of high-speed configurations descriptors*/

 3, /* Total number of string descriptors available */
 stringDescriptors, /* Pointer to array of string descriptors */

 &deviceQualifierDescriptor1, /* Pointer to full-speed device qualifier. */
 NULL, /* Pointer to high-speed device qualifier. Not supported */
};

The USB Device Layer Master Descriptor table can be placed in the data or program memory of the PIC32 device. The contents of this table could
be modified while the application is running. Doing this will affect the operation of the Device Stack. A typical USB device application will not need
to change the contents of this table while the application is running.

Function Driver Registration Table

This section explains how function drivers can be registered with the USB Device Layer using the Function Registration Table.

Description

The Function Driver Registration Table (defined by the USB_DEVICE_FUNCTION_REGISTRATION_TABLE data type) contains information
about the function drivers that are present in the application. The Device Layer needs this information to establish the intended functionality of the
USB Device and then manage the operation of the device.

The Function Driver Registration Table contains an entry for every function driver instance contained in the application. Each entry is configuration
specific. Hence in a case of device that features multiple configurations, the Function Driver Registration Table will contains an entry for every
function driver in each configuration. Entries are instance and configuration specific. Hence if a configuration contains two instances of the same
function driver type, the Function Driver Registration Table will contain two entries to for the same function driver but with different instance
indexes. A description of each member of the Function Driver Registration Table entry is as follows:

• The configurationValue member of the entry specifies to which configuration this entry belongs. The Device Layer will process this entry when
the configurationValue configuration is set.

• The driver member of the entry should be set to Function Driver – Device Layer Interface Functions Object exported by the function driver. This
object is provided by the function driver. In case of the CDC function driver, this is USB_DEVICE_CDC_FUNCTION_DRIVER. In case of HID
function driver, this is USB_DEVICE_HID_FUNCTION_DRIVER. . Refer to the "Library Initialization" topic in Function Driver Specific help
section for more details.

• The funcDriverIndex member of the entry specifies the instance of the function driver that this entry relates to. The Device Layer will use this
instance when communicating with the function driver. In a case where there are multiple instances of the same function driver in a
configuration, the funcDriverIndex allows the Device Layer to uniquely identify the function driver.

• The funcDriverInit member of the entry must point to the function driver instance specific initialization data structure. Function Drivers typically
require an initialization data structure to be specified. The Device Layer passes the pointer to the initialization data structure when the function
driver is initialized. Refer to the "Library Initialization" topic in Function Driver Specific help section for more details.

• The interfaceNumber member of the entry must contain the interface number of the first interface that is owned by this function driver instance.
The information is available from the Device Configuration Descriptor.

• The numberOfInterfaces member of the entry must contain the number of interfaces following the interfaceNumber interface that is owned by
this function driver instance. For example, a CDC Device requires two interfaces. The interfaceNumber member of Function Driver Registration
Table entry for this function driver would be 0 and the numberOfInterfaces member would be 2. This indicates that Interface 0 and Interface 1 in
the Device Configuration Descriptor are owned by this function driver.

• The speed member of the entry specifies the device speeds for which this function driver should be initialized. This can be set to either
USB_SPEED_FULL, USB_SPEED_HIGH or a logical OR combination of both. The Device Layer will initialize the function if the device attach
speed matches the speed mention in the speed member of the entry.

The following code shows an example of Function Driver Registration Table for one function driver. The CDC Function Driver in this case has two
interfaces.
/**
 * USB Device Layer Function Driver Registration
 * Table
 **/
const USB_DEVICE_FUNCTION_REGISTRATION_TABLE funcRegistrationTable[1] =
{

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 85

 {
 .configurationValue = 1 , // Configuration descriptor index
 .driver = USB_DEVICE_CDC_FUNCTION_DRIVER, // CDC APIs exposed to the device layer
 .funcDriverIndex = 0 , // Instance index of CDC function driver
 .funcDriverInit = (void *)&cdcInit, // CDC init data
 .interfaceNumber = 0 , // Start interface number of this instance
 .numberOfInterfaces = 2 , // Total number of interfaces contained in this instance
 .speed = USB_SPEED_FULL|USB_SPEED_HIGH // USB Speed
 }
};

The following code shows an example of Function Driver Registration Table for two function drivers. This example demonstrates a Composite
(CDC + MSD) device. The CDC Function Driver uses two interfaces starting from interface 0. The MSD Function Driver has one interface starting
from interface 2.
/***
 * Function Driver Registration Table
 **/
USB_DEVICE_FUNCTION_REGISTRATION_TABLE funcRegistrationTable[2] =
{
 {
 .speed = USB_SPEED_FULL|USB_SPEED_HIGH, // Speed at which this device can operate
 .configurationValue = 1, // Configuration number to which this device belongs
 .interfaceNumber = 1, // Starting interface number for this function driver
 .numberOfInterfaces = 2, // Number of interfaces that this function driver owns.
 .funcDriverIndex = 0, // Function Driver index
 .funcDriverInit = &cdcInit, // Function Driver initialization data structure
 .driver = USB_DEVICE_CDC_FUNCTION_DRIVER // CDC Function Driver.
 },
 {
 .speed = USB_SPEED_FULL|USB_SPEED_HIGH, // Speed at which this device can operate
 .configurationValue = 1, // Configuration number to which this device belongs
 .interfaceNumber = 0, // Starting interface number for this function driver
 .numberOfInterfaces = 1, // Number of interfaces that this function driver owns.
 .funcDriverIndex = 0, // Function Driver index
 .funcDriverInit = &msdInit, // Function Driver initialization data structure
 .driver = USB_DEVICE_MSD_FUNCTION_DRIVER // MSD Function Driver.
 },
};

The USB Device Layer Function Driver registration table can be placed in the data or program memory of the PIC32 device. The contents of this
table could be modified while the application is running. Doing this will affect the operation of the device stack. A typical USB device application will
not need to change the contents of this table while the application is running.

Initializing the Device Layer

This section describes the USB Device Layer initialization.

Description

With the USB Device Master Descriptor and the Function Driver Registration Table available, the application can now create the Device Layer
Initialization Data structure. This data structure is a USB_DEVICE_INIT type and contains the information need to initialize the Device Layer and
the USB Controller Driver. The Device Layer uses the USB Controller Driver initialization data to initialize the USB Controller driver. The actual
initialization is performed by calling the USB_DEVICE_Initialize function. This function returns a Device Layer System Module Object which must
be used with the other Device Layer System Routines (such as the USB_DEVICE_Tasks and USB_DEVICE_Tasks_ISR functions). In case of
PIC32MX device, the Device Layer requires the allocation of an endpoint table. This table (an array of type uint8_t) should aligned at a 512 byte
aligned address boundary. Its size should be USB_DEVICE_ENDPOINT_TABLE_SIZE. The table is not required for PIC32MZ devices. The value
of USB_DEVICE_ENDPOINT_TABLE_SIZE while designing for PIC32MZ device will be automatically set to '0'.

The following code shows an example of initializing the Device Layer.
/**
 * Endpoint Table needed by the Device Layer.
 **/

uint8_t __attribute__((aligned(512))) endpointTable[USB_DEVICE_ENDPOINT_TABLE_SIZE];

/***
 * USB Device Layer Initialization.
 **/

USB_DEVICE_INIT usbDevInitData =
{
 /* System module initialization */
 .moduleInit = {SYS_MODULE_POWER_RUN_FULL},

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 86

 /* Identifies peripheral (PLIB-level) ID */
 .usbID = USB_ID_1,

 /* Stop in idle */
 .stopInIdle = false,

 /* Stop in sleep */
 .suspendInSleep = false,

 /* Interrupt source */
 .interruptSource = INT_SOURCE_USB_1,

 /* Endpoint Table */
 .endpointTable = endpointTable,

 /* Number of function drivers registered to this instance of the
 USB device layer */
 .registeredFuncCount = 2,

 /* Function driver table registered to this instance of the USB device layer*/
 .registeredFunctions = (USB_DEVICE_FUNCTION_REGISTRATION_TABLE*)funcRegistrationTable,

 /* Pointer to USB Descriptor structure */
 .usbMasterDescriptor = (USB_DEVICE_MASTER_DESCRIPTOR*)&usbMasterDescriptor
};

/**
 * System Initialization Routine
 **/
void SYS_Initialize (void * data)
{
 /* Set up cache and wait states for maximum performance. */
 SYS_DEVCON_Initialize(SYS_DEVCON_INDEX_0, (SYS_MODULE_INIT *)&devconInit);
 SYS_DEVCON_PerformanceConfig(80000000);

 /* Initialize the BSP */
 BSP_Initialize();

 /* Initialize the USB device layer */
 sysObjects.usbDevObject = USB_DEVICE_Initialize (USB_DEVICE_INDEX_0 ,
 (SYS_MODULE_INIT*) & usbDevInitData);

 /* check if the object returned by the device layer is valid */
 SYS_ASSERT((SYS_MODULE_OBJ_INVALID != sysObjects.usbDevObject), "Invalid USB DEVICE object");

 /* Initialize the Application */
 APP_Initialize ();

 /* Initialize the interrupt system */
 SYS_INT_Initialize();

 /* set priority for USB interrupt source */
 SYS_INT_VectorPrioritySet(INT_VECTOR_USB, INT_PRIORITY_LEVEL3);

 /* set sub-priority for USB interrupt source */
 SYS_INT_VectorSubprioritySet(INT_VECTOR_USB, INT_SUBPRIORITY_LEVEL3);

 /* Initialize the global interrupts */
 SYS_INT_Enable();
}

Device Layer Task Routines

Describes the Device Layer task routines.

Description

In a case where the USB Controller driver is configured for interrupt mode operation (DRV_USB_INTERRUPT_MODE is true), the
USB_DEVICE_Tasks_ISR() function should be called in the USB module interrupt associated with the Device Layer. The following code shows an

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 87

example of this.
/**
 * Example of instantiating the USB Interrupt
 * and call the Device Layer ISR Tasks Routines.
 **/

void __ISR (_USB_1_VECTOR, ipl3) _InterruptHandler_USB_stub (void)
{
 USB_DEVICE_Tasks_ISR(sysObjects.usbDevObject);
}

If the USB Controller driver is configured for polled mode, the Device Layer will automatically invoke the USB_DEVICE_Tasks_ISR() functions
from the USB_DEVICE_Tasks() function. Irrespective of whether the USB Controller driver is configured for polled or interrupt mode, the
USB_DEVICE_Tasks() function should be called from SYS_Tasks() function. This will ensure that this function is called periodically. The
USB_DEVICE_Tasks() function in turn calls the tasks routines of the applicable functions drivers and the USB Controller Driver (when the driver is
configured for polled mode). The following code shows an example of how the USB_DEVICE_Tasks() function is called in the SYS_Tasks()
function.
void SYS_Tasks (void)
{
 /* Device layer tasks routine. Function Driver tasks gets called
 * from device layer tasks */

 USB_DEVICE_Tasks(sysObjects.usbDevObject);

 /* Call the application's tasks routine */
 APP_Tasks ();
}

Application Client Interaction

Describes application client interaction.

Description

Once initialized, Device Layer becomes ready for operation. The application must open the Device Layer by calling the USB_DEVICE_Open()
function. Opening the Device Layer makes the application a Device Layer client. The Device Layer returns a valid Device Layer Handle when
opened successfully. It will return an invalid Device Layer Handle when the open function fails. The application in this case should try opening the
Device Layer again. The application can use a valid Device Layer handle to access the Device Layer functionality.

The client must now register a Device Layer Event Handler with the Device Layer. This is a mandatory step that enables USB Device Layer
Events. The application must use the USB_DEVICE_EventHandlerSet function to register the event handler. The Application Event Handler
should be of the type USB_DEVICE_EVENT_HANDLER. The Device Layer, when an event needs to be generated, calls this event handler
function with the event type and event relevant information. The application must register an event handler for proper functioning of the USB
Device. Not registering an event handler may cause the USB Device to malfunction and become non-compliant.

With an event handler register, the client can now attach the USB Device on the bus. The application must attach the in response to the
USB_DEVICE_EVENT_POWER_DETECTED event. Attaching the device on the bus makes the device visible to the host (if it is already attached
to the bus) and will cause the host to interact with the device.

The following code shows an example of the application opening the Device Layer, registering the event handler and then attaching the device on
the bus.
/**
 * Here the application tries to open the Device Layer
 * and then register an event handler and then attach
 * the device on the bus.
 **/
void APP_Tasks(void)
{
 switch(appData.state)
 {
 case APP_STATE_INIT:

 /* Open the device layer */
 appData.deviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0,
 DRV_IO_INTENT_READWRITE);

 if(appData.deviceHandle != USB_DEVICE_HANDLE_INVALID)
 {
 /* Register a callback with device layer to get event notification */
 USB_DEVICE_EventHandlerSet(appData.deviceHandle,
 APP_USBDeviceEventCallBack, 0);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 88

 appData.state = APP_STATE_WAIT_FOR_CONFIGURATION;
 }
 else
 {
 /* The Device Layer is not ready to be opened. We should try
 * again later. */
 }

 break;
 }
}

Event Handling

Describes USB Device Layer event handling.

Description

The Device Layer generates events to let the application client know about the state of the bus. Some of these events require the application to
respond in a specific manner. Not doing so, could cause the USB device to malfunction and become non-compliant. Code inside the event handler
executes in an interrupt context when the Device Layer is configured for interrupt mode operation. The application must avoid calling
computationally intensive functions or blocking functions in the event handler.

The following table shows a summary of the events that the Device Layer generates and the required Application client response.

Event Required Application Response

USB_DEVICE_EVENT_POWER_DETECTED Attach the device.

USB_DEVICE_EVENT_POWER_REMOVED Detach the device.

USB_DEVICE_EVENT_RESET No response required.

USB_DEVICE_EVENT_SUSPENDED No response required.

USB_DEVICE_EVENT_RESUMED No response required.

USB_DEVICE_EVENT_ERROR The application can try detaching the device and reattaching. This should
be done after exiting from the event handler.

USB_DEVICE_EVENT_SOF No response required.

USB_DEVICE_EVENT_CONFIGURED No response required.

USB_DEVICE_EVENT_DECONFIGURED No response required.

USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST Application must either respond with a USB_DEVICE_ControlSend() to
send data, USB_DEVICE_ControlReceive() to receive data or stall or
acknowledge the control request by calling the
USB_DEVICE_ControlStatus() function.

USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT No response required.

USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED Application must either or stall or acknowledge the control request by
calling the USB_DEVICE_ControlStatus() function.

USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_ABORTED No response required.

The Device Layer generates events with event relevant data. The pData parameter in the event handler functions points to this event specific data.
The application can access this data by type casting the pData parameter of the event handler to a event specific data type. The following table
shows a summary of the USB Device Layer events and the event data generated along with the event.

Event Related pData Type

USB_DEVICE_EVENT_POWER_DETECTED NULL

USB_DEVICE_EVENT_POWER_REMOVED NULL

USB_DEVICE_EVENT_RESET NULL

USB_DEVICE_EVENT_SUSPENDED NULL

USB_DEVICE_EVENT_RESUMED NULL

USB_DEVICE_EVENT_ERROR NULL

USB_DEVICE_EVENT_SOF USB_DEVICE_EVENT_DATA_SOF *

USB_DEVICE_EVENT_CONFIGURED USB_DEVICE_EVENT_DATA_CONFIGURED
*

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 89

USB_DEVICE_EVENT_DECONFIGURED NULL

USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST USB_SETUP_PACKET *

USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT NULL

USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED NULL

A detailed description of each Device Layer event along with the required application client response, the likely follow-up event (if applicable) and
the event specific data is provided here.

USB_DEVICE_EVENT_POWER_DETECTED

Application Response: This event indicates that the device has detected a valid VBUS to the host. The device is yet to be enumerated and
configured. The application should not access the function drivers at this point. The application can use this event to attach the device on the bus.

Event Specific Data(pData): The pData parameter will be NULL.

Likely Follow Up Event: None.

USB_DEVICE_EVENT_POWER_REMOVED

Application Response: This event is an indication to the application client that the device is detached from the host. The application can use this
event to detach the device.

Event Specific Data(pData): The pData parameter will be NULL

Likely Follow Up Event: None.

USB_DEVICE_EVENT_SUSPENDED

Application Response: This event is an indication to the application client that device is suspended and it can put the device to sleep mode if
required. Power saving routines should not be called in the event handler.

Event Specific Data: The pData parameter will be NULL.

Likely Follow Up Event: None.

USB_DEVICE_EVENT_RESET

Application Response: USB bus reset occurred. This event is an indication to the application client that device layer has deinitialized all function
drivers. The application should not use the function drivers in this state.

Event Specific Data: The pData parameter will be NULL.

Likely Follow Up Event: None.

USB_DEVICE_EVENT_RESUMED

Application Response: This event indicates that device has resumed from suspended state. The application can use this event to resume the
operational state of the device.

Event Specific Data: The pData parameter will be NULL.

Likely Follow Up Event: None.

USB_DEVICE_EVENT_ERROR

Application Response: This event is an indication to the application client that an error occurred on the USB bus. The application can try detaching
and reattaching the device.

Event Specific Data: The pData parameter will be NULL.

Likely Follow Up Event: None.

USB_DEVICE_EVENT_SOF

Application Response: This event occurs when the device receives a Start Of Frame packet. The application can use this event for synchronizing
purposes. This event will be received every 1 millisecond for Full Speed USB and every one 125 micro seconds for High Speed USB. No
application response is required.

Event Specific Data: Will point to USB_DEVICE_EVENT_DATA_SOF data type containing the frame number

Likely Follow Up Event: None.

USB_DEVICE_CONFIGURED

Application Response: This event is an indication to the application client that device layer has initialized all function drivers. The application can
check the configuration set by the host. The application should use the event to register event handlers with the function drivers that are
provisioned in the system.

Event Specific Data: The pData parameter will point to a USB_DEVICE_EVENT_DATA_CONFIGURED data type that contains configuration set
by the host

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 90

Likely Follow Up Event: None.

USB_DEVICE_DECONFIGURED

Application Response: The host has deconfigured the device. This happens when the host sends a Set Configuration request with configuration
number 0. The device layer will deinitialize all function drivers and then generate this event. No application response is required.

Event Specific Data:: The pData parameter will be NULL

Likely Follow Up Event: None.

USB_DEVICE_CONTROL_TRANSFER_ABORTED

Application Response: An on-going control transfer was aborted. The application can use this event to reset it's control transfer state machine.

Event Specific Data: The pData parameter will be NULL

Likely Follow Up Event: None.

USB_DEVICE_CONTROL_TRANSFER_DATA_RECEIVED

Application Response: The data stage of a Control write transfer has completed. This event occurs after the application has used the
USB_DEVICE_ControlReceive() function to receive data in the control transfer (in response to the
USB_DEVICE_CONTROL_TRANSFER_SETUP_REQUEST event) . The application can inspect the received data and stall or acknowledge the
control transfer by calling the USB_DEVICE_ControlStatus() function with the USB_DEVICE_CONTROL_STATUS_ERROR flag or
USB_DEVICE_CONTROL_STATUS_OK flag respectively. The application can call the USB_DEVICE_ControlStatus() function in the event
handler or after exiting the event handler.

Event Specific Data: The pData parameter will be NULL

Likely Follow Up Event: None.

USB_DEVICE_CONTROL_TRANSFER_SETUP_REQUEST

Application Response: A setup packet of a control transfer has been received. The recipient field of the received setup packet is Other. The
application can initiate the data stage by using the USB_DEVICE_ControlReceive() and USB_DEVICE_ControlSend() functions. It can end the
control transfer by calling the USB_DEVICE_ControlStatus() function.

Event Specific Data: The pData parameter in the event handler will point to USB_SETUP_PACKET data type.

Likely Follow Up Event: USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT if the USB_DEVICE_ControlSend() function was called to
send data to the host. USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED if the USB_DEVICE_ControlReceive() function was
called to receive data from the host.

USB_DEVICE_CONTROL_TRANSFER_DATA_SENT

Application Response: The data stage of a Control Read transfer has completed. This event occurs after the application has used the
USB_DEVICE_ControlSend() function to send data in the control transfer. No application response is required.

Event Specific Data: The pData parameter will be NULL

Likely Follow Up Event: None.

Device Layer Control Transfers

Describes USB Device Layer control transfers.

Description

The USB Device Layer forwards control transfer setup packets, where the Recipient field in the Setup packet is "Other", to the application for
handling. The application must respond appropriately to this event. The following flow chart shows the possible sequences of events and
application responses.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 91

The Device Layer provides the USB_DEVICE_ControlReceive(), USB_DEVICE_ControlSend() and USB_DEVICE_ControlStatus() functions to
complete the control transfers. These functions should be called only in response to the
USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST event. In response to this event, the application can use the
USB_DEVICE_ControlReceive() function to receive data in the data stage of a Control Write transfer. The reception of data is indicated by the
USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED event. The application can then complete the Control Write transfer by either:

• accepting the received data and acknowledging the Status Stage of the Control transfer. This is done by calling the
USB_DEVICE_ControlStatus() function with the USB_DEVICE_CONTROL_STATUS_OK flag.

• rejecting the received data and stalling the Status Stage of the Control transfer. This is done by calling the USB_DEVICE_ControlStatus()
function with the USB_DEVICE_CONTROL_STATUS_ERROR flag.

The application can use the USB_DEVICE_ControlSend() function to send data in the data stage of a Control Read transfer. The transmission of
data is indicated by the USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT event.

In a case where the Control Transfer does not contain a data stage or if the application does not support the Setup Request, the application can
end the Control Transfer by calling the USB_DEVICE_ControlStatus() function in response to the
USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST event. Here the application can

• accepting the command by acknowledging the Status Stage of the Zero Data Stage of the Control transfer. This is done by calling the
USB_DEVICE_ControlStatus() function with the USB_DEVICE_CONTROL_STATUS_OK flag.

• rejecting the Setup Request and stalling the Status Stage of the Control transfer. This is done by calling the USB_DEVICE_ControlStatus()
function with the USB_DEVICE_CONTROL_STATUS_ERROR flag.

The application can also defer the response to Control transfer events. In that, the application does not have to respond to Control Transfer Events
in the event handler. This may be needed in cases where resources required to respond to the Control Transfer Events are not readily available.
The application, even while deferring the response, must however complete the Control Transfer in a time fashion. Failing to do so, will cause the
host to cancel and retry the control transfer. This could also cause the USB device to malfunction and become non-compliant.

The following code shows an example of handling Device Layer events.
 USB_DEVICE_EVENT_RESPONSE APP_USBDeviceEventHandler
 (
 USB_DEVICE_EVENT event,
 void * pData,
 uintptr_t context
)
 {
 uint8_t activeConfiguration;
 uint16_t frameNumber;
 USB_SPEED attachSpeed;
 USB_SETUP_PACKET * setupEventData;

 // Handling of each event
 switch(event)
 {

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 92

 case USB_DEVICE_EVENT_POWER_DETECTED:

 // This means the device detected a valid VBUS voltage
 // and is attached to the USB if the device is bus powered.
 break;

 case USB_DEVICE_EVENT_POWER_REMOVED:

 // This means the device is not attached to the USB.
 break;

 case USB_DEVICE_EVENT_SUSPENDED:

 // The bus is idle. There was no activity detected.
 // The application can switch to a low power mode after
 // exiting the event handler.
 break;

 case USB_DEVICE_EVENT_SOF:

 // A start of frame was received. This is a periodic
 // event and can be used the application for time
 // related activities. pData will point to a USB_DEVICE_EVENT_DATA_SOF type data
 // containing the frame number.

 frameNumber = ((USB_DEVICE_EVENT_DATA_SOF *)(pData))->frameNumber;
 break;

 case USB_DEVICE_EVENT_RESET :

 // Reset signalling was detected on the bus. The
 // application can find out the attach speed.

 attachedSpeed = USB_DEVICE_ActiveSpeedGet(usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_DECONFIGURED :

 // This indicates that host has deconfigured the device i.e., it
 // has set the configuration as 0. All function driver instances
 // would have been deinitialized.

 break;

 case USB_DEVICE_EVENT_ERROR :

 // This means an unknown error has occurred on the bus.
 // The application can try detaching and attaching the
 // device again.
 break;

 case USB_DEVICE_EVENT_CONFIGURED :

 // This means that device is configured and the application can
 // start using the device functionality. The application must
 // register function driver event handlers within this event.
 // The pData parameter will be a pointer to a USB_DEVICE_EVENT_DATA_CONFIGURED data type
 // that contains the active configuration number.

 activeConfiguration = ((USB_DEVICE_EVENT_DATA_CONFIGURED *)(pData))->configurationValue;
 break;

 case USB_DEVICE_EVENT_RESUMED:

 // This means that the resume signalling was detected on the
 // bus. The application can bring the device out of power
 // saving mode.

 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 93

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST:

 // This means that the setup stage of the control transfer is in
 // progress and a setup packet has been received. The pData
 // parameter will point to a USB_SETUP_PACKET data type The
 // application can process the command and update its control
 // transfer state machine. The application for example could call
 // the USB_DEVICE_ControlReceive() function (as shown here) to
 // submit the buffer that would receive data in case of a
 // control read transfer.

 setupPacket = (USB_SETUP_PACKET *)pData;

 // Submit a buffer to receive 32 bytes in the control write transfer.
 USB_DEVICE_ControlReceive(usbDeviceHandle, data, 32);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_RECEIVED:

 // This means that data in the data stage of the control write
 // transfer has been received. The application can either accept
 // the received data by calling the USB_DEVICE_ControlStatus()
 // function with USB_DEVICE_CONTROL_STATUS_OK flag (as shown in
 // this example) or it can reject it by calling the
 // USB_DEVICE_ControlStatus() function with
 // USB_DEVICE_CONTROL_STATUS_ERROR flag.

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_SENT:

 // This means that data in the data stage of the control
 // read transfer has been sent. The application would typically
 // end the control transfer by calling the
 // USB_DEVICE_ControlStatus() function with
 // USB_DEVICE_CONTROL_STATUS_OK flag (as shown in this example).

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_ABORTED:

 // This means the host has aborted the control transfer. The
 // application can reset it's control transfer state machine.

 break;

 default:
 break;
 }

 return USB_DEVICE_EVENT_REPONSE_NONE;
 }

String Descriptor Table

Describes the String Descriptor Table o the device layer.

Description

The Device Layer allows the application to specify string descriptors via a String Descriptor Table. When the USB Host requests for a string by its
index and language ID, the Device Layer looks for the corresponding string descriptor in the String Descriptor Table. There are two possible
methods of specifying this String Descriptor Table, Basic and Advanced. These methods are discussed here.

Basic String Descriptor Table

The Basic String Descriptor Table should be used when the USB Device Application has equal number of string descriptors for each language

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 94

string indexes exist without any intervals. This method is the default method of specifying the String Descriptor Table. Each entry in the table
contains the following information

• The size of the entry

• The descriptor type, which is always set to USB_DESCRIPTOR_STRING

• The array containing the string

The first entry in the String Descriptor Table, at index 0 of the table, will always contain the Lang ID string. This string specifies the one language
ID of the String Descriptor that this application intends to support. The subsequent entries in the String Descriptor Table contain the actual string
descriptor. Each language must have an equal set of the string descriptors. The Device layer will associate each set of string descriptors with
language ID specified in the language ID string descriptor. The following code shows an example of a Basic String Descriptor table.

Example:
/* This code shows an example of a Basic String Descriptor Table. In
 * this example, the table contains five entries. The first entry is the
 * language ID string. The second entry in the manufacturer string and the third
 * entry is the product string for language ID 0x0409. The fourth and the fifth
 * entry is the manufacture and product string, respectively for the language ID
 * 0x040C. */

/**
* Language ID string descriptor. Note that this contains two Language IDs.
**/
const struct
{
 uint8_t bLength;
 uint8_t bDscType;
 uint16_t string[1];
}
sd000 =
{
 sizeof(sd000), // Size of this descriptor in bytes
 USB_DESCRIPTOR_STRING, // STRING descriptor type
 {0x0409, 0x040C} // Language ID
};

/***
 * Manufacturer string descriptor
 ***/
const struct
{
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[25]; // String
}
sd001 =
{
 sizeof(sd001),
 USB_DESCRIPTOR_STRING,
 {'M','i','c','r','o','c','h','i','p',' ',
 'T','e','c','h','n','o','l','o','g','y',' ','I','n','c','.'}
};

/***
 * Product string descriptor
 ***/
const struct
{
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[22]; // String
}
sd002 =
{
 sizeof(sd002),
 USB_DESCRIPTOR_STRING,
 {'S','i','m','p','l','e',' ','C','D','C',' ','D','e','v','i','c','e',' ','D','e','m','o' }
};

/***
 * Manufacturer string descriptor

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 95

 ***/
const struct
{
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[25]; // String
}
sd003 =
{
 sizeof(sd003),
 USB_DESCRIPTOR_STRING,
 {'M','i','c','r','o','c','h','i','p',' ',
 'T','e','c','h','n','o','l','o','g','y',' ','I','n','c','.'}
};

/***
 * Product string descriptor
 ***/
const struct
{
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[22]; // String
}
sd004 =
{
 sizeof(sd004),
 USB_DESCRIPTOR_STRING,
 {'S','i','m','p','l','e',' ','C','D','C',' ','D','e','v','i','c','e',' ','D','e','m','o' }
};

/***************************************
 * Array of string descriptors
 ***************************************/
USB_DEVICE_STRING_DESCRIPTORS_TABLE stringDescriptors[3]=
{
 /* This is the language ID string */
 (const uint8_t *const)&sd000,

 /* This string descriptor at index 1 will be returned when the host request
 * for a string descriptor with index 1 and language ID 0x0409. */
 (const uint8_t *const)&sd001,

 /* This string descriptor at index 2 will be returned when the host request
 * for a string descriptor with index 2 and language ID 0x0409. */
 (const uint8_t *const)&sd002,

 /* This string descriptor at index 3 will be returned when the host request
 * for a string descriptor with index 1 and language ID 0x040C. */
 (const uint8_t *const)&sd003,

 /* This string descriptor at index 4 will be returned when the host request
 * for a string descriptor with index 2 and language ID 0x040C. */
 (const uint8_t *const)&sd004
};

Advanced String Descriptor Table

The Advanced String Descriptor Table should be used when the application needs to specify string descriptors with string indexes that are not
continuous. One such example is the Microsoft OS String Descriptor. The index of this string descriptor is 0xEE. If the application were to use the
Basic String Descriptor Table , this would require the String Descriptor Table to have at least 0xED entries (valid or invalid) before the entry for the
Microsoft OS String Descriptor. This may result in waste of RAM. Using the Ad Advanced String Descriptor Table mitigates this problem. The
Advanced String Descriptor Table format is enabled only when USB_DEVICE_STRING_DESCRIPTOR_TABLE_ADVANCED_ENABLE
configuration option is specified in the system_config.h. Each entry in the Advanced String Descriptor Table contains the following information:

• The index of the string descriptor

• The language ID of the string descriptor

• The size of the entry, which is two more than the length of the string

• The descriptor type, which is always set to USB_DESCRIPTOR_STRING

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 96

• The array containing the string

The first such entry in the Advanced String Descriptor Table specifies the language ID string. The string index and the language ID of this entry
should be zero. This first entry is then followed by the actual string descriptors. Unlike the Basic String Descriptor Table, the index of an entry in
the Advanced String Descriptor Table is not the same as the String Descriptor Index that the host uses to identify the string. In the Advanced
String Descriptor Table, the index of the string is specified by the stringIndex member of the Advanced String Descriptor Table table entry. The
following code shows an example of the Advanced String Descriptor table.

Example:
/* This code shows an example of an Advanced String Descriptor Table.
 * The Advanced String Descriptor table should be used when multiple languages
 * are needed to be supported. In this example, two languages are supported*/

/**
 * Language ID string descriptor. Note that stringIndex and
 * language ID are always 0 for this descriptor.
 ***/
const struct __attribute__ ((packed))
{
 uint8_t stringIndex; // Index of the string descriptor
 uint16_t languageID ; // Language ID of this string.
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[2]; // String
}
sd000 =
{
 0, // Index of this string is 0
 0, // This field is always blank for String Index 0
 sizeof(sd000)- 3, // Should always be set to this.
 USB_DESCRIPTOR_STRING,
 {0x0409, 0x040C} // Language ID
};

/**
 * Manufacturer string descriptor for language 0x0409
 **/
const struct __attribute__ ((packed))
{
 uint8_t stringIndex; // Index of the string descriptor
 uint16_t languageID ; // Language ID of this string.
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[25]; // String
}
sd001 =
{
 1, // Index of this string descriptor is 1.
 0x0409, // Language ID of this string descriptor is 0x0409 (English)
 sizeof(sd001) - 3,
 USB_DESCRIPTOR_STRING,
 {'M','i','c','r','o','c','h','i','p',' ',
 'T','e','c','h','n','o','l','o','g','y',' ','I','n','c','.'}
};

/**
 * Manufacturer string descriptor for language 0x040C
 **/
const struct __attribute__ ((packed))
{
 uint8_t stringIndex; // Index of the string descriptor
 uint16_t languageID ; // Language ID of this string.
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[25]; // String
}
sd002 =
{
 1, // Index of this string descriptor is 1.
 0x040C, // Language ID of this string descriptor is 0x040C (French)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 97

 sizeof(sd001) - 3,
 USB_DESCRIPTOR_STRING,
 {'M','i','c','r','o','c','h','i','p',' ',
 'T','e','c','h','n','o','l','o','g','y',' ','I','n','c','.'}
};

/**
 * Product string descriptor for language 0x409
 **/
const struct __attribute__ ((packed))
{
 uint8_t stringIndex; // Index of the string descriptor
 uint16_t languageID ; // Language ID of this string.
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[22]; // String
}
sd003 =
{
 2, // Index of this string descriptor is 2.
 0x0409, // Language ID of this string descriptor is 0x0409 (English)
 sizeof(sd002) - 3,
 USB_DESCRIPTOR_STRING,
 {'S','i','m','p','l','e',' ','C','D','C',' ','D','e','v','i','c','e',' ','D','e','m','o' }
};

/**
 * Product string descriptor for language 0x40C
 **/
const struct __attribute__ ((packed))
{
 uint8_t stringIndex; // Index of the string descriptor
 uint16_t languageID ; // Language ID of this string.
 uint8_t bLength; // Size of this descriptor in bytes
 uint8_t bDscType; // STRING descriptor type
 uint16_t string[22]; // String
}
sd004 =
{
 2, // Index of this string descriptor is 2.
 0x0409, // Language ID of this string descriptor is 0x040C (French)
 sizeof(sd002) - 3,
 USB_DESCRIPTOR_STRING,
 {'S','i','m','p','l','e',' ','C','D','C',' ','D','e','v','i','c','e',' ','D','e','m','o' }
};

/***
 * Array of string descriptors. The entry order does not matter.
 ***/
USB_DEVICE_STRING_DESCRIPTORS_TABLE stringDescriptors[5]=
{
 (const uint8_t *const)&sd000,
 (const uint8_t *const)&sd001, // Manufacturer string for language 0x0409
 (const uint8_t *const)&sd002, // Manufacturer string for language 0x040C
 (const uint8_t *const)&sd003, // Product string for language 0x0409
 (const uint8_t *const)&sd004, // Product string for language 0x040C
};

BOS Descriptor Support

Provides information on the BOS descriptor.

Description

The USB 3.0 and the USB 2.0 LPM specifications define a new descriptor called the Binary Device Object Store (BOS) descriptor. This descriptor
contains information of the capability of the device. When the bcdUSB value in the Device Descriptor is greater than 0x0200, the USB Host
Operating System may request for the BOS descriptor.

The MPLAB Harmony USB Device Library allows the application to support the BOS descriptor requests. This support is enabled by adding the
USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE configuration macro in system_config.h. The application must set the

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 98

bosDescriptor member of the USB_DEVICE_INIT data structure (this data structure is passed in the USB_DEVICE_Initialize function) to point to
the data to be returned in the data stage of the BOS descriptor request.

If the USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE configuration macro is not specified, the Device Layer will stall the Host request
BOS descriptor.

Configuring the Library

Describes how to configure the USB Device Library.

Macros

Name Description

USB_DEVICE_INSTANCES_NUMBER Number of Device Layer instances to provisioned in the
application.

USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED Specifies the combined endpoint queue depth in case of
a vendor USB device implementation.

USB_DEVICE_SET_DESCRIPTOR_EVENT_ENABLE Enables the Device Layer Set Descriptor Event.

USB_DEVICE_SOF_EVENT_ENABLE Enables the Device Layer SOF event.

USB_DEVICE_SYNCH_FRAME_EVENT_ENABLE Enables the Device Layer Synch Frame Event.

USB_DEVICE_EP0_BUFFER_SIZE Buffer Size in Bytes for Endpoint 0.

USB_DEVICE_MICROSOFT_OS_DESCRIPTOR_SUPPORT_ENABLE Specifies if the USB Device stack should support
Microsoft OS Descriptor.

Description

The USB Device Layer initializes and configures the USB Controller Driver (the driver that manages the USB peripheral when operating as
device) and maintains its task routine. For completeness, the following table lists the configuration macros that are needed by the USB Controller
Driver. These macros should be defined in system_config.h file along with the Device Layer Configuration macros.

USB_DEVICE_INSTANCES_NUMBER Macro

Number of Device Layer instances to provisioned in the application.

File

usb_device_config_template.h

C
#define USB_DEVICE_INSTANCES_NUMBER 1

Description

Number of Device Layer Instances.

This configuration macro defines the number of Device Layer instances in the application. In cases of microcontrollers that feature multiple USB
peripherals, this allows the application to run multiple instances of the Device Layer. As an example, for a microcontroller containing two USB
peripherals, setting USB_DEVICE_INSTANCES_NUMBER to 2 will cause 2 instances of the Device Layer to execute.

Remarks

Setting this value to more than the number of USB peripheral will result if unused RAM consumption.

USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED Macro

Specifies the combined endpoint queue depth in case of a vendor USB device implementation.

File

usb_device_config_template.h

C
#define USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED 2

Description

USB Device Layer Combined Endpoint Queue Depth

This configuration constant specifies the combined endpoint queue depth in a case where the endpoint read and endpoint write functions are used
to implement a vendor USB device. This constant should be used in conjunction with the usb_device_endpoint_functions.c file.

This macro defines the number of entries in all IN and OUT endpoint queues in all instances of the USB Device Layer. This value can be obtained

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 99

by adding up the endpoint read and write queue sizes of each USB Device Layer instance . In a simple single instance USB Device Layer, that
requires only one read and one write endpoint with one buffer each, the USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED macro can be
set to 2. Consider a case with one Device Layer instance using 2 IN and 2 OUT endpoints, each requiring 2 buffers, this macro should be set to 8
(2 + 2 + 2 + 2).

Remarks

This constant needs to be specified only if a Vendor USB Device is to be implemented and the usb_device_endpoint_functions.c file is included in
the project. This constant does not have any effect on queues of other standard function drivers that are included in the USB device
implementation.

USB_DEVICE_SET_DESCRIPTOR_EVENT_ENABLE Macro

Enables the Device Layer Set Descriptor Event.

File

usb_device_config_template.h

C
#define USB_DEVICE_SET_DESCRIPTOR_EVENT_ENABLE

Description

USB Device Layer Set Descriptor Event Enable

Specifying this configuration macro will cause the USB Device Layer to generate the USB_DEVICE_EVENT_SET_DESCRIPTOR event when a
Set Descriptor request is received. If this macro is not defined, the USB Device Layer will stall the Set Descriptor control transfer request.

Remarks

None.

USB_DEVICE_SOF_EVENT_ENABLE Macro

Enables the Device Layer SOF event.

File

usb_device_config_template.h

C
#define USB_DEVICE_SOF_EVENT_ENABLE

Description

USB Device Layer SOF Event Enable

Specifying this configuration macro will cause the USB Device Layer to generate the USB_DEVICE_EVENT_SOF event. On Full Speed USB
Devices, this event will be generated every 1 millisecond. On High Speed USB devices, this event will be generated every 125 microsecond.

Remarks

None.

USB_DEVICE_SYNCH_FRAME_EVENT_ENABLE Macro

Enables the Device Layer Synch Frame Event.

File

usb_device_config_template.h

C
#define USB_DEVICE_SYNCH_FRAME_EVENT_ENABLE

Description

USB Device Layer Synch Frame Event Enable

Specifying this configuration macro will cause the USB Device Layer to generate the USB_DEVICE_EVENT_SYNCH_FRAME event when a
Synch Frame control transfer request is received. If this macro is not defined, the USB Device Layer will stall the control transfer request
associated with this event.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 100

Remarks

None.

USB_DEVICE_EP0_BUFFER_SIZE Macro

Buffer Size in Bytes for Endpoint 0.

File

usb_device_config_template.h

C
#define USB_DEVICE_EP0_BUFFER_SIZE

Description

Endpoint 0 Buffer Size

This number defines the size (in bytes) of Endpoint 0. For High Speed USB Devices, this number should be 64. For Full Speed USB Devices, this
number can be 8, 16, 32 or 64 bytes. This number will be applicable to all USB Device Stack instances.

Remarks

None.

USB_DEVICE_MICROSOFT_OS_DESCRIPTOR_SUPPORT_ENABLE Macro

Specifies if the USB Device stack should support Microsoft OS Descriptor.

File

usb_device_config_template.h

C
#define USB_DEVICE_MICROSOFT_OS_DESCRIPTOR_SUPPORT_ENABLE

Description

USB Device Layer Microsoft OS Descriptor Support Enable

This macro needs to be defined to enable Microsoft OS descriptor support. If this macro is defined all Vendor Interface requests are forwarded to
client unconditionally and Device layer does not validate the recipient interface field in a Control transfer.

Device and Class Control Requests are not affected by this configuration. The Device Layer will validate the recipient interface in Device and
Class Control Requests, irrespective of this configuration constant, and will stall these requests if the interface is provisioned in the Function Driver
Registration Table.

If this macro is not defined, then USB Device Layer will validate the interface number in a Vendor Interface request and stall the request if Interface
number is not available in the Function registration table.

Remarks

None.

Building the Library

This section lists the files that are available in the USB Device Layer Library.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_device.h This header file should be included in any .c file that accesses the USB Device Layer API.

Required File(s)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 101

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_device.c This file implements the USB Device Layer interface and should be included in project if USB Device mode
operation is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB Device Layer Library depends on the following modules:

• USB Driver Library (Device mode files)

Library Interface

a) System Interaction Functions

Name Description

USB_DEVICE_Initialize Creates and initializes an instance of the USB device layer.

USB_DEVICE_Deinitialize De-initializes the specified instance of the USB device layer.

USB_DEVICE_Status Provides the current status of the USB device layer

USB_DEVICE_Tasks USB Device layer calls all other function driver tasks in this function. It also generates and
forwards events to its clients.

b) Client Core Functions

Name Description

USB_DEVICE_Open Opens the specified USB device layer instance and returns a handle to it.

USB_DEVICE_Close Closes an opened handle to an instance of the USB device layer.

USB_DEVICE_ClientStatusGet Returns the client specific status.

USB_DEVICE_EventHandlerSet USB Device Layer Event Handler Callback Function set function.

c) Device Power State Management Functions

Name Description

USB_DEVICE_PowerStateSet Sets power state of the device.

USB_DEVICE_RemoteWakeupStatusGet Gets the "Remote wake-up" status of the device.

USB_DEVICE_IsSuspended Returns true if the device is in a suspended state.

USB_DEVICE_RemoteWakeupStart This function will start the resume signaling.

USB_DEVICE_RemoteWakeupStartTimed This function will start a self timed Remote Wake-up.

USB_DEVICE_RemoteWakeupStop This function will stop the resume signaling.

d) Device Management Functions

Name Description

USB_DEVICE_StateGet Returns the current state of the USB device.

USB_DEVICE_Attach This function will attach the device to the USB.

USB_DEVICE_Detach This function will detach the device from the USB.

USB_DEVICE_ActiveConfigurationGet Informs the client of the current USB device configuration set by the USB host.

USB_DEVICE_ActiveSpeedGet Informs the client of the current operation speed of the USB bus.

e) Endpoint Management Functions

Name Description

USB_DEVICE_EndpointIsStalled This function returns the stall status of the specified endpoint and direction.

USB_DEVICE_EndpointStall This function stalls an endpoint in the specified direction.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 102

USB_DEVICE_EndpointStallClear This function clears the stall on an endpoint in the specified direction.

USB_DEVICE_EndpointDisable Disables a device endpoint.

USB_DEVICE_EndpointEnable Enables a device endpoint.

USB_DEVICE_EndpointIsEnabled Returns true if the endpoint is enabled.

USB_DEVICE_EndpointRead Reads data received from host on the requested endpoint.

USB_DEVICE_EndpointTransferCancel This function cancels a transfer scheduled on an endpoint.

USB_DEVICE_EndpointWrite This function requests a data write to a USB Device Endpoint.

f) Control Transfer Functions

Name Description

USB_DEVICE_ControlReceive Receives data stage of the control transfer from host to device.

USB_DEVICE_ControlSend Sends data stage of the control transfer from device to host.

USB_DEVICE_ControlStatus Initiates status stage of the control transfer.

g) Data Types and Constants

Name Description

USB_DEVICE_INDEX_0 USB device layer index definitions.

USB_DEVICE_INDEX_1 This is macro USB_DEVICE_INDEX_1.

USB_DEVICE_INDEX_2 This is macro USB_DEVICE_INDEX_2.

USB_DEVICE_INDEX_3 This is macro USB_DEVICE_INDEX_3.

USB_DEVICE_INDEX_4 This is macro USB_DEVICE_INDEX_4.

USB_DEVICE_INDEX_5 This is macro USB_DEVICE_INDEX_5.

USB_DEVICE_CONTROL_STATUS USB Device Layer Control Transfer Status Stage flags.

USB_DEVICE_CONTROL_TRANSFER_RESULT Enumerated data type identifying results of a control
transfer.

USB_DEVICE_EVENT USB Device Layer Events.

USB_DEVICE_HANDLE Data type for USB device handle.

USB_DEVICE_INIT USB Device Initialization Structure

USB_DEVICE_POWER_STATE Enumerated data type that identifies if the device is self
powered or bus powered .

USB_DEVICE_REMOTE_WAKEUP_STATUS Enumerated data type that identifies if the remote
wakeup status of the device.

USB_DEVICE_EVENT_DATA_CONFIGURED USB Device Set Configuration Event Data type.

USB_DEVICE_HANDLE_INVALID Constant that defines the value of an Invalid Device
Handle.

USB_DEVICE_EVENT_RESPONSE_NONE Device Layer Event Handler Function Response Type.

USB_DEVICE_CLIENT_STATUS Enumerated data type that identifies the USB Device
Layer Client Status.

USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE Pointer to an array that contains pointer to configuration
descriptors.

USB_DEVICE_EVENT_HANDLER USB Device Layer Event Handler Function Pointer Type

USB_DEVICE_EVENT_RESPONSE Device Layer Event Handler function return type.

USB_DEVICE_FUNCTION_REGISTRATION_TABLE USB Device Function Registration Structure

USB_DEVICE_MASTER_DESCRIPTOR USB Device Master Descriptor Structure.

USB_DEVICE_STRING_DESCRIPTORS_TABLE Pointer to an array that contains pointer to string
descriptors.

USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE USB Device Layer Endpoint Read and Write Complete
Event Data type.

USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE USB Device Layer Endpoint Read and Write Complete
Event Data type.

USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR USB Device Set Descriptor Event Data type.

USB_DEVICE_EVENT_DATA_SOF USB Device Start Of Frame Event Data Type

USB_DEVICE_EVENT_DATA_SYNCH_FRAME USB Device Synch Frame Event Data type.

USB_DEVICE_RESULT USB Device Layer Results Enumeration

USB_DEVICE_TRANSFER_FLAGS Enumerated data type that identifies the USB Device
Layer Transfer Flags.

USB_DEVICE_TRANSFER_HANDLE Data type for USB Device Endpoint Data Transfer
Handle.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 103

USB_DEVICE_TRANSFER_HANDLE_INVALID Constant that defines the value of an Invalid Device
Endpoint Data Transfer Handle.

_USB_DEVICE_IRP This structure defines the USB Device Mode IRP data
structure.

_USB_HOST_IRP This structure defines the USB Host Mode IRP data
structure.

_USB_HOST_IRP_STATUS Enumerates the possible status options of USB Host IRP.

USB_DEVICE_IRP This structure defines the USB Device Mode IRP data
structure.

USB_DEVICE_IRP_FLAG USB Device IRP flags enumeration

USB_DEVICE_IRP_STATUS Enumerates the possible status options of USB Device
IRP.

USB_ENDPOINT Defines a type to store Endpoint and Direction. The MSB
defines the direction. The lower 4 bits defines the
endpoint.

USB_ERROR Enumeration of all possible error codes that are returned
by various components functions in the USB Stack.

USB_HOST_IRP This structure defines the USB Host Mode IRP data
structure.

USB_HOST_IRP_FLAG USB Host IRP flags enumeration

USB_HOST_IRP_STATUS Enumerates the possible status options of USB Host IRP.

USB_SPEED Provides enumeration of USB 2.0 speeds.

USB_ENDPOINT_AND_DIRECTION This macro helps in setting up the USB_ENDPOINT type.

USB_DATA_DIRECTION Defines the communication direction

USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE Specifies if the Device Layer should process a Host
request for a BOS descriptor.

USB_DEVICE_DRIVER_INITIALIZE_EXPLICIT Specifies if the USB Controller Driver must be initialized
explicitly as opposed to being initialized by the Device
Layer.

USB_DEVICE_STRING_DESCRIPTOR_TABLE_ADVANCED_ENABLE Specifying this macro enables the Advanced String
Descriptor Table Entry Format.

Description

This section describes the Application Programming Interface (API) functions of the USB Device Layer Library.

Refer to each section for a detailed description.

a) System Interaction Functions

USB_DEVICE_Initialize Function

Creates and initializes an instance of the USB device layer.

File

usb_device.h

C
SYS_MODULE_OBJ USB_DEVICE_Initialize(const SYS_MODULE_INDEX instanceIndex, const SYS_MODULE_INIT * const
init);

Returns

If successful, returns a valid handle to a device layer object. Otherwise, it returns SYS_MODULE_OBJ_INVALID.

Description

This function initializes an instance of USB device layer, making it ready for clients to open and use it. The number of instances is limited by the
value of macro USB_DEVICE_MAX_INSTANCES defined in system_config.h file.

Remarks

This routine must be called before any other USB Device Layer routine is called and after the initialization of USB Device Driver. This routine
should only be called once during system initialization.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 104

Preconditions

None.

Example
// This code example shows the initialization of the
// the USB Device Layer. Note how an endpoint table is
// created and assigned.

USB_DEVICE_INIT deviceLayerInit;
SYS_MODULE_OBJ usbDeviceObj;
uint8_t __attribute__((aligned(512))) endpointTable[USB_DEVICE_ENDPOINT_TABLE_SIZE];

// System module initialization
deviceLayerInit.moduleInit.value = SYS_MODULE_POWER_RUN_FULL;

// Identifies peripheral (PLIB-level) ID
deviceLayerInit.usbID = USB_ID_1;

// Boolean flag: true -> Stop USB module in Idle Mode
deviceLayerInit.stopInIdle = false;

// Boolean flag: true -> Suspend USB in Sleep Mode
deviceLayerInit.suspendInSleep = false;

// Interrupt Source for USB module
deviceLayerInit.interruptSource = INT_SOURCE_USB_1;

// Number of function drivers registered to this instance of the
// USB device layer
deviceLayerInit.registeredFuncCount = 1;

// Function driver table registered to this instance of the USB device layer
deviceLayerInit.registeredFunctions = funcRegistrationTable;

// Pointer to USB Descriptor structure
deviceLayerInit.usbMasterDescriptor = &usbMasterDescriptor;

// Pointer to an endpoint table.
deviceLayerInit.endpointTable = endpointTable;

// USB device initialization
usbDeviceObj = USB_DEVICE_Initialize(USB_DEVICE_INDEX_0, &deviceLayerInit);

if (SYS_MODULE_OBJ_INVALID == usbDeviceObj)
{
 // Handle error
}

Parameters

Parameters Description

instanceIndex In case of microcontrollers with multiple USB peripherals, user can create multiple instances
of USB device layer. Parameter instanceIndex identifies this instance.

init Pointer to a data structure containing any data necessary to initialize the USB device layer

Function

SYS_MODULE_OBJ USB_DEVICE_Initialize

(

const SYS_MODULE_INDEX instanceIndex,

const SYS_MODULE_INIT * const init

)

USB_DEVICE_Deinitialize Function

De-initializes the specified instance of the USB device layer.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 105

File

usb_device.h

C
void USB_DEVICE_Deinitialize(SYS_MODULE_OBJ usbDeviceObj);

Returns

None.

Description

This function deinitializes the specified instance of the USB device layer, disabling its operation (and any hardware) and invalidates all of the
internal data.

Remarks

Once the Initialize operation has been called, the deinitialize operation must be called before the Initialize operation can be called again.

Preconditions

Function USB_DEVICE_Initialize must have been called before calling this routine and a valid SYS_MODULE_OBJ must have been returned.

Example
// This code example shows how the USB
// Device Layer can be deinitialized. It is assumed the
// USB Device Layer was already initialized.

SYS_MODULE_OBJ usbDeviceobj;

USB_DEVICE_Deinitialize(usbDeviceobj);

Parameters

Parameters Description

object USB device layer object handle, returned by USB_DEVICE_Initialize

Function

void USB_DEVICE_Deinitialize (SYS_MODULE_OBJ usbDeviceobj)

USB_DEVICE_Status Function

Provides the current status of the USB device layer

File

usb_device.h

C
SYS_STATUS USB_DEVICE_Status(SYS_MODULE_OBJ object);

Returns

SYS_STATUS_READY - Indicates that the device is busy with a previous system level operation and cannot start another

SYS_STATUS_UNINITIALIZED - Indicates that the device layer is in a deinitialized state

Description

This function provides the current status of the USB device layer.

Remarks

None.

Preconditions

The USB_DEVICE_Initialize function must have been called before calling this function.

Example
// This code example shows how the USB_DEVICE_Status function
// can be used to check if the USB Device Layer is ready
// for client operations.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 106

SYS_MODULE_OBJ object; // Returned from DRV_USB_Initialize
SYS_STATUS status;

status = USB_DEVICE_Status(object);

if (SYS_STATUS_READY != status)
{
 // Handle error
}

Parameters

Parameters Description

object Driver object handle, returned from USB_DEVICE_Initialize

Function

SYS_STATUS USB_DEVICE_Status (SYS_MODULE_OBJ object)

USB_DEVICE_Tasks Function

USB Device layer calls all other function driver tasks in this function. It also generates and forwards events to its clients.

File

usb_device.h

C
void USB_DEVICE_Tasks(SYS_MODULE_OBJ object);

Returns

None.

Description

This function must be periodically called by the user application. The USB Device layer calls all other function driver tasks in this function. It also
generates and forwards events to its clients.

Remarks

None.

Preconditions

Device layer must have been initialized by calling USB_DEVICE_Initialize.

Example
// The USB_DEVICE_Tasks() function should be placed in the
// SYS_Tasks() function of a MPLAB Harmony application.

SYS_MODULE_OBJ usbDeviceLayerObj; // Returned by USB_DEVICE_Initialize().

void SYS_Tasks(void)
{
 USB_DEVICE_Tasks(usbDeviceLayerObj);
}

Parameters

Parameters Description

devLayerObj Pointer to the Device Layer Object that is returned from USB_DEVICE_Initialize

Function

void USB_DEVICE_Tasks(SYS_MODULE_OBJ devLayerObj)

b) Client Core Functions

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 107

USB_DEVICE_Open Function

Opens the specified USB device layer instance and returns a handle to it.

File

usb_device.h

C
USB_DEVICE_HANDLE USB_DEVICE_Open(const SYS_MODULE_INDEX instanceIndex, const DRV_IO_INTENT intent);

Returns

If successful, returns a valid device layer handle. Otherwise, it returns USB_DEVICE_HANDLE_INVALID.

Description

This function opens the USB device layer instance specified by instance index and returns a handle. This handle must be provided to all other
client operations to identify the caller and the instance of the USB device layer. An instance of the Device Layer can be opened only once. Trying
to open the Device Layer more than once will return a invalid device layer handle.

Remarks

None.

Preconditions

This function must be called after USB device driver initialization and after the initialization of USB Device Layer.

Example
// This code example shows how the
// USB Device Layer can be opened.

USB_DEVICE_HANDLE usbDeviceHandle;

// Before opening a handle, USB device must have been initialized
// by calling USB_DEVICE_Initialize().

usbDeviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0,
 DRV_IO_INTENT_READWRITE);

if(USB_DEVICE_HANDLE_INVALID == usbDeviceHandle)
{
 //Failed to open handle.
}

Parameters

Parameters Description

instanceIndex USB device layer instance index

intent This parameter is ignored. The Device Layer will always open in read/write and exclusive
mode.

Function

USB_DEVICE_HANDLE USB_DEVICE_Open

(

const SYS_MODULE_INDEX instanceIndex,

const DRV_IO_INTENT intent

)

USB_DEVICE_Close Function

Closes an opened handle to an instance of the USB device layer.

File

usb_device.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 108

C
void USB_DEVICE_Close(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

None

Description

This function closes an opened handle to an instance of the USB device layer, invalidating the handle.

Remarks

After calling this routine, the handle passed in "usbDevHandle" must not be used with any of the remaining driver routines. A new handle must be
obtained by calling USB_DEVICE_Open() before the client may use the device layer again.

Preconditions

The USB_DEVICE_Initialize function must have been called for the specified device layer instance. USB_DEVICE_Open must have been called to
obtain a valid opened device handle.

Example
USB_DEVICE_HANDLE usbDeviceHandle;

// Before opening a handle, USB device must have been initialized
// by calling USB_DEVICE_Initialize().
usbDeviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0);

if(USB_DEVICE_HANDLE_INVALID == usbDeviceHandle)
{
 //Failed to open handle.
}

//.................
//.................
// User's code
//.................
//.................
// Close handle
USB_DEVICE_Close(usbDevHandle);

Parameters

Parameters Description

handle A valid open-instance handle, returned from USB_DEVICE_Open

Function

void USB_DEVICE_Close(USB_DEVICE_HANDLE usbDeviceHandle)

USB_DEVICE_ClientStatusGet Function

Returns the client specific status.

File

usb_device.h

C
USB_DEVICE_CLIENT_STATUS USB_DEVICE_ClientStatusGet(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

USB_DEVICE_CLIENT_STATUS type of client status.

Description

This function returns the status of the client (ready or closed). The application can use this function to query the present state of a client. Some of
the USB Device Layer functions do not have any effect if the client handle is invalid. The USB_DEVICE_ClientStatusGet function in such cases
can be used for debugging or trouble shooting.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 109

Remarks

The application may ordinarily not find the need to use this function. It can be used for troubleshooting or debugging purposes.

Preconditions

The USB device layer must have been initialized and opened before calling this function.

Example
// This code example shows usage of the
// USB_DEVICE_ClientStatusGet function.

if(USB_DEVICE_CLIENT_STATUS_READY == USB_DEVICE_ClientStatusGet(usbDeviceHandle))
{
 // Client handle is valid.
 if(USB_DEVICE_IsSuspended(usbDeviceHandle))
 {
 // Device is suspended. Do something here.
 }
}

Parameters

Parameters Description

usbDeviceHandle Pointer to the device layer handle that is returned from USB_DEVICE_Open

Function

USB_DEVICE_CLIENT_STATUS USB_DEVICE_ClientStatusGet

(

USB_DEVICE_HANDLE usbDeviceHandle

)

USB_DEVICE_EventHandlerSet Function

USB Device Layer Event Handler Callback Function set function.

File

usb_device.h

C
void USB_DEVICE_EventHandlerSet(USB_DEVICE_HANDLE usbDeviceHandle, const USB_DEVICE_EVENT_HANDLER
callBackFunc, uintptr_t context);

Returns

None.

Description

This is the USB Device Layer Event Handler Callback Set function. A client can receive USB Device Layer event by using this function to register
and event handler callback function. The client can additionally specify a specific context which will returned with the event handler callback
function.

Remarks

None.

Preconditions

The device layer must have been initialized by calling USB_DEVICE_Initialize and a valid handle to the instance must have been obtained by
calling USB_DEVICE_Open.

Example
// This code example shows how the application can set
// a Device Layer Event Handler.

// Application states
typedef enum
{
 //Application's state machine's initial state.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 110

 APP_STATE_INIT=0,
 APP_STATE_SERVICE_TASKS,
 APP_STATE_WAIT_FOR_CONFIGURATION,
} APP_STATES;

USB_DEVICE_HANDLE usbDeviceHandle;
APP_STATES appState;

// This is the application device layer event handler function.

USB_DEVICE_EVENT_RESPONSE APP_USBDeviceEventHandler
(
 USB_DEVICE_EVENT event,
 void * pData,
 uintptr_t context
)
{
 USB_SETUP_PACKET * setupPacket;
 switch(event)
 {
 case USB_DEVICE_EVENT_POWER_DETECTED:
 // This event in generated when VBUS is detected. Attach the device
 USB_DEVICE_Attach(usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_POWER_REMOVED:
 // This event is generated when VBUS is removed. Detach the device
 USB_DEVICE_Detach (usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_CONFIGURED:
 // This event indicates that Host has set Configuration in the Device.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST:
 // This event indicates a Control transfer setup stage has been completed.
 setupPacket = (USB_SETUP_PACKET *)pData;

 // Parse the setup packet and respond with a USB_DEVICE_ControlSend(),
 // USB_DEVICE_ControlReceive or USB_DEVICE_ControlStatus().

 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT:
 // This event indicates that a Control transfer Data has been sent to Host.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:
 // This event indicates that a Control transfer Data has been received from Host.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_ABORTED:
 // This event indicates a control transfer was aborted.
 break;

 case USB_DEVICE_EVENT_SUSPENDED:
 break;

 case USB_DEVICE_EVENT_RESUMED:
 break;

 case USB_DEVICE_EVENT_ERROR:
 break;

 case USB_DEVICE_EVENT_RESET:
 break;

 case USB_DEVICE_EVENT_SOF:
 // This event indicates an SOF is detected on the bus. The USB_DEVICE_SOF_EVENT_ENABLE

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 111

 // macro should be defined to get this event.
 break;
 default:
 break;
 }
}

void APP_Tasks (void)
{
 // Check the application's current state.
 switch (appState)
 {
 // Application's initial state.
 case APP_STATE_INIT:
 // Open the device layer
 usbDeviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0,
 DRV_IO_INTENT_READWRITE);

 if(usbDeviceHandle != USB_DEVICE_HANDLE_INVALID)
 {
 // Register a callback with device layer to get event notification
 USB_DEVICE_EventHandlerSet(usbDeviceHandle,
 APP_USBDeviceEventHandler, 0);
 appState = APP_STATE_WAIT_FOR_CONFIGURATION;
 }
 else
 {
 // The Device Layer is not ready to be opened. We should try
 // gain later.
 }
 break;

 case APP_STATE_SERVICE_TASKS:
 break;

 // The default state should never be executed.
 default:
 break;
 }
}

Parameters

Parameters Description

usbDeviceHandle Pointer to the device layer handle that is returned from USB_DEVICE_Open

callBackFunc Pointer to the call back function. The device layer calls notifies the client about bus event by
calling this function.

context Client specific context

Function

void USB_DEVICE_EventHandlerSet

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_DEVICE_EVENT_HANDLER *callBackFunc,

uintptr_t context

)

c) Device Power State Management Functions

USB_DEVICE_PowerStateSet Function

Sets power state of the device.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 112

File

usb_device.h

C
void USB_DEVICE_PowerStateSet(USB_DEVICE_HANDLE usbDeviceHandle, USB_DEVICE_POWER_STATE powerState);

Returns

None.

Description

Application clients can use this function to set the power state of the device. A USB device can be bus powered or self powered. Based on
hardware configuration, this power state may change while the device is on operation. The application can call this function to update the Device
Layer on the present power status of the device.

Remarks

By default, the device is bus powered.

Preconditions

The device layer should have been initialized and opened.

Example
// The following code example shows how the application can
// change the power state of the device. In this case the application checks
// if a battery is charged and if so, the application set the device power
// state to self-powered.

if(APP_BATTERY_IS_CHARGED == APP_BatteryChargeStatusGet())
{
 // The application switches if power source.

 APP_PowerSourceSwitch(APP_POWER_SOURCE_BATTERY);
 USB_DEVICE_PowerStateSet(usbDeviceHandle, USB_DEVICE_POWER_STATE_SELF_POWERED);
}
else
{
 // The battery is still not charged. The application uses the USB power.

 USB_DEVICE_PowerStateSet(usbDeviceHandle, USB_DEVICE_POWER_STATE_BUS_POWERED);
}

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open().

powerState USB_DEVICE_POWER_STATE_BUS_POWERED/
USB_DEVICE_POWER_STATE_SELF_POWERED

Function

void USB_DEVICE_PowerStateSet

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_DEVICE_POWER_STATE powerState

)

USB_DEVICE_RemoteWakeupStatusGet Function

Gets the "Remote wake-up" status of the device.

File

usb_device.h

C
USB_DEVICE_REMOTE_WAKEUP_STATUS USB_DEVICE_RemoteWakeupStatusGet(USB_DEVICE_HANDLE usbDeviceHandle);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 113

Returns

USB_DEVICE_REMOTE_WAKEUP_ENABLED - Remote wakeup is enabled. USB_DEVICE_REMOTE_WAKEUP_DISABLED - Remote wakeup
is disabled.

Description

This function returns the present "Remote Wake-up" status of the device. If the device supports remote wake-up, the host may enable of disable
this feature. The client can use this function to find out the status of this feature.

Remarks

None.

Preconditions

The device layer should have been initialized and opened.

Example
// This code example checks if the host has enabled the remote wake-up
// feature and then starts resume signaling. It is assumed
// that the device is in suspended mode.

USB_DEVICE_HANDLE usbDeviceHandle;

if(USB_DEVICE_RemoteWakeupStatusGet(usbDeviceHandle))
{
 // Start resume signaling.

 USB_DEVICE_RemoteWakeupStart(usbDeviceHandle);
}

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open().

Function

USB_DEVICE_REMOTE_WAKEUP_STATUS USB_DEVICE_RemoteWakeupStatusGet

(

USB_DEVICE_HANDLE usbDeviceHandle

)

USB_DEVICE_IsSuspended Function

Returns true if the device is in a suspended state.

File

usb_device.h

C
bool USB_DEVICE_IsSuspended(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

Returns true if the device is suspended.

Description

This function returns true is the device is presently in suspended state. The application can use this function in conjunction with the
USB_DEVICE_StateGet function to obtain the detailed state of the device (such as addressed and suspended, configured and suspended etc.).
The Device Layer also provides the macro USB_DEVICE_EVENT_SUSPENDED event to indicate entry into suspend state.

Remarks

None.

Preconditions

The USB Device Layer must have been initialized and opened before calling this function.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 114

Example
// This code example shows how the application
// can find out if the device is in a configured but suspended state.

if(USB_DEVICE_IsSuspended(usbDeviceHandle))
{
 // Device is in a suspended state.

 if(USB_DEVICE_STATE_CONFIGURED == USB_DEVICE_StateGet(usbDeviceHandle))
 {
 // This means the device is in configured and suspended state.

 }
}

Parameters

Parameters Description

usbDeviceHandle Pointer to the Device Layer Handle that is returned from USB_DEVICE_Open

Function

bool USB_DEVICE_IsSuspended(USB_DEVICE_HANDLE usbDeviceHandle)

USB_DEVICE_RemoteWakeupStart Function

This function will start the resume signaling.

File

usb_device.h

C
void USB_DEVICE_RemoteWakeupStart(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

None.

Description

This function will start the resume signaling on the bus. The client calls this function after it has detected a idle bus (through the
USB_DEVICE_EVENT_SUSPENDED event). The remote wake-up feature should have been enabled by the host, before the client can call this
function. The client can use the USB_DEVICE_RemoteWakeupStatusGet function to check if the host has enabled the remote wake-up feature.

Remarks

None.

Preconditions

Client handle should be valid. The remote wake-up feature should have been enabled by the host.

Example
// This code example shows how the device can enable and disable
// Resume signaling on the bus. These function should only be called if the
// device support remote wakeup and the host has enabled this
// feature.

USB_DEVICE_HANDLE usbDeviceHandle;

// Start resume signaling.
USB_DEVICE_RemoteWakeupStart(usbDeviceHandle);

// As per section 7.1.7.7 of the USB specification, device can
// drive resume signaling for at least 1 millisecond but no
// more than 15 milliseconds.

APP_DelayMilliseconds(10);

// Stop resume signaling.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 115

USB_DEVICE_RemoteWakeupStop(usbDeviceHandle);

Parameters

Parameters Description

usbDeviceHandle Client's driver handle (returned from USB_DEVICE_Open)

Function

void USB_DEVICE_RemoteWakeupStart(USB_DEVICE_HANDLE usbDeviceHandle)

USB_DEVICE_RemoteWakeupStartTimed Function

This function will start a self timed Remote Wake-up.

File

usb_device.h

C
void USB_DEVICE_RemoteWakeupStartTimed(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

None.

Description

This function will start a self timed Remote Wake-up sequence. The function will cause the device to generate resume signaling for 10
milliseconds. The resume signaling will stop after 10 milliseconds. The application can use this function instead of the
USB_DEVICE_RemoteWakeupStart and USB_DEVICE_RemoteWakeupStop functions, which require the application to manually start, maintain
duration and then stop the resume signaling.

Remarks

None.

Preconditions

Client handle should be valid. The host should have enabled the Remote Wake-up feature for this device.

Example
// This code example shows how the device can use the
// USB_DEVICE_RemoteWakeupStartTimed function to drive resume signaling
// on the bus for 10 milliseconds.

USB_DEVICE_HANDLE usbDeviceHandle;

// Check if host has enabled remote wake-up for the device.
if(USB_DEVICE_REMOTE_WAKEUP_ENABLED == USB_DEVICE_RemoteWakeupStatusGet(usbDeviceHandle))
{
 // Remote wake-up is enabled

 USB_DEVICE_RemoteWakeupStartTimed(usbDeviceHandle);
}

Parameters

Parameters Description

usbDeviceHandle Client's driver handle (returned from USB_DEVICE_Open)

Function

void USB_DEVICE_RemoteWakeupStartTimed (USB_DEVICE_HANDLE usbDeviceHandle)

USB_DEVICE_RemoteWakeupStop Function

This function will stop the resume signaling.

File

usb_device.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 116

C
void USB_DEVICE_RemoteWakeupStop(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

None.

Description

This function will stop the resume signaling. This function should be called after the client has called the USB_DEVICE_RemoteWakeupStart()
function.

Remarks

None.

Preconditions

Client handle should be valid. The host should have enabled the Remote Wakeup feature for this device.

Example
// This code example shows how the device can enable and disable
// Resume signaling on the bus. These function should only be called if the
// device support remote wake-up and the host has enabled this
// feature.

USB_DEVICE_HANDLE usbDeviceHandle;

// Start resume signaling.
USB_DEVICE_RemoteWakeupStart(usbDeviceHandle);

// As per section 7.1.7.7 of the USB specification, device must
// drive resume signaling for at least 1 millisecond but no
// more than 15 milliseconds.

APP_DelayMilliseconds(10);

// Stop resume signaling.
USB_DEVICE_RemoteWakeupStop(usbDeviceHandle);

Parameters

Parameters Description

usbDeviceHandle Client's driver handle (returned from USB_DEVICE_Open)

Function

void USB_DEVICE_RemoteWakeupStop (USB_DEVICE_HANDLE usbDeviceHandle)

d) Device Management Functions

USB_DEVICE_StateGet Function

Returns the current state of the USB device.

File

usb_device.h

C
USB_DEVICE_STATE USB_DEVICE_StateGet(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

USB_DEVICE_STATE_DETACHED - Device is not in any of the known states

USB_DEVICE_STATE_ATTACHED - Device is attached to the USB, but is not powered

USB_DEVICE_STATE_POWERED - Device is attached to the USB and powered, but has not been reset

USB_DEVICE_STATE_DEFAULT - Device is attached to the USB and powered and has been reset, but has not been assigned a unique address

USB_DEVICE_STATE_ADDRESS - Device is attached to the USB, powered, has been reset, and a unique device address has been assigned

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 117

USB_DEVICE_STATE_CONFIGURED - Device is attached to the USB, powered, has been reset, has a unique address, is configured, and is not
suspended

Description

This function returns the current state of the USB device, as described in Chapter 9 of the USB 2.0 Specification.

Remarks

None.

Preconditions

The USB device layer must have been initialized and opened before calling this function.

Example
USB_DEVICE_STATE usbDevState;

// Get USB Device State.
usbDevState = USB_DEVICE_StateGet(usbDeviceHandle);

switch(usbDevState)
{
 case USB_DEVICE_STATE_ATTACHED:
 // Add code here
 break;

 case USB_DEVICE_STATE_POWERED:
 // Add code here
 break;

 default:
 break;
 }

Parameters

Parameters Description

usbDeviceHandle Pointer to the device layer handle that is returned from USB_DEVICE_Open

Function

USB_DEVICE_STATE USB_DEVICE_StateGet(USB_DEVICE_HANDLE usbDeviceHandle)

USB_DEVICE_Attach Function

This function will attach the device to the USB.

File

usb_device.h

C
void USB_DEVICE_Attach(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

None.

Description

This function will attach the device to the USB. It does this by enabling the pull up resistors on the D+ or D- lines. This function should be called
after the USB device layer has generated the USB_DEVICE_EVENT_POWER_DETECTED event.

Remarks

None.

Preconditions

Client handle should be valid. The device layer should have been initialized and an device layer event handler function should have been assigned.

Example
// This code example shows the set

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 118

// of steps to follow before attaching the
// device on the bus. It is assumed that the
// device layer is already initialized.

USB_DEVICE_HANDLE usbDeviceHandle;

// Get an handle to the USB device layer.
usbDeviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0,
 DRV_IO_INTENT_READWRITE);

if(USB_DEVICE_HANDLE_INVALID == usbDeviceHandle)
{
 // Failed to open handle.
 // Handle error.
}

// Register an event handler call back function with device layer
// so that we are ready to receive events when the device is
// attached to the bus.

USB_DEVICE_EventHandlerSet(usbDeviceHandle, APP_USBDeviceEventHandler, NULL);

// Now, connect device to USB
USB_DEVICE_Attach(usbDeviceHandle);

Parameters

Parameters Description

usbDeviceHandle Client's USB device layer handle (returned from USB_DEVICE_Open)

Function

void USB_DEVICE_Attach(USB_DEVICE_HANDLE usbDeviceHandle)

USB_DEVICE_Detach Function

This function will detach the device from the USB.

File

usb_device.h

C
void USB_DEVICE_Detach(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

None.

Description

This function will detach the device from the USB. It does this by disabling the pull up resistors on the D+ or D- lines. This function should be called
when the application wants to disconnect the device from the bus (typically to implement a soft detach or switch to host mode operation). It should
be called when the Device Layer has generated the USB_DEVICE_EVENT_POWER_REMOVED event.

Remarks

None.

Preconditions

The device layer should have been initialized and opened.

Example
USB_DEVICE_HANDLE usbDeviceHandle;

// Detach the device from the USB
USB_DEVICE_Detach(usbDeviceHandle);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 119

Parameters

Parameters Description

usbDeviceHandle Client's driver handle (returned from USB_DEVICE_Open)

Function

void USB_DEVICE_Detach(USB_DEVICE_HANDLE usbDeviceHandle);

USB_DEVICE_ActiveConfigurationGet Function

Informs the client of the current USB device configuration set by the USB host.

File

usb_device.h

C
uint8_t USB_DEVICE_ActiveConfigurationGet(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

Present active configuration.

Description

This function returns the current active USB device configuration.

Remarks

None.

Preconditions

The USB Device Layer must have been initialized and opened before calling this function.

Example
// This code example shows how the
// USB_DEVICE_ActiveConfigurationGet function can be called to obtain
// the configuration that has been set by the host. Note that this
// information is also available in the macro USB_DEVICE_EVENT_CONFIGURED.

uint8_t currentConfiguration;
USB_DEVICE_HANDLE usbDeviceHandle;

currentConfiguration = USB_DEVICE_ActiveConfigurationGet(usbDeviceHandle);

Parameters

Parameters Description

usbDeviceHandle Pointer to the Device Layer Handle that is returned from USB_DEVICE_Open

Function

uint8_t USB_DEVICE_ActiveConfigurationGet(USB_DEVICE_HANDLE usbDeviceHandle)

USB_DEVICE_ActiveSpeedGet Function

Informs the client of the current operation speed of the USB bus.

File

usb_device.h

C
USB_SPEED USB_DEVICE_ActiveSpeedGet(USB_DEVICE_HANDLE usbDeviceHandle);

Returns

USB_SPEED_LOW - USB module is at low-speed USB_SPEED_FULL - USB module is at full-speed USB_SPEED_HIGH - USB module is at
high-speed

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 120

Description

The USB device stack supports both high speed and full speed operations. This function returns the current operation speed of the USB bus. This
function should be called after the USB_DEVICE_EVENT_RESET event has occurred.

Remarks

None.

Preconditions

The USB device layer must have been initialized and a valid handle to USB device layer must have been opened.

Example
// This code example shows how the
// USB_DEVICE_GetDeviceSpeed function can be called to obtain
// the current device speed. This information is also
// available in the USB_DEVICE_EVENT_CONFIGURED event.

if(USB_DEVICE_ActiveSpeedGet(usbDeviceHandle) == USB_SPEED_FULL)
{
 // This means the device attached at full speed.
}
else if(USB_DEVICE_ActiveSpeedGet(usbDeviceHandle) == USB_SPEED_HIGH)
{
 // This means the device attached at high speed.
}

Parameters

Parameters Description

usbDeviceHandle Pointer to device layer handle that is returned from USB_DEVICE_Open

Function

USB_SPEED USB_DEVICE_ActiveSpeedGet(USB_DEVICE_HANDLE usbDeviceHandle)

e) Endpoint Management Functions

USB_DEVICE_EndpointIsStalled Function

This function returns the stall status of the specified endpoint and direction.

File

usb_device.h

C
bool USB_DEVICE_EndpointIsStalled(USB_DEVICE_HANDLE usbDeviceHandle, USB_ENDPOINT_ADDRESS endpoint);

Returns

Returns true if endpoint is stalled, false otherwise.

Description

This function returns the stall status of the specified endpoint and direction.

Remarks

None.

Preconditions

The USB Device should be in a configured state.

Example
// This code example shows of how the
// USB_DEVICE_EndpointIsStalled function can be used to obtain the
// stall status of the endpoint 1 and IN direction.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 121

USB_ENDPOINT_ADDRESS ep;

ep = 0x1|USB_EP_DIRECTION_IN;

if(true == USB_DEVICE_EndpointIsStalled (handle, ep))
{
 // Endpoint stall is enabled. Clear the stall.

 USB_DEVICE_EndpointStallClear(handle, ep);

}

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open

endpoint Specifies the endpoint and direction

Function

bool USB_DEVICE_EndpointIsStalled

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_ENDPOINT_ADDRESS endpoint

)

USB_DEVICE_EndpointStall Function

This function stalls an endpoint in the specified direction.

File

usb_device.h

C
void USB_DEVICE_EndpointStall(USB_DEVICE_HANDLE usbDeviceHandle, USB_ENDPOINT_ADDRESS endpoint);

Returns

None.

Description

This function stalls an endpoint in the specified direction.

Remarks

The application may typically, not find the need to stall an endpoint. Stalling an endpoint erroneously could potentially make the device
non-compliant.

Preconditions

Client handle should be valid.

Example
// This code example shows how to stall an endpoint. In
// this case, endpoint 1 IN direction is stalled.

USB_ENDPOINT_ADDRESS ep;

ep = 0x1|USB_EP_DIRECTION_IN;

USB_DEVICE_EndpointStall(usbDeviceHandle, ep);

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open

endpoint Specifies the endpoint and direction

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 122

Function

void USB_DEVICE_EndpointStall

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_ENDPOINT_ADDRESS endpoint

)

USB_DEVICE_EndpointStallClear Function

This function clears the stall on an endpoint in the specified direction.

File

usb_device.h

C
void USB_DEVICE_EndpointStallClear(USB_DEVICE_HANDLE usbDeviceHandle, USB_ENDPOINT_ADDRESS endpoint);

Returns

None.

Description

This function clear the stall on an endpoint in the specified direction.

Remarks

None.

Preconditions

Client handle should be valid.

Example
// This code example shows how to clear a stall on an
// endpoint. In this case, the stall on endpoint 1 IN direction is
// cleared.

USB_ENDPOINT_ADDRESS ep;

ep = USB_ENDPOINT_AND_DIRECTION(USB_DATA_DIRECTION_DEVICE_TO_HOST, 1);

USB_DEVICE_EndpointStallClear(usbDeviceHandle, ep);

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open().

endpoint Specifies the endpoint and direction.

Function

void USB_DEVICE_EndpointStallClear

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_ENDPOINT_ADDRESS endpoint

)

USB_DEVICE_EndpointDisable Function

Disables a device endpoint.

File

usb_device.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 123

C
USB_DEVICE_RESULT USB_DEVICE_EndpointDisable(USB_DEVICE_HANDLE usbDeviceHandle, USB_ENDPOINT_ADDRESS
endpoint);

Returns

USB_DEVICE_RESULT_OK - The endpoint was enabled successfully.

USB_DEVICE_RESULT_ERROR_ENDPOINT_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function disables a device endpoint. The application may need to disable the endpoint when it want to change the endpoint characteristics.
This could happen when the device features interfaces with multiple alternate settings. If such cases, the host may request the device to switch to
specific alternate setting by sending the Set Interface request. The device application must then disable the endpoint (if it was enabled) before
re-enabling it with the new settings.The application can use the USB_DEVICE_EndpointIsEnabled function to check the status of the endpoint and
USB_DEVICE_EndpointEnable function to enable the endpoint.

Remarks

None.

Preconditions

The device should have been configured.

Example
// The following code example checks if an Set Alternate request has
// been received and changes the endpoint characteristics based on the
// alternate setting. Endpoint is 1 and direction is device to host.
// Assume that endpoint size was 32 bytes in alternate setting 0.

if(setAlternateRequest)
{
 if(alternateSetting == 1)
 {
 // Check if the endpoint is already enabled.
 if(USB_DEVICE_EndpointIsEnabled(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN)))
 {
 // Disable the endpoint.
 USB_DEVICE_EndpointDisable(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN));
 }

 // Re-enable the endpoint with new settings
 USB_DEVICE_EndpointEnable(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN)
 USB_TRANSFER_TYPE_BULK, 64);
 }
}

Parameters

Parameters Description

usbDeviceHandle USB Device Layer Handle.

endpoint Endpoint to disable.

Function

USB_DEVICE_RESULT USB_DEVICE_EndpointDisable

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_ENDPOINT_ADDRESS endpoint,

);

USB_DEVICE_EndpointEnable Function

Enables a device endpoint.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 124

File

usb_device.h

C
USB_DEVICE_RESULT USB_DEVICE_EndpointEnable(USB_DEVICE_HANDLE usbDeviceHandle, uint8_t interface,
USB_ENDPOINT_ADDRESS endpoint, USB_TRANSFER_TYPE transferType, size_t size);

Returns

USB_DEVICE_RESULT_OK - The endpoint was enabled successfully.

USB_DEVICE_RESULT_ERROR_ENDPOINT_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function enables a device endpoint for the specified transfer type and size. A Vendor specific device application may typically call this function
in response to a Set Interface request from the host. Note that Device Layer will enable endpoints contained in Alternate Setting 0 of an interface,
when the host configures the device. If there is only one alternate setting in an interface, the application may not need to call the
USB_DEVICE_EndpointEnable function.

If the device supports multiple alternate settings in an Interface, the device application must then disable an endpoint (if it was enabled) before
re-enabling it with the new settings.The application can use the USB_DEVICE_EndpointIsEnabled function to check the status of the endpoint and
USB_DEVICE_EndpointDisable function to disable the endpoint.

Remarks

None.

Preconditions

The device should have been configured.

Example
// The following code example checks if an Set Alternate request has
// been received and changes the endpoint characteristics based on the
// alternate setting. Endpoint is 1 and direction is device to host.
// Assume that endpoint size was 32 bytes in alternate setting 0.

if(setAlternateRequest)
{
 if(alternateSetting == 1)
 {
 // Check if the endpoint is already enabled.
 if(USB_DEVICE_EndpointIsEnabled(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN)))
 {
 // Disable the endpoint.
 USB_DEVICE_EndpointDisable(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN));
 }

 // Re-enable the endpoint with new settings
 USB_DEVICE_EndpointEnable(usbDeviceHandle, 0, (0x1|USB_EP_DIRECTION_IN)
 USB_TRANSFER_TYPE_BULK, 64);
 }
}

Parameters

Parameters Description

usbDeviceHandle USB Device Layer Handle.

interface This parameter is ignored in the PIC32 USB Device Stack implementation.

endpoint Endpoint to enable.

transferType Type of transfer that this is endpoint will support. This should match the type reported to the
host

size Maximum endpoint size. This should match the value reported to the host.

Function

USB_DEVICE_RESULT USB_DEVICE_EndpointEnable

(

USB_DEVICE_HANDLE usbDeviceHandle,

uint8_t interface,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 125

USB_ENDPOINT_ADDRESS endpoint,

USB_TRANSFER_TYPE transferType

size_t size

);

USB_DEVICE_EndpointIsEnabled Function

Returns true if the endpoint is enabled.

File

usb_device.h

C
bool USB_DEVICE_EndpointIsEnabled(USB_DEVICE_HANDLE usbDeviceHandle, USB_ENDPOINT_ADDRESS endpoint);

Returns

true - The endpoint is enabled.

false - The endpoint is not enabled or the specified endpoint is not provisioned in the system and is invalid.

Description

This function returns true if the endpoint is enabled. The application can use this function when handling Set Interface requests in case of Vendor
or Custom USB devices.

Remarks

None.

Preconditions

The device should have been configured.

Example
// The following code example checks if an Set Alternate request has
// been received and changes the endpoint characteristics based on the
// alternate setting. Endpoint is 1 and direction is device to host.
// Assume that endpoint size was 32 bytes in alternate setting 0.

if(setAlternateRequest)
{
 if(alternateSetting == 1)
 {
 // Check if the endpoint is already enabled.
 if(USB_DEVICE_EndpointIsEnabled(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN)))
 {
 // Disable the endpoint.
 USB_DEVICE_EndpointDisable(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN));
 }

 // Re-enable the endpoint with new settings
 USB_DEVICE_EndpointEnable(usbDeviceHandle, (0x1|USB_EP_DIRECTION_IN)
 USB_TRANSFER_TYPE_BULK, 64);
 }
}

Parameters

Parameters Description

usbDeviceHandle USB Device Layer Handle.

endpoint Endpoint to disable.

Function

bool USB_DEVICE_EndpointIsEnabled

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_ENDPOINT_ADDRESS endpoint,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 126

);

USB_DEVICE_EndpointRead Function

Reads data received from host on the requested endpoint.

File

usb_device.h

C
USB_DEVICE_RESULT USB_DEVICE_EndpointRead(USB_DEVICE_HANDLE usbDeviceHandle, USB_DEVICE_TRANSFER_HANDLE *
transferHandle, USB_ENDPOINT_ADDRESS endpoint, void * buffer, size_t bufferSize);

Returns

USB_DEVICE_RESULT_OK - The read request was successful. transferHandle contains a valid transfer handle.

USB_DEVICE_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue is full. The write request could not be added.

USB_DEVICE_RESULT_ERROR_TRANSFER_SIZE_INVALID - The specified transfer size was not a multiple of endpoint size or is 0.

USB_DEVICE_RESULT_ERROR_ENDPOINT_NOT_CONFIGURED - The specified endpoint is not configured yet and is not ready for data
transfers.

USB_DEVICE_RESULT_ERROR_ENDPOINT_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function requests a endpoint data read from the USB Device Layer. The function places a requests with driver, the request will get serviced as
data is made available by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination of the request is
indicated by the USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE event. The amount of data read and the transfer handle associated with
the request is returned along with the event in the pData parameter of the event handler. The transfer handle expires when event handler for the
USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE exits. If the read request could not be accepted, the function returns an error code and
transferHandle will contain the value USB_DEVICE_TRANSFER_HANDLE_INVALID.

If the size parameter is not a multiple of maxPacketSize or is 0, the function returns USB_DEVICE_TRANSFER_HANDLE_INVALID in
transferHandle and returns an error code as a return value. If the size parameter is a multiple of maxPacketSize and the host sends less than
maxPacketSize data in any transaction, the transfer completes and the function driver will issue a
USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE event along with the
USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE_DATA data structure. If the size parameter is a multiple of maxPacketSize and
the host sends maxPacketSize amount of data, and total data received does not exceed size, then the function driver will wait for the next packet.

Remarks

While the using the device layer with PIC32MZ USB module, the receive buffer provided to the USB_DEVICE_EndpointRead should be placed in
coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the __attribute__((coherent, aligned(16)))
attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The device should have been configured.

Example
// Shows an example of how to read. This assumes that
// driver was opened successfully. Note how the endpoint
// is specified. The most significant bit is cleared while
// the lower nibble specifies the endpoint (which is 1).

USB_DEVICE_TRANSFER_HANDLE transferHandle;
USB_DEVICE_RESULT readRequestResult;
USB_DEVICE_HANDLE usbDeviceHandle;
USB_ENDPOINT_ADDRESS endpoint = 0x01;

readRequestResult = USB_DEVICE_EndpointRead(usbDeviceHandle,
 &transferHandle, endpoint, data, 128);

if(USB_DEVICE_RESULT_OK != readRequestResult)
{
 //Do Error handling here
}

// The completion of the read request will be indicated by the

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 127

// USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE event.

Parameters

Parameters Description

usbDeviceHandle USB Device Layer Handle.

transferHandle Pointer to a USB_DEVICE_TRANSFER_HANDLE type of variable. This variable will contain
the transfer handle in case the read request was successful.

endpoint Endpoint from which the data should be read.

data pointer to the data buffer where read data will be stored.

size Size of the data buffer. Refer to the description section for more details on how the size
affects the transfer.

Function

USB_DEVICE_RESULT USB_DEVICE_EndpointRead

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_DEVICE_TRANSFER_HANDLE * transferHandle,

USB_ENDPOINT_ADDRESS endpoint,

void * buffer,

size_t bufferSize

);

USB_DEVICE_EndpointTransferCancel Function

This function cancels a transfer scheduled on an endpoint.

File

usb_device.h

C
USB_DEVICE_RESULT USB_DEVICE_EndpointTransferCancel(USB_DEVICE_HANDLE usbDeviceHandle, USB_ENDPOINT_ADDRESS
endpoint, USB_DEVICE_TRANSFER_HANDLE transferHandle);

Returns

USB_DEVICE_RESULT_OK - The transfer will be canceled completely or partially.

USB_DEVICE_RESULT_ERROR - The transfer could not be canceled because it has either completed, the transfer handle is invalid or the last
transaction is in progress.

Description

This function cancels a transfer scheduled on an endpoint using the USB_DEVICE_EndpointRead and USB_DEVICE_EndpointWrite functions. If
a transfer is still in the queue and its processing has not started, the transfer is canceled completely. A transfer that is in progress may or may not
get canceled depending on the transaction that is presently in progress. If the last transaction of the transfer is in progress, the transfer will not be
canceled. If it is not the last transaction in progress, the in progress transfer will be allowed to complete. Pending transactions will be canceled.
The first transaction of an in progress transfer cannot be canceled.

Remarks

None.

Preconditions

The USB Device should be in a configured state.

Example
// The following code example cancels a transfer on endpoint 1, IN direction.

USB_DEVICE_TRANSFER_HANDLE transferHandle;
USB_DEVICE_RESULT result;

result = USB_DEVICE_EndpointTransferCancel(usbDeviceHandle,
 (0x1|USB_EP_DIRECTION_IN), transferHandle);

if(USB_DEVICE_RESULT_OK == result)
{

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 128

 // The transfer cancellation was either completely or
 // partially successful.
}

Parameters

Parameters Description

usbDeviceHandle USB Device Layer Handle.

endpoint Endpoint of which the transfer needs to be canceled.

handle Transfer handle of the transfer to be canceled.

Function

USB_DEVICE_RESULT USB_DEVICE_EndpointTransferCancel

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_ENDPOINT_ADDRESS endpoint,

USB_DEVICE_TRANSFER_HANDLE handle

);

USB_DEVICE_EndpointWrite Function

This function requests a data write to a USB Device Endpoint.

File

usb_device.h

C
USB_DEVICE_RESULT USB_DEVICE_EndpointWrite(USB_DEVICE_HANDLE usbDeviceHandle, USB_DEVICE_TRANSFER_HANDLE *
transferHandle, USB_ENDPOINT_ADDRESS endpoint, const void * data, size_t size, USB_DEVICE_TRANSFER_FLAGS
flags);

Returns

USB_DEVICE_RESULT_OK - The write request was successful. transferHandle contains a valid transfer handle.

USB_DEVICE_RESULT_ERROR_TRANSFER_QUEUE_FULL - Internal request queue is full. The write request could not be added.

USB_DEVICE_RESULT_ERROR_ENDPOINT_INVALID - Endpoint is not provisioned in the system.

USB_DEVICE_RESULT_ERROR_TRANSFER_SIZE_INVALID - The combination of the transfer size and the specified flag is invalid.

USB_DEVICE_RESULT_ERROR_ENDPOINT_NOT_CONFIGURED - Endpoint is not enabled because device is not configured.

USB_DEVICE_RESULT_ERROR_PARAMETER_INVALID - Device Layer handle is not valid.

Description

This function requests a data write to the USB Device Endpoint. The function places a requests with Device layer, the request will get serviced as
and when the data is requested by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination of the
request is indicated by the USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE event. The amount of data written and the transfer handle
associated with the request is returned along with the event in length member of the pData parameter in the event handler. The transfer handle
expires when event handler for the USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE exits. If the write request could not be accepted, the
function returns an error code and transferHandle will contain the value USB_DEVICE_TRANSFER_HANDLE_INVALID.

The behavior of the write request depends on the flags and size parameter. If the application intends to send more data in a request, then it should
use the USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING flag. If there is no more data to be sent in the request, the application must
use the USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE flag. This is explained in more detail here:

• If size is a multiple of maxPacketSize and flag is set as

USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE, the write function will append a Zero Length Packet (ZLP) to complete the transfer.

• If size is a multiple of maxPacketSize and flag is set as

USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function will not append a ZLP and hence will not complete the transfer.

• If size is greater than but not a multiple of maxPacketSize and flags is

set as USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE, the write function complete the transfer without appending a ZLP.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 129

• If size is greater than but not a multiple of maxPacketSize and flags is

set as USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function returns an error code and sets the transferHandle
parameter to USB_DEVICE_TRANSFER_HANDLE_INVALID.

• If size is less than maxPacketSize and flag is set as

USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE, the write function schedules one packet.

• If size is less than maxPacketSize and flag is set as

USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function returns an error code and sets the transferHandle parameter to
USB_DEVICE_TRANSFER_HANDLE_INVALID.

Remarks

While the using the device layer with PIC32MZ USB module, the transmit buffer provided to the USB_DEVICE_EndpointWrite should be placed in
coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the __attribute__((coherent, aligned(16)))
attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The USB Device should be in a configured state.

Example
// Below is a set of examples showing various conditions trying to
// send data with the Write command.
//
// This assumes that Device Layer was opened successfully.
// Assume maxPacketSize is 64.

USB_DEVICE_TRANSFER_HANDLE transferHandle;
USB_DEVICE_RESULT writeRequestHandle;
USB_DEVICE_HANDLE usbDeviceHandle;

//---
// In this example we want to send 34 bytes only.

writeRequestResult = USB_DEVICE_EndpointWrite(usbDeviceHandle,
 &transferHandle, data, 34,
 USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE);

if(USB_DEVICE_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

//---
// In this example we want to send 64 bytes only.
// This will cause a ZLP to be sent.

writeRequestResult = USB_DEVICE_EndpointWrite(usbDeviceHandle,
 &transferHandle, data, 64,
 USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE);

if(USB_DEVICE_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

//---
// This example will return an error because size is less
// than maxPacketSize and the flag indicates that more
// data is pending.

writeRequestResult = USB_DEVICE_EndpointWrite(usbDeviceHandle,
 &transferHandle, data, 32,
 USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING);

//---

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 130

// In this example we want to place a request for a 70 byte transfer.
// The 70 bytes will be sent out in a 64 byte transaction and a 6 byte
// transaction completing the transfer.

writeRequestResult = USB_DEVICE_EndpointWrite(usbDeviceHandle,
 &transferHandle, data, 70,
 USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE);

if(USB_DEVICE_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

//---
// This example would result in an error because the transfer size is
// not an exact multiple of the endpoint size and the
// USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING flag indicate that the
// transfer should continue.

writeRequestResult = USB_DEVICE_EndpointWrite(usbDeviceHandle,
 &transferHandle, data, 70,
 USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING);

if(USB_DEVICE_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

// The completion of the write request will be indicated by the
// USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE event.

Parameters

Parameters Description

instance Handle to the device layer.

transferHandle Pointer to a USB_DEVICE_TRANSFER_HANDLE type of variable. This variable will contain
the transfer handle in case the write request was successful.

endpoint Endpoint to which the data should be written. Note that is a combination of direction and the
endpoint number. Refer to the description of USB_ENDPOINT_ADDRESS for more details.

data Pointer to the data buffer that contains the data to written.

size Size of the data buffer. Refer to the description section for more details on how the size
affects the transfer.

flags Flags that indicate whether the transfer should continue or end. Refer to the description for
more details.

Function

USB_DEVICE_RESULT USB_DEVICE_EndpointWrite

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_DEVICE_TRANSFER_HANDLE * transferHandle,

USB_ENDPOINT_ADDRESS endpoint,

const void * data,

size_t size,

USB_DEVICE_TRANSFER_FLAGS flag

);

f) Control Transfer Functions

USB_DEVICE_ControlReceive Function

Receives data stage of the control transfer from host to device.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 131

File

usb_device.h

C
USB_DEVICE_CONTROL_TRANSFER_RESULT USB_DEVICE_ControlReceive(USB_DEVICE_HANDLE usbDeviceHandle, void *
data, size_t length);

Returns

USB_DEVICE_CONTROL_TRANSFER_RESULT_FAILED - If control transfer failed due to host aborting the previous control transfer.

USB_DEVICE_CONTROL_TRANSFER_RESULT_SUCCESS - The request was submitted successfully.

Description

This function allows the application to specify the data buffer that would be needed to receive the data stage of a control write transfer. It should be
called when the application receives the USB_DEVICE_CONTROL_TRANSFER_EVENT_SETUP_REQUEST event and has identified this setup
request as the setup stage of a control write transfer. The function can be called in the Application Control Transfer Event handler or can be called
after the application has returned from the control transfer event handler.

Calling this function after returning from the event handler defers the response to the event. This allows the application to prepare the data buffer
out of the event handler context, especially if the data buffer to receive the data is not readily available. Note however, that there are timing
considerations when responding to the control transfer. Exceeding the response time will cause the host to cancel the control transfer and may
cause USB host to reject the device.

Remarks

None.

Preconditions

Client handle should be valid.

Example
// The following code example shows an example of how the
// USB_DEVICE_ControlReceive function is called in response to the
// USB_DEVICE_CONTROL_TRANSFER_EVENT_SETUP_REQUEST event to enable a control
// write transfer.

void APP_USBDeviceControlTransferEventHandler
(
 USB_DEVICE_EVENT event,
 void * pData,
 uintptr_t context
)
{
 uint8_t * setupPkt;

 switch(event)
 {
 case USB_DEVICE_CONTROL_TRANSFER_EVENT_SETUP_REQUEST:

 setupPkt = (uint8_t *)pData;

 // Submit a buffer to receive 32 bytes in the control write transfer.
 USB_DEVICE_ControlReceive(usbDeviceHandle, data, 32);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_RECEIVED:

 // This means that data in the data stage of the control
 // write transfer has been received. The application can either
 // accept the received data by calling the
 // USB_DEVICE_ControlStatus function with
 // USB_DEVICE_CONTROL_STATUS_OK flag (as shown in this example)
 // or it can reject it by calling the USB_DEVICE_ControlStatus()
 // function with USB_DEVICE_CONTROL_STATUS_ERROR flag.

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 132

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_SENT:

 // This means that data in the data stage of the control
 // read transfer has been sent. The application would typically
 // end the control transfer by calling the
 // USB_DEVICE_ControlStatus function with
 // USB_DEVICE_CONTROL_STATUS_OK flag (as shown in this example).

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_ABORTED:

 // This means the host has aborted the control transfer. The
 // application can reset its control transfer state machine.
 break;
 }

}

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open

data Pointer to buffer that holds data

length Size in bytes

Function

USB_DEVICE_CONTROL_TRANSFER_RESULT USB_DEVICE_ControlReceive

(

USB_DEVICE_HANDLE usbDeviceHandle,

void * data,

size_t length

)

USB_DEVICE_ControlSend Function

Sends data stage of the control transfer from device to host.

File

usb_device.h

C
USB_DEVICE_CONTROL_TRANSFER_RESULT USB_DEVICE_ControlSend(USB_DEVICE_HANDLE usbDeviceHandle, void * data,
size_t length);

Returns

USB_DEVICE_CONTROL_TRANSFER_RESULT_FAILED - If control transfer failed due to host aborting the previous control transfer.

USB_DEVICE_CONTROL_TRANSFER_RESULT_SUCCESS - The request was submitted successfully.

Description

This function allows the application to specify the data that would be sent to host in the data stage of a control read transfer. It should be called
when the application has received the USB_DEVICE_CONTROL_TRANSFER_EVENT_SETUP_REQUEST event and has identified this setup
request as the setup stage of a control read transfer. The Device Layer will generate a
USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_SENT event when the data stage has completed. The function can be called in the
Application Control Transfer Event handler or can be called after the application has returned from the control transfer event handler.

Calling this function after returning from the event handler defers the response to the event. This allows the application to prepare the data buffer
out of the event handler context, especially if the data buffer to receive the data is not readily available. Note however, that there are timing
considerations when responding to the control transfer. Exceeding the response time will cause the host to cancel the control transfer and may
cause USB host to reject the device.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 133

Preconditions

Client handle should be valid.

Example
// The following code example shows an example of how the
// USB_DEVICE_ControlSend() function is called in response to the
// USB_DEVICE_CONTROL_TRANSFER_EVENT_SETUP_REQUEST event to enable a control
// read transfer.

void APP_USBDeviceEventHandler
(
 USB_DEVICE_EVENT event,
 void * pData,
 uintptr_t context
)
{
 USB_SETUP_PACKET * setupPkt;

 switch(event)
 {
 case USB_DEVICE_CONTROL_TRANSFER_EVENT_SETUP_REQUEST:

 setupPkt = (USB_SETUP_PACKET *)pData;

 // Submit a buffer to send 32 bytes in the control read transfer.
 USB_DEVICE_ControlSend(usbDeviceHandle, data, 32);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_RECEIVED:

 // This means that data in the data stage of the control
 // write transfer has been received. The application can either
 // accept the received data by calling the
 // USB_DEVICE_ControlStatus function with
 // USB_DEVICE_CONTROL_STATUS_OK flag (as shown in this example)
 // or it can reject it by calling the USB_DEVICE_ControlStatus
 // function with USB_DEVICE_CONTROL_STATUS_ERROR flag.

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_SENT:

 // This means that data in the data stage of the control
 // read transfer has been sent. The application would typically
 // end the control transfer by calling the
 // USB_DEVICE_ControlStatus function with
 // USB_DEVICE_CONTROL_STATUS_OK flag (as shown in this example).

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_ABORTED:

 // This means the host has aborted the control transfer. The
 // application can reset its control transfer state machine.
 break;
 }

}

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open

data Pointer to buffer that holds data

length Size in bytes

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 134

Function

USB_DEVICE_CONTROL_TRANSFER_RESULT USB_DEVICE_ControlSend

(

USB_DEVICE_HANDLE usbDeviceHandle,

void * data,

size_t length

)

USB_DEVICE_ControlStatus Function

Initiates status stage of the control transfer.

File

usb_device.h

C
USB_DEVICE_CONTROL_TRANSFER_RESULT USB_DEVICE_ControlStatus(USB_DEVICE_HANDLE usbDeviceHandle,
USB_DEVICE_CONTROL_STATUS status);

Returns

USB_DEVICE_CONTROL_TRANSFER_RESULT_FAILED - If control transfer failed due to host aborting the previous control transfer.

USB_DEVICE_CONTROL_TRANSFER_RESULT_SUCCESS - The request was submitted successfully.

Description

This function allows the application to complete the status stage of the of an on-going control transfer. The application must call this function when
the data stage of the control transfer is complete or when a Setup Request has been received (in case of a zero data stage control transfer). The
application can either accept the data stage/setup command or reject it. Calling this function with status set to
USB_DEVICE_CONTROL_STATUS_OK will acknowledge the status stage of the control transfer. The control transfer can be stalled by setting
the status parameter to USB_DEVICE_CONTROL_STATUS_ERROR.

The function can be called in the Application Control Transfer event handler or can be called after returning from this event handler. Calling this
function after returning from the control transfer event handler defers the response to the event. This allows the application to analyze the event
response outside the event handler. Note however, that there are timing considerations when responding to the control transfer. Exceeding the
response time will cause the host to cancel the control transfer and may cause USB host to reject the device.

The application must be aware of events and associated control transfers that do or do not require data stages. Incorrect usage of the
USB_DEVICE_ControlStatus function could cause the device function to be non-compliant.

Remarks

None.

Preconditions

Client handle should be valid. This function should only be called to complete an on-going control transfer.

Example
// The following code example shows an example of how the
// USB_DEVICE_ControlStatus() function is called in response to the
// USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_RECEIVED and
// USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_SENT event to complete the control
// transfer. Here, the application code acknowledges the status stage of the
// control transfer.

void APP_USBDeviceControlTransferEventHandler
(
 USB_DEVICE_EVENT event,
 void * data,
 uintptr_t context
)
{
 USB_SETUP_PACKET * setupPkt;

 switch(event)
 {
 case USB_DEVICE_CONTROL_TRANSFER_EVENT_SETUP_REQUEST:

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 135

 setupPkt = (USB_SETUP_PACKET *)pData;

 // Submit a buffer to receive 32 bytes in the control write transfer.
 USB_DEVICE_ControlReceive(usbDeviceHandle, data, 32);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_RECEIVED:

 // This means that data in the data stage of the control
 // write transfer has been received. The application can either
 // accept the received data by calling the
 // USB_DEVICE_ControlStatus function with
 // USB_DEVICE_CONTROL_STATUS_OK flag (as shown in this example)
 // or it can reject it by calling the USB_DEVICE_ControlStatus
 // function with USB_DEVICE_CONTROL_STATUS_ERROR flag.

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_SENT:

 // This means that data in the data stage of the control
 // read transfer has been sent. The application would typically
 // end the control transfer by calling the
 // USB_DEVICE_ControlStatus function with
 // USB_DEVICE_CONTROL_STATUS_OK flag (as shown in this example).

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_ABORTED:

 // This means the host has aborted the control transfer. The
 // application can reset its control transfer state machine.
 break;
 }
}

Parameters

Parameters Description

usbDeviceHandle USB device handle returned by USB_DEVICE_Open

status USB_DEVICE_CONTROL_STATUS_OK to acknowledge the status stage.
USB_DEVICE_CONTROL_STATUS_ERROR to stall the status stage.

Function

USB_DEVICE_CONTROL_TRANSFER_RESULT USB_DEVICE_ControlStatus

(

USB_DEVICE_HANDLE usbDeviceHandle,

USB_DEVICE_CONTROL_STATUS status

)

g) Data Types and Constants

USB_DEVICE_INDEX_0 Macro

USB device layer index definitions.

File

usb_device.h

C
#define USB_DEVICE_INDEX_0 0

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 136

Description

USB Device Layer Index Numbers

These constants provide USB device layer index definitions.

Remarks

These constants should be used in place of hard-coded numeric literals. These values should be passed into the USB_DEVICE_Initialize and
USB_DEVICE_Open routines to identify the device layer instance in use.

USB_DEVICE_INDEX_1 Macro

File

usb_device.h

C
#define USB_DEVICE_INDEX_1 1

Description

This is macro USB_DEVICE_INDEX_1.

USB_DEVICE_INDEX_2 Macro

File

usb_device.h

C
#define USB_DEVICE_INDEX_2 2

Description

This is macro USB_DEVICE_INDEX_2.

USB_DEVICE_INDEX_3 Macro

File

usb_device.h

C
#define USB_DEVICE_INDEX_3 3

Description

This is macro USB_DEVICE_INDEX_3.

USB_DEVICE_INDEX_4 Macro

File

usb_device.h

C
#define USB_DEVICE_INDEX_4 4

Description

This is macro USB_DEVICE_INDEX_4.

USB_DEVICE_INDEX_5 Macro

File

usb_device.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 137

C
#define USB_DEVICE_INDEX_5 5

Description

This is macro USB_DEVICE_INDEX_5.

USB_DEVICE_CONTROL_STATUS Enumeration

USB Device Layer Control Transfer Status Stage flags.

File

usb_device.h

C
typedef enum {
 USB_DEVICE_CONTROL_STATUS_OK,
 USB_DEVICE_CONTROL_STATUS_ERROR
} USB_DEVICE_CONTROL_STATUS;

Members

Members Description

USB_DEVICE_CONTROL_STATUS_OK Using this flag acknowledges the Control transfer. A Zero Length Packet will be transmitted in
the status stage of the control transfer.

USB_DEVICE_CONTROL_STATUS_ERROR Using this flag stalls the control transfer. This flags should be used if the control transfer
request needs to be declined.

Description

Control Transfer Status Stage Flags

This enumeration defines the flags to be used with the USB_DEVICE_ControlStatus function.

Remarks

None.

USB_DEVICE_CONTROL_TRANSFER_RESULT Enumeration

Enumerated data type identifying results of a control transfer.

File

usb_device.h

C
typedef enum {
 USB_DEVICE_CONTROL_TRANSFER_RESULT_FAILED,
 USB_DEVICE_CONTROL_TRANSFER_RESULT_SUCCESS
} USB_DEVICE_CONTROL_TRANSFER_RESULT;

Members

Members Description

USB_DEVICE_CONTROL_TRANSFER_RESULT_FAILED Control transfer failed. This could be because the control transfer handle is no
more valid since the control transfer was aborted by host by sending a new setup
packet

USB_DEVICE_CONTROL_TRANSFER_RESULT_SUCCESS Control transfer was successful

Description

USB Device Layer Control Transfer Result Enumeration

These enumerated values are the possible return values for control transfer operations. These values are returned by the
USB_DEVICE_ControlStatus, USB_DEVICE_ControlSend and the USB_DEVICE_ControlReceive functions.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 138

USB_DEVICE_EVENT Enumeration

USB Device Layer Events.

File

usb_device.h

C
typedef enum {
 USB_DEVICE_EVENT_RESET,
 USB_DEVICE_EVENT_SUSPENDED,
 USB_DEVICE_EVENT_RESUMED,
 USB_DEVICE_EVENT_ERROR,
 USB_DEVICE_EVENT_SOF,
 USB_DEVICE_EVENT_CONFIGURED,
 USB_DEVICE_EVENT_DECONFIGURED,
 USB_DEVICE_EVENT_CONTROL_TRANSFER_ABORTED,
 USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED,
 USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST,
 USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT,
 USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE,
 USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE,
 USB_DEVICE_EVENT_SET_DESCRIPTOR,
 USB_DEVICE_EVENT_SYNCH_FRAME
} USB_DEVICE_EVENT;

Members

Members Description

USB_DEVICE_EVENT_RESET USB bus reset occurred. This event is an indication to the application
client that device layer has deinitialized all function drivers. The application
should not use the function drivers in this state. The pData parameter in
the event handler function will be NULL.

USB_DEVICE_EVENT_SUSPENDED This event is an indication to the application client that device is
suspended and it can put the device to sleep mode if required. Power
saving routines should not be called in the event handler. The pData
parameter in the event handler function will be NULL.

USB_DEVICE_EVENT_RESUMED This event indicates that device has resumed from suspended state. The
pData parameter in the event handler function will be NULL.

USB_DEVICE_EVENT_ERROR This event is an indication to the application client that an error occurred
on the USB bus. The pData parameter in the event handler function will be
NULL.

USB_DEVICE_EVENT_SOF This event is generated at every start of frame detected on the bus.
Application client can use this SOF event for general time based house
keeping activities. The pData parameter in the event handler function will
point to a USB_DEVICE_EVENT_DATA_SOF type that contains the
frame number.

USB_DEVICE_EVENT_CONFIGURED This event is an indication to the application client that device layer has
initialized all function drivers and application can set the event handlers for
the function drivers. The pData parameter will point to a
USB_DEVICE_EVENT_DATA_CONFIGURED data type that contains
configuration set by the host.

USB_DEVICE_EVENT_DECONFIGURED The host has deconfigured the device. This happens when the host sends
a Set Configuration request with configuration number 0. The device layer
will deinitialize all function drivers and then generate this event.

USB_DEVICE_EVENT_CONTROL_TRANSFER_ABORTED An on-going control transfer was aborted. The application can use this
event to reset its control transfer state machine. The pData parameter in
the event handler function will be NULL.

USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED The data stage of a Control write transfer has completed. This event
occurs after the application has used the USB_DEVICE_ControlReceive
function to receive data in the control transfer. The pData parameter in the
event handler function will be NULL.

USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST A setup packet of a control transfer has been received. The recipient field
of the received setup packet is Other. The application can initiate the data
stage using the USB_DEVICE_ControlReceive and
USB_DEVICE_ControlSend function. It can end the control transfer by
calling the USB_DEVICE_ControlStatus function. The pData parameter in
the event handler will point to USB_SETUP_PACKET data type.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 139

USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT The data stage of a Control read transfer has completed. This event
occurs after the application has used the USB_DEVICE_ControlSend
function to send data in the control transfer. The pData parameter in the
event handler function will be NULL.

USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE This event occurs when a endpoint read transfer scheduled using the
USB_DEVICE_EndpointRead function has completed. The pData
parameter in the event handler function will be a pointer to a
USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE data type.

USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE This event occurs when a endpoint write transfer scheduled using the
USB_DEVICE_EndpointWrite function has completed. The pData
parameter in the event handler function will be a pointer to a
USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE data
type.

USB_DEVICE_EVENT_SET_DESCRIPTOR A SET_DESCRIPTOR request is received. This event occurs when Host
sends a SET_DESCRIPTOR request. The pData parameter in the event
handler function will be a pointer to a
USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR data type. The
application should initiate the data stage using the
USB_DEVICE_ControlReceive function. In the PIC32 USB Device Stack,
this event is generated if
USB_DEVICE_EVENT_ENABLE_SET_DESCRIPTOR is defined in the
system configuration.

USB_DEVICE_EVENT_SYNCH_FRAME A SYNCH_FRAME request is received. This event occurs when Host
sends a SYNCH_FRAME request. The pData parameter in the event
handler function will be a pointer to a
USB_DEVICE_EVENT_DATA_SYNCH_FRAME data type. The
application should initiate the data stage using the
USB_DEVICE_ControlSend function. In the PIC32 USB Device Stack, this
event is generated if USB_DEVICE_EVENT_ENABLE_SYNCH_FRAME
is defined in the system configuration.

Description

USB Device Layer Events.

This enumeration lists the possible events that the device layer can generate. The client should register an event handler of the type
USB_DEVICE_EVENT_HANDLER to receive device layer events. The contents of pData in the event handler depends on the generated event.
Refer to the description of the event for details on data provided along with that event. The events generated are device layer instance specific.

The client will receive control transfers for handling from the device layer, where the recipient field of the Control Transfer Setup packet is set to
Other. The client can use the control transfer events and the Device Layer control transfer functions to complete such control transfers.

It is not mandatory for the client application to handle the control transfer event within the event handler. Indeed, it may be possible that the data
stage of the control transfer requires extended processing. Because the event handler executes in an interrupt context, it is recommended to keep
the processing in the event handler to a minimum. The client application can call the USB_DEVICE_ControlSend, USB_DEVICE_ControlReceive
and USB_DEVICE_ControlStatus functions after returning from the event handler, thus deferring the control transfer event handling and responses.

Note that a USB host will typically wait for control transfer response for a finite time duration before timing out and canceling the transfer and
associated transactions. Even when deferring response, the application must respond promptly if such timeouts have to be avoided.

The client must use the USB_DEVICE_EventHandlerSet function to register the event handler call back function. The following code example
shows the handling of the USB Device Layer Events.
USB_DEVICE_EVENT_RESPONSE APP_USBDeviceEventHandler
(
 USB_DEVICE_EVENT event,
 void * pData,
 uintptr_t context
)
{
 uint8_t activeConfiguration;
 uint16_t frameNumber;
 USB_SPEED attachSpeed;
 USB_SETUP_PACKET * setupEventData;

 // Handling of each event
 switch(event)
 {
 case USB_DEVICE_EVENT_POWER_DETECTED:

 // This means the device detected a valid VBUS voltage and is
 // attached to the USB. The application can now call
 // USB_DEVICE_Attach() function to enable D+/D- pull up
 // resistors.
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 140

 case USB_DEVICE_EVENT_POWER_REMOVED:

 // This means the device is not attached to the USB.
 // The application should now call the USB_DEVICE_Detach()
 // function.
 break;

 case USB_DEVICE_EVENT_SUSPENDED:

 // The bus is idle. There was no activity detected.
 // The application can switch to a low power mode after
 // exiting the event handler.
 break;

 case USB_DEVICE_EVENT_SOF:

 // A start of frame was received. This is a periodic event and
 // can be used by the application for timing related activities.
 // pData will point to a USB_DEVICE_EVENT_DATA_SOF type data
 // containing the frame number. In PIC32 USB Device Stack, this
 // event is generated if USB_DEVICE_SOF_EVENT_ENABLE is
 // defined in System Configuration.

 frameNumber = ((USB_DEVICE_EVENT_DATA_SOF *)pData)->frameNumber;
 break;

 case USB_DEVICE_EVENT_RESET :

 // Reset signaling was detected on the bus. The
 // application can find out the attach speed.

 attachedSpeed = USB_DEVICE_ActiveSpeedGet(usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_DECONFIGURED :

 // This indicates that host has deconfigured the device i.e., it
 // has set the configuration as 0. All function driver instances
 // would have been deinitialized.

 break;

 case USB_DEVICE_EVENT_ERROR :

 // This means an unknown error has occurred on the bus.
 // The application can try detaching and attaching the
 // device again.
 break;

 case USB_DEVICE_EVENT_CONFIGURED :

 // This means that device is configured and the application can
 // start using the device functionality. The application must
 // register function driver event handlersI have one device
 // level event. The pData parameter will be a pointer to a
 // USB_DEVICE_EVENT_DATA_CONFIGURED data type that contains the
 // active configuration number.

 activeConfiguration = ((USB_DEVICE_EVENT_DATA_CONFIGURED *)pData)->configurationValue;
 break;

 case USB_DEVICE_EVENT_RESUMED:

 // This means that the resume signaling was detected on the
 // bus. The application can bring the device out of power
 // saving mode.

 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 141

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST:

 // This means that the setup stage of the control transfer is in
 // progress and a setup packet has been received. The pData
 // parameter will point to a USB_SETUP_PACKET data type The
 // application can process the command and update its control
 // transfer state machine. The application for example could call
 // the USB_DEVICE_ControlReceive function (as shown here) to
 // submit the buffer that would receive data in case of a
 // control read transfer.

 setupPacket = (USB_SETUP_PACKET *)pData;

 // Submit a buffer to receive 32 bytes in the control write transfer.
 USB_DEVICE_ControlReceive(usbDeviceHandle, data, 32);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_RECEIVED:

 // This means that data in the data stage of the control write
 // transfer has been received. The application can either accept
 // the received data by calling the USB_DEVICE_ControlStatus
 // function with USB_DEVICE_CONTROL_STATUS_OK flag (as shown in
 // this example) or it can reject it by calling the
 // USB_DEVICE_ControlStatus function with
 // USB_DEVICE_CONTROL_STATUS_ERROR flag.

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_DATA_SENT:

 // This means that data in the data stage of the control
 // read transfer has been sent.

 break;

 case USB_DEVICE_CONTROL_TRANSFER_EVENT_ABORTED:

 // This means the host has aborted the control transfer. The
 // application can reset its control transfer state machine.

 break;

 case USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE:

 // This means schedule endpoint read operation has completed.
 // The application should interpret pData as a pointer to
 // a USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE type.

 break;

 case USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE:

 // This means schedule endpoint write operation has completed.
 // The application should interpret pData as a pointer to
 // a USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE type.

 break;

 case USB_DEVICE_EVENT_SET_DESCRIPTOR:

 // This means the Host has sent a Set Descriptor request. The
 // application should interpret pData as a
 // USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR pointer type containing the
 // details of the Set Descriptor request. In PIC32 USB Device
 // Stack, this event is generated if
 // USB_DEVICE_SET_DESCRIPTOR_EVENT_ENABLE is defined in the

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 142

 // system configuration. The application can use
 // USB_DEVICE_ControlSend, USB_DEVICE_ControlReceive and/or
 // the USB_DEVICE_ControlStatus functions to complete the
 // control transfer.

 break;

 case USB_DEVICE_EVENT_SYNCH_FRAME:

 // This means the host has sent a Sync Frame Request. The
 // application should interpret pData as a
 // USB_DEVICE_EVENT_DATA_SYNCH_FRAME pointer type. In PIC32 USB Device
 // Stack, this event is generated if
 // USB_DEVICE_SYNCH_FRAME_EVENT_ENABLE is defined in the
 // system configuration. The application should respond be
 // sending the 2 byte frame number using the
 // USB_DEVICE_ControlSend function.

 USB_DEVICE_ControlSend(usbDeviceHandle, &frameNumber, 2);
 break;

 default:
 break;
 }

 return USB_DEVICE_EVENT_REPONSE_NONE;
}

Remarks

Generation of some events required the definition of configuration macros. Refer to the event specific description for more details.

USB_DEVICE_HANDLE Type

Data type for USB device handle.

File

usb_device.h

C
typedef uintptr_t USB_DEVICE_HANDLE;

Description

Data type for USB device handle.

The data type of the handle that is returned from USB_DEVICE_Open function.

Remarks

None.

USB_DEVICE_INIT Structure

USB Device Initialization Structure

File

usb_device.h

C
typedef struct {
 SYS_MODULE_INIT moduleInit;
 unsigned int usbID;
 bool stopInIdle;
 bool suspendInSleep;
 INT_SOURCE interruptSource;
 INT_SOURCE interruptSourceUSBDma;
 void * endpointTable;
 uint16_t registeredFuncCount;
 USB_DEVICE_FUNCTION_REGISTRATION_TABLE * registeredFunctions;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 143

 USB_DEVICE_MASTER_DESCRIPTOR * usbMasterDescriptor;
 USB_SPEED deviceSpeed;
 uint16_t queueSizeEndpointRead;
 uint16_t queueSizeEndpointWrite;
 SYS_MODULE_INDEX driverIndex;
 void * usbDriverInterface;
} USB_DEVICE_INIT;

Members

Members Description

SYS_MODULE_INIT moduleInit; System module initialization

unsigned int usbID; Identifies peripheral (PLIB-level) ID. The use of this parameter is

• deprecated.
bool stopInIdle; If true, USB module will stop when CPU enters Idle Mode. The use of this

• parameter is deprecated.
bool suspendInSleep; If true, USB module will suspend when the microcontroller enters sleep

• mode. The use of this parameter is deprecated.
INT_SOURCE interruptSource; Interrupt Source for USB module. The use of this parameter is deprecated.

INT_SOURCE interruptSourceUSBDma; Interrupt Source for USB DMA module. The use of this parameter is

• deprecated.
void * endpointTable; Pointer to an byte array whose size is USB_DEVICE_ENDPOINT_TABLE_SIZE and who

start address is aligned at a 512 bytes address boundary. The

• use of this parameter is deprecated.
uint16_t registeredFuncCount; Number of function drivers registered to this instance of the USB device layer

USB_DEVICE_FUNCTION_REGISTRATION_TABLE
* registeredFunctions;

Function driver table registered to this instance of the USB device layer

USB_DEVICE_MASTER_DESCRIPTOR *
usbMasterDescriptor;

Pointer to USB Descriptor structure

USB_SPEED deviceSpeed; Specify the speed at which this device will attempt to connect to the host. PIC32MX and
PIC32WK devices support Full Speed only. PIC32MZ devices support Full Speed and
High Speed. Selecting High Speed will allow the device to work at both Full Speed and
High Speed.

uint16_t queueSizeEndpointRead; Enter Endpoint Read queue size. Application can place this many Endpoint Read
requests in the queue. Each Endpoint Read queue element would consume 36 Bytes of
RAM. Value of this field should be at least 1. This is applicable only for applications using
Endpoint Read/Write functions like USB Vendor Device.

uint16_t queueSizeEndpointWrite; Enter Endpoint Write queue size. Application can place this many Endpoint Read
requests in the queue. Each Endpoint Write queue element would consume 36 Bytes of
RAM. Value of this field should be at least 1. This is applicable only for applications using
Endpoint Read/Write functions like USB Vendor Device.

SYS_MODULE_INDEX driverIndex; System Module Index of the driver that this device layer should open

void * usbDriverInterface; Interface to the USB Driver that this Device Layer should use

Description

USB Device Initialization Structure

This data type defines the USB Device Initialization data structure. A data structure of this type should be initialized and provided to
USB_DEVICE_Initialize.

Remarks

This type is specific to the PIC32 implementation of the USB Device Stack API.

USB_DEVICE_POWER_STATE Enumeration

Enumerated data type that identifies if the device is self powered or bus powered .

File

usb_device.h

C
typedef enum {
 USB_DEVICE_POWER_STATE_BUS_POWERED,
 USB_DEVICE_POWER_STATE_SELF_POWERED
} USB_DEVICE_POWER_STATE;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 144

Members

Members Description

USB_DEVICE_POWER_STATE_BUS_POWERED Device is bus powered

USB_DEVICE_POWER_STATE_SELF_POWERED Device is self powered

Description

Device Power state

This enumeration defines the possible power states of the device. The application specifies this state to the device layer (through the
USB_DEVICE_PowerStateSet function) to let the device layer know if this USB Device is presently bus or self powered.

Remarks

None.

USB_DEVICE_REMOTE_WAKEUP_STATUS Enumeration

Enumerated data type that identifies if the remote wakeup status of the device.

File

usb_device.h

C
typedef enum {
 USB_DEVICE_REMOTE_WAKEUP_DISABLED,
 USB_DEVICE_REMOTE_WAKEUP_ENABLED
} USB_DEVICE_REMOTE_WAKEUP_STATUS;

Members

Members Description

USB_DEVICE_REMOTE_WAKEUP_DISABLED Remote wakeup is disabled

USB_DEVICE_REMOTE_WAKEUP_ENABLED Remote wakeup is enabled

Description

Remote Wakeup Status

This enumeration defines the possible status of the remote wake up capability. These values are returned by the
USB_DEVICE_RemoteWakeupStatusGet function.

Remarks

None.

USB_DEVICE_EVENT_DATA_CONFIGURED Structure

USB Device Set Configuration Event Data type.

File

usb_device.h

C
typedef struct {
 uint8_t configurationValue;
} USB_DEVICE_EVENT_DATA_CONFIGURED;

Members

Members Description

uint8_t configurationValue; The configuration that was set

Description

USB Device Set Configuration Event Data type.

This data type defines the type of data that is returned by the Device Layer along with the USB_DEVICE_EVENT_CONFIGURED event.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 145

USB_DEVICE_HANDLE_INVALID Macro

Constant that defines the value of an Invalid Device Handle.

File

usb_device.h

C
#define USB_DEVICE_HANDLE_INVALID

Description

USB Device Layer Invalid Handle

This constant is returned by the USB_DEVICE_Open() function when the function fails.

Remarks

None.

USB_DEVICE_EVENT_RESPONSE_NONE Macro

Device Layer Event Handler Function Response Type.

File

usb_device.h

C
#define USB_DEVICE_EVENT_RESPONSE_NONE

Description

Device Layer Event Handler Function Response Type None.

This is the definition of the Device Layer Event Handler Response Type None.

Remarks

Intentionally defined to be empty.

USB_DEVICE_CLIENT_STATUS Enumeration

Enumerated data type that identifies the USB Device Layer Client Status.

File

usb_device.h

C
typedef enum {
 USB_DEVICE_CLIENT_STATUS_CLOSED,
 USB_DEVICE_CLIENT_STATUS_READY
} USB_DEVICE_CLIENT_STATUS;

Members

Members Description

USB_DEVICE_CLIENT_STATUS_CLOSED Client is closed or the specified handle is invalid

USB_DEVICE_CLIENT_STATUS_READY Client is ready

Description

USB Device Layer Client Status

This enumeration defines the possible status of the USB Device Layer Client. It is returned by the USB_DEVICE_ClientStatusGet function.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 146

USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE Type

Pointer to an array that contains pointer to configuration descriptors.

File

usb_device.h

C
typedef const uint8_t * const USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE;

Description

Configuration descriptors pointer

This type defines a pointer to an array that contains pointers to configuration descriptors. This data type is used in
USB_DEVICE_MASTER_DESCRIPTOR data type to point to the table of configuration descriptors.

Remarks

This type is specific to the PIC32 implementation of the USB Device Stack API.

USB_DEVICE_EVENT_HANDLER Type

USB Device Layer Event Handler Function Pointer Type

File

usb_device.h

C
typedef USB_DEVICE_EVENT_RESPONSE (* USB_DEVICE_EVENT_HANDLER)(USB_DEVICE_EVENT event, void * eventData,
uintptr_t context);

Description

USB Device Layer Event Handler Function Pointer Type

This data type defines the required function signature of the USB Device Layer Event handling callback function. The application must register a
pointer to a Device Layer Event handling function whose function signature (parameter and return value types) match the types specified by this
function pointer in order to receive event call backs from the Device Layer. The Device Layer will invoke this function with event relevant
parameters. The description of the event handler function parameters is given here.

event - Type of event generated.

pData - This parameter should be type cast to an event specific pointer type based on the event that has occurred. Refer to the
USB_DEVICE_EVENT enumeration description for more details.

context - Value identifying the context of the application that was registered along with the event handling function.

Remarks

None.

USB_DEVICE_EVENT_RESPONSE Type

Device Layer Event Handler function return type.

File

usb_device.h

C
typedef void USB_DEVICE_EVENT_RESPONSE;

Description

Device Layer Event Handler function return type.

This data type defines the return type of the Device Layer event handler function.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 147

USB_DEVICE_FUNCTION_REGISTRATION_TABLE Structure

USB Device Function Registration Structure

File

usb_device.h

C
typedef struct {
 USB_SPEED speed;
 uint8_t configurationValue;
 uint8_t interfaceNumber;
 uint8_t numberOfInterfaces;
 uintptr_t funcDriverIndex;
 void * funcDriverInit;
 void * driver;
} USB_DEVICE_FUNCTION_REGISTRATION_TABLE;

Members

Members Description

USB_SPEED speed; Type of speed (high, full or low speed)

uint8_t configurationValue; Configuration Value to which the function driver has to be tied

uint8_t interfaceNumber; Interface number to which this function driver has to be tied

uint8_t numberOfInterfaces; Number of interfaces used by the function

uintptr_t funcDriverIndex; Function driver instance index

void * funcDriverInit; Pointer to a structure that contains function driver initialization data

void * driver; Pointer to a standard structure that exposes function driver APIs to USB device layer

Description

USB Device Function Registration Structure

This data type defines the USB Device Function Registration Structure. A table containing entries for each function driver instance should be
registered with device layer.

Remarks

This type is specific to the PIC32 implementation of the USB Device Stack API.

USB_DEVICE_MASTER_DESCRIPTOR Structure

USB Device Master Descriptor Structure.

File

usb_device.h

C
typedef struct {
 const USB_DEVICE_DESCRIPTOR * deviceDescriptor;
 uint8_t configDescriptorCount;
 USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE * configDescriptorTable;
 const USB_DEVICE_DESCRIPTOR * highSpeedDeviceDescriptor;
 uint8_t highSpeedConfigDescriptorCount;
 USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE * highSpeedConfigDescriptorTable;
 uint8_t stringDescCount;
 USB_DEVICE_STRING_DESCRIPTORS_TABLE * stringDescriptorTable;
 const USB_DEVICE_QUALIFIER * fullSpeedDeviceQualifier;
 const USB_DEVICE_QUALIFIER * highSpeedDeviceQualifier;
 const uint8_t * bosDescriptor;
} USB_DEVICE_MASTER_DESCRIPTOR;

Members

Members Description

const USB_DEVICE_DESCRIPTOR * deviceDescriptor; Pointer to standard device descriptor (for low/full speed)

uint8_t configDescriptorCount; Total number configurations available (for low/full speed)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 148

USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE
* configDescriptorTable;

Pointer to array of configurations descriptor pointers (for low/full speed)

const USB_DEVICE_DESCRIPTOR *
highSpeedDeviceDescriptor;

Pointer to array of high speed standard Device descriptor. Assign this to NULL if
not supported.

uint8_t highSpeedConfigDescriptorCount; Total number of high speed configurations available. Set this to zero if not
supported

USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE
* highSpeedConfigDescriptorTable;

Pointer to array of high speed configurations descriptor pointers. Set this to NULL if
not supported

uint8_t stringDescCount; Total number of string descriptors available (common to all speeds)

USB_DEVICE_STRING_DESCRIPTORS_TABLE *
stringDescriptorTable;

Pointer to array of string Descriptor pointers (common to all speeds)

const USB_DEVICE_QUALIFIER * fullSpeedDeviceQualifier; Pointer to full speed device_qualifier descriptor. Device responds with this
descriptor when it is operating at high speed

const USB_DEVICE_QUALIFIER *
highSpeedDeviceQualifier;

Pointer to high speed device_qualifier descriptor. Device responds with this
descriptor when it is operating at full speed

const uint8_t * bosDescriptor; Pointer to BOS descriptor for this Device. Device responds with this descriptor
when Host sends a GET_DESCRIPTOR request for BOS descriptor

Description

USB Device Master Descriptor Structure.

This data type defines the structure of the USB Device Master Descriptor. The application must provide such a structure for each instance of the
device layer.

Remarks

This type is specific to the PIC32 implementation of the USB Device Stack API.

USB_DEVICE_STRING_DESCRIPTORS_TABLE Type

Pointer to an array that contains pointer to string descriptors.

File

usb_device.h

C
typedef const uint8_t * const USB_DEVICE_STRING_DESCRIPTORS_TABLE;

Description

String Descriptors Pointer

This type defines a pointer to an array that contains pointers to string descriptors. This data type is used in
USB_DEVICE_MASTER_DESCRIPTOR data type to point to the table of string descriptors.

Remarks

This type is specific to the PIC32 implementation of the USB Device Stack API.

USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE Structure

USB Device Layer Endpoint Read and Write Complete Event Data type.

File

usb_device.h

C
typedef struct {
 USB_DEVICE_TRANSFER_HANDLE transferHandle;
 size_t length;
 USB_DEVICE_RESULT status;
} USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE, USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE;

Members

Members Description

USB_DEVICE_TRANSFER_HANDLE
transferHandle;

Transfer Handle

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 149

size_t length; Size of transferred data

USB_DEVICE_RESULT status; Completion status of the transfer

Description

USB Device Layer Endpoint Read and Write Complete Event Data type.

This data type defines the type of data that is returned by the Device Layer along with the
USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE and USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE events.

Remarks

None.

USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE Structure

USB Device Layer Endpoint Read and Write Complete Event Data type.

File

usb_device.h

C
typedef struct {
 USB_DEVICE_TRANSFER_HANDLE transferHandle;
 size_t length;
 USB_DEVICE_RESULT status;
} USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE, USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE;

Members

Members Description

USB_DEVICE_TRANSFER_HANDLE
transferHandle;

Transfer Handle

size_t length; Size of transferred data

USB_DEVICE_RESULT status; Completion status of the transfer

Description

USB Device Layer Endpoint Read and Write Complete Event Data type.

This data type defines the type of data that is returned by the Device Layer along with the
USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE and USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE events.

Remarks

None.

USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR Structure

USB Device Set Descriptor Event Data type.

File

usb_device.h

C
typedef struct {
 uint8_t descriptorIndex;
 uint8_t descriptorType;
 uint16_t languageID;
 uint16_t descriptorLength;
} USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR;

Description

USB Device Set Descriptor Event Data type.

This data type defines the type of data that is returned by the Device Layer along with the USB_DEVICE_EVENT_SET_DESCRIPTOR event.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 150

USB_DEVICE_EVENT_DATA_SOF Structure

USB Device Start Of Frame Event Data Type

File

usb_device.h

C
typedef struct {
 uint16_t frameNumber;
} USB_DEVICE_EVENT_DATA_SOF;

Members

Members Description

uint16_t frameNumber; The Start Of Frame number

Description

USB Device Start Of Frame Event Data Type

This data type defines the type of data that is returned by the Device Layer along with the USB_DEVICE_EVENT_SOF event.

Remarks

None.

USB_DEVICE_EVENT_DATA_SYNCH_FRAME Structure

USB Device Synch Frame Event Data type.

File

usb_device.h

C
typedef struct {
 USB_ENDPOINT_ADDRESS endpoint;
} USB_DEVICE_EVENT_DATA_SYNCH_FRAME;

Members

Members Description

USB_ENDPOINT_ADDRESS endpoint; Endpoint for which the Synch Frame number is requested

Description

USB Device Synch Frame Event Data type.

This data type defines the type of data that is returned by the Device Layer along with the USB_DEVICE_EVENT_SYNCH_FRAME event.

Remarks

None.

USB_DEVICE_RESULT Enumeration

USB Device Layer Results Enumeration

File

usb_device.h

C
typedef enum {
 USB_DEVICE_RESULT_ERROR_TRANSFER_QUEUE_FULL,
 USB_DEVICE_RESULT_OK,
 USB_DEVICE_RESULT_ERROR_ENDPOINT_NOT_CONFIGURED,
 USB_DEVICE_RESULT_ERROR_ENDPOINT_INVALID,
 USB_DEVICE_RESULT_ERROR_PARAMETER_INVALID,
 USB_DEVICE_RESULT_ERROR_DEVICE_HANDLE_INVALID,
 USB_DEVICE_RESULT_ERROR_ENDPOINT_HALTED,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 151

 USB_DEVICE_RESULT_ERROR_TERMINATED_BY_HOST,
 USB_DEVICE_RESULT_ERROR
} USB_DEVICE_RESULT;

Members

Members Description

USB_DEVICE_RESULT_ERROR_TRANSFER_QUEUE_FULL Queue is full

USB_DEVICE_RESULT_OK No Error

USB_DEVICE_RESULT_ERROR_ENDPOINT_NOT_CONFIGURED Endpoint not configured

USB_DEVICE_RESULT_ERROR_ENDPOINT_INVALID Endpoint not provisioned in the system

USB_DEVICE_RESULT_ERROR_PARAMETER_INVALID One or more parameter/s of the function is invalid

USB_DEVICE_RESULT_ERROR_DEVICE_HANDLE_INVALID Device Handle passed to the function is invalid

USB_DEVICE_RESULT_ERROR_ENDPOINT_HALTED Transfer terminated because host halted the endpoint

USB_DEVICE_RESULT_ERROR_TERMINATED_BY_HOST Transfer terminated by host because of a stall clear

USB_DEVICE_RESULT_ERROR An unspecified error has occurred

Description

USB Device Result Enumeration

This enumeration lists the possible USB Device Endpoint operation results. These values are returned by USB Device Endpoint functions.

Remarks

None.

USB_DEVICE_TRANSFER_FLAGS Enumeration

Enumerated data type that identifies the USB Device Layer Transfer Flags.

File

usb_device.h

C
typedef enum {
 USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE,
 USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING
} USB_DEVICE_TRANSFER_FLAGS;

Members

Members Description

USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE This flag indicates there is no further data to be sent in this transfer and that the
transfer should end. If the size of the transfer is a multiple of the maximum
packet size for related endpoint configuration, the device layer will send a zero
length packet to indicate end of the transfer to the host.

USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING This flag indicates there is more data to be sent in this transfer. If the size of the
transfer is a multiple of the maximum packet size for the related endpoint
configuration, the device layer will not send a zero length packet. This flags
should not be specified if the size of the transfer is is not a multiple of the
maximum packet size or if the transfer is less than maximum packet size.

Description

USB Device Layer Transfer Flags

This enumeration defines the possible USB Device Layer Transfer Flags. These flags are specified in USB_DEVICE_EndpointWrite() function to
specify the handling of the transfer. Please refer to the description of the USB_DEVICE_EndpointWrite function for examples.

Remarks

None.

USB_DEVICE_TRANSFER_HANDLE Type

Data type for USB Device Endpoint Data Transfer Handle.

File

usb_device.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 152

C
typedef uintptr_t USB_DEVICE_TRANSFER_HANDLE;

Description

Data type for USB Device Endpoint Data Transfer Handle.

The data type of the handle that is returned by the USB_DEVICE_EndpointRead() and USB_DEVICE_EndpointWrite() functions.

Remarks

None.

USB_DEVICE_TRANSFER_HANDLE_INVALID Macro

Constant that defines the value of an Invalid Device Endpoint Data Transfer Handle.

File

usb_device.h

C
#define USB_DEVICE_TRANSFER_HANDLE_INVALID

Description

USB Device Layer Invalid Endpoint Data Transfer Handle

This constant defines the value that is returned by the USB_DEVICE_EndpointRead() and USB_DEVICE_EndpointWrite() functions, as a transfer
handle, when the function is not successful.

Remarks

None.

USB_DEVICE_IRP Structure

This structure defines the USB Device Mode IRP data structure.

File

usb_common.h

C
typedef struct _USB_DEVICE_IRP {
 void * data;
 unsigned int size;
 USB_DEVICE_IRP_STATUS status;
 void (* callback)(struct _USB_DEVICE_IRP * irp);
 USB_DEVICE_IRP_FLAG flags;
 uintptr_t userData;
 uint32_t privateData[3];
} USB_DEVICE_IRP;

Members

Members Description

void * data; Pointer to the data buffer

unsigned int size; Size of the data buffer

USB_DEVICE_IRP_STATUS status; Status of the IRP

void (* callback)(struct _USB_DEVICE_IRP * irp); IRP Callback. If this is NULL,

• then there is no callback generated
USB_DEVICE_IRP_FLAG flags; Request specific flags

uintptr_t userData; User data

uint32_t privateData[3]; The following members should not be modified by the client

Description

USB Device Mode I/O Request Packet

This structure defines the USB Device Mode IRP data structure.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 153

Remarks

None.

USB_DEVICE_IRP_FLAG Enumeration

USB Device IRP flags enumeration

File

usb_common.h

C
typedef enum {
 USB_DEVICE_IRP_FLAG_DATA_COMPLETE = 0x1,
 USB_DEVICE_IRP_FLAG_DATA_PENDING = 0x2
} USB_DEVICE_IRP_FLAG;

Members

Members Description

USB_DEVICE_IRP_FLAG_DATA_COMPLETE =
0x1

Using this flag indicates that there is no

• more data pending in the IRP. When data moves

• from device to host, and if the IRP size is

• a multiple of endpoint size, specifying this

• flag sends the ZLP. The size is not a

• multiple of endpoint size, no ZLP will be sent.
USB_DEVICE_IRP_FLAG_DATA_PENDING =
0x2

In case of data moving from device to host, and if the

• size parameter of the IRP is an exact multiple of the

• endpoint maximum packet size, specifying this flag, does

• send the ZLP. If the size is less than endpoint size,

• specifying this flag will return an error. If the size

• is more than endpoint size but not a multiple, only

• endpoint multiple size of data is sent.

Description

USB Device IRP Flags

This enumeration defines the possible flags that can be specified while adding the IRP.

Remarks

Not all flags are applicable in all conditions. Refer to API documentation for more details

USB_DEVICE_IRP_STATUS Enumeration

Enumerates the possible status options of USB Device IRP.

File

usb_common.h

C
typedef enum {
 USB_DEVICE_IRP_STATUS_TERMINATED_BY_HOST = -4,
 USB_DEVICE_IRP_STATUS_ABORTED_ENDPOINT_HALT = -3,
 USB_DEVICE_IRP_STATUS_ABORTED = -2,
 USB_DEVICE_IRP_STATUS_ERROR = -1,
 USB_DEVICE_IRP_STATUS_COMPLETED = 0,
 USB_DEVICE_IRP_STATUS_COMPLETED_SHORT = 1,
 USB_DEVICE_IRP_STATUS_SETUP = 2,
 USB_DEVICE_IRP_STATUS_PENDING = 3,
 USB_DEVICE_IRP_STATUS_IN_PROGRESS = 4
} USB_DEVICE_IRP_STATUS;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 154

Members

Members Description

USB_DEVICE_IRP_STATUS_TERMINATED_BY_HOST = -4 The IRP was aborted because the host cleared the stall on the endpoint

USB_DEVICE_IRP_STATUS_ABORTED_ENDPOINT_HALT
= -3

IRP was aborted because the endpoint halted

USB_DEVICE_IRP_STATUS_ABORTED = -2 USB Device IRP was aborted by the function driver

USB_DEVICE_IRP_STATUS_ERROR = -1 An error occurred on the bus when the IRP was being

• processed
USB_DEVICE_IRP_STATUS_COMPLETED = 0 The IRP was completed

USB_DEVICE_IRP_STATUS_COMPLETED_SHORT = 1 The IRP was completed but the amount of

• data received was less than the requested

• size
USB_DEVICE_IRP_STATUS_SETUP = 2 The IRP was completed and the received

• token was a SETUP token. This is applicable

• to IRP scheduled on CONTROL endpoint
USB_DEVICE_IRP_STATUS_PENDING = 3 The IRP is pending in the queue

USB_DEVICE_IRP_STATUS_IN_PROGRESS = 4 The IRP is currently being processed

Description

USB Device IRP Status Enumeration

Enumerates the possible status options of USB Device IRP.

Remarks

The application that schedules the IRP can check the status member of the USB Device IRP at any time to obtain current status of the IRP.

USB_ENDPOINT Type

Defines a type to store Endpoint and Direction. The MSB defines the direction. The lower 4 bits defines the endpoint.

File

usb_common.h

C
typedef uint8_t USB_ENDPOINT;

Description

USB Endpoint and Direction Type

Defines a type to store Endpoint and Direction. The MSB defines the direction. The lower 4 bits defines the endpoint.

Remarks

None.

USB_ERROR Enumeration

Enumeration of all possible error codes that are returned by various components functions in the USB Stack.

File

usb_common.h

C
typedef enum {
 USB_ERROR_IRP_QUEUE_FULL = SCHAR_MIN,
 USB_ERROR_OSAL_FUNCTION,
 USB_ERROR_IRP_SIZE_INVALID,
 USB_ERROR_PARAMETER_INVALID,
 USB_ERROR_DEVICE_ENDPOINT_INVALID,
 USB_ERROR_DEVICE_IRP_IN_USE,
 USB_ERROR_CLIENT_NOT_READY,
 USB_ERROR_IRP_OBJECTS_UNAVAILABLE,
 USB_ERROR_DEVICE_FUNCTION_INSTANCE_INVALID,
 USB_ERROR_DEVICE_FUNCTION_NOT_CONFIGURED,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 155

 USB_ERROR_ENDPOINT_NOT_CONFIGURED,
 USB_ERROR_DEVICE_CONTROL_TRANSFER_FAILED,
 USB_ERROR_HOST_DEVICE_INSTANCE_INVALID,
 USB_ERROR_HOST_DRIVER_NOT_READY,
 USB_ERROR_HOST_DRIVER_NOT_FOUND,
 USB_ERROR_HOST_ENDPOINT_INVALID,
 USB_ERROR_HOST_PIPE_INVALID,
 USB_ERROR_HOST_ARGUMENTS_INVALID,
 USB_ERROR_HOST_HEADERSIZE_INVALID,
 USB_ERROR_HOST_MAX_INTERFACES_INVALID,
 USB_ERROR_HOST_ENDPOINT_DESC_SIZE_INVALID,
 USB_ERROR_HOST_DESCRIPTOR_INVALID,
 USB_ERROR_HOST_MAX_ENDPOINT_INVALID,
 USB_ERROR_HOST_ALT_SETTING_INVALID,
 USB_ERROR_HOST_BUSY,
 USB_HOST_OBJ_INVALID,
 USB_ERROR_HOST_POINTER_INVALID,
 USB_ERROR_HOST_ENDPOINT_NOT_FOUND,
 USB_ERROR_HOST_DRIVER_INSTANCE_INVALID,
 USB_ERROR_HOST_INTERFACE_NOT_FOUND,
 USB_ERROR_ENDPOINT_HALTED,
 USB_ERROR_TRANSFER_TERMINATED_BY_HOST,
 USB_ERROR_NONE = 0
} USB_ERROR;

Members

Members Description

USB_ERROR_IRP_QUEUE_FULL = SCHAR_MIN IRP Queue Full Error

USB_ERROR_OSAL_FUNCTION OSAL Function fails

USB_ERROR_IRP_SIZE_INVALID IRP Size parameter invalid

USB_ERROR_PARAMETER_INVALID Some function parameter was not valid

USB_ERROR_DEVICE_ENDPOINT_INVALID Device endpoint is not valid

USB_ERROR_DEVICE_IRP_IN_USE IRP is already in use

USB_ERROR_CLIENT_NOT_READY Client is not ready

USB_ERROR_IRP_OBJECTS_UNAVAILABLE Free IRP object unavailable

USB_ERROR_DEVICE_FUNCTION_INSTANCE_INVALID Function Driver instance was not provisioned

USB_ERROR_DEVICE_FUNCTION_NOT_CONFIGURED Function Driver instance is not configured

USB_ERROR_ENDPOINT_NOT_CONFIGURED Endpoint is not configured

USB_ERROR_DEVICE_CONTROL_TRANSFER_FAILED Device Control Transfer Failed

USB_ERROR_HOST_DEVICE_INSTANCE_INVALID Host device instance invalid

USB_ERROR_HOST_DRIVER_NOT_READY Host driver not ready for communication

USB_ERROR_HOST_DRIVER_NOT_FOUND Host driver not found

USB_ERROR_HOST_ENDPOINT_INVALID Host endpoint invalid

USB_ERROR_HOST_PIPE_INVALID Host pipe invalid

USB_ERROR_HOST_ARGUMENTS_INVALID Invalid arguments

USB_ERROR_HOST_HEADERSIZE_INVALID Header size invalid

USB_ERROR_HOST_MAX_INTERFACES_INVALID Max interface Number

USB_ERROR_HOST_ENDPOINT_DESC_SIZE_INVALID Endpoint descriptor size is invalid

USB_ERROR_HOST_DESCRIPTOR_INVALID Invalid Descriptor

USB_ERROR_HOST_MAX_ENDPOINT_INVALID Invalid number of endpoints

USB_ERROR_HOST_ALT_SETTING_INVALID Host alternate setting is invalid

USB_ERROR_HOST_BUSY Host is busy

USB_HOST_OBJ_INVALID USB host invalid

USB_ERROR_HOST_POINTER_INVALID Pointer is invalid

USB_ERROR_HOST_ENDPOINT_NOT_FOUND Could not find endpoint

USB_ERROR_HOST_DRIVER_INSTANCE_INVALID Driver Instance Invalid

USB_ERROR_HOST_INTERFACE_NOT_FOUND Could not find endpoint

USB_ERROR_ENDPOINT_HALTED Transfer terminated because endpoint was halted

USB_ERROR_TRANSFER_TERMINATED_BY_HOST Transfer terminated by host because of a stall clear

USB_ERROR_NONE = 0 No Error, Operation was successful

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 156

Description

USB Error Codes

Enumeration of all possible error codes that are returned by various components functions in the USB Stack.

Remarks

None.

USB_HOST_IRP Structure

This structure defines the USB Host Mode IRP data structure.

File

usb_common.h

C
typedef struct _USB_HOST_IRP {
 void * setup;
 void * data;
 unsigned int size;
 USB_HOST_IRP_STATUS status;
 USB_HOST_IRP_FLAG flags;
 uintptr_t userData;
 void (* callback)(struct _USB_HOST_IRP * irp);
 uintptr_t privateData[7];
} USB_HOST_IRP;

Members

Members Description

void * setup; Points to the 8 byte setup command

• packet in case this is a IRP is

• scheduled on a CONTROL pipe. Should

• be NULL otherwise
void * data; Pointer to data buffer

unsigned int size; Size of the data buffer

USB_HOST_IRP_STATUS status; Status of the IRP

USB_HOST_IRP_FLAG flags; Request specific flags

uintptr_t userData; User data

void (* callback)(struct _USB_HOST_IRP * irp); Pointer to function to be called

• when IRP is terminated. Can be

• NULL, in which case the function

• will not be called.
uintptr_t privateData[7]; These members of the IRP should not be modified by client

Description

USB Host Mode I/O Request Packet

This structure defines the USB Host Mode IRP data structure.

Remarks

None.

USB_HOST_IRP_FLAG Enumeration

USB Host IRP flags enumeration

File

usb_common.h

C
typedef enum {
 USB_HOST_IRP_FLAG_NONE = 0,
 USB_HOST_IRP_FLAG_SEND_ZLP,
 USB_HOST_IRP_WAIT_FOR_ZLP

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 157

} USB_HOST_IRP_FLAG;

Members

Members Description

USB_HOST_IRP_FLAG_NONE = 0 Does not do anything

USB_HOST_IRP_FLAG_SEND_ZLP In case of data moving from host to device, and if the

• size parameter of the IRP is an exact multiple of the

• endpoint maximum packet size, specifying this flag sends

• a Zero Length Packet before the IRP is completed.
USB_HOST_IRP_WAIT_FOR_ZLP In case of data moving device to host, and if the

• size parameter of the IRP is an exact multiple of

• the endpoint maximum packet size, specifying this

• flag will cause the IRP to completed only when the

• a ZLP was requested and acknowledged and the amount

• of data was a multiple of endpoint maximum packet size.

Description

USB Host IRP Flags

This enumeration defines the possible flags that can be specified while adding the IRP.

Remarks

Not all flags are applicable in all conditions. Refer to API documentation for more details

USB_HOST_IRP_STATUS Enumeration

Enumerates the possible status options of USB Host IRP.

File

usb_common.h

C
typedef enum _USB_HOST_IRP_STATUS {
 USB_HOST_IRP_STATUS_ERROR_UNKNOWN = -6,
 USB_HOST_IRP_STATUS_ABORTED = -5,
 USB_HOST_IRP_STATUS_ERROR_BUS = -4,
 USB_HOST_IRP_STATUS_ERROR_DATA = -3,
 USB_HOST_IRP_STATUS_ERROR_NAK_TIMEOUT = -2,
 USB_HOST_IRP_STATUS_ERROR_STALL = -1,
 USB_HOST_IRP_STATUS_COMPLETED = 0,
 USB_HOST_IRP_STATUS_COMPLETED_SHORT = 1,
 USB_HOST_IRP_STATUS_PENDING = 2,
 USB_HOST_IRP_STATUS_IN_PROGRESS = 3
} USB_HOST_IRP_STATUS;

Members

Members Description

USB_HOST_IRP_STATUS_ERROR_UNKNOWN = -6 IRP was terminated due to an unknown error

USB_HOST_IRP_STATUS_ABORTED = -5 IRP was terminated by the application

USB_HOST_IRP_STATUS_ERROR_BUS = -4 IRP was terminated due to a bus error

USB_HOST_IRP_STATUS_ERROR_DATA = -3 IRP was terminated due to data error

USB_HOST_IRP_STATUS_ERROR_NAK_TIMEOUT
= -2

IRP was terminated because of a NAK timeout

USB_HOST_IRP_STATUS_ERROR_STALL = -1 IRP was terminated because of a STALL

USB_HOST_IRP_STATUS_COMPLETED = 0 IRP has been completed

USB_HOST_IRP_STATUS_COMPLETED_SHORT =
1

IRP has been completed but the

• amount of data processed was less

• than requested.
USB_HOST_IRP_STATUS_PENDING = 2 IRP is waiting in queue

USB_HOST_IRP_STATUS_IN_PROGRESS = 3 IRP is currently being processed

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 158

Description

USB Host IRP Status Enumeration

Enumerates the possible status options of USB Host IRP.

Remarks

The application that schedules the IRP can check the status member of the USB Host IRP at any time to obtain current status of the IRP.

USB_SPEED Enumeration

Provides enumeration of USB 2.0 speeds.

File

usb_common.h

C
typedef enum {
 USB_SPEED_ERROR = 0,
 USB_SPEED_HIGH = 1,
 USB_SPEED_FULL = 2,
 USB_SPEED_LOW = 3
} USB_SPEED;

Members

Members Description

USB_SPEED_ERROR = 0 Error in obtaining USB module speed

USB_SPEED_HIGH = 1 USB module is at high speed

USB_SPEED_FULL = 2 USB module is at full speed

USB_SPEED_LOW = 3 USB module is at low speed

Description

USB 2.0 Speeds Enumeration

Provides enumeration of USB 2.0 speeds.

Remarks

None.

USB_ENDPOINT_AND_DIRECTION Macro

This macro helps in setting up the USB_ENDPOINT type.

File

usb_common.h

C
#define USB_ENDPOINT_AND_DIRECTION(direction, endpoint) ((uint8_t)((direction << 7) | endpoint))

Description

USB Endpoint and Direction helper macro

This macro helps in setting up the USB_ENDPOINT type. Here x is the direction and can be either USB_DATA_DIRECTION_HOST_TO_DEVICE
or USB_DATA_DIRECTION_DEVICE_TO_HOST. y is the endpoint.

Remarks

None.

USB_DATA_DIRECTION Enumeration

Defines the communication direction

File

usb_common.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 159

C
typedef enum {
 USB_DATA_DIRECTION_DEVICE_TO_HOST = 1,
 USB_DATA_DIRECTION_HOST_TO_DEVICE = 0
} USB_DATA_DIRECTION;

Members

Members Description

USB_DATA_DIRECTION_DEVICE_TO_HOST =
1

Data moves from device to host

USB_DATA_DIRECTION_HOST_TO_DEVICE =
0

Data moves from host to device

Description

USB Communication direction definitions

This definitions define the communication direction and can be used to specify direction while using the DRV_USB_ENDPOINT type.

Remarks

None.

USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE Macro

Specifies if the Device Layer should process a Host request for a BOS descriptor.

File

usb_device_config_template.h

C
#define USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE

Description

USB Device Layer BOS Descriptor Support Enable

Specifying this configuration macro will enable support for BOS request. When the request is received, the device layer will transfer the data
pointed to by the bosDescriptor member of the USB_DEVICE_INIT data structure. If this configuration macro is not specified, request for a BOS
descriptor is stalled.

Remarks

The USB Host will request for a BOS descriptor when the bcdVersion field in the Device Descriptor is greater than 0x0200.

USB_DEVICE_DRIVER_INITIALIZE_EXPLICIT Macro

Specifies if the USB Controller Driver must be initialized explicitly as opposed to being initialized by the Device Layer.

File

usb_device_config_template.h

C
#define USB_DEVICE_DRIVER_INITIALIZE_EXPLICIT

Description

USB Device Layer USB Controller Driver Explicit Initialize

Specifying this macro indicates that the USB Controller Driver will be initialized explicitly in the SYS_Initialize() function. The Device Layer will not
initialize the USB Controller Driver. All releases of the USB Device Layer starting from v1.04 of MPALB Harmony will specify this macro i.e the
controller driver will be initialized explicitly.

If this macro is not specified, then the USB Device Layer will initialize the controller driver and run its tasks routines.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 160

USB_DEVICE_STRING_DESCRIPTOR_TABLE_ADVANCED_ENABLE Macro

Specifying this macro enables the Advanced String Descriptor Table Entry Format.

File

usb_device_config_template.h

C
#define USB_DEVICE_STRING_DESCRIPTOR_TABLE_ADVANCED_ENABLE

Description

USB Device Layer Advanced String Descriptor Table Entry Format Enable.

Specifyin this macro enables the Advanced String Descriptor Table Entry Format. The advanced format allows the application to specify the String
Index and the language in the entry itself. In the basic format, this information is obtained by the virtue of the entry index of the String Descriptor in
the String Descriptor Table. Using the Advanced format allows the application to specify strings with arbitrary strings indexes. In basic format, the
string indexes are forced to be contiguous.

Remarks

The basic string descriptor entry format is selected by default. The advanced format must be enabled explicitly by specifying this macro.

Files

Files

Name Description

usb_device.h USB Device Layer Interface Header

usb_common.h USB Common Definitions File

usb_device_config_template.h USB device configuration template header file.

Description

This section lists the source and header files used by the library.

usb_device.h

USB Device Layer Interface Header

Enumerations

Name Description

USB_DEVICE_CLIENT_STATUS Enumerated data type that identifies the USB Device Layer Client Status.

USB_DEVICE_CONTROL_STATUS USB Device Layer Control Transfer Status Stage flags.

USB_DEVICE_CONTROL_TRANSFER_RESULT Enumerated data type identifying results of a control transfer.

USB_DEVICE_EVENT USB Device Layer Events.

USB_DEVICE_POWER_STATE Enumerated data type that identifies if the device is self powered or bus
powered .

USB_DEVICE_REMOTE_WAKEUP_STATUS Enumerated data type that identifies if the remote wakeup status of the device.

USB_DEVICE_RESULT USB Device Layer Results Enumeration

USB_DEVICE_TRANSFER_FLAGS Enumerated data type that identifies the USB Device Layer Transfer Flags.

Functions

Name Description

USB_DEVICE_ActiveConfigurationGet Informs the client of the current USB device configuration set by the USB host.

USB_DEVICE_ActiveSpeedGet Informs the client of the current operation speed of the USB bus.

USB_DEVICE_Attach This function will attach the device to the USB.

USB_DEVICE_ClientStatusGet Returns the client specific status.

USB_DEVICE_Close Closes an opened handle to an instance of the USB device layer.

USB_DEVICE_ControlReceive Receives data stage of the control transfer from host to device.

USB_DEVICE_ControlSend Sends data stage of the control transfer from device to host.

USB_DEVICE_ControlStatus Initiates status stage of the control transfer.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 161

USB_DEVICE_Deinitialize De-initializes the specified instance of the USB device layer.

USB_DEVICE_Detach This function will detach the device from the USB.

USB_DEVICE_EndpointDisable Disables a device endpoint.

USB_DEVICE_EndpointEnable Enables a device endpoint.

USB_DEVICE_EndpointIsEnabled Returns true if the endpoint is enabled.

USB_DEVICE_EndpointIsStalled This function returns the stall status of the specified endpoint and direction.

USB_DEVICE_EndpointRead Reads data received from host on the requested endpoint.

USB_DEVICE_EndpointStall This function stalls an endpoint in the specified direction.

USB_DEVICE_EndpointStallClear This function clears the stall on an endpoint in the specified direction.

USB_DEVICE_EndpointTransferCancel This function cancels a transfer scheduled on an endpoint.

USB_DEVICE_EndpointWrite This function requests a data write to a USB Device Endpoint.

USB_DEVICE_EventHandlerSet USB Device Layer Event Handler Callback Function set function.

USB_DEVICE_Initialize Creates and initializes an instance of the USB device layer.

USB_DEVICE_IsSuspended Returns true if the device is in a suspended state.

USB_DEVICE_Open Opens the specified USB device layer instance and returns a handle to it.

USB_DEVICE_PowerStateSet Sets power state of the device.

USB_DEVICE_RemoteWakeupStart This function will start the resume signaling.

USB_DEVICE_RemoteWakeupStartTimed This function will start a self timed Remote Wake-up.

USB_DEVICE_RemoteWakeupStatusGet Gets the "Remote wake-up" status of the device.

USB_DEVICE_RemoteWakeupStop This function will stop the resume signaling.

USB_DEVICE_StateGet Returns the current state of the USB device.

USB_DEVICE_Status Provides the current status of the USB device layer

USB_DEVICE_Tasks USB Device layer calls all other function driver tasks in this function. It also generates
and forwards events to its clients.

Macros

Name Description

USB_DEVICE_EVENT_RESPONSE_NONE Device Layer Event Handler Function Response Type.

USB_DEVICE_HANDLE_INVALID Constant that defines the value of an Invalid Device Handle.

USB_DEVICE_INDEX_0 USB device layer index definitions.

USB_DEVICE_INDEX_1 This is macro USB_DEVICE_INDEX_1.

USB_DEVICE_INDEX_2 This is macro USB_DEVICE_INDEX_2.

USB_DEVICE_INDEX_3 This is macro USB_DEVICE_INDEX_3.

USB_DEVICE_INDEX_4 This is macro USB_DEVICE_INDEX_4.

USB_DEVICE_INDEX_5 This is macro USB_DEVICE_INDEX_5.

USB_DEVICE_TRANSFER_HANDLE_INVALID Constant that defines the value of an Invalid Device Endpoint Data Transfer
Handle.

Structures

Name Description

USB_DEVICE_EVENT_DATA_CONFIGURED USB Device Set Configuration Event Data type.

USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE USB Device Layer Endpoint Read and Write Complete Event
Data type.

USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE USB Device Layer Endpoint Read and Write Complete Event
Data type.

USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR USB Device Set Descriptor Event Data type.

USB_DEVICE_EVENT_DATA_SOF USB Device Start Of Frame Event Data Type

USB_DEVICE_EVENT_DATA_SYNCH_FRAME USB Device Synch Frame Event Data type.

USB_DEVICE_FUNCTION_REGISTRATION_TABLE USB Device Function Registration Structure

USB_DEVICE_INIT USB Device Initialization Structure

USB_DEVICE_MASTER_DESCRIPTOR USB Device Master Descriptor Structure.

Types

Name Description

USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE Pointer to an array that contains pointer to configuration descriptors.

USB_DEVICE_EVENT_HANDLER USB Device Layer Event Handler Function Pointer Type

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 162

USB_DEVICE_EVENT_RESPONSE Device Layer Event Handler function return type.

USB_DEVICE_HANDLE Data type for USB device handle.

USB_DEVICE_STRING_DESCRIPTORS_TABLE Pointer to an array that contains pointer to string descriptors.

USB_DEVICE_TRANSFER_HANDLE Data type for USB Device Endpoint Data Transfer Handle.

Description

USB Device Layer Interface Definition

This header file contains the function prototypes and definitions of the data types and constants that make up the interface to the USB device
layer. This application should include this file if it needs to use the USB Device Layer API.

File Name

usb_device.h

Company

Microchip Technology Inc.

usb_common.h

USB Common Definitions File

Enumerations

Name Description

_USB_HOST_IRP_STATUS Enumerates the possible status options of USB Host IRP.

USB_DATA_DIRECTION Defines the communication direction

USB_DEVICE_IRP_FLAG USB Device IRP flags enumeration

USB_DEVICE_IRP_STATUS Enumerates the possible status options of USB Device IRP.

USB_ERROR Enumeration of all possible error codes that are returned by various components functions in
the USB Stack.

USB_HOST_IRP_FLAG USB Host IRP flags enumeration

USB_HOST_IRP_STATUS Enumerates the possible status options of USB Host IRP.

USB_SPEED Provides enumeration of USB 2.0 speeds.

Macros

Name Description

USB_ENDPOINT_AND_DIRECTION This macro helps in setting up the USB_ENDPOINT type.

Structures

Name Description

_USB_DEVICE_IRP This structure defines the USB Device Mode IRP data structure.

_USB_HOST_IRP This structure defines the USB Host Mode IRP data structure.

USB_DEVICE_IRP This structure defines the USB Device Mode IRP data structure.

USB_HOST_IRP This structure defines the USB Host Mode IRP data structure.

Types

Name Description

USB_ENDPOINT Defines a type to store Endpoint and Direction. The MSB defines the direction. The lower 4
bits defines the endpoint.

Description

USB Common Definitions File

This file contains definitions that are used by various components of the USB stack. This file is included by the USB Device and Host stack files.
The application may typically not need to include this file directly.

File Name

usb_common.h

Company

Microchip Technology Inc.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 163

usb_device_config_template.h

USB device configuration template header file.

Macros

Name Description

USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE Specifies if the Device Layer should process a Host
request for a BOS descriptor.

USB_DEVICE_DRIVER_INITIALIZE_EXPLICIT Specifies if the USB Controller Driver must be initialized
explicitly as opposed to being initialized by the Device
Layer.

USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED Specifies the combined endpoint queue depth in case of
a vendor USB device implementation.

USB_DEVICE_EP0_BUFFER_SIZE Buffer Size in Bytes for Endpoint 0.

USB_DEVICE_INSTANCES_NUMBER Number of Device Layer instances to provisioned in the
application.

USB_DEVICE_MICROSOFT_OS_DESCRIPTOR_SUPPORT_ENABLE Specifies if the USB Device stack should support
Microsoft OS Descriptor.

USB_DEVICE_SET_DESCRIPTOR_EVENT_ENABLE Enables the Device Layer Set Descriptor Event.

USB_DEVICE_SOF_EVENT_ENABLE Enables the Device Layer SOF event.

USB_DEVICE_STRING_DESCRIPTOR_TABLE_ADVANCED_ENABLE Specifying this macro enables the Advanced String
Descriptor Table Entry Format.

USB_DEVICE_SYNCH_FRAME_EVENT_ENABLE Enables the Device Layer Synch Frame Event.

Description

USB Device Layer Compile Time Options

This file contains USB device layer compile time options (macros) that are to be configured by the user. This file is a template file and must be
used as an example only. This file must not be directly included in the project.

File Name

usb_device_config_template.h

Company

Microchip Technology Inc.

USB CDC Device Library

This section describes the USB CDC Device Library.

Introduction

This help section provides information on library design, configuration, usage and the Library Interface for the USB Communications Device Class
(CDC) Device Library.

Description

The MPLAB Harmony USB Communications Device Class (CDC) Device Library (also referred to as the CDC function driver or library) provides
functions and methods that allow application designers to implement a USB CDC Device. The current version of the library supports the Abstract
Control Model (ACM) of the CDC specification revision 1.2 and specifically implements a subset of the AT250 command set. This library must be
used in conjunction with the MPLAB Harmony USB Device Layer.

Using the Library

This topic describes the basic architecture of the USB CDC Device Library and provides information and examples on its use.

Library Overview

The USB CDC Device Library mainly interacts with the system, its clients and function drivers, as shown in the Abstraction Model.

The library interface routines are divided into sub-sections, which address one of the blocks or the overall operation of the USB CDC Device
Library.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 164

Library Interface Section Description

Functions Provides event handler, read/write, and serial state notification functions.

Abstraction Model

Provides an architectural overview of the CDC Function Driver.

Description

The CDC Function Driver offers services to a USB CDC Device to communicate with the host by abstracting the USB specification details. It must
be used along with the USB Device Layer and USB controller to communicate with the USB Host. Figure 1 shows a block diagram of the MPLAB
Harmony USB Architecture and where the CDC Function Driver is placed.

Figure 1: CDC Function Driver

As shown in Figure 1, the USB Controller Driver takes the responsibility of managing the USB peripheral on the device. The USB Device Layer
handles the device enumeration, etc. The USB Device_layer forwards all USB CDC specific control transfers to the CDC Function Driver. The
CDC Function Driver ACM sub-layer interprets the control transfers and requests application's intervention through event handlers and well
defined set of API. The application must register a event handler with the CDC Function Driver in the Device Layer Set Configuration Event. The
application should respond to CDC ACM events. Response to CDC ACM event that require control transfer response can be deferred by
responding to the event after returning from the event handler. The application interacts directly with the CDC Function Driver to send/receive data
and to send serial state notifications.

As per the CDC specification,a USB CDC Device is a collection of the following interfaces:

• Communication Interface (Device Management) on Endpoint 0

• Optional Communication Interface (Notification) on an interrupt endpoint

• Optional Data Interface (either a bulk or isochronous endpoint)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 165

Figure 2: CDC Function Driver Architecture

Figure 2 shows the architecture of the CDC Function Driver. The device management on Endpoint 0 is handled by the device library(class specific
requests are routed to the CDC Function Driver by the USB Device Layer). An instance of the CDC Function Driver actually consists of a data
interface and a notification interface. The library is implemented in two .c files. The usb_device_cdc.c file implements the CDC data and serial
state notification, while the usb_device_cdc_acm.c file implements the control transfer interpretation and event generation. The application
must respond to control transfer related CDC ACM events by directly calling the Device Layer control transfer routines.

Abstract Control Model (ACM)

Describes the various Abstract Control Model (ACM) commands supported by this CDC Function Driver implementation.

Description

One of the basic supported models for communication by CDC is POTS (Plain Old Telephone Service). The POTS model is for devices that
communicate via ordinary phone lines and generic COM port devices. The USB CDC specification refers to this basic model as PSTN (Public
Switched Telephone Network).

Depending on the amount of data processing the device is responsible for POTS/PSTN is divided into several models. The processing of data can
include modulation, demodulation, error correction and data compression.

Of the supported PSTN models, this CDC Function Driver implements ACM. In the ACM the device handles modulation, demodulation and
handles V.25ter (AT) commands. This model (ACM) also supports requests and notifications to get and set RS-232 status, control, and
asynchronous port part parameters. Virtual COM port devices use ACM.

The following sections describe the management requests and notifications supported by the CDC Function Driver ACM_layer.

Management Requests

The Host requests/sends some information in the form of management requests on the bidirectional Endpoint 0. The following table shows the
CDC specification ACM sub class management requests and how these request are handled by the CDC Function Driver.

Request Code Required/Optional Comments

SEND_ENCAPSULATED_COMMAND Required Implemented by the CDC Function Driver ACM_layer. This request is stalled.

GET_ENCAPSULATED_RESPONSE Required Implemented by the CDC Function Driver ACM_layer. This request is stalled.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 166

SET_COMM_FEATURE Optional Not Implemented.

GET_COMM_FEATURE Optional Not Implemented.

CLEAR_COMM_FEATURE Optional Not Implemented.

SET_LINE_CODING Optional Implemented by the CDC Function Driver ACM_layer. Requires application
response.

GET_LINE_CODING Optional Implemented by the CDC Function Driver ACM_layer. Requires application
response.

SET_CONTROL_LINE_STATE Optional Implemented by the CDC Function Driver ACM_layer. Requires application
response.

SEND_BREAK Optional Implemented by the CDC Function Driver ACM_layer. Requires application
response.

How the Library Works

Library Initialization

Describes how the CDC Function Driver is initialized.

Description

The CDC Function Driver instance for a USB device configuration is initialized by the Device Layer when the configuration is set by the host. This
process does not require application intervention. Each instance of the CDC Function Driver should be registered with the Device_layer through
the Device Layer Function Driver Registration Table. The CDC Function Driver does require a initialization data structure to be defined for each
instance of the function driver. This initialization data structure should be of the type USB_DEVICE_CDC_INIT. This data structure specifies the
read and write queue sizes. The funcDriverInit member of the function driver registration table entry for the CDC Function Driver instance should
be set to point to the corresponding initialization data structure. The USB_DEVICE_CDC_FUNCTION_DRIVER object is a global object provided
by the CDC Function Driver and points to the CDC Function Driver - Device Layer interface functions, which are required by the Device Layer. The
following code an example of how multiple instances of CDC Function Driver can registered with the Device Layer.
/* This code shows an example of how two CDC function
 * driver instances can be registered with the Device Layer
 * via the Device Layer Function Driver Registration Table.
 * In this case Device Configuration 1 consists of two CDC
 * function driver instances. */

/* Define the CDC initialization data structure for CDC instance 0.
 * Set read queue size to 2 and write queue size to 3 */

const USB_DEVICE_CDC_INIT cdcInit0 = {.queueSizeRead = 2, .queueSizeWrite = 3};

/* Define the CDC initialization data structure for CDC instance 1.
 * Set read queue size to 4 and write queue size to 1 */

const USB_DEVICE_CDC_INIT cdcInit1 = {.queueSizeRead = 4, .queueSizeWrite = 1};
const USB_DEVICE_FUNC_REGISTRATION_TABLE funcRegistrationTable[2] =
{
 /* This is the first instance of the CDC Function Driver */
 {
 .speed = USB_SPEED_FULL|USB_SPEED_HIGH, // Supported speed
 .configurationValue = 1, // To be initialized for Configuration 1
 .interfaceNumber = 0, // Starting interface number.
 .numberOfInterfaces = 2, // Number of interfaces in this instance
 .funcDriverIndex = 0, // Function Driver instance index is 0
 .funcDriverInit = &cdcInit0, // Function Driver initialization data structure
 .driver = USB_DEVICE_CDC_FUNCTION_DRIVER // Pointer to Function Driver - Device Layer interface
functions
 },
 /* This is the second instance of the CDC Function Driver */
 {
 .speed = USB_SPEED_FULL|USB_SPEED_HIGH, // Supported speed
 .configurationValue = 1, // To be initialized for Configuration 1
 .interfaceNumber = 2, // Starting interface number.
 .numberOfInterfaces = 2, // Number of interfaces in this instance

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 167

 .funcDriverIndex = 1, // Function Driver instance index is 1
 .funcDriverInit = &cdcInit1, // Function Driver initialization data structure
 .driver = USB_DEVICE_CDC_FUNCTION_DRIVER // Pointer to Function Driver - Device Layer interface
functions
 },
};

Event Handling

Describes CDC Function Driver event handler registration and event handling.

Description

Registering a CDC Function Driver Event Handler

While creating USB CDC Device-based application, an event handler must be registered with the Device Layer (the Device Layer Event Handler)
and every CDC Function Driver instance (CDC Function Driver Event Handler). The CDC Function Driver event handler receives CDC and CDC
ACM events. This event handler should be registered before the USB device_layer acknowledges the SET CONFIGURATION request from the
USB Host. To ensure this, the event handler should be set in the USB_DEVICE_EVENT_CONFIGURED event that is generated by the
device_layer. While registering the CDC Function Driver event handler, the CDC Function Driver allows the application to also pass a data object
in the event handler register function. This data object gets associated with the instance of the CDC Function Driver and is returned by the CDC
Function Driver when a CDC Function Driver event occurs. The following code shows an example of how this can be done.
/* This a sample Application Device Layer Event Handler
 * Note how the CDC Function Driver event handler APP_USBDeviceCDCEventHandler()
 * is registered in the USB_DEVICE_EVENT_CONFIGURED event. The appData
 * object that is passed in the USB_DEVICE_CDC_EventHandlerSet()
 * function will be returned as the userData parameter in the
 * when the APP_USBDeviceCDCEventHandler() function is invoked */

void APP_USBDeviceEventCallBack (USB_DEVICE_EVENT event,
 void * eventData, uintptr_t context)
{
 switch (event)
 {
 case USB_DEVICE_EVENT_RESET:
 case USB_DEVICE_EVENT_DECONFIGURED:

 // USB device is reset or device is deconfigured.
 // This means that USB device layer is about to deinitialize
 // all function drivers.

 break;

 case USB_DEVICE_EVENT_CONFIGURED:

 /* check the configuration */
 if (*((uint8_t *)eventData) == 1)
 {

 /* Register the CDC Device application event handler here.
 * Note how the appData object pointer is passed as the
 * user data */

 USB_DEVICE_CDC_EventHandlerSet(USB_DEVICE_CDC_INDEX_0,
 APP_USBDeviceCDCEventHandler, (uintptr_t)&appData);

 /* mark that set configuration is complete */
 appData.isConfigured = true;
 }
 break;

 case USB_DEVICE_EVENT_SUSPENDED:

 break;

 case USB_DEVICE_EVENT_RESUMED:
 case USB_DEVICE_EVENT_ATTACHED:
 case USB_DEVICE_EVENT_DETACHED:
 case USB_DEVICE_EVENT_ERROR:

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 168

 default:
 break;
 }
}

The CDC Function Driver event handler executes in an interrupt context when the device stack is configured for Interrupt mode. In Polled mode,
the event handler is invoked in the context of the SYS_Tasks function. The application should not call computationally intensive functions, blocking
functions, functions that are not interrupt safe, or functions that poll on hardware conditions from the event handler. Doing so will affect the ability
of the USB device stack to respond to USB events and could potentially make the USB device non-compliant.

CDC Function Driver Events

The CDC Function Driver generates events to which the application must respond. Some of these events are management requests
communicated through control transfers. Therefore, the application must use the Device Layer Control Transfer routines to complete the control
transfer. Based on the generated event, the application may be required to:

• Respond with a USB_DEVICE_ControlSend function, which is completes the data stage of a Control Read Transfer

• Respond with a USB_DEVICE_ControlReceive function, which provisions the data stage of a Control Write Transfer

• Respond with a USB_DEVICE_ControlStatus function, which completes the handshake stage of the Control Transfer. The application can
either STALL or Acknowledge the handshake stage via the USB_DEVICE_ControlStatus function. The following table shows the CDC Function
Driver Control Transfer related events and the required application control transfer actions.

CDC Function Driver Control Transfer Event Required Application Action

USB_DEVICE_CDC_EVENT_SET_LINE_CODING Call USB_DEVICE_ControlReceive function with a buffer to receive
the USB_CDC_LINE_CODING type data.

USB_DEVICE_CDC_EVENT_SET_LINE_CODING Call USB_DEVICE_ControlSend function with a buffer that contains
the current USB_CDC_LINE_CODING type data.

USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE Acknowledge or stall using the USB_DEVICE_ControlStatus
function.

USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE Acknowledge or stall using the USB_DEVICE_ControlStatus
function.

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT Action not required.

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED Acknowledge or stall using the USB_DEVICE_ControlStatus
function.

Based on the type of event, the application should analyze the pData member of the event handler. This data member should be type cast to an
event specific data type. The following table shows the event and the data type to use while type casting. Note that the pData member is not
required for all events

CDC Function Driver Event Related pData type

USB_DEVICE_CDC_EVENT_SET_LINE_CODING NULL

USB_DEVICE_CDC_EVENT_GET_LINE_CODING NULL

USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE USB_CDC_CONTROL_LINE_STATE *

USB_DEVICE_CDC_EVENT_SEND_BREAK USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK *

USB_DEVICE_CDC_EVENT_WRITE_COMPLETE USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE *

USB_DEVICE_CDC_EVENT_READ_COMPLETE USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE *

USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFIC
ATION_COMPLETE
*

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT NULL

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED NULL

The possible CDC Function Driver events are described here with the required application response, event specific data, and likely follow-up
function driver event:

USB_DEVICE_CDC_EVENT_SET_LINE_CODING

Application Response: This event occurs when the host issues a SET LINE CODING command. The application must provide a
USB_CDC_LINE_CODING data structure to the device_layer to receive the line coding data that the host will provide. The application must
provide the buffer by calling the USB_DEVICE_CDC_ControlReceive function either in the event handler or in the application after returning from
the event handler. The application can use the USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT event to track completion of
the command.

Event Specific Data (pData): The pData parameter will be NULL.

Likely Follow-up event: This event will likely be followed by the USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED event.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 169

This indicates that the data was received successfully. The application must either acknowledge or stall the handshake stage of the control
transfer by calling the USB_DEVICE_ControlStatus function with the USB_DEVICE_CONTROL_STATUS_OK or
USB_DEVICE_CONTROL_STATUS_ERROR flag, respectively.

USB_DEVICE_CDC_EVENT_GET_LINE_CODING

Application Response: This event occurs when the host issues a GET LINE CODING command. The application must provide a
USB_CDC_LINE_CODING data structure to the device_layer that contains the line coding data to be provided to the Host. The application must
provide the buffer by calling the USB_DEVICE_ControlSend function either in the event handler or in the application after returning from the event
handler. The size of the buffer is indicated by the length parameter. The application can use the
USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT event to track completion of the command.

Event Specific Data (pData): The pData parameter will be NULL.

Likely Follow-up event: This event will likely be followed by the USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT event. This
indicates that the data was sent to the Host successfully.

USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE

Application Response: This event occurs when the host issues a SET CONTROL LINE STATE command. The application can then use the
USB_DEVICE_ControlStatus function to indicate acceptance of rejection of the command. The USB_DEVICE_ControlStatus function can be
called from the event handler or in the application after returning from the event handler.

Event Specific Data (pData): The application must interpret the pData parameter as a pointer to a USB_CDC_CONTROL_LINE_STATE data type
that contains the control line state data.

Likely Follow-up event: None.

USB_DEVICE_CDC_EVENT_SEND_BREAK

Application Response: This event occurs when the Host issues a SEND BREAK command. The application can then use the
USB_DEVICE_ControlStatus function to indicate acceptance or rejection of the command. The USB_DEVICE_ControlStatus function can be
called from the event handler or in the application after returning from the event handler.

Event Specific Data (pData): The application must interpret the pData parameter as a pointer to a uint16_t data type that contains the break
duration data.

Likely Follow-up event: None.

USB_DEVICE_CDC_EVENT_WRITE_COMPLETE

Application Response: This event occurs when a write operation scheduled by calling the USB_DEVICE_CDC_Write function has completed. This
event does not require the application to respond with any function calls.

Event Specific Data (pData): The pData member in the event handler will point to the USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE
data type.

Likely Follow-up event: None.

USB_DEVICE_CDC_EVENT_READ_COMPLETE

Application Response: This event occurs when a read operation scheduled by calling the USB_DEVICE_CDC_Read function has completed. This
event does not require the application to respond with any function calls.

Event Specific Data (pData): The pData member in the event handler will point to the USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE
type.

Likely Follow-up event: None.

USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE

Application Response: This event occurs when a serial state notification send scheduled by calling the
USB_DEVICE_CDC_SerialStateNotificationSend function has completed. This event does not require the application to respond with any function
calls.

Event Specific Data (pData): The pData member in the event handler will point to the
USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE data type.

Likely Follow-up event: None.

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT

Application Response: This event occurs when the data stage of a control read transfer has completed in response to the
USB_DEVICE_ControlSend function (in the USB_DEVICE_CDC_EVENT_GET_LINE_CODING event). The application must acknowledge the
handshake stage of the control transfer by calling the USB_DEVICE_ControlStatus function with the USB_DEVICE_CONTROL_STATUS_OK flag.

Event Specific Data (pData): The pData parameter will be NULL.

Likely Follow-up event: None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 170

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED

Application Response: This event occurs when the data stage of a control write transfer has completed in response to the
USB_DEVICE_ControlReceive function (in the USB_DEVICE_CDC_EVENT_SET_LINE_CODING event).

Event Specific Data (pData): The pData parameter will be NULL.

Likely Follow-up event: None.

CDC Function Driver Event Handling

The following code shows an event handling scheme example. The application always returns from the event handler with a
USB_DEVICE_CDC_EVENT_RESPONSE_NONE value.
 // This code example shows all CDC Function Driver possible events
 // and a possible scheme for handling these events. In this case
 // event responses are not deferred.

 uint16_t * breakData;
 USB_DEVICE_HANDLE usbDeviceHandle;
 USB_CDC_LINE_CODING lineCoding;
 USB_CDC_CONTROL_LINE_STATE * controlLineStateData

 USB_DEVICE_CDC_EVENT_RESPONSE USBDeviceCDCEventHandler
 (
 USB_DEVICE_CDC_INDEX instanceIndex,
 USB_DEVICE_CDC_EVENT event,
 void * data,
 uintptr_t userData
)
 {
 switch(event)
 {
 case USB_DEVICE_CDC_EVENT_SET_LINE_CODING:

 // In this case, the application should read the line coding
 // data that is sent by the host.

 USB_DEVICE_ControlReceive(usbDeviceHandle, &lineCoding,
 sizeof(USB_CDC_LINE_CODING));
 break;

 case USB_DEVICE_CDC_EVENT_GET_LINE_CODING:

 // In this case, the application should send the line coding
 // data to the host.

 USB_DEVICE_ControlSend(usbDeviceHandle, &lineCoding,
 sizeof(USB_DEVICE_CDC_LINE_CODING));
 break;

 case USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE:

 // In this case, pData should be interpreted as a
 // USB_CDC_CONTROL_LINE_STATE pointer type. The application
 // acknowledges the parameters by calling the
 // USB_DEVICE_ControlStatus() function with the
 // USB_DEVICE_CONTROL_STATUS_OK option.

 controlLineStateData = (USB_CDC_CONTROL_LINE_STATE *)pData;
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_CDC_EVENT_SEND_BREAK:

 // In this case, pData should be interpreted as a uint16_t
 // pointer type to the break duration. The application
 // acknowledges the parameters by calling the
 // USB_DEVICE_ControlStatus() function with the
 // USB_DEVICE_CONTROL_STATUS_OK option.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 171

 breakDuration = (USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK *)pData;
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT:

 // This event indicates the data send request associated with
 // the latest USB_DEVICE_ControlSend() function was
 // completed. The application could use this event to track
 // the completion of the USB_DEVICE_CDC_EVENT_GET_LINE_CODING
 // request.

 break;
 case USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 // This means that the data stage is complete. The data in
 // setLineCodingData is valid or data in getLineCodingData was
 // sent to the host. The application can now decide whether it
 // supports this data. It is not mandatory to do this in the
 // event handler.

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 case USB_DEVICE_CDC_EVENT_WRITE_COMPLETE:

 // This means USB_DEVICE_CDC_Write() operation completed.
 // The pData member will point to a
 // USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE type of data.

 break;
 case USB_DEVICE_CDC_EVENT_READ_COMPLETE:

 // This means USB_DEVICE_CDC_Read() operation completed.
 // The pData member will point to a
 // USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE type of data.

 break;

 case USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE:

 // This means USB_DEVICE_CDC_SerialStateNotification() operation
 // completed. The pData member will point to a
 // USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE type of data.

 break;

 default:
 break;
 }

 return(USB_DEVICE_CDC_EVENT_RESPONSE_NONE);
 }

Refer to the USB_DEVICE_CDC_EVENT enumeration for more details on each event.

Sending Data

Describes how to send data to the CDC Host.

Description

The application may need to send data or serial state notification to the USB CDC Host. This is done by using the USB_DEVICE_CDC_Write and
USB_DEVICE_CDC_SerialStateNotificationSend functions, respectively.

Sending Data to the USB Host

The application can send data to the Host by using the USB_DEVICE_CDC_Write function. This function returns a transfer handle that allows the
application to track the write request. The request is completed when the Host has requested the data. The completion of the write transfer is

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 172

indicated by a USB_DEVICE_CDC_EVENT_WRITE_COMPLETE event. A write request could fail if the function driver instance transfer queue is
full.

The USB_DEVICE_CDC_Write function also allows the application to send data to the host without ending the transfer. This is done by specifying
the USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_PENDING flag. The application can use this option when the data to be sent is not readily
available or when the application is memory constrained. The combination of the transfer flag and the transfer size affects how the function driver
sends the data to the host:

• If size is a multiple of maxPacketSize (the IN endpoint size), and the flag is set as
USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE, the write function will append a Zero Length Packet (ZLP) to complete the
transfer

• If size is a multiple of maxPacketSize, and the flag is set as USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING, the write
function will not append a ZLP and therefore, will not complete the transfer

• If size is greater than but not a multiple of maxPacketSize, and the flag is set as
USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE, the write function schedules (length/maxPacketSize) packets and one packet
for the residual data

• If size if greater than but not a multiple of maxPacketSize, and the flag is set as
USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function returns an error code and sets the transferHandle
parameter to USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID

• If size is less than maxPacketSize, and the flag is set as USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE, the write function
schedules one packet

• If size is less than maxPacketSize, and the flag is set as USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING, the write
function returns an error code and sets the transferHandle parameter to USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID

The following code shows a set of examples of various conditions attempting to send data with the USB_DEVICE_CDC_Write command.

Example 1
// This example assume that the maxPacketSize is 64.
USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_INDEX instance;
USB_DEVICE_CDC_RESULT writeRequestResult;
uint8_t data[34];

// In this example we want to send 34 bytes only.
writeRequestResult = USB_DEVICE_CDC_Write(instance,&transferHandle, data, 34,
 USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE);
if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

Example 2
//---
// In this example we want to send 64 bytes only.
// This will cause a ZLP to be sent.

USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_INDEX instance;
USB_DEVICE_CDC_RESULT writeRequestResult;
uint8_t data[64];

writeRequestResult = USB_DEVICE_CDC_Write(instance,&transferHandle, data, 64,
 USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE);
if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
//Do Error handling here
}

Example 3
//---
// This example will return an error because size is less
// than maxPacketSize and the flag indicates that more
// data is pending.

USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_INDEX instance;
USB_DEVICE_CDC_RESULT writeRequestResult;
uint8_t data[64];

writeRequestResult = USB_DEVICE_CDC_Write(instance,&transferHandle, data, 32,
 USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING);

Example 4

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 173

//---
// In this example we want to place a request for a 70 byte transfer.
// The 70 bytes will be sent out in a 64 byte transaction and a 6 byte
// transaction completing the transfer.

USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_INDEX instance;
USB_DEVICE_CDC_RESULT writeRequestResult;
uint8_t data[70];

writeRequestResult = USB_DEVICE_CDC_Write(instance,&transferHandle, data, 70,
 USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE);

if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
//Do Error handling here
}

Example 5
//---
// In this example we want to place a request for a 70 bytes to be sent
// but that we don't end the transfer as more data is coming. 64 bytes
// of the 70 will be sent out and the USB_DEVICE_CDC_EVENT_WRITE_COMPLETE
// with 64 bytes. This indicates that the extra 6 bytes weren't
// sent because it would cause the end of the transfer. Thus the
// user needs to add these 6 bytes back to the buffer for the next group
// of data that needs to be sent out.

USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_INDEX instance;
USB_DEVICE_CDC_RESULT writeRequestResult;
uint8_t data[70];

writeRequestResult = USB_DEVICE_CDC_Write(instance,&transferHandle, data, 70,
 USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING);

if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
//Do Error handling here
}
// The completion of the write request will be indicated by the
// USB_DEVICE_CDC_EVENT_WRITE_COMPLETE event.

Sending a Serial State Notification

The application can send a Serial State Notification by using the USB_DEVICE_CDC_SerialStateSend function. This function returns a transfer
handle that allows the application to track the read request. The request is completed when the Host has requested the data. The completion of
the transfer is indicated by a USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE event. The transfer request could fail if
the function driver transfer queue is full. The following code shows an example of how this can be done.
USB_DEVICE_CDC_INDEX instanceIndex;
USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_SERIAL_STATE_NOTIFICATION_DATA notificationData;

// This application function could possibly update the notificationData
// data structure.

APP_UpdateNotificationData(¬ificationData);

// Now send the updated notification data to the host.

result = USB_DEVICE_CDC_SerialStateDataSend(instanceIndex, &transferHandle,
 ¬ificationData);

if(USB_DEVICE_CDC_RESULT_OK != result)
{
 // Error handling here
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 174

Receiving Data

Describes how the CDC device can read data from the Host.

Description

The application can receive data from the host by using the USB_DEVICE_CDC_Read function. This function returns a transfer handle that allows
the application to track the read request. The request is completed when the Host sends the required amount or less than required amount of data.
The application must make sure that it allocates a buffer size that is at least the size or a multiple of the receive endpoint size. The return value of
the function indicates the success of the request. A read request could fail if the function driver transfer queue is full. The completion of the read
transfer is indicated by the USB_DEVICE_CDC_EVENT_READ_COMPLETE event. The request completes based on the amount of the data that
was requested and size of the transaction initiated by the Host:

• If the size parameter is not a multiple of maxPacketSize or is '0', the function returns USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID in
transferHandle and returns USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_SIZE_INVALID as a return value

• If the size parameter is a multiple of maxPacketSize and the Host sends less than maxPacketSize data in any transaction, the transfer
completes and the function driver will issue a USB_DEVICE_CDC_EVENT_READ_COMPLETE event along with the
USB_DEVICE_CDC_EVENT_READ_COMPLETE_DATA data structure

• If the size parameter is a multiple of maxPacketSize and the Host sends maxPacketSize amount of data, and total data received does not
exceed size, the function driver will wait for the next packet

The following code shows an example of the USB_DEVICE_CDC_Read function:
// Shows an example of how to read. This assumes that
// driver was opened successfully.

USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_RESULT readRequestResult;
USB_DEVICE_CDC_HANDLE instanceHandle;

readRequestResult = USB_DEVICE_CDC_Read(instanceHandle,
 &transferHandle, data, 128);

if(USB_DEVICE_CDC_RESULT_OK != readRequestResult)
{
 //Do Error handling here
}

// The completion of the read request will be indicated by the
// USB_DEVICE_CDC_EVENT_READ_COMPLETE event.

Configuring the Library

Describes how to configure the CDC Function Driver.

Macros

Name Description

USB_DEVICE_CDC_INSTANCES_NUMBER Specifies the number of CDC instances.

USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED Specifies the combined queue size of all CDC instances.

Description

The application designer must specify the following configuration parameters while using the CDC Function Driver. The configuration macros that
implement these parameters must be located in the system_config.h file in the application project and a compiler include path (to point to the
folder that contains this file) should be specified.

USB_DEVICE_CDC_INSTANCES_NUMBER Macro

Specifies the number of CDC instances.

File

usb_device_cdc_config_template.h

C
#define USB_DEVICE_CDC_INSTANCES_NUMBER

Description

USB device CDC Maximum Number of instances

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 175

This macro defines the number of instances of the CDC Function Driver. For example, if the application needs to implement two instances of the
CDC Function Driver (to create two COM ports) on one USB Device, the macro should be set to 2. Note that implementing a USB Device that
features multiple CDC interfaces requires appropriate USB configuration descriptors.

Remarks

None.

USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED Macro

Specifies the combined queue size of all CDC instances.

File

usb_device_cdc_config_template.h

C
#define USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED

Description

USB device CDC Combined Queue Size

This macro defines the number of entries in all queues in all instances of the CDC function driver. This value can be obtained by adding up the
read and write queue sizes of each CDC Function driver instance. In a simple single instance USB CDC device application, that does not require
buffer queuing and serial state notification, the USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED macro can be set to 2. Consider a case with
two CDC function driver instances, CDC 1 has a read queue size of 2 and write queue size of 3, CDC 2 has a read queue size of 4 and write
queue size of 1, this macro should be set to 10 (2 +3 + 4 + 1).

Remarks

None.

Building the Library

Describes the files to be included in the project while using the CDC Function Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_device_cdc.h This header file should be included in any .c file that accesses the USB Device CDC Function Driver API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_device_cdc.c This file implements the CDC Data Interface and Communications interface and should be
included in the project if the CDC Device function is desired.

/src/dynamic/usb_device_cdc_acm.c This file implements the CDC-ACM layer and should be included in the project if the CDC Device
function is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 176

Module Dependencies

The USB CDC Device Library depends on the following modules:

• USB Device Layer Library

Library Interface

a) Functions

Name Description

USB_DEVICE_CDC_EventHandlerSet This function registers a event handler for the specified CDC function driver
instance.

USB_DEVICE_CDC_Read This function requests a data read from the USB Device CDC Function Driver
Layer.

USB_DEVICE_CDC_Write This function requests a data write to the USB Device CDC Function Driver
Layer.

USB_DEVICE_CDC_SerialStateNotificationSend This function schedules a request to send serial state notification to the host.

b) Data Types and Constants

Name Description

USB_DEVICE_CDC_EVENT USB Device CDC Function Driver Events

USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE USB Device CDC Function Driver Read and
Write Complete Event Data.

USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE USB Device CDC Function Driver Read and
Write Complete Event Data.

USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE USB Device CDC Function Driver Read and
Write Complete Event Data.

USB_DEVICE_CDC_EVENT_HANDLER USB Device CDC Event Handler Function
Pointer Type.

USB_DEVICE_CDC_EVENT_RESPONSE USB Device CDC Function Driver Event
Callback Response Type

USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK USB Device CDC Function Driver Send
Break Event Data

USB_DEVICE_CDC_INDEX USB Device CDC Function Driver Index

USB_DEVICE_CDC_INIT USB Device CDC Function Driver
Initialization Data Structure

USB_DEVICE_CDC_RESULT USB Device CDC Function Driver USB
Device CDC Result enumeration.

USB_DEVICE_CDC_TRANSFER_FLAGS USB Device CDC Function Driver Transfer
Flags

USB_DEVICE_CDC_TRANSFER_HANDLE USB Device CDC Function Driver Transfer
Handle Definition.

USB_DEVICE_CDC_EVENT_RESPONSE_NONE USB Device CDC Function Driver Event
Handler Response Type None.

USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID USB Device CDC Function Driver Invalid
Transfer Handle Definition.

USB_DEVICE_CDC_FUNCTION_DRIVER USB Device CDC Function Driver Function
pointer

USB_DEVICE_CDC_INDEX_0 Use this to specify CDC Function Driver
Instance 0

USB_DEVICE_CDC_INDEX_1 Use this to specify CDC Function Driver
Instance 1

USB_DEVICE_CDC_INDEX_2 Use this to specify CDC Function Driver
Instance 2

USB_DEVICE_CDC_INDEX_3 Use this to specify CDC Function Driver
Instance 3

USB_DEVICE_CDC_INDEX_4 Use this to specify CDC Function Driver
Instance 4

USB_DEVICE_CDC_INDEX_5 Use this to specify CDC Function Driver
Instance 5

USB_DEVICE_CDC_INDEX_6 Use this to specify CDC Function Driver
Instance 6

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 177

USB_DEVICE_CDC_INDEX_7 Use this to specify CDC Function Driver
Instance 7

Description

This section describes the Application Programming Interface (API) functions of the USB CDC Device Library.

Refer to each section for a detailed description.

a) Functions

USB_DEVICE_CDC_EventHandlerSet Function

This function registers a event handler for the specified CDC function driver instance.

File

usb_device_cdc.h

C
USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_EventHandlerSet(USB_DEVICE_CDC_INDEX instanceIndex,
USB_DEVICE_CDC_EVENT_HANDLER eventHandler, uintptr_t context);

Returns

USB_DEVICE_CDC_RESULT_OK - The operation was successful USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_INVALID - The specified
instance does not exist USB_DEVICE_CDC_RESULT_ERROR_PARAMETER_INVALID - The eventHandler parameter is NULL

Description

This function registers a event handler for the specified CDC function driver instance. This function should be called by the client when it receives
a SET CONFIGURATION event from the device layer. A event handler must be registered for function driver to respond to function driver specific
commands. If the event handler is not registered, the device layer will stall function driver specific commands and the USB device may not function.

Remarks

None.

Preconditions

This function should be called when the function driver has been initialized as a result of a set configuration.

Example
// This code snippet shows an example registering an event handler. Here
// the application specifies the context parameter as a pointer to an
// application object (appObject) that should be associated with this
// instance of the CDC function driver.

// Application states
typedef enum
{
 //Application's state machine's initial state.
 APP_STATE_INIT=0,
 APP_STATE_SERVICE_TASKS,
 APP_STATE_WAIT_FOR_CONFIGURATION,
} APP_STATES;

USB_DEVICE_HANDLE usbDeviceHandle;

APP_STATES appState;

// Get Line Coding Data
USB_CDC_LINE_CODING getLineCodingData;

// Control Line State
USB_CDC_CONTROL_LINE_STATE controlLineStateData;

// Set Line Coding Data
USB_CDC_LINE_CODING setLineCodingData;

USB_DEVICE_CDC_RESULT result;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 178

USB_DEVICE_CDC_EVENT_RESPONSE APP_USBDeviceCDCEventHandler
(
 USB_DEVICE_CDC_INDEX instanceIndex ,
 USB_DEVICE_CDC_EVENT event ,
 void* pData,
 uintptr_t context
)
{
 // Event Handling comes here

 switch(event)
 {
 case USB_DEVICE_CDC_EVENT_GET_LINE_CODING:
 // This means the host wants to know the current line
 // coding. This is a control transfer request. Use the
 // USB_DEVICE_ControlSend() function to send the data to
 // host.

 USB_DEVICE_ControlSend(usbDeviceHandle,
 &getLineCodingData, sizeof(USB_CDC_LINE_CODING));

 break;

 case USB_DEVICE_CDC_EVENT_SET_LINE_CODING:

 // This means the host wants to set the line coding.
 // This is a control transfer request. Use the
 // USB_DEVICE_ControlReceive() function to receive the
 // data from the host

 USB_DEVICE_ControlReceive(usbDeviceHandle,
 &setLineCodingData, sizeof(USB_CDC_LINE_CODING));

 break;

 case USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE:

 // This means the host is setting the control line state.
 // Read the control line state. We will accept this request
 // for now.
 controlLineStateData.dtr = ((USB_CDC_CONTROL_LINE_STATE *)pData)->dtr;
 controlLineStateData.carrier = ((USB_CDC_CONTROL_LINE_STATE *)pData)->carrier;
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 // The data stage of the last control transfer is
 // complete. For now we accept all the data

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT:

 // This means the GET LINE CODING function data is valid. We dont
 // do much with this data in this demo.
 break;

 case USB_DEVICE_CDC_EVENT_SEND_BREAK:

 // This means that the host is requesting that a break of the
 // specified duration be sent.
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 179

 case USB_DEVICE_CDC_EVENT_READ_COMPLETE:
 // This means that the host has sent some data
 break;

 case USB_DEVICE_CDC_EVENT_WRITE_COMPLETE:
 // This means that the host has sent some data
 break;

 default:
 break;
 }

 return USB_DEVICE_CDC_EVENT_RESPONSE_NONE;
}

// This is the application device layer event handler function.

USB_DEVICE_EVENT_RESPONSE APP_USBDeviceEventHandler
(
 USB_DEVICE_EVENT event,
 void * pData,
 uintptr_t context
)
{
 USB_SETUP_PACKET * setupPacket;
 switch(event)
 {
 case USB_DEVICE_EVENT_POWER_DETECTED:
 // This event in generated when VBUS is detected. Attach the device
 USB_DEVICE_Attach(usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_POWER_REMOVED:
 // This event is generated when VBUS is removed. Detach the device
 USB_DEVICE_Detach (usbDeviceHandle);
 break;

 case USB_DEVICE_EVENT_CONFIGURED:
 // This event indicates that Host has set Configuration in the Device.
 // Register CDC Function driver Event Handler.
 USB_DEVICE_CDC_EventHandlerSet(USB_DEVICE_CDC_INDEX_0, APP_USBDeviceCDCEventHandler,
(uintptr_t)0);
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST:
 // This event indicates a Control transfer setup stage has been completed.
 setupPacket = (USB_SETUP_PACKET *)pData;

 // Parse the setup packet and respond with a USB_DEVICE_ControlSend(),
 // USB_DEVICE_ControlReceive or USB_DEVICE_ControlStatus().

 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT:
 // This event indicates that a Control transfer Data has been sent to Host.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:
 // This event indicates that a Control transfer Data has been received from Host.
 break;

 case USB_DEVICE_EVENT_CONTROL_TRANSFER_ABORTED:
 // This event indicates a control transfer was aborted.
 break;

 case USB_DEVICE_EVENT_SUSPENDED:
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 180

 case USB_DEVICE_EVENT_RESUMED:
 break;

 case USB_DEVICE_EVENT_ERROR:
 break;

 case USB_DEVICE_EVENT_RESET:
 break;

 case USB_DEVICE_EVENT_SOF:
 // This event indicates an SOF is detected on the bus. The USB_DEVICE_SOF_EVENT_ENABLE
 // macro should be defined to get this event.
 break;
 default:
 break;
 }
}

void APP_Tasks (void)
{
 // Check the application's current state.
 switch (appState)
 {
 // Application's initial state.
 case APP_STATE_INIT:
 // Open the device layer
 usbDeviceHandle = USB_DEVICE_Open(USB_DEVICE_INDEX_0,
 DRV_IO_INTENT_READWRITE);

 if(usbDeviceHandle != USB_DEVICE_HANDLE_INVALID)
 {
 // Register a callback with device layer to get event notification
 USB_DEVICE_EventHandlerSet(usbDeviceHandle,
 APP_USBDeviceEventHandler, 0);
 appState = APP_STATE_WAIT_FOR_CONFIGURATION;
 }
 else
 {
 // The Device Layer is not ready to be opened. We should try
 // gain later.
 }
 break;

 case APP_STATE_SERVICE_TASKS:
 break;

 // The default state should never be executed.
 default:
 break;
 }
}

Parameters

Parameters Description

instance Instance of the CDC Function Driver.

eventHandler A pointer to event handler function.

context Application specific context that is returned in the event handler.

Function

USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_EventHandlerSet

(

USB_DEVICE_CDC_INDEX instance

USB_DEVICE_CDC_EVENT_HANDLER eventHandler

uintptr_t context

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 181

USB_DEVICE_CDC_Read Function

This function requests a data read from the USB Device CDC Function Driver Layer.

File

usb_device_cdc.h

C
USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_Read(USB_DEVICE_CDC_INDEX instanceIndex,
USB_DEVICE_CDC_TRANSFER_HANDLE * transferHandle, void * data, size_t size);

Returns

USB_DEVICE_CDC_RESULT_OK - The read request was successful. transferHandle contains a valid transfer handle.

USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue is full. The write request could not be added.

USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_SIZE_INVALID - The specified transfer size was not a multiple of endpoint size or is 0.

USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function requests a data read from the USB Device CDC Function Driver Layer. The function places a requests with driver, the request will
get serviced as data is made available by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination of
the request is indicated by the USB_DEVICE_CDC_EVENT_READ_COMPLETE event. The amount of data read and the transfer handle
associated with the request is returned along with the event in the pData parameter of the event handler. The transfer handle expires when event
handler for the USB_DEVICE_CDC_EVENT_READ_COMPLETE exits. If the read request could not be accepted, the function returns an error
code and transferHandle will contain the value USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID.

If the size parameter is not a multiple of maxPacketSize or is 0, the function returns USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID in
transferHandle and returns an error code as a return value. If the size parameter is a multiple of maxPacketSize and the host send less than
maxPacketSize data in any transaction, the transfer completes and the function driver will issue a
USB_DEVICE_CDC_EVENT_READ_COMPLETE event along with the USB_DEVICE_CDC_EVENT_READ_COMPLETE_DATA data structure. If
the size parameter is a multiple of maxPacketSize and the host sends maxPacketSize amount of data, and total data received does not exceed
size, then the function driver will wait for the next packet.

Remarks

While the using the CDC Function Driver with the PIC32MZ USB module, the receive buffer provided to the USB_DEVICE_CDC_Read function
should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The function driver should have been configured.

Example
// Shows an example of how to read. This assumes that
// driver was opened successfully.

USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_RESULT readRequestResult;
USB_DEVICE_CDC_HANDLE instanceHandle;

readRequestResult = USB_DEVICE_CDC_Read(instanceHandle,
 &transferHandle, data, 128);

if(USB_DEVICE_CDC_RESULT_OK != readRequestResult)
{
 //Do Error handling here
}

// The completion of the read request will be indicated by the
// USB_DEVICE_CDC_EVENT_READ_COMPLETE event.

Parameters

Parameters Description

instance USB Device CDC Function Driver instance.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 182

transferHandle Pointer to a USB_DEVICE_CDC_TRANSFER_HANDLE type of variable. This variable will
contain the transfer handle in case the read request was successful.

data pointer to the data buffer where read data will be stored.

size Size of the data buffer. Refer to the description section for more details on how the size
affects the transfer.

Function

USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_Read

(

USB_DEVICE_CDC_INDEX instance,

USB_CDC_DEVICE_TRANSFER_HANDLE * transferHandle,

void * data,

size_t size

);

USB_DEVICE_CDC_Write Function

This function requests a data write to the USB Device CDC Function Driver Layer.

File

usb_device_cdc.h

C
USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_Write(USB_DEVICE_CDC_INDEX instanceIndex,
USB_DEVICE_CDC_TRANSFER_HANDLE * transferHandle, const void * data, size_t size,
USB_DEVICE_CDC_TRANSFER_FLAGS flags);

Returns

USB_DEVICE_CDC_RESULT_OK - The write request was successful. transferHandle contains a valid transfer handle.

USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue is full. The write request could not be added.

USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_SIZE_INVALID - The specified transfer size and flag parameter are invalid.

USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function requests a data write to the USB Device CDC Function Driver Layer. The function places a requests with driver, the request will get
serviced as data is requested by the USB Host. A handle to the request is returned in the transferHandle parameter. The termination of the request
is indicated by the USB_DEVICE_CDC_EVENT_WRITE_COMPLETE event. The amount of data written and the transfer handle associated with
the request is returned along with the event in writeCompleteData member of the pData parameter in the event handler. The transfer handle
expires when event handler for the USB_DEVICE_CDC_EVENT_WRITE_COMPLETE exits. If the read request could not be accepted, the
function returns an error code and transferHandle will contain the value USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID.

The behavior of the write request depends on the flags and size parameter. If the application intends to send more data in a request, then it should
use the USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING flag. If there is no more data to be sent in the request, the
application must use the USB_DEVICE_CDC_EVENT_WRITE_COMPLETE flag. This is explained in more detail here:

• If size is a multiple of maxPacketSize and flag is set as

USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE, the write function will append a Zero Length Packet (ZLP) to complete the
transfer.

• If size is a multiple of maxPacketSize and flag is set as

USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function will not append a ZLP and hence will not complete the
transfer.

• If size is greater than but not a multiple of maxPacketSize and flags is

set as USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE, the write function returns an error code and sets the transferHandle
parameter to USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID.

• If size is greater than but not a multiple of maxPacketSize and flags is

set as USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function fails and return an error code and sets the
transferHandle parameter to USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 183

• If size is less than maxPacketSize and flag is set as

USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE, the write function schedules one packet.

• If size is less than maxPacketSize and flag is set as

USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function returns an error code and sets the transferHandle
parameter to USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID.

• If size is 0 and the flag is set

USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE, the function driver will schedule a Zero Length Packet.

Completion of the write transfer is indicated by the USB_DEVICE_CDC_EVENT_WRITE_COMPLETE event. The amount of data written along
with the transfer handle is returned along with the event.

Remarks

While the using the CDC Function Driver with the PIC32MZ USB module, the transmit buffer provided to the USB_DEVICE_CDC_Write function
should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The function driver should have been configured.

Example
// Below is a set of examples showing various conditions trying to
// send data with the Write command.
//
// This assumes that driver was opened successfully.
// Assume maxPacketSize is 64.

USB_DEVICE_CDC_TRANSFER_HANDLE transferHandle;
USB_DEVICE_CDC_RESULT writeRequestHandle;
USB_DEVICE_CDC_INDEX instance;

//---
// In this example we want to send 34 bytes only.

writeRequestResult = USB_DEVICE_CDC_Write(instance,
 &transferHandle, data, 34,
 USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE);

if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

//---
// In this example we want to send 64 bytes only.
// This will cause a ZLP to be sent.

writeRequestResult = USB_DEVICE_CDC_Write(instance,
 &transferHandle, data, 64,
 USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE);

if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

//---
// This example will return an error because size is less
// than maxPacketSize and the flag indicates that more
// data is pending.

writeRequestResult = USB_DEVICE_CDC_Write(instanceHandle,
 &transferHandle, data, 32,
 USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 184

//---
// In this example we want to place a request for a 70 byte transfer.
// The 70 bytes will be sent out in a 64 byte transaction and a 6 byte
// transaction completing the transfer.

writeRequestResult = USB_DEVICE_CDC_Write(instanceHandle,
 &transferHandle, data, 70,
 USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE);

if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

//---
// In this example we want to place a request for a 70 bytes and the flag
// is set to data pending. This will result in an error. The size of data
// when the data pending flag is specified should be a multiple of the
// endpoint size.

writeRequestResult = USB_DEVICE_CDC_Write(instanceHandle,
 &transferHandle, data, 70,
 USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING);

if(USB_DEVICE_CDC_RESULT_OK != writeRequestResult)
{
 //Do Error handling here
}

// The completion of the write request will be indicated by the
// USB_DEVICE_CDC_EVENT_WRITE_COMPLETE event.

Parameters

Parameters Description

instance USB Device CDC Function Driver instance.

transferHandle Pointer to a USB_DEVICE_CDC_TRANSFER_HANDLE type of variable. This variable will
contain the transfer handle in case the write request was successful.

data pointer to the data buffer that contains the data to written.

size Size of the data buffer. Refer to the description section for more details on how the size
affects the transfer.

flags Flags that indicate whether the transfer should continue or end. Refer to the description for
more details.

Function

USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_Write

(

USB_DEVICE_CDC_INDEX instance,

USB_CDC_DEVICE_TRANSFER_HANDLE * transferHandle,

const void * data,

size_t size,

USB_DEVICE_CDC_TRANSFER_FLAGS flags

);

USB_DEVICE_CDC_SerialStateNotificationSend Function

This function schedules a request to send serial state notification to the host.

File

usb_device_cdc.h

C
USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_SerialStateNotificationSend(USB_DEVICE_CDC_INDEX instanceIndex,
USB_DEVICE_CDC_TRANSFER_HANDLE * transferHandle, USB_CDC_SERIAL_STATE * notificationData);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 185

Returns

USB_DEVICE_CDC_RESULT_OK - The request was successful. transferHandle contains a valid transfer handle.

USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_QUEUE_FULL - Internal request queue is full. The request could not be added.

USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function places a request to send serial state notification data to the host. The function will place the request with the driver, the request will
get serviced when the data is requested by the USB host. A handle to the request is returned in the transferHandle parameter. The termination of
the request is indicated by the USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE event. The amount of data
transmitted and the transfer handle associated with the request is returned along with the event in the serialStateNotificationCompleteData
member of pData parameter of the event handler. The transfer handle expires when the event handler for the
USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE event exits. If the send request could not be accepted, the function
returns an error code and transferHandle will contain the value USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID.

Remarks

While the using the CDC Function Driver with the PIC32MZ USB module, the notification data buffer provided to the
USB_DEVICE_CDC_SerialStateNotificationSend function should be placed in coherent memory and aligned at a 16 byte boundary. This can be
done by declaring the buffer using the __attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

The function driver should have been configured

Example
USB_CDC_SERIAL_STATE notificationData;

// This application function could possibly update the notificationData
// data structure.

APP_UpdateNotificationData(¬ificationData);

// Now send the updated notification data to the host.

result = USB_DEVICE_CDC_SerialStateNotificationSend
 (instanceIndex, &transferHandle, ¬ificationData);

if(USB_DEVICE_CDC_RESULT_OK != result)
{
 // Error handling here. The transferHandle will contain
 // USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID in this case.
}

Parameters

Parameters Description

instance USB Device CDC Function Driver instance.

transferHandle Pointer to a output only variable that will contain transfer handle.

notificationData USB_DEVICE_CDC_SERIAL_STATE_NOTIFICATION type of notification data to be sent to
the host.

Function

USB_DEVICE_CDC_RESULT USB_DEVICE_CDC_SerialStateNotificationSend

(

USB_DEVICE_CDC_INDEX instanceIndex,

USB_DEVICE_CDC_TRANSFER_HANDLE * transferHandle,

USB_CDC_SERIAL_STATE * notificationData

);

b) Data Types and Constants

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 186

USB_DEVICE_CDC_EVENT Enumeration

USB Device CDC Function Driver Events

File

usb_device_cdc.h

C
typedef enum {
 USB_DEVICE_CDC_EVENT_SET_LINE_CODING,
 USB_DEVICE_CDC_EVENT_GET_LINE_CODING,
 USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE,
 USB_DEVICE_CDC_EVENT_SEND_BREAK,
 USB_DEVICE_CDC_EVENT_WRITE_COMPLETE,
 USB_DEVICE_CDC_EVENT_READ_COMPLETE,
 USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE,
 USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT,
 USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED,
 USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_ABORTED
} USB_DEVICE_CDC_EVENT;

Members

Members Description

USB_DEVICE_CDC_EVENT_SET_LINE_CODING This event occurs when the host issues a SET LINE CODING
command. The application must provide a
USB_CDC_LINE_CODING data structure to the device layer to
receive the line coding data that the host will provide. The
application must provide the buffer by calling the
USB_DEVICE_ControlReceive function either in the event handler
or in the application, after returning from the event handler
function. The pData parameter will be NULL. The application can
use the
USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RE
CEIVED
event to track completion of the command.

USB_DEVICE_CDC_EVENT_GET_LINE_CODING This event occurs when the host issues a GET LINE CODING
command. The application must provide a
USB_CDC_LINE_CODING data structure to the device layer that
contains the line coding data to be provided to the host. The
application must provide the buffer by calling the
USB_DEVICE_ControlSend function either in the event handler or
in the application, after returning from the event handler function.
The application can use the
USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SE
NT
event to track completion of the command.

USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE This event occurs when the host issues a SET CONTROL LINE
STATE command. The application must interpret the pData
parameter as USB_CDC_CONTROL_LINE_STATE pointer type.
This data structure contains the control line state data. The
application can then use the USB_DEVICE_ControlStatus
function to indicate acceptance or rejection of the command. The
USB_DEVICE_ControlStatus function can be called from the
event handler or in the application, after returning from the event
handler.

USB_DEVICE_CDC_EVENT_SEND_BREAK This event occurs when the host issues a SEND BREAK
command. The application must interpret the pData parameter as
a USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK pointer
type. This data structure contains the break duration data. The
application can then use the USB_DEVICE_ControlStatus
function to indicate acceptance of rejection of the command. The
USB_DEVICE_ControlStatus function can be called from the
event handler or in the application, after returning from the event
handler.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 187

USB_DEVICE_CDC_EVENT_WRITE_COMPLETE This event occurs when a write operation scheduled by calling the
USB_DEVICE_CDC_Write function has completed. The pData
parameter should be interpreted as a
USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE pointer
type. This will contain the transfer handle associated with the
completed write transfer and the amount of data written.

USB_DEVICE_CDC_EVENT_READ_COMPLETE This event occurs when a read operation scheduled by calling the
USB_DEVICE_CDC_Read function has completed. The pData
parameter should be interpreted as a
USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE pointer
type. This will contain the transfer handle associated with the
completed read transfer and the amount of data read.

USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE This event occurs when a serial state notification scheduled using
the USB_DEVICE_CDC_SerialStateNotificationSend function,
was sent to the host. The pData parameter should be interpreted
as a
USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICA
TION_COMPLETE
pointer type and will contain the transfer handle associated with
the completed send transfer and the amount of data sent.

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT This event occurs when the data stage of a control read transfer
has completed. This event would occur after the application uses
the USB_DEVICE_ControlSend function to respond to the
USB_DEVICE_CDC_EVENT_GET_LINE_CODING event.

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED This event occurs when the data stage of a control write transfer
has completed. This would occur after the application would
respond with a USB_DEVICE_ControlReceive function to the
USB_DEVICE_CDC_EVENT_SET_LINE_CODING_EVENT and
the data has been received. The application should respond to
this event by calling the USB_DEVICE_ControlStatus function
with the USB_DEVICE_CONTROL_STATUS_OK flag to
acknowledge the received data or the
USB_DEVICE_CONTROL_STATUS_ERROR flag to reject it and
stall the control transfer

USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_ABORTED This event occurs when a control transfer that this instance of
CDC function driver responded to was aborted by the host. The
application can use this event to reset its CDC function driver
related control transfer state machine

Description

USB Device CDC Function Driver Events

These events are specific to the USB Device CDC Function Driver instance. Each event description contains details about the parameters passed
with event. The contents of pData depends on the generated event.

Events associated with the CDC Function Driver Specific Control Transfers require application response. The application should respond to these
events by using the USB_DEVICE_ControlReceive, USB_DEVICE_ControlSend and USB_DEVICE_ControlStatus functions.

Calling the USB_DEVICE_ControlStatus function with a USB_DEVICE_CONTROL_STATUS_ERROR will stall the control transfer request. The
application would do this if the control transfer request is not supported. Calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_OK will complete the status stage of the control transfer request. The application would do this if the control
transfer request is supported

The following code snippet shows an example of a possible event handling scheme.
// This code example shows all CDC Function Driver events
// and a possible scheme for handling these events. In this example
// event responses are not deferred. usbDeviceHandle is obtained while
// opening the USB Device Layer through the USB_DEVICE_Open function.

uint16_t * breakData;
USB_DEVICE_HANDLE usbDeviceHandle;
USB_CDC_LINE_CODING lineCoding;
USB_CDC_CONTROL_LINE_STATE * controlLineStateData;

USB_DEVICE_CDC_EVENT_RESPONSE USBDeviceCDCEventHandler
(
 USB_DEVICE_CDC_INDEX instanceIndex,
 USB_DEVICE_CDC_EVENT event,
 void * pData,
 uintptr_t userData
)
{
 switch(event)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 188

 {
 case USB_DEVICE_CDC_EVENT_SET_LINE_CODING:

 // In this case, the application should read the line coding
 // data that is sent by the host. The application must use the
 // USB_DEVICE_ControlReceive function to receive the
 // USB_CDC_LINE_CODING type of data.

 USB_DEVICE_ControlReceive(usbDeviceHandle, &lineCoding, sizeof(USB_CDC_LINE_CODING));
 break;

 case USB_DEVICE_CDC_EVENT_GET_LINE_CODING:

 // In this case, the application should send the line coding
 // data to the host. The application must send the
 // USB_DEVICE_ControlSend function to send the data.

 USB_DEVICE_ControlSend(usbDeviceHandle, &lineCoding, sizeof(USB_CDC_LINE_CODING));
 break;

 case USB_DEVICE_CDC_EVENT_SET_CONTROL_LINE_STATE:

 // In this case, pData should be interpreted as a
 // USB_CDC_CONTROL_LINE_STATE pointer type. The application
 // acknowledges the parameters by calling the
 // USB_DEVICE_ControlStatus function with the
 // USB_DEVICE_CONTROL_STATUS_OK option.

 controlLineStateData = (USB_CDC_CONTROL_LINE_STATE *)pData;
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CDC_EVENT_SEND_BREAK:

 // In this case, pData should be interpreted as a uint16_t
 // pointer type to the break duration. The application
 // acknowledges the parameters by calling the
 // USB_DEVICE_ControlStatus() function with the
 // USB_DEVICE_CONTROL_STATUS_OK option.

 breakDuration = (uint16_t *)pData;
 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_SENT:

 // This event indicates the data send request associated with
 // the latest USB_DEVICE_ControlSend function was
 // completed. The application could use this event to track
 // the completion of the USB_DEVICE_CDC_EVENT_GET_LINE_CODING
 // request.

 break;

 case USB_DEVICE_CDC_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 // This event indicates the data that was requested using the
 // USB_DEVICE_ControlReceive function is available for the
 // application to peruse. The application could use this event
 // to track the completion of the
 // USB_DEVICE_CDC_EVENT_SET_LINE_CODING_EVENT event. The
 // application can then either accept the line coding data (as
 // shown here) or decline it by using the
 // USB_DEVICE_CONTROL_STATUS_ERROR flag in the
 // USB_DEVICE_ControlStatus function.

 USB_DEVICE_ControlStatus(usbDeviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 189

 case USB_DEVICE_CDC_EVENT_WRITE_COMPLETE:

 // This event indicates that a CDC Write Transfer request has
 // completed. pData should be interpreted as a
 // USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE pointer type. This
 // contains the transfer handle of the write transfer that
 // completed and amount of data that was written.

 break;

 case USB_DEVICE_CDC_EVENT_READ_COMPLETE:

 // This event indicates that a CDC Read Transfer request has
 // completed. pData should be interpreted as a
 // USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE pointer type. This
 // contains the transfer handle of the read transfer that
 // completed and amount of data that was written.

 break;

 case USB_DEVICE_CDC_EVENT_SERIAL_STATE_NOTIFICATION_COMPLETE:

 // This event indicates that a CDC Serial State Notification
 // Send request has completed. pData should be interpreted as a
 // USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE
 // pointer type. This will contain the transfer handle
 // associated with the send request and the amount of data that
 // was sent.

 break

 default:
 break;
 }

 return(USB_DEVICE_CDC_EVENT_RESPONSE_NONE);
}

Remarks

The USB Device CDC control transfer related events allow the application to defer responses. This allows the application some time to obtain the
response data rather than having to respond to the event immediately. Note that a USB host will typically wait for event response for a finite time
duration before timing out and canceling the event and associated transactions. Even when deferring response, the application must respond
promptly if such time outs have to be avoided.

USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE Structure

USB Device CDC Function Driver Read and Write Complete Event Data.

File

usb_device_cdc.h

C
typedef struct {
 USB_DEVICE_CDC_TRANSFER_HANDLE handle;
 size_t length;
 USB_DEVICE_CDC_RESULT status;
} USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE, USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE,
USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE;

Members

Members Description

USB_DEVICE_CDC_TRANSFER_HANDLE
handle;

Transfer handle associated with this

• read or write request
size_t length; Indicates the amount of data (in bytes) that was

• read or written
USB_DEVICE_CDC_RESULT status; Completion status of the transfer

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 190

Description

USB Device CDC Function Driver Read and Write Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_CDC_EVENT_READ_COMPLETE and
USB_DEVICE_CDC_EVENT_WRITE_COMPLETE events.

Remarks

None.

USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE Structure

USB Device CDC Function Driver Read and Write Complete Event Data.

File

usb_device_cdc.h

C
typedef struct {
 USB_DEVICE_CDC_TRANSFER_HANDLE handle;
 size_t length;
 USB_DEVICE_CDC_RESULT status;
} USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE, USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE,
USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE;

Members

Members Description

USB_DEVICE_CDC_TRANSFER_HANDLE
handle;

Transfer handle associated with this

• read or write request
size_t length; Indicates the amount of data (in bytes) that was

• read or written
USB_DEVICE_CDC_RESULT status; Completion status of the transfer

Description

USB Device CDC Function Driver Read and Write Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_CDC_EVENT_READ_COMPLETE and
USB_DEVICE_CDC_EVENT_WRITE_COMPLETE events.

Remarks

None.

USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE Structure

USB Device CDC Function Driver Read and Write Complete Event Data.

File

usb_device_cdc.h

C
typedef struct {
 USB_DEVICE_CDC_TRANSFER_HANDLE handle;
 size_t length;
 USB_DEVICE_CDC_RESULT status;
} USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE, USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE,
USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE;

Members

Members Description

USB_DEVICE_CDC_TRANSFER_HANDLE
handle;

Transfer handle associated with this

• read or write request
size_t length; Indicates the amount of data (in bytes) that was

• read or written
USB_DEVICE_CDC_RESULT status; Completion status of the transfer

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 191

Description

USB Device CDC Function Driver Read and Write Complete Event Data.

This data type defines the data structure returned by the driver along with USB_DEVICE_CDC_EVENT_READ_COMPLETE and
USB_DEVICE_CDC_EVENT_WRITE_COMPLETE events.

Remarks

None.

USB_DEVICE_CDC_EVENT_HANDLER Type

USB Device CDC Event Handler Function Pointer Type.

File

usb_device_cdc.h

C
typedef USB_DEVICE_CDC_EVENT_RESPONSE (* USB_DEVICE_CDC_EVENT_HANDLER)(USB_DEVICE_CDC_INDEX instanceIndex,
USB_DEVICE_CDC_EVENT event, void * pData, uintptr_t context);

Description

USB Device CDC Event Handler Function Pointer Type.

This data type defines the required function signature of the USB Device CDC Function Driver event handling callback function. The application
must register a pointer to a CDC Function Driver events handling function whose function signature (parameter and return value types) match the
types specified by this function pointer in order to receive event call backs from the CDC Function Driver. The function driver will invoke this
function with event relevant parameters. The description of the event handler function parameters is given here.

instanceIndex - Instance index of the CDC Function Driver that generated the event.

event - Type of event generated.

pData - This parameter should be type cast to an event specific pointer type based on the event that has occurred. Refer to the
USB_DEVICE_CDC_EVENT enumeration description for more details.

context - Value identifying the context of the application that was registered along with the event handling function.

Remarks

The event handler function executes in the USB interrupt context when the USB Device Stack is configured for interrupt based operation. It is not
advisable to call blocking functions or computationally intensive functions in the event handler. Where the response to a control transfer related
event requires extended processing, the response to the control transfer should be deferred and the event handler should be allowed to complete
execution.

USB_DEVICE_CDC_EVENT_RESPONSE Type

USB Device CDC Function Driver Event Callback Response Type

File

usb_device_cdc.h

C
typedef void USB_DEVICE_CDC_EVENT_RESPONSE;

Description

USB Device CDC Function Driver Event Handler Response Type

This is the return type of the CDC Function Driver event handler.

Remarks

None.

USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK Structure

USB Device CDC Function Driver Send Break Event Data

File

usb_device_cdc.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 192

C
typedef struct {
 uint16_t breakDuration;
} USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK;

Members

Members Description

uint16_t breakDuration; Duration of break signal

Description

USB Device CDC Function Driver Send Break Event Data

This data type defines the data structure returned by the driver along with USB_DEVICE_CDC_EVENT_SEND_BREAK event.

Remarks

None.

USB_DEVICE_CDC_INDEX Type

USB Device CDC Function Driver Index

File

usb_device_cdc.h

C
typedef uintptr_t USB_DEVICE_CDC_INDEX;

Description

USB Device CDC Function Driver Index

This uniquely identifies a CDC Function Driver instance.

Remarks

None.

USB_DEVICE_CDC_INIT Structure

USB Device CDC Function Driver Initialization Data Structure

File

usb_device_cdc.h

C
typedef struct {
 size_t queueSizeRead;
 size_t queueSizeWrite;
 size_t queueSizeSerialStateNotification;
} USB_DEVICE_CDC_INIT;

Members

Members Description

size_t queueSizeRead; Size of the read queue for this instance

• of the CDC function driver
size_t queueSizeWrite; Size of the write queue for this instance

• of the CDC function driver
size_t queueSizeSerialStateNotification; Size of the serial state notification

• queue size

Description

USB Device CDC Function Driver Initialization Data Structure

This data structure must be defined for every instance of the CDC function driver. It is passed to the CDC function driver, by the Device Layer, at
the time of initialization. The funcDriverInit member of the Device Layer Function Driver registration table entry must point to this data structure for
an instance of the CDC function driver.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 193

Remarks

The queue sizes that are specified in this data structure are also affected by the USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED configuration
macro.

USB_DEVICE_CDC_RESULT Enumeration

USB Device CDC Function Driver USB Device CDC Result enumeration.

File

usb_device_cdc.h

C
typedef enum {
 USB_DEVICE_CDC_RESULT_OK,
 USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_SIZE_INVALID,
 USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_QUEUE_FULL,
 USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_INVALID,
 USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_NOT_CONFIGURED,
 USB_DEVICE_CDC_RESULT_ERROR_PARAMETER_INVALID,
 USB_DEVICE_CDC_RESULT_ERROR_ENDPOINT_HALTED,
 USB_DEVICE_CDC_RESULT_ERROR_TERMINATED_BY_HOST,
 USB_DEVICE_CDC_RESULT_ERROR
} USB_DEVICE_CDC_RESULT;

Members

Members Description

USB_DEVICE_CDC_RESULT_OK The operation was successful

USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_SIZE_INVALID The transfer size is invalid. Refer to the description

• of the read or write function for more details
USB_DEVICE_CDC_RESULT_ERROR_TRANSFER_QUEUE_FULL The transfer queue is full and no new transfers can be

• scheduled
USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_INVALID The specified instance is not provisioned in the system

USB_DEVICE_CDC_RESULT_ERROR_INSTANCE_NOT_CONFIGURED The specified instance is not configured yet

USB_DEVICE_CDC_RESULT_ERROR_PARAMETER_INVALID The event handler provided is NULL

USB_DEVICE_CDC_RESULT_ERROR_ENDPOINT_HALTED Transfer terminated because host halted the endpoint

USB_DEVICE_CDC_RESULT_ERROR_TERMINATED_BY_HOST Transfer terminated by host because of a stall clear

USB_DEVICE_CDC_RESULT_ERROR General CDC Function driver error

Description

USB Device CDC Function Driver USB Device CDC Result enumeration.

This enumeration lists the possible USB Device CDC Function Driver operation results. These values are returned by USB Device CDC Library
functions.

Remarks

None.

USB_DEVICE_CDC_TRANSFER_FLAGS Enumeration

USB Device CDC Function Driver Transfer Flags

File

usb_device_cdc.h

C
typedef enum {
 USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE,
 USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING
} USB_DEVICE_CDC_TRANSFER_FLAGS;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 194

Members

Members Description

USB_DEVICE_CDC_TRANSFER_FLAGS_DATA_COMPLETE This flag indicates there is no further data to be sent in this transfer and
that the transfer should end. If the size of the transfer is a multiple of the
maximum packet size for related endpoint configuration, the function driver
will send a zero length packet to indicate end of the transfer to the host.

USB_DEVICE_CDC_TRANSFER_FLAGS_MORE_DATA_PENDING This flag indicates there is more data to be sent in this transfer. If the size
of the transfer is a multiple of the maximum packet size for the related
endpoint configuration, the function driver will not send a zero length
packet. If the size of the transfer is greater than (but not a multiple of) the
maximum packet size, the function driver will only send maximum packet
size amount of data. If the size of the transfer is greater than endpoint size
but not an exact multiple of endpoint size, only the closest endpoint size
multiple bytes of data will be sent. This flag should not be specified if the
size of the transfer is less than maximum packet size.

Description

USB Device CDC Transfer Flags

These flags are used to indicate status of the pending data while sending data to the host by using the USB_DEVICE_CDC_Write function.

Remarks

The relevance of the specified flag depends on the size of the buffer. Refer to the individual flag descriptions for more details.

USB_DEVICE_CDC_TRANSFER_HANDLE Type

USB Device CDC Function Driver Transfer Handle Definition.

File

usb_device_cdc.h

C
typedef uintptr_t USB_DEVICE_CDC_TRANSFER_HANDLE;

Description

USB Device CDC Function Driver Transfer Handle Definition

This definition defines a USB Device CDC Function Driver Transfer Handle. A Transfer Handle is owned by the application but its value is modified
by the USB_DEVICE_CDC_Write, USB_DEVICE_CDC_Read and the USB_DEVICE_CDC_SerialStateNotificationSend functions. The transfer
handle is valid for the life time of the transfer and expires when the transfer related event had occurred.

Remarks

None.

USB_DEVICE_CDC_EVENT_RESPONSE_NONE Macro

USB Device CDC Function Driver Event Handler Response Type None.

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_EVENT_RESPONSE_NONE

Description

USB Device CDC Function Driver Event Handler Response None

This is the definition of the CDC Function Driver Event Handler Response Type none.

Remarks

Intentionally defined to be empty.

USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID Macro

USB Device CDC Function Driver Invalid Transfer Handle Definition.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 195

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID ((USB_DEVICE_CDC_TRANSFER_HANDLE)(-1))

Description

USB Device CDC Function Driver Invalid Transfer Handle Definition

This definition defines a USB Device CDC Function Driver Invalid Transfer Handle. A Invalid Transfer Handle is returned by the
USB_DEVICE_CDC_Write, USB_DEVICE_CDC_Read and the USB_DEVICE_CDC_SerialStateNotificationSend functions when the request was
not successful.

Remarks

None.

USB_DEVICE_CDC_FUNCTION_DRIVER Macro

USB Device CDC Function Driver Function pointer

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_FUNCTION_DRIVER

Description

USB Device CDC Function Driver Function Pointer

This is the USB Device CDC Function Driver Function pointer. This should registered with the device layer in the function driver registration table.

Remarks

None.

USB_DEVICE_CDC_INDEX_0 Macro

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_INDEX_0 0

Description

Use this to specify CDC Function Driver Instance 0

USB_DEVICE_CDC_INDEX_1 Macro

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_INDEX_1 1

Description

Use this to specify CDC Function Driver Instance 1

USB_DEVICE_CDC_INDEX_2 Macro

File

usb_device_cdc.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 196

C
#define USB_DEVICE_CDC_INDEX_2 2

Description

Use this to specify CDC Function Driver Instance 2

USB_DEVICE_CDC_INDEX_3 Macro

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_INDEX_3 3

Description

Use this to specify CDC Function Driver Instance 3

USB_DEVICE_CDC_INDEX_4 Macro

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_INDEX_4 4

Description

Use this to specify CDC Function Driver Instance 4

USB_DEVICE_CDC_INDEX_5 Macro

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_INDEX_5 5

Description

Use this to specify CDC Function Driver Instance 5

USB_DEVICE_CDC_INDEX_6 Macro

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_INDEX_6 6

Description

Use this to specify CDC Function Driver Instance 6

USB_DEVICE_CDC_INDEX_7 Macro

File

usb_device_cdc.h

C
#define USB_DEVICE_CDC_INDEX_7 7

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 197

Description

Use this to specify CDC Function Driver Instance 7

Files

Files

Name Description

usb_device_cdc.h USB Device CDC Function Driver Interface

usb_device_cdc_config_template.h USB device CDC Class configuration definitions template

Description

This section lists the source and header files used by the library.

usb_device_cdc.h

USB Device CDC Function Driver Interface

Enumerations

Name Description

USB_DEVICE_CDC_EVENT USB Device CDC Function Driver Events

USB_DEVICE_CDC_RESULT USB Device CDC Function Driver USB Device CDC Result enumeration.

USB_DEVICE_CDC_TRANSFER_FLAGS USB Device CDC Function Driver Transfer Flags

Functions

Name Description

USB_DEVICE_CDC_EventHandlerSet This function registers a event handler for the specified CDC function driver
instance.

USB_DEVICE_CDC_Read This function requests a data read from the USB Device CDC Function Driver
Layer.

USB_DEVICE_CDC_SerialStateNotificationSend This function schedules a request to send serial state notification to the host.

USB_DEVICE_CDC_Write This function requests a data write to the USB Device CDC Function Driver
Layer.

Macros

Name Description

USB_DEVICE_CDC_EVENT_RESPONSE_NONE USB Device CDC Function Driver Event Handler Response Type None.

USB_DEVICE_CDC_FUNCTION_DRIVER USB Device CDC Function Driver Function pointer

USB_DEVICE_CDC_INDEX_0 Use this to specify CDC Function Driver Instance 0

USB_DEVICE_CDC_INDEX_1 Use this to specify CDC Function Driver Instance 1

USB_DEVICE_CDC_INDEX_2 Use this to specify CDC Function Driver Instance 2

USB_DEVICE_CDC_INDEX_3 Use this to specify CDC Function Driver Instance 3

USB_DEVICE_CDC_INDEX_4 Use this to specify CDC Function Driver Instance 4

USB_DEVICE_CDC_INDEX_5 Use this to specify CDC Function Driver Instance 5

USB_DEVICE_CDC_INDEX_6 Use this to specify CDC Function Driver Instance 6

USB_DEVICE_CDC_INDEX_7 Use this to specify CDC Function Driver Instance 7

USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID USB Device CDC Function Driver Invalid Transfer Handle Definition.

Structures

Name Description

USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE USB Device CDC Function Driver Read and
Write Complete Event Data.

USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK USB Device CDC Function Driver Send
Break Event Data

USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE USB Device CDC Function Driver Read and
Write Complete Event Data.

USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE USB Device CDC Function Driver Read and
Write Complete Event Data.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 198

USB_DEVICE_CDC_INIT USB Device CDC Function Driver
Initialization Data Structure

Types

Name Description

USB_DEVICE_CDC_EVENT_HANDLER USB Device CDC Event Handler Function Pointer Type.

USB_DEVICE_CDC_EVENT_RESPONSE USB Device CDC Function Driver Event Callback Response Type

USB_DEVICE_CDC_INDEX USB Device CDC Function Driver Index

USB_DEVICE_CDC_TRANSFER_HANDLE USB Device CDC Function Driver Transfer Handle Definition.

Description

USB Device CDC Function Driver Interface

This file describes the USB Device CDC Function Driver interface. The application should include this file if it needs to use the CDC Function
Driver API.

File Name

usb_device_cdc.h

Company

Microchip Technology Inc.

usb_device_cdc_config_template.h

USB device CDC Class configuration definitions template

Macros

Name Description

USB_DEVICE_CDC_INSTANCES_NUMBER Specifies the number of CDC instances.

USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED Specifies the combined queue size of all CDC instances.

Description

USB Device CDC Class Configuration Definitions

This file contains configurations macros needed to configure the CDC Function Driver. This file is a template file only. It should not be included by
the application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_device_cdc_config_template.h

Company

Microchip Technology Inc.

USB HID Device Library

This section describes the USB HID Device Library.

Introduction

Introduces the MPLAB Harmony USB Human Interface Device (HID) Device Library.

Description

The MPLAB Harmony USB Human Interface Device (HID) Device Library (also referred to as the HID Function Driver or Library) provides a
high-level abstraction of the Human Interface Device (HID) class under the Universal Serial Bus (USB) communication with a convenient C
language interface. This library supports revision 1.11 of the USB HID specification released by the USB Implementers forum. This library is part of
the MPLAB Harmony USB Device stack.

The USB HID Device Class supports devices that are used by humans to control the operation of computer systems. The HID class of devices
include a wide variety of human interface, data indicator, and data feedback devices with various types of output directed to the end user. Some
common examples of HID class devices include:

• Keyboards

• Pointing devices such as a standard mouse, joysticks, and trackballs

• Front-panel controls like knobs, switches, buttons, and sliders

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 199

• Controls found on telephony, gaming or simulation devices such as steering wheels, rudder pedals, and dial pads

• Data devices such as bar-code scanners, thermometers, analyzers

The USB HID Device Library offers services to the application to interact and respond to the host requests. Additional information about the HID
class can be obtained from the HID specification available from the USB Implementers Forum at: www.usbif.org.

Using the Library

This topic describes the basic architecture of the HID Function Driver and provides information and examples on its use.

Abstraction Model

Provides an architectural overview of the USB HID Function Driver.

Description

The HID Function Driver offers services to a USB HID device to communicate with the host by abstracting the HID specification details. It must be
used along with the USB Device Layer and USB Controller Driver to communicate with the USB Host. Figure 1 shows a block diagram of the
MPLAB Harmony USB Architecture and where the HID Function Driver is placed.

Figure 1: HID Function Driver

The HID Function Driver together with USB Device Layer and the USB Controller Driver forms the basic library entity through which a HID device
can communicate with the USB Host. The USB Controller Driver takes the responsibility of managing the USB peripheral on the device. The USB
Device Layer handles the device enumeration, etc. The USB Device_layer forwards all HID-specific control transfers to the HID Function Driver.
The HID Function Driver interprets the control transfers and requests application's intervention through event handlers and a well-defined set of
API functions. The application must register a event handler with the HID Function Driver in the Device Layer Set Configuration Event. While the
application must respond to the HID Function Driver events, it can do this either in the HID Function Driver event handler or after the event handler
routine has returned. The application interacts with HID Function Driver routines to send and receive HID reports over the USB.

Figure 2 shows the architecture of the HID Function Driver. The HID Function Driver maintains the state of each instance. It receives HID
class-specific control transfers from the USB Device Layer. Class-specific control transfers that require application response are forwarded to the
application as function driver events. The application responds to these class specific control transfer event by directly calling Device Layer control
transfer routines. Depending on the type of device, the HID Function Driver can use the control endpoint and/or interrupt endpoints for data
transfers. The USB HID Device Driver exchanges data with the Host through data objects called reports. The report data format is described by
the HID report descriptor, which is provided to the Host when requested. Refer to the HID specification available from www.usb.org for more
details on the USB HID Device class and how report descriptors can be created. The HID Function Driver allows report descriptors to be specified
for every instance. This allow the application to implement a composite HID device.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 200

http://www.usbif.org
http://www.usb.org

Figure 2: Architecture of the HID Function Driver

Library Overview

The USB HID Device Library mainly interacts with the system, its clients and function drivers, as shown in the Abstraction Model.

The library interface routines are divided into sub-sections, which address one of the blocks or the overall operation of the USB HID Device
Library.

Library Interface Section Description

Functions Provides event handler, report send/receive, and transfer cancellation functions.

How the Library Works

Library Initialization

Describes how the HID Function Driver is initialized.

Description

The HID Function Driver instance for a USB device configuration is initialized by the Device Layer when the configuration is set by the Host. This
process does not require application intervention. Each instance of the HID Function be registered with the Device Layer through the Device Layer
Function Driver Registration Table. The HID function driver requires a initialization data structure that contains details about the report descriptor
and the reports send/receive queue size associated with the specific instance of the HID Function Driver. The funcDriver member of the
registration entry must be set to USB_DEVICE_HID_FUNCTION_DRIVER. This object is a global object provided by the HID Function Driver and
points to the HID Function Driver - Device Layer interface functions, which are required by the Device Layer. The following code shows an

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 201

example of how a HID Function Driver instance (implementing a USB HID Mouse) can be registered with the Device Layer.
/* This code shows an example of registering a HID function driver
 * with the Device Layer. While registering the function driver, an initialization
 * data structure must be specified. In this example, hidInit is the HID function
 * driver initialization data structure. */

/* This hid_rpt01 report descriptor describes a 3 button 2
 * axis mouse pointing device */
const uint8_t hid_rpt01[]=
{
 0x06, 0x00, 0xFF, // Usage Page = 0xFF00 (Vendor Defined Page 1)
 0x09, 0x01, // Usage (Vendor Usage 1)
 0xA1, 0x01, // Collection (Application)
 0x19, 0x01, // Usage Minimum
 0x29, 0x40, // Usage Maximum //64 input usages total (0x01 to 0x40)
 0x15, 0x01, // Logical Minimum (data bytes in the report may have minimum value = 0x00)
 0x25, 0x40, // Logical Maximum (data bytes in the report may have maximum value = 0x00FF =
unsigned 255)
 0x75, 0x08, // Report Size: 8-bit field size
 0x95, 0x40, // Report Count: Make sixty-four 8-bit fields (the next time the parser hits an
"Input", "Output",
 // or "Feature" item)
 0x81, 0x00, // Input (Data, Array, Abs): Instantiates input packet fields based on the
previous report size,
 // count, logical min/max, and usage.
 0x19, 0x01, // Usage Minimum
 0x29, 0x40, // Usage Maximum //64 output usages total (0x01 to 0x40)
 0x91, 0x00, // Output (Data, Array, Abs): Instantiates output packet fields. Uses same report
size and
 // count as "Input" fields, since nothing new or different was specified to the
parser since
 // the "Input" item.
 0xC0 // End Collection
};

/* HID Function Driver Initialization data structure. This
 * contains the size of the report descriptor and a pointer
 * to the report descriptor. If there are multiple HID instances
 * each with different report descriptors, multiple such data
 * structures may be needed */

USB_DEVICE_HID_INITIALIZATION hidInit =
{
 sizeof(hid_rpt01), // Size of the report
 (uint8_t *)&hid_rpt01 // Pointer to the report
 1, // Send queue size is 1. We will not queue up reports.
 0 // Receive queue size 0. We will not receive reports.
};

/* The HID function driver instance is now registered with
 * device layer through the function driver registration
 * table. */

const USB_DEVICE_FUNCTION_REGISTRATION_TABLE funcRegistrationTable[1] =
{
 {
 .speed = USB_SPEED_FULL|USB_SPEED_HIGH, // Supported speed
 .configurationValue = 1, // To be initialized for Configuration 1
 .interfaceNumber = 0, // Starting interface number
 .numberOfInterfaces = 1, // Number of Interfaces
 .funcDriverIndex = 0, // Function Driver instance index is 0
 .funcDriverInit = &hidInit, // Function Driver Initialization
 .driver = USB_DEVICE_HID_FUNCTION_DRIVER // Pointer to the function driver - Device Layer
Interface functions
 }
};

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 202

Event Handling

Describes HID Function Driver event handler registration and event handling.

Description

Registering a HID Function Driver Event Handler

While creating a USB HID Device-based application, an event handler must be registered with the Device Layer (the Device Layer Event Handler)
and every HID Function Driver instance (HID Function Driver Event Handler). The HID Function Driver event handler receives HID events. This
event handler should be registered before the USB Device Layer acknowledges the SET CONFIGURATION request from the USB Host. To
ensure this, the event handler should be set in the USB_DEVICE_EVENT_CONFIGURED event that is generated by the device_layer. While
registering the HID Function Driver event handler, the HID Function Driver allows the application to also pass a data object in the event handler
register function. This data object gets associated with the instance of the HID Function Driver and is returned by the driver when a HID Function
Driver event occurs. The following code shows an example of how this can be done.
/* This a sample Application Device Layer Event Handler
 * Note how the HID Function Driver event handler APP_USBDeviceHIDEventHandler()
 * is registered in the USB_DEVICE_EVENT_CONFIGURED event. The appData
 * object that is passed in the USB_DEVICE_HID_EventHandlerSet()
 * function will be returned as the userData parameter in the
 * when the APP_USBDeviceHIDEventHandler() function is invoked */

void APP_USBDeviceEventCallBack (USB_DEVICE_EVENT event,
 void * eventData, uintptr_t context)
{
 uint8_t * configurationValue;
 switch (event)
 {
 case USB_DEVICE_EVENT_RESET:
 case USB_DEVICE_EVENT_DECONFIGURED:

 // USB device is reset or device is deconfigured.
 // This means that USB device layer is about to deinitialize
 // all function drivers.

 break;

 case USB_DEVICE_EVENT_CONFIGURED:

 /* check the configuration */
 configurationValue = (uint8_t*)eventData;
 if (*configurationValue == 1)
 {

 /* Register the HID Device application event handler here.
 * Note how the appData object pointer is passed as the
 * user data */

 USB_DEVICE_HID_EventHandlerSet(USB_DEVICE_HID_INDEX_0,
 APP_USBDeviceHIDEventHandler, (uintptr_t)&appData);

 /* mark that set configuration is complete */
 appData.isConfigured = true;

 }
 break;

 case USB_DEVICE_EVENT_SUSPENDED:

 break;

 case USB_DEVICE_EVENT_RESUMED:
 case USB_DEVICE_EVENT_ATTACHED:
 case USB_DEVICE_EVENT_DETACHED:
 case USB_DEVICE_EVENT_ERROR:
 default:
 break;
 }

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 203

}

The HID Function Driver event handler executes in an interrupt context when the device stack is configured for Interrupt mode.

In Polled mode, the event handler is invoked in the context of the SYS_Tasks function. The application should not call computationally intensive
functions, blocking functions, functions that are not interrupt safe, or functions that poll on hardware conditions from the event handler. Doing so
will affect the ability of the USB device stack to respond to USB events and could potentially make the USB device non-compliant.

HID Function Driver Events:

The HID Function Driver generates events to which the application must respond. Some of these events are control requests communicated
through control transfers. The application must therefore complete the control transfer. Based on the generated event, the application may be
required to:

• Respond with a USB_DEVICE_ControlSend function, which completes the data stage of a Control Read Transfer

• Respond with a USB_DEVICE_ControlReceive function, which provisions the data stage of a Control Write Transfer

• Respond with a USB_DEVICE_ControlStatus function which completes the handshake stage of the Control Transfer. The application can either
STALL or Acknowledge the handshake stage via the USB_DEVICE_HID_ControlStatus function.

The following table shows the HID Function Driver control transfer related events and the required application control transfer action.

HID Function Driver Control Transfer Event Required Application Action

USB_DEVICE_HID_EVENT_GET_REPORT Call USB_DEVICE_ControlSend function with a buffer containing the
requested report.

USB_DEVICE_HID_EVENT_SET_REPORT Call USB_DEVICE_ControlReceive function with a buffer to receive
the report.

USB_DEVICE_HID_EVENT_SET_REPORT Call the USB_DEVICE_ControlSend function with the pointer to the
current USB_HID_PROTOCOL_CODE type data.

USB_DEVICE_HID_EVENT_SET_PROTOCOL Acknowledge or stall using the USB_DEVICE_ControlStatus function.

USB_DEVICE_HID_EVENT_SET_IDLE Acknowledge or stall using the USB_DEVICE_ControlStatus function.

USB_DEVICE_HID_EVENT_GET_IDLE Call the USB_DEVICE_ControlSend function to send the current idle
rate.

USB_DEVICE_HID_SET_DESCRIPTOR Call the USB_DEVICE_ControlReceive function with a buffer to
receive the report.

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT No action required.

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED Acknowledge or stall using the USB_DEVICE_ControlStatus function.

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_ABORTED No action required.

The application can respond to HID Function Driver control transfer-related events in the function driver event handler. In a case where the data
required for the response is not immediately available, the application can respond to the control transfer events after returning from the event
handler. This defers the response to the control transfer event. However, please note that a USB host will typically wait for control transfer
response for a finite time duration before timing out and canceling the transfer and associated transactions. Even when deferring response, the
application must respond promptly if such timeouts have to be avoided.

The application should analyze the pData member of the event handler and check for event specific data. The following table shows the pData
parameter data type for each HID function driver event.

Event Type pData Parameter Data Type

USB_DEVICE_HID_EVENT_GET_REPORT USB_DEVICE_HID_EVENT_DATA_GET_REPORT*

USB_DEVICE_HID_EVENT_SET_REPORT USB_DEVICE_HID_EVENT_DATA_SET_REPORT *

USB_DEVICE_HID_EVENT_GET_IDLE uint8_t*

USB_DEVICE_HID_EVENT_SET_IDLE USB_DEVICE_HID_EVENT_DATA_SET_IDLE *

USB_DEVICE_HID_EVENT_SET_PROTOCOL USB_HID_PROTOCOL_CODE*

USB_DEVICE_HID_EVENT_GET_PROTOCOL NULL

USB_DEVICE_HID_EVENT_SET_DESCRIPTOR USB_DEVICE_HID_EVENT_DATA_SET_DESCRIPTOR *

USB_DEVICE_HID_EVENT_REPORT_SENT USB_DEVICE_HID_EVENT_DATA_REPORT_SENT *

USB_DEVICE_HID_EVENT_REPORT_RECEIVED USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED
*

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT NULL

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED NULL

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_ABORTED NULL

The possible HID Function Driver events are described here along with the required application response, event specific data and likely follow up

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 204

function driver event:

USB_DEVICE_HID_EVENT_GET_REPORT

Application Response: This event is generated when the USB HID Host is requesting a report over the control interface. The application must
provide the report by calling the USB_DEVICE_HID_ControlSend function, either in the event handler, or in the application (after event handler
function has exited). The application can use the USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT event to track completion of
the command.

Event Specific Data (eventData): The application must interpret the pData parameter as a pointer to a

USB_DEVICE_HID_EVENT_DATA_GET_REPORT data type, which contains details about the requested report.

Likely Follow-up event: This event will likely be followed by the USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT event. This
indicates that the data was sent to the Host successfully. The application must acknowledge the handshake stage of the control transfer by calling
the USB_DEVICE_HID_ControlStatus function with the USB_DEVICE_HID_CONTROL_STATUS_OK flag.

USB_DEVICE_HID_EVENT_SET_REPORT

Application Response: This event is generated when the USB HID Host wants to send a report over the control interface. The application must
provide a buffer to receive the report by calling the USB_DEVICE_HID_ControlReceive function either in the event handler or in the application
(after the event handler function has exited). The application can use the
USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED event to track completion of the command.

Event Specific Data (eventData): The application must interpret the pData parameter as a pointer to a

USB_DEVICE_HID_EVENT_DATA_SET_REPORT data type, which contains details about the report that the Host intends to send.

Likely Follow-up event: This event will likely be followed by the

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED event. This indicates that the data was received successfully. The
application must either acknowledge or stall the handshake stage of the control transfer by calling the USB_DEVICE_HID_ControlStatus function
with the USB_DEVICE_HID_CONTROL_STATUS_OK or

USB_DEVICE_HID_CONTROL_STATUS_ERROR flag, respectively.

USB_DEVICE_HID_EVENT_GET_IDLE

Application Response: This event is generated when the USB HID Host wants to read the current idle rate for the specified report. The application
must provide the idle rate through the USB_DEVICE_HID_ControlSend function, either in the event handler, or in the application (after the event
handler function has exited). The application must use the controlTransferHandle parameter provided in the event while calling the
USB_DEVICE_HID_ControlSend function. The application can use the USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT event
to track completion of the command.

Event Specific Data (eventData): The application must interpret the pData parameter as a pointer to a uint8_t data type, which contains a report ID
of the report for which the idle rate is requested.

Likely Follow-up event: This event will likely be followed by the

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT event. This indicates that the data was sent to the Host successfully. The
application must acknowledge the handshake stage of the control transfer by calling the USB_DEVICE_HID_ControlStatus function with the
USB_DEVICE_HID_CONTROL_STATUS_OK flag.

USB_DEVICE_HID_EVENT_SET_IDLE

Application Response: This event is generated when the USB HID Host sends a Set Idle request to the device. The application must inspect the
eventData and determine if the idle rate is to be supported. The application must either acknowledge (if the idle rate is supported) or stall the
handshake stage of the control transfer (if the idle rate is not supported) by calling the USB_DEVICE_HID_ControlStatus function with the
USB_DEVICE_HID_CONTROL_STATUS_OK or USB_DEVICE_HID_CONTROL_STATUS_ERROR flag, respectively.

Event Specific Data (eventData): The application must interpret the pData parameter as a pointer to a
USB_DEVICE_HID_EVENT_DATA_SET_IDLE data type that contains details about the report ID and the idle duration.

Likely Follow-up event: None.

USB_DEVICE_HID_EVENT_SET_PROTOCOL

Application Response: This event is generated when the USB HID Host sends a Set Protocol request to the device . The application must inspect
the eventData and determine if the protocol is to be supported. The application must either acknowledge (if the protocol is supported) or stall the
handshake stage of the control transfer (if the protocol is not supported) by calling USB_DEVICE_HID_ControlStatus function with
SB_DEVICE_HID_CONTROL_STATUS_OK or USB_DEVICE_HID_CONTROL_STATUS_ERROR flag, respectively.

Event Specific Data (eventData): The application must interpret the pData parameter as a pointer to a USB_HID_PROTOCOL_CODE data type
that contains details about the protocol to be set.

Likely Follow-up event: None.

USB_DEVICE_HID_EVENT_GET_PROTOCOL

Application Response: This event is generated when the USB HID Host issues a Get Protocol Request. The application must provide the current
protocol through the USB_DEVICE_HID_ControlSend function either in the event handler or in the application (after the event handler has exited).
The application can use the USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT event to track completion of the command.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 205

Event Specific Data (eventData): None.

Likely Follow-up event: This event will likely be followed by the USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT event. This
indicates that the data was sent to the host successfully. The application must acknowledge the handshake stage of the control transfer by calling
the USB_DEVICE_HID_ControlStatus function with the USB_DEVICE_HID_CONTROL_STATUS_OK flag.

USB_DEVICE_HID_EVENT_SET_DESCRIPTOR

Application Response: This event is generated when the HID Host issues a Set Descriptor request. The application must provide a buffer to
receive the descriptor through the USB_DEVICE_HID_ControlReceive function, either in the event handler, or in the application (after the event
handler has exited). The application can use the USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED event to track
completion of the command.

Event Specific Data: None

Likely Follow-up event: This event will likely be followed by the USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED event.
This indicates that the data was received successfully. The application must either acknowledge or stall the handshake stage of the control
transfer by calling USB_DEVICE_HID_ControlStatus function with USB_DEVICE_HID_CONTROL_STATUS_OK or the
USB_DEVICE_HID_CONTROL_STATUS_ERROR flag, respectively.

USB_DEVICE_HID_EVENT_REPORT_SENT

Application Response: This event occurs when a report send operation scheduled by calling the USB_DEVICE_HID_ReportSend function has
completed. This event does not require the application to respond with any function calls.

Event Specific Data (pData): The application must interpret the pData parameter as a pointer to a
USB_DEVICE_HID_EVENT_DATA_REPORT_SENT data type that contains details about the report that was sent.

Likely Follow-up event: None.

USB_DEVICE_HID_EVENT_REPORT_RECEIVED

Application Response: This event occurs when a report receive operation scheduled by calling the USB_DEVICE_HID_ReportReceive function
has completed. This event does not require the application to respond with any function calls.

Event Specific Data (pData): The application must interpret the pData parameter as a pointer to a
USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED data type that contains details about the report that was received.

Likely Follow-up event: None

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT

Application Response: This event occurs when the data stage of a control read transfer has completed in response to the
USB_DEVICE_HID_ControlSend function. The application must acknowledge the handshake stage of the control transfer by calling the
USB_DEVICE_HID_ControlStatus function with the USB_DEVICE_HID_CONTROL_STATUS_OK flag.

Event Specific Data (pData): None.

Likely Follow-up event: None.

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED

Application Response: This event occurs when the data stage of a control write transfer has completed in response to the
USB_DEVICE_HID_ControlReceive function. The application must either acknowledge or stall the handshake stage of the control transfer by
calling USB_DEVICE_HID_ControlStatus function with the USB_DEVICE_HID_CONTROL_STATUS_OK or
USB_DEVICE_HID_CONTROL_STATUS_ERROR flag, respectively.

Event Specific Data (pData): None

Likely Follow-up event: None.

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_ABORTED

Application Response: This event occurs when the a control transfer request is aborted by the Host. The application can use this event to update
its HID class-specific control transfer state machine.

Event Specific Data (pData): None

Likely Follow-up event: None. The following code shows an example HID Function Driver event handling scheme.

The following code shows an example HID Function Driver event handling scheme.
// This code example shows all USB HID Driver events and a possible
// scheme for handling these events. In this example event responses are not
// deferred.

 USB_DEVICE_HID_EVENT_RESPONSE USB_AppHIDEventHandler
 (
 USB_DEVICE_HID_INDEX instanceIndex,
 USB_DEVICE_HID_EVENT event,
 void * pData,
 uintptr_t userData

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 206

)
{
 uint8_t currentIdleRate;
 uint8_t someHIDReport[128];
 uint8_t someHIDDescriptor[128];
 USB_DEVICE_HANDLE usbDeviceHandle;
 USB_HID_PROTOCOL_CODE * currentProtocol;
 USB_DEVICE_HID_EVENT_DATA_GET_REPORT * getReportEventData;
 USB_DEVICE_HID_EVENT_DATA_SET_IDLE * setIdleEventData;
 USB_DEVICE_HID_EVENT_DATA_SET_DESCRIPTOR * setDescriptorEventData;
 USB_DEVICE_HID_EVENT_DATA_SET_REPORT * setReportEventData;

 switch(event)
 {
 case USB_DEVICE_HID_EVENT_GET_REPORT:
 // In this case, pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_GET_REPORT pointer. The application
 // must send the requested report by using the
 // USB_DEVICE_ControlSend() function.
 getReportEventData = (USB_DEVICE_HID_EVENT_DATA_GET_REPORT *)pData;
 USB_DEVICE_ControlSend(usbDeviceHandle, someHIDReport, getReportEventData->reportLength);

 break;

 case USB_DEVICE_HID_EVENT_GET_PROTOCOL:

 // In this case, pData will be NULL. The application
 // must send the current protocol to the host by using
 // the USB_DEVICE_ControlSend() function.
 USB_DEVICE_ControlSend(usbDeviceHandle, ¤tProtocol, sizeof(USB_HID_PROTOCOL_CODE));

 break;
 case USB_DEVICE_HID_EVENT_GET_IDLE:

 // In this case, pData will be a uint8_t pointer type to the
 // report ID for which the idle rate is being requested. The
 // application must send the current idle rate to the host by
 // using the USB_DEVICE_ControlSend() function.
 USB_DEVICE_ControlSend(usbDeviceHandle, ¤tIdleRate, 1);

 break;

 case USB_DEVICE_HID_EVENT_SET_REPORT:

 // In this case, pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_SET_REPORT type pointer. The
 // application can analyze the request and then obtain the
 // report by using the USB_DEVICE_ControlReceive() function.
 setReportEventData = (USB_DEVICE_HID_EVENT_DATA_SET_REPORT *)pData;
 USB_DEVICE_ControlReceive(deviceHandle, someHIDReport, setReportEventData->reportLength);

 break;

 case USB_DEVICE_HID_EVENT_SET_PROTOCOL:

 // In this case, pData should be interpreted as a
 // USB_HID_PROTOCOL_CODE type pointer. The application can
 // analyze the data and decide to stall or accept the setting.
 // This shows an example of accepting the protocol setting.
 USB_DEVICE_ControlStatus(deviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_HID_EVENT_SET_IDLE:

 // In this case, pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_SET_IDLE type pointer. The
 // application can analyze the data and decide to stall

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 207

 // or accept the setting. This shows an example of accepting
 // the protocol setting.
 setIdleEventData = (USB_DEVICE_HID_EVENT_DATA_SET_IDLE *)pData;
 USB_DEVICE_ControlStatus(deviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_HID_EVENT_SET_DESCRIPTOR:

 // In this case, the pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_SET_DESCRIPTOR type pointer. The
 // application can analyze the request and then obtain the
 // descriptor by using the USB_DEVICE_ControlReceive() function.
 setDescriptorEventData = (USB_DEVICE_HID_EVENT_DATA_SET_DESCRIPTOR *)pData;
 USB_DEVICE_ControlReceive(deviceHandle, someHIDReport, setReportEventData->reportLength);

 break;

 case USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 // In this case, control transfer data was received. The
 // application can inspect that data and then stall the
 // handshake stage of the control transfer or accept it
 // (as shown here).
 USB_DEVICE_ControlStatus(deviceHandle, USB_DEVICE_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT:

 // This means that control transfer data was sent. The
 // application would typically acknowledge the handshake
 // stage of the control transfer.

 USB_DEVICE_HID_ControlStatus(instanceIndex, controlTransferHandle,
 USB_DEVICE_HID_CONTROL_STATUS_OK);

 break;

 case USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_ABORTED:

 // This means that control transfer data was sent. The
 // application would typically acknowledge the handshake
 // stage of the control transfer.

 break;

 case USB_DEVICE_HID_EVENT_REPORT_RECEIVED:

 // This means a HID report receive request has completed.
 // The pData member should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED pointer type.

 break;

 case USB_DEVICE_HID_EVENT_REPORT_SENT:

 // This means a HID report send request has completed.
 // The pData member should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_REPORT_SENT pointer type.

 break;
 }
 return(USB_DEVICE_HID_EVENT_RESPONSE_NONE);
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 208

Sending a Report

Describes how to send a report.

Description

The USB HID Device sends data to the USB HID Host as reports. The USB HID Device application should use the
USB_DEVICE_HID_ReportSend function to send the report. This function returns a transfer handler that allows the application to track the read
request. The request is completed when the Host has requested the data. A report send request could fail if the driver instance transfer queue is
full. The completion of the write transfer is indicated by a USB_DEVICE_HID_EVENT_REPORT_SENT event. The transfer handle and the amount
of data sent is returned in the reportSent member of the eventData data structure along with the event.

The following code shows an example of how a USB HID Mouse application sends a report to the host.
/* In this code example, the application uses the
 * USB_HID_MOUSE_ReportCreate to create the mouse report
 * and then uses the USB_DEVICE_HID_ReportSend() function
 * to send the report */

USB_HID_MOUSE_ReportCreate(appData.xCoordinate, appData.yCoordinate,
 appData.mouseButton, &appData.mouseReport);

/* Send the mouse report. */
USB_DEVICE_HID_ReportSend(appData.hidInstance,
 &appData.reportTransferHandle, (uint8_t*)&appData.mouseReport,
 sizeof(USB_HID_MOUSE_REPORT));

Receiving a Report

Describes how to receive a report.

Description

The application can receive a report from the Host by using the USB_DEVICE_HID_ReportReceive function. This function returns a transfer
handler that allows the application to track the read request. The request is completed when the Host sends the report. The application must make
sure that it allocates a buffer size that is at least the size of the report. The return value of the function indicates the success of the request. A read
request could fail if the driver transfer queue is full. The completion of the read transfer is indicated by a
USB_DEVICE_HID_EVENT_REPORT_RECEIVED event. The reportReceived member of the eventData data structure contains details about the
received report. The following code shows an example of how a USB HID Keyboard can schedule a receive report operation to get the keyboard
LED status.
/* The following code shows how the
 * USB HID Keyboard application schedules a
 * receive report operation to receive the
 * keyboard output report from the host. This
 * report contains the keyboard LED status. The
 * size of the report is 1 byte */

result = USB_DEVICE_HID_ReportReceive(appData.hidInstance,
 &appData.receiveTransferHandle,
 (uint8_t *)&appData.keyboardOutputReport,1);

if(USB_DEVICE_HID_RESULT_OK != result)
{
 /* Do error handling here */
}

Configuring the Library

Describes how to configure the HID Function Driver.

Macros

Name Description

USB_DEVICE_HID_INSTANCES_NUMBER Specifies the number of HID instances.

USB_DEVICE_HID_QUEUE_DEPTH_COMINED DOM-IGONORE-BEGIN

Description

The following configuration parameters must be defined while using the HID Function Driver. The configuration macros that implement these
parameters must be located in the system_config.h file in the application project and a compiler include path (to point to the folder that

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 209

contains this file) should be specified.

USB_DEVICE_HID_INSTANCES_NUMBER Macro

Specifies the number of HID instances.

File

usb_device_hid_config_template.h

C
#define USB_DEVICE_HID_INSTANCES_NUMBER

Description

USB Device HID Maximum Number of Instances

This macro defines the number of instances of the HID Function Driver. For example, if the application needs to implement two instances of the
HID Function Driver (to create composite device) on one USB Device, the macro should be set to 2. Note that implementing a USB Device that
features multiple HID interfaces requires appropriate USB configuration descriptors.

Remarks

None.

USB_DEVICE_HID_QUEUE_DEPTH_COMINED Macro

File

usb_device_hid_config_template.h

C
#define USB_DEVICE_HID_QUEUE_DEPTH_COMINED

Description

DOM-IGONORE-BEGIN

Building the Library

Describes the files to be included in the project while using the HID Function Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_device_hid.h This header file should be included in any .c file that accesses the USB Device HID Function Driver API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_device_hid.c This file implements the HID Function driver interface and should be included in the project if the HID
Device function is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 210

Module Dependencies

The USB HID Device Library depends on the following modules:

• USB Device Layer Library

Library Interface

a) Functions

Name Description

USB_DEVICE_HID_EventHandlerSet This function registers a event handler for the specified HID function driver instance.

USB_DEVICE_HID_ReportReceive This function submits the buffer to HID function driver library to receive a report from host to
device.

USB_DEVICE_HID_ReportSend This function submits the buffer to HID function driver library to send a report from device to
host.

USB_DEVICE_HID_TransferCancel This function cancels a scheduled HID Device data transfer.

b) Data Types and Constants

Name Description

USB_DEVICE_HID_EVENT USB Device HID Function Driver Events

USB_DEVICE_HID_EVENT_DATA_GET_REPORT USB Device HID Get Report Event Data Type.

USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED USB Device HID Report Received Event Data Type.

USB_DEVICE_HID_EVENT_DATA_REPORT_SENT USB Device HID Report Sent Event Data Type.

USB_DEVICE_HID_EVENT_DATA_SET_IDLE USB Device HID Set Idle Event Data Type.

USB_DEVICE_HID_EVENT_DATA_SET_REPORT USB Device HID Set Report Event Data Type.

USB_DEVICE_HID_INDEX USB device HID Function Driver Index.

USB_DEVICE_HID_EVENT_DATA_GET_IDLE USB Device HID Get Idle Event Data Type.

USB_DEVICE_HID_TRANSFER_HANDLE USB Device HID Function Driver Transfer Handle Definition.

USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL USB Device HID Set Protocol Event Data Type.

USB_DEVICE_HID_EVENT_HANDLER USB Device HID Event Handler Function Pointer Type.

USB_DEVICE_HID_EVENT_RESPONSE USB Device HID Function Driver Event Callback Response Type

USB_DEVICE_HID_INIT USB Device HID Function Driver Initialization Data Structure

USB_DEVICE_HID_RESULT USB Device HID Function Driver USB Device HID Result enumeration.

USB_DEVICE_HID_EVENT_RESPONSE_NONE USB Device HID Function Driver Event Handler Response Type None.

USB_DEVICE_HID_TRANSFER_HANDLE_INVALID USB Device HID Function Driver Invalid Transfer Handle Definition.

USB_DEVICE_HID_FUNCTION_DRIVER This is a pointer to a group of HID Function Driver callback function
pointers.

USB_DEVICE_HID_INDEX_0 USB Device HID Function Driver Index Constants

USB_DEVICE_HID_INDEX_1 This is macro USB_DEVICE_HID_INDEX_1.

USB_DEVICE_HID_INDEX_2 This is macro USB_DEVICE_HID_INDEX_2.

USB_DEVICE_HID_INDEX_3 This is macro USB_DEVICE_HID_INDEX_3.

USB_DEVICE_HID_INDEX_4 This is macro USB_DEVICE_HID_INDEX_4.

USB_DEVICE_HID_INDEX_5 This is macro USB_DEVICE_HID_INDEX_5.

USB_DEVICE_HID_INDEX_6 This is macro USB_DEVICE_HID_INDEX_6.

USB_DEVICE_HID_INDEX_7 This is macro USB_DEVICE_HID_INDEX_7.

Description

This section describes the Application Programming Interface (API) functions of the USB Device HID library.

Refer to each section for a detailed description.

a) Functions

USB_DEVICE_HID_EventHandlerSet Function

This function registers a event handler for the specified HID function driver instance.

File

usb_device_hid.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 211

C
USB_DEVICE_HID_RESULT USB_DEVICE_HID_EventHandlerSet(USB_DEVICE_HID_INDEX instanceIndex,
USB_DEVICE_HID_EVENT_HANDLER eventHandler, uintptr_t context);

Returns

USB_DEVICE_HID_RESULT_OK - The operation was successful

USB_DEVICE_HID_RESULT_ERROR_INSTANCE_INVALID - The specified instance does not exist.

USB_DEVICE_HID_RESULT_ERROR_PARAMETER_INVALID - The eventHandler parameter is NULL

Description

This function registers a event handler for the specified HID function driver instance. This function should be called by the client when it receives a
SET CONFIGURATION event from the device layer. A event handler must be registered for function driver to respond to function driver specific
commands. If the event handler is not registered, the device layer will stall function driver specific commands and the USB device may not function.

Remarks

None.

Preconditions

This function should be called when the function driver has been initialized as a result of a set configuration.

Example
// This code snippet shows an example registering an event handler. Here
// the application specifies the context parameter as a pointer to an
// application object (appObject) that should be associated with this
// instance of the HID function driver.

USB_DEVICE_HID_RESULT result;

USB_DEVICE_HID_EVENT_RESPONSE APP_USBDeviceHIDEventHandler
(
 USB_DEVICE_HID_INDEX instanceIndex,
 USB_DEVICE_HID_EVENT event,
 void * pData,
 uintptr_t context
)
{
 // Event Handling comes here

 switch(event)
 {
 ...
 }

 return(USB_DEVICE_HID_EVENT_RESPONSE_NONE);
}

result = USB_DEVICE_HID_EventHandlerSet (0, &APP_EventHandler, (uintptr_t) &appObject);

if(USB_DEVICE_HID_RESULT_OK != result)
{
 SYS_ASSERT (false , "Error while registering event handler");
}

Parameters

Parameters Description

instance Instance of the HID Function Driver.

eventHandler A pointer to event handler function.

context Application specific context that is returned in the event handler.

Function

USB_DEVICE_HID_RESULT USB_DEVICE_HID_EventHandlerSet

(

USB_DEVICE_HID_INDEX instance

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 212

USB_DEVICE_HID_EVENT_HANDLER eventHandler

uintptr_t context

);

USB_DEVICE_HID_ReportReceive Function

This function submits the buffer to HID function driver library to receive a report from host to device.

File

usb_device_hid.h

C
USB_DEVICE_HID_RESULT USB_DEVICE_HID_ReportReceive(USB_DEVICE_HID_INDEX instanceIndex,
USB_DEVICE_HID_TRANSFER_HANDLE * handle, void * buffer, size_t size);

Returns

USB_DEVICE_HID_RESULT_OK - The receive request was successful. transferHandle contains a valid transfer handle.

USB_DEVICE_HID_RESULT_ERROR_TRANSFER_QUEUE_FULL - internal request queue is full. The receive request could not be added.

USB_DEVICE_HID_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

USB_DEVICE_HID_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function submits the buffer to HID function driver library to receive a report from host to device. On completion of the transfer the library
generates USB_DEVICE_HID_EVENT_REPORT_RECEIVED event to the application. A handle to the request is passed in the transferHandle
parameter. The transfer handle expires when event handler for the USB_DEVICE_HID_EVENT_REPORT_RECEIVED exits. If the receive request
could not be accepted, the function returns an error code and transferHandle will contain the value
USB_DEVICE_HID_TRANSFER_HANDLE_INVALID.

Remarks

While the using the HID Function Driver with the PIC32MZ USB module, the report data buffer provided to the USB_DEVICE_HID_ReportReceive
function should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Preconditions

USB device layer must be initialized.

Example
 USB_DEVICE_HID_TRANSFER_HANDLE hidTransferHandle;
 USB_DEVICE_HID_RESULT result;

 // Register APP_HIDEventHandler function
 USB_DEVICE_HID_EventHandlerSet(USB_DEVICE_HID_INDEX_0 ,
 APP_HIDEventHandler);

 // Prepare report and request HID to send the report.
 result = USB_DEVICE_HID_ReportReceive(USB_DEVICE_HID_INDEX_0,
 &hidTransferHandle ,
 &appReport[0], sizeof(appReport));

 if(result != USB_DEVICE_HID_RESULT_OK)
 {
 //Handle error.

 }

 //Implementation of APP_HIDEventHandler

 USB_DEVICE_HIDE_EVENT_RESPONSE APP_HIDEventHandler
 {
 USB_DEVICE_HID_INDEX instanceIndex,
 USB_DEVICE_HID_EVENT event,
 void * pData,
 uintptr_t context
 }

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 213

 {
 USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED reportReceivedEventData;
 // Handle HID events here.
 switch (event)
 {
 case USB_DEVICE_HID_EVENT_REPORT_RECEIVED:
 if((reportReceivedEventData->reportSize == sizeof(appReport)
 && reportReceivedEventData->report == &appReport[0])
 {
 // Previous transfer was complete.
 }
 break;

 }
 }

Parameters

Parameters Description

instanceIndex HID instance index.

transferHandle HID transfer handle.

buffer Pointer to buffer where the received report has to be received stored.

size Buffer size.

Function

USB_DEVICE_HID_RESULT USB_DEVICE_HID_ReportReceive

(

USB_DEVICE_HID_INDEX instanceIndex,

USB_DEVICE_HID_TRANSFER_HANDLE * transferHandle,

void * buffer,

size_t size

);

USB_DEVICE_HID_ReportSend Function

This function submits the buffer to HID function driver library to send a report from device to host.

File

usb_device_hid.h

C
USB_DEVICE_HID_RESULT USB_DEVICE_HID_ReportSend(USB_DEVICE_HID_INDEX instanceIndex,
USB_DEVICE_HID_TRANSFER_HANDLE * handle, void * buffer, size_t size);

Returns

USB_DEVICE_HID_RESULT_OK - The send request was successful. transferHandle contains a valid transfer handle.

USB_DEVICE_HID_RESULT_ERROR_TRANSFER_QUEUE_FULL - Internal request queue is full. The send request could not be added.

USB_DEVICE_HID_RESULT_ERROR_INSTANCE_NOT_CONFIGURED - The specified instance is not configured yet.

USB_DEVICE_HID_RESULT_ERROR_INSTANCE_INVALID - The specified instance was not provisioned in the application and is invalid.

Description

This function places a request to send a HID report with the USB Device HID Function Driver Layer. The function places a requests with driver, the
request will get serviced when report is requested by the USB Host. A handle to the request is returned in the transferHandle parameter. The
termination of the request is indicated by the USB_DEVICE_HID_EVENT_REPORT_SENT event. The amount of data sent, a pointer to the report
and the transfer handle associated with the request is returned along with the event in the pData parameter of the event handler. The transfer
handle expires when event handler for the USB_DEVICE_HID_EVENT_REPORT_SENT exits. If the send request could not be accepted, the
function returns an error code and transferHandle will contain the value USB_DEVICE_HID_TRANSFER_HANDLE_INVALID.

Remarks

While the using the HID Function Driver with the PIC32MZ USB module, the report data buffer provided to the USB_DEVICE_HID_ReportSend
function should be placed in coherent memory and aligned at a 16 byte boundary. This can be done by declaring the buffer using the
__attribute__((coherent, aligned(16))) attribute. An example is shown here
uint8_t data[256] __attribute__((coherent, aligned(16)));

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 214

Preconditions

USB device layer must be initialized.

Example
USB_DEVICE_HID_TRANSFER_HANDLE hidTransferHandle;
USB_DEVICE_HID_RESULT result;

// Register APP_HIDEventHandler function
USB_DEVICE_HID_EventHandlerSet(USB_DEVICE_HID_INDEX_0 ,
 APP_HIDEventHandler);

// Prepare report and request HID to send the report.
result = USB_DEVICE_HID_ReportSend(USB_DEVICE_HID_INDEX_0,
 &hidTransferHandle ,
 &appReport[0], sizeof(appReport));

if(result != USB_DEVICE_HID_RESULT_OK)
{
 //Handle error.

}

//Implementation of APP_HIDEventHandler

USB_DEVICE_HIDE_EVENT_RESPONSE APP_HIDEventHandler
{
 USB_DEVICE_HID_INDEX instanceIndex,
 USB_DEVICE_HID_EVENT event,
 void * pData,
 uintptr_t context
}
{
 USB_DEVICE_HID_EVENT_DATA_REPORT_SENT * reportSentEventData;

 // Handle HID events here.
 switch (event)
 {
 case USB_DEVICE_HID_EVENT_REPORT_SENT:

 reportSentEventData = (USB_DEVICE_HID_EVENT_REPORT_SENT *)pData;
 if(reportSentEventData->reportSize == sizeof(appReport))
 {
 // The report was sent completely.
 }
 break;

 }
 return(USB_DEVICE_HID_EVENT_RESPONSE_NONE);
}

Parameters

Parameters Description

instance USB Device HID Function Driver instance.

transferHandle Pointer to a USB_DEVICE_HID_TRANSFER_HANDLE type of variable. This variable will
contain the transfer handle in case the send request was successful.

data pointer to the data buffer containing the report to be sent.

size Size (in bytes) of the report to be sent.

Function

USB_DEVICE_HID_RESULT USB_DEVICE_HID_ReportSend

(

USB_DEVICE_HID_INDEX instanceIndex,

USB_DEVICE_HID_TRANSFER_HANDLE * transferHandle,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 215

void * buffer,

size_t size

)

USB_DEVICE_HID_TransferCancel Function

This function cancels a scheduled HID Device data transfer.

File

usb_device_hid.h

C
USB_DEVICE_HID_RESULT USB_DEVICE_HID_TransferCancel(USB_DEVICE_HID_INDEX usbDeviceHandle,
USB_DEVICE_HID_TRANSFER_HANDLE transferHandle);

Returns

USB_DEVICE_HID_RESULT_OK - The transfer will be canceled completely or partially.

USB_DEVICE_HID_RESULT_ERROR_PARAMETER_INVALID - Invalid transfer handle

USB_DEVICE_HID_RESULT_ERROR_INSTANCE_INVALID - Invalid HID instance index

USB_DEVICE_HID_RESULT_ERROR - The transfer could not be canceled because it has either completed, the transfer handle is invalid or the
last transaction is in progress.

Description

This function cancels a scheduled HID Device data transfer. The transfer could have been scheduled using the
USB_DEVICE_HID_ReportReceive, USB_DEVICE_HID_ReportSend function. If a transfer is still in the queue and its processing has not started,
then the transfer is canceled completely. A transfer that is in progress may or may not get canceled depending on the transaction that is presently
in progress. If the last transaction of the transfer is in progress, then the transfer will not be canceled. If it is not the last transaction in progress, the
in-progress will be allowed to complete. Pending transactions will be canceled. The first transaction of an in progress transfer cannot be canceled.

Remarks

The buffer specific to the transfer handle should not be released unless the transfer abort event is notified through callback.

Preconditions

The USB Device should be in a configured state.

Example
// The following code snippet cancels a HID transfer.

USB_DEVICE_HID_TRANSFER_HANDLE transferHandle;
USB_DEVICE_HID_RESULT result;

result = USB_DEVICE_HID_TransferCancel(instanceIndex, transferHandle);

if(USB_DEVICE_HID_RESULT_OK == result)
{
 // The transfer cancellation was either completely or
 // partially successful.
}

Parameters

Parameters Description

instanceIndex HID Function Driver instance index.

transferHandle Transfer handle of the transfer to be canceled.

Function

USB_DEVICE_HID_RESULT USB_DEVICE_HID_TransferCancel

(

USB_DEVICE_HID_INDEX instanceIndex,

USB_DEVICE_HID_TRANSFER_HANDLE transferHandle

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 216

b) Data Types and Constants

USB_DEVICE_HID_EVENT Enumeration

USB Device HID Function Driver Events

File

usb_device_hid.h

C
typedef enum {
 USB_DEVICE_HID_EVENT_GET_REPORT,
 USB_DEVICE_HID_EVENT_GET_IDLE,
 USB_DEVICE_HID_EVENT_GET_PROTOCOL,
 USB_DEVICE_HID_EVENT_SET_REPORT,
 USB_DEVICE_HID_EVENT_SET_IDLE,
 USB_DEVICE_HID_EVENT_SET_PROTOCOL,
 USB_DEVICE_HID_EVENT_REPORT_SENT,
 USB_DEVICE_HID_EVENT_REPORT_RECEIVED,
 USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED,
 USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT,
 USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_ABORTED
} USB_DEVICE_HID_EVENT;

Members

Members Description

USB_DEVICE_HID_EVENT_GET_REPORT This event occurs when the host issues a GET REPORT command.
This is a HID class specific control transfer related event. The
application must interpret the pData parameter as
USB_DEVICE_HID_EVENT_DATA_GET_REPORT pointer type. If
the report request is supported, the application must send the report
to the host by using the USB_DEVICE_ControlSend function either in
the event handler or after the event handler routine has returned. The
application can track the completion of the request by using the
USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT
event. If the report request is not supported, the application must stall
the request by calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_ERROR flag.

USB_DEVICE_HID_EVENT_GET_IDLE This event occurs when the host issues a GET IDLE command. This
is a HID class specific control transfer related event. The pData
parameter will be a USB_DEVICE_HID_EVENT_DATA_GET_IDLE
pointer type containing the ID of the report for which the idle
parameter is requested. If the request is supported, the application
must send the idle rate to the host by calling the
USB_DEVICE_ControlSend function. This function can be called
either in the event handler or after the event handler routine has
returned. The application can track the completion of the request by
using the
USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT
event. If the request is not supported, the application must stall the
request by calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_ERROR flag.

USB_DEVICE_HID_EVENT_GET_PROTOCOL This event occurs when the host issues a GET PROTOCOL
command. This is a HID class specific control transfer related event.
The pData parameter will be NULL. If the request is supported, the
application must send a USB_HID_PROTOCOL_CODE data type
object, containing the current protocol, to the host by calling the
USB_DEVICE_ControlSend function. This function can be called
either in the event handler or after the event handler routine has
returned. The application can track the completion of the request by
using the
USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT
event. If the request is not supported, the application must stall the
request by calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_ERROR flag.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 217

USB_DEVICE_HID_EVENT_SET_REPORT This event occurs when the host issues a SET REPORT command.
This is a HID class specific control transfer related event. The
application must interpret the pData parameter as a
USB_DEVICE_HID_EVENT_DATA_SET_REPORT pointer type. If
the report request is supported, the application must provide a buffer,
to receive the report, to the host by calling the
USB_DEVICE_ControlReceive function either in the event handler or
after the event handler routine has returned. The application can track
the completion of the request by using the
USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIV
ED
event. If the report request is not supported, the application must stall
the request by calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_ERROR flag.

USB_DEVICE_HID_EVENT_SET_IDLE This event occurs when the host issues a SET IDLE command. This is
a HID class specific control transfer related event. The pData
parameter will be USB_DEVICE_HID_EVENT_DATA_SET_IDLE
pointer type. The application can analyze the idle duration and
acknowledge or reject the setting by calling the
USB_DEVICE_ControlStatus function. This function can be called in
the event handler or after the event handler exits. If application can
reject the request by calling the USB_DEVICE_ControlStatus function
with a USB_DEVICE_CONTROL_STATUS_ERROR flag. It can
accept the request by calling this function with
USB_DEVICE_CONTROL_STATUS_OK flag.

USB_DEVICE_HID_EVENT_SET_PROTOCOL This event occurs when the host issues a SET PROTOCOL
command. This is a HID class specific control transfer related event.
The pData parameter will be a pointer to a
USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL data type. If
the request is supported, the application must acknowledge the
request by calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_OK flag. If the request is not
supported, the application must stall the request by calling the
USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_ERROR flag.

USB_DEVICE_HID_EVENT_REPORT_SENT This event indicates that USB_DEVICE_HID_ReportSend function
completed a report transfer on interrupt endpoint from host to device.
The pData parameter will be a
USB_DEVICE_HID_EVENT_DATA_REPORT_SENT type.

USB_DEVICE_HID_EVENT_REPORT_RECEIVED This event indicates that USB_DEVICE_HID_ReportReceive function
completed a report transfer on interrupt endpoint from device to host.
The pData parameter will be a
USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED type

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED This event occurs when the data stage of a control write transfer has
completed. This happens after the application uses the
USB_DEVICE_ControlReceive function to respond to a HID Function
Driver Control Transfer Event that requires data to be received from
the host. The pData parameter will be NULL. The application should
call the USB_DEVICE_ControlStatus function with the
USB_DEVICE_CONTROL_STATUS_OK flag if the received data is
acceptable or should call this function with
USB_DEVICE_CONTROL_STATUS_ERROR flag if the received data
needs to be rejected.

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT This event occurs when the data stage of a control read transfer has
completed. This happens after the application uses the
USB_DEVICE_ControlSend function to respond to a HID Function
Driver Control Transfer Event that requires data to be sent to the host.
The pData parameter will be NULL

USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_ABORTED This event occurs when an ongoing control transfer was aborted. The
application must stop any pending control transfer related activities.

Description

USB Device HID Function Driver Events

These events are specific to the USB Device HID Function Driver instance. Each event description contains details about the parameters passed
with event. The contents of pData depends on the generated event.

Events that are associated with the HID Function Driver Specific Control Transfers require application response. The application should respond to
these events by using the USB_DEVICE_ControlReceive, USB_DEVICE_ControlSend and USB_DEVICE_ControlStatus functions.

Calling the USB_DEVICE_ControlStatus function with a USB_DEVICE_CONTROL_STATUS_ERROR will stall the control transfer request. The
application would do this if the control transfer request is not supported. Calling the USB_DEVICE_ControlStatus function with a
USB_DEVICE_CONTROL_STATUS_OK will complete the status stage of the control transfer request. The application would do this if the control

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 218

transfer request is supported

The following code snippet shows an example of a possible event handling scheme.
// This code example shows all HID Function Driver events and a possible
// scheme for handling these events. In this example event responses are not
// deferred.

USB_DEVICE_HID_EVENT_RESPONSE USB_AppHIDEventHandler
(
 USB_DEVICE_HID_INDEX instanceIndex,
 USB_DEVICE_HID_EVENT event,
 void * pData,
 uintptr_t userData
)
{
 uint8_t currentIdleRate;
 uint8_t someHIDReport[128];
 uint8_t someHIDDescriptor[128];
 USB_DEVICE_HANDLE usbDeviceHandle;
 USB_HID_PROTOCOL_CODE currentProtocol;
 USB_DEVICE_HID_EVENT_DATA_GET_REPORT * getReportEventData;
 USB_DEVICE_HID_EVENT_DATA_SET_IDLE * setIdleEventData;
 USB_DEVICE_HID_EVENT_DATA_SET_DESCRIPTOR * setDescriptorEventData;
 USB_DEVICE_HID_EVENT_DATA_SET_REPORT * setReportEventData;

 switch(event)
 {
 case USB_DEVICE_HID_EVENT_GET_REPORT:

 // In this case, pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_GET_REPORT pointer. The application
 // must send the requested report by using the
 // USB_DEVICE_ControlSend() function.

 getReportEventData = (USB_DEVICE_HID_EVENT_DATA_GET_REPORT *)pData;
 USB_DEVICE_ControlSend(usbDeviceHandle, someHIDReport, getReportEventData->reportLength);

 break;

 case USB_DEVICE_HID_EVENT_GET_PROTOCOL:

 // In this case, pData will be NULL. The application
 // must send the current protocol to the host by using
 // the USB_DEVICE_ControlSend() function.

 USB_DEVICE_ControlSend(usbDeviceHandle, ¤tProtocol, sizeof(USB_HID_PROTOCOL_CODE));
 break;

 case USB_DEVICE_HID_EVENT_GET_IDLE:

 // In this case, pData will be a
 // USB_DEVICE_HID_EVENT_DATA_GET_IDLE pointer type containing the
 // ID of the report for which the idle rate is being requested.
 // The application must send the current idle rate to the host
 // by using the USB_DEVICE_ControlSend() function.

 USB_DEVICE_ControlSend(usbDeviceHandle, ¤tIdleRate, 1);
 break;

 case USB_DEVICE_HID_EVENT_SET_REPORT:

 // In this case, pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_SET_REPORT type pointer. The
 // application can analyze the request and then obtain the
 // report by using the USB_DEVICE_ControlReceive() function.

 setReportEventData = (USB_DEVICE_HID_EVENT_DATA_SET_REPORT *)pData;
 USB_DEVICE_ControlReceive(deviceHandle, someHIDReport, setReportEventData->reportLength);
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 219

 case USB_DEVICE_HID_EVENT_SET_PROTOCOL:

 // In this case, pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL type pointer. The application can
 // analyze the data and decide to stall or accept the setting.
 // This shows an example of accepting the protocol setting.

 USB_DEVICE_ControlStatus(deviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_HID_EVENT_SET_IDLE:

 // In this case, pData should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_SET_IDLE type pointer. The
 // application can analyze the data and decide to stall
 // or accept the setting. This shows an example of accepting
 // the protocol setting.

 setIdleEventData = (USB_DEVICE_HID_EVENT_DATA_SET_IDLE *)pData;
 USB_DEVICE_ControlStatus(deviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:

 // In this case, control transfer data was received. The
 // application can inspect that data and then stall the
 // handshake stage of the control transfer or accept it
 // (as shown here).

 USB_DEVICE_ControlStatus(deviceHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

 case USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_DATA_SENT:

 // This means that control transfer data was sent. The
 // application would typically acknowledge the handshake
 // stage of the control transfer.

 break;

 case USB_DEVICE_HID_EVENT_CONTROL_TRANSFER_ABORTED:

 // This is an indication only event. The application must
 // reset any HID control transfer related tasks when it receives
 // this event.

 break;

 case USB_DEVICE_HID_EVENT_REPORT_RECEIVED:

 // This means a HID report receive request has completed.
 // The pData member should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED pointer type.

 break;

 case USB_DEVICE_HID_EVENT_REPORT_SENT:

 // This means a HID report send request has completed.
 // The pData member should be interpreted as a
 // USB_DEVICE_HID_EVENT_DATA_REPORT_SENT pointer type.

 break;
 }

 return(USB_DEVICE_HID_EVENT_RESPONSE_NONE);
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 220

Remarks

Some of the events allow the application to defer responses. This allows the application some time to obtain the response data rather than having
to respond to the event immediately. Note that a USB host will typically wait for event response for a finite time duration before timing out and
canceling the event and associated transactions. Even when deferring response, the application must respond promptly if such timeouts have to
be avoided.

USB_DEVICE_HID_EVENT_DATA_GET_REPORT Structure

USB Device HID Get Report Event Data Type.

File

usb_device_hid.h

C
typedef struct {
 uint8_t reportType;
 uint8_t reportID;
 uint16_t reportLength;
} USB_DEVICE_HID_EVENT_DATA_GET_REPORT;

Members

Members Description

uint8_t reportType; Report type

uint8_t reportID; Report ID

uint16_t reportLength; Report Length

Description

USB Device HID Get Report Event Data Type.

This defines the data type of the data generated to the HID event handler on a USB_DEVICE_HID_EVENT_GET_REPORT event.

Remarks

None.

USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED Structure

USB Device HID Report Received Event Data Type.

File

usb_device_hid.h

C
typedef struct {
 USB_DEVICE_HID_TRANSFER_HANDLE handle;
 size_t length;
 USB_DEVICE_HID_RESULT status;
} USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED;

Members

Members Description

USB_DEVICE_HID_TRANSFER_HANDLE
handle;

Transfer handle

size_t length; Report size received

USB_DEVICE_HID_RESULT status; Completion status of the transfer

Description

USB Device HID Report Received Event Data Type.

This defines the data type of the data generated to the HID event handler on a USB_DEVICE_HID_EVENT_REPORT_RECEIVED event.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 221

USB_DEVICE_HID_EVENT_DATA_REPORT_SENT Structure

USB Device HID Report Sent Event Data Type.

File

usb_device_hid.h

C
typedef struct {
 USB_DEVICE_HID_TRANSFER_HANDLE handle;
 size_t length;
 USB_DEVICE_HID_RESULT status;
} USB_DEVICE_HID_EVENT_DATA_REPORT_SENT;

Members

Members Description

USB_DEVICE_HID_TRANSFER_HANDLE
handle;

Transfer handle

size_t length; Report size transmitted

USB_DEVICE_HID_RESULT status; Completion status of the transfer

Description

USB Device HID Report Sent Event Data Type.

This defines the data type of the data generated to the HID event handler on a USB_DEVICE_HID_EVENT_REPORT_SENT event.

Remarks

None.

USB_DEVICE_HID_EVENT_DATA_SET_IDLE Structure

USB Device HID Set Idle Event Data Type.

File

usb_device_hid.h

C
typedef struct {
 uint8_t duration;
 uint8_t reportID;
} USB_DEVICE_HID_EVENT_DATA_SET_IDLE;

Members

Members Description

uint8_t duration; Idle duration

uint8_t reportID; Report ID

Description

USB Device HID Set Idle Event Data Type.

This defines the data type of the data generated to the HID event handler on a USB_DEVICE_HID_EVENT_SET_IDLE event.

Remarks

None.

USB_DEVICE_HID_EVENT_DATA_SET_REPORT Structure

USB Device HID Set Report Event Data Type.

File

usb_device_hid.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 222

C
typedef struct {
 uint8_t reportType;
 uint8_t reportID;
 uint16_t reportLength;
} USB_DEVICE_HID_EVENT_DATA_SET_REPORT;

Members

Members Description

uint8_t reportType; Report type

uint8_t reportID; Report ID

uint16_t reportLength; Report Length

Description

USB Device HID Set Report Event Data Type.

This defines the data type of the data generated to the HID event handler on a USB_DEVICE_HID_EVENT_SET_REPORT event.

Remarks

None.

USB_DEVICE_HID_INDEX Type

USB device HID Function Driver Index.

File

usb_device_hid.h

C
typedef uintptr_t USB_DEVICE_HID_INDEX;

Description

USB Device HID Driver Index Numbers

This uniquely identifies a HID Function Driver instance.

Remarks

None.

USB_DEVICE_HID_EVENT_DATA_GET_IDLE Structure

USB Device HID Get Idle Event Data Type.

File

usb_device_hid.h

C
typedef struct {
 uint8_t reportID;
} USB_DEVICE_HID_EVENT_DATA_GET_IDLE;

Members

Members Description

uint8_t reportID; The protocol code

Description

USB Device HID Get Idle Event Data

This defines the data type of the data generated to the HID event handler on a USB_DEVICE_HID_EVENT_GET_IDLE event.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 223

USB_DEVICE_HID_TRANSFER_HANDLE Type

USB Device HID Function Driver Transfer Handle Definition.

File

usb_device_hid.h

C
typedef uintptr_t USB_DEVICE_HID_TRANSFER_HANDLE;

Description

USB Device HID Function Driver Transfer Handle Definition

This definition defines a USB Device HID Function Driver Transfer Handle. A Transfer Handle is owned by the application but its value is modified
by the USB_DEVICE_HID_ReportSend and USB_DEVICE_HID_ReportReceive functions. The transfer handle is valid for the life time of the
transfer and expires when the transfer related event has occurred.

Remarks

None.

USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL Structure

USB Device HID Set Protocol Event Data Type.

File

usb_device_hid.h

C
typedef struct {
 USB_HID_PROTOCOL_CODE protocolCode;
} USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL;

Members

Members Description

USB_HID_PROTOCOL_CODE protocolCode; The protocol code

Description

USB Device HID Set Protocol Event Data

This defines the data type of the data generated to the HID event handler on a USB_DEVICE_HID_EVENT_SET_PROTOCOL event.

Remarks

None.

USB_DEVICE_HID_EVENT_HANDLER Type

USB Device HID Event Handler Function Pointer Type.

File

usb_device_hid.h

C
typedef USB_DEVICE_HID_EVENT_RESPONSE (* USB_DEVICE_HID_EVENT_HANDLER)(USB_DEVICE_HID_INDEX instanceIndex,
USB_DEVICE_HID_EVENT event, void * pData, uintptr_t context);

Description

USB Device HID Event Handler Function Pointer Type.

This data type defines the required function signature of the USB Device HID Function Driver event handling callback function. The application
must register a pointer to a HID Function Driver events handling function whose function signature (parameter and return value types) match the
types specified by this function pointer in order to receive event call backs from the HID Function Driver. The function driver will invoke this function
with event relevant parameters. The description of the event handler function parameters is given here.

instanceIndex - Instance index of the HID Function Driver that generated the event.

event - Type of event generated.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 224

pData - This parameter should be type casted to a event specific pointer type based on the event that has occurred. Refer to the
USB_DEVICE_HID_EVENT enumeration description for more details.

context - Value identifying the context of the application that registered the event handling function.

Remarks

None.

USB_DEVICE_HID_EVENT_RESPONSE Type

USB Device HID Function Driver Event Callback Response Type

File

usb_device_hid.h

C
typedef void USB_DEVICE_HID_EVENT_RESPONSE;

Description

USB Device HID Function Driver Event Handler Response Type

This is the return type of the HID Function Driver event handler.

Remarks

None.

USB_DEVICE_HID_INIT Structure

USB Device HID Function Driver Initialization Data Structure

File

usb_device_hid.h

C
typedef struct {
 size_t hidReportDescriptorSize;
 void * hidReportDescriptor;
 size_t queueSizeReportSend;
 size_t queueSizeReportReceive;
} USB_DEVICE_HID_INIT;

Members

Members Description

size_t hidReportDescriptorSize; Size of the HID report descriptor

void * hidReportDescriptor; Pointer to HID report descriptor

size_t queueSizeReportSend; Report send queue size

size_t queueSizeReportReceive; Report receive queue size

Description

USB Device HID Function Driver Initialization Data Structure

This data structure must be defined for every instance of the HID function driver. It is passed to the HID function driver, by the Device Layer, at the
time of initialization. The funcDriverInit member of the Device Layer Function Driver registration table entry must point to this data structure for an
instance of the HID function driver.

Remarks

None.

USB_DEVICE_HID_RESULT Enumeration

USB Device HID Function Driver USB Device HID Result enumeration.

File

usb_device_hid.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 225

C
typedef enum {
 USB_DEVICE_HID_RESULT_OK,
 USB_DEVICE_HID_RESULT_ERROR_TRANSFER_QUEUE_FULL,
 USB_DEVICE_HID_RESULT_ERROR_INSTANCE_NOT_CONFIGURED,
 USB_DEVICE_HID_RESULT_ERROR_INSTANCE_INVALID,
 USB_DEVICE_HID_RESULT_ERROR_TERMINATED_BY_HOST,
 USB_DEVICE_HID_RESULT_ERROR
} USB_DEVICE_HID_RESULT;

Members

Members Description

USB_DEVICE_HID_RESULT_OK The operation was successful

USB_DEVICE_HID_RESULT_ERROR_TRANSFER_QUEUE_FULL The transfer queue is full. No new transfers can be

• scheduled
USB_DEVICE_HID_RESULT_ERROR_INSTANCE_NOT_CONFIGURED The specified instance is not configured yet

USB_DEVICE_HID_RESULT_ERROR_INSTANCE_INVALID The specified instance is not provisioned in the system

USB_DEVICE_HID_RESULT_ERROR_TERMINATED_BY_HOST Transfer terminated by host because of a stall clear

USB_DEVICE_HID_RESULT_ERROR General Error

Description

USB Device HID Function Driver USB Device HID Result enumeration.

This enumeration lists the possible USB Device HID Function Driver operation results. These values USB Device HID Library functions.

Remarks

None.

USB_DEVICE_HID_EVENT_RESPONSE_NONE Macro

USB Device HID Function Driver Event Handler Response Type None.

File

usb_device_hid.h

C
#define USB_DEVICE_HID_EVENT_RESPONSE_NONE

Description

USB Device HID Function Driver Event Handler Response None

This is the definition of the HID Function Driver Event Handler Response Type none.

Remarks

Intentionally defined to be empty.

USB_DEVICE_HID_TRANSFER_HANDLE_INVALID Macro

USB Device HID Function Driver Invalid Transfer Handle Definition.

File

usb_device_hid.h

C
#define USB_DEVICE_HID_TRANSFER_HANDLE_INVALID

Description

USB Device HID Function Driver Invalid Transfer Handle Definition

This definition defines a USB Device HID Function Driver Invalid Transfer Handle. A Invalid Transfer Handle is returned by the
USB_DEVICE_HID_ReportReceive and USB_DEVICE_HID_ReportSend functions when the request was not successful.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 226

USB_DEVICE_HID_FUNCTION_DRIVER Macro

This is a pointer to a group of HID Function Driver callback function pointers.

File

usb_device_hid.h

C
#define USB_DEVICE_HID_FUNCTION_DRIVER

Description

USB Device HID Function Driver Device Layer callback function pointer group

This is a pointer to a group of HID Function Driver callback function pointers. The application must use this pointer while registering an instance of
the HID function driver with the Device Layer via the function driver registration table i.e. the driver member of the function driver registration object
in the device layer function driver registration table should be set to this value.

Remarks

None.

USB_DEVICE_HID_INDEX_0 Macro

USB Device HID Function Driver Index Constants

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_0 0

Description

USB Device HID Function Driver Index Constants

This constants can be used by the application to specify HID function driver instance indexes.

Remarks

None.

USB_DEVICE_HID_INDEX_1 Macro

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_1 1

Description

This is macro USB_DEVICE_HID_INDEX_1.

USB_DEVICE_HID_INDEX_2 Macro

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_2 2

Description

This is macro USB_DEVICE_HID_INDEX_2.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 227

USB_DEVICE_HID_INDEX_3 Macro

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_3 3

Description

This is macro USB_DEVICE_HID_INDEX_3.

USB_DEVICE_HID_INDEX_4 Macro

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_4 4

Description

This is macro USB_DEVICE_HID_INDEX_4.

USB_DEVICE_HID_INDEX_5 Macro

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_5 5

Description

This is macro USB_DEVICE_HID_INDEX_5.

USB_DEVICE_HID_INDEX_6 Macro

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_6 6

Description

This is macro USB_DEVICE_HID_INDEX_6.

USB_DEVICE_HID_INDEX_7 Macro

File

usb_device_hid.h

C
#define USB_DEVICE_HID_INDEX_7 7

Description

This is macro USB_DEVICE_HID_INDEX_7.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 228

Files

Files

Name Description

usb_device_hid.h USB HID Function Driver

usb_device_hid_config_template.h USB device HID class configuration definitions template,

Description

This section lists the source and header files used by the library.

usb_device_hid.h

USB HID Function Driver

Enumerations

Name Description

USB_DEVICE_HID_EVENT USB Device HID Function Driver Events

USB_DEVICE_HID_RESULT USB Device HID Function Driver USB Device HID Result enumeration.

Functions

Name Description

USB_DEVICE_HID_EventHandlerSet This function registers a event handler for the specified HID function driver instance.

USB_DEVICE_HID_ReportReceive This function submits the buffer to HID function driver library to receive a report from host to
device.

USB_DEVICE_HID_ReportSend This function submits the buffer to HID function driver library to send a report from device to
host.

USB_DEVICE_HID_TransferCancel This function cancels a scheduled HID Device data transfer.

Macros

Name Description

USB_DEVICE_HID_EVENT_RESPONSE_NONE USB Device HID Function Driver Event Handler Response Type None.

USB_DEVICE_HID_FUNCTION_DRIVER This is a pointer to a group of HID Function Driver callback function pointers.

USB_DEVICE_HID_INDEX_0 USB Device HID Function Driver Index Constants

USB_DEVICE_HID_INDEX_1 This is macro USB_DEVICE_HID_INDEX_1.

USB_DEVICE_HID_INDEX_2 This is macro USB_DEVICE_HID_INDEX_2.

USB_DEVICE_HID_INDEX_3 This is macro USB_DEVICE_HID_INDEX_3.

USB_DEVICE_HID_INDEX_4 This is macro USB_DEVICE_HID_INDEX_4.

USB_DEVICE_HID_INDEX_5 This is macro USB_DEVICE_HID_INDEX_5.

USB_DEVICE_HID_INDEX_6 This is macro USB_DEVICE_HID_INDEX_6.

USB_DEVICE_HID_INDEX_7 This is macro USB_DEVICE_HID_INDEX_7.

USB_DEVICE_HID_TRANSFER_HANDLE_INVALID USB Device HID Function Driver Invalid Transfer Handle Definition.

Structures

Name Description

USB_DEVICE_HID_EVENT_DATA_GET_IDLE USB Device HID Get Idle Event Data Type.

USB_DEVICE_HID_EVENT_DATA_GET_REPORT USB Device HID Get Report Event Data Type.

USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED USB Device HID Report Received Event Data Type.

USB_DEVICE_HID_EVENT_DATA_REPORT_SENT USB Device HID Report Sent Event Data Type.

USB_DEVICE_HID_EVENT_DATA_SET_IDLE USB Device HID Set Idle Event Data Type.

USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL USB Device HID Set Protocol Event Data Type.

USB_DEVICE_HID_EVENT_DATA_SET_REPORT USB Device HID Set Report Event Data Type.

USB_DEVICE_HID_INIT USB Device HID Function Driver Initialization Data Structure

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 229

Types

Name Description

USB_DEVICE_HID_EVENT_HANDLER USB Device HID Event Handler Function Pointer Type.

USB_DEVICE_HID_EVENT_RESPONSE USB Device HID Function Driver Event Callback Response Type

USB_DEVICE_HID_INDEX USB device HID Function Driver Index.

USB_DEVICE_HID_TRANSFER_HANDLE USB Device HID Function Driver Transfer Handle Definition.

Description

USB HID Function Driver

This file contains the API definitions for the USB Device HID Function Driver. The application should include this file if it needs to use the HID
Function Driver API.

File Name

usb_hid_function_driver.h

Company

Microchip Technology Inc.

usb_device_hid_config_template.h

USB device HID class configuration definitions template,

Macros

Name Description

USB_DEVICE_HID_INSTANCES_NUMBER Specifies the number of HID instances.

USB_DEVICE_HID_QUEUE_DEPTH_COMINED DOM-IGONORE-BEGIN

Description

USB Device HID Class Configuration Definitions

This file contains configurations macros needed to configure the HID Function Driver. This file is a template file only. It should not be included by
the application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_device_hid_config_template.h

Company

Microchip Technology Inc.

USB MSD Device Library

This section describes the USB MSD Device Library.

Introduction

Introduces the MPLAB Harmony USB Mass Storage Device (MSD) Library.

Description

The USB Mass Storage Device Library (also referred to as the MSD Function Driver) allows applications to create USB Mass Storage device such
as USB Pen Drives or USB-based SD Card readers. Applications can also leverage the ready support for Mass Storage Devices by popular Host
personal computer operating systems by using the MSD Function Driver interfaces as a means to access the device functionality. The MSD
Function Driver also features the following:

• Supports Bulk Only Transport (BOT) protocol

• Allows implementation of multiple Logical Unit Number (LUN) storage devices

• Uses the MPLAB Harmony Block Driver interface to connect to storage media drivers

Using the Library

This topic describes the basic architecture of the USB MSD Device Library and provides information and examples on its use.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 230

Abstraction Model

Provides an architectural overview of the USB MSD Device Library driver.

Description

The following diagram illustrates the functional interaction between the application, the MSD Function Driver, the media drivers, and the USB
Device Layer.

As seen in the previous figure, the application does not have to interact with MSD function driver. Also, the MSD Function Driver does not have
application functions that can be called. The media drivers control the storage media. The application interacts with the media drivers to update or
access the information on the storage media. The MSD Function Driver interacts with the media drivers to process data read and write requests
that it receives from the Host. This data is always accessed in blocks.

The MPLAB Harmony System module initializes the Device Layer and media drivers. A media driver is plugged into the MSD Function Driver by
providing a media driver entry point in the MSD Function Driver initialization data structure. In the case of a multi-LUN storage, multiple media
drivers can be plugged into the MSD Function Driver, with each one being capable of accessing different storage media types. The Device Layer
initializes the MSD Function Driver when the Host sets the configuration that contains the Mass Storage interfaces. The MSD Function Driver
Tasks routine is invoked in the context of the Device Layer Tasks routine. The MSD Function Driver interfaces should be registered in the USB
Device Layer Function Driver Registration Table.

Library Overview

The USB MSD Device Library mainly interacts with the system, its clients and function drivers, as shown in the Abstraction Model.

The library interface routines are divided into sub-sections, which address one of the blocks or the overall operation of the USB MSD Device
Library.

Library Interface Section Description

System Configuration Functions Provides event handler, report send/receive, and transfer cancellation functions.

How the Library Works

This section explains how the MSD Function Driver should be added to the USB Device application and how a media driver should be plugged into
it. Considerations while creating new media drivers to operate with the MSD function driver are also discussed.

Library Initialization

Describes how to initialize the MSD Function Driver.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 231

Description

The MSD Function Driver instance for a USB Device configuration is initialized by the USB Device Layer when the Host sets that configuration.
This process does not require application intervention. Each instance of the MSD Function Driver should be registered with the USB Device Layer
through the Device Layer Function Driver Registration Table. While registering the MSD Function Driver, the driver member of the Function Driver
Registration Table entry should be set to USB_DEVICE_MSD_FUNCTION_DRIVER. This is an opaque function driver entry point provided by the
MSD Function Driver for the Device Layer to use.

The MSD Function Driver requires an initialization data structure to be defined for each instance of the function driver. This initialization data
structure should be of the type USB_DEVICE_MSD_INIT. This initialization data structure contains the following:

• The number of Logical Unit Numbers (LUNs) in this MSD Function Driver instance

• A pointer to the USB_MSD_CBW type data structure. This pointer is used by the MSD Function Driver to receive the Command Block Wrapper
(CBW) from the Host. For a PIC32MZ device, this array should be placed in coherent memory and should be aligned on a 4-byte boundary.

• A pointer to the USB_MSD_CSW type data structure. This pointer is used by the MSD Function Driver to send the Command Status Wrapper
(CSW) to the Host. For a PIC32MZ device, this array should be placed in coherent memory and should be aligned on a 4-byte boundary.

• A pointer to the array of media driver initialization data structure. There should be one structure for every LUN. This is a
USB_DEVICE_MSD_MEDIA_INIT_DATA type of data structure. There exists a one-to-one mapping between the LUN and the media driver
initialization data structure.

The following figure shows a pictorial representation of the MSD Function Driver initialization data structure.

The USB_DEVICE_MSD_MEDIA_INIT_DATA data structure allows a media driver to be plugged into the MSD Function Driver. Any media driver
that needs to be plugged into the MSD Function Driver needs to implement the interface (function pointer signatures) specified by the
USB_DEVICE_MSD_MEDIA_FUNCTIONS type. For every LUN, a SCSI Inquiry Response data structure needs to be made available.

Use the following guidelines while implementing the media driver:

• Read functions should be non-blocking

• Write functions should be non-blocking

• The media driver should provide an event to indicate when a block transfer has complete. It should allow the event handler to be registered.

• Where required, the write function should erase and write to the storage area in one operation. The MSD Function Driver does not explicitly call
the erase operation.

• The media driver should provide a media geometry object when required. This media geometry object allows the MSD Function Driver to
understand the media characteristics. This object is of the type, SYS_FS_MEDIA_GEOMETRY.

The following code shows an example of plugging the MPLAB Harmony NVM Driver into the MSD Function Driver. The coherency and alignment
attributes that are applied to the sectorBuffer, msdCBW, and msdCBW data objects is needed for operation on PIC32MZ devices.
/***
 * Sector buffer needed by for the MSD LUN.
 ***/

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 232

uint8_t sectorBuffer[512] __attribute__((coherent)) __attribute__((aligned(4)));

/***
 * CBW and CSW structure needed by the MSD
 * function driver instance.
 ***/
USB_MSD_CBW msdCBW __attribute__((coherent)) __attribute__((aligned(4)));
USB_MSD_CSW msdCSW __attribute__((coherent)) __attribute__((aligned(4)));

/***
 * Because the PIC32MZ flash row size if 2048
 * and the media sector size if 512 bytes, we
 * have to allocate a buffer of size 2048
 * to backup the row. A pointer to this row
 * is passed in the media initialization data
 * structure.
 ***/
uint8_t flashRowBackupBuffer [DRV_NVM_ROW_SIZE];
/***
 * MSD Function Driver initialization
 ***/

USB_DEVICE_MSD_MEDIA_INIT_DATA msdMediaInit[1] =
{
 {
 DRV_NVM_INDEX_0,
 512,
 sectorBuffer,
 flashRowBackupBuffer,
 (void *)diskImage,
 {
 0x00, // peripheral device is connected, direct access block device
 0x80, // removable
 0x04, // version = 00=> does not conform to any standard, 4=> SPC-2
 0x02, // response is in format specified by SPC-2
 0x20, // n-4 = 36-4=32= 0x20
 0x00, // sccs etc.
 0x00, // bque=1 and cmdque=0,indicates simple queuing 00 is obsolete,
 // but as in case of other device, we are just using 00
 0x00, // 00 obsolete, 0x80 for basic task queuing
 {
 'M','i','c','r','o','c','h','p'
 },
 {
 'M','a','s','s',' ','S','t','o','r','a','g','e',' ',' ',' ',' '
 },
 {
 '0','0','0','1'
 }
 },
 {
 DRV_NVM_IsAttached,
 DRV_NVM_BLOCK_Open,
 DRV_NVM_BLOCK_Close,
 DRV_NVM_GeometryGet,
 DRV_NVM_BlockRead,
 DRV_NVM_BlockEraseWrite,
 DRV_NVM_IsWriteProtected,
 DRV_NVM_BLOCK_EventHandlerSet,
 DRV_NVM_BlockStartAddressSet
 }
 }
};
/***
 * MSD Function Driver initialization
 ***/
USB_DEVICE_MSD_INIT msdInit =
{
 /* Number of LUNS */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 233

 1,
 /* Pointer to a CBW structure */
 &msdCBW,
 /* Pointer to a CSW structure */
 &msdCSW,
 /* Pointer to a table of Media Initialization data structures */
 &msdMediaInit[0]
};
/***
 * USB Device Function Registration Table
 ***/
const USB_DEVICE_FUNCTION_REGISTRATION_TABLE funcRegistrationTable[1] =
{
 {
 .speed = USB_SPEED_FULL | USB_SPEED_HIGH, // Device Speed
 .configurationValue = 1, // Configuration value
 .interfaceNumber = 0, // Start interface number
 .numberOfInterfaces = 1, // Number of interfaces owned
 .funcDriverIndex = 0, // Function driver index
 .funcDriverInit = (void*)&msdInit, // Pointer to initialization data structure
 .driver = USB_DEVICE_MSD_FUNCTION_DRIVER // Pointer to function driver
 }
};

Data Transfer

Describes how the MSD Function Driver accesses the media.

Description

The MSD Function Driver opens the media drivers for read/write operations when the function driver is initialized by the Device Layer. This
happens when the Host sets a configuration containing MSD interfaces. The Open operation is complete in the MSD Function Driver Tasks
routines (called by the Device Layer).

The MSD Function Driver registers its own block operation event handler with the media drivers. Media Read and Write functions are called when
the function driver receives a Sector Read or Sector Write request from the Host. The request will be tracked in the function driver Task routine.
While the function driver waits for the media to complete the block operation, the function driver will NAK the data stage of the MSD data transfer
request.

The MSD Function Driver does not provide any events to the application. It is possible that the application may also open the media driver while
they are already opened by the MSD Function Driver. If the application and the MSD Function Driver try to write to the same media driver, the
result could be unpredictable. It is recommended that the application restrict write access to the media driver while the USB device is plugged into
the Host.

The application does not have to intervene in the functioning of the MSD Function Driver. Basically, the MSD Function Driver does provide any
application callable functions.

Configuring the Library

Describes how to configure the MSD Function Driver.

Macros

Name Description

USB_DEVICE_MSD_INSTANCES_NUMBER Number of MSD function Driver instances required in the USB Device.

USB_DEVICE_MSD_LUNS_NUMBER Defines the number of LUNs per MSD function driver instance.

Description

The following configuration parameters must be defined while using the MSD Function Driver. The configuration macros that implement these
parameters must be located in the system_config.h file in the application project and a compiler include path (to point to the folder that
contains this file) should be specified.

USB_DEVICE_MSD_INSTANCES_NUMBER Macro

Number of MSD function Driver instances required in the USB Device.

File

usb_device_msd_config_template.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 234

C
#define USB_DEVICE_MSD_INSTANCES_NUMBER 1

Description

MSD Function Driver Instances Number

This configuration constant defines the number of MSD Function Driver instances in the USB Device. This value should be atleast 1 if the MSD
function is required. In case where multiple MSD function drivers are required, it should be noted the MSD function driver supports multiple LUNs.
This allows one MSD function driver instance to manage multiple media. Using multiple LUNs can be considered as an alternative to using multiple
MSD function driver instances.

Remarks

None.

USB_DEVICE_MSD_LUNS_NUMBER Macro

Defines the number of LUNs per MSD function driver instance.

File

usb_device_msd_config_template.h

C
#define USB_DEVICE_MSD_LUNS_NUMBER 1

Description

Number of LUNs

This constant sets maximum possible number of Logical Unit (LUN) an instance of MSD can support. This value should be atleast 1. In cases
where multiple MSD Function Driver instances are required, this constant should be set to the maximum number of LUNs required by any MSD
Function Driver instanceThe following figure shows a pictorial representation of the MSD function driver initialization data structure.

Remarks

None.

Building the Library

Describes the files to be included in the project while using the MSD Function Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_device_msd.h This header file should be included in any .c file that accesses the USB Device MSD Function Driver API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_device_msd.c This file implements the MSD Function driver interface and should be included in the project if the MSD
Device function is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 235

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB CDC Device Library depends on the following modules:

• USB Device Layer Library

Based on application needs, the library may depend on the related storage media libraries, such as:

• Secure Digital (SD) Card Driver Library

• NVM Driver Library

Library Interface

Data Types and Constants

Name Description

USB_DEVICE_MSD_MEDIA_FUNCTIONS Pointer to the media driver functions for media instances to used with the the MSD
function driver.

USB_DEVICE_MSD_INIT This structure contains required parameters for MSD function driver initialization.

USB_DEVICE_MSD_MEDIA_INIT_DATA This structure holds media related data of a particular logical unit.

USB_DEVICE_MSD_FUNCTION_DRIVER USB Device MSD Function Driver Function pointer

Description

This section describes the Application Programming Interface (API) functions of the USB MSD Device Library.

Refer to each section for a detailed description.

a) System Configuration Functions

Data Types and Constants

USB_DEVICE_MSD_MEDIA_FUNCTIONS Structure

Pointer to the media driver functions for media instances to used with the the MSD function driver.

File

usb_device_msd.h

C
struct USB_DEVICE_MSD_MEDIA_FUNCTIONS {
 bool (* isAttached)(const DRV_HANDLE handle);
 DRV_HANDLE (* open)(const SYS_MODULE_INDEX index, const DRV_IO_INTENT intent);
 void (* close)(DRV_HANDLE hClient);
 SYS_FS_MEDIA_GEOMETRY * (* geometryGet)(DRV_HANDLE hClient);
 void (* blockRead)(DRV_HANDLE handle, uintptr_t * blockOperationHandle, void * data, uint32_t blockStart,
uint32_t nBlocks);
 void (* blockWrite)(DRV_HANDLE handle, uintptr_t * blockOperationHandle, void * data, uint32_t
blockStart, uint32_t nBlocks);
 bool (* isWriteProtected)(DRV_HANDLE drvHandle);
 void (* blockEventHandlerSet)(const DRV_HANDLE drvHandle, const void * eventHandler, const uintptr_t
context);
 void (* blockStartAddressSet)(const DRV_HANDLE drvHandle, const void * addressOfStartBlock);
};

Members

Members Description

bool (* isAttached)(const DRV_HANDLE handle); In case of pluggable media, such as SD Card, this function returns true when the media is
inserted, initialized and ready to be used. In case of non-pluggable media, such as Internal
Flash memory, this function can return true when the media is ready to be used. The MSD
host may not detect the media until this function returns true. This function pointer cannot be
NULL

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 236

DRV_HANDLE (* open)(const
SYS_MODULE_INDEX index, const
DRV_IO_INTENT intent);

The MSD Function Driver calls this function to obtain a handle and gain access to functionality
of the specified instance of the media driver. The MSD function driver will attempt to open the
driver with DRV_IO_INTENT_READWRITE and DRV_IO_INTENT_NONBLOCKING. The
MSD host may not detect the media until the MSD function driver obtains a valid driver
handle. The function driver will use this handle in all other functions to communicate with the
media driver. This function pointer cannot be NULL

void (* close)(DRV_HANDLE hClient); The MSD function driver calls this function when the function driver gets deinitialized as result
of device detach or a change in configuration. The MSD function driver will open the media
driver again to obtain a fresh driver handle when it gets initialized again. This function pointer
cannot be NULL.

SYS_FS_MEDIA_GEOMETRY * (*
geometryGet)(DRV_HANDLE hClient);

The MSD function driver calls this function when the function driver needs to know the storage
capacity of the media. The MSD function driver uses the size of read region and number of
read blocks to report the media capacity to the MSD host. This function pointer cannot be
NULL.

void (* blockRead)(DRV_HANDLE handle,
uintptr_t * blockOperationHandle, void * data,
uint32_t blockStart, uint32_t nBlocks);

The MSD function driver calls this function when it needs to read a block of data. This function
pointer cannot be NULL.

void (* blockWrite)(DRV_HANDLE handle,
uintptr_t * blockOperationHandle, void * data,
uint32_t blockStart, uint32_t nBlocks);

The MSD function driver calls this function when it needs to write a block of data. This
function pointer can be NULL if the media is write protected.

bool (* isWriteProtected)(DRV_HANDLE
drvHandle);

The MSD function driver calls this function to find out if the media is write-protected. This
function pointer cannot be NULL.

void (* blockEventHandlerSet)(const
DRV_HANDLE drvHandle, const void *
eventHandler, const uintptr_t context);

The MSD function driver calls this function to register an block event call back function with
the media driver. This event call back will be called when a block related operation has
completed. This function pointer should not be NULL.

void (* blockStartAddressSet)(const
DRV_HANDLE drvHandle, const void *
addressOfStartBlock);

If not NULL and if the blockStartAddress parameter in the
USB_DEVICE_MSD_MEDIA_INIT_DATA data structure for this media is not 0, then the MSD
function driver calls this function immediately after opening the media driver. For media such
a NVM, where the storage media is a part of the program memory flash, this function sets the
start of the storage area on the media. This function is not required for media such as SD
Card.

Description

Media Driver Function Pointer Data Structure

This structure contains function pointers, pointing to the media driver functions. The MSD function driver calls these functions at run time to access
the media. This data structure should be specified during compilation and is a part of the MSD function driver initialization data structure. It is
processed by the function driver when the function driver is initialized by the Device Layer.

Remarks

None.

USB_DEVICE_MSD_INIT Structure

This structure contains required parameters for MSD function driver initialization.

File

usb_device_msd.h

C
typedef struct {
 uint8_t numberOfLogicalUnits;
 USB_MSD_CBW * msdCBW;
 USB_MSD_CSW * msdCSW;
 USB_DEVICE_MSD_MEDIA_INIT_DATA * mediaInit;
} USB_DEVICE_MSD_INIT;

Members

Members Description

uint8_t numberOfLogicalUnits; Number of logical units supported.

USB_MSD_CBW * msdCBW; Pointer to a Command Block Wrapper structure allocated to this instance

• of the MSD function driver. In case of PIC32MZ device, this should be

• placed in non cacheable section of RAM and should be aligned at a 4 byte

• boundary.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 237

USB_MSD_CSW * msdCSW; Pointer to a Command Status Wrapper structure allocated to this instance

• of the MSD function driver. In case of PIC32MZ device, this should be

• placed in non cacheable section of RAM and should be aligned at a 4 byte

• boundary.
USB_DEVICE_MSD_MEDIA_INIT_DATA *
mediaInit;

Pointer to a table of media initialization data. This should contain an entry for every logical unit.

Description

USB MSD init structure.

This structure contains interface number, bulk-IN and bulk-OUT endpoint addresses, endpointSize, number of logical units supported and pointer
to array of structure that contains media initialization.

Remarks

This structure must be configured by the user at compile time.

USB_DEVICE_MSD_MEDIA_INIT_DATA Structure

This structure holds media related data of a particular logical unit.

File

usb_device_msd.h

C
typedef struct {
 SYS_MODULE_INDEX instanceIndex;
 uint32_t sectorSize;
 uint8_t * sectorBuffer;
 uint8_t * blockBuffer;
 void * block0StartAddress;
 SCSI_INQUIRY_RESPONSE inquiryResponse;
 USB_DEVICE_MSD_MEDIA_FUNCTIONS mediaFunctions;
} USB_DEVICE_MSD_MEDIA_INIT_DATA;

Members

Members Description

SYS_MODULE_INDEX instanceIndex; Instance index of the media driver to opened for this LUN

uint32_t sectorSize; Sector size for this LUN. If 0, means that sector size will be available from media geometry.

uint8_t * sectorBuffer; Pointer to a bye buffer whose size if the size of the sector on this

• media. In case of a PIC32MZ device, this buffer should be coherent and

• should be aligned on a 16 byte boundary
uint8_t * blockBuffer; In a case where the sector size of this media is less than the size of

• the write block, a byte buffer of write block size should be provided to

• the function driver. For example, the PIC32MZ NVM flash driver has a

• flash program memory row size of 4096 bytes which is more than the

• standard 512 byte sector. In such a case the application should set this

• pointer to 4096 byte buffer
void * block0StartAddress; Block 0 Start Address on this media. If non zero, then this address will be passed to

blockStartAddressSet function. This should be set to start of the storage address on the
media.

SCSI_INQUIRY_RESPONSE inquiryResponse; Pointer to SCSI inquiry response for this LUN

USB_DEVICE_MSD_MEDIA_FUNCTIONS
mediaFunctions;

Function pointers to the media driver functions

Description

USB Device MSD Media Initialization Data Member

It holds pointer to inquiry response, instance index and pointer to a structure that contains all media callback functions.

Remarks

An object of this structure must be configured by the user at compile time.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 238

USB_DEVICE_MSD_FUNCTION_DRIVER Macro

USB Device MSD Function Driver Function pointer

File

usb_device_msd.h

C
#define USB_DEVICE_MSD_FUNCTION_DRIVER

Description

USB Device MSD Function Driver Function Pointer

This is the USB Device MSD Function Driver Function pointer. This should registered with the device layer in the function driver registration table.

Remarks

None.

Files

Files

Name Description

usb_device_msd.h USB device MSD function driver interface header

usb_device_msd_config_template.h USB Device MSD configuration template header file

Description

This section lists the source and header files used by the library.

usb_device_msd.h

USB device MSD function driver interface header

Macros

Name Description

USB_DEVICE_MSD_FUNCTION_DRIVER USB Device MSD Function Driver Function pointer

Structures

Name Description

USB_DEVICE_MSD_MEDIA_FUNCTIONS Pointer to the media driver functions for media instances to used with the the MSD
function driver.

USB_DEVICE_MSD_INIT This structure contains required parameters for MSD function driver initialization.

USB_DEVICE_MSD_MEDIA_INIT_DATA This structure holds media related data of a particular logical unit.

Description

USB MSD function driver interface header

USB device MSD function driver interface header. This file should be included in the application if USB MSD functionality is required.

File Name

usb_device_msd.h

Company

Microchip Technology Inc.

usb_device_msd_config_template.h

USB Device MSD configuration template header file

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 239

Macros

Name Description

USB_DEVICE_MSD_INSTANCES_NUMBER Number of MSD function Driver instances required in the USB Device.

USB_DEVICE_MSD_LUNS_NUMBER Defines the number of LUNs per MSD function driver instance.

Description

USB Device MSD function driver compile time options

This file contains USB device MSD function driver compile time options(macros) that has to be configured by the user. This file is a template file
and must be used as an example only. This file must not be directly included in the project.

File Name

usb_device_msd_config_template.h

Company

Microchip Technology Inc.

Generic USB Device Library

This section describes the Generic USB Device Library.

Introduction

Introduces the MPLAB Harmony Generic USB Device Library.

Description

A USB Device that does not follow any of the standard USB device class specifications is referred to as Generic (or a Vendor) USB Device. Such
a device may be needed in cases where a standard USB device class does not meet application requirements with respect to transfer type,
throughput or available interfaces. Generic USB Devices also typically require custom USB Host drivers.

The MPLAB Harmony USB Device Layer API features Endpoint API and events that facilitate development of a Generic USB Device. These API
and events allow the application to do the following:

• Configure, enable, and disable endpoints

• Schedule Bulk, Interrupt and, Isochronous transfers

• Respond to control transfers

• Receive control and other transfer type related events

Using the Library

This topic describes the basic architecture of the Generic USB Device Library and provides information and examples on its use.

Abstraction Model

Provides an architectural overview of the Generic USB Device Driver.

Description

The Generic USB Device Library consists of USB Device Layer Endpoint API and events. The API allows the application to configure, enable, and
disable endpoints. Endpoints can be configured for bulk, isochronous, and interrupt transfers. The events allow the application to track the
completion of transfers and respond to control transfer events. It should be noted that the Generic USB Device Library in the MPLAB Harmony
USB Device Stack does not have its own implementation, but rather, uses a subset of the Device Layer API to access the USB, as shown in the
following diagram.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 240

As seen in the figure, the application must implement the logic to implement the Generic USB Device behavior. It must respond to interface, class,
and other control transfers. It must configure endpoints when the Host sets the configuration. Thus, the application implements the function driver
for the Generic USB Function Driver.

The Generic USB Device Endpoint function and events provided by the Device Layer API abstract the details of configuring the USB peripheral.
The Device Layer responds to standard USB requests as a part of the device enumeration process. The Device Layer control transfer functions
and events allow the application to complete control transfers that are targeted to an endpoint, interface or others. The Device Layer endpoint read
and write API provide a USB transaction or transfer level interface. Transactions or transfers can be queued.

Library Overview

Provides an overview of the Generic USB Device Driver.

Description

The Generic Function Driver features API to set application event handlers and transfer data over non-zero endpoints. The function driver is
initialized by the Device Layer when a Set Configuration request is received by the device. This process does not require application intervention.
As a part of this initialization process, all the endpoints belonging to the Generic Function Driver Interfaces will be enabled and configured. When
the application receives the USB_DEVICE_EVENT_CONFIGURED, these endpoints are ready for data transfers.

The application design must ensure that the Generic Function Driver is registered in the Device Layer Function Driver Registration Table.

How the Library Works

This topic describes the basic architecture of the Generic USB Device Library and provides information and examples on its use.

Library Initialization

Describes how the Generic USB Device Library is initialized.

Description

Unlike the standard USB function drivers in the MPLAB Harmony USB Device Stack, in the case of a Generic USB Device, the USB Device Layer
does not automatically enable or disable endpoints that belong to the Generic interface. This must be done by the application when the device is
configured by the Host.

A USB Device can have multiple Generic interfaces. Each of these interfaces must have corresponding entries in the USB Device Layer function
driver registration table. For Generic interfaces, the driver and funcDriverInit member of the function driver registration table entry should be set to
NULL. The following code shows an example of how this is done.
/* This code shows an example function driver registration table entry
 * for a Generic USB Device Interface. Note that the function driver entry point
 * member is NULL. This instructs the Device Layer to pass all interface related
 * control transfers to the application. */
const USB_DEVICE_FUNCTION_REGISTRATION_TABLE funcRegistrationTable[1] =
{
 {
 .configurationValue = 1 , // Configuration descriptor index
 .driver = NULL, // No APIs exposed to the device layer
 .funcDriverIndex = 0 , // Zero Instance index
 .funcDriverInit = NULL, // No init data

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 241

 .interfaceNumber = 0 , // Start interface number of this instance
 .numberOfInterfaces = 1 , // Total number of interfaces contained in this instance
 .speed = USB_SPEED_FULL|USB_SPEED_HIGH // USB Speed
 }
};

The endpoint read and endpoint write queue sizes are specified by the queueSizeEndpointRead and queueSizeEndpointWrite members of the
USB_DEVICE_INIT device layer initialization data structure. These read and write queue sizes define the size of the read and write buffer object
pools. Objects from these pools are then queued up at each read and write endpoint, when an endpoint read or write is requested. The total
number of buffer objects is specified by the USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED configuration constant.

Event Handling

This topic explains how the application should handle Generic USB Device events.

Description

The USB Device Layer generates two different types of events for a Generic USB Device.

• Control transfer events

• Endpoint data transfer events

While handing Device Layer events, it is recommended that computationally intensive operations or hardware access should not be performed
with in the event handler. Doing so may affect the capability of the Device Stack to respond to changes on the USB and could cause the Device to
become non-compliant.

A Generic USB Device application must handle the above events along with the other Device Layer events.

Control Transfer Events

Describes control transfer events and provides a code example.

Description

These events occur when the Device Layer has received a control transfer that is targeted to an interface or an endpoint which is managed by the
Generic USB Device Application. The USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST event is generated when the Setup
stage of the control transfer has been received. The application must investigate the 8-byte setup command that accompanies this event. The
following flowchart explains the interaction.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 242

The application can then either choose to continue the control transfer or stall it. The control transfer is stalled by calling the
USB_DEVICE_ControlStatus function with the USB_DEVICE_CONTROL_STATUS_ERROR flag. In case of zero data stage control transfers, the
application can complete the control transfer by calling the USB_DEVICE_ControlStatus function with the
USB_DEVICE_CONTROL_STATUS_OK flag. In case of control transfers that contain a data stage, the application must use the
USB_DEVICE_ControlSend or the USB_DEVICE_ControlReceive function to send and receive data from the Host, respectively.

In a case where data is to be received from the host, the device layer generates
USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED event when the data stage has completed. The application can analyze the
received data and can then either choose to acknowledge or stall the control transfer by the calling the USB_DEVICE_ControlStatus function with
the USB_DEVICE_CONTROL_STATUS_ERROR flag. This is shown in the following flow chart.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 243

The following code shows an example of handling control transfer in a Generic USB Device. Note that the control transfer events are generated by
the Device Layer.
/* This code shows an example of how the control transfer events
 * can be handled in a Generic USB Device. The example device will accepts the
 * Set Interface Control Request and replies to the Get Interface Control Request
 * with the current alternate setting. */
case USB_DEVICE_EVENT_CONTROL_TRANSFER_SETUP_REQUEST:
 /* This means we have received a setup packet */
 setupPacket = (USB_SETUP_PACKET *)eventData;
 if(setupPacket->bRequest == USB_REQUEST_SET_INTERFACE)
 {
 /* If we have got the SET_INTERFACE request, we just acknowledge
 * for now. In this example, there is one alternate setting which
 * is already active. */
 USB_DEVICE_ControlStatus(appData.usbDevHandle,USB_DEVICE_CONTROL_STATUS_OK);
 }
 else if(setupPacket->bRequest == USB_REQUEST_GET_INTERFACE)
 {
 /* We have only one alternate setting and this setting 0. So
 * we send this information to the host. */
 USB_DEVICE_ControlSend(appData.usbDevHandle, &appData.altSetting, 1);
 }
 else
 {
 /* We have received a request that we cannot handle. Stall it*/
 USB_DEVICE_ControlStatus(appData.usbDevHandle, USB_DEVICE_CONTROL_STATUS_ERROR);
 }
 break;
case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_SENT:
 /* This is a notification event which the application can use to free
 * buffer that was used in a USB_DEVICE_ControlSend() function. */
 break;
case USB_DEVICE_EVENT_CONTROL_TRANSFER_DATA_RECEIVED:
 /* This event means that data has been received in the control transfer
 * and the application must either stall or acknowledge the data stage
 * by calling the USB_DEVICE_ControlStatus() function. Here we simply
 * acknowledge the received data. This is an example only. */
 USB_DEVICE_ControlStatus(appData.usbDevHandle, USB_DEVICE_CONTROL_STATUS_OK);
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 244

Endpoint Data Transfer Events

Describes endpoint data transfer events and provides a code example.

Description

The USB Device Layer provides notification events to indicate completion of transfers. These events are generated by the Device Layer and are
made available in the Device Layer event handler. The USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE event occurs when a transfer
scheduled by the USB_DEVICE_EndpointRead function has completed. The USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE event
occurs when a transfer scheduled by the USB_DEVICE_EndpointWrite function has completed. The event data accompanying these events
contains the transfer handle and number of bytes that were transferred.

The following code shows an example of handling these events.
/* The following code shows an example handling of the
 * endpoint transfer events. Here the code updates a transfer
 * pending flag indicating to the application that transfers have
 * completed. */
case USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE:
 /* Endpoint read is complete */
 appData.epDataReadPending = false;
 break;
case USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE:
 /* Endpoint write is complete */
 appData.epDataWritePending = false;
 break;

Endpoint Management

Describes how the application can enable and disable endpoints.

Description

Unlike standard USB function drivers, such as CDC, MSD, Audio, and HID, the Device Layer does not automatically manage endpoints for a
Generic USB Device interface. This means that the application must maintain all endpoint that belong to a Generic USB Device Interface.
Maintaining the endpoint involves the following:

• Enabling the endpoints for the desired transfer type when the host sets the configuration,

• Disabling the endpoint when the device receives a USB reset or when the Host changes the configuration

• Enabling and clearing endpoint stall conditions

Warning

The application should never access Endpoint 0 directly. Doing so may cause the Device Stack to malfunction, which could cause
the USB device to be non-compliant.

Endpoints can be enabled or disabled with the USB_DEVICE_EndpointEnable and USB_DEVICE_EndpointDisable functions. The
USB_DEVICE_EndpointIsEnabled function can be used to check if an endpoint is enabled. The application should enable the endpoint when host
sets the configuration which contains interfaces that use the endpoint. The endpoints should otherwise be disabled. The endpoint function should
not be called in the Device Layer event handler. Instead, they should be called in the application task routine. The following code shows an
example of how an endpoint is enabled.
/* The following code shows an example of how the endpoint enable functions
 * are called to enabled a Receive and Transmit Bulk endpoints. Note that the size
 * of the endpoint must be specified and this size should match the endpoint size
 * mentioned in the endpoint descriptor */
if (USB_DEVICE_EndpointIsEnabled(appData.usbDevHandle, appData.endpointRx) == false)
{
 /* Enable Read Endpoint */
 USB_DEVICE_EndpointEnable(appData.usbDevHandle, 0, appData.endpointRx,
 USB_TRANSFER_TYPE_BULK, sizeof(receivedDataBuffer));
}
if (USB_DEVICE_EndpointIsEnabled(appData.usbDevHandle, appData.endpointTx) == false)
{
 /* Enable Write Endpoint */
 USB_DEVICE_EndpointEnable(appData.usbDevHandle, 0, appData.endpointTx,
 USB_TRANSFER_TYPE_BULK, sizeof(transmitDataBuffer));
}

An endpoint should be disabled when the host has changed the device configuration and the new configuration does not contain any interfaces
that use this endpoint. The endpoint can also be disabled when the application receives USB_DEVICE_EVENT_RESET or when the
USB_DEVICE_EVENT_DECONFIGURED event has occurred. The following code shows an example of disabling the endpoint.
/* In this example, the endpoints are disabled when
 * when the device has is not configured. This can happen
 * if the configuration set is 0 or if the device is reset. */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 245

if(!appData.deviceIsConfigured)
{
 /* This means the device got deconfigured. Change the
 * application state back to waiting for configuration. */
 appData.state = APP_STATE_WAIT_FOR_CONFIGURATION;

 /* Disable the endpoint*/
 USB_DEVICE_EndpointDisable(appData.usbDevHandle, appData.endpointRx);
 USB_DEVICE_EndpointDisable(appData.usbDevHandle, appData.endpointTx);
 appData.epDataReadPending = false;
 appData.epDataWritePending = false;
}

The application can use the USB_DEVICE_EndpointStall and USB_DEVICE_EndpointStallClear functions to enable stall and clear the stall on
endpoints. The USB_DEVICE_EndpointIsStalled function can be called to check stall status of the endpoint.

Endpoint Data Transfer

Describes how the application can transfer data over endpoints.

Description

The application should call the USB_DEVICE_EndpointRead and USB_DEVICE_EndpointWrite functions to transfer data over an enabled
endpoint. Calling this function causes a USB transfer to be scheduled on the endpoint. The transfer is added to the endpoint queue and is serviced
as the host schedules the transaction on the bus. The USB_DEVICE_EndpointRead and USB_DEVICE_EndpointWrite functions return a unique
transfer handle which can be track the transfer. These transfer handles are returned along with the
USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE (when a endpoint read transfer is complete) and
USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE (when an endpoint write is complete) events.

The following code shows an example of sending data over an endpoint.
/* This code shows an example of using the USB_DEVICE_EndpointWrite
 * function to send data over the endpoint. The completion of the write is
 * indicated by the USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE event. The
 * transfer handle is returned in appData.writeTransferHandle */
USB_DEVICE_EndpointWrite (appData.usbDevHandle, &appData.writeTranferHandle,
 appData.endpointTx, &transmitDataBuffer[0], sizeof(transmitDataBuffer),
 USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE);

void APP_USBDeviceEventHandler(USB_DEVICE_EVENT event, void * eventData, uintptr_t context)
{
 /* This is the Device Layer event handler */
 case USB_DEVICE_EVENT_ENDPOINT_WRITE_COMPLETE:
 /* Endpoint write is complete */
 appData.epDataWritePending = false;
 break;
}

The USB_DEVICE_EndpointWrite function allows the application to send data to the host without ending the transfer. This is done by specifying
USB_DEVICE_TRANSFER_FLAGS_DATA_PENDING as the transfer flag in the call to the USB_DEVICE_EndpointWrite function. The application
can use this option when the data to be sent is not readily available or when the application is memory constrained. The combination of the
transfer flag and the transfer size affects how the data is sent to the host:

• If size is a multiple of maxPacketSize (the IN endpoint size) and flag is set as USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE, the
write function will append a Zero Length Packet (ZLP) to complete the transfer

• If size is a multiple of maxPacketSize and flag is set as USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function will
not append a ZLP and therefore and hence will not complete the transfer

• If size is greater than but not a multiple of maxPacketSize and flags is set as USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE, the
write function schedules (length/maxPacketSize) packets and one packet for the residual data

• If size is greater than but not a multiple of maxPacketSize and flags is set as USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING,
the write function returns an error code and sets the transferHandle parameter to USB_DEVICE_TRANSFER_HANDLE_INVALID

• If size is less than maxPacketSize and flag is set USB_DEVICE_TRANSFER_FLAGS_DATA_COMPLETE, the write function schedules one
packet

• If size is less than maxPacketSize and flag is set as USB_DEVICE_TRANSFER_FLAGS_MORE_DATA_PENDING, the write function returns
an error code and sets the transferHandle parameter to USB_DEVICE_TRANSFER_HANDLE_INVALID

Refer to USB_DEVICE_EndpointWrite function API description for more details and code examples.

The application should use the USB_DEVICE_EndpointRead function to read data from an endpoint. The size of the buffer that is specified in this
function should always be a multiple of the endpoint size. The following code shows an example of using the USB_DEVICE_EndpointRead
function.
/* This code shows to use the USB_DEVICE_EndpointRead function
 * to read from an endpoint. The transfer handle is returned in
 * appData.readTransferHandle. The size of receivedDataBuffer should

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 246

 * be a multiple of the receive endpoint size. */

USB_DEVICE_EndpointRead(appData.usbDevHandle, &appData.readTranferHandle,
 appData.endpointRx, &receivedDataBuffer[0], sizeof(receivedDataBuffer));
void APP_USBDeviceEventHandler(USB_DEVICE_EVENT event, void * eventData, uintptr_t context)
{
 /* This is the Device Layer event handler */
 case USB_DEVICE_EVENT_ENDPOINT_READ_COMPLETE:
 /* Endpoint write is complete */
 appData.epDataReadPending = false;
 break;
}

In a case where a transfer is in progress, the USB_DEVICE_EndpointRead and USB_DEVICE_EndpointWrite functions can queue up transfers.
The maximum number of read transfers that can queued (on any receive endpoint) is specified by the endpointQueueSizeRead member of the
USB_DEVICE_INIT data structure. The maximum number of write transfers that can queued (on any transmit endpoint) is specified by the
endpointQueueSizeWrite member of the USB_DEVICE_INIT data structure. The USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED
configuration macro should be set to total of read and write transfers that need to be queued.

For example, consider a Generic USB Device that contains two OUT (read) endpoint (EP1 and EP2) and one IN write endpoint (EP1). The
application will queue a maximum of three read transfers on EP1, a maximum of five read transfers on EP2 and a maximum of four write transfers
on EP1. Therefore, the total read transfer that will be queued in eight (3 + 5) and total write transfers that will be queued is four. The
endpointQueueSizeRead member of the USB_DEVICE_INIT data structure should be set to eight. The endpointQueueSizeWrite member of the
USB_DEVICE_INIT data structure should be set to four. The USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED configuration macro
should be set to 12 (8 + 4).

Configuring the Library

Describes how to configure the Generic USB Device Library.

Description

The application designer must specify the following configuration parameters while implementing the Generic USB Device. The configuration
macros that implement these parameters must be located in the system_config.h file in the application project and a compiler include path (to
point to the folder that contains this file) should be specified.

Configuration Macro Name Description Comments

USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED Size of buffer
object pool for
Endpoint
Read and
Endpoint
Write
functions.

This macro defines the total number of transfers that can be queued
across all Generic USB Device endpoints. The number of read
transfers that can be queued is specified by the
endpointQueueSizeRead member of the USB_DEVICE_INIT data
structure. The number of write transfers that can be queued is
specified by the endpointQueueSizeWrite member of the
USB_DEVICE_INIT data structure.

Building the Library

This section lists the files to be included in the project to implement a Generic USB Device Library.

Description

The Generic USB Device library does not have its own implementation. It is implemented using Device Layer API which are implemented in the
Device Layer Files.

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_device.h This header file should be included in any .c file that accesses the Device Layer API needed to implement the
Generic USB Device.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Device Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 247

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_device.c This file contains the Device Layer API implementation.

/src/dynamic/usb_device_endpoint_functions.c This file contains the endpoint transfer and management routines that are needed
to implement the Generic USB Device.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The Generic USB Device Library depends on the following modules:

• USB Device Layer Library

Library Interface

The API for implementing the Generic USB Device is contained the USB Device Library. Please refer to the Library Interface section in the USB
Device Layer Library for more details.

USB Host Library

This section provides information on the USB Host libraries that are available in MPLAB Harmony.

USB Host Library - Getting Started

This section provides information for getting started with the USB Host Library.

Introduction

Provides an introduction to the MPLAB Harmony USB Host Library

Description

The MPLAB Harmony USB Host Library (referred to as the USB Host Library) provides embedded application developers with a framework to
design and develop USB Host Support for a wide variety of USB Device Classes. Low-Speed and Full-Speed USB Devices can be supported with
PIC32MX microcontrollers. High-Speed devices can be supported with PIC32MZ microcontrollers. The USB Host Library facilitates support of
standard USB devices through client drivers that implement standard the USB Device class specification. The library is modular, thus allowing
application developers to readily support composite USB devices.

The USB Host Library is a part of the MPLAB Harmony installation and is accompanied by demonstration applications that highlight library usage.
These demonstration applications can also be modified or updated to build custom applications. The USB Host Library also features the following:

• Class Driver Support (CDC, Audio, HID, and MSD)

• Designed to support USB devices with multiple configurations at different speeds

• Supports low-speed, full-speed and high-speed operation

• Supports multiple USB peripherals (allows multiple host stacks)

• Modular and Layered architecture

• Completely non-blocking

• Supports both polled and interrupt operation

• Works readily in an RTOS environment

• Designed to readily integrate with other Harmony Middleware

This document serves as a getting started guide and provides information on the following:

• USB Host Stack Architecture

• USB Host Library - Application Interaction

 Note:
It is assumed that the reader is familiar with the USB 2.0 specification (available at www.usbif.org). While certain topics in USB
may be discussed in this document, it is recommended that the reader refer to the specification documentation for a complete
description.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 248

http://www.usbif.org

USB Host Library Architecture

Describes the USB Host Library Architecture.

Description

The USB Host Library Architecture features a modular and layered architecture as illustrated in the following figure.

USB Host Library Architecture

As seen in the figure, the USB Device Library consists of the following three major components.

Host Controller Driver (HCD)

The HCD manages the state of the USB peripheral and provides the Host Layer with structured methods to access data on the USB. The HCD is a
MPLAB Harmony driver and uses the MPLAB Harmony framework components (USB Peripheral Library and the Interrupt System Service) of its
operation. The HCD is initialized in the system initialization routine and its tasks routine is invoked in the system tasks routine. It is accessed
exclusively by the Host layer. The HCD provides the following services to the host layer:

• Establish and manage communication pipes between the host layer and the attached devices

• Manage USB transfers

Root Hub Driver

The Root Hub Driver models the USB peripheral as a Hub. It then allows the Host Layer to perform the same actions on the Root Hub port that
would be performed on an external Hub’s port. The Root Hub Driver thus leads to an optimized implementation of Hub support in the Host Layer.
The Root Hub Driver is hardware specific and is implemented as a part of the HCD. It provides the following services to the Host Layer

• Provides device attach and detach events

• Allows the Host to suspend, resume, and reset the port

The Root Hub Driver works in tandem with the HCD to provides the Host Layer with required USB protocol related means and methods to manage
the attached USB device.

Host Layer

The Host Layer receives attach and detach events from the Root Hub Driver. It enumerates attached devices based on information contained in
the Target Peripheral List (TPL). It allows client drivers to access the attached device through Host Layer methods. This includes allowing the
client driver to set the device configuration. Where the client driver does not set the device configuration, the Host Layer will set the device
configuration.

The Host layer opens the HCD, instantiates the Root Hub Driver, then controls and communicates with the attached device. The user application
can call the Host Layer API to get information on attached devices. It can also register a Host Layer Event handler to get device related events.
The user application can additionally suspend or resume a device. The Host Layer also provides bus level control where the application can
suspend or resume all devices connected to a USB.

Client Driver

The USB Host Stack Client Drivers implement the support for different device classes as per the class specifications. Along with Host Layer, the

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 249

client drivers are designed to support multiple device of the same type (where multiple devices are connected to the host through a hub or is a
single device with multiple interfaces). A client driver abstracts intricate details of the class specification and provides a high level command and
data interface to the application. Completion of requests is indicated by events. The application must register an event handler to receive these
events.

The Client Driver may manage devices whose functionality is specified by USB VID and PID. In such cases, the client driver can set the device
configuration. The client driver may manage a device whose functionality is defined by an interface class, subclass and protocol. In such a case,
the configuration is set by the Host layer. The client driver can also manage devices whose functionality is defined by a combination of VID PID
and class, sub-class and protocol.

USB Host Library - Application Interaction

Describes how the application must interact with the USB Host Stack.

Description

 Note:
Additional information on the tests conducted on Flash devices (i.e., Pen Drives) and a list of USB application configurations is
available in the USB Demonstrations section.

The following figure highlights the steps that the application must follow to use the USB Host Library.

Application Interaction with Host Layer

The USB Host stack is initialized in the MPLAB Harmony System Initialization function. The Host Stack requires the Timer System Service and
USB Driver. So these must be initialized as well. Note that the figure refers to a general USB Driver. The application may use the USBFS Driver
(DRV_USBFS) for PIC32MX microcontroller or use the USBHS Driver (DRV_USBHS) for PIC32MZ microcontroller. The Timer and USB module
interrupt priorities must be configured.

The USB Host layer, the USB Driver and the Timer System Service tasks must be called in the MPLAB Harmony System Tasks Routine. This

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 250

ensures that the state machines of these module stays updated. If the USB Driver and the Timer driver have been configured for interrupt
operation, then their corresponding interrupt tasks routines should be called in the corresponding module interrupt service routines.

The application state machine must first set the Host Layer event handler and then enable the bus. Enabling the bus will enable device detection
and the Host Layer will enumerate attached devices. The application can query for attached devices and perform operations on attached devices.

USB Host Library Migration Guide

This section provides information on migrating from MPLAB Harmony v1.03.01 and earlier to the MPLAB Harmony USB Host Stack in MPLAB
Harmony v1.04 and later.

Introduction

Provides an introduction to migrating from older versions to v1.04 and later versions of MPLAB Harmony.

Description

The USB Host Stack API in MPLAB Harmony v1.04 has changed from that of previous versions of MPLAB Harmony.

USB CDC and MSD Host applications that were developed using the MPLAB Harmony USB Host Stack v1.03.01 and earlier, will not build unless
the application calls to the USB Host Stack API is updated. While the MHC utility provides an option to continue creating USB Host applications
using the v1.03.01 and earlier USB Host Stack API, it is recommended that existing USB Host application migrate to the latest USB Host API to
take advantage of the latest features in the USB Host Stack. The following sections describe the API changes and other considerations while
updating the application for changes in the USB Host Stack.

 Note:
All USB Host Stack Demonstration Applications and USB Host Stack related documentation have been updated to the latest (new)
USB Host API. The following sections do not discuss changes in the USB Host Stack configuration related code. This is updated
automatically when the project is re-generated using MHC utility. Only the application related API changes are discussed.

USB Host Layer

Describes differences in the USB Host Library. Describes differences from earlier versions of MPLAB Harmony and the USB Host Layer Library in
v1.04 of MPLAB Harmony.

Description

In MPLAB Harmony v1.03.01, the application was required to open the Host Layer to obtain a handle by calling the USB_HOST_Open function.
This handle was then used along with other Host Layer API. Once opened, the application must enable Host Layer operation by calling the
USB_HOST_OperationEnable function. The application must check the status of the enable operation function by calling the
USB_HOST_OperationIsEnabled function. This is shown in the following code example.

Example:
/* This code shows an example application tasks that enabled Host
 * operation and waits for the enable operation to complete */

void APP_Tasks (void)
{
 /* Check the application's current state. */
 USB_HOST_CDC_RESULT result;
 uint8_t temp;

 switch (appData.state)
 {
 case APP_STATE_OPEN_HOST_LAYER:

 /* Open the host layer and then enable Host layer operation */
 appData.hostHandle = USB_HOST_Open(USB_HOST_INDEX_0, DRV_IO_INTENT_EXCLUSIVE);

 if (appData.hostHandle != USB_HOST_HANDLE_INVALID)
 {
 /* Host layer was opened successfully. Enable operation
 * and then wait for operation to be enabled */

 USB_HOST_OperationEnable(appData.hostHandle);
 appData.state = APP_STATE_WAIT_FOR_HOST_ENABLE;

 }
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 251

 case APP_STATE_WAIT_FOR_HOST_ENABLE:

 /* Check if the host operation has been enabled */
 if(USB_HOST_OperationIsEnabled(appData.hostHandle))
 {
 /* This means host operation is enabled. We can
 * move on to the next state */
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }

 break;

 default:
 break;
 }
}

In MPLAB Harmony v1.04, the application is not required to open the Host Layer. This is because the Host Layer by itself does not support
multi-client operation. The application must first set the Host Layer event handler using the USB_HOST_EventHandlerSet function and then
enable the desired bus using the USB_HOST_BusEnable function. The completion of the Bus Enable function can be checked by calling the
USB_HOST_BusIsEnabled function. Once enabled, the application can perform operations on the bus, look for attached devices, and perform
operations on the attached device. The following code shows an example of enabling the bus.
/* This code shows an example of how the bus is enabled in the MPLAB Harmony v1.04
 * USB Host Stack. The application state machine then waits for the bus enable
 * operation to complete */

void APP_Tasks (void)
{
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* In this state the application enables the USB Host Bus. Note
 * how the Host event handler are registered before the bus
 * is enabled. */

 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, (uintptr_t)0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:

 /* In this state we wait for the Bus enable to complete */
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 default:
 break;
 }
}

API Changes

The following table shows the legacy Host API and corresponding v1.04 MPLAB Harmony Host Stack API.

USB Host Layer API

MPLAB Harmony v1.03.01 and
Earlier

MPLAB Harmony v1.04 and Later

USB_HOST_Open N/A

The USB Host Layer does not have to be opened.

USB_HOST_Close N/A

The USB Host Layer does not have to be closed.

USB_HOST_EventCallBackSet USB_HOST_EventHandlerSet

Events have changed.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 252

USB_HOST_OperationEnable USB_HOST_BusEnable

Multiple busses can be managed.

USB_HOST_OperationDisable N/A

A bus disable function is not currently available and will be added in a future release of MPLAB Harmony.

USB_HOST_OperationIsEnabled USB_HOST_BusIsEnabled

USB_HOST_DeviceSuspend USB_HOST_DeviceSuspend

Function parameters have changed.

USB_HOST_DeviceResume USB_HOST_DeviceResume

Function parameters have changed.

N/A USB_HOST_BusSuspend

Provides multiple bus support.

N/A USB_HOST_BusResume

Provides multiple bus support.

N/A USB_HOST_DeviceGetFirst

Provides multiple bus support.

N/A USB_HOST_DeviceGetNext

Provides multiple bus support.

N/A USB_HOST_DeviceSpeedGet

N/A USB_HOST_DeviceIsSuspended

N/A USB_HOST_DeviceStringDescriptorGet

Event Changes

The type of events that the Host Layer generates in earlier versions of MPLAB Harmony and v1.04 of the MPLAB Harmony USB Host Stack have
changed. The following table shows a comparison.

USB Host Layer Events

MPLAB Harmony v1.03.01 and Earlier MPLAB Harmony v1.04 and Later

N/A USB_HOST_EVENT_DEVICE_REJECTED_INSUFFICIENT_POWER

USB_HOST_EVENT_UNSUPPORTED_DEVICE USB_HOST_EVENT_DEVICE_UNSUPPORTED

USB_HOST_EVENT_CANNOT_ENUMERATE This event is not needed and is the same as an unsupported device.

USB_HOST_EVENT_CONFIGURATION_FAILED This event is not needed and is the same as an unsupported device.

USB_HOST_EVENT_DEVICE_SUSPENDED This event is not needed. A polling based function is available.

USB_HOST_EVENT_DEVICE_RESUMED This event is not needed. A polling based function is available.

N/A USB_HOST_EVENT_HUB_TIER_LEVEL_EXCEEDED

N/A USB_HOST_EVENT_PORT_OVERCURRENT_DETECTED

USB MSD Host Client Driver and SCSI Block Storage Driver

Provides migration information for the MSD Host Client Driver and the SCSI Block Storage Driver.

Description

The application would use the MSD Host Client Driver and SCSI Block Storage Driver for accessing USB Storage Devices, such as USB Pen
Drives. The key difference between the MSD Host Client Drivers in previous versions of the MPLAB Harmony USB Host Stack and the v1.04
MPLAB Harmony USB Host Stack MSD Host Client Drivers is the way the storage device attach and detach events are handled.

In previous versions (i.e., v1.03.01 or earlier) of USB Host Stack MSD Host Client Driver an application would have to register an event handler
using the USB_HOST_MSDEventHandlerSet) function after Host operation has been enabled. When the application would receive an event,
USB_HOST_MSD_EVENT_ATTACH would be detected, and the application would then try to mount the drive in this event. This is shown in the
following code example.

Example:
/* In a v1.03.01 or earlier MSD Host Client Driver implementation, the driver will send an
 * attach detach event to the application. The application must use this to mount or unmount
 * the drive in its main state machine */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 253

bool APP_USBHostMSDEventHandler
(
 USB_HOST_MSD_INDEX index,
 USB_HOST_MSD_EVENT event,
 void* pData
)
{
 switch (event)
 {
 case USB_HOST_MSD_EVENT_ATTACH:

 /* This means a USB storage device was plugged in. Update the
 * application state */
 appData.state = APP_STATE_DEVICE_CONNECTED;

 break;

 case USB_HOST_MSD_EVENT_DETACH:

 /* This means the USB storage was unplugged. Update the application
 * state */
 appData.state = APP_STATE_UNMOUNT_DISK;
 break;

 default:
 break;
 }

 return 0;
}

/* In the main application task routine, the host layer is opened and the host
 * operation is enabled. A MSD Host Client Driver event handler is registered
 * and disk is mounted when an attach event has been detected */

void APP_Tasks (void)
{
 /* The application task state machine */

 switch(appData.state)
 {
 case APP_STATE_OPEN_HOST_LAYER:

 /* Open the host layer and then enable Host layer operation */
 appData.hostHandle = USB_HOST_Open(USB_HOST_INDEX_0, DRV_IO_INTENT_EXCLUSIVE);

 if (appData.hostHandle != USB_HOST_HANDLE_INVALID)
 {
 /* Host layer was opened successfully. Enable operation
 * and then wait for operation to be enabled */

 USB_HOST_OperationEnable(appData.hostHandle);
 appData.state = APP_STATE_WAIT_FOR_HOST_ENABLE;

 }
 break;

 case APP_STATE_WAIT_FOR_HOST_ENABLE:

 /* Check if the host operation has been enabled */
 if(USB_HOST_OperationIsEnabled(appData.hostHandle))
 {
 /* This means host operation is enabled. We can
 * move on to the next state */

 USB_HOST_EventCallBackSet(appData.hostHandle,APP_USBHostEventHandler , 0);
 USB_HOST_MSD_EventHandlerSet (APP_USBHostMSDEventHandler);
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 254

 }

 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:

 /* Wait for device attach. The state machine will move
 * to the next state when the attach event
 * is received. */

 break;

 case APP_STATE_DEVICE_CONNECTED:

 /* Device was connected. We can try mounting the disk */
 appData.state = APP_STATE_MOUNT_DISK;
 break;

 case APP_STATE_MOUNT_DISK:

 /* The application gets into this state when the drive is attached
 * */

 if(SYS_FS_Mount("/dev/sda1", "/mnt/myDrive", FAT, 0, NULL) != 0)
 {
 /* The disk could not be mounted. Try
 * mounting again until success. */

 appData.state = APP_STATE_MOUNT_DISK;
 }
 else
 {
 /* Mount was successful. Try opening the file */
 appData.state = APP_STATE_OPEN_FILE;
 }
 break;

 case APP_STATE_UNMOUNT_DISK:

 /* The application gets into this state when the drive is detached
 * */

 if(SYS_FS_Unmount("/mnt/myDrive") != 0)
 {
 /* The disk could not be unmounted. Try
 * unmounting again until success. */

 appData.state = APP_STATE_UNMOUNT_DISK;
 }
 else
 {
 /* Unmount was successful. Wait for device attach */
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;

 }
 break;

 default:
 break;
 }
}

In the v1.04 USB Host Stack MSD Host Client Driver, the application must use the auto mount feature of the MPLAB Harmony File System. This
feature should be enabled when the project is generated via MHC. The application then uses the MPLAB Harmony File System event handler to
know when the File System has mounted the attached USB Storage Device. The application does not have to explicitly mount or unmount the
drive. This is shown in the following code example.

Example:
/* In v1.04 USB MSD Host Client Driver, the driver uses the auto mount feature
 * of the MPLAB Harmony File System. The application must make sure that this

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 255

 * feature is enabled when the project is generated using MHC. Note that unlike
 * previous implement, here the USB Storage device attach detach event appears
 * as a File System Event. */

void APP_SYSFSEventHandler(SYS_FS_EVENT event, void * eventData, uintptr_t context)
{
 switch(event)
 {
 case SYS_FS_EVENT_MOUNT:

 /* The file system generates this event when the drive is mounted.
 * This happens when the USB storage device is connected */
 appData.deviceIsConnected = true;
 break;

 case SYS_FS_EVENT_UNMOUNT:

 /* The file system generates this event when the drive is unmounted.
 * This happens when the USB storage device is disconnected */
 appData.deviceIsConnected = false;

 break;

 default:
 break;
 }
}

/* This is the application state machine. Note how the application register the
 * event handler with the File System before enabling the bus */

void APP_Tasks (void)
{
 switch(appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Set the event handler and enable the bus */
 SYS_FS_EventHandlerSet(APP_SYSFSEventHandler, (uintptr_t)NULL);
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:

 /* Wait for device attach. The state machine will move
 * to the next state when the attach event
 * is received. */
 if(appData.deviceIsConnected)
 {
 appData.state = APP_STATE_DEVICE_CONNECTED;
 }

 break;

 case APP_STATE_DEVICE_CONNECTED:

 /* Device was connected. We can try mounting the disk */
 appData.state = APP_STATE_OPEN_FILE;
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 256

 case APP_STATE_IDLE:

 /* The application reaches here after completing operation and waits
 * for device detach and if detached, wait for attach. */
 if(appData.deviceIsConnected == false)
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 default:
 break;
 }
}

USB CDC Host Client Driver

Describes differences from earlier versions of MPLAB Harmony and the USB CDC Host Client Driver API in v1.04 of MPLAB Harmony.

Description

The key differences between the USB CDC Host Client Driver API in earlier versions of MPLAB Harmony and MPLAB Harmony v1.04 are:

• In the v1.04 release, the Device Attach event handler must be registered before enabling the bus and the General CDC Host Client Driver
Event Handler is registered after the attached CDC device has been opened. In v1.03.01 and earlier, there was only one event handler which
received all events and this event handler was to be registered after the Host Operation was enabled.

• In the v1.04 release, the application must open the attached CDC device. In v1.03.01 and earlier, the application does not have to open the
attached CDC Device.

Registering Events

In v1.03.01 and earlier versions of the USB CDC Host Client Driver, the application registers the CDC Event Handler after the Host Operation was
enabled. Only one event handler could be registered for all attached CDC Devices. The CDC Host Client Driver would specify the instance of the
CDC Device generating the event when the event handler was invoked. The following code shows an example of this.
/* This code shows how a single CDC event handler is registered for all
 * instances of the CDC Host Client Driver. The instance of the client driver
 * generating this event is available in the index parameter of the event
 * handler. This code example is applicable to pre-v1.04 releases of the client
 * driver */

USB_HOST_CDC_EVENT_RESPONSE APP_USBHostCDCEventHandler
(
 USB_HOST_CDC_INDEX index,
 USB_HOST_CDC_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 /* Get the application context */
 uint8_t deviceAddress;

 switch(event)
 {
 case USB_HOST_CDC_EVENT_ATTACH:

 /* The event data in this case is the address of the
 * attached device. */

 appData.state = APP_STATE_DEVICE_CONNECTED;
 deviceAddress = *((uint8_t *)eventData);
 break;

 case USB_HOST_CDC_EVENT_DETACH:

 /* This means the device was detached. There is no event data
 * associated with this event.*/

 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 257

 /* Other events not shown here for the sake of brevity */

 default:
 break;
 }

 return USB_HOST_CDC_EVENT_RESPONSE_NONE;
}

/* This is a pre v1.04 release application tasks for a CDC host client driver.
 * Note that application does not open the client driver and hence when
 * registering an event handler, is registering it all CDC Host Client Driver
 * instances. */

void APP_Tasks (void)
{
 /* Check the application's current state. */
 USB_HOST_CDC_RESULT result;
 uint8_t temp;

 switch (appData.state)
 {
 case APP_STATE_OPEN_HOST_LAYER:

 /* Open the host layer and then enable Host layer operation */
 appData.hostHandle = USB_HOST_Open(USB_HOST_INDEX_0, DRV_IO_INTENT_EXCLUSIVE);

 if (appData.hostHandle != USB_HOST_HANDLE_INVALID)
 {
 /* Host layer was opened successfully. Enable operation
 * and then wait for operation to be enabled */

 USB_HOST_OperationEnable(appData.hostHandle);
 appData.state = APP_STATE_WAIT_FOR_HOST_ENABLE;

 }
 break;

 case APP_STATE_WAIT_FOR_HOST_ENABLE:

 /* Check if the host operation has been enabled */
 if(USB_HOST_OperationIsEnabled(appData.hostHandle))
 {
 /* This means host operation is enabled. We can
 * move on to the next state */
 USB_HOST_EventCallBackSet(appData.hostHandle,APP_USBHostEventHandler , 0);
 USB_HOST_CDC_EventHandlerSet (APP_USBHostCDCEventHandler);
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }

 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:

 /* Wait for device attach. The state machine will move
 * to the next state when the USB_HOST_CDC_EVENT_ATTACH
 * is received. The application state is update in the
 * CDC Host event handler */

 break;

 default:
 break;
 }
}

In the v1.04 released version of the USB CDC Host Client Driver, the application must register an Attach Event Handler before enabling the bus
operation. This one Attach Event handler will be invoked when even a CDC Device is attached. The application must use the CDC object returned
in the attach event handler to open the device. The application can then register an event handler using the handle returned by the open function.
This is shown in the code snippet here.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 258

/* This code how event handling is performed in the v1.04 release of the
 * CDC Host Client Driver. The application must register a listener function
 * that check if the CDC Device is attached. When the attached device is opened
 * the application must then register event handler to register other CDC Host
 * Client Driver events */

void APP_USBHostCDCAttachEventListener(USB_HOST_CDC_OBJ cdcObj, uintptr_t context)
{
 /* This function gets called when the CDC device is attached. Update the
 * application data structure to let the application know that this device
 * is attached */

 appData.deviceIsAttached = true;
 appData.cdcObj = cdcObj;
}

USB_HOST_CDC_EVENT_RESPONSE APP_USBHostCDCEventHandler
(
 USB_HOST_CDC_HANDLE cdcHandle,
 USB_HOST_CDC_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 /* This function is called when a CDC Host event has occurred. A pointer to
 * this function is registered after opening the device. See the call to
 * USB_HOST_CDC_EventHandlerSet() function. */

 switch(event)
 {
 case USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE:

 /* This means the application requested Set Line Coding request is
 * complete. */
 break;

 case USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE:

 /* This means the application requested Set Control Line State
 * request has completed. */
 break;

 case USB_HOST_CDC_EVENT_WRITE_COMPLETE:

 /* This means an application requested write has completed */
 break;

 case USB_HOST_CDC_EVENT_READ_COMPLETE:

 /* This means an application requested write has completed */
 break;

 case USB_HOST_CDC_EVENT_DEVICE_DETACHED:

 /* The device was detached */
 appData.deviceWasDetached = true;
 break;

 default:
 break;
 }

 return(USB_HOST_CDC_EVENT_RESPONE_NONE);
}

/* This is the example application task routine. The application sets the CDC
 * attach listener function and then enables bus. When the CDC device is
 * attached, the state machine opens the CDC Host Client Driver suing the object

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 259

 * that was returned in the attach function. An event handler is then set with
 * using the handle returned by the CDC Host Client Driver Open Function */

void APP_Tasks (void)
{
 /* Check the application's current state. */
 USB_HOST_CDC_RESULT result;

 if(appData.deviceWasDetached)
 {
 /* This means the device is not attached. Reset the application state */

 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }

 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* In this state the application enables the USB Host Bus. Note
 * how the CDC Attach event handler are registered before the bus
 * is enabled. */

 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, (uintptr_t)0);
 USB_HOST_CDC_AttachEventHandlerSet(APP_USBHostCDCAttachEventListener, (uintptr_t) 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:

 /* In this state we wait for the Bus enable to complete */
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:

 /* In this state the application is waiting for the device to be
 * attached */
 if(appData.deviceIsAttached)
 {
 /* A device is attached. We can open this device */
 appData.state = APP_STATE_OPEN_DEVICE;
 appData.deviceIsAttached = false;
 }
 break;

 case APP_STATE_OPEN_DEVICE:

 /* In this state the application opens the attached device */
 appData.cdcHostHandle = USB_HOST_CDC_Open(appData.cdcObj);
 if(appData.cdcHostHandle != USB_HOST_CDC_HANDLE_INVALID)
 {
 /* The driver was opened successfully. Set the event handler
 * and then go to the next state. */
 USB_HOST_CDC_EventHandlerSet(appData.cdcHostHandle, APP_USBHostCDCEventHandler,
(uintptr_t)0);
 appData.state = APP_STATE_SET_LINE_CODING;
 }
 break;

 default:
 break;
 }
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 260

API Differences

The following table shows the difference in API names between the pre v1.04 release and the v1.04 release versions of the CDC Host Client
Driver.

MPLAB Harmony v1.03.01 and Earlier MPLAB Harmony v1.04 and Later

USB_HOST_CDC_EventHandlerSet USB_HOST_CDC_EventHandlerSet

USB_HOST_CDC_Read USB_HOST_CDC_Read

USB_HOST_CDC_Write USB_HOST_CDC_Write

USB_HOST_CDC_SerialStateNotificationGet USB_HOST_CDC_SerialStateNotificationGet

USB_HOST_CDC_LineCodingGet USB_HOST_CDC_ACM_LineCodingGet

USB_HOST_CDC_ControlLinetStateSet USB_HOST_CDC_ACM_ControlLineStateSet

USB_HOST_CDC_BreakSend USB_HOST_CDC_ACM_BreakSend

Not needed. USB_HOST_CDC_EventHandlerSet

The attach event requires a separate event handler in v1.04.

Not available. USB_HOST_CDC_DeviceObjHandleGet

Not available. USB_HOST_CDC_Open

The driver needs to be opened in v1.04.

Not available. USB_HOST_CDC_Close

Event Name Differences

The following table shows the difference in event names between earlier versions and the MPLAB Harmony v1.04 release of the CDC Host Client
Driver.

MPLAB Harmony v1.03.01 and Earlier MPLAB Harmony v1.04 and Later

USB_HOST_CDC_EVENT_READ_COMPLETE USB_HOST_CDC_EVENT_READ_COMPLETE

USB_HOST_CDC_EVENT_WRITE_COMPLETE USB_HOST_CDC_EVENT_WRITE_COMPLETE

USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_REC
EIVED

USB_HOST_CDC_EVENT_GET_LINE_CODING_COMPLETE USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLET
E

USB_HOST_CDC_EVENT_SET_LINE_CODING_COMPLETE USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLET
E

USB_HOST_CDC_EVENT_SET_CONTROL_LINE_STATE_COMPLETE USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_C
OMPLETE

USB_HOST_CDC_EVENT_SEND_BREAK_COMPLETE USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE

USB_HOST_CDC_EVENT_DETACH USB_HOST_CDC_EVENT_DEVICE_DETACHED

USB_HOST_CDC_EVENT_ATTACH Not needed. Refer to the USB_HOST_AttachEventHandlerSet
function.

USB Host Layer Library

This section describes the USB Host Layer Library.

Introduction

Introduces the MPLAB Harmony USB Host Layer Library.

Description

The USB Host Layer in the MPLAB Harmony USB Host Stack performs the tasks of enumerating an attached device and interfacing the HCD. The
following are the key features of the MPLAB Harmony USB Host Layer:

• Supports multi-configuration and composite USB Devices

• Supports VID PID and class, subclass, and protocol devices

• Can manage multiple USB devices through the Root Hub

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 261

• Concise API simplifies application development

• Modular architecture allows support for multiple (and different) USB controller in one application. Can operate multiple USB segments.

• Supports Low-Speed, Full-Speed, and Hi-Speed USB devices

Using the Library

This topic describes the basic architecture of the USB Host Layer and provides information and examples on its use.

Abstraction Model

Describes the abstraction model of the USB Host Layer.

Description

The USB Host Layer abstracts USB HCD hardware interaction details and presents an easy-to-use interface to the application and the client
drivers. The Host Layer provides the application with a device object handle, which the application can use to suspend or resume the device. The
Host Layer provides client drivers with device client handles and interface handles. These handles allow the client drivers to interact with the
device and its interfaces. The Host Layer allows the client drivers to

• Open control pipes and schedule control transfers

• Open bulk, isochronous, and interrupt pipes

• Perform data transfers

• Claim and release ownership of the device and device interfaces

• Perform standard device operations.

The Host Layer has exclusive access to the HCD and the Root Hub. It opens the HCD and presents an abstracted interface to the application and
client drivers.

Library Overview

The USB Host layer API is grouped functionally, as shown in the following table.

Library Interface Section Description

System Interface Functions These functions make the USB Host Layer compatible with MPLAB Harmony.

Bus Control Functions These functions allow the application to enable, disable, suspend and resume the USB.

Device Related Functions These functions allow the application to suspend and resume the USB. Attached devices can be queried and
their string descriptors can be obtained.

Event Handling Allows the application to register an event handler.

Client Driver Routines These functions are exclusive to the client drivers and should not be accessed by the application.

How the Library Works

Describes how the Library works and how it should be used.

Description

The Host Layer in the MPLAB Harmony USB Host Stack plays the key role of enumerating an attached device and facilitating the communication
between the USB Host Client Driver and the attached devices. The following sections describe the steps and methods that the user application
must follow to use the Host Layer (and the USB Host stack). The following topics are discusses:

• Host Layer Initialization

• Operating the Host layer

• Host Layer Application Events

Host Layer Initialization

This topic describes how to initialize the Host Layer and includes code examples.

Description

The Host Layer must be initialized with relevant data to enable correct operation. This initialization must be performed in the SYS_Initialize function
of the MPLAB Harmony application. The Host Layer will require the USB Controller Peripheral driver to be initialized for host mode operation (and
hence operate as a HCD). This initialization must be performed in the SYS_Initialize function. The order in which the Host Layer and the USB
Peripheral Driver are initialized does not affect the Host Layer operation. The Host Layer could be initialized before or after the USB Controller

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 262

Peripheral Driver initialization.

The Host Layer requires the following information for initialization:

• The HCD interface for each bus

• The Target Peripheral List (TPL)

The Host Layer is capable of operating more than one USB device. This is possible on PIC32 microcontrollers that feature multiple USB Controller
Peripherals. The one instance of the Host Layer manages multiple HCDs. The interface to each to every instance of the HCD that the Host Layer
must operate must be specified in the Host Layer initialization. The total number of USB devices the Host Layer should manage is defined
statically by the USB_HOST_CONTROLLERS_NUMBER configuration macro in the system_config.h file. The following code shows an
example initialization of a PIC32MX USB HCD.

Example: PIC32MZ USB HCD Initialization
/* This code shows an example of how to initialize the PIC32MX USB
 * Driver for host mode operation. For more details on the PIC32MX Full-Speed
 * USB Driver, please refer to the Driver Libraries documentation. */

/* Include the full-speed USB driver header file */
#include "driver/usb/usbfs/drv_usbfs.h"

/* Create a driver initialization data structure */
DRV_USBFS_INIT drvUSBFSInit;

/* The PIC32MX Full-Speed USB Driver when operating in host mode requires an
 * endpoint table (a byte array) whose size should be 32 bytes. This table should
 * be aligned at 512 byte address boundary */
uint8_t __attribute__((aligned(512))) endpointTable[32];

/* Configure the driver initialization data structure */
DRV_USBFS_INIT drvUSBFSInit =
{
 /* This parameter should be set to SYS_MODULE_POWER_RUN_FULL. */
 .moduleInit = {SYS_MODULE_POWER_RUN_FULL},

 /* Driver operates in Host mode */
 .operationMode = USB_OPMODE_HOST,

 /* USB module interrupt source */
 .interruptSource = INT_SOURCE_USB_1,

 /* Continue operation when CPU is in Idle mode */
 .stopInIdle = false,

 /* Do not suspend operation when CPU enters Sleep mode */
 .suspendInSleep = false,

 /* The USB module index */
 .usbID = USB_ID_1,

 /* The maximum current that the VBUS supply can provide */
 .rootHubAvailableCurrent = 500,

 /* Pointer to the endpoint table */
 .endpointTable = endpointTable,

 /* Pointer to the Port Power Enable function. Driver will cause this
 * function when the port power must be enabled */
 .portPowerEnable = PortPowerEnable,

 /* Pointer to the Port Over Current Detect function. Driver will cause this
 * function periodically to check if the port current has exceeded limit */
 .portOverCurrentDetect = PortOverCurrentDetect,

 /* Pointer to the Port LED indication function. The driver will call this
 * function to update the Port LED status */
 .portIndication = PortIndication

};

/* USB Driver system module object */
SYS_MODULE_OBJ drvUSBObj = SYS_MODULE_OBJ_INVALID;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 263

void SYS_Initialize(void * data)
{
 /* Initialize the driver */
 drvUSBObj = DRV_USBFS_Initialize(DRV_USBFS_INDEX_0, (SYS_MODULE_INIT *)(&drvUSBFSInit));
}

void SYS_Tasks(void)
{
 /* Call the driver tasks routine in SYS_Tasks() function *//
 DRV_USBFS_Tasks(drvUSBObj);
}

void __ISR(_USB_1_VECTOR, ipl4AUTO) _IntHandlerUSBInstance0(void)
{
 /* Call the driver interrupt tasks routine in the USB module ISR */
 DRV_USBFS_Tasks_ISR(sysObj.drvUSBModuleObj);
}

The Host Layer Initialization requires a USB_HOST_HCD data structure. This data structure specifies the HCD module index and the HCD Host
Layer Interface for each bus. The following code shows the USB_HOST_HCD data structure is initialized for a single USB Controller Peripheral
PIC32MX microcontroller device.

Example: Data Structure Initialized for a Single USB Controller Peripheral PIC32MX MCU
/* This code shows an example of setting up the USB_HOST_HCD data
 * structure for the PIC32MX USB controller */

USB_HOST_HCD usbHostHCD =
{
 /* This is the driver instance index that the USB Host Layer will use */
 .drvIndex = DRV_USBFS_INDEX_0,

 /* This is the interface to the PIC32MX USB HCD. The
 * DRV_USBHS_HOST_INTERFACE pointer is exported by the PIC32MX Host Mode USB
 * Driver. */
 .hcdInterface = DRV_USBHS_HOST_INTERFACE
};

The other important component required for USB Host Layer initialization is the Target Peripheral List (TPL). Embedded USB Hosts unlike
standard USB Host are not expected to support all USB Device Types. The device types to be supported are specified in the TPL. The TPL
contains an entry for every device type that the Embedded USB host must support. If the attached device matches the criteria specified in the TPL
entry , the Host Layer attaches the driver corresponding to that entry to the manage device. A device may match multiple entries in the TPL. This
happens in the case of composite devices.

An entry in the TPL contains the following information:

• Device Type: This specifies whether the Host must inspect the VID, PID field or Class, Subclass and Protocol fields while matching the
attached device to the entry

• Flags: These flags provide the system designer with various options while matching the attached device to a driver. For example, a flag can be
specified to ignore the device PID and only consider the VID while matching VID PID device.

• PID Mask: This is a PID mask that can be applied to the PID before matching the PID to the attached device PID

• Driver: This is the pointer to the interface of the client driver that should manage the device if the matching criteria is met

The following code shows an example TPL table.

Example: TPL Table
 /* This code shows some examples of configuring the USB Host Layer
 * TPL Table. In this example, the USB Host layer is configured to support
 * three different types of devices. */

 USB_HOST_TARGET_PERIPHERAL_LIST usbHostTPL[4] =
 {

 /* Catch every device with the exact Vendor ID = 0x04D9 and Product ID = 0x0001.
 * Every other device will not load this driver. */
 TPL_DEVICE_VID_PID(0x04D9, 0x0001, &driverInitData, &DEVICE_DRIVER_EXAMPLE1_Driver),

 /* This driver will catch any device with the Vendor ID of 0x04D9 and any
 * product ID = 0x0000 or 0x0002-0x00FF. The entry in the TPL before this
 * caught the Product ID = 0x0001 case so that is why it is not caught by
 * this entry. Those devices have already been caught. */
 TPL_DEVICE_VID_PID_MASKED(0x04D9, 0x0002, 0xFF00, &driverInitData, &DEVICE_DRIVER_EXAMPLE2_Driver
),

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 264

 /* This entry will catch all other devices. */
 TPL_DEVICE_ANY(&driverInitData, &DEVICE_DRIVER_EXAMPLE3_Driver),

 /* This entry will catch only a HID boot keyboard. All other devices,
 * including other HID keyboards that are non-boot, will be skipped by this
 * entry. This driver will handle only this specific case. */
 TPL_INTERFACE_CLASS_SUBCLASS_PROTOCOL(USB_HID_CLASS_CODE, USB_HID_SUBCLASS_CODE_BOOT_INTERFACE,
 USB_HID_PROTOCOL_CODE_KEYBOARD, &hidDriverInitData,
 USB_HOST_HID_BOOT_KEYBOARD_DRIVER),

 /* This entry will catch all CDC-ACM devices. It filters on the class and
 * subclass but ignores the protocol since the driver will handle all
 * possible protocol options. */
 TPL_INTERFACE_CLASS_SUBCLASS(USB_CDC_CLASS_CODE, USB_CDC_SUBCLASS_CODE_ABSTRACT_CONTROL_MODEL,
 &cdcDriverInitData, USB_HOST_CDC_ACM_DRIVER),

 /* This will catch all instances of the MSD class regardless subclass or
 * protocol. In this case the driver will sort out if it supports the
 * device or not. */
 TPL_INTERFACE_CLASS(USB_MSD_CLASS_CODE, &msdDriverInitData, USB_HOST_MSD_DRIVER),

 /* Any unclaimed interfaces can be sent to a particular driver if desired.
 * This can be used to create a similar mechanism that libUSB or WinUSB
 * provides on a PC where any unused interface can be opened and utilized by
 * these drivers. */
 TPL_INTERFACE_ANY(&driverInitData, USB_HOST_VENDOR_DRIVER)
 }

The Host Layer can now be initialized. The following code shows how the USB_HOST_HCD and the TPL table are specified in the
USB_HOST_INIT (the Host Layer Initialization) data structure. In addition, the following figure illustrates the various initialization inputs needed by
the Host Layer.

The USB_HOST_Initialize function is called to initialize the Host Layer. The initialization process may not complete when the
USB_HOST_Initialization function exits. This will complete in subsequent calls to the USB_HOST_Tasks function.

Example: Specifying the TPL Table
/* This code shows an example of the USB Host Layer Initialization data
 * structure. In this case the number of TPL entries is one and there is only
 * one HCD (and hence only one USB bus) in the application */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 265

const USB_HOST_TPL_ENTRY USBTPList[1] =
{
 /* This is the TPL */
 TPL_INTERFACE_CLASS_SUBCLASS_PROTOCOL(0x08, 0x06, 0x50, NULL, USB_HOST_MSD_INTERFACE)

};

const USB_HOST_HCD hcdTable =
{
 /* The HCD table only contains one entry */
 .drvIndex = DRV_USBFS_INDEX_0,
 .hcdInterface = DRV_USBFS_HOST_INTERFACE
};

const USB_HOST_INIT usbHostInitData =
{
 /* This is the Host Layer Initialization data structure */
 .nTPLEntries = 1,
 .tplList = (USB_HOST_TPL_ENTRY *)USBTPList,
 .hostControllerDrivers = (USB_HOST_HCD *)&hcdTable

};

Host Layer - Application Interaction

This topic describes application interaction with the USB Host Layer.

Description

The Host Layer in the MPLAB Harmony USB Host stack provides the user application with API methods to operate the USB Host. The following
sections discuss these API methods.

Registering the Event Handler

The application must register an event handler to receive device related USB Host events. The application sets the events handler by using the
USB_HOST_EventHandlerSet function. An application defined context can also be provided. This context is returned along with the event handler
and helps the application to identify the context in case of a dynamic application use cases. The host layer provides events when a connected
device requires more current than can be provided or when a unsupported device was attached. The following code shows an example of
registering the event handler.
/* This code shows an example of registering an event handler with the
 * Host Layer */

USB_HOST_EVENT_RESPONSE APP_USBHostEventHandler
(
 USB_HOST_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 /* This is the event handler implementation */
 switch (event)
 {
 case USB_HOST_EVENT_DEVICE_UNSUPPORTED:
 break;
 case USB_HOST_EVENT_DEVICE_REJECTED_INSUFFICIENT_POWER:
 break;
 case USB_HOST_EVENT_HUB_TIER_LEVEL_EXCEEDED:
 break;
 case USB_HOST_EVENT_PORT_OVERCURRENT_DETECTED:
 break;
 default:
 break;
 }

 return(USB_HOST_EVENT_RESPONSE_NONE);
}

void APP_Tasks(void)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 266

{
 /* This shows an example app state machine implementation in which the event
 * handler is set and the bus is then enabled. */

 switch(appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Set the event handler and enable the bus */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 default:
 break;
 }
}

Enabling the Bus

The user application must call the USB_HOST_BusEnable function to enable the bus. This function enables the 5V VBUS supply to root hub port
thus powering up the bus powered device that are attached to the bus. The attached devices will then indicate attach. The root hub will provide
these attach events to the Host layer which in turn starts the enumeration process. The application can call other Host Layer functions only after
the bus has been enabled. The USB_HOST_BusIsEnabled function must be called to check if the enable process has completed. The following
code shows an example application state machine that enables the bus.
void APP_Tasks (void)
{
 /* The application shows an example of how the USB bus is enabled and how the
 * application must wait for the bus to enabled */

 switch(appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Set the event handler and enable the bus */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 /* Check if the bus is enabled */
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 default:
 break;
 }
}

Attached Device Information

The application can use the USB_HOST_DeviceFirstGet and the USB_HOST_DeviceNextGet function to query for attached devices. The
USB_HOST_DeviceFirstGet function will provide information on the first device that was attached to the bus. Information is returned in application
specified USB_HOST_DEVICE_INFO object. The USB_HOST_DeviceFirstGet function will return the following information in the
USB_HOST_DEVICE_INFO object:

• A Device Object Handle of the type USB_HOST_DEVICE_OBJ_HANDLE. The application can use this device object handle to perform
operations on the device.

• The address of the device on the USB

• The bus to which this device belongs

The application can access the contents of the USB_HOST_DEVICE_INFO object but should not alter it contents. The same object is passed to
the USB_HOST_DeviceNextGet function to get the information about the next device attached on the bus. Each call to this function defines the
point at which the USB_HOST_DeviceNextGet function will start searching. If the device that is represented by the USB_HOST_DEVICE_INFO
object has been disconnected, calling the USB_HOST_DeviceNextGet function will return an error. The search must be reset by calling the
USB_HOST_DeviceFirstGet function. The application can define multiple USB_HOST_DEVICE_INFO objects to search on different busses or

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 267

maintain different search points.
void APP_Tasks(void)
{
 USB_HOST_DEVICE_INFO deviceInfo;
 USB_HOST_RESULT result;

 /* Get information about the first device on Bus 0 */
 result = USB_HOST_DeviceGetFirst(0, &deviceInfo);

 while(result != USB_HOST_RESULT_END_OF_DEVICE_LIST)
 {
 /* deviceInfo.address has the address of the bus */
 /* deviceInfo.deviceObjHandle will have the device object handle */

 /* Now we can get the information about the next device on the bus. */
 result = USB_HOST_DeviceGetNext(&deviceInfo);
 }
}

Suspend and Resume

The USB Host Layer allows the application to suspend and resume a device. The USB_HOST_DeviceSuspend and the
USB_HOST_DeviceResume function are provided for this purpose. The application must use the device object handles, obtained from the
USB_HOST_DeviceFirstGet or USB_HOST_DeviceNextGet function, to specify the device to suspend or resume when calling
USB_HOST_DeviceSuspend and the USB_HOST_DeviceResume() function. The USB_HOST_DeviceIsSuspended function can be called to
check the suspend status of the device.

In a case where the entire bus (and hence all device connected on the bus) need to be suspended or resumed, the application must call
USB_HOST_BusSuspend and USB_HOST_BusResume functions to suspend or resume the entire bus. The USB_HOST_BusIsSuspended
function can be called to check the suspend status of the bus.

Device String Descriptors

The application may want to obtain the string descriptors of a device. Sting descriptors are optionally provided by the USB device manufacturer
and provide device information. The USB_HOST_DeviceStringDescriptorGet function is available to read the string descriptors. Calling this
function will cause the Host Layer to invoke a control transfer request to read the string descriptor. The string descriptor will be available when the
control transfer completes. The host layer calls the USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK type callback function, that is
provided in the USB_HOST_DeviceStringDescriptorGet function, when the control transfer has completed. The completion status of the request
and the size of the string descriptor are available in the callback.

The function allows the application to obtain the supported string language IDs. The language ID of the string can be specified or a default can be
used.
typedef struct
{
 /* This is an application specific data structure */
 char string[APP_STRING_SIZE];
 USB_HOST_REQUEST_HANDLE requestHandle;
 uintptr_t context;

} APP_DATA;

APP_DATA appData;

void APP_USBHostSringDescriptorGetCallBack
(
 USB_HOST_REQUEST_HANDLE requestHandle,
 size_t size,
 uintptr_t context
)
{
 /* This function is called when the string descriptor get function has
 * completed. */

 if(size != 0)
 {
 /* This means the function executed successfully and we have a string.
 * An application function prints the string to the console. */
 APP_PrintStringToConsole(appData.string, size);
 }
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 268

void APP_Tasks(void)
{
 USB_HOST_DEVICE_INFO deviceInfo;
 USB_HOST_RESULT result;

 /* Get information about the first device on Bus 0 */
 result = USB_HOST_DeviceGetFirst(0, &deviceInfo);

 if(result != USB_HOST_RESULT_END_OF_DEVICE_LIST)
 {
 /* deviceInfo.deviceObjHandle will have the device object handle. Use
 * this device object handle along with the
 * USB_HOST_DeviceStringDescriptorGet() function to read the product
 * string ID using the default Language ID. */

 USB_HOST_DeviceStringDescriptorGet(deviceInfo.deviceObjHandle, USB_HOST_DEVICE_STRING_PRODUCT,
 USB_HOST_DEVICE_STRING_LANG_ID_DEFAULT, appData.string, APP_STRING_SIZE,
 &appData.requestHandle, APP_USBHostSringDescriptorGetCallBack, appData.context);
 }
}

Event Handling

This topic describes event handling.

Description

The USB Host Layer provides general device related events to the application. The application must register an event handling function by using
the USB_HOST_EventHandlerSet function. A context specified at the time of calling this function, is returned in the event handler. The event
handler must be registered before the bus is enabled. Refer to the description of USB_HOST_DEVICE_EVENT events for details on the available
events.

Configuring the Library

Describes how to configure the USB Host Layer.

Macros

Name Description

USB_HOST_CONTROLLERS_NUMBER Defines the number of USB Host Controllers that this Host Layer must manage.

USB_HOST_DEVICE_INTERFACES_NUMBER Defines the maximum number of interface that the attached device can contain in
order for the USB Host Layer to process the device.

USB_HOST_DEVICES_NUMBER Defines the maximum number of devices to support.

USB_HOST_HUB_SUPPORT_ENABLE Defines if this USB Host application must support a Hub.

USB_HOST_HUB_TIER_LEVEL Defines the maximum tier of connected hubs to be supported.

USB_HOST_PIPES_NUMBER Defines the maximum number of pipes that the application will need.

USB_HOST_TRANSFERS_NUMBER Defines the maximum number of transfers that host layer should handle.

Description

The following configuration parameters must be defined while using the USB Host Layer. The configuration macros that implement these
parameters must be located in the system_config.h file in the application project and a compiler include path (to point to the folder that
contains this file) should be specified.

USB_HOST_CONTROLLERS_NUMBER Macro

Defines the number of USB Host Controllers that this Host Layer must manage.

File

usb_host_config_template.h

C
#define USB_HOST_CONTROLLERS_NUMBER

Description

USB Host Layer Controller Numbers

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 269

This constant defines the number of USB Host Controllers that this Host Layer must manage. The value of this constant should be atleast 1.
Typical embedded applicatons contains only 1 USB host controller and hence only 1 USB. A microcontroller that features multiple USB modules
can support multiple USB Host controllers and multipel USBs. USB contollers can also be interfaced to the microcontroller through common
communication peripherals such as SPI.

This constant also defines the number of entries in the Host Controller Driver interface table, a pointer to which is passed in the
hostContollerDrivers member of the USB_HOST_INIT data structure.

Remarks

None.

USB_HOST_DEVICE_INTERFACES_NUMBER Macro

Defines the maximum number of interface that the attached device can contain in order for the USB Host Layer to process the device.

File

usb_host_config_template.h

C
#define USB_HOST_DEVICE_INTERFACES_NUMBER

Description

USB Host Device Interface Numbers

This constant defines the maximum number of interface that the attached device can contain in order for the USB Host Layer to process the
device. The device will be processed if it only contains less interfaces than the value of this constant.

Remarks

Supporting more interface per device required more processing time and data memory.

Example

An attached device contains a configuration that contains 10 interfaces, but the USB_HOST_DEVICE_INTERFACES_NUMBER is set to 5. The
device will not be processed by the Host Layer. A dual CDC device needs to be supported. This device will have 4 interfaces. The
USB_HOST_DEVICE_INTERFACES_NUMBER constant should be atleast 4.

USB_HOST_DEVICES_NUMBER Macro

Defines the maximum number of devices to support.

File

usb_host_config_template.h

C
#define USB_HOST_DEVICES_NUMBER

Description

USB Host Layer Devices Number

This configuration constant defines the maximum number of devices that this USB Host application must support. The value of this constant
should be atleast 1. Multiple devices can be supported if Hub support is enabled. See USB_HOST_HUB_SUPPORT_ENABLE. The Hub itself will
be treated as a device.

Remarks

Supporting multiple devices requires more data memory and processing time.

Example

If the USB Host application must support one USB Pen Drive and one USB Serial COM port (CDC Device), then this constant should be set to 3
(one additional device will be the Hub).

USB_HOST_HUB_SUPPORT_ENABLE Macro

Defines if this USB Host application must support a Hub.

File

usb_host_config_template.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 270

C
#define USB_HOST_HUB_SUPPORT_ENABLE

Description

USB Host Layer Hub Support

Specifying this macro will enable Hub Support. The HUB tier level to be supported is then specified by USB_HOST_HUB_TIER_LEVEL constant.
If this macro is specified, the file usb_host_hub.c must be included in the application.

Remarks

Not specifying this macro will disable Hub support.

USB_HOST_HUB_TIER_LEVEL Macro

Defines the maximum tier of connected hubs to be supported.

File

usb_host_config_template.h

C
#define USB_HOST_HUB_TIER_LEVEL

Description

USB Host Hub Tier Level

This constant defines the maximum hub tiers to be supported by the USB Host application. This constant is considered only if the
USB_HOST_HUB_SUPPORT_ENABLE option in specified. If specified, the value should be atleast 1. This means that one hub should be
supported. In a case where another hub will be be connected to the hub which is connected to the USB Host, the value should be 2. As per the
USB specification the maximum number of non-root hub tiers can be 5. Hence the value of this configuration constant should not exceed 5.

Remarks

None.

USB_HOST_PIPES_NUMBER Macro

Defines the maximum number of pipes that the application will need.

File

usb_host_config_template.h

C
#define USB_HOST_PIPES_NUMBER

Description

USB Host Layer Pipes Number

This configuration constant defines the maximum number of device communication pipes that Host Layer would need in the application. Every
attached device requires atleast one pipe. This pipe is the control transfer pipe. Additional pipes are needed based on the type of device. For
example, a standard Mass Storage Class device will need 2 pipes, a Communication Class Device will need 3 pipes, a HID device will need
atleast 1 pipe. Vendor device will need communication pipe based on the device implementation. The number of pipes must also take into account
the number of devices to support.

Remarks

This number should match the number of pipes configured in the HCD that this application will use, that is DRV_USBHS_HOST_PIPES_NUMBER
or DRV_USBFS_HOST_PIPES_NUMBER.

Example

If a USB Host application must support 2 devices, either 2 USB pen driver or 2 CDC devices or a mix of both, then the pipes number should be set
to

8. This is because the 2 CDC devices connected to the host will pose larger pipe

requirement. Two such devices will requires 2 control pipes, 2 interrupt pipes, 2 Bulk IN and 2 Bulk OUT pipes.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 271

USB_HOST_TRANSFERS_NUMBER Macro

Defines the maximum number of transfers that host layer should handle.

File

usb_host_config_template.h

C
#define USB_HOST_TRANSFERS_NUMBER

Description

USB Host Layer Transfers Number

This constant defines the maximum number of transfers that the host layer should handle. The choice of this constant depends on the nature of
devices that the USB Host application must support. Atleast two transfers are needed per pipe in the system. If the number of transfers
provisioned in the system are insufficient, the USB Host will decline transfer request citing a busy status. This will affect the speed performance of
the system.

Remarks

None.

Example

A USB Host application will support an MSD device and a CDC Device. The total number of pipes needed in the system are 7. The
USB_HOST_TRANSFERS_NUMBER constant should be atleast 14 (2 per pipe). Specifying a larger number will enable more transfers to be
queued but will also require more data memory.

Building the Library

Describes the files to be included in the project while using the USB Host Layer Library.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_host.h This header file should be included in any .c file that accesses the USB Host Layer API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_host.c This file implements the USB Host Layer interface and should be included in the project if USB Host mode
operation is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB Host Layer Library depends on the following modules:

• USB Driver Library (Host mode files)

• Timer System Service Library

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 272

Library Interface

a) Functions

Name Description

USB_HOST_Deinitialize Deinitializes the specified instance of the USB Host Layer.

USB_HOST_Status Gets the current status of the USB Host Layer.

USB_HOST_Tasks Maintains the USB Host Layer state machine.

USB_HOST_BusEnable Starts host operations.

USB_HOST_BusIsEnabled Checks if the bus is enabled.

USB_HOST_BusIsSuspended Returns the suspend status of the bus.

USB_HOST_BusResume Resumes the bus.

USB_HOST_BusSuspend Suspends the bus.

USB_HOST_DeviceGetFirst Returns information about the first attached device on the bus.

USB_HOST_DeviceGetNext Returns information about the next device on the bus.

USB_HOST_DeviceIsSuspended Returns the suspend state of the device is suspended.

USB_HOST_DeviceResume Resumes the selected device

USB_HOST_DeviceSpeedGet Returns the speed at which this device is operating.

USB_HOST_DeviceStringDescriptorGet Retrieves specified string descriptor from the device

USB_HOST_DeviceSuspend Suspends the specified device.

USB_HOST_EventHandlerSet USB Host Layer Event Handler Callback Function set function.

USB_HOST_Initialize Initializes the USB Host layer instance specified by the index.

USB_HOST_BusDisable This is function USB_HOST_BusDisable.

USB_HOST_BusIsDisabled This is function USB_HOST_BusIsDisabled.

b) Data Types and Constants

Name Description

USB_HOST_INIT Defines the data required to initialize a USB Host Layer instance.

USB_HOST_EVENT_RESPONSE Host Layer Events Handler Function Response Type.

\ .tplFlags.driverType =
(TPL_FLAG_CLASS_SUBCLASS_PROTOCOL)

USB Host Layer TPL Table Entry Matching Criteria flag

\ .tplFlags.driverType = (TPL_FLAG_VID_PID) USB Host Layer TPL Table Entry Matching Criteria flag

0 USB Host Layer TPL Table Entry Matching Criteria flag

0x0000 USB Host Layer TPL Table Entry Matching Criteria flag

0xFF USB Host Layer TPL Table Entry Matching Criteria flag

0xFF } USB Host Layer TPL Table Entry Matching Criteria flag

0xFFFF USB Host Layer TPL Table Entry Matching Criteria flag

0xFFFF } USB Host Layer TPL Table Entry Matching Criteria flag

1 USB Host Layer TPL Table Entry Matching Criteria flag

classCode USB Host Layer TPL Table Entry Matching Criteria flag

false USB Host Layer TPL Table Entry Matching Criteria flag

initData USB Host Layer TPL Table Entry Matching Criteria flag

mask USB Host Layer TPL Table Entry Matching Criteria flag

pid USB Host Layer TPL Table Entry Matching Criteria flag

pid } USB Host Layer TPL Table Entry Matching Criteria flag

subClassCode USB Host Layer TPL Table Entry Matching Criteria flag

true USB Host Layer TPL Table Entry Matching Criteria flag

USB_HOST_BUS Defines a USB Bus Data Type.

USB_HOST_DEVICE_INFO Defines the data type that is used by the
USB_HOST_DeviceGetFirst() and USB_HOST_DeviceGetNext()
functions.

USB_HOST_DEVICE_OBJ_HANDLE Handle to an attached USB Device.

USB_HOST_DEVICE_STRING Defines a defines types of strings that can be request through the
USB_HOST_DeviceStringDescriptorGet() function.

USB_HOST_EVENT Defines the different events that the USB Host Layer can generate.

USB_HOST_EVENT_HANDLER USB Host Layer Event Handler Function Pointer Type

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 273

USB_HOST_HCD Defines the USB Host HCD Information object that is provided to the
host layer.

USB_HOST_REQUEST_HANDLE USB Host Request Handle Type

USB_HOST_RESULT USB Host Results.

USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK USB Host Device String Descriptor Request Complete Callback
Function Type

USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY USB Host Layer TPL Table Entry Matching Criteria flag

USB_HOST_TPL_ENTRY USB Host Layer TPL Table Entry Matching Criteria flag

vid USB Host Layer TPL Table Entry Matching Criteria flag

USB_HOST_BUS_ALL USB Host Bus All

USB_HOST_DEVICE_OBJ_HANDLE_INVALID Defines an invalid USB Device Object Handle.

USB_HOST_DEVICE_STRING_LANG_ID_DEFAULT Defines the default Lang ID to be used while obtaining the string.

USB_HOST_REQUEST_HANDLE_INVALID USB Host Request Invalid Handle

USB_HOST_RESULT_MIN USB Host Result Minimum Constant.

Description

This section describes the Application Programming Interface (API) functions of the USB Host Layer Library.

Refer to each section for a detailed description.

a) Functions

USB_HOST_Deinitialize Function

Deinitializes the specified instance of the USB Host Layer.

File

usb_host.h

C
void USB_HOST_Deinitialize(SYS_MODULE_OBJ hostLayerObject);

Returns

None.

Description

Deinitializes the USB Host Layer. All internal data structures will be reset.

Remarks

Once the Initialize operation has been called, the Deinitialize operation must be called before the Initialize operation can be called again. This
routine will NEVER block waiting for hardware.

Preconditions

Function USB_HOST_Initialize should have been called before calling this function.

Example
SYS_MODULE_OBJ object; // Returned from USB_HOST_Initialize
SYS_STATUS status;

USB_HOST_Deinitialize(object);

status = USB_HOST_Status(object);
if (SYS_MODULE_DEINITIALIZED != status)
{
 // Can check again later if you need to know
 // when the driver is deinitialized.
}

Parameters

Parameters Description

object USB Host layer object handle, returned from the USB_HOST_Initialize routine

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 274

Function

void USB_HOST_Deinitialize(SYS_MODULE_OBJ object)

USB_HOST_Status Function

Gets the current status of the USB Host Layer.

File

usb_host.h

C
SYS_STATUS USB_HOST_Status(SYS_MODULE_OBJ hostLayerObject);

Returns

SYS_STATUS_READY - Indicates that the USB Host layer is ready for operations.

SYS_STATUS_BUSY - The initialization is in progress.

SYS_STATUS_DEINITIALIZED - Indicates that the driver has been deinitialized

Description

This routine provides the current status of the USB Host Layer.

Remarks

This function is typically called by the MPLAB Harmony System to check the system status of the USB Host Layer. This function is not intended to
be called directly by the application tasks routine.

Preconditions

Function USB_HOST_Initialize should have been called before calling this function.

Example
SYS_MODULE_OBJ object; // Returned from USB_HOST_Initialize
SYS_STATUS status;

status = USB_HOST_Status(object);
if (SYS_STATUS_READY == status)
{
 // The USB Host system is ready and is running.
}

Parameters

Parameters Description

object USB Host Layer object handle, returned from the USB_HOST_Initialize routine

Function

SYS_STATUS USB_HOST_Status(SYS_MODULE_OBJ object)

USB_HOST_Tasks Function

Maintains the USB Host Layer state machine.

File

usb_host.h

C
void USB_HOST_Tasks(SYS_MODULE_OBJ hostLayerObject);

Returns

None.

Description

This routine maintains the USB Host layer's state machine. It must be called frequently to ensure proper operation of the USB. This function
should be called from the SYS_Tasks function.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 275

Remarks

This routine is not intended to be called directly by an application. It is called by the MPLAB Harmony System Tasks function.

Preconditions

The USB_HOST_Initialize routine must have been called for the specified USB Host Layer instance.

Example
SYS_MODULE_OBJ object; // Returned from USB_HOST_Initialize

void SYS_Tasks(void)
{
 USB_HOST_Tasks (object);

 // Do other tasks
}

Parameters

Parameters Description

object Object handle for the specified driver instance (returned from USB_HOST_Initialize)

Function

void USB_HOST_Tasks (SYS_MODULE_OBJ object);

USB_HOST_BusEnable Function

Starts host operations.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_BusEnable(USB_HOST_BUS bus);

Returns

USB_HOST_RESULT_SUCCESS if the request was accepted. USB_HOST_RESULT_BUS_UNKNOWN if the specified bus is invalid (it does not
exist in the system). USB_HOST_RESULT_FAILURE if an unknown failure occurred.

Description

The function starts the operation of the USB Host Bus. It enables the root hub associated with specified bus and starts the process of detecting
attached devices and enumerating them. The USB_HOST_EventHandlerSet() function should have been called to register an application host
layer event handler before the bus is enabled (before the USB_HOST_BusEnable() function is called). This will ensure that the application does
not miss any events.

Remarks

The Host Layer may generate events after the USB_HOST_BusEnable() function is called. The application should have registered an event
handler using the USB_HOST_EventHandlerSet() function to handle these events. The USB_HOST_EventHandlerSet() function should have
been called before the USB_HOST_BusEnable() function is called.

Preconditions

The USB_HOST_Initialize() function should have been called before calling this function.

Example
TBD.

Parameters

Parameters Description

bus the bus to be enabled. If this is set to USB_HOST_BUS_ALL, all buses will be enabled.

Function

USB_HOST_RESULT USB_HOST_BusEnable(USB_HOST_BUS bus)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 276

USB_HOST_BusIsEnabled Function

Checks if the bus is enabled.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_BusIsEnabled(USB_HOST_BUS bus);

Returns

USB_HOST_RESULT_TRUE if the bus is enabled. USB_HOST_RESULT_FALSE if the bus is not enabled..
USB_HOST_RESULT_BUS_UNKNOWN if the specified bus is invalid (it does not exist in the system). USB_HOST_RESULT_FAILURE if an
unknown failure occurred.

Description

The function returns the enable status of the bus. It can be called after the USB_HOST_BusEnable() function is called, to check if the bus has
been enabled yet. If the bus parameter is set to USB_HOST_BUS_ALL, then the function will check the enable status of all the busses and will
return true only if all the busses are enabled.

Remarks

None.

Preconditions

The USB_HOST_Initialize() function should have been called before calling this function.

Example
TBD.

Parameters

Parameters Description

bus the bus that needs to checked for enable status. If this is set to USB_HOST_BUS_ALL, all
buses will be checked.

Function

USB_HOST_RESULT USB_HOST_BusIsEnabled(USB_HOST_BUS bus)

USB_HOST_BusIsSuspended Function

Returns the suspend status of the bus.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_BusIsSuspended(USB_HOST_BUS bus);

Returns

USB_HOST_RESULT_TRUE - if the bus is suspended. USB_HOST_RESULT_FALSE - if the bus is not suspended.
USB_HOST_RESULT_BUS_NOT_ENABLED - if the bus was not enabled. USB_HOST_RESULT_BUS_UNKNOWN - if the specified bus does
not exist in the system. USB_HOST_RESULT_FAILURE - an unknown error occurred.

Description

This function returns suspend status of the specified USB bus. This function can be used to check the completion of the Suspend operation started
by using the USB_HOST_BusSuspend() function. The function would return USB_HOST_RESULT_FALSE if the bus is not suspended. Calling
the USB_HOST_BusIsSuspended() with bus specified as USB_HOST_BUS_ALL returns the suspend status of the all USB segments that are
managed by the host layer. The function would return USB_HOST_RESULT_TRUE only if all the bus are in a suspended state.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 277

Preconditions

The USB_HOST_BusEnable() function should have been called to enable the bus.

Example
TBD.

Parameters

Parameters Description

bus the bus whose suspend status is to be queried.

Function

USB_HOST_RESULT USB_HOST_BusIsSuspended (USB_HOST_BUS bus)

USB_HOST_BusResume Function

Resumes the bus.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_BusResume(USB_HOST_BUS bus);

Returns

USB_HOST_RESULT_SUCCESS - if the request was successful or if the bus was already resumed. USB_HOST_RESULT_BUS_UNKNOWN -
the request failed because the bus does not exist in the system. USB_HOST_RESULT_BUS_NOT_ENABLED - the bus was not enabled.
USB_HOST_RESULT_FAILURE - An unknown error occurred.

Description

The function resumes the bus. All devices on the bus will be receive resume signaling. If bus is specified as USB_HOST_BUS_ALL, all the buses
managed by this host will be resumed.

Remarks

None.

Preconditions

The USB_HOST_BusEnable() function should have been called to enable the bus.

Example
// Resume bus 0
USB_HOST_BusResume(0);

// Resume all buses
USB_HOST_BusSuspend(USB_HOST_BUS_ALL);

Parameters

Parameters Description

bus The bus to be resume or USB_HOST_BUS_ALL to resume all buses.

Function

USB_HOST_RESULT USB_HOST_BusResume (USB_HOST_BUS bus);

USB_HOST_BusSuspend Function

Suspends the bus.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_BusSuspend(USB_HOST_BUS bus);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 278

Returns

USB_HOST_RESULT_SUCCESS - if the request was successful. USB_HOST_RESULT_BUS_NOT_ENABLED - if the bus was not enabled.
USB_HOST_RESULT_FAILURE - An unknown error has occurred. USB_HOST_RESULT_BUS_UNKNOWN - if the specified bus does not exist
in the system.

Description

The function suspends the bus. All devices on the bus will be suspended. If bus is specified as USB_HOST_BUS_ALL, all the buses managed by
this host will be suspended.

Remarks

None.

Preconditions

The USB_HOST_BusEnable() function should have been called to enable the bus.

Example
// Suspend the bus 0
USB_HOST_BusSuspend(0);

// Suspend all buses
USB_HOST_BusSuspend(USB_HOST_BUS_ALL);

Parameters

Parameters Description

bus The bus to be suspended or USB_HOST_BUS_ALL to suspend all buses.

Function

USB_HOST_RESULT USB_HOST_BusSuspend (USB_HOST_BUS bus);

USB_HOST_DeviceGetFirst Function

Returns information about the first attached device on the bus.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_DeviceGetFirst(USB_HOST_BUS bus, USB_HOST_DEVICE_INFO * deviceInfo);

Returns

USB_HOST_RESULT_SUCCESS - The function executed successfully. USB_HOST_RESULT_END_OF_DEVICE_LIST - There are no attached
devices on the bus. USB_HOST_RESULT_BUS_UNKNOWN - The specified bus does not exist in the system.
USB_HOST_RESULT_BUS_NOT_ENABLED - The specified bus is not enabled. USB_HOST_RESULT_PARAMETER_INVALID - the deviceInfo
parameter is NULL. USB_HOST_RESULT_FAILURE - an unknown failure occurred.

Description

This function returns information about the first attached device on the specified bus. The USB_HOST_DeviceGetNext() function can be used to
get the reference to the next attached device on the bus. The USB_HOST_DEVICE_INFO object is provided by the application.The device
information will be populated into this object. If there are no devices attached on the bus, the function will set the deviceObjHandle parameter, in
the USB_HOST_DEVICE_INFO object, to USB_HOST_DEVICE_OBJ_HANDLE INVALID.

Remarks

None.

Preconditions

The USB_HOST_BusEnable function should have been called to enable detection of attached devices.

Example
TBD.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 279

Parameters

Parameters Description

bus the bus to be queried for attached devices.

deviceInfo output parameter. Will contain device information when the function returns. If the
deviceObjHandle member of the structure contains USB_HOST_DEVICE_OBJ_HANDLE
INVALID, then there are no attached devices on the bus and the deviceAddress and the bus
member of the info object will contain indeterminate values.

Function

USB_HOST_RESULT USB_HOST_DeviceGetFirst

(

USB_HOST_BUS bus,

USB_HOST_DEVICE_INFO * deviceInfo

);

USB_HOST_DeviceGetNext Function

Returns information about the next device on the bus.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_DeviceGetNext(USB_HOST_DEVICE_INFO * deviceInfo);

Returns

USB_HOST_RESULT_SUCCESS - The function executed successfully. USB_HOST_RESULT_END_OF_DEVICE_LIST - There are no attached
devices on the bus. USB_HOST_RESULT_PARAMETER_INVALID - the deviceInfo parameter is NULL.
USB_HOST_RESULT_DEVICE_UNKNOWN - the device specified in deviceInfo does not exist in the system. The search should be restarted.
USB_HOST_RESULT_FAILURE - an unknown failure occurred. Application can restart the search by calling the USB_HOST_DeviceGetFirst()
function.

Description

This function returns information of the next device attached on the bus. The USB_HOST_DeviceGetFirst() function should have been called at
least once on the deviceInfo object. Then calling this function repeatedly on the deviceInfo object will return information about the next attached
device on the bus. When there are no more attached devices to report, the function returns USB_HOST_RESULT_END_OF_DEVICE_LIST.

Calling the USB_HOST_DeviceGetFirst() function on the deviceInfo object after the USB_HOST_DeviceGetNext() function has been called will
cause the host to reset the deviceInfo object to point to the first attached device.

Remarks

None.

Preconditions

The USB_HOST_DeviceGetFirst() function must have been called before calling this function.

Example
TBD.

Parameters

Parameters Description

deviceInfo pointer to the USB_HOST_DEVICE_INFO object.

Function

USB_HOST_RESULT USB_HOST_DeviceGetNext (USB_HOST_DEVICE_INFO * deviceInfo);

USB_HOST_DeviceIsSuspended Function

Returns the suspend state of the device is suspended.

File

usb_host.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 280

C
USB_HOST_RESULT USB_HOST_DeviceIsSuspended(USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle);

Returns

USB_HOST_RESULT_TRUE - if the device is suspended. USB_HOST_RESULT_FALSE - if the device is not suspended.
USB_HOST_RESULT_DEVICE_UNKNOWN - the specified device does not exist in the system. USB_HOST_RESULT_FAILURE - An unknown
failure occurred.

Description

This function returns the suspend state of the specified USB device. This function can be used to check the completion of the Resume operation
started by using the USB_HOST_Resume() function. If the Resume signaling has completed, the USB_HOST_IsSuspended() function would
return USB_HOST_RESULT_TRUE.

Remarks

None.

Preconditions

The USB_HOST_BusEnable() function should have been called.

Example
TBD.

Parameters

Parameters Description

deviceObjHandle handle to the device that needs to be checked for suspend status.

Function

USB_HOST_RESULT USB_HOST_DeviceIsSuspended

(

USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle

);

USB_HOST_DeviceResume Function

Resumes the selected device

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_DeviceResume(USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle);

Returns

USB_HOST_RESULT_SUCCESS - The request was accepted and the device will be resumed or the device was already resumed.
USB_HOST_RESULT_DEVICE_UNKNOWN - The request failed. The device may have been detached. USB_HOST_RESULT_FAILURE - An
unknown failure occurred.

Description

The function resumes the selected device. A device can be resumed only if it was suspended.

Remarks

None.

Preconditions

None.

Example
TBD.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 281

Parameters

Parameters Description

deviceObjHandle handle to the device to be resumed.

Function

USB_HOST_RESULT USB_HOST_DeviceResume

(

USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle

);

USB_HOST_DeviceSpeedGet Function

Returns the speed at which this device is operating.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_DeviceSpeedGet(USB_HOST_DEVICE_OBJ_HANDLE deviceHandle, USB_SPEED * speed);

Returns

USB_HOST_RESULT_SUCCESS - The function was successful. speed will contain the speed of the device.
USB_HOST_RESULT_DEVICE_UNKNOWN - The device does not exist in the system. speed will contain USB_SPEED_ERROR.
USB_HOST_RESULT_FAILURE - an unknown error occurred.

Description

This function returns the speed at which this device is operating.

Remarks

None.

Preconditions

The USB_HOST_Initialize() function should have been called.

Example

Parameters

Parameters Description

deviceObjHandle handle to the device whose speed is required.

speed output parameter. Will contain the speed of the device if the function was successful.

Function

USB_HOST_RESULT USB_HOST_DeviceSpeedGet

(

USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle,

USB_SPEED * speed

)

USB_HOST_DeviceStringDescriptorGet Function

Retrieves specified string descriptor from the device

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_DeviceStringDescriptorGet(USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle,
USB_HOST_DEVICE_STRING stringType, uint16_t languageID, void * stringDescriptor, size_t length,
USB_HOST_REQUEST_HANDLE * requestHandle, USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK callback, uintptr_t
context);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 282

Returns

USB_HOST_RESULT_SUCCESS - The request was scheduled successfully. requestHandle will contain a valid request handle.
USB_HOST_RESULT_DEVICE_UNKNOWN - The request failed because the device was detached. USB_HOST_RESULT_FAILURE - An
unknown error occurred. USB_HOST_RESULT_REQUEST_BUSY - The host layer cannot take more requests at this point. The application
should try later. USB_HOST_RESULT_STRING_DESCRIPTOR_UNSUPPORTED - The device does not support the specified string descriptor
type.

Description

This function retrieves the specified string descriptor from the device. This function will cause the host layer to issue a control transfer to the
device. When the string descriptor is available, the host layer will call the callback function to let the application know that the request has
completed.

The function will return a valid request handle in requestHandle, if the request was successful. This request handle will be returned in the callback
function. The size of the stringDescriptor buffer is specified by the length parameter. Only length number of bytes will be retrieved. The type of
device string descriptor to be retrieved is specified by the stringType parameter. The supported language IDs, manufacturer, product and serial
number strings can be obtained. While obtaining the supported language IDs, the languageID parameter will be ignored.

Remarks

None.

Preconditions

The USB_HOST_BusEnable() function should have been called.

Example

Parameters

Parameters Description

deviceObjHandle handle to the device whose string descriptor is to be retrieved.

stringType type of string descriptor to be retrieved

languageID the language ID of the string descriptor

stringDescriptor output buffer for the descriptor

length size of the specified output buffer

requestHandle This is an output parameter. It will contain a valid request handle if the request was
successful. It will contain USB_HOST_REQUEST_HANDLE_INVALID is the request was not
successful.

callback Function that will be called when this request completes. If this is NULL, then the application
will not receive indication of completion.

context Calling application context to be returned in the callback function.

Function

USB_HOST_RESULT USB_HOST_DeviceStringDescriptorGet

(

USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle,

USB_HOST_DEVICE_STRING stringType,

uint16_t languageID,

void * stringDescriptor,

size_t length,

USB_HOST_REQUEST_HANDLE * requestHandle,

USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK callback,

uintptr_t context

);

USB_HOST_DeviceSuspend Function

Suspends the specified device.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_DeviceSuspend(USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 283

Returns

USB_HOST_RESULT_SUCCESS - The request was accepted and the device will be suspended. USB_HOST_RESULT_DEVICE_UNKNOWN -
The request failed. The device may have been detached. USB_HOST_RESULT_FAILURE - An unknown failure occurred.

Description

The function suspends the specified device.

Remarks

None.

Preconditions

The USB_HOST_BusEnable() function should have been called.

Example
TBD.

Parameters

Parameters Description

deviceObjHandle handle to the device to suspend.

Function

USB_HOST_RESULT USB_HOST_DeviceSuspend

(

USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle

);

USB_HOST_EventHandlerSet Function

USB Host Layer Event Handler Callback Function set function.

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_EventHandlerSet(USB_HOST_EVENT_HANDLER eventHandler, uintptr_t context);

Returns

USB_HOST_RESULT_SUCCESS - The function was successful. USB_HOST_RESULT_FAILURE - An unknown failure occurred.

Description

This is the USB Host Layer Event Handler Callback Set function. An application can receive USB Host Layer events by using this function to
register and event handler callback function. The application can additionally specify a specific context which will returned with the event handler
callback function. The event handler must be set (this function must be called) before any of the USB buses are enabled.

Remarks

None.

Preconditions

The host layer should have been initialized.

Example
TBD.

Parameters

Parameters Description

eventHandler Pointer to the call back function. The host layer notifies the application about host layer events
by calling this function. If this is NULL, then events will not be generated.

context application specific context.

Function

USB_HOST_RESULT USB_HOST_EventHandlerSet

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 284

(

USB_HOST_EVENT_HANDLER * eventHandler,

uintptr_t context

)

USB_HOST_Initialize Function

Initializes the USB Host layer instance specified by the index.

File

usb_host.h

C
SYS_MODULE_OBJ USB_HOST_Initialize(const SYS_MODULE_INIT * init);

Returns

Return a SYS_MODULE_OBJ_INVALID if the initialization failed.

Description

This routine initializes the USB Host Layer. This function must be called before any other Host layer function can be called. The initialization data is
specified by the init parameter. This function is typically called in the SYS_Initialize() function. The initialization completion may require the
USB_HOST_Tasks() routine to execute. The initialization function does not start the operation of the Host on the USB. This must be done explicitly
via the USB_HOST_BusEnable() function. This function will initialize all client drivers listed in the TPL.

Remarks

This routine must be called before any other USB Host routine is called. This routine should only be called once during system initialization unless
USB_HOST_Deinitialize is called to deinitialize the Host Layer instance. This routine will NEVER block for hardware access. The
USB_HOST_Tasks() function should be called to complete the initialization.

Preconditions

The USB Host Controller driver initialization should be called somewhere in the SYS_Initialize() function.

Example
TBD.

Parameters

Parameters Description

init Pointer to a USB_HOST_INIT data structure containing data necessary to initialize the driver.

Function

SYS_MODULE_OBJ USB_HOST_Initialize

(

const SYS_MODULE_INIT * const init

)

USB_HOST_BusDisable Function

File

usb_host.h

C
USB_HOST_RESULT USB_HOST_BusDisable(USB_HOST_BUS bus);

Description

This is function USB_HOST_BusDisable.

USB_HOST_BusIsDisabled Function

File

usb_host.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 285

C
USB_HOST_RESULT USB_HOST_BusIsDisabled(USB_HOST_BUS bus);

Description

This is function USB_HOST_BusIsDisabled.

b) Data Types and Constants

USB_HOST_INIT Structure

Defines the data required to initialize a USB Host Layer instance.

File

usb_host.h

C
typedef struct {
 size_t nTPLEntries;
 USB_HOST_TPL_ENTRY * tplList;
 USB_HOST_HCD * hostControllerDrivers;
} USB_HOST_INIT;

Members

Members Description

size_t nTPLEntries; Size of the TPL table

USB_HOST_TPL_ENTRY * tplList; Pointer to the TPL table for this host layer implementation.

USB_HOST_HCD * hostControllerDrivers; This is a pointer to a table of host controller drivers that the host layer will operate on. The
number of entries in this table is specified via the USB_HOST_CONTROLLERS_NUMBER
configuration macro in system_config.h

Description

USB Host Initialization Data Structure

This data type defines the data required to initialize the host layer. A pointer to a structure of this type is required by the USB_HOST_Initialize()
function.

Remarks

This data structure is specific to the PIC32MX and PIC32WK implementation of the USB Host layer.

USB_HOST_EVENT_RESPONSE Enumeration

Host Layer Events Handler Function Response Type.

File

usb_host.h

C
typedef enum {
 USB_HOST_EVENT_RESPONSE_NONE = 0
} USB_HOST_EVENT_RESPONSE;

Members

Members Description

USB_HOST_EVENT_RESPONSE_NONE = 0 Returning this value indicates no application response to the host event

Description

Host Layer Events Handler Function Response Type.

This is the definition of the Host Layer Event Handler Response Type.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 286

\ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL) Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

\ .tplFlags.driverType = (TPL_FLAG_VID_PID) Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 287

.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \

.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

0 Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 288

.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \

.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

0x0000 Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 289

Remarks

None.

0xFF Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

0xFF } Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 290

 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

0xFFFF Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 291

{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

0xFFFF } Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 292

cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

1 Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

classCode Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 293

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

false Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 294

\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

initData Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 295

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

mask Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 296

pid Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

pid } Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 297

.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \

.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

subClassCode Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 298

.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \

.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

true Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 299

Remarks

None.

USB_HOST_BUS Type

Defines a USB Bus Data Type.

File

usb_host.h

C
typedef uint8_t USB_HOST_BUS;

Description

USB Bus Data Type

This data type defines a USB Bus. In microcontroller devices, that may have multiple USB peripherals, this type identifies the USB bus associated
with each peripheral. Bus numbers start from 0 and counts up to include all the busses in the system. The total number of busses and the mapping
between a bus and the USB controller is specified in the Host Layer initialization data structure.

Remarks

None.

USB_HOST_DEVICE_INFO Structure

Defines the data type that is used by the USB_HOST_DeviceGetFirst() and USB_HOST_DeviceGetNext() functions.

File

usb_host.h

C
typedef struct {
 USB_HOST_DEVICE_OBJ_HANDLE deviceObjHandle;
 uint8_t deviceAddress;
 USB_HOST_BUS bus;
} USB_HOST_DEVICE_INFO;

Members

Members Description

USB_HOST_DEVICE_OBJ_HANDLE
deviceObjHandle;

USB Host Device Object Handle

uint8_t deviceAddress; Address of the device on the USB

USB_HOST_BUS bus; The bus to which this device is connected

Description

USB Host Device Info Type

This data type defines the type of data that is used by the USB_HOST_DeviceGetFirst() and USB_HOST_DeviceGetNext() functions. The
application must provide an object of this type to these functions to obtain information about the devices attached on the USB.

Remarks

The application must only instantiate this data structure and should not modify it's contents. Multiple objects can be instantiated and used.

USB_HOST_DEVICE_OBJ_HANDLE Type

Handle to an attached USB Device.

File

usb_host.h

C
typedef uintptr_t USB_HOST_DEVICE_OBJ_HANDLE;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 300

Description

USB Host Device Object Handle

This data type defines the type of handle to an attached USB Device. This handle uniquely identifies the attached device. A handle of this type is
returned in the deviceObjHandle member of the USB_HOST_DEVICE_INFO structure when the USB_HOST_DeviceGetFirst() and the
USB_HOST_DeviceGetNext() functions are called.

Remarks

None.

USB_HOST_DEVICE_STRING Enumeration

Defines a defines types of strings that can be request through the USB_HOST_DeviceStringDescriptorGet() function.

File

usb_host.h

C
typedef enum {
 USB_HOST_DEVICE_STRING_LANG_ID = 0,
 USB_HOST_DEVICE_STRING_MANUFACTURER,
 USB_HOST_DEVICE_STRING_PRODUCT,
 USB_HOST_DEVICE_STRING_SERIAL_NUMBER
} USB_HOST_DEVICE_STRING;

Members

Members Description

USB_HOST_DEVICE_STRING_LANG_ID = 0 Specifies the language ID string

USB_HOST_DEVICE_STRING_MANUFACTURER Specifies the manufacturer string

USB_HOST_DEVICE_STRING_PRODUCT Specifies the product string

USB_HOST_DEVICE_STRING_SERIAL_NUMBER Specifies the serial number string

Description

USB Host Device String Type

This type defines the types of strings that can be request through the USB_HOST_DeviceStringDescriptorGet() function. The stringType
parameter in the function call can be set any one of these types.

Remarks

None.

USB_HOST_EVENT Enumeration

Defines the different events that the USB Host Layer can generate.

File

usb_host.h

C
typedef enum {
 USB_HOST_EVENT_DEVICE_REJECTED_INSUFFICIENT_POWER,
 USB_HOST_EVENT_DEVICE_UNSUPPORTED,
 USB_HOST_EVENT_HUB_TIER_LEVEL_EXCEEDED,
 USB_HOST_EVENT_PORT_OVERCURRENT_DETECTED
} USB_HOST_EVENT;

Members

Members Description

USB_HOST_EVENT_DEVICE_REJECTED_INSUFFICIENT_POWER This event occurs when device needs more current than what the host
can supply.

USB_HOST_EVENT_DEVICE_UNSUPPORTED This event occurs when a host layer could not attach any drivers to the
attached device or when an error has occurred. There is no event data
associated with this event.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 301

USB_HOST_EVENT_HUB_TIER_LEVEL_EXCEEDED This event occurs when the number of hubs connected to the host
exceeds the configured maximum number of hubs
USB_HOST_HUB_TIER_LEVEL. There is no event data associated with
this event.

USB_HOST_EVENT_PORT_OVERCURRENT_DETECTED This event occurs when an over-current condition is detected at the root

• hub or an external hub port.

Description

USB Host Events

This data type defines the different events that USB Host Layer can generate. The application is intended recipient of these events. Some events
return event related data. The application must register an event handler with the host layer (via the USB_HOST_EventHandlerSet() function)
before enabling any of the buses.

Remarks

None.

USB_HOST_EVENT_HANDLER Type

USB Host Layer Event Handler Function Pointer Type

File

usb_host.h

C
typedef USB_HOST_EVENT_RESPONSE (* USB_HOST_EVENT_HANDLER)(USB_HOST_EVENT event, void * eventData,
uintptr_t context);

Description

USB Host Layer Event Handler Function Pointer Type

This data type defines the required function signature of the USB Host Layer Event handling callback function. The application must register a
pointer to a Host Layer Event handling function who's function signature (parameter and return value types) match the types specified by this
function pointer in order to receive event call backs from the Host Layer. The Host Layer will invoke this function with event relevant parameters.
The description of the event handler function parameters is given here.

event - Type of event generated.

pData - This parameter should be type cast to an event specific pointer type based on the event that has occurred. Refer to the
USB_HOST_EVENT enumeration description for more details.

context - Value identifying the context of the application that was registered along with the event handling function.

Remarks

None.

USB_HOST_HCD Structure

Defines the USB Host HCD Information object that is provided to the host layer.

File

usb_host.h

C
typedef struct {
 SYS_MODULE_INDEX drvIndex;
 void * hcdInterface;
} USB_HOST_HCD;

Members

Members Description

SYS_MODULE_INDEX drvIndex; Index of the USB Host Controller driver that the host layer should open and use.

void * hcdInterface; USB Host Controller Driver function pointers

Description

USB Host Controller Driver Information

This data type defines the data required to connect a Host Controller Driver to the host layer. The USB Host layer used the HCD routines to

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 302

access the root hub and the USB.

Remarks

This data structure is specific to the PIC32 implementation of the USB Host layer.

USB_HOST_REQUEST_HANDLE Type

USB Host Request Handle Type

File

usb_host.h

C
typedef uintptr_t USB_HOST_REQUEST_HANDLE;

Description

USB Host Request Handle Type

This type defines the USB Host Request Handle. This type of handle is returned by the USB_HOST_DeviceStringDescriptorGet() function. Each
request will generate a unique handle. This handle will be returned in the event associated with the completion of the string descriptor request.

Remarks

None.

USB_HOST_RESULT Enumeration

USB Host Results.

File

usb_host.h

C
typedef enum {
 USB_HOST_RESULT_REQUEST_BUSY = USB_HOST_RESULT_MIN,
 USB_HOST_RESULT_STRING_DESCRIPTOR_UNSUPPORTED,
 USB_HOST_RESULT_TRANSFER_ABORTED,
 USB_HOST_RESULT_REQUEST_STALLED,
 USB_HOST_RESULT_PIPE_HANDLE_INVALID,
 USB_HOST_RESULT_END_OF_DEVICE_LIST,
 USB_HOST_RESULT_INTERFACE_UNKNOWN,
 USB_HOST_RESULT_PARAMETER_INVALID,
 USB_HOST_RESULT_CONFIGURATION_UNKNOWN,
 USB_HOST_RESULT_BUS_NOT_ENABLED,
 USB_HOST_RESULT_BUS_UNKNOWN,
 USB_HOST_RESULT_DEVICE_UNKNOWN,
 USB_HOST_RESULT_FAILURE,
 USB_HOST_RESULT_FALSE = 0,
 USB_HOST_RESULT_TRUE = 1,
 USB_HOST_RESULT_SUCCESS = USB_HOST_RESULT_TRUE
} USB_HOST_RESULT;

Members

Members Description

USB_HOST_RESULT_REQUEST_BUSY =
USB_HOST_RESULT_MIN

Indicates that the Host Layer cannot accept any requests at this point

USB_HOST_RESULT_STRING_DESCRIPTOR_UNSUPPORTED The device does not support the request string descriptor

USB_HOST_RESULT_TRANSFER_ABORTED Request was aborted

USB_HOST_RESULT_REQUEST_STALLED Request was stalled

USB_HOST_RESULT_PIPE_HANDLE_INVALID The specified pipe is not valid

USB_HOST_RESULT_END_OF_DEVICE_LIST The end of the device list was reached.

USB_HOST_RESULT_INTERFACE_UNKNOWN The specified interface is not available

USB_HOST_RESULT_PARAMETER_INVALID A NULL parameter was passed to the function

USB_HOST_RESULT_CONFIGURATION_UNKNOWN The specified configuration does not exist on this device.

USB_HOST_RESULT_BUS_NOT_ENABLED A bus operation was requested but the bus was not operated

USB_HOST_RESULT_BUS_UNKNOWN The specified bus does not exist in the system

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 303

USB_HOST_RESULT_DEVICE_UNKNOWN The specified device does not exist in the system

USB_HOST_RESULT_FAILURE An unknown failure has occurred

USB_HOST_RESULT_FALSE = 0 Indicates a false condition

USB_HOST_RESULT_TRUE = 1 Indicate a true condition

USB_HOST_RESULT_SUCCESS =
USB_HOST_RESULT_TRUE

Indicates that the operation succeeded or the request was accepted and will
be processed.

Description

USB Host Result

This enumeration defines the possible returns values of USB Host Layer API. A function may only return some of the values in this enumeration.
Refer to function description for details on which values will be returned.

Remarks

None.

USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK Type

USB Host Device String Descriptor Request Complete Callback Function Type

File

usb_host.h

C
typedef void (* USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK)(USB_HOST_REQUEST_HANDLE requestHandle, size_t
size, uintptr_t context);

Description

USB Host Device String Descriptor Request Complete Callback Function Type

This data type defines the required function signature of the USB Host Device String Descriptor Request Complete Callback Function. The
application must specify a pointer to a function who's function signature (parameter and return value types) matches the type specified by this
function pointer in order to a call backs from the Host Layer when the USB_HOST_DeviceStringDescriptorGet() function has completed its
operation. The description of the callback function parameters is given here.

requestHandle - a handle that is unique to this request. This will match the handle that was returned by the
USB_HOST_DeviceStringDescriptorGet() function.

size - size of the returned string descriptor. If the string descriptor could not be obtained, the size will be zero.

context - Value identifying the context of the application that was registered along with the event handling function.

Remarks

None.

USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 304

.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \

.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

USB_HOST_TPL_ENTRY Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 305

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

vid Enumeration

USB Host Layer TPL Table Entry Matching Criteria flag

File

usb_host.h

C
typedef enum {
 initData,
 classCode,
 subClassCode,
 protocolCode
} driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, subClassCode, 0xFF }, driver)\
{\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \
.tplFlags.ignoreClass = false, \ .tplFlags.ignoreClass = false, \ .tplFlags.ignoreProtocol = true, \
.hostClientDriverInitData = initData, driver)\ {\ .id.cl_sc_p = { classCode, \ .hostClientDriverInitData =
initData, driver)\ {\ .id.cl_sc_p = { classCode, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreClass = false, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
\ .hostClientDriverInitData = initData, 0xFF, 0xFF, 0xFF }, driver)\ {\ .id.vid_pid = { 0xFFFF, \
.tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL), \ .tplFlags.ignoreProtocol = true, \
.tplFlags.ignoreProtocol = true, \ .tplFlags.ignoreProtocol = true, \ .hostClientDriverInitData = initData,
driver)\ {\ .id.vid_pid = { vid, pid, \ .hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = {
vid, pid }, driver)\ {\ .id.vid_pid = { 0xFFFF, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 0, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, driver)\
{\ .id.vid_pid = { vid, pid, \ .pidMask = mask, \ .hostClientDriverInitData = initData, driver)\ {\
.id.vid_pid = { vid, pid }, \ .pidMask = mask, \ .tplFlags.driverType = (TPL_FLAG_VID_PID), \
.tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 0, \ .hostClientDriverInitData = initData, \
.hostClientDriverInitData = initData, driver)\ {\ .id.vid_pid = { 0xFFFF, 0xFFFF }, \ .pidMask = 0x0000, \
.tplFlags.driverType = (TPL_FLAG_VID_PID), \ .tplFlags.ignoreVIDPID = 1, \ .tplFlags.ignoreVIDPID = 1, \
.hostClientDriverInitData = initData, \ .hostClientDriver = driver\ } typedef struct { union { uint32_t
value; struct { uint16_t vid; uint16_t pid; } vid_pid; struct { uint8_t classCode; uint8_t subClassCode;
uint8_t protocolCode; } cl_sc_p; } id; uint16_t pidMask; struct { unsigned driverType :1; unsigned
ignoreClass :1; unsigned ignoreSubClass :1; unsigned ignoreProtocol :1; unsigned pidMasked :1; unsigned
ignoreVIDPID :1; } tplFlags; void * hostClientDriverInitData; void * hostClientDriver; }
USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY, USB_HOST_TPL_ENTRY;

Description

USB Host Layer TPL Table Entry Matching Criteria flag

This enumeration defines the possible matching criteria flag that can be specified for a Host TPL table entry. The tplFlag member of the TPL table
entry should be set to one or more of these flags. These flags define the criteria that the Host layer will use while matching the attached device to
the TPL table entry. For example, if a device is specified by class, subclass and protocol specifying the TPL_FLAG_IGNORE_SUBCLASS flag will
cause the Host layer to ignore the subclass while comparing the class, subclass and protocol of the attached device.

Multiple flags can be specified as a logically OR'ed combination. While combining multiple flags, VID and PID criteria flags cannot be combined
with the Class, Subclass, Protocol flags. For example, the TPL_FLAG_VID_PID flag cannot be combined with TPL_FLAG_IGNORE_SUBCLASS.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 306

USB_HOST_BUS_ALL Macro

USB Host Bus All

File

usb_host.h

C
#define USB_HOST_BUS_ALL ((USB_HOST_BUS)(0xFF))

Description

USB Host Bus All

This constant defines the value that should be passed to the USB_HOST_BusSuspend(), USB_HOST_BusResume() and
USB_HOST_IsBusSuspended() function if all the USB segments must be addressed. Passing this constant to these functions will cause Suspend
and Resume operation to affect all the USB segments and hence affect all connected devices.

Remarks

None.

USB_HOST_DEVICE_OBJ_HANDLE_INVALID Macro

Defines an invalid USB Device Object Handle.

File

usb_host.h

C
#define USB_HOST_DEVICE_OBJ_HANDLE_INVALID ((USB_HOST_DEVICE_OBJ_HANDLE)(-1))

Description

USB Host Invalid Device Object Handle

This constant defines an invalid USB Device Object Handle. The USB_HOST_DeviceGetFirst() and the USB_HOST_DeviceGetNext() functions
return this value in the deviceObjHandle member of the USB_HOST_DEVICE_INFO object when there are no attached devices to report.

Remarks

None.

USB_HOST_DEVICE_STRING_LANG_ID_DEFAULT Macro

Defines the default Lang ID to be used while obtaining the string.

File

usb_host.h

C
#define USB_HOST_DEVICE_STRING_LANG_ID_DEFAULT (0)

Description

USB Host Device String Default Lang ID

This constant defines the default Lang ID. When then languageID parameter in the USB_HOST_DeviceStringDescriptorGet() function is set to this
value, the function will specify the default Lang ID while requesting the string from the device.

Remarks

None.

USB_HOST_REQUEST_HANDLE_INVALID Macro

USB Host Request Invalid Handle

File

usb_host.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 307

C
#define USB_HOST_REQUEST_HANDLE_INVALID ((USB_HOST_REQUEST_HANDLE)(-1))

Description

USB Host Request Invalid Handle

This constant defines an Invalid USB Host Request Handle. This handle is returned by the USB_HOST_DeviceStringDescriptorGet() function
when the request was not accepted.

Remarks

None.

USB_HOST_RESULT_MIN Macro

USB Host Result Minimum Constant.

File

usb_host.h

C
#define USB_HOST_RESULT_MIN -100

Description

USB Host Result Minimum Constant

Constant identifying the USB Host Result Minimum Value. This constant is used in the USB_HOST_RESULT enumeration.

Remarks

None.

Files

Files

Name Description

usb_host.h USB Host Layer Interface Header

usb_host_config_template.h USB host configuration template header file.

Description

This section lists the source and header files used by the library.

usb_host.h

USB Host Layer Interface Header

Enumerations

Name Description

\ .tplFlags.driverType =
(TPL_FLAG_CLASS_SUBCLASS_PROTOCOL)

USB Host Layer TPL Table Entry Matching Criteria flag

\ .tplFlags.driverType = (TPL_FLAG_VID_PID) USB Host Layer TPL Table Entry Matching Criteria flag

0 USB Host Layer TPL Table Entry Matching Criteria flag

0x0000 USB Host Layer TPL Table Entry Matching Criteria flag

0xFF USB Host Layer TPL Table Entry Matching Criteria flag

0xFF } USB Host Layer TPL Table Entry Matching Criteria flag

0xFFFF USB Host Layer TPL Table Entry Matching Criteria flag

0xFFFF } USB Host Layer TPL Table Entry Matching Criteria flag

1 USB Host Layer TPL Table Entry Matching Criteria flag

classCode USB Host Layer TPL Table Entry Matching Criteria flag

false USB Host Layer TPL Table Entry Matching Criteria flag

initData USB Host Layer TPL Table Entry Matching Criteria flag

mask USB Host Layer TPL Table Entry Matching Criteria flag

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 308

pid USB Host Layer TPL Table Entry Matching Criteria flag

pid } USB Host Layer TPL Table Entry Matching Criteria flag

subClassCode USB Host Layer TPL Table Entry Matching Criteria flag

true USB Host Layer TPL Table Entry Matching Criteria flag

USB_HOST_DEVICE_STRING Defines a defines types of strings that can be request through the
USB_HOST_DeviceStringDescriptorGet() function.

USB_HOST_EVENT Defines the different events that the USB Host Layer can generate.

USB_HOST_EVENT_RESPONSE Host Layer Events Handler Function Response Type.

USB_HOST_RESULT USB Host Results.

USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY USB Host Layer TPL Table Entry Matching Criteria flag

USB_HOST_TPL_ENTRY USB Host Layer TPL Table Entry Matching Criteria flag

vid USB Host Layer TPL Table Entry Matching Criteria flag

Functions

Name Description

USB_HOST_BusDisable This is function USB_HOST_BusDisable.

USB_HOST_BusEnable Starts host operations.

USB_HOST_BusIsDisabled This is function USB_HOST_BusIsDisabled.

USB_HOST_BusIsEnabled Checks if the bus is enabled.

USB_HOST_BusIsSuspended Returns the suspend status of the bus.

USB_HOST_BusResume Resumes the bus.

USB_HOST_BusSuspend Suspends the bus.

USB_HOST_Deinitialize Deinitializes the specified instance of the USB Host Layer.

USB_HOST_DeviceGetFirst Returns information about the first attached device on the bus.

USB_HOST_DeviceGetNext Returns information about the next device on the bus.

USB_HOST_DeviceIsSuspended Returns the suspend state of the device is suspended.

USB_HOST_DeviceResume Resumes the selected device

USB_HOST_DeviceSpeedGet Returns the speed at which this device is operating.

USB_HOST_DeviceStringDescriptorGet Retrieves specified string descriptor from the device

USB_HOST_DeviceSuspend Suspends the specified device.

USB_HOST_EventHandlerSet USB Host Layer Event Handler Callback Function set function.

USB_HOST_Initialize Initializes the USB Host layer instance specified by the index.

USB_HOST_Status Gets the current status of the USB Host Layer.

USB_HOST_Tasks Maintains the USB Host Layer state machine.

Macros

Name Description

USB_HOST_BUS_ALL USB Host Bus All

USB_HOST_DEVICE_OBJ_HANDLE_INVALID Defines an invalid USB Device Object Handle.

USB_HOST_DEVICE_STRING_LANG_ID_DEFAULT Defines the default Lang ID to be used while obtaining the string.

USB_HOST_REQUEST_HANDLE_INVALID USB Host Request Invalid Handle

USB_HOST_RESULT_MIN USB Host Result Minimum Constant.

Structures

Name Description

USB_HOST_DEVICE_INFO Defines the data type that is used by the USB_HOST_DeviceGetFirst() and
USB_HOST_DeviceGetNext() functions.

USB_HOST_HCD Defines the USB Host HCD Information object that is provided to the host layer.

USB_HOST_INIT Defines the data required to initialize a USB Host Layer instance.

Types

Name Description

USB_HOST_BUS Defines a USB Bus Data Type.

USB_HOST_DEVICE_OBJ_HANDLE Handle to an attached USB Device.

USB_HOST_EVENT_HANDLER USB Host Layer Event Handler Function Pointer Type

USB_HOST_REQUEST_HANDLE USB Host Request Handle Type

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 309

USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK USB Host Device String Descriptor Request Complete Callback
Function Type

Description

USB Host Layer Interface Definition

This header file contains the function prototypes and definitions of the data types and constants that make up the interface to the USB HOST layer.

File Name

usb_host.h

Company

Microchip Technology Inc.

usb_host_config_template.h

USB host configuration template header file.

Macros

Name Description

USB_HOST_CONTROLLERS_NUMBER Defines the number of USB Host Controllers that this Host Layer must manage.

USB_HOST_DEVICE_INTERFACES_NUMBER Defines the maximum number of interface that the attached device can contain in
order for the USB Host Layer to process the device.

USB_HOST_DEVICES_NUMBER Defines the maximum number of devices to support.

USB_HOST_HUB_SUPPORT_ENABLE Defines if this USB Host application must support a Hub.

USB_HOST_HUB_TIER_LEVEL Defines the maximum tier of connected hubs to be supported.

USB_HOST_PIPES_NUMBER Defines the maximum number of pipes that the application will need.

USB_HOST_TRANSFERS_NUMBER Defines the maximum number of transfers that host layer should handle.

Description

USB Host Layer Configuration constants

This file contains USB host layer compile time options (macros) that are to be configured by the user. This file is a template file and must be used
as an example only. This file must not be directly included in the project.

File Name

usb_host_config_template.h

Company

Microchip Technology Inc.

USB Audio v1.0 Host Client Driver Library

This section describes the USB Audio v1.0 Host Client Driver Library.

Introduction

Introduces the MPLAB Harmony USB Audio v1.0 Host Client Driver Library.

Description

The USB Audio v1.0 Host Client Driver in the MPLAB Harmony USB Host Stack allows USB Host applications to support and interact with Audio
v1.0 USB devices. The USB Audio v1.0 Host Client Driver has the following features:

• Supports Audio v1.0 device with multiple streaming interfaces

• Designed to support multi-client operation

• RTOS ready

• Features an event driver non-clocking application interaction model

• Supports queuing of read and write data transfers

Using the Library

This topic describes the basic architecture of the USB Audio v1.0 Host Client Driver Library and provides information and examples on its use.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 310

Abstraction Model

Describes the Abstraction Model of the USB Audio v1.0 Host Client Driver Library.

Description

The USB Audio v1.0 Host Client Driver interacts with Host Layer to control the attached Audio v1.0 device. The USB Host Layer attaches the
Audio v1.0 Host Client Driver to the Audio v1.0 device when it meets the matching criteria specified in the USB Host TPL table. The Audio v1.0
Host Client Driver abstracts the details of sending Audio v1.0 class specific control transfer commands by providing easy to use non-blocking API
to send these command. A command when issued is assigned a request handle. This request handle is returned in the event that is generated
when the command has been processed, and can be used by the application to track the command.

While transferring data Audio Stream Data over the USB Audio v1.0 Host Client Driver abstracts details such as the Audio Streaming interface,
endpoints and endpoint size. The USB Audio v1.0 Host Client Driver internally (and without application intervention) validates the Audio v1.0 class
specific device descriptors and opens isochronous pipes. While transferring data, multiple read and write requests can be queued. Each such
request gets assigned a transfer handle. The transfer handle for a transfer request is returned along with the completion event for that transfer
request. The data transfer routines are implemented in usb_host_audio_v1_0.c.

Library Overview

The USB Audio v1.0 Host Client Driver can be grouped functionally as shown in the following table.

Library Interface
Section

Description

Audio Device
access Functions

These functions allow application clients to perform audio control transfers, register event handlers and get the number of
stream groups and the details of each audio stream. These functions are implemented in the usb_host_audio_v1_0.c
file.

Audio Stream
Access Functions

These functions allow the application client to open audio streams, set parameters of an audio stream, and perform data
transfer operations on an audio stream. These functions are implemented in the usb_host_audio_v1_0.c file.

How the Library Works

Describes how the library works and how it should be used.

Description

The USB Audio v1.0 Host Client Driver provides the user application with an easy-to-use interface to the attached Audio v1.0 device. The USB
Host Layer initializes the USB Audio v1.0 Host Client Driver when a device is attached. This process does not require application intervention. The
following sections describe the steps and methods required for the user application to interact with the attached devices.

TPL Table Configuration for Audio v1.0 Devices

Describes how to configure TPL table options, which includes a code example.

Description

The Host Layer attaches the Audio v1.0 Host Client Driver to a device when the device class in the Interface descriptor matches the entry in the
TPL table. When specifying the entry for the Audio v1.0 device, the entry for the Audio v1.0 device, the driver interface must be set to
USB_HOST_AUDIO_V1_0_INTERFACE. This will attach the Audio v1.0 Host Client Driver to the device when the USB Host matches the TPL
entry to the device. The following code shows possible TPL table options for matching Audio v1.0 Devices.
/* This code shows an example of TPL table entries for supporting Audio v1.0
 * devices. Note the driver interface is set to USB_HOST_AUDIO_V1_0_INTERFACE. This
 * will load the Audio v1.0 Host Client Driver when there is TPL match */

const USB_HOST_TPL_ENTRY USBTPList[1] =
{
 /* This entry looks for any Audio v1.0 device. The Audio v1.0 Host Client Driver will
 * check if this is an Audio Streaming Device and will then load itself */
 TPL_INTERFACE_CLASS(USB_AUDIO_CLASS_CODE, NULL, USB_HOST_AUDIO_V1_0_INTERFACE),

};

Detecting Device Attach

Describes how to detect when a Audio v1.0 Device is attached, which includes a code example.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 311

Description

The application will need to know when a Audio v1.0 Device is attached. To receive this attach event from the Audio v1.0 Host Client Driver, the
application must register an Attach Event Handler by calling the USB_HOST_AUDIO_V1_0_AttachEventHandlerSet function. This function should
be called before the USB_HOST_BusEnable function is called, else the application may miss Audio v1.0 attach events. It can be called multiple
times to register multiple event handlers, each for different application clients that need to know about Audio v1.0 Device Attach events.

The total number of event handlers that can be registered is defined by USB_HOST_AUDIO_V1_0_ATTACH_LISTENERS_NUMBER
configuration option in system_config.h. When a device is attached, the Audio v1.0 Host Client Driver will send the attach event to all the
registered event handlers. In this event handler, the USB Audio v1.0 Host Client Driver will pass a USB_HOST_AUDIO V1_0_OBJ that can be
opened to gain access to the device. The following code shows an example of how to register attach event handlers.
/* This code shows an example of Audio v1.0 Attach Event Handler and how this
 * attach event handler can be registered with the Audio v1.0 Host Client Driver */
bool isAudioDeviceAttached = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;

/* Audio attach event listener function */
void APP_USBHostAudioAttachEventListener
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,
 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we
 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {
 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {
 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

void APP_Tasks(void)
{
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* In this state the application enables the USB Host Bus. Note
 * how the Audio v1.0 Attach event handler is registered before the bus
 * is enabled. */

 USB_HOST_AUDIO_V1_0_AttachEventHandlerSet(APP_USBHostAudioAttachEventListener, (uintptr_t) 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 312

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 /* Here we wait for the bus enable operation to complete. */
 break;
 }
}

Obtaining Audio v1.0 Device Audio Stream Details

Describes how to obtain audio stream details, which includes a code example.

Description

The application will need to know more details about an attached audio device like Number of Audio Stream Groups and audio format details of
each audio stream in audio stream group. Application will need to search through all of the audio streams and find if a suitable audio stream is
available before it can open a stream and start communicating.

USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet function can be used to know how many stream groups are available in the attached
Audio device. This function takes USB_HOST_AUDIO_V1_0_OBJ as an argument and returns uint8_t value as number of stream groups.

USB_HOST_AUDIO_V1_0_StreamGetFirst function can be used to find out audio format details of first audio stream in a Stream Groups. This
function takes USB_HOST_AUDIO_V1_0_OBJ, stream group index and pointer to the USB_HOST_AUDIO_V1_0_STREAM_INFO as arguments.
The stream index can any number between zero to number of stream groups returned by
USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet function. The audio stream object returned as part of
USB_HOST_AUDIO_V1_0_STREAM_OBJ structure.

USB_HOST_AUDIO_V1_0_StreamGetNext function can be used to find details about subsequent audio streams. When there are no more audio
streams available in the specified audio stream group this function return USB_HOST_AUDIO_V1_0_RESULT_END_OF_STREAM_LIST error. It
is application’s responsibility to map and Audio Stream group and an audio stream.

If the application is looking for a audio stream with certain properties, application need compare audio stream properties with members of the
USB_HOST_AUDIO_V1_0_STREAM_INFO structure returned by USB_HOST_AUDIO_V1_0_StreamGetFirst and
USB_HOST_AUDIO_V1_0_StreamGetNext functions.
/* This code shows an example of getting details about audio stream
 in an attached Audio v1.0 device.*/

/* Specify the Audio Stream format details that this application supports */
const APP_USB_HOST_AUDIO_STREAM_FORTMAT audioSpeakerStreamFormat =
{

 .streamDirection = USB_HOST_AUDIO_V1_0_DIRECTION_OUT,
 .format = USB_AUDIO_FORMAT_PCM,
 .nChannels = 2,
 .bitResolution = 16,
 .subFrameSize = 2,
 .samplingRate = 48000
};

bool isAudioDeviceAttached = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;

/***/
/* Function to search for a specific Audio Stream */
/**/
USB_HOST_AUDIO_V1_0_STREAM_OBJ App_USBHostAudioSpeakerStreamFind
(
 USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,
 APP_USB_HOST_AUDIO_STREAM_FORTMAT audioStream,
 uint8_t* numberofStreamGroups
)
{
 USB_HOST_AUDIO_V1_0_RESULT result;
 USB_HOST_AUDIO_V1_0_STREAM_INFO streamInfo;

 /* Get Number of Stream Groups */
 *numberofStreamGroups = USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet(audioDeviceObj);
 if (*numberofStreamGroups == 0)
 {
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
 }
 /* Get the First Stream Information in the Stream Group */
 result = USB_HOST_AUDIO_V1_0_StreamGetFirst(appData.audioDeviceObj, 0, &streamInfo);
 if (result == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 313

 {
 /* Compare Audio Stream info */
 if ((streamInfo.format == audioStream.format)
 && (streamInfo.streamDirection == audioStream.streamDirection)
 && (streamInfo.nChannels == audioStream.nChannels)
 && (streamInfo.bitResolution == audioStream.bitResolution)
 && (streamInfo.subFrameSize == audioStream.subFrameSize))
 {
 return streamInfo.streamObj;
 }
 }
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
}

/***/
/* Audio attach event listener function */
/**/
void APP_USBHostAudioAttachEventListener
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,
 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we
 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {
 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {
 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

/***/
/* Audio Tasks function */
/**/
void APP_Tasks (void)
{
 USB_HOST_AUDIO_V1_0_RESULT audioResult;
 USB_HOST_AUDIO_V1_0_STREAM_RESULT streamResult;

 /* Check the application's current state. */
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Register a callback for Audio Device Attach. */
 audioResult = USB_HOST_AUDIO_V1_0_AttachEventHandlerSet
 (

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 314

 &APP_USBHostAudioAttachEventListener,
 (uintptr_t)0
);

 if (audioResult == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Set Host Event Handler */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 /* Advance application state */
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 }
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:
 /* Check if an Audio Device has been attached */
 if(appData.isAudioDeviceAttached == true)
 {
 appData.nAudioStreamGroups = 0;
 /* Find an Audio Stream matching to our requirement */
 appData.ouStreamObj = App_USBHostAudioSpeakerStreamFind
 (
 appData.audioDeviceObj,
 audioSpeakerStreamFormat,
 &appData.nAudioStreamGroups
);
 if (appData.nAudioStreamGroups == 0)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 }
 break;

 default:
 break;
 }
}

Obtaining an Audio Stream

Describes how to open an audio stream, which includes a code example.

Description

Once application has identified which audio stream to use, application must open that audio stream by using
USB_HOST_AUDIO_V1_0_StreamOpen function. This function takes audio stream object USB_HOST_AUDIO_V1_0_STREAM_OBJ as an
argument which obtained by USB_HOST_AUDIO_V1_0_StreamGetFirst and USB_HOST_AUDIO_V1_0_StreamGetNext functions and returns
audio stream handle USB_HOST_AUDIO_V1_0_STREAM_HANDLE. If the open function fails, it returns an invalid handle
(USB_HOST_AUDIO_V1_0_STREAM_HANDLE _INVALID). Once opened successfully, a valid handle tracks the relationship between the client
and the Audio Stream. This handle should be used with other Audio Stream functions.

An audio stream can be opened multiple times by different application clients. In an RTOS based application each client could running its own
thread. Multiple clients can read write data to the one Audio stream. In such a case, the read and write requests are queued. The following code
shows an example of how an Audio Stream is opened.
/* This code shows an example of opening an audio stream */

/* Specify the Audio Stream format details that this application supports */
const APP_USB_HOST_AUDIO_STREAM_FORTMAT audioSpeakerStreamFormat =
{

 .streamDirection = USB_HOST_AUDIO_V1_0_DIRECTION_OUT,
 .format = USB_AUDIO_FORMAT_PCM,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 315

 .nChannels = 2,
 .bitResolution = 16,
 .subFrameSize = 2,
 .samplingRate = 48000
};

bool isAudioDeviceAttached = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;

/***/
/* Function to search for a specific Audio Stream */
/**/
USB_HOST_AUDIO_V1_0_STREAM_OBJ App_USBHostAudioSpeakerStreamFind
(
 USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,
 APP_USB_HOST_AUDIO_STREAM_FORTMAT audioStream,
 uint8_t* numberofStreamGroups
)
{
 USB_HOST_AUDIO_V1_0_RESULT result;
 USB_HOST_AUDIO_V1_0_STREAM_INFO streamInfo;

 /* Get Number of Stream Groups */
 *numberofStreamGroups = USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet(audioDeviceObj);
 if (*numberofStreamGroups == 0)
 {
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
 }
 /* Get the First Stream Information in the Stream Group */
 result = USB_HOST_AUDIO_V1_0_StreamGetFirst(appData.audioDeviceObj, 0, &streamInfo);
 if (result == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Compare Audio Stream info */
 if ((streamInfo.format == audioStream.format)
 && (streamInfo.streamDirection == audioStream.streamDirection)
 && (streamInfo.nChannels == audioStream.nChannels)
 && (streamInfo.bitResolution == audioStream.bitResolution)
 && (streamInfo.subFrameSize == audioStream.subFrameSize))
 {
 return streamInfo.streamObj;
 }
 }
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
}

/***/
/* Audio attach event listener function */
/**/
void APP_USBHostAudioAttachEventListener
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,
 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we
 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {
 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 316

 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

/***/
/* Audio Tasks function */
/**/
void APP_Tasks (void)
{
 USB_HOST_AUDIO_V1_0_RESULT audioResult;
 USB_HOST_AUDIO_V1_0_STREAM_RESULT streamResult;

 /* Check the application's current state. */
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Register a callback for Audio Device Attach. */
 audioResult = USB_HOST_AUDIO_V1_0_AttachEventHandlerSet
 (
 &APP_USBHostAudioAttachEventListener,
 (uintptr_t)0
);

 if (audioResult == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Set Host Event Handler */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 /* Advance application state */
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 }
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:
 /* Check if an Audio Device has been attached */
 if(appData.isAudioDeviceAttached == true)
 {
 appData.nAudioStreamGroups = 0;
 /* Find an Audio Stream matching to our requirement */
 appData.ouStreamObj = App_USBHostAudioSpeakerStreamFind
 (
 appData.audioDeviceObj,
 audioSpeakerStreamFormat,
 &appData.nAudioStreamGroups
);
 if (appData.nAudioStreamGroups == 0)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 317

 /* Open Audio Stream */
 appData.outStreamHandle = USB_HOST_AUDIO_V1_0_StreamOpen
 (
 appData.ouStreamObj
);

 if (appData.outStreamHandle == USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 }
 break;

 default:
 break;
 }
}

Audio Stream Event Handling

Describes audio stream event handling, which includes a code example.

Description

The Audio v1.0 streams presents an event driven interface to the application. The USB Audio v1.0 Host Client Driver requires the application client
to set an event handler against each audio stream for meaningful operation.

A request to send a command or transfer data typically completes after the command request or transfer function has exited. The application must
then use the Audio stream event to track the completion of this command or data transfer request. In a case where multiple data transfers are
queued, the transfer handles can be used to identify the transfer requests.

The application must use the USB_HOST_AUDIO_V1_0_StreamEventHandlerSet function to register an audio stream handler. This event handler
will be called when a command or data transfer event has occurred and should be registered before the request for command or a data transfer.
The following code shows an example of registering an audio stream event handler.
/* This code shows an example of Audio stream event handling */

/* Specify the Audio Stream format details that this application supports */
const APP_USB_HOST_AUDIO_STREAM_FORTMAT audioSpeakerStreamFormat =
{

 .streamDirection = USB_HOST_AUDIO_V1_0_DIRECTION_OUT,
 .format = USB_AUDIO_FORMAT_PCM,
 .nChannels = 2,
 .bitResolution = 16,
 .subFrameSize = 2,
 .samplingRate = 48000
};

bool isAudioDeviceAttached = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;

/***
 * Audio Stream Event Handler function.
 **/

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE APP_USBHostAudioStreamEventHandler
(
 USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA * writeCompleteEventData;
 switch(event)
 {
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE:

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 318

 break;

 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE:

 break;
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE:

 break;
 default:
 break;
 }
 return USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE;
}
/***/
/* Function to search for a specific Audio Stream */
/**/
USB_HOST_AUDIO_V1_0_STREAM_OBJ App_USBHostAudioSpeakerStreamFind
(
 USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,
 APP_USB_HOST_AUDIO_STREAM_FORTMAT audioStream,
 uint8_t* numberofStreamGroups
)
{
 USB_HOST_AUDIO_V1_0_RESULT result;
 USB_HOST_AUDIO_V1_0_STREAM_INFO streamInfo;

 /* Get Number of Stream Groups */
 *numberofStreamGroups = USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet(audioDeviceObj);
 if (*numberofStreamGroups == 0)
 {
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
 }
 /* Get the First Stream Information in the Stream Group */
 result = USB_HOST_AUDIO_V1_0_StreamGetFirst(appData.audioDeviceObj, 0, &streamInfo);
 if (result == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Compare Audio Stream info */
 if ((streamInfo.format == audioStream.format)
 && (streamInfo.streamDirection == audioStream.streamDirection)
 && (streamInfo.nChannels == audioStream.nChannels)
 && (streamInfo.bitResolution == audioStream.bitResolution)
 && (streamInfo.subFrameSize == audioStream.subFrameSize))
 {
 return streamInfo.streamObj;
 }
 }
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
}

/***/
/* Audio attach event listener function */
/**/
void APP_USBHostAudioAttachEventListener
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,
 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we
 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 319

 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {
 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

/***/
/* Audio Tasks function */
/**/
void APP_Tasks (void)
{
 USB_HOST_AUDIO_V1_0_RESULT audioResult;
 USB_HOST_AUDIO_V1_0_STREAM_RESULT streamResult;

 /* Check the application's current state. */
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Register a callback for Audio Device Attach. */
 audioResult = USB_HOST_AUDIO_V1_0_AttachEventHandlerSet
 (
 &APP_USBHostAudioAttachEventListener,
 (uintptr_t)0
);

 if (audioResult == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Set Host Event Handler */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 /* Advance application state */
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 }
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:
 /* Check if an Audio Device has been attached */
 if(appData.isAudioDeviceAttached == true)
 {
 appData.nAudioStreamGroups = 0;
 /* Find an Audio Stream matching to our requirement */
 appData.ouStreamObj = App_USBHostAudioSpeakerStreamFind
 (
 appData.audioDeviceObj,
 audioSpeakerStreamFormat,
 &appData.nAudioStreamGroups
);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 320

 if (appData.nAudioStreamGroups == 0)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Open Audio Stream */
 appData.outStreamHandle = USB_HOST_AUDIO_V1_0_StreamOpen
 (
 appData.ouStreamObj
);

 if (appData.outStreamHandle == USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Set Stream Event Handler */
 streamResult = USB_HOST_AUDIO_V1_0_StreamEventHandlerSet
 (
 appData.outStreamHandle,
 APP_USBHostAudioStreamEventHandler,
 (uintptr_t)appData.ouStreamObj
);

 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 }
 break;

 default:
 break;
 }
}

Enabling Audio Stream

Describes how to enable an audio stream, which includes a code example.

Description

An audio stream must be enabled before doing any data transfer operation. An audio stream enable or disable can be scheduled by using
USB_HOST_AUDIO_V1_0_StreamEnable or USB_HOST_AUDIO_V1_0_StreamEnable functions. Return values of these function indicates if the
request has been placed successfully or failed. When the audio stream enable request is completed, stream event handler generates an event
USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE. Similarly it generates an event
USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE when stream disable is complete. The event data
USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA has details like request handle and termination status. The
requestStatus member of the USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA indicates if the request was success
or failed. When audio stream multiple audio streams with an audio stream group cannot be enabled at the same time. The following code shows
an example of how an Audio Stream is enabled.
/* This code shows an example of enabling an audio stream */

/* Specify the Audio Stream format details that this application supports */
const APP_USB_HOST_AUDIO_STREAM_FORTMAT audioSpeakerStreamFormat =
{

 .streamDirection = USB_HOST_AUDIO_V1_0_DIRECTION_OUT,
 .format = USB_AUDIO_FORMAT_PCM,
 .nChannels = 2,
 .bitResolution = 16,
 .subFrameSize = 2,
 .samplingRate = 48000
};

bool isAudioDeviceAttached = false;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 321

bool isStreamEnabled = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;

/***
 * Audio Stream Event Handler function.
 **/

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE APP_USBHostAudioStreamEventHandler
(
 USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA * writeCompleteEventData;
 switch(event)
 {
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE:

 break;

 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE:
 /* Check eventData result member to know if stream enable is complete */
 isStreamEnabled = true;

 break;
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE:

 break;
 default:
 break;
 }
 return USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE;
}
/***/
/* Function to search for a specific Audio Stream */
/**/
USB_HOST_AUDIO_V1_0_STREAM_OBJ App_USBHostAudioSpeakerStreamFind
(
 USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,
 APP_USB_HOST_AUDIO_STREAM_FORTMAT audioStream,
 uint8_t* numberofStreamGroups
)
{
 USB_HOST_AUDIO_V1_0_RESULT result;
 USB_HOST_AUDIO_V1_0_STREAM_INFO streamInfo;

 /* Get Number of Stream Groups */
 *numberofStreamGroups = USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet(audioDeviceObj);
 if (*numberofStreamGroups == 0)
 {
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
 }
 /* Get the First Stream Information in the Stream Group */
 result = USB_HOST_AUDIO_V1_0_StreamGetFirst(appData.audioDeviceObj, 0, &streamInfo);
 if (result == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Compare Audio Stream info */
 if ((streamInfo.format == audioStream.format)
 && (streamInfo.streamDirection == audioStream.streamDirection)
 && (streamInfo.nChannels == audioStream.nChannels)
 && (streamInfo.bitResolution == audioStream.bitResolution)
 && (streamInfo.subFrameSize == audioStream.subFrameSize))
 {
 return streamInfo.streamObj;
 }

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 322

 }
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
}

/***/
/* Audio attach event listener function */
/**/
void APP_USBHostAudioAttachEventListener
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,
 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we
 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {
 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {
 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

/***/
/* Audio Tasks function */
/**/
void APP_Tasks (void)
{
 USB_HOST_AUDIO_V1_0_RESULT audioResult;
 USB_HOST_AUDIO_V1_0_STREAM_RESULT streamResult;

 /* Check the application's current state. */
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Register a callback for Audio Device Attach. */
 audioResult = USB_HOST_AUDIO_V1_0_AttachEventHandlerSet
 (
 &APP_USBHostAudioAttachEventListener,
 (uintptr_t)0
);

 if (audioResult == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Set Host Event Handler */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 /* Advance application state */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 323

 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 }
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:
 /* Check if an Audio Device has been attached */
 if(appData.isAudioDeviceAttached == true)
 {
 appData.nAudioStreamGroups = 0;
 /* Find an Audio Stream matching to our requirement */
 appData.ouStreamObj = App_USBHostAudioSpeakerStreamFind
 (
 appData.audioDeviceObj,
 audioSpeakerStreamFormat,
 &appData.nAudioStreamGroups
);
 if (appData.nAudioStreamGroups == 0)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Open Audio Stream */
 appData.outStreamHandle = USB_HOST_AUDIO_V1_0_StreamOpen
 (
 appData.ouStreamObj
);

 if (appData.outStreamHandle == USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Set Stream Event Handler */
 streamResult = USB_HOST_AUDIO_V1_0_StreamEventHandlerSet
 (
 appData.outStreamHandle,
 APP_USBHostAudioStreamEventHandler,
 (uintptr_t)appData.ouStreamObj
);

 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 appData.state = APP_STATE_ENABLE_AUDIO_STREAM;
 }
 break;

 case APP_STATE_ENABLE_AUDIO_STREAM:
 isStreamEnableComplete = false;
 /* Set default interface setting of the streaming interface */
 streamResult = USB_HOST_AUDIO_V1_0_StreamEnable
 (
 appData.outStreamHandle,
 &appData.requestHandle
);
 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)
 {
 appData.state = APP_STATE_ERROR;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 324

 break;
 }
 appData.state = APP_STATE_WAIT_FOR_ENABLE_AUDIO_STREAM;
 break;
 case APP_STATE_WAIT_FOR_ENABLE_AUDIO_STREAM:
 if (isStreamEnabled == true)
 {
 /* stream enable complete*/
 }
 break;

 default:
 break;
 }
}

Setting the Desired Audio Stream Sampling Rate

Describes how to set the desired audio stream sampling rate, which includes a code example.

Description

Sampling rate of an audio stream can be set using USB_HOST_AUDIO_V1_0_StreamSamplingRateSet function. Supported sampling rates for an
audio stream is returned as part of USB_HOST_AUDIO_V1_0_STREAM_INFO by the USB_HOST_AUDIO_V1_0_StreamGetFirst and
USB_HOST_AUDIO_V1_0_StreamGetNextfunctions. Return values of these function indicates if the request has been placed successfully or
failed. When the set sampling rate request is completed the stream event handler generates an event
USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE. The event data
USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA has request handle and the requestStatus which
indicates the set sampling request was accepted by the device or failed. The following code shows an example of how sampling rates can be set
in an audio stream.
/* This code shows an example of Set sampling rate to an audio stream */

/* Specify the Audio Stream format details that this application supports */
const APP_USB_HOST_AUDIO_STREAM_FORTMAT audioSpeakerStreamFormat =
{

 .streamDirection = USB_HOST_AUDIO_V1_0_DIRECTION_OUT,
 .format = USB_AUDIO_FORMAT_PCM,
 .nChannels = 2,
 .bitResolution = 16,
 .subFrameSize = 2,
 .samplingRate = 48000
};

bool isAudioDeviceAttached = false;
bool isStreamEnabled = false;
bool isSampleRateSetComplete = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;

/***
 * Audio Stream Event Handler function.
 **/

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE APP_USBHostAudioStreamEventHandler
(
 USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA * writeCompleteEventData;
 switch(event)
 {
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE:

 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 325

 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE:
 /* Check eventData result member to know if stream enable is complete */
 isStreamEnabled = true;

 break;
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE:

 break;

 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE:
 /* Check eventData result member to know if stream enable is complete */
 isSampleRateSetComplete = true;

 break;

 default:
 break;
 }
 return USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE;
}
/***/
/* Function to search for a specific Audio Stream */
/**/
USB_HOST_AUDIO_V1_0_STREAM_OBJ App_USBHostAudioSpeakerStreamFind
(
 USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,
 APP_USB_HOST_AUDIO_STREAM_FORTMAT audioStream,
 uint8_t* numberofStreamGroups
)
{
 USB_HOST_AUDIO_V1_0_RESULT result;
 USB_HOST_AUDIO_V1_0_STREAM_INFO streamInfo;

 /* Get Number of Stream Groups */
 *numberofStreamGroups = USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet(audioDeviceObj);
 if (*numberofStreamGroups == 0)
 {
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
 }
 /* Get the First Stream Information in the Stream Group */
 result = USB_HOST_AUDIO_V1_0_StreamGetFirst(appData.audioDeviceObj, 0, &streamInfo);
 if (result == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Compare Audio Stream info */
 if ((streamInfo.format == audioStream.format)
 && (streamInfo.streamDirection == audioStream.streamDirection)
 && (streamInfo.nChannels == audioStream.nChannels)
 && (streamInfo.bitResolution == audioStream.bitResolution)
 && (streamInfo.subFrameSize == audioStream.subFrameSize))
 {
 return streamInfo.streamObj;
 }
 }
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
}

/***/
/* Audio attach event listener function */
/**/
void APP_USBHostAudioAttachEventListener
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,
 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 326

 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {
 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {
 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

/***/
/* Audio Tasks function */
/**/
void APP_Tasks (void)
{
 USB_HOST_AUDIO_V1_0_RESULT audioResult;
 USB_HOST_AUDIO_V1_0_STREAM_RESULT streamResult;

 /* Check the application's current state. */
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Register a callback for Audio Device Attach. */
 audioResult = USB_HOST_AUDIO_V1_0_AttachEventHandlerSet
 (
 &APP_USBHostAudioAttachEventListener,
 (uintptr_t)0
);

 if (audioResult == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Set Host Event Handler */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 /* Advance application state */
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 }
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:
 /* Check if an Audio Device has been attached */
 if(appData.isAudioDeviceAttached == true)
 {
 appData.nAudioStreamGroups = 0;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 327

 /* Find an Audio Stream matching to our requirement */
 appData.ouStreamObj = App_USBHostAudioSpeakerStreamFind
 (
 appData.audioDeviceObj,
 audioSpeakerStreamFormat,
 &appData.nAudioStreamGroups
);
 if (appData.nAudioStreamGroups == 0)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Open Audio Stream */
 appData.outStreamHandle = USB_HOST_AUDIO_V1_0_StreamOpen
 (
 appData.ouStreamObj
);

 if (appData.outStreamHandle == USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Set Stream Event Handler */
 streamResult = USB_HOST_AUDIO_V1_0_StreamEventHandlerSet
 (
 appData.outStreamHandle,
 APP_USBHostAudioStreamEventHandler,
 (uintptr_t)appData.ouStreamObj
);

 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 appData.state = APP_STATE_ENABLE_AUDIO_STREAM;
 }
 break;

 case APP_STATE_ENABLE_AUDIO_STREAM:
 isStreamEnableComplete = false;
 /* Set default interface setting of the streaming interface */
 streamResult = USB_HOST_AUDIO_V1_0_StreamEnable
 (
 appData.outStreamHandle,
 &appData.requestHandle
);
 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 appData.state = APP_STATE_WAIT_FOR_ENABLE_AUDIO_STREAM;
 break;
 case APP_STATE_WAIT_FOR_ENABLE_AUDIO_STREAM:
 if (isStreamEnabled == true)
 {
 /* Set sampling rate 48000 Hz */
 isSampleRateSetComplete = false;
 streamResult = USB_HOST_AUDIO_V1_0_StreamSamplingRateSet
 (
 appData.outStreamHandle,
 &appData.requestHandle,
 48000
);
 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 328

 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 appData.state = APP_STATE_WAIT_FOR_SAMPLE_RATE_SET_COMPLETE;

 }
 break;
 case APP_STATE_WAIT_FOR_SAMPLE_RATE_SET_COMPLETE:
 if (isSampleRateSetComplete == true)
 {
 /* Set sampling rate completed */
 }
 default:
 break;
 }
}

Audio Data Streaming

Describes how to transfer data to an audio stream, which includes a code example.

Description

The application can use the USB_HOST_AUDIO_V1_0_StreamRead and USB_HOST_AUDIO_V1_0_StreamWrite functions to transfer data to an
Audio Stream. While calling these functions, the stream handle specifies the target Audio stream and the event handler function to which the
events should be sent. It is possible for multiple clients to open the same audio stream and transfer data to the stream.

Calling the USB_HOST_AUDIO_V1_0_StreamRead and USB_HOST_AUDIO_V1_0_StreamWrite functions while a read/write transfer is already
in progress will cause the transfer result to be queued. If the transfer was successfully queued or scheduled, the
USB_HOST_AUDIO_V1_0_StreamRead and USB_HOST_AUDIO_V1_0_StreamWrite functions will return a valid transfer handle. This transfer
handle identifies the transfer request. The application clients can use the transfer handles to keep track of multiple queued transfers. When a
transfer completes, the Audio stream handler generates an event. The following table shows the event and the event data associated with the
event.

Table 1: Read

Function USB_HOST_AUDIO_V1_0_StreamRead

Event USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE

Event Data Type USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE _DATA

Table 2: Write

Function USB_HOST_AUDIO_V1_0_StreamWrite

Event USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE

Event Data Type USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE _DATA

The event data contains information on the amount of data transferred, completion status and the transfer handle of the transfer. The following
code shows an example of reading and writing data.
/* This code shows an example of audio data streaming */

/* PCM16 samples for 1Khz Sine Wave at 48 kHz Sample Rate */
uint16_t audioSamples[96] = {
 0x0000, 0x0000, //Sample 1
 0x10B4, 0x10B4, //Sample 2
 0x2120, 0x2120, //Sample 3
 0x30FB, 0x30FB, //Sample 4
 0x3FFF, 0x3FFF, //Sample 5
 0x4DEB, 0x4DEB, //Sample 6
 0x5A81, 0x5A81, //Sample 7
 0x658B, 0x658B, //Sample 8
 0x6ED9, 0x6ED9, //Sample 9
 0x7640, 0x7640, //Sample 10
 0x7BA2, 0x7BA2, //Sample 11
 0x7EE6, 0x7EE6, //Sample 12
 0x7FFF, 0x7FFF, //Sample 13
 0x7FE6, 0x7FE6, //Sample 14
 0x7BA2, 0x7BA2, //Sample 15

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 329

 0x7640, 0x7640, //Sample 16
 0x6ED9, 0x6ED9, //Sample 17
 0x658B, 0x658B, //Sample 18
 0x5A81, 0x5A81, //Sample 19
 0x4DEB, 0x4DEB, //Sample 20
 0x3FFF, 0x3FFF, //Sample 21
 0x30FB, 0x30FB, //Sample 22
 0x2120, 0x2120, //Sample 23
 0x10B4, 0x10B4, //Sample 24
 0x0000, 0x0000, //Sample 25
 0xEF4C, 0xEF4C, //Sample 26
 0xDEE0, 0xDEE0, //Sample 27
 0xCF05, 0xCF05, //Sample 28
 0xC001, 0xC001, //Sample 29
 0xB215, 0xB215, //Sample 30
 0xA57F, 0xA57F, //Sample 31
 0x9A75, 0x9A75, //Sample 32
 0x9127, 0x9127, //Sample 33
 0x89C0, 0x89C0, //Sample 34
 0x845E, 0x845E, //Sample 35
 0x811A, 0x811A, //Sample 36
 0x8001, 0x8001, //Sample 37
 0x811A, 0x811A, //Sample 38
 0x845E, 0x845E, //Sample 39
 0x89C0, 0x89C0, //Sample 40
 0x9127, 0x9127, //Sample 41
 0x9A75, 0x9A75, //Sample 42
 0xA57F, 0xA57F, //Sample 43
 0xB215, 0xB215, //Sample 44
 0xC001, 0xC001, //Sample 45
 0xCF05, 0xCF05, //Sample 46
 0xDEE0, 0xDEE0, //Sample 47
 0xFF4C, 0xFF4C, //Sample 48
};

/* Specify the Audio Stream format details that this application supports */
const APP_USB_HOST_AUDIO_STREAM_FORTMAT audioSpeakerStreamFormat =
{

 .streamDirection = USB_HOST_AUDIO_V1_0_DIRECTION_OUT,
 .format = USB_AUDIO_FORMAT_PCM,
 .nChannels = 2,
 .bitResolution = 16,
 .subFrameSize = 2,
 .samplingRate = 48000
};

bool isAudioDeviceAttached = false;
bool isStreamEnabled = false;
bool isAudioWriteCompleted = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;
USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE transferHandleAudioWrite;

/***
 * Audio Stream Event Handler function.
 **/

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE APP_USBHostAudioStreamEventHandler
(
 USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA * writeCompleteEventData;
 switch(event)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 330

 {
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE:

 break;

 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE:
 /* Check eventData result member to know if stream enable is complete */
 isStreamEnabled = true;

 break;
 case USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE:

 /* This means the Write request completed. We can
 * find out if the request was successful. */
 writeCompleteEventData =
 (USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA*)eventData;
 if(transferHandleAudioWrite == writeCompleteEventData->transferHandle)
 {
 isAudioWriteCompleted = true;
 }
 break;
 default:
 break;
 }
 return USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE;
}
/***/
/* Function to search for a specific Audio Stream */
/**/
USB_HOST_AUDIO_V1_0_STREAM_OBJ App_USBHostAudioSpeakerStreamFind
(
 USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,
 APP_USB_HOST_AUDIO_STREAM_FORTMAT audioStream,
 uint8_t* numberofStreamGroups
)
{
 USB_HOST_AUDIO_V1_0_RESULT result;
 USB_HOST_AUDIO_V1_0_STREAM_INFO streamInfo;

 /* Get Number of Stream Groups */
 *numberofStreamGroups = USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet(audioDeviceObj);
 if (*numberofStreamGroups == 0)
 {
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
 }
 /* Get the First Stream Information in the Stream Group */
 result = USB_HOST_AUDIO_V1_0_StreamGetFirst(appData.audioDeviceObj, 0, &streamInfo);
 if (result == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Compare Audio Stream info */
 if ((streamInfo.format == audioStream.format)
 && (streamInfo.streamDirection == audioStream.streamDirection)
 && (streamInfo.nChannels == audioStream.nChannels)
 && (streamInfo.bitResolution == audioStream.bitResolution)
 && (streamInfo.subFrameSize == audioStream.subFrameSize))
 {
 return streamInfo.streamObj;
 }
 }
 return (USB_HOST_AUDIO_V1_0_STREAM_OBJ)0;
}

/***/
/* Audio attach event listener function */
/**/
void APP_USBHostAudioAttachEventListener
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 331

 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we
 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {
 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {
 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

/***/
/* Audio Tasks function */
/**/
void APP_Tasks (void)
{
 USB_HOST_AUDIO_V1_0_RESULT audioResult;
 USB_HOST_AUDIO_V1_0_STREAM_RESULT streamResult;

 /* Check the application's current state. */
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* Register a callback for Audio Device Attach. */
 audioResult = USB_HOST_AUDIO_V1_0_AttachEventHandlerSet
 (
 &APP_USBHostAudioAttachEventListener,
 (uintptr_t)0
);

 if (audioResult == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {
 /* Set Host Event Handler */
 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, 0);
 USB_HOST_BusEnable(0);
 /* Advance application state */
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 }
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 332

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:
 /* Check if an Audio Device has been attached */
 if(appData.isAudioDeviceAttached == true)
 {
 appData.nAudioStreamGroups = 0;
 /* Find an Audio Stream matching to our requirement */
 appData.ouStreamObj = App_USBHostAudioSpeakerStreamFind
 (
 appData.audioDeviceObj,
 audioSpeakerStreamFormat,
 &appData.nAudioStreamGroups
);
 if (appData.nAudioStreamGroups == 0)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Open Audio Stream */
 appData.outStreamHandle = USB_HOST_AUDIO_V1_0_StreamOpen
 (
 appData.ouStreamObj
);

 if (appData.outStreamHandle == USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }

 /* Set Stream Event Handler */
 streamResult = USB_HOST_AUDIO_V1_0_StreamEventHandlerSet
 (
 appData.outStreamHandle,
 APP_USBHostAudioStreamEventHandler,
 (uintptr_t)appData.ouStreamObj
);

 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 appData.state = APP_STATE_ENABLE_AUDIO_STREAM;
 }
 break;

 case APP_STATE_ENABLE_AUDIO_STREAM:
 isStreamEnableComplete = false;
 /* Set default interface setting of the streaming interface */
 streamResult = USB_HOST_AUDIO_V1_0_StreamEnable
 (
 appData.outStreamHandle,
 &appData.requestHandle
);
 if (streamResult != USB_HOST_AUDIO_V1_0_STREAM_SUCCESS)
 {
 appData.state = APP_STATE_ERROR;
 break;
 }
 appData.state = APP_STATE_WAIT_FOR_ENABLE_AUDIO_STREAM;
 break;
 case APP_STATE_WAIT_FOR_ENABLE_AUDIO_STREAM:
 if (isStreamEnabled == true)
 {
 appData.state = APP_STATE_START_STREAM_DATA;
 }
 break;
 case APP_STATE_START_STREAM_DATA:

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 333

 isAudioWriteCompleted = false;
 appData.state = APP_SATE_WAIT_FOR_WRITE_COMPLETE;
 USB_HOST_AUDIO_V1_0_StreamWrite
 (
 appData.outStreamHandle,
 &transferHandleAudioWrite,
 (void*)&audioSamples,
 192
);
 break;

 case APP_SATE_WAIT_FOR_WRITE_COMPLETE:
 if (appData.isAudioWriteCompleted)
 {
 isAudioWriteCompleted = false;
 USB_HOST_AUDIO_V1_0_StreamWrite
 (
 appData.outStreamHandle,
 &transferHandleAudioWrite,
 (void*)&audioSamples,
 192
);
 }
 break;

 default:
 break;
 }
}

Sending Class Specific Control Transfers

Describes how to send class-specific control transfers to the connected device, which includes a code example.

Description

The Audio v1.0 Host Client Driver allows the application client to send Audio v1.0 Class specific commands to the connected device. These
commands can be send using USB_HOST_AUDIO_V1_0_ControlRequest function.

This function is non-blocking. The functions will return before the actual command execution is complete. The return value indicates if the
command was scheduled successfully, or if the driver is busy and cannot accept commands, or if the command failed due to an unknown reason.
If the command failed because the driver was busy, it can be retried. If scheduled successfully, the function will return a valid request handle. This
request handle is unique and tracks the requested command.

When the command related control transfer has completed, the Audio v1.0 Host Client Driver generates a callback function. The call back function
is one of the argument to the USB_HOST_AUDIO_V1_0_ControlRequest function.

The following code shows an example of sending a Audio v1.0 class specific commands.
/* This code shows an example for Audio Control transfer */
bool isAudioDeviceAttached = false;
USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj;

/***/
/* Audio control request call back function */
/**/
void App_USBAudioControlRequestCallback
(
 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_REQUEST_HANDLE requestHandle,
 USB_HOST_AUDIO_V1_0_RESULT result,
 size_t size,
 uintptr_t context
)
{
 APP_USB_AUDIO_CONTROL_TRANSFER_ACTION controlAction = (APP_USB_AUDIO_CONTROL_TRANSFER_ACTION)context;
 switch (controlAction)
 {
 case APP_USB_AUDIO_MASTER_UNMUTE_SET:
 if (result == USB_HOST_AUDIO_V1_0_RESULT_SUCCESS)
 {

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 334

 appData.isMasterUnmuteSetComplete = true;
 }
 else
 {
 appData.muteStatus = 1;
 }

 break;
 default:
 break;

 }
}

/***/
/* Function for sending Mute control to Audio device. */
/**/
void APP_SendAudioMuteControl
(
 APP_USB_AUDIO_CONTROL_TRANSFER_ACTION action,
 uint32_t* mute
)
{
 USB_HOST_AUDIO_V1_0_RESULT result;
 USB_AUDIO_FEATURE_UNIT_CONTROL_REQUEST setupPacket;
 uint32_t status;

 /* Fill in Setup Packet */
 setupPacket.bmRequestType = (USB_SETUP_DIRN_HOST_TO_DEVICE
 | USB_SETUP_TYPE_CLASS
 | USB_SETUP_RECIPIENT_INTERFACE
); //interface , Host to device , Standard;
 setupPacket.bRequest = USB_AUDIO_CS_SET_CUR;
 if (action == APP_USB_AUDIO_MASTER_MUTE_SET)
 {
 setupPacket.channelNumber = APP_USB_AUDIO_CHANNEL_MASTER;
 status = __builtin_disable_interrupts();
 *mute = 1;
 __builtin_mtc0(12,0,status);
 }
 else if (action == APP_USB_AUDIO_MASTER_UNMUTE_SET)
 {
 setupPacket.channelNumber = APP_USB_AUDIO_CHANNEL_MASTER;
 status = __builtin_disable_interrupts();
 *mute = 0;
 __builtin_mtc0(12,0,status);
 }

 setupPacket.controlSelector = USB_AUDIO_MUTE_CONTROL;
 setupPacket.featureUnitId = 0x02; //appData.featureUnitDescriptor->bUnitID;
 setupPacket.wLength = 1;
 result = USB_HOST_AUDIO_V1_0_ControlRequest
 (
 appData.audioDeviceObj,
 &appData.requestHandle,
 (USB_SETUP_PACKET *)&setupPacket,
 mute,
 App_USBAudioControlRequestCallback,
 (uintptr_t)action
);

}

/***/
/* Audio attach event listener function */
/**/
void APP_USBHostAudioAttachEventListener
(

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 335

 USB_HOST_AUDIO_V1_0_OBJ audioObj,
 USB_HOST_AUDIO_V1_0_EVENT event,
 uintptr_t context
)
{
 /* This function gets called when the Audio v1.0 device is attached/detached. In this
 * example we let the application know that a device is attached and we
 * store the Audio v1.0 device object. This object will be required to open the
 * device. */
 switch (event)
 {
 case USB_HOST_AUDIO_V1_0_EVENT_ATTACH:
 if (isAudioDeviceAttached == false)
 {
 isAudioDeviceAttached = true;
 audioDeviceObj = audioObj;
 }
 else
 {
 /* This application supports only one Audio Device . Handle Error Here.*/
 }
 break;
 case USB_HOST_AUDIO_V1_0_EVENT_DETACH:
 if (isAudioDeviceAttached == true)
 {
 /* This means the device was detached. There is no event data
 * associated with this event.*/
 isAudioDeviceAttached = false;
 break;
 }
 break;
 }
}

/***/
/* Audio Tasks function */
/**/
void APP_Tasks (void)
{
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* In this state the application enables the USB Host Bus. Note
 * how the Audio v1.0 Attach event handler is registered before the bus
 * is enabled. */

 USB_HOST_AUDIO_V1_0_AttachEventHandlerSet(APP_USBHostAudioAttachEventListener, (uintptr_t) 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 if(USB_HOST_BusIsEnabled(0) != true)
 {
 return;
 }
 /* Here we wait for the bus enable operation to complete. */
 /* Unmute the Device */
 appData.isMasterUnmuteSetComplete = false;
 APP_SendAudioMuteControl
 (
 APP_USB_AUDIO_MASTER_UNMUTE_SET,
 (uint32_t*)&appData.muteStatus
);
 appData.state = APP_STATE_AUDIO_WAIT_FOR_UNMUTE_COMPLETE;
 break;
 case APP_STATE_AUDIO_WAIT_FOR_UNMUTE_COMPLETE:
 if (appData.isMasterUnmuteSetComplete == true)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 336

 {
 /* Audio Control request completed */
 }
 }
}

Configuring the Library

Describes how to configure the USB Audio v1.0 Host Client Driver.

Macros

Name Description

USB_HOST_AUDIO_V1_ATTACH_LISTENERS_NUMBER Defines the number of attach event
listeners that can be registered with
Audio v1.0 Host Client Driver.

USB_HOST_AUDIO_V1_INSTANCES_NUMBER Specifies the number of Audio v1.0
instances.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_ALTERNATE_SETTINGS_NUMBER Defines maximum number of
alternate settings per Streaming
interface provided by any Device that
will be connected to this Audio Host.

USB_HOST_AUDIO_V1_STREAMING_INTERFACES_NUMBER Defines the maximum number of
streaming interfaces could be present
in an Audio v1.0 device that this
Audio v1.0 Host Client Driver can
support.

Description

The USB Audio v1.0 Host Client Driver requires configuration constants to be specified in system_config.h file. These constants define the
build time configuration (functionality and static resources) of the USB Audio v1.0 Host Client Driver.

USB_HOST_AUDIO_V1_ATTACH_LISTENERS_NUMBER Macro

Defines the number of attach event listeners that can be registered with Audio v1.0 Host Client Driver.

File

usb_host_audio_v1_0_config_template.h

C
#define USB_HOST_AUDIO_V1_ATTACH_LISTENERS_NUMBER

Description

USB Host Audio v1.0 Attach Listeners Number

The USB Audio v1.0 Host Client Driver provides attach notification to listeners who have registered with the client driver via the
USB_HOST_AUDIO_V1_0_AttachEventHandlerSet() function. The USB_HOST_AUDIO_V1_0_ATTACH_LISTENERS_NUMBER configuration
constant defines the maximum number of event handlers that can be set. This number should be set to equal the number of entities that interested
in knowing when a Audio v1.0 device is attached.

Remarks

None.

USB_HOST_AUDIO_V1_INSTANCES_NUMBER Macro

Specifies the number of Audio v1.0 instances.

File

usb_host_audio_v1_0_config_template.h

C
#define USB_HOST_AUDIO_V1_INSTANCES_NUMBER

Description

USB Host Audio v1.0 Maximum Number of Instances

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 337

This macro defines the number of instances of the Audio v1.0 host Driver. For example, if the application needs to implement two instances of the
Audio v1.0 host Driver should be set to 2.

Remarks

None.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_ALTERNATE_SETTINGS_NUMBER Macro

Defines maximum number of alternate settings per Streaming interface provided by any Device that will be connected to this Audio Host.

File

usb_host_audio_v1_0_config_template.h

C
#define USB_HOST_AUDIO_V1_STREAMING_INTERFACE_ALTERNATE_SETTINGS_NUMBER

Description

USB Host Audio v1.0 Streaming interface alternate setting number

This configuration constant defines maximum number of Streaming interface alternate settings provided by any Device that will be connected to
this Audio Host. The value of this constant should be at-least 1.

Remarks

Supporting multiple alternate settings per streaming interfaces requires more data memory and processing time.

Example

If the USB Audio v1.0 Host application must support a USB Audio Device with 2 alternate settings including Alternate Setting 0 then this constant
should be defined to 3.

USB_HOST_AUDIO_V1_STREAMING_INTERFACES_NUMBER Macro

Defines the maximum number of streaming interfaces could be present in an Audio v1.0 device that this Audio v1.0 Host Client Driver can support.

File

usb_host_audio_v1_0_config_template.h

C
#define USB_HOST_AUDIO_V1_STREAMING_INTERFACES_NUMBER

Description

USB Host Audio v1.0 Streaming Interfaces Number

This configuration constant defines maximum number of streaming interfaces could be present in an Audio v1.0 device that this Audio v1.0 Host
Client Driver can support. The value of this constant should be atleast 1.

Example 1 - If the USB Audio v1.0 Host application must support a USB Headset, this constant should be set 2 as an Audio Headset will have
atleast 2 Audio Streaming interfaces, one for Host to Device streaming and one for Device to Host streaming.

Example 2 - If the USB Audio v1.0 Hos t application must support a USB Speaker, this constant should be set 1 as an Audio Speaker will have
atleast 1 Audio Streaming interface.

Remarks

Supporting multiple streaming interfaces requires more data memory and processing time.

Building the Library

Describes the files to be included in the project while using the USB Audio v1.0 Host Client Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 338

Source File Name Description

usb_host_audio_v1_0.h This header file should be included in any .c file that accesses the USB Audio v1.0 Host Client Driver API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_host_audio_v1_0.c This file implements the USB Audio v1.0 Host Client Driver interface and should be included in
the project if the USB Audio v1.0 Host Client Driver operation is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB Audio v1.0 Host Client Driver Library depends on the following modules:

• USB Host Layer Library

Library Interface

a) Audio Device Access Functions

Name Description

USB_HOST_AUDIO_V1_AttachEventHandlerSet Sets an attach/detach event handler.

USB_HOST_AUDIO_V1_0_ControlRequest Schedules an Audio v1.0 control transfer.

USB_HOST_AUDIO_V1_ControlEntityGetFirst Retrieves the handle to the first audio control entity

USB_HOST_AUDIO_V1_ControlEntityGetNext Retrieves the handle to the next audio control entity.

USB_HOST_AUDIO_V1_DeviceObjHandleGet Returns the device object handle for this Audio v1.0 Device.

USB_HOST_AUDIO_V1_EntityObjectGet Retrieves the entity object for the entity ID.

USB_HOST_AUDIO_V1_EntityRequestCallbackSet Registers an audio entity request callback function with the Audio
v1.0 Client Driver.

USB_HOST_AUDIO_V1_EntityTypeGet Returns the entity type of the audio control entity.

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists Returns "true" if mute control exists for the specified channel of the
feature unit.

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteGet Schedules a get mute control request to the specified channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteSet Schedules a set mute control request to the specified channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelNumbersGet Returns the number of channels.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists Returns "true" if volume control exists for the specified channel of
the feature unit.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeGet Schedules a get current volume control request to the specified
channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSet Schedules a set current volume control request to the specified
channel.

USB_HOST_AUDIO_V1_FeatureUnitIDGet Returns ID of the Feature Unit.

USB_HOST_AUDIO_V1_FeatureUnitSourceIDGet Returns the ID of the unit or terminal to which this feature unit is
connected.

USB_HOST_AUDIO_V1_TerminalAssociationGet Returns the associated terminal ID of the audio control terminal.

USB_HOST_AUDIO_V1_TerminalIDGet Returns the terminal ID of the audio control entity.

USB_HOST_AUDIO_V1_TerminalInputChannelNumbersGet Returns the number of logical output channels in the terminal's
output audio channel cluster.

USB_HOST_AUDIO_V1_TerminalSourceIDGet Returns the ID of the unit or terminal to which this terminal is
connected.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 339

USB_HOST_AUDIO_V1_TerminalTypeGet Returns the terminal type of the audio control entity.

b) Audio Stream Access Functions

Name Description

USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet Gets the number of stream groups present in the
attached Audio v1.0 Device.

USB_HOST_AUDIO_V1_StreamClose Closes the audio stream.

USB_HOST_AUDIO_V1_StreamEventHandlerSet Registers an event handler with the Audio v1.0 Client
Driver stream.

USB_HOST_AUDIO_V1_0_StreamDisable Schedules an audio stream disable request for the
specified audio stream.

USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst Gets the first streaming interface object from the
attached Audio Device.

USB_HOST_AUDIO_V1_0_StreamEnable Schedules an audio stream enable request for the
specified audio stream.

USB_HOST_AUDIO_V1_StreamingInterfaceGetNext Gets the next streaming interface object from the
attached Audio Device.

USB_HOST_AUDIO_V1_0_StreamEventHandlerSet Registers an event handler with the Audio v1.0 Client
Driver stream.

USB_HOST_AUDIO_V1_StreamingInterfaceSet Schedules a SET_INTERFACE request to the specified
audio stream.

USB_HOST_AUDIO_V1_0_StreamGetFirst Returns information about first audio stream in the
specified audio stream group.

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetFirst Gets the first streaming interface setting object within
an audio streaming interface.

USB_HOST_AUDIO_V1_0_StreamGetNext Returns information about the next audio stream in the
specified audio stream group.

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetNext Gets the next streaming interface setting object within
an audio streaming interface.

USB_HOST_AUDIO_V1_0_StreamSamplingRateSet Schedules an audio stream set sampling rate request
for the specified audio stream.

USB_HOST_AUDIO_V1_StreamOpen Opens the specified audio stream.

USB_HOST_AUDIO_V1_StreamRead Schedules an audio stream read request for the
specified audio stream.

USB_HOST_AUDIO_V1_StreamWrite Schedules an audio stream write request for the
specified audio stream.

USB_HOST_AUDIO_V1_StreamingInterfaceBitResolutionGet Returns the bit resolution of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceChannelNumbersGet Returns the number of channels of the specified
streaming interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceDirectionGet Returns the direction of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceFormatTagGet Returns the format tag of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequenciesGet Returns the sampling frequencies supported by the
specified streaming interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequencyTypeGet Returns the sampling frequency type of the specified
streaming interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceSubFrameSizeGet Returns the sub-frame size of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceTerminalLinkGet Returns the terminal link of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamSamplingFrequencyGet Schedules an audio stream get sampling rate request
for the specified audio stream.

USB_HOST_AUDIO_V1_StreamSamplingFrequencySet Schedules an audio stream set sampling rate request
for the specified audio stream.

USB_HOST_AUDIO_V1_0_StreamRead Schedules an audio stream read request for the
specified audio stream.

USB_HOST_AUDIO_V1_0_StreamWrite Schedules an audio stream write request for the
specified audio stream.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 340

c) Other Functions

Name Description

USB_HOST_AUDIO_V1_TerminalInputChannelConfigGet Returns a structure that describes the spatial
location of the logical channels of in the terminal's
output audio channel cluster.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeRangeGet Schedules a control request to the Audio Device
feature unit to get the range supported by the
volume control on the specified channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbersGet Schedules a control request to an Audio Device
feature unit to get the number of sub-ranges
supported by the volume control on the specified
channel.

d) Data Types and Constants

Name Description

USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER USB Host Audio v1.0 Client Driver
attach event handler function pointer
type.

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ Defines the type of the Audio v1.0
Host control entity object.

USB_HOST_AUDIO_V1_ENTITY_REQUEST_CALLBACK USB Host Audio v1.0 class driver
control transfer complete callback
function pointer type.

USB_HOST_AUDIO_V1_EVENT Identifies the possible events that the
Audio v1.0 Class Driver attach event
handler can generate.

USB_HOST_AUDIO_V1_OBJ Defines the type of the Audio v1.0
Host client object.

USB_HOST_AUDIO_V1_REQUEST_HANDLE USB Host Audio v1.0 Client Driver
request handle.

USB_HOST_AUDIO_V1_RESULT USB Host Audio v1.0 Class Driver
result enumeration.

USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER USB Host Audio v1.0 Client Driver
attach event handler function pointer
type.

USB_HOST_AUDIO_V1_STREAM_DIRECTION USB Host Audio v1.0 Class Driver
stream direction.

USB_HOST_AUDIO_V1_STREAM_EVENT Identifies the possible events that the
Audio v1.0 Stream can generate.

USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER USB Host Audio v1.0 Class Driver
stream event handler function pointer
type.

USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK USB Host Audio v1.0 Class Driver
control transfer complete callback
function pointer type.

USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA USB Host Audio v1.0 class stream
data transfer event data.

USB_HOST_AUDIO_V1_0_EVENT Identifies the possible events that the
Audio v1.0 Class Driver can generate.

USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE Returns the type of the USB Host
Audio v1.0 stream event handler.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_0_OBJ Defines the type of the Audio v1.0
Host client object.

USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA USB Host Audio v1.0 class stream
data transfer event data.

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE USB Host Audio v1.0 Client Driver
request handle.

USB_HOST_AUDIO_V1_STREAM_HANDLE Defines the type of the Audio v1.0
Host stream handle.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 341

USB_HOST_AUDIO_V1_0_RESULT USB Host Audio v1.0 Class Driver
audio result enumeration.

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE USB Host Audio v1.0 Class Driver
stream data transfer handle.

USB_HOST_AUDIO_V1_0_STREAM_DIRECTION USB Host Audio v1.0 Class Driver
stream direction.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ Defines the type of the Audio v1.0
Host streaming interface object.

USB_HOST_AUDIO_V1_0_STREAM_EVENT Identifies the possible events that the
Audio v1.0 stream can generate.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ Defines the type of the Audio v1.0
Host streaming interface setting object.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER USB Host Audio v1.0 Class Driver
stream event handler function pointer
type.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA This is macro
USB_HOST_AUDIO_V1_0_STREAM_
EVENT_READ_COMPLETE_DATA.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE Returns the type of the USB Audio
v1.0 Host Client Driver event handler.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA USB Host Audio v1.0 class stream
transfer event data.

USB_HOST_AUDIO_V1_0_STREAM_HANDLE Defines the type of the Audio v1.0
Host stream handle.

USB_HOST_AUDIO_V1_INTERFACE USB HOST Audio v1.0 Client Driver
interface.

USB_HOST_AUDIO_V1_0_STREAM_INFO This is type
USB_HOST_AUDIO_V1_0_STREAM_
INFO.

USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID USB Host Audio v1.0 Client Driver
invalid request handle.

USB_HOST_AUDIO_V1_0_STREAM_OBJ Defines the type of the Audio v1.0
Host stream object.

USB_HOST_AUDIO_V1_STREAM_HANDLE_INVALID Defines Audio v1.0 Host stream
invalid handle.

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB Host Audio v1.0 stream result
enumeration.

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE_INVALID USB Host Audio v1.0 Class Driver
invalid stream data transfer handle.

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE USB Host Audio v1.0 Class Driver
transfer handle.

USB_HOST_AUDIO_V1_0_INTERFACE USB HOST Audio Client Driver
interface.

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID USB Host Audio v1.0 Client Driver
invalid request handle.

USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID Defines the type of the Audio v1.0
Host stream invalid handle.

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE_INVALID USB Host Audio v1.0 Class Driver
invalid transfer handle definition.

USB_HOST_AUDIO_V1_0_AttachEventHandlerSet Sets an attach/detach event handler.

USB_HOST_AUDIO_V1_0_DeviceObjHandleGet Returns the device object handle for
this Audio v1.0 Device.

USB_HOST_AUDIO_V1_0_DIRECTION_IN This is macro
USB_HOST_AUDIO_V1_0_DIRECTIO
N_IN.

USB_HOST_AUDIO_V1_0_DIRECTION_OUT This is macro
USB_HOST_AUDIO_V1_0_DIRECTIO
N_OUT.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 342

USB_HOST_AUDIO_V1_0_EVENT_ATTACH This is macro
USB_HOST_AUDIO_V1_0_EVENT_A
TTACH.

USB_HOST_AUDIO_V1_0_EVENT_DETACH This is macro
USB_HOST_AUDIO_V1_0_EVENT_D
ETACH.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE Returns the type of the USB Host
Audio v1.0 stream event handler.

USB_HOST_AUDIO_V1_0_StreamClose Closes the audio stream.

USB_HOST_AUDIO_V1_0_StreamOpen Opens the specified audio stream.

USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER This structure defines USB Host audio
stream information structure.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

Description

This section describes the Application Programming Interface (API) functions of the USB Audio v1.0 Host Client Driver Library.

Refer to each section for a detailed description.

a) Audio Device Access Functions

USB_HOST_AUDIO_V1_AttachEventHandlerSet Function

Sets an attach/detach event handler.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_AttachEventHandlerSet(USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER
eventHandler, uintptr_t context);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - If the attach event handler was registered successfully

• USB_HOST_AUDIO_V1_RESULT_FAILURE - If the number of registered event handlers has exceeded
USB_HOST_AUDIO_V1_ATTACH_LISTENERS_NUMBER

Description

This function will set an attach event handler. The attach event handler will be called when a Audio v1.0 Device has been attached or detached.
The context will be returned in the event handler. This function should be called before the bus has been enabled.

Remarks

This function should be called before the USB_HOST_BusEnable function is called.

Preconditions

None.

Parameters

Parameters Description

eventHandler Pointer to the attach event handler.

context An application defined context that will be returned in the event handler.

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_AttachEventHandlerSet

(

USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER eventHandler,

uintptr_t context

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 343

USB_HOST_AUDIO_V1_0_ControlRequest Function

Schedules an Audio v1.0 control transfer.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_0_RESULT USB_HOST_AUDIO_V1_0_ControlRequest(USB_HOST_AUDIO_V1_0_OBJ OBJ,
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE * transferHandle, USB_SETUP_PACKET * setupPacket, void * data,
USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK callback, uintptr_t context);

Returns

• USB_HOST_AUDIO_V1_0_RESULT_SUCCESS - The transfer was scheduled successfully. requestHandle will contain a valid transfer handle.

• USB_HOST_AUDIO_V1_0_RESULT_FAILURE - An unknown failure occurred. requestHandle will contain
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID.

• USB_HOST_AUDIO_V1_0_RESULT_PARAMETER_INVALID - The data pointer or requestHandle pointer is NULL

Description

This function schedules an Audio v1.0 control transfer. The audioObj parameter is an object of the Audio v1.0 Class Driver to which the audio
control transfer is to be scheduled. The setupPacket parameter points to the SETUP command to be sent in the setup state of the control transfer.
The size and the direction of the data stage is indicated by the SETUP packet. For control transfers where there is no data stage, data is ignored
and can be NULL. In all other instances, data should point to the data to data be transferred in the data stage of the control transfer.

If the transfer was scheduled successfully, requestHandle will contain a transfer handle that uniquely identifies this transfer. If the transfer could
not be scheduled successfully, requestHandle will contain USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID.

When the control transfer completes, the Audio v1.0 Client Driver will call the specified callback function. The context parameter specified here will
be returned in the callback.

Remarks

None.

Preconditions

The Audio v1.0 Device should be attached.

Parameters

Parameters Description

audioObj Audio v1.0 client driver object

requestHandle Output parameter that will contain the handle to this transfer

setupPacket Pointer to the SETUP packet to sent to the device in the SETUP stage of the control transfer

data For control transfer with a data stage, this should point to data to be sent to the device (for a
control write transfer) or point to the buffer that will receive data from the device (for a control
read transfer). For control transfers that do not require a data stage, this parameter is ignored
and can be NULL.

callback Pointer to the callback function that will be called when the control transfer completes. If the
callback function is NULL, there will be no notification of when the control transfer will
complete.

context User-defined context that is returned with the callback function

Function

USB_HOST_AUDIO_V1_0_RESULT USB_HOST_AUDIO_V1_0_ControlRequest

(

USB_HOST_AUDIO_V1_0_OBJ audioObj,

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE * requestHandle,

USB_SETUP_PACKET *setupPacket,

void * data,

USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK callback,

uintptr_t context

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 344

USB_HOST_AUDIO_V1_ControlEntityGetFirst Function

Retrieves the handle to the first audio control entity

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_ControlEntityGetFirst(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ * pEntityObject);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_END_OF_CONTROL_ENTITY - No more audio control entities are available

• USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function retrieves the handle to the first audio control entity.

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 device object.

pEntityObject pointer to the Audio control entity handle.

Function

USB_HOST_AUDIO_V1_REESULT USB_HOST_AUDIO_V1_ControlEntityGetFirst

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ * pEntityObject

);

USB_HOST_AUDIO_V1_ControlEntityGetNext Function

Retrieves the handle to the next audio control entity.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_ControlEntityGetNext(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObjectCurrent, USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ *
pEntityObject);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_END_OF_CONTROL_ENTITY - No more audio control entities are available

• USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function retrieves the handle to the next audio control entity.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 345

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 device object.

entityObjectCurrent Handle to current audio control entity.

pEntityObject pointer to audio control entity handle.

Function

USB_HOST_AUDIO_V1_REESULT USB_HOST_AUDIO_V1_ControlEntityGetNext

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObjectCurrent

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ * pEntityObject

);

USB_HOST_AUDIO_V1_DeviceObjHandleGet Function

Returns the device object handle for this Audio v1.0 Device.

File

usb_host_audio_v1_0.h

C
USB_HOST_DEVICE_OBJ_HANDLE USB_HOST_AUDIO_V1_DeviceObjHandleGet(USB_HOST_AUDIO_V1_OBJ audioDeviceObj);

Returns

Will return a valid device object handle if the device is still connected to the system. Otherwise, the function will return
USB_HOST_DEVICE_OBJ_HANDLE_INVALID.

Description

This function returns the device object handle for this Audio v1.0 Device. This returned handle can be used by the application to perform
device-level operations, such as obtaining the string descriptors.

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

audioDeviceObj Audio V1.0 device object handle returned in the
USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER function.

Function

USB_HOST_DEVICE_OBJ_HANDLE USB_HOST_AUDIO_V1_DeviceObjHandleGet

(

USB_HOST_AUDIO_V1_OBJ audioDeviceObj

);

USB_HOST_AUDIO_V1_EntityObjectGet Function

Retrieves the entity object for the entity ID.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 346

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_EntityObjectGet(USB_HOST_AUDIO_V1_OBJ audioObj, uint8_t
entityId, USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ* entityObj);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_FAILURE - The entity Id could not be found or an unknown failure occurred

Description

This function retrieves the entity object for the entity ID.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityId Entity ID

entityObject Audio control entity object

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_EntityObjectGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

uint8_t entityId,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ* entityObj

);

USB_HOST_AUDIO_V1_EntityRequestCallbackSet Function

Registers an audio entity request callback function with the Audio v1.0 Client Driver.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_EntityRequestCallbackSet(USB_HOST_AUDIO_V1_OBJ audioDeviceObj,
USB_HOST_AUDIO_V1_ENTITY_REQUEST_CALLBACK appAudioEntityRequestCallback, uintptr_t context);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID - The specified audio object does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function registers a callback function for the Audio v1.0 control entity requests. The Audio v1.0 Host Client Driver will call this callback function
when an audio entity control request is completed.

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

audioDeviceObj Audio v1.0 device object.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 347

appAudioEntityRequestCallback A pointer to event handler function. If NULL, events will not be generated.

context Application specific context that is returned in the event handler.

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_EntityRequestCallbackSet

(

USB_HOST_AUDIO_V1_OBJ audioDeviceObj,

USB_HOST_AUDIO_V1_CONTROL_EVENT_HANDLER appAudioEntityRequestCallback,

uintptr_t context

);

USB_HOST_AUDIO_V1_EntityTypeGet Function

Returns the entity type of the audio control entity.

File

usb_host_audio_v1_0.h

C
USB_AUDIO_V1_ENTITY_TYPE USB_HOST_AUDIO_V1_EntityTypeGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

USB_AUDIO_V1_ENTITY_TYPE.

Description

This function returns the entity type of the audio control entity. Prior to calling this function the entity object should be obtained by calling
USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

Function

USB_AUDIO_V1_ENTITY_TYPE USB_HOST_AUDIO_V1_EntityTypeGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists Function

Returns "true" if mute control exists for the specified channel of the feature unit.

File

usb_host_audio_v1_0.h

C
bool USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, uint8_t channel);

Returns

• true - Mute control exists on the specified channel

• false - Mute control does not exist on the specified channel

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 348

Description

This function returns "true" if mute control exists on the specified channel of the feature unit. Channel 0 indicates Master mute control. This
function is only applicable to a feature unit. Prior to calling this function the entity object should be obtained by calling
USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

channel Channel number

Function

bool USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

uint8_t channel

);

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteGet Function

Schedules a get mute control request to the specified channel.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelMuteGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,
uint8_t channelNumber, bool * muteStatus);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request was scheduled successfully. requestHandle will contain a valid request handle.

• USB_HOST_AUDIO_V1_RESULT_BUSY - The control request mechanism is currently busy. Retry the request.

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred. requestHandle will contain
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID.

• USB_HOST_AUDIO_V1_RESULT_PARAMETER_INVALID - The data pointer or requestHandle pointer is NULL

Description

This function schedules a get mute control request to the specified channel. Prior to calling this function the user should check if mute control
exists on the specified channel by calling the USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists function.

If the request was scheduled successfully, the requestHandle parameter will contain a request handle that uniquely identifies this request. If the
transfer could not be scheduled successfully, requestHandle will contain USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID.

When the control request completes, the Audio v1.0 Client Driver will call the callback function that was set using the
USB_HOST_AUDIO_V1_EntityRequestCallbackSet function. The context parameter specified here will be returned in the callback.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

requestHandle Output parameter that will contain the handle to this request

channelNumber Channel number

muteStatus Output parameter that will contain Current Mute status when the request is completed and a
callback is received

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 349

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelMuteGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,

uint8_t channelNumber,

bool *muteStatus

);

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteSet Function

Schedules a set mute control request to the specified channel.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelMuteSet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,
uint8_t channelNumber, bool * muteStatus);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request was scheduled successfully. requestHandle will contain a valid request handle.

• USB_HOST_AUDIO_V1_RESULT_BUSY - The control request mechanism is currently busy. Retry the request.

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred. requestHandle will contain
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID.

• USB_HOST_AUDIO_V1_RESULT_PARAMETER_INVALID - The data pointer or requestHandle pointer is NULL

Description

This function schedules a set mute control request to the specified channel. Prior to calling this function the user should check if mute control
exists on the specified channel by calling the USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists function.

If the request was scheduled successfully, the requestHandle parameter will contain a request handle that uniquely identifies this transfer. If the
transfer could not be scheduled successfully, requestHandle will contain USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID.

When the control request completes, the Audio v1.0 Client Driver will call the callback function that was set using the
USB_HOST_AUDIO_V1_EntityRequestCallbackSet function. The context parameter specified here will be returned in the callback.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

requestHandle Output parameter that will contain the handle to this request

channelNumber Channel Number

muteStatus Value of mute control, where 1 mutes the channel and 0 removes unmutes

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelMuteSet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,

uint8_t channelNumber,

bool *muteStatus

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 350

USB_HOST_AUDIO_V1_FeatureUnitChannelNumbersGet Function

Returns the number of channels.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_FeatureUnitChannelNumbersGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The number of channels.

Description

This function returns the number of channels. This function is only applicable to a feature unit. Prior to calling this function the entity object should
be obtained by calling USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or
USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

Function

uint8_t USB_HOST_AUDIO_V1_FeatureUnitChannelNumbersGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists Function

Returns "true" if volume control exists for the specified channel of the feature unit.

File

usb_host_audio_v1_0.h

C
bool USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, uint8_t channel);

Returns

• true - Volume control exists on the specified channel

• false - Volume control does not exist on the specified channel

Description

This function returns "true" if volume control exists on the specified channel of the feature unit. Channel 0 indicates master volume control. This
function is only applicable to a feature unit. Prior to calling this function the entity object should be obtained by calling
USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 351

entityObject Audio control entity object

channel Channel number

Function

bool USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

uint8_t channel

);

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeGet Function

Schedules a get current volume control request to the specified channel.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,
uint8_t channelNumber, uint16_t * volume);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request was scheduled successfully. requestHandle will contain a valid request handle.

• USB_HOST_AUDIO_V1_RESULT_BUSY - The control request mechanism is currently busy. Retry the request.

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred. requestHandle will contain
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID

• USB_HOST_AUDIO_V1_RESULT_PARAMETER_INVALID - The data pointer or requestHandle pointer is NULL

Description

This function schedules a get current volume control request to the specified channel. Prior to calling this function the user should check if volume
control exists on the specified channel by calling the USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists function.

If the request was scheduled successfully, the requestHandle parameter will contain a request handle that uniquely identifies this request. If the
request could not be scheduled successfully, requestHandle will contain USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID.

When the control request completes, the Audio v1.0 Client Driver will call the callback function that was set using the
USB_HOST_AUDIO_V1_EntityRequestCallbackSet function. The context parameter specified here will be returned in the callback.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

requestHandle Output parameter that will contain the handle to this request

channelNumber Channel number to which the volume control is addressed

volume Output parameter that will contain the current volume when a request is completed and a
callback is received

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,

uint8_t channelNumber,

uint16_t *volume

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 352

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSet Function

Schedules a set current volume control request to the specified channel.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,
uint8_t channelNumber, uint16_t * volume);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request was scheduled successfully. requestHandle will contain a valid request handle.

• USB_HOST_AUDIO_V1_RESULT_BUSY - The control request mechanism is currently busy. Retry the request.

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred. requestHandle will contain
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID.

• USB_HOST_AUDIO_V1_RESULT_PARAMETER_INVALID - The data pointer or requestHandle pointer is NULL

Description

This function schedules a set current volume request to the specified channel. Prior to calling this function the user should check if volume control
exists on the specified channel by calling the USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists function.

If the request was scheduled successfully, the requestHandle parameter will contain a request handle that uniquely identifies this request. If the
request could not be scheduled successfully, requestHandle will contain USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID.

When the control request completes, the Audio v1.0 Client Driver will call the callback function that was set using the
USB_HOST_AUDIO_V1_EntityRequestCallbackSet function. The context parameter specified here will be returned in the callback.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

requestHandle Output parameter that will contain the handle to this request

channelNumber Channel number to which the volume control is addressed

volume Current volume control value that should be set in the Audio Device

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,

uint8_t channelNumber,

uint16_t *volume

);

USB_HOST_AUDIO_V1_FeatureUnitIDGet Function

Returns ID of the Feature Unit.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_FeatureUnitIDGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 353

Returns

The ID of the feature unit.

Description

This function returns the ID of the D of the Feature Unit. This function is only applicable to Feature Unit. Prior to calling this function Entity Object
should be obtained by calling the USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or
USB_HOST_AUDIO_V1_EntityObjectGet function.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 device object.

entityObject Audio control entity Object

Function

uint8_t USB_HOST_AUDIO_V1_FeatureUnitIDGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_FeatureUnitSourceIDGet Function

Returns the ID of the unit or terminal to which this feature unit is connected.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_FeatureUnitSourceIDGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The ID of the unit or terminal to which this feature unit is connected.

Description

This function returns the ID of the Unit or Terminal to which this feature unit is connected. This function is only applicable to a feature unit. Prior to
calling this function the entity object should be obtained by calling USB_HOST_AUDIO_V1_ControlEntityGetFirst,
USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

Function

uint8_t USB_HOST_AUDIO_V1_FeatureUnitSourceIDGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 354

USB_HOST_AUDIO_V1_TerminalAssociationGet Function

Returns the associated terminal ID of the audio control terminal.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_TerminalAssociationGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The ID of the associated terminal.

Description

This function returns the ID of the associated terminal type of the audio control terminal. Prior to calling this function the entity object should be
obtained by calling USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or
USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

Function

uint8_t USB_HOST_AUDIO_V1_TerminalAssociationGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_TerminalIDGet Function

Returns the terminal ID of the audio control entity.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_TerminalIDGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The terminal ID of the audio control entity object.

Description

This function returns the Terminal ID of the Audio Control entity. Prior to calling this function the entity object should be obtained by calling
USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 355

Function

uint8_t USB_HOST_AUDIO_V1_TerminalIDGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_TerminalInputChannelNumbersGet Function

Returns the number of logical output channels in the terminal's output audio channel cluster.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_TerminalInputChannelNumbersGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The number of logical output channels in the terminal's output audio channel cluster.

Description

This function returns the number of logical output channels in the terminal's output audio channel cluster. This function is only applicable to an
input terminal. Prior to calling this function the entity object should be obtained by calling USB_HOST_AUDIO_V1_ControlEntityGetFirst,
USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 device object.

entityObject Audio control entity object

Function

uint8_t USB_HOST_AUDIO_V1_TerminalInputChannelNumbersGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_TerminalSourceIDGet Function

Returns the ID of the unit or terminal to which this terminal is connected.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_TerminalSourceIDGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The ID of the unit or terminal to which this terminal is connected.

Description

This function returns the ID of the unit or terminal to which this terminal is connected. This function is only applicable to an output terminal. Prior to
calling this function the entity object should be obtained by calling USB_HOST_AUDIO_V1_ControlEntityGetFirst,
USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 356

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

Function

uint8_t USB_HOST_AUDIO_V1_TerminalSourceIDGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_TerminalTypeGet Function

Returns the terminal type of the audio control entity.

File

usb_host_audio_v1_0.h

C
USB_AUDIO_V1_TERMINAL_TYPE USB_HOST_AUDIO_V1_TerminalTypeGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The terminal type.

Description

This function returns the Terminal type of the audio control entity. Prior to calling this function Entity Object should be obtained by calling the
USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet
function.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 device object

entityObject Audio control entity Object

Function

USB_AUDIO_V1_TERMINAL_TYPE USB_HOST_AUDIO_V1_TerminalTypeGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

b) Audio Stream Access Functions

USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet Function

Gets the number of stream groups present in the attached Audio v1.0 Device.

File

usb_host_audio_v1_0.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 357

C
uint8_t USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet(USB_HOST_AUDIO_V1_0_OBJ audioObj);

Returns

A returned uint8_t indicates the number of audio stream groups present in the attached Audio v1.0 Device.

Description

This function will get number of stream groups present in the attached Audio v1.0 Device. The audio stream within an audio stream cannot be
enabled at the same time.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio v1.0 Client Driver object

Function

uint8_t USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet

(

USB_HOST_AUDIO_V1_0_OBJ audioObj

);

USB_HOST_AUDIO_V1_StreamClose Function

Closes the audio stream.

File

usb_host_audio_v1_0.h

C
void USB_HOST_AUDIO_V1_StreamClose(USB_HOST_AUDIO_V1_STREAM_HANDLE audioStreamHandle);

Returns

None.

Description

This function will close the open audio stream. This closes the association between the application entity that opened the audio stream and the
audio stream. The audio stream handle becomes invalid.

Remarks

The device handle becomes invalid after calling this function.

Preconditions

None.

Parameters

Parameters Description

audioSteamHandle handle to the audio stream obtained from the USB_HOST_AUDIO_V1_StreamOpen function.

Function

void USB_HOST_AUDIO_V1_StreamClose

(

USB_HOST_AUDIO_V1_STREAM_HANDLE audioSteamHandle

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 358

USB_HOST_AUDIO_V1_StreamEventHandlerSet Function

Registers an event handler with the Audio v1.0 Client Driver stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamEventHandlerSet(USB_HOST_AUDIO_V1_STREAM_HANDLE handle,
USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER appAudioHandler, uintptr_t context);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function registers a client specific Audio v1.0 stream event handler. The Audio v1.0 Host Client Driver will call the appAudioHandler function
specified as the second argument with relevant event and associated event data in response to audio stream data transfers that have been
scheduled by the client.

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

handle The handle to the Audio v1.0 stream

eventHandler A pointer to event handler function. If NULL, events will not be generated.

context The application specific context that is returned in the event handler

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamEventHandlerSet

(

USB_HOST_AUDIO_V1_STREAM_HANDLE handle,

USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER appAudioHandler,

uintptr_t context

);

USB_HOST_AUDIO_V1_0_StreamDisable Function

Schedules an audio stream disable request for the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamDisable(USB_HOST_AUDIO_V1_0_STREAM_HANDLE
streamHandle, USB_HOST_AUDIO_V1_0_REQUEST_HANDLE * requestHandle);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream disable request for the specified audio stream. A
USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE event is generated when this request is completed.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 359

USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

requestHandle Handle to the stream disable request

Function

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamDisable

(

USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE * requestHandle

);

USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst Function

Gets the first streaming interface object from the attached Audio Device.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ* streamingInterfaceObj);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request completed successfully

• USB_HOST_AUDIO_V1_RESULT_END_OF_STREAMING_INTERFACE - No more streaming interfaces are available

• USB_HOST_AUDIO_V1_RESULT_DEVICE_UNKNOWN - Device is not attached

• USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID - Audio Device object is invalid

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An error has occurred

Description

This function will get the first streaming interface object from the attached Audio Device.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio v1.0 client driver object.

streamingInterfaceObj Pointer to an audio streaming interface object.

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ* streamingInterfaceObj

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 360

USB_HOST_AUDIO_V1_0_StreamEnable Function

Schedules an audio stream enable request for the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamEnable(USB_HOST_AUDIO_V1_0_STREAM_HANDLE
streamHandle, USB_HOST_AUDIO_V1_0_REQUEST_HANDLE * requestHandle);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream enable request for the specified audio stream. An audio stream must be enable before scheduling any
data transfer with the stream. A USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE event is generated when this request is
completed. USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened. Only one audio stream from an audio stream group can be enabled at a time.

Parameters

Parameters Description

streamHandle Handle to the audio v1.0 stream

requestHandle Handle to the stream enable request

Function

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamEnable

(

USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE * requestHandle

);

USB_HOST_AUDIO_V1_StreamingInterfaceGetNext Function

Gets the next streaming interface object from the attached Audio Device.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceGetNext(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObjCurrent,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ* streamingInterfaceObjNext);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request completed successfully

• USB_HOST_AUDIO_V1_RESULT_END_OF_STREAMING_INTERFACE - No more streaming interfaces are available

• USB_HOST_AUDIO_V1_RESULT_DEVICE_UNKNOWN - Device is not attached

• USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID - Audio Device object is invalid

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An error has occurred

Description

This function will get the next streaming interface object from the attached Audio Device.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 361

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object.

streamingInterfaceObjCurrent Current audio streaming interface object.

streamingInterfaceObj Pointer to audio streaming interface object.

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceGetNext

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObjCurrent

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ* streamingInterfaceObjNext

);

USB_HOST_AUDIO_V1_0_StreamEventHandlerSet Function

Registers an event handler with the Audio v1.0 Client Driver stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_0_STREAM_RESULT
USB_HOST_AUDIO_V1_0_StreamEventHandlerSet(USB_HOST_AUDIO_V1_0_STREAM_HANDLE handle,
USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER appAudioHandler, uintptr_t context);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

Description

This function registers a client specific Audio v1.0 stream event handler. The Audio v1.0 Host Client Driver will call appAudioHandler function
specified as 2nd argument with relevant event and associate event data, in response to audio stream data transfers that have been scheduled by
the client.

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

handle A handle to the Audio v1.0 stream

eventHandler A pointer to event handler function. If NULL, events will not be generated.

context The application specific context that is returned in the event handler

Function

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamEventHandlerSet

(

USB_HOST_AUDIO_V1_0_STREAM_HANDLE handle,

USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER appAudioHandler,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 362

uintptr_t context

);

USB_HOST_AUDIO_V1_StreamingInterfaceSet Function

Schedules a SET_INTERFACE request to the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceSet(USB_HOST_AUDIO_V1_STREAM_HANDLE
streamHandle, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream enable request for the specified audio stream. An audio stream must be enable before scheduling any
data transfer with the stream. A USB_HOST_AUDIO_V1_STREAM_EVENT_ENABLE_COMPLETE event is generated when this request is
completed. USB_HOST_AUDIO_V1_STREAM_EVENT_ENABLE_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened. Only one audio stream from an audio stream group can be enabled at a time.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream.

requestHandle Handle to the stream enable request.

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceSet

(

USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,

USB_INTERFACE_DESCRIPTOR* pInterfaceDesc,

USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle

);

USB_HOST_AUDIO_V1_0_StreamGetFirst Function

Returns information about first audio stream in the specified audio stream group.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_0_RESULT USB_HOST_AUDIO_V1_0_StreamGetFirst(USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,
uint8_t streamGroupIndex, USB_HOST_AUDIO_V1_0_STREAM_INFO * streamInfo);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_RESULT_OBJ_INVALID - The specified Audio v1.0 client driver object does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 363

Description

This function returns information about the first audio stream in the specified audio stream group. The stream group index is parameter to this
function and it can be any value starting from zero to the number of stream groups minus one. Number of stream groups can be obtained by using
the USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet function.

The streamInfo object is an out parameter to this function.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached to the Host.

Parameters

Parameters Description

audioDeviceObj Audio v1.0 Client Driver object

streamGroupIndex Stream group index

streamInfo Pointer to the streamInfo object

Function

USB_HOST_AUDIO_V1_0_RESULT USB_HOST_AUDIO_V1_0_StreamGetFirst

(

USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj,

uint8_t streamGroupIndex,

USB_HOST_AUDIO_V1_0_STREAM_INFO * streamInfo

);

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetFirst Function

Gets the first streaming interface setting object within an audio streaming interface.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetFirst(USB_HOST_AUDIO_V1_OBJ
audioObj, USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ * interfaceSettingObj);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request completed successfully

• USB_HOST_AUDIO_V1_RESULT_END_OF_INTERFACE_SETTINGS - No more streaming interface settings are available

• USB_HOST_AUDIO_V1_RESULT_DEVICE_UNKNOWN - Device is not attached

• USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID - Audio Device object is invalid

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An error has occurred

Description

This function gets the first streaming interface setting object within an audio streaming interface.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio device object.

streamingInterfaceObj Audio streaming interface object.

interfaceSettingObj Pointer to the audio streaming interface setting object.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 364

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetFirst

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ *interfaceSettingObj

);

USB_HOST_AUDIO_V1_0_StreamGetNext Function

Returns information about the next audio stream in the specified audio stream group.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_0_RESULT USB_HOST_AUDIO_V1_0_StreamGetNext(USB_HOST_AUDIO_V1_0_STREAM_OBJ audioStreamObj,
USB_HOST_AUDIO_V1_0_STREAM_INFO * streamInfo);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_RESULT_OBJ_INVALID - The specified Audio v1.0 client driver object does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

• USB_HOST_AUDIO_V1_0_RESULT_END_OF_STREAM_LIST - There are no more audio streams in the stream group

Description

This function returns information about next audio stream in the specified Audio stream group. The USB_HOST_AUDIO_V1_0_StreamGetFirst
function should have been called at least once on the same audio stream group before calling this function. Then, calling this function repeatedly
on the stream group will return information about the next audio stream in the stream group. When there are no more audio streams to report, the
function returns USB_HOST_AUDIO_V1_0_RESULT_END_OF_STREAM_LIST.

Calling the USB_HOST_AUDIO_V1_0_StreamGetFirst function on the stream group index after the USB_HOST_AUDIO_V1_0_StreamGetNext
function has been called will cause the Audio v1.0 Client Driver to reset the audio stream group to point to the first stream in the stream group.

Remarks

None.

Preconditions

The USB_HOST_AUDIO_V1_0_StreamGetFirst function must have been called before calling this function.

Parameters

Parameters Description

audioStreamObj Present audio stream object

streamInfo Pointer to the streamInfo object

Function

USB_HOST_AUDIO_V1_0_RESULT USB_HOST_AUDIO_V1_0_StreamGetNext

(

USB_HOST_AUDIO_V1_0_STREAM_OBJ audioStreamObj,

USB_HOST_AUDIO_V1_0_STREAM_INFO * streamInfo

);

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetNext Function

Gets the next streaming interface setting object within an audio streaming interface.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetNext(USB_HOST_AUDIO_V1_OBJ audioObj,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 365

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObjCurrent,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ * interfaceSettingObjNext);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request completed successfully

• USB_HOST_AUDIO_V1_RESULT_END_OF_INTERFACE_SETTINGS - No more streaming interface settings are available

• USB_HOST_AUDIO_V1_RESULT_DEVICE_UNKNOWN - Device is not attached

• USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID - Audio Device object is invalid

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An error has occurred

Description

This function gets the next streaming interface setting object within an audio streaming interface.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObjCurrent Current audio streaming interface setting object

interfaceSettingObjNext Pointer to the next audio streaming interface setting object

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetNext

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObjCurrent,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ *interfaceSettingObjNext

);

USB_HOST_AUDIO_V1_0_StreamSamplingRateSet Function

Schedules an audio stream set sampling rate request for the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_0_STREAM_RESULT
USB_HOST_AUDIO_V1_0_StreamSamplingRateSet(USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE * requestHandle, uint32_t * samplingRate);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream set sampling rate request for the specified audio stream. A
USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE event is generated when this request is completed.
USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 366

Preconditions

The audio stream should have been opened.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

requestHandle Handle to the stream set sampling rate request

samplingRate Pointer to the sampling rate

Function

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamSamplingRateSet

(

USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE requestHandle,

uint32_t* samplingRate

);

USB_HOST_AUDIO_V1_StreamOpen Function

Opens the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_STREAM_HANDLE USB_HOST_AUDIO_V1_StreamOpen(USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ
audiostreamingInterfaceObj);

Returns

Will return a valid handle if the audio stream could be opened successfully. Otherwise, USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID is
returned. The function will return a valid handle if the stream is ready to be opened.

Description

This function will open the specified audio stream. Once opened, the audio stream can be accessed via the handle that this function returns. The
audiostreamingInterfaceObj parameter is the value returned in the USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst or
USB_HOST_AUDIO_V1_StreamingInterfaceGetNext functions.

Remarks

None.

Preconditions

The audio streaming interface object should be valid.

Parameters

Parameters Description

audiostreamingInterfaceObj Audio streaming interface object

Function

USB_HOST_AUDIO_V1_STREAM_HANDLE USB_HOST_AUDIO_V1_StreamOpen

(

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ audiostreamingInterfaceObj

);

USB_HOST_AUDIO_V1_StreamRead Function

Schedules an audio stream read request for the specified audio stream.

File

usb_host_audio_v1_0.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 367

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamRead(USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,
USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE * transferHandle, void * source, size_t length);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream read request for the specified audio stream. A
USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE event is generated when this request is completed.
USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened and enabled. The direction of the audio stream should be USB_HOST_AUDIO_V1_DIRECTION_IN.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

transferHandle Handle to the stream read transfer request

source Pointer to the buffer containing data to be read from the device

length Amount of data to read (in bytes)

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamRead

(

USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE * transferHandle,

void * source,

size_t length

);

USB_HOST_AUDIO_V1_StreamWrite Function

Schedules an audio stream write request for the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamWrite(USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,
USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE * transferHandle, void * source, size_t length);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream write request for the specified audio stream. A
USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE event is generated when this request is completed.
USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 368

Preconditions

The audio stream should have been opened and enabled. The direction of the audio stream should be
USB_HOST_AUDIO_V1_DIRECTION_OUT.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

transferHandle Handle to the stream write transfer request

source Pointer to the buffer containing data to be written to the device

length Amount of data to write (in bytes)

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamWrite

(

USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE * transferHandle,

void * source,

size_t length

);

USB_HOST_AUDIO_V1_StreamingInterfaceBitResolutionGet Function

Returns the bit resolution of the specified streaming interface setting.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceBitResolutionGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

The bit resolution size of the audio streaming interface setting.

Description

This function returns the bit resolution size of the specified streaming interface setting.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceBitResolutionGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 369

USB_HOST_AUDIO_V1_StreamingInterfaceChannelNumbersGet Function

Returns the number of channels of the specified streaming interface setting.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceChannelNumbersGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

The number of channels present in the audio streaming interface setting.

Description

This function returns the number of channels of the specified streaming interface setting.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceChannelNumbersGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

USB_HOST_AUDIO_V1_StreamingInterfaceDirectionGet Function

Returns the direction of the specified streaming interface setting.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_STREAM_DIRECTION USB_HOST_AUDIO_V1_StreamingInterfaceDirectionGet(USB_HOST_AUDIO_V1_OBJ
audioObj, USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

• USB_HOST_AUDIO_V1_DIRECTION_OUT - Host to Device

• USB_HOST_AUDIO_V1_DIRECTION_IN - Device to Host

Description

This function returns the direction of the specified streaming interface setting.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 370

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

USB_HOST_AUDIO_V1_STREAM_DIRECTION USB_HOST_AUDIO_V1_StreamingInterfaceDirectionGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

USB_HOST_AUDIO_V1_StreamingInterfaceFormatTagGet Function

Returns the format tag of the specified streaming interface setting.

File

usb_host_audio_v1_0.h

C
USB_AUDIO_V1_FORMAT_TAG USB_HOST_AUDIO_V1_StreamingInterfaceFormatTagGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

The format tag of the audio streaming interface setting.

Description

This function returns the format tag link of the specified streaming interface setting.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceFormatTagGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequenciesGet Function

Returns the sampling frequencies supported by the specified streaming interface setting.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 371

File

usb_host_audio_v1_0.h

C
uint8_t* USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequenciesGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

A pointer to the sampling frequencies supported by the audio streaming interface setting.

Description

This function returns the sampling frequencies supported by the specified streaming interface setting.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

uint8_t* USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequenciesGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequencyTypeGet Function

Returns the sampling frequency type of the specified streaming interface setting.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequencyTypeGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

The sampling frequency type of the audio streaming interface setting.

• 0 - Continuous Sampling frequency is supported

• 1 to 255 - The number of discrete sampling frequencies supported by the audio streaming interface

Description

This function returns the sampling frequency type of the specified streaming interface setting.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 372

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequencyTypeGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

USB_HOST_AUDIO_V1_StreamingInterfaceSubFrameSizeGet Function

Returns the sub-frame size of the specified streaming interface setting.

File

usb_host_audio_v1_0.h

C
uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceSubFrameSizeGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

The sub-frame size of the audio streaming interface setting.

Description

This function returns the sub-frame size of the specified streaming interface setting.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceSubFrameSizeGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

USB_HOST_AUDIO_V1_StreamingInterfaceTerminalLinkGet Function

Returns the terminal link of the specified streaming interface setting.

File

usb_host_audio_v1_0.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 373

C
uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceTerminalLinkGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,
USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj);

Returns

The terminal link of the audio streaming interface setting.

Description

This function returns the terminal link of the specified streaming interface setting.

Remarks

None.

Preconditions

The Audio v1.0 Device should have been attached.

Parameters

Parameters Description

audioObj Audio Device object

streamingInterfaceObj Audio streaming interface object

interfaceSettingObj Audio streaming interface setting object

Function

uint8_t USB_HOST_AUDIO_V1_StreamingInterfaceTerminalLinkGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ streamingInterfaceObj,

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ interfaceSettingObj

);

USB_HOST_AUDIO_V1_StreamSamplingFrequencyGet Function

Schedules an audio stream get sampling rate request for the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamSamplingFrequencyGet(USB_HOST_AUDIO_V1_STREAM_HANDLE
streamHandle, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle, uint32_t * samplingFrequency);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream set sampling rate request for the specified audio stream. A
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE event is generated when this request is completed.
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 374

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

requestHandle Handle to the stream set sampling rate request

samplingRate Pointer to the sampling rate

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamSamplingFrequencyGet

(

USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_REQUEST_HANDLE requestHandle,

uint32_t *samplingFrequency

)

USB_HOST_AUDIO_V1_StreamSamplingFrequencySet Function

Schedules an audio stream set sampling rate request for the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamSamplingFrequencySet(USB_HOST_AUDIO_V1_STREAM_HANDLE
streamHandle, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle, const uint32_t * samplingFrequency);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID - The specified audio stream does not exist

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream set sampling rate request for the specified audio stream. A
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE event is generated when this request is completed.
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

requestHandle Handle to the stream set sampling rate request

samplingRate Pointer to the sampling rate

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_StreamSamplingFrequencySet

(

USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_REQUEST_HANDLE requestHandle,

uint32_t *samplingFrequency

)

USB_HOST_AUDIO_V1_0_StreamRead Function

Schedules an audio stream read request for the specified audio stream.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 375

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_0_StreamRead(USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,
USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE * transferHandle, void * source, size_t length);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID - The specified audio

stream does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream read request for the specified audio stream. A
USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE event is generated when this request is completed.
USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened and enabled. The direction of the audio stream should be
USB_HOST_AUDIO_V1_0_DIRECTION_IN.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

transferHandle Handle to the stream read transfer request

source Pointer to the buffer containing data to be read from the device

length Amount of data to read (in bytes)

Function

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamRead

(

USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE * transferHandle,

void * source,

size_t length

);

USB_HOST_AUDIO_V1_0_StreamWrite Function

Schedules an audio stream write request for the specified audio stream.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_0_StreamWrite(USB_HOST_AUDIO_V1_STREAM_HANDLE streamHandle,
USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE * transferHandle, void * source, size_t length);

Returns

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_SUCCESS - The operation was successful

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID - The specified audio

stream does not exist

• USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE - An unknown failure occurred

Description

This function schedules an audio stream write request for the specified audio stream. A

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 376

USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE event is generated when this request is completed.
USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA returns the status and request handle of the request.

Remarks

None.

Preconditions

The audio stream should have been opened and enabled. The direction of the audio stream should be
USB_HOST_AUDIO_V1_0_DIRECTION_OUT.

Parameters

Parameters Description

streamHandle Handle to the Audio v1.0 stream

transferHandle Handle to the stream write transfer request

source Pointer to the buffer containing data to be written to the device

length Amount of data to write (in bytes)

Function

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB_HOST_AUDIO_V1_0_StreamWrite

(

USB_HOST_AUDIO_V1_0_STREAM_HANDLE streamHandle,

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE * transferHandle,

void * source,

size_t length

);

c) Other Functions

USB_HOST_AUDIO_V1_TerminalInputChannelConfigGet Function

Returns a structure that describes the spatial location of the logical channels of in the terminal's output audio channel cluster.

File

usb_host_audio_v1_0.h

C
USB_AUDIO_CHANNEL_CONFIG USB_HOST_AUDIO_V1_TerminalInputChannelConfigGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject);

Returns

The structure that describes the spatial location of the logical channels.

Description

This function returns a structure that describes the spatial location of the logical channels of in the terminal's output audio channel cluster. This
function is only applicable to an input terminal. Prior to calling this function the entity object should be obtained by calling
USB_HOST_AUDIO_V1_ControlEntityGetFirst, USB_HOST_AUDIO_V1_ControlEntityGetNext, or USB_HOST_AUDIO_V1_EntityObjectGet.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 device object

entityObject Audio control entity object

Function

USB_AUDIO_CHANNEL_CONFIG USB_HOST_AUDIO_V1_TerminalInputChannelConfigGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 377

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject

);

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeRangeGet Function

Schedules a control request to the Audio Device feature unit to get the range supported by the volume control on the specified channel.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeRangeGet(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,
uint8_t channelNumber, void * data, size_t size);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request was scheduled successfully. requestHandle will contain a valid request handle.

• USB_HOST_AUDIO_V1_RESULT_BUSY - The control request mechanism is currently busy. Retry the request.

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred. requestHandle will contain
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID.

• USB_HOST_AUDIO_V1_RESULT_PARAMETER_INVALID - The data pointer or requestHandle pointer is NULL

Description

This function schedules a control request to the Audio Device feature unit to get the range supported by the volume control on the specified
channel.

Prior to calling this function the user should call the USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbersGet function to know
how many sub-ranges are supported.

Users should calculate the 'size' parameter of this function, as follows:

size = Size of number of ranges + nSubRanges * (Size (MIN) + Size (MAX) + Size of (RES))

If the request was scheduled successfully, the requestHandle parameter will contain a request handle that uniquely identifies this request. If the
request could not be scheduled successfully, requestHandle will contain USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID.

When the control request completes, the Audio v1.0 Client Driver will call the callback function that was set using the
USB_HOST_AUDIO_V1_EntityRequestCallbackSet function. The context parameter specified here will be returned in the callback.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

requestHandle Output parameter that will contain the handle to this request

channelNumber Channel number to which the volume control is addressed

nSubRanges Output parameter that will contain the number of sub-ranges when the request is completed
and a callback is received

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeRangeGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,

uint8_t channelNumber,

void * data,

size_t size

);

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbersGet Function

Schedules a control request to an Audio Device feature unit to get the number of sub-ranges supported by the volume control on the specified

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 378

channel.

File

usb_host_audio_v1_0.h

C
USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbersGet(USB_HOST_AUDIO_V1_OBJ
audioObj, USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject, USB_HOST_AUDIO_V1_REQUEST_HANDLE *
requestHandle, uint8_t channelNumber, uint16_t * nSubRanges);

Returns

• USB_HOST_AUDIO_V1_RESULT_SUCCESS - The request was scheduled successfully. requestHandle will contain a valid request handle.

• USB_HOST_AUDIO_V1_RESULT_BUSY - The control request mechanism is currently busy. Retry the request.

• USB_HOST_AUDIO_V1_RESULT_FAILURE - An unknown failure occurred. requestHandle will contain
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID.

• USB_HOST_AUDIO_V1_RESULT_PARAMETER_INVALID - The data pointer or requestHandle pointer is NULL

Description

This function schedules a control request to the Audio Device feature unit to get the number of sub-ranges supported by the volume control on the
specified channel. Prior to calling this function the user should check if volume control exists on the specified channel by calling the
USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists function.

If the request was scheduled successfully, the requestHandle parameter will contain a request handle that uniquely identifies this request. If the
request could not be scheduled successfully, requestHandle will contain USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID.

When the control request completes, the Audio v1.0 Client Driver will call the callback function that was set using the
USB_HOST_AUDIO_V1_EntityRequestCallbackSet function. The context parameter specified here will be returned in the callback.

Remarks

None.

Parameters

Parameters Description

audioObj USB Host Audio v1.0 Device object

entityObject Audio control entity object

requestHandle Output parameter that will contain the handle to this request

channelNumber Channel number to which the volume control is addressed

nSubRanges Output parameter that will contain the number of sub-ranges when the request is completed
and a callback is received

Function

USB_HOST_AUDIO_V1_RESULT USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbersGet

(

USB_HOST_AUDIO_V1_OBJ audioObj,

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ entityObject,

USB_HOST_AUDIO_V1_REQUEST_HANDLE * requestHandle,

uint8_t channelNumber,

uint16_t *nSubRanges

);

d) Data Types and Constants

USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER Type

USB Host Audio v1.0 Client Driver attach event handler function pointer type.

File

usb_host_audio_v1_0.h

C
typedef void (* USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER)(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_EVENT event, uintptr_t context);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 379

Description

USB Host Audio v1.0 Client Driver Attach Event Handler Function Pointer Type.

This data type defines the required function signature of the USB Host Audio v1.0 Client Driver attach event handling callback function. The
application must register a pointer to the Audio v1.0 Client Driver attach events handling function whose function signature (parameter and return
value types) match the types specified by this function pointer to receive attach and detach events callbacks from the Audio v1.0 Client Driver. The
application should use the USB_HOST_AUDIO_V1_AttachEventHandlerSet function to register an attach event handler. The client driver will call
this function with the relevant event parameters. The descriptions of the event handler function parameters are as follows:

• audioObj - Audio Device object to which this event is directed

• event - Event indicates if it is an Attach or Detach

• context - Value identifying the context of the application that was registered with the event handling function

Remarks

None.

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ Type

Defines the type of the Audio v1.0 Host control entity object.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ;

Description

USB Host Audio v1.0 Control Entity Object

This data type defines the type of the object returned by the USB_HOST_AUDIO_V1_ControlEntityGetFirst or
USB_HOST_AUDIO_V1_ControlEntityGetNext functions. This application uses this object to get more information about that audio control entity.

Remarks

None.

USB_HOST_AUDIO_V1_ENTITY_REQUEST_CALLBACK Type

USB Host Audio v1.0 class driver control transfer complete callback function pointer type.

File

usb_host_audio_v1_0.h

C
typedef void (* USB_HOST_AUDIO_V1_ENTITY_REQUEST_CALLBACK)(USB_HOST_AUDIO_V1_OBJ audioObj,
USB_HOST_AUDIO_V1_REQUEST_HANDLE requestHandle, USB_HOST_AUDIO_V1_RESULT result, size_t size, uintptr_t
context);

Description

USB Host Audio v1.0 Class driver Control Transfer Complete Callback Function Pointer type

This data type defines the required function signature of the USB Host Audio v1.0 class driver control transfer complete callback function. The
client must provide a pointer to a control transfer complete callback function whose function signature (parameter and return value types) must
match the types specified by this function pointer to receive notification when a control transfer has completed. The application should use the
USB_HOST_AUDIO_V1_EntityRequestCallbackSet function to register an entity control request callback. The Audio v1.0 client driver will call this
function with the relevant event parameters. The descriptions of the event handler function parameters are as follows:

• audioObj - Audio v1.0 client driver object associated with this event

• requestHandle - Request handle of the control transfer request that caused this event

• result - Completion result of the control transfer. This will be USB_HOST_AUDIO_V1_RESULT_SUCCESS if the control transfer completed
successfully, USB_HOST_AUDIO_V1_RESULT_FAILURE if an unknown failure occurred, or
USB_HOST_AUDIO_V1_RESULT_REQUEST_STALLED if the request was stalled.

• size - Size of the data stage that was transferred

• context - Value identifying the context of the application that was provided when the USB_HOST_AUDIO_V1_ControlRequest function was
called

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 380

USB_HOST_AUDIO_V1_EVENT Enumeration

Identifies the possible events that the Audio v1.0 Class Driver attach event handler can generate.

File

usb_host_audio_v1_0.h

C
typedef enum {
 USB_HOST_AUDIO_V1_EVENT_ATTACH,
 USB_HOST_AUDIO_V1_EVENT_DETACH
} USB_HOST_AUDIO_V1_EVENT;

Members

Members Description

USB_HOST_AUDIO_V1_EVENT_ATTACH This event occurs when the Host layer has detected the Audio v1.0 Class Driver instance
from a USB Audio v1.0 Device. There is no event data associated with this event.

USB_HOST_AUDIO_V1_EVENT_DETACH This event occurs when host layer has detached the Audio v1.0 Class Driver instance from a
USB Audio v1.0 Device. This can happen if the device itself was detached or if the device
configuration was changed. There is no event data associated with this event.

Description

Audio v1.0 Class Driver Events

This enumeration identifies the possible events that the Audio v1.0 Class Driver attach event handler can generate. The application should register
an event handler using the USB_HOST_AUDIO_V1_AttachEventHandlerSet function to receive Audio v1.0 Class Driver Attach events.

USB_HOST_AUDIO_V1_OBJ Type

Defines the type of the Audio v1.0 Host client object.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_OBJ;

Description

USB Host Audio v1.0 Object

This data type defines the type of the Audio Host client object. This type is returned by the client driver attach event handler and is used by the
application to open the attached Audio v1.0 Device.

Remarks

None.

USB_HOST_AUDIO_V1_REQUEST_HANDLE Type

USB Host Audio v1.0 Client Driver request handle.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_REQUEST_HANDLE;

Description

USB Host Audio v1.0 Client Driver Request Handle

This handle is returned by the Audio v1.0 Host client driver entity control functions and audio stream control request functions. Applications should
use this handle to track a request.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 381

USB_HOST_AUDIO_V1_RESULT Enumeration

USB Host Audio v1.0 Class Driver result enumeration.

File

usb_host_audio_v1_0.h

C
typedef enum {
 USB_HOST_AUDIO_V1_RESULT_FAILURE,
 USB_HOST_AUDIO_V1_RESULT_BUSY,
 USB_HOST_AUDIO_V1_RESULT_REQUEST_STALLED,
 USB_HOST_AUDIO_V1_RESULT_INVALID_PARAMETER,
 USB_HOST_AUDIO_V1_RESULT_DEVICE_UNKNOWN,
 USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID,
 USB_HOST_AUDIO_V1_RESULT_TRANSFER_ABORTED,
 USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID,
 USB_HOST_AUDIO_V1_RESULT_END_OF_CONTROL_ENTITY,
 USB_HOST_AUDIO_V1_RESULT_END_OF_STREAMING_INTERFACE,
 USB_HOST_AUDIO_V1_RESULT_END_OF_INTERFACE_SETTINGS,
 USB_HOST_AUDIO_V1_RESULT_SUCCESS
} USB_HOST_AUDIO_V1_RESULT;

Members

Members Description

USB_HOST_AUDIO_V1_RESULT_FAILURE An unknown failure has occurred

USB_HOST_AUDIO_V1_RESULT_BUSY The transfer or request could not be scheduled because internal
queues are full. The request or transfer should be retried

USB_HOST_AUDIO_V1_RESULT_REQUEST_STALLED The request was stalled

USB_HOST_AUDIO_V1_RESULT_INVALID_PARAMETER A required parameter was invalid

USB_HOST_AUDIO_V1_RESULT_DEVICE_UNKNOWN The associated device does not exist in the system.

USB_HOST_AUDIO_V1_RESULT_HANDLE_INVALID The specified handle is not valid

USB_HOST_AUDIO_V1_RESULT_TRANSFER_ABORTED The transfer or requested was aborted

USB_HOST_AUDIO_V1_RESULT_OBJ_INVALID The specified Audio v1.0 object is invalid

USB_HOST_AUDIO_V1_RESULT_END_OF_CONTROL_ENTITY No more audio control entity

USB_HOST_AUDIO_V1_RESULT_END_OF_STREAMING_INTERFACE No more streaming interface settings present in the audio device

USB_HOST_AUDIO_V1_RESULT_END_OF_INTERFACE_SETTINGS No more interface alternate settings are present in the audio
streaming interface

USB_HOST_AUDIO_V1_RESULT_SUCCESS Indicates that the operation succeeded or the request was accepted
and will be processed.

Description

USB Host Audio v1.0 Class Driver Result enumeration.

This enumeration lists the possible USB Host Audio v1.0 Class Driver operation results. These values are returned by Audio v1.0 Class Driver
functions.

Remarks

None.

USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER Type

USB Host Audio v1.0 Client Driver attach event handler function pointer type.

File

usb_host_audio_v1_0.h

C
typedef void (* USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER)(USB_HOST_AUDIO_V1_0_OBJ audioObj,
USB_HOST_AUDIO_V1_0_EVENT event, uintptr_t context);

Description

USB Host Audio v1.0 Client Driver Attach Event Handler Function Pointer Type.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 382

This data type defines the required function signature of the USB Host Audio v1.0 Client Driver attach event handling callback function. The
application must register a pointer to a Audio v1.0 Client Driver attach events handling function whose function signature (parameter and return
value types) match the types specified by this function pointer in order to receive attach and detach events call backs from the Audio v1.0 Client
Driver. The client driver will invoke this function with event relevant parameters. The descriptions of the event handler function parameters are as
follows:

• audioObj - Handle of the client to which this event is directed

• event - Event indicates if it is an attach or detach

• context - Value identifying the context of the application that was registered with the event handling function

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_DIRECTION Enumeration

USB Host Audio v1.0 Class Driver stream direction.

File

usb_host_audio_v1_0.h

C
typedef enum {
 USB_HOST_AUDIO_V1_DIRECTION_OUT,
 USB_HOST_AUDIO_V1_DIRECTION_IN
} USB_HOST_AUDIO_V1_STREAM_DIRECTION;

Members

Members Description

USB_HOST_AUDIO_V1_DIRECTION_OUT Stream Direction Host to Device

USB_HOST_AUDIO_V1_DIRECTION_IN Stream Direction Device to Host

Description

USB Host Audio v1.0 Class Driver Stream Direction

This enumeration lists the possible audio stream directions.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_EVENT Enumeration

Identifies the possible events that the Audio v1.0 Stream can generate.

File

usb_host_audio_v1_0.h

C
typedef enum {
 USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE,
 USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE,
 USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE,
 USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_SET_COMPLETE,
 USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_GET_COMPLETE,
 USB_HOST_AUDIO_V1_STREAM_EVENT_DETACH
} USB_HOST_AUDIO_V1_STREAM_EVENT;

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 383

Members

Members Description

USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE This event occurs when a Audio v1.0 stream read
operation has completed (i.e., when the data has
been received from the connected Audio v1.0
stream). This event is generated after the
application calls the
USB_HOST_AUDIO_V1_StreamRead function. The
eventData parameter in the event callback function
will be of a pointer to a
USB_HOST_AUDIO_V1_STREAM_EVENT_READ_
COMPLETE_DATA
structure. This contains details about the transfer
handle associated with this read request, the
amount of data read and the termination status of
the read request.

USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE This event occurs when an Audio v1.0 stream write
operation has completed (i.e., when the data has
been written to the connected Audio v1.0 stream).
This event is generated after the application calls
the USB_HOST_AUDIO_V1_StreamWrite function.
The eventData parameter in the event callback
function will be of a pointer to a
USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE
_COMPLETE_DATA
structure. This contains details about the transfer
handle associated with this write request, the
amount of data written and the termination status of
the write request.

USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE This event occurs when an audio streaming set
interface request has been completed. This event is
generated after the application calls the
USB_HOST_AUDIO_V1_StreamingInterfaceSet
function. The eventData parameter in the event
callback function will be of a pointer to a
USB_HOST_AUDIO_V1_STREAM_EVENT_INTER
FACE_SET_COMPLETE_DATA.
This contains details about the request handle
associated with the interface set request and the
termination status of the request.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_SET_COMPLETE This event occurs when an Audio v1.0 sampling
frequency set request has been completed. This
event is generated after the application calls the
USB_HOST_AUDIO_V1_StreamSamplingFrequenc
ySet
function. The eventData parameter in the event
callback function will be of a pointer to a
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPL
ING_FREQUENCY_SET_COMPLETE_DATA.
This contains details about the request handle
associated with this sampling frequency set request
and the termination status of the request.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_GET_COMPLETE This event occurs when an Audio v1.0 sampling
frequency get request has been completed. This
event is generated after the application calls the
USB_HOST_AUDIO_V1_StreamSamplingFrequenc
yGet
function. The eventData parameter in the event call
back function will be of a pointer to a
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPL
ING_FREQUENCY_GET_COMPLETE_DATA.
This contains details about the request handle
associated with this sampling frequency get request
and the termination status of the request.

USB_HOST_AUDIO_V1_STREAM_EVENT_DETACH This event occurs when an audio stream is
detached from the Host.This can happen if the
Audio device itself was detached, or if the Audio
device configuration was changed. There is no
event data associated with this event.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 384

Description

Audio v1.0 Stream Events

This enumeration identifies the possible events that the Audio v1.0 Stream can generate. The application should register an event handler using
the USB_HOST_AUDIO_V1_StreamEventHandlerSet function to receive Audio v1.0 stream events.

An event may have data associated with it. Events that are generated due to a transfer of data between the host and device are accompanied by
data structures that provide the status of the transfer termination. For example, the
USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE event is accompanied by a pointer to a
USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA data structure. The transferStatus member of this data structure indicates
the success or failure of the transfer. A transfer may fail due to the device not responding on the bus, or if the device stalls any stages of the
transfer. The event description provides details on the nature of the event and the data that is associated with the event.

USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER Type

USB Host Audio v1.0 Class Driver stream event handler function pointer type.

File

usb_host_audio_v1_0.h

C
typedef USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE (*
USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER)(USB_HOST_AUDIO_V1_STREAM_HANDLE handle,
USB_HOST_AUDIO_V1_STREAM_EVENT event, void * eventData, uintptr_t context);

Description

USB Host Audio v1.0 Class Driver Stream Event Handler Function Pointer Type.

This data type defines the required function signature of the USB Host Audio v1.0 Class Driver Stream event handling callback function. The
application must register a pointer to the Audio v1.0 Class Driver stream events handling function whose function signature (parameter and return
value types) match the types specified by this function pointer to receive event callbacks from the Audio v1.0 Class Driver. The application should
use the USB_HOST_AUDIO_V1_StreamEventHandlerSet function to register an audio stream event handler. The class driver will call this function
with the relevant event parameters. The descriptions of the stream event handler function parameters are as follows:

• handle - Handle to the Audio v1.0 stream

• event - Type of event generated

• eventData - This parameter should be type casted to an event specific pointer type based on the event that has occurred. Refer to the
USB_HOST_AUDIO_V1_STREAM_EVENT enumeration description for more information.

• context - Value identifying the context of the application that was registered with the event handling function

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE_DATA Structure

USB Host Audio v1.0 class stream control event data.

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_REQUEST_HANDLE requestHandle;
 USB_HOST_AUDIO_V1_RESULT requestStatus;
} USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE_DATA,
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA,
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_COMPLETE_DATA;

Members

Members Description

USB_HOST_AUDIO_V1_REQUEST_HANDLE
requestHandle;

Transfer handle of this transfer

USB_HOST_AUDIO_V1_RESULT requestStatus; Transfer termination status

Description

USB Host Audio v1.0 Class Stream Control Event Data.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 385

This data type defines the data structure returned by the Audio V1.0 stream in conjunction with the following events:

• USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE

• USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_SET_COMPLETE

• USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_GET_COMPLETE

Remarks

None.

USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK Type

USB Host Audio v1.0 Class Driver control transfer complete callback function pointer type.

File

usb_host_audio_v1_0.h

C
typedef void (* USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK)(USB_HOST_AUDIO_V1_0_OBJ audioObj,
USB_HOST_AUDIO_V1_0_REQUEST_HANDLE requestHandle, USB_HOST_AUDIO_V1_0_RESULT result, size_t size, uintptr_t
context);

Description

USB Host Audio v1.0 Class driver Control Transfer Complete Callback Function Pointer type

This data type defines the required function signature of the USB Host Audio v1.0 Class Driver control transfer complete callback function. The
client must provide a pointer to a control transfer complete callback function whose function signature (parameter and return value types) must
match the types specified by this function pointer to receive notification when a control transfer has completed. The pointer to the callback function
must be specified in USB_HOST_AUDIO_V1_0_ControlRequest function. The Audio v1.0 client driver will invoke this function with event relevant
parameters. The descriptions of the event handler function parameters are as follows:

• audioObj - Audio v1.0 client driver object associated with this event

• requestHandle - Request handle of the control transfer request that caused this event

• result - Completion result of the control transfer. This will be USB_HOST_AUDIO_V1_0_RESULT_SUCCESS if the control transfer completed
successfully, USB_HOST_AUDIO_V1_0_RESULT_FAILURE if an unknown failure occurred, or
USB_HOST_AUDIO_V1_0_RESULT_REQUEST_STALLED if the request was stalled.

size - Size of the data stage that was transferred context - Value identifying the context of the application that was provided when the
USB_HOST_AUDIO_V1_0_ControlRequest function was called.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA Structure

USB Host Audio v1.0 class stream data transfer event data.

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE transferHandle;
 size_t length;
 USB_HOST_AUDIO_V1_RESULT result;
} USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA, USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA;

Members

Members Description

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE
transferHandle;

Transfer handle of this transfer

size_t length; Amount of data transferred

USB_HOST_AUDIO_V1_RESULT result; Transfer termination status

Description

USB Host Audio v1.0 Class Stream Data Transfer Event Data.

This data type defines the data structure returned by the Audio V1.0 stream in conjunction with the following events:

• USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 386

• USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA

Remarks

None.

USB_HOST_AUDIO_V1_0_EVENT Macro

Identifies the possible events that the Audio v1.0 Class Driver can generate.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_EVENT USB_HOST_AUDIO_V1_EVENT

Description

Audio v1.0 Class Driver Events

This enumeration identifies the possible events that the Audio v1.0 Class Driver can generate. The application should register an event handler
using the USB_HOST_AUDIO_V1_0_AttachEventHandlerSet function to receive Audio v1.0 Class Driver events.

USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE Enumeration

Returns the type of the USB Host Audio v1.0 stream event handler.

File

usb_host_audio_v1_0.h

C
typedef enum {
 USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE_NONE
} USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE;

Members

Members Description

USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE_NONE This means no response is required

Description

USB Host Audio v1.0 Stream Event Handler Return Type

This enumeration lists the possible return values of the USB Host Audio v1.0 stream event handler.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA Structure

USB Host Audio v1.0 class stream control event data.

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_REQUEST_HANDLE requestHandle;
 USB_HOST_AUDIO_V1_RESULT requestStatus;
} USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE_DATA,
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA,
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_COMPLETE_DATA;

Members

Members Description

USB_HOST_AUDIO_V1_REQUEST_HANDLE
requestHandle;

Transfer handle of this transfer

USB_HOST_AUDIO_V1_RESULT requestStatus; Transfer termination status

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 387

Description

USB Host Audio v1.0 Class Stream Control Event Data.

This data type defines the data structure returned by the Audio V1.0 stream in conjunction with the following events:

• USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE

• USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_SET_COMPLETE

• USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_GET_COMPLETE

Remarks

None.

USB_HOST_AUDIO_V1_0_OBJ Macro

Defines the type of the Audio v1.0 Host client object.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_OBJ USB_HOST_AUDIO_V1_OBJ

Description

USB Host Audio v1.0 Object

This type defines the type of the Audio Host client object. This type is returned by the attach event handler and is used by the application to open
the attached Audio v1.0 Device.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA Structure

USB Host Audio v1.0 class stream data transfer event data.

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE transferHandle;
 size_t length;
 USB_HOST_AUDIO_V1_RESULT result;
} USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA, USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA;

Members

Members Description

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE
transferHandle;

Transfer handle of this transfer

size_t length; Amount of data transferred

USB_HOST_AUDIO_V1_RESULT result; Transfer termination status

Description

USB Host Audio v1.0 Class Stream Data Transfer Event Data.

This data type defines the data structure returned by the Audio V1.0 stream in conjunction with the following events:

• USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA

• USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA

Remarks

None.

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE Macro

USB Host Audio v1.0 Client Driver request handle.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 388

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_REQUEST_HANDLE USB_HOST_AUDIO_V1_REQUEST_HANDLE

Description

USB Host Audio v1.0 Client Driver Request Handle

This is returned by the Audio v1.0 Client Driver command routines and should be used by the application to track the command especially in cases
where transfers are queued.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_HANDLE Type

Defines the type of the Audio v1.0 Host stream handle.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_STREAM_HANDLE;

Description

USB Host Audio stream handle

This data type defines the type of the handle returned by USB_HOST_AUDIO_V1_StreamOpen function. The application uses this handle to
interact with an Audio Stream.

Remarks

None.

USB_HOST_AUDIO_V1_0_RESULT Enumeration

USB Host Audio v1.0 Class Driver audio result enumeration.

File

usb_host_audio_v1_0.h

C
typedef enum {
 USB_HOST_AUDIO_V1_0_RESULT_BUSY = USB_HOST_AUDIO_V1_0_RESULT_TRANSFER_ABORTED,
 USB_HOST_AUDIO_V1_0_RESULT_REQUEST_STALLED,
 USB_HOST_AUDIO_V1_0_RESULT_OBJ_INVALID,
 USB_HOST_AUDIO_V1_0_RESULT_END_OF_STREAM_LIST,
 USB_HOST_AUDIO_V1_0_RESULT_PARAMETER_INVALID,
 USB_HOST_AUDIO_V1_0_RESULT_DEVICE_UNKNOWN,
 USB_HOST_AUDIO_V1_0_RESULT_FAILURE,
 USB_HOST_AUDIO_V1_0_RESULT_FALSE = 0,
 USB_HOST_AUDIO_V1_0_RESULT_TRUE = 1,
 USB_HOST_AUDIO_V1_0_RESULT_SUCCESS = USB_HOST_RESULT_TRUE
} USB_HOST_AUDIO_V1_0_RESULT;

Members

Members Description

USB_HOST_AUDIO_V1_0_RESULT_BUSY =
USB_HOST_AUDIO_V1_0_RESULT_TRANSFER_ABORTED

The transfer or request could not be scheduled because internal

• queues are full. The request or transfer should be retried
USB_HOST_AUDIO_V1_0_RESULT_REQUEST_STALLED The request was stalled

USB_HOST_AUDIO_V1_0_RESULT_OBJ_INVALID The specified Audio v1.0 Object is Invalid

USB_HOST_AUDIO_V1_0_RESULT_END_OF_STREAM_LIST No more audio stream present in the Device

USB_HOST_AUDIO_V1_0_RESULT_PARAMETER_INVALID A required parameter was invalid

USB_HOST_AUDIO_V1_0_RESULT_DEVICE_UNKNOWN The specified device does not exist in the system

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 389

USB_HOST_AUDIO_V1_0_RESULT_FAILURE An unknown failure has occurred

USB_HOST_AUDIO_V1_0_RESULT_FALSE = 0 Indicates a false condition

USB_HOST_AUDIO_V1_0_RESULT_TRUE = 1 Indicate a true condition

USB_HOST_AUDIO_V1_0_RESULT_SUCCESS =
USB_HOST_RESULT_TRUE

Indicates that the operation succeeded or the request was accepted and will be
processed.

Description

USB Host Audio v1.0 Class Driver Result enumeration.

This enumeration lists the possible USB Host Audio v1.0 Class Driver operation results. These values are returned by Audio v1.0 Class Driver
functions.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE Type

USB Host Audio v1.0 Class Driver stream data transfer handle.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE;

Description

USB Host Audio v1.0 Class Driver Stream Data Transfer Handle

This handle is returned by the Audio v1.0 Class driver stream data transfer functions and should be used by the application to track the transfer,
especially in cases where transfers are queued.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_DIRECTION Macro

USB Host Audio v1.0 Class Driver stream direction.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_DIRECTION USB_HOST_AUDIO_V1_STREAM_DIRECTION

Description

USB Host Audio v1.0 Class Driver Stream Direction

This macro defines the stream direction of the USB Host Audio v1.0 Class Driver.

Remarks

None.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ Type

Defines the type of the Audio v1.0 Host streaming interface object.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ;

Description

USB Host Audio v1.0 Streaming interface Object

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 390

This data type defines the type of the Audio v1.0 Host streaming interface object. This type is returned by the
USB_AUDIO_V1_StreamingInterfaceGetFirst and USB_AUDIO_V1_StreamingInterfaceGetNext functions.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_EVENT Enumeration

Identifies the possible events that the Audio v1.0 stream can generate.

File

usb_host_audio_v1_0.h

C
typedef enum {
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE,
 USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE
} USB_HOST_AUDIO_V1_0_STREAM_EVENT;

Members

Members Description

USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE This event occurs when a Audio v1.0 stream read
operation has completed (i.e., when the data has been
received from the connected Audio v1.0 stream). This
event is generated after the application calls the
USB_HOST_AUDIO_V1_0_StreamRead function. The
eventData parameter in the event callback function will be
of a pointer to a
USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_CO
MPLETE_DATA
structure. This contains details about the transfer handle
associated with this read request, the amount of data read
and the termination status of the read request.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE This event occurs when an Audio v1.0 stream write
operation has completed (i.e., when the data has been
written to the connected Audio v1.0 stream). This event is
generated after the application calls the
USB_HOST_AUDIO_V1_0_StreamWrte function. The
eventData parameter in the event callback function will be
of a pointer to a
USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_C
OMPLETE_DATA
structure. This contains details about the transfer handle
associated with this write request, the amount of data
written and the termination status of the write request.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE This event occurs when an Audio v1.0 stream enable
request has been completed. This event is generated
after the application calls the
USB_HOST_AUDIO_V1_0_StreamEnable function. The
eventData parameter in the event callback function will be
of a pointer to a
USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_
COMPLETE_DATA.
This contains details about the request handle associated
with this stream enable request and the termination status
of the Stream Enable request.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE This event occurs when an Audio v1.0 stream disable
request has been completed. This event is generated
after the application calls the
USB_HOST_AUDIO_V1_0_StreamDisable function. The
eventData parameter in the event callback function will be
of a pointer to a
USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_
COMPLETE_DATA.
This contains details about the request handle associated
with this stream disable request and the termination status
of the Stream Disable request.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 391

USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE This event occurs when an Audio v1.0 sampling rate set
request has been completed. This event is generated
after the application calls the
USB_HOST_AUDIO_V1_0_StreamSamplingRateSet
function. The eventData parameter in the event callback
function will be of a pointer to a
USB_HOST_AUDIO_V1_0_STREAM_EVENT_SAMPLIN
G_RATE_SET_COMPLETE_DATA.
This contains details about the request handle associated
with this Sampling Rate Set request and the termination
status of the stream disable request.

Description

Audio v1.0 Stream Events

This enumeration identifies the possible events that the Audio v1.0 stream can generate. The application should register an event handler using
the USB_HOST_AUDIO_V1_0_StreamEventHandlerSet function to receive Audio v1.0 stream events.

An event may have data associated with it. Events that are generated due to a transfer of data between the Host and Device are accompanied by
data structures that provide the status of the transfer termination. For example, the
USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE event is accompanied by a pointer to a
USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA data structure. The transferStatus member of this data structure
indicates the success or failure of the transfer. A transfer may fail due to the Device not responding on the bus if the Device stalls any stages of the
transfer or due to NAK time-outs. The event description provides details on the nature of the event and the data that is associated with the event.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ Type

Defines the type of the Audio v1.0 Host streaming interface setting object.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ;

Description

USB Host Audio v1.0 Streaming Interface Setting Object

This data type defines the type of the Audio v1.0 Host streaming interface setting object. This type is returned by the
USB_AUDIO_V1_StreamingInterfaceSettingGetFirst and USB_AUDIO_V1_StreamingInterfaceSettingGetNext functions.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA Structure

USB Host Audio v1.0 class stream control event data.

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_0_REQUEST_HANDLE requestHandle;
 USB_HOST_AUDIO_V1_0_RESULT requestStatus;
} USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA,
USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA;

Members

Members Description

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE
requestHandle;

Transfer handle of this transfer

USB_HOST_AUDIO_V1_0_RESULT
requestStatus;

Transfer termination status

Description

USB Host Audio v1.0 Class Stream Control Event Data.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 392

This data type defines the data structure returned by the Audio V1.0 Client Driver in conjunction with the following events:

• USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA

• USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA Structure

USB Host Audio v1.0 class stream control event data.

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_0_REQUEST_HANDLE requestHandle;
 USB_HOST_AUDIO_V1_0_RESULT requestStatus;
} USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA,
USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA;

Members

Members Description

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE
requestHandle;

Transfer handle of this transfer

USB_HOST_AUDIO_V1_0_RESULT
requestStatus;

Transfer termination status

Description

USB Host Audio v1.0 Class Stream Control Event Data.

This data type defines the data structure returned by the Audio V1.0 Client Driver in conjunction with the following events:

• USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA

• USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER Type

USB Host Audio v1.0 Class Driver stream event handler function pointer type.

File

usb_host_audio_v1_0.h

C
typedef USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE (*
USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER)(USB_HOST_AUDIO_V1_0_STREAM_HANDLE handle,
USB_HOST_AUDIO_V1_0_STREAM_EVENT event, void * eventData, uintptr_t context);

Description

USB Host Audio v1.0 Class Driver Stream Event Handler Function Pointer Type.

This data type defines the required function signature of the USB Host Audio v1.0 Class Driver stream event handling callback function. The
application must register a pointer to a Audio v1.0 Class Driver stream events handling function whose function signature (parameter and return
value types) match the types specified by this function pointer to receive event call backs from the Audio v1.0 Class Driver. The class driver will
call this function with relevant event parameters. The descriptions of the event handler function parameters are as follows:

• handle - Handle to the Audio v1.0 stream

• event - Type of event generated

• eventData - This parameter should be type casted to an event specific pointer type based on the event that has occurred. Refer to the
USB_HOST_AUDIO_V1_0_STREAM_EVENT enumeration description for more information.

• context - Value identifying the context of the application that was registered with the event handling function

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 393

USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA Macro

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA
USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA

Description

This is macro USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE Macro

Returns the type of the USB Audio v1.0 Host Client Driver event handler.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE

Description

USB Host Audio v1.0 Event Handler Return Type

This enumeration lists the possible return values of the USB Audio v1.0 Host Client Driver event handler.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA Macro

USB Host Audio v1.0 class stream transfer event data.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA
USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA

Description

USB Host Audio v1.0 Class Stream Transfer Event Data.

This data type defines the data structure returned by the Audio V1.0 Client Driver in conjunction with the following events:

• USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA

• USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_HANDLE Macro

Defines the type of the Audio v1.0 Host stream handle.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_HANDLE USB_HOST_AUDIO_V1_STREAM_HANDLE

Description

USB Host Audio stream handle

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 394

This type defines the type of the handle returned by the USB_HOST_AUDIO_V1_0_StreamOpen function. This application uses this handle to
interact with an audio stream.

Remarks

None.

USB_HOST_AUDIO_V1_INTERFACE Macro

USB HOST Audio v1.0 Client Driver interface.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_INTERFACE

Description

USB HOST Audio V1 Client Driver Interface

This macro should be used by the application in the TPL table while adding support for the USB Audio v1.0 Host Client Driver.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_INFO Structure

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_0_STREAM_OBJ streamObj;
 USB_AUDIO_FORMAT_CODE format;
 USB_HOST_AUDIO_V1_0_STREAM_DIRECTION streamDirection;
 uint8_t nChannels;
 uint8_t subFrameSize;
 uint8_t bitResolution;
 uint8_t nSamplingRates;
 uint32_t tSamFreq[USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER];
} USB_HOST_AUDIO_V1_0_STREAM_INFO;

Members

Members Description

USB_HOST_AUDIO_V1_0_STREAM_OBJ streamObj; Audio Stream Object. Clients need to pass this object when
opening this audio stream using
USB_HOST_AUDIO_V1_0_StreamOpen function.

USB_AUDIO_FORMAT_CODE format; Audio Format code for this Stream

USB_HOST_AUDIO_V1_0_STREAM_DIRECTION streamDirection; Stream direction

uint8_t nChannels; Number of physical channels in the audio stream

uint8_t subFrameSize; Number of bytes occupied by one audio sub-frame

uint8_t bitResolution; Number of effectively used bits from the available bits in an audio
sub-frame

uint8_t nSamplingRates; Indicates how the sampling frequency can be programmed: 0:
Continuous sampling frequency 1..255: Number of discrete
sampling frequencies supported by Audio stream

uint32_t
tSamFreq[USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER];

Supported sampling Frequencies

Description

This is type USB_HOST_AUDIO_V1_0_STREAM_INFO.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 395

USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID Macro

USB Host Audio v1.0 Client Driver invalid request handle.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID ((USB_HOST_AUDIO_V1_REQUEST_HANDLE)(-1))

Description

USB Host Audio v1.0 Client Driver Invalid Request Handle

This handle is returned by the Audio v1.0 Client driver command routines when the request could not be scheduled.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_OBJ Type

Defines the type of the Audio v1.0 Host stream object.

File

usb_host_audio_v1_0.h

C
typedef uintptr_t USB_HOST_AUDIO_V1_0_STREAM_OBJ;

Description

USB Host Audio v1.0 Stream Object

This type defines the type of the Audio v1.0 Host stream object. This type is returned by USB_AUDIO_V1_0_StreamGetFirst and
USB_AUDIO_V1_0_StreamGetNext as part of USB_HOST_AUDIO_V1_0_STREAM_INFO structure.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_HANDLE_INVALID Macro

Defines Audio v1.0 Host stream invalid handle.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_STREAM_HANDLE_INVALID ((USB_HOST_AUDIO_V1_STREAM_HANDLE)(-1))

Description

USB Host Audio stream Invalid handle

This handle is returned by the USB_HOST_AUDIO_V1_StreamOpen function when a stream open has failed.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_RESULT Enumeration

USB Host Audio v1.0 stream result enumeration.

File

usb_host_audio_v1_0.h

C
typedef enum {

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 396

 USB_HOST_AUDIO_V1_0_STREAM_RESULT_REQUEST_BUSY = USB_HOST_RESULT_REQUEST_BUSY,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_TRANSFER_ABORTED,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_REQUEST_STALLED,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_END_OF_DEVICE_LIST,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_INTERFACE_UNKNOWN,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_PARAMETER_INVALID,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_CONFIGURATION_UNKNOWN,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_BUS_NOT_ENABLED,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_BUS_UNKNOWN,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_UNKNOWN,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_FALSE = 0,
 USB_HOST_AUDIO_V1_0_STREAM_RESULT_TRUE = 1,
 USB_HOST_AUDIO_V1_0_STREAM_SUCCESS = USB_HOST_RESULT_TRUE
} USB_HOST_AUDIO_V1_0_STREAM_RESULT;

Members

Members Description

USB_HOST_AUDIO_V1_0_STREAM_RESULT_REQUEST_BUSY =
USB_HOST_RESULT_REQUEST_BUSY

The transfer or request could not be scheduled because
internal

• queues are full. The request or transfer should be retried
USB_HOST_AUDIO_V1_0_STREAM_RESULT_TRANSFER_ABORTED Request was aborted

USB_HOST_AUDIO_V1_0_STREAM_RESULT_REQUEST_STALLED Request was stalled

USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID The specified Stream Handle is not valid

USB_HOST_AUDIO_V1_0_STREAM_RESULT_END_OF_DEVICE_LIST The end of the device list was reached.

USB_HOST_AUDIO_V1_0_STREAM_RESULT_INTERFACE_UNKNOWN The specified interface is not available

USB_HOST_AUDIO_V1_0_STREAM_RESULT_PARAMETER_INVALID A NULL parameter was passed to the function

USB_HOST_AUDIO_V1_0_STREAM_RESULT_CONFIGURATION_UNKNOWN The specified configuration does not exist on this device.

USB_HOST_AUDIO_V1_0_STREAM_RESULT_BUS_NOT_ENABLED A bus operation was requested but the bus was not operated

USB_HOST_AUDIO_V1_0_STREAM_RESULT_BUS_UNKNOWN The specified bus does not exist in the system

USB_HOST_AUDIO_V1_0_STREAM_RESULT_UNKNOWN The specified audio stream does not exist in the system

USB_HOST_AUDIO_V1_0_STREAM_RESULT_FAILURE An unknown failure has occurred

USB_HOST_AUDIO_V1_0_STREAM_RESULT_FALSE = 0 Indicates a false condition

USB_HOST_AUDIO_V1_0_STREAM_RESULT_TRUE = 1 Indicate a true condition

USB_HOST_AUDIO_V1_0_STREAM_SUCCESS =
USB_HOST_RESULT_TRUE

Indicates that the operation succeeded or the request was
accepted and will be processed.

Description

USB Host Audio v1.0 Stream Result enumeration.

This enumeration lists the possible USB Host Audio v1.0 stream operation results. These values are returned by Audio v1.0 stream functions.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE_INVALID Macro

USB Host Audio v1.0 Class Driver invalid stream data transfer handle.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE_INVALID ((USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE)(-1))

Description

USB Host Audio v1.0 Class Driver Invalid Stream Data Transfer Handle Definition

This macro defines a USB Host Audio v1.0 Class Driver invalid stream data transfer handle. An invalid transfer handle is returned by the Audio
v1.0 Class Driver stream data transfer routines when the request was not successful.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 397

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE Macro

USB Host Audio v1.0 Class Driver transfer handle.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE

Description

USB Host Audio v1.0 Class Driver Transfer Handle

This is returned by the Audio v1.0 Class Driver command and data transfer routines and should be used by the application to track the transfer
especially in cases where transfers are queued.

Remarks

None.

USB_HOST_AUDIO_V1_0_INTERFACE Macro

USB HOST Audio Client Driver interface.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_INTERFACE (void*)USB_HOST_AUDIO_V1_INTERFACE

Description

USB HOST Audio Client Driver Interface

This macro should be used by the application in the TPL table while adding support for the USB Audio Host Client Driver.

Remarks

None.

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID Macro

USB Host Audio v1.0 Client Driver invalid request handle.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID ((USB_HOST_AUDIO_V1_0_REQUEST_HANDLE)(-1))

Description

USB Host Audio v1.0 Client Driver Invalid Request Handle

This is returned by the Audio v1.0 Client Driver command routines when the request could not be scheduled.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID Macro

Defines the type of the Audio v1.0 Host stream invalid handle.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID USB_HOST_AUDIO_V1_STREAM_HANDLE_INVALID

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 398

Description

USB Host Audio stream Invalid handle

This is returned by the USB_HOST_AUDIO_V1_0_StreamOpen function when a stream open request has failed.

Remarks

None.

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE_INVALID Macro

USB Host Audio v1.0 Class Driver invalid transfer handle definition.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE_INVALID USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE_INVALID

Description

USB Host Audio v1.0 Class Driver Invalid Transfer Handle Definition

This macro defines a USB Host Audio v1.0 Class Driver invalid transfer handle. A invalid transfer handle is returned by the Audio v1.0 Class Driver
data and command transfer routines when the request was not successful.

Remarks

None.

USB_HOST_AUDIO_V1_0_AttachEventHandlerSet Macro

Sets an attach/detach event handler.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_AttachEventHandlerSet USB_HOST_AUDIO_V1_AttachEventHandlerSet

Returns

• USB_HOST_AUDIO_V1_0_RESULT_SUCCESS - if the attach event handler was registered

successfully

• USB_HOST_AUDIO_V1_0_RESULT_FAILURE - if the number of registered event

handlers has exceeded USB_HOST_AUDIO_V1_0_ATTACH_LISTENERS_NUMBER

Description

This function will set an attach event handler. The attach event handler will be called when a Audio v1.0 device has been attached or detached.
The context will be returned in the event handler. This function should be called before the bus has been enabled.

Remarks

This function should be called before the USB_HOST_BusEnable function is called.

Preconditions

None.

Parameters

Parameters Description

eventHandler Pointer to the attach event handler

context An application defined context that will be returned in the event handler

Function

USB_HOST_AUDIO_V1_0_RESULT USB_HOST_AUDIO_V1_0_AttachEventHandlerSet

(

USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER eventHandler,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 399

uintptr_t context

);

USB_HOST_AUDIO_V1_0_DeviceObjHandleGet Macro

Returns the device object handle for this Audio v1.0 Device.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_DeviceObjHandleGet USB_HOST_AUDIO_V1_DeviceObjHandleGet

Returns

This function will return a valid device object handle if the device is still connected to the system. Otherwise,
USB_HOST_DEVICE_OBJ_HANDLE_INVALID is returned.

Description

This function returns the device object handle for this Audio v1.0 Device. This returned device object handle can be used by the application to
perform device-level operations such as getting the string descriptors.

Remarks

None.

Preconditions

None.

Parameters

Parameters Description

audioDeviceObj Audio V1.0 device object handle returned in the
USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER function.

Function

USB_HOST_DEVICE_OBJ_HANDLE USB_HOST_AUDIO_V1_0_DeviceObjHandleGet

(

USB_HOST_AUDIO_V1_0_OBJ audioDeviceObj

);

USB_HOST_AUDIO_V1_0_DIRECTION_IN Macro

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_DIRECTION_IN USB_HOST_AUDIO_V1_DIRECTION_IN

Description

This is macro USB_HOST_AUDIO_V1_0_DIRECTION_IN.

USB_HOST_AUDIO_V1_0_DIRECTION_OUT Macro

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_DIRECTION_OUT USB_HOST_AUDIO_V1_DIRECTION_OUT

Description

This is macro USB_HOST_AUDIO_V1_0_DIRECTION_OUT.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 400

USB_HOST_AUDIO_V1_0_EVENT_ATTACH Macro

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_EVENT_ATTACH USB_HOST_AUDIO_V1_EVENT_ATTACH

Description

This is macro USB_HOST_AUDIO_V1_0_EVENT_ATTACH.

USB_HOST_AUDIO_V1_0_EVENT_DETACH Macro

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_EVENT_DETACH USB_HOST_AUDIO_V1_EVENT_DETACH

Description

This is macro USB_HOST_AUDIO_V1_0_EVENT_DETACH.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE Macro

Returns the type of the USB Host Audio v1.0 stream event handler.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE_NONE

Description

USB Host Audio v1.0 Stream Event Handler Return Type

This enumeration lists the possible return values of the USB Host Audio v1.0 stream event handler.

Remarks

None.

USB_HOST_AUDIO_V1_0_StreamClose Macro

Closes the audio stream.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_StreamClose USB_HOST_AUDIO_V1_StreamClose

Returns

None.

Description

This function will close the open audio stream. This closes the association between the application entity that opened the audio stream and the
audio stream. The audio stream handle becomes invalid.

Remarks

The device handle becomes invalid after calling this function.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 401

Preconditions

None.

Parameters

Parameters Description

audioSteamHandle handle to the audio stream obtained from the USB_HOST_AUDIO_V1_0_StreamOpen
function.

Function

void USB_HOST_AUDIO_V1_0_StreamClose

(

USB_HOST_AUDIO_V1_0_STREAM_HANDLE audioSteamHandle

);

USB_HOST_AUDIO_V1_0_StreamOpen Macro

Opens the specified audio stream.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_0_StreamOpen USB_HOST_AUDIO_V1_StreamOpen

Returns

This function will return a valid handle if the audio stream could be opened successfully; otherwise, it will return
USB_HOST_AUDIO_V1_0_STREAM_RESULT_HANDLE_INVALID. The function will return a valid handle if the stream is ready to be opened.

Description

This function will open the specified audio stream. Once opened, the audio stream can be accessed via the handle which this function returns. The
audioStreamObj parameter is the value returned in the USB_HOST_AUDIO_V1_0_StreamGetFirst or USB_HOST_AUDIO_V1_0_StreamGetNext
functions.

Remarks

None.

Preconditions

The audio stream object should be valid.

Parameters

Parameters Description

audioStreamObj Audio stream object

Section

Audio Stream Access Functions

**

**

**

Function

USB_HOST_AUDIO_V1_0_STREAM_HANDLE USB_HOST_AUDIO_V1_0_StreamOpen

(

USB_HOST_AUDIO_V1_0_STREAM_OBJ audioStreamObj

);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 402

USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER Macro

This structure defines USB Host audio stream information structure.

File

usb_host_audio_v1_0.h

C
#define USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER USB_HOST_AUDIO_V1_0_SAMPLING_FREQUENCIES_NUMBER

Description

USB Host Audio stream Info table structure

This structure is an out parameter to the functions USB_HOST_AUDIO_V1_0_StreamGetFirst and USB_HOST_AUDIO_V1_0_StreamGetNext
functions. This structure contains information about an audio stream in the attached Audio Device. This structure contains the stream object, audio
format, etc.

Remarks

None.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_COMPLETE_DATA Structure

USB Host Audio v1.0 class stream control event data.

File

usb_host_audio_v1_0.h

C
typedef struct {
 USB_HOST_AUDIO_V1_REQUEST_HANDLE requestHandle;
 USB_HOST_AUDIO_V1_RESULT requestStatus;
} USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE_DATA,
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA,
USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_COMPLETE_DATA;

Members

Members Description

USB_HOST_AUDIO_V1_REQUEST_HANDLE
requestHandle;

Transfer handle of this transfer

USB_HOST_AUDIO_V1_RESULT requestStatus; Transfer termination status

Description

USB Host Audio v1.0 Class Stream Control Event Data.

This data type defines the data structure returned by the Audio V1.0 stream in conjunction with the following events:

• USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE

• USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_SET_COMPLETE

• USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_FREQUENCY_GET_COMPLETE

Remarks

None.

Files

Files

Name Description

usb_host_audio_v1_0.h USB Host Audio v1_0 Class Driver Interface Header

usb_host_audio_v1_0_config_template.h USB host Audio v1.0 Class configuration definitions template

Description

This section lists the source and header files used by the library.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 403

usb_host_audio_v1_0.h

USB Host Audio v1_0 Class Driver Interface Header

Enumerations

Name Description

USB_HOST_AUDIO_V1_0_RESULT USB Host Audio v1.0 Class Driver audio result enumeration.

USB_HOST_AUDIO_V1_0_STREAM_EVENT Identifies the possible events that the Audio v1.0 stream can generate.

USB_HOST_AUDIO_V1_0_STREAM_RESULT USB Host Audio v1.0 stream result enumeration.

USB_HOST_AUDIO_V1_EVENT Identifies the possible events that the Audio v1.0 Class Driver attach
event handler can generate.

USB_HOST_AUDIO_V1_RESULT USB Host Audio v1.0 Class Driver result enumeration.

USB_HOST_AUDIO_V1_STREAM_DIRECTION USB Host Audio v1.0 Class Driver stream direction.

USB_HOST_AUDIO_V1_STREAM_EVENT Identifies the possible events that the Audio v1.0 Stream can generate.

USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE Returns the type of the USB Host Audio v1.0 stream event handler.

Functions

Name Description

USB_HOST_AUDIO_V1_0_ControlRequest Schedules an Audio v1.0 control transfer.

USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet Gets the number of stream groups present in the
attached Audio v1.0 Device.

USB_HOST_AUDIO_V1_0_StreamDisable Schedules an audio stream disable request for the
specified audio stream.

USB_HOST_AUDIO_V1_0_StreamEnable Schedules an audio stream enable request for the
specified audio stream.

USB_HOST_AUDIO_V1_0_StreamEventHandlerSet Registers an event handler with the Audio v1.0
Client Driver stream.

USB_HOST_AUDIO_V1_0_StreamGetFirst Returns information about first audio stream in the
specified audio stream group.

USB_HOST_AUDIO_V1_0_StreamGetNext Returns information about the next audio stream in
the specified audio stream group.

USB_HOST_AUDIO_V1_0_StreamRead Schedules an audio stream read request for the
specified audio stream.

USB_HOST_AUDIO_V1_0_StreamSamplingRateSet Schedules an audio stream set sampling rate
request for the specified audio stream.

USB_HOST_AUDIO_V1_0_StreamWrite Schedules an audio stream write request for the
specified audio stream.

USB_HOST_AUDIO_V1_AttachEventHandlerSet Sets an attach/detach event handler.

USB_HOST_AUDIO_V1_ControlEntityGetFirst Retrieves the handle to the first audio control entity

USB_HOST_AUDIO_V1_ControlEntityGetNext Retrieves the handle to the next audio control entity.

USB_HOST_AUDIO_V1_DeviceObjHandleGet Returns the device object handle for this Audio v1.0
Device.

USB_HOST_AUDIO_V1_EntityObjectGet Retrieves the entity object for the entity ID.

USB_HOST_AUDIO_V1_EntityRequestCallbackSet Registers an audio entity request callback function
with the Audio v1.0 Client Driver.

USB_HOST_AUDIO_V1_EntityTypeGet Returns the entity type of the audio control entity.

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists Returns "true" if mute control exists for the specified
channel of the feature unit.

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteGet Schedules a get mute control request to the
specified channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteSet Schedules a set mute control request to the
specified channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelNumbersGet Returns the number of channels.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists Returns "true" if volume control exists for the
specified channel of the feature unit.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeGet Schedules a get current volume control request to
the specified channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeRangeGet Schedules a control request to the Audio Device
feature unit to get the range supported by the
volume control on the specified channel.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 404

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSet Schedules a set current volume control request to
the specified channel.

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbersGet Schedules a control request to an Audio Device
feature unit to get the number of sub-ranges
supported by the volume control on the specified
channel.

USB_HOST_AUDIO_V1_FeatureUnitIDGet Returns ID of the Feature Unit.

USB_HOST_AUDIO_V1_FeatureUnitSourceIDGet Returns the ID of the unit or terminal to which this
feature unit is connected.

USB_HOST_AUDIO_V1_StreamClose Closes the audio stream.

USB_HOST_AUDIO_V1_StreamEventHandlerSet Registers an event handler with the Audio v1.0
Client Driver stream.

USB_HOST_AUDIO_V1_StreamingInterfaceBitResolutionGet Returns the bit resolution of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceChannelNumbersGet Returns the number of channels of the specified
streaming interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceDirectionGet Returns the direction of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceFormatTagGet Returns the format tag of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst Gets the first streaming interface object from the
attached Audio Device.

USB_HOST_AUDIO_V1_StreamingInterfaceGetNext Gets the next streaming interface object from the
attached Audio Device.

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequenciesGet Returns the sampling frequencies supported by the
specified streaming interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequencyTypeGet Returns the sampling frequency type of the
specified streaming interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceSet Schedules a SET_INTERFACE request to the
specified audio stream.

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetFirst Gets the first streaming interface setting object
within an audio streaming interface.

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetNext Gets the next streaming interface setting object
within an audio streaming interface.

USB_HOST_AUDIO_V1_StreamingInterfaceSubFrameSizeGet Returns the sub-frame size of the specified
streaming interface setting.

USB_HOST_AUDIO_V1_StreamingInterfaceTerminalLinkGet Returns the terminal link of the specified streaming
interface setting.

USB_HOST_AUDIO_V1_StreamOpen Opens the specified audio stream.

USB_HOST_AUDIO_V1_StreamRead Schedules an audio stream read request for the
specified audio stream.

USB_HOST_AUDIO_V1_StreamSamplingFrequencyGet Schedules an audio stream get sampling rate
request for the specified audio stream.

USB_HOST_AUDIO_V1_StreamSamplingFrequencySet Schedules an audio stream set sampling rate
request for the specified audio stream.

USB_HOST_AUDIO_V1_StreamWrite Schedules an audio stream write request for the
specified audio stream.

USB_HOST_AUDIO_V1_TerminalAssociationGet Returns the associated terminal ID of the audio
control terminal.

USB_HOST_AUDIO_V1_TerminalIDGet Returns the terminal ID of the audio control entity.

USB_HOST_AUDIO_V1_TerminalInputChannelConfigGet Returns a structure that describes the spatial
location of the logical channels of in the terminal's
output audio channel cluster.

USB_HOST_AUDIO_V1_TerminalInputChannelNumbersGet Returns the number of logical output channels in the
terminal's output audio channel cluster.

USB_HOST_AUDIO_V1_TerminalSourceIDGet Returns the ID of the unit or terminal to which this
terminal is connected.

USB_HOST_AUDIO_V1_TerminalTypeGet Returns the terminal type of the audio control entity.

Macros

Name Description

USB_HOST_AUDIO_V1_0_AttachEventHandlerSet Sets an attach/detach event handler.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 405

USB_HOST_AUDIO_V1_0_DeviceObjHandleGet Returns the device object handle for this Audio v1.0
Device.

USB_HOST_AUDIO_V1_0_DIRECTION_IN This is macro
USB_HOST_AUDIO_V1_0_DIRECTION_IN.

USB_HOST_AUDIO_V1_0_DIRECTION_OUT This is macro
USB_HOST_AUDIO_V1_0_DIRECTION_OUT.

USB_HOST_AUDIO_V1_0_EVENT Identifies the possible events that the Audio v1.0
Class Driver can generate.

USB_HOST_AUDIO_V1_0_EVENT_ATTACH This is macro
USB_HOST_AUDIO_V1_0_EVENT_ATTACH.

USB_HOST_AUDIO_V1_0_EVENT_DETACH This is macro
USB_HOST_AUDIO_V1_0_EVENT_DETACH.

USB_HOST_AUDIO_V1_0_INTERFACE USB HOST Audio Client Driver interface.

USB_HOST_AUDIO_V1_0_OBJ Defines the type of the Audio v1.0 Host client object.

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE USB Host Audio v1.0 Client Driver request handle.

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID USB Host Audio v1.0 Client Driver invalid request
handle.

USB_HOST_AUDIO_V1_0_STREAM_DIRECTION USB Host Audio v1.0 Class Driver stream direction.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA This is macro
USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ
_COMPLETE_DATA.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE Returns the type of the USB Audio v1.0 Host Client
Driver event handler.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE Returns the type of the USB Host Audio v1.0 stream
event handler.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA USB Host Audio v1.0 class stream transfer event
data.

USB_HOST_AUDIO_V1_0_STREAM_HANDLE Defines the type of the Audio v1.0 Host stream
handle.

USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID Defines the type of the Audio v1.0 Host stream
invalid handle.

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE USB Host Audio v1.0 Class Driver transfer handle.

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE_INVALID USB Host Audio v1.0 Class Driver invalid transfer
handle definition.

USB_HOST_AUDIO_V1_0_StreamClose Closes the audio stream.

USB_HOST_AUDIO_V1_0_StreamOpen Opens the specified audio stream.

USB_HOST_AUDIO_V1_INTERFACE USB HOST Audio v1.0 Client Driver interface.

USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID USB Host Audio v1.0 Client Driver invalid request
handle.

USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER This structure defines USB Host audio stream
information structure.

USB_HOST_AUDIO_V1_STREAM_HANDLE_INVALID Defines Audio v1.0 Host stream invalid handle.

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE_INVALID USB Host Audio v1.0 Class Driver invalid stream
data transfer handle.

Structures

Name Description

USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_0_STREAM_INFO This is type
USB_HOST_AUDIO_V1_0_STREAM_
INFO.

USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA USB Host Audio v1.0 class stream
data transfer event data.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA USB Host Audio v1.0 class stream
control event data.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 406

USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA USB Host Audio v1.0 class stream
data transfer event data.

Types

Name Description

USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER USB Host Audio v1.0 Client Driver attach event handler
function pointer type.

USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK USB Host Audio v1.0 Class Driver control transfer complete
callback function pointer type.

USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER USB Host Audio v1.0 Class Driver stream event handler
function pointer type.

USB_HOST_AUDIO_V1_0_STREAM_OBJ Defines the type of the Audio v1.0 Host stream object.

USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER USB Host Audio v1.0 Client Driver attach event handler
function pointer type.

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ Defines the type of the Audio v1.0 Host control entity object.

USB_HOST_AUDIO_V1_ENTITY_REQUEST_CALLBACK USB Host Audio v1.0 class driver control transfer complete
callback function pointer type.

USB_HOST_AUDIO_V1_OBJ Defines the type of the Audio v1.0 Host client object.

USB_HOST_AUDIO_V1_REQUEST_HANDLE USB Host Audio v1.0 Client Driver request handle.

USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER USB Host Audio v1.0 Class Driver stream event handler
function pointer type.

USB_HOST_AUDIO_V1_STREAM_HANDLE Defines the type of the Audio v1.0 Host stream handle.

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE USB Host Audio v1.0 Class Driver stream data transfer
handle.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ Defines the type of the Audio v1.0 Host streaming interface
object.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ Defines the type of the Audio v1.0 Host streaming interface
setting object.

Description

USB Host Audio v1.0 Class Driver Interface Definition

This header file contains the function prototypes and definitions of the data types and constants that make up the interface to the USB Host Audio
v1.0 Class Driver.

File Name

usb_host_audio_v1_0.h

Company

Microchip Technology Inc.

usb_host_audio_v1_0_config_template.h

USB host Audio v1.0 Class configuration definitions template

Macros

Name Description

USB_HOST_AUDIO_V1_ATTACH_LISTENERS_NUMBER Defines the number of attach event
listeners that can be registered with
Audio v1.0 Host Client Driver.

USB_HOST_AUDIO_V1_INSTANCES_NUMBER Specifies the number of Audio v1.0
instances.

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_ALTERNATE_SETTINGS_NUMBER Defines maximum number of
alternate settings per Streaming
interface provided by any Device that
will be connected to this Audio Host.

USB_HOST_AUDIO_V1_STREAMING_INTERFACES_NUMBER Defines the maximum number of
streaming interfaces could be present
in an Audio v1.0 device that this
Audio v1.0 Host Client Driver can
support.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 407

Description

USB Host Audio v1.0 Class Configuration Definitions

This file contains configurations macros needed to configure the Audio v1.0 host Driver. This file is a template file only. It should not be included by
the application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_host_cdc_config_template.h

Company

Microchip Technology Inc.

USB CDC Host Library

This section describes the USB CDC Host Library.

Introduction

Introduces the MPLAB Harmony USB CDC Host Library.

Description

The CDC Host Client Driver in the MPLAB Harmony USB Host Stack allows USB Host applications to support and interact with Communications
Device Class (CDC) USB devices. The CDC Host Client Driver has the following features:

• Supports CDC ACM devices

• Supports CDC device matching at both the device descriptor and interface descriptor level

• Supports composite CDC devices (multiple CDC interfaces or CDC with other device classes)

• Designed to support multi-client operation

• RTOS ready

• An event driver non-clocking application interaction model

• Allows the application to send CDC ACM commands to the device

• Supports queuing of read and write data transfers

Using the Library

This topic describes the basic architecture of the USB CDC Host Client Driver Library and provides information and examples on its use.

Abstraction Model

Describes the Abstraction Model of the USB CDC Host Client Driver Library.

Description

The CDC Host Client Driver interacts with the Host Layer to control the attached CDC device. The USB Host Layer attaches the CDC Host Client
Driver to the CDC device when it meets the matching criteria specified in the USB Host TPL table. The CDC Host Client Driver abstracts the
details of sending CDC class specific control transfer commands by providing easy to use non-blocking API to send these command. A command,
when issued, is assigned a request handle. This request handle is returned in the event that is generated when the command has been
processed, and can be used by the application to track the command. The class specific command functions are implemented in
usb_host_cdc_acm.c.

While transferring data over the data interface, the CDC Host Client Driver abstracts details such as the bulk interface, endpoints and endpoint
size. The CDC Host Client Driver internally (and without application intervention) validates the CDC class specific device descriptors and opens
communication pipes. While transferring data, multiple read and write requests can be queued. Each such request gets assigned a transfer
handle. The transfer handle for a transfer request is returned along with the completion event for that transfer request. The data transfer routines
are implemented in usb_host_cdc.c.

Library Overview

The USB CDC Host Client Driver API is grouped functionally, as shown in the following table.

Library Interface
Section

Description

Client Access Functions These functions allow application clients to open, close the client and register event handlers. These functions are
implemented in usb_host_cdc.c.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 408

Data Transfer Functions These functions allow the application client to transfer data to the attached device. These functions are implemented
in usb_host_cdc.c.

CDC Class-specific
Command Functions

These functions allow the application to send class specific control transfer requests to the application. These
functions are implemented in usb_host_cdc_acm.c.

How the Library Works

Describes how the Library works and how it should be used.

Description

The CDC Host Client Driver provides the user application with an easy-to-use interface to the attached CDC device. The USB Host Layer
initializes the CDC Host Client Driver when a device is attached. This process does not require application intervention.

The following sections describe the steps and methods required for the user application to interact with the attached devices:

• TPL Table Configuration for CDC Devices

• Detecting Device Attach

• Opening the CDC Host Client Driver

• Sending Class-specific Control Transfers

• Reading and Writing Data

• Event Handling

TPL Table Configuration for CDC Devices

Provides information on configuring the TPL table for CDC devices.

Description

The Host Layer attaches the CDC Host Client Driver to a device when the device class, subclass, protocol in the device descriptor or when the
class, subclass and protocol fields in the Interface Association Descriptor (IAD) or Interface descriptor matches the entry in the TPL table. When
specifying the entry for the CDC device, the entry for the CDC device, the driver interface must be set to USB_HOST_CDC_INTERFACE. This will
attach the CDC Host Client Driver to the device when the USB Host matches the TPL entry to the device. The following code shows possible TPL
table options for matching CDC Devices.

Example:
/* This code shows an example of TPL table entries for supporting CDC
 * devices. Note the driver interface is set to USB_HOST_CDC_INTERFACE. This
 * will load the CDC Host Client Driver when there is TPL match */

const USB_HOST_TPL_ENTRY USBTPList[1] =
{
 /* This entry looks for any CDC device. The CDC Host Client Driver will
 * check if this is an ACM device and will then load itself */
 TPL_INTERFACE_CLASS_SUBCLASS_PROTOCOL(USB_CDC_CLASS_CODE, USB_CDC_SUBCLASS_CODE, 0x0 , NULL,
USB_HOST_CDC_INTERFACE),

 /* This entry looks specifically for the communications class protocol.
 * This entry should be used if the host application is expected to support
 * CDC as a part of an composite device */
 TPL_INTERFACE_CLASS_SUBCLASS_PROTOCOLUSB_CDC_COMMUNICATIONS_INTERFACE_CLASS_CODE,
USB_CDC_SUBCLASS_ABSTRACT_CONTROL_MODEL, USB_CDC_PROTOCOL_AT_V250 , NULL, USB_HOST_CDC_INTERFACE),

};

Detecting Device Attach

Describes how to register an Attach Event Handler.

Description

The application will need to know when a CDC Device is attached. To receive this attach event from the CDC Host Client Driver, the application
must register an Attach Event Handler by calling the USB_HOST_CDC_AttachEventHandlerSet function. This function should be called before the
USB_HOST_BusEnable function is called, else the application may miss CDC attach events. It can be called multiple times to register multiple
event handlers, each for different application clients that need to know about CDC Device Attach events.

The total number of event handlers that can be registered is defined by USB_HOST_CDC_ATTACH_LISTENERS_NUMBER configuration option
in system_config.h. When a device is attached, the CDC Host Client Driver will send the attach event to all the registered event handlers. In

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 409

this event handler, the CDC Host Client Driver will pass a USB_HOST_CDC_OBJ that can be opened to gain access to the device. The following
code shows an example of how to register attach event handlers.

Example:
/* This code shows an example of CDC Attach Event Handler and how this
 * attach event handler can be registered with the CDC Host Client Driver */

void APP_USBHostCDCAttachEventListener(USB_HOST_CDC_OBJ cdcObj, uintptr_t context)
{
 /* This function gets called when the CDC device is attached. In this
 * example we let the application know that a device is attached and we
 * store the CDC device object. This object will be required to open the
 * device. */

 appData.deviceIsAttached = true;
 appData.cdcObj = cdcObj;
}

void APP_Tasks(void)
{
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* In this state the application enables the USB Host Bus. Note
 * how the CDC Attach event handler is registered before the bus
 * is enabled. */

 USB_HOST_CDC_AttachEventHandlerSet(APP_USBHostCDCAttachEventListener, (uintptr_t) 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 /* Here we wait for the bus enable operation to complete. */
 break;
 }
}

Opening the CDC Host Client Driver

Describes how an application can open the CDC Host Client Driver.

Description

The application must open the CDC Host Client Driver to communicate and control the attached device. The device can be opened by using the
USB_HOST_CDC_Open function and specifying the USB_HOST_CDC_OBJ object that was returned in the attached event handler. If the open
function fails, it returns an invalid handle (USB_HOST_CDC_HANDLE_INVALID). Once opened successfully, a valid handle tracks the relationship
between the client and the CDC Host Client Driver. This handle should be used with other CDC Host Client Driver functions to specify the instance
of the CDC Host Client Driver being accessed.

A CDC Host Client Driver instance can be opened multiple times by different application clients. In an ROTS based application each client could
running its own thread. Multiple clients can read write data to the one CDC device. In such a case, the read and write requests are queued. The
following code shows an example of how the CDC Driver is opened.

Example:
/* This code shows an example of the how to open the CDC Host Client
 * driver. The application state machine waits for a device attach and then
 * opens the CDC Host Client Driver. */

void APP_USBHostCDCAttachEventListener(USB_HOST_CDC_OBJ cdcObj, uintptr_t context)
{
 /* This function gets called when the CDC device is attached. Update the
 * application data structure to let the application know that this device
 * is attached */

 appData.deviceIsAttached = true;
 appData.cdcObj = cdcObj;
}

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 410

void APP_Tasks(void)
{
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* In this state the application enables the USB Host Bus. Note
 * how the CDC Attach event handler are registered before the bus
 * is enabled. */

 USB_HOST_EventHandlerSet(APP_USBHostEventHandler, (uintptr_t)0);
 USB_HOST_CDC_AttachEventHandlerSet(APP_USBHostCDCAttachEventListener, (uintptr_t) 0);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:

 /* In this state we wait for the Bus enable to complete */
 if(USB_HOST_BusIsEnabled(0))
 {
 appData.state = APP_STATE_WAIT_FOR_DEVICE_ATTACH;
 }
 break;

 case APP_STATE_WAIT_FOR_DEVICE_ATTACH:

 /* In this state the application is waiting for the device to be
 * attached */
 if(appData.deviceIsAttached)
 {
 /* A device is attached. We can open this device */
 appData.state = APP_STATE_OPEN_DEVICE;
 appData.deviceIsAttached = false;
 }
 break;

 case APP_STATE_OPEN_DEVICE:

 /* In this state the application opens the attached device */
 appData.cdcHostHandle = USB_HOST_CDC_Open(appData.cdcObj);
 if(appData.cdcHostHandle != USB_HOST_CDC_HANDLE_INVALID)
 {
 /* The driver was opened successfully. Set the event handler
 * and then go to the next state. */
 USB_HOST_CDC_EventHandlerSet(appData.cdcHostHandle,
 APP_USBHostCDCEventHandler,
 (uintptr_t)0);
 appData.state = APP_STATE_SET_LINE_CODING;
 }
 break;

 default:
 break;
 }
}

Sending Class-specific Control Transfers

Describes how the application client can send CDC Class-specific commands to the connected device.

Description

The CDC Host Client Driver allows the application client to send CDC Class specific commands to the connected device. These commands allows
the application client to:

• Set the device line coding (USB_HOST_CDC_LineCodingSet)

• Retrieve the device line coding (USB_HOST_CDC_LineCodingGet)

• Set the device control line state (USB_HOST_CDC_ControlLineStateSet)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 411

• Ask the device to send a break signal (USB_HOST_CDC_BreakSend)

These functions are non-blocking. The functions will return before the actual command execution is complete. The return value indicates if the
command was scheduled successfully, or if the driver is busy and cannot accept commands, or if the command failed due to an unknown reason.
If the command failed because the driver was busy, it can be retried. If scheduled successfully, the function will return a valid request handle. This
request handle is unique and tracks the requested command.

When the command related control transfer has completed, the CDC Host Client Driver generates a command specific completion event. This
event is accompanied by a data structure that contains information about the completion of the command. The request handler generated at the
time of calling the command request function is also returned along with the event. The request handle expires after the event handler exits. The
following tables show the command functions, along with the respective events and the type of the event related data.

Table 1: Set Line Coding

Function USB_HOST_CDC_ACM_LineCodingSet

Event USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE

Event Data Type USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA

Table 2: Get Line Coding

Function USB_HOST_CDC_ACM_LineCodingGet

Event USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE

Event Data Type USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA

Table 3: Set Control Line State

Function USB_HOST_CDC_ACM_ControlLineStateSet

Event USB_HOST_CDC_EVENT_ACM_CONTROL_LINE_STATE_SET_COMPLETE

Event Data Type USB_HOST_CDC_EVENT_ACM_CONTROL_LINE_STATE_SET_COMPLETE _DATA

Table 4: Send Break

Function USB_HOST_CDC_ACM_SendBreak

Event USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE

Event Data Type USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE _DATA

The following code shows an example of sending a CDC class specific commands. Refer to the Event Handling section for details on setting the
event handler function.

Example:
/* This code shows an example of how to send CDC Class specific command
 * requests. The event handling related to each command is also shown. */

USB_HOST_CDC_EVENT_RESPONSE APP_USBHostCDCEventHandler
(
 USB_HOST_CDC_HANDLE cdcHandle,
 USB_HOST_CDC_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 /* This function is called when a CDC Host event has occurred. A pointer to
 * this function is registered after opening the device. See the call to
 * USB_HOST_CDC_EventHandlerSet() function. */

 USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA * setLineCodingEventData;
 USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA * setControlLineStateEventData;
 USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA * writeCompleteEventData;
 USB_HOST_CDC_EVENT_READ_COMPLETE_DATA * readCompleteEventData;

 switch(event)
 {
 case USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE:

 /* This means the application requested Set Line Coding request is
 * complete. */
 setLineCodingEventData = (USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA *)(eventData);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 412

 appData.controlRequestDone = true;
 appData.controlRequestResult = setLineCodingEventData->result;
 break;

 case USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE:

 /* This means the application requested Set Control Line State
 * request has completed. */
 setControlLineStateEventData = (USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA
*)(eventData);
 appData.controlRequestDone = true;
 appData.controlRequestResult = setControlLineStateEventData->result;
 break;

 default:
 break;

 }
}

void APP_Tasks(void)
{

 switch(appData.state)
 {
 /* The application states that enable the bus and wait for device attach are
 * not shown here for brevity */

 case APP_STATE_OPEN_DEVICE:

 /* In this state the application opens the attached device */
 appData.cdcHostHandle = USB_HOST_CDC_Open(appData.cdcObj);
 if(appData.cdcHostHandle != USB_HOST_CDC_HANDLE_INVALID)
 {
 /* The driver was opened successfully. Set the event handler
 * and then go to the next state. */
 USB_HOST_CDC_EventHandlerSet(appData.cdcHostHandle, APP_USBHostCDCEventHandler,
(uintptr_t)0);
 appData.state = APP_STATE_SET_LINE_CODING;
 }
 break;

 case APP_STATE_SET_LINE_CODING:

 /* Here we set the Line coding. The control request done flag will
 * be set to true when the control request has completed. */

 appData.controlRequestDone = false;
 result = USB_HOST_CDC_ACM_LineCodingSet(appData.cdcHostHandle, NULL,
&appData.cdcHostLineCoding);

 if(result == USB_HOST_CDC_RESULT_SUCCESS)
 {
 /* We wait for the set line coding to complete */
 appData.state = APP_STATE_WAIT_FOR_SET_LINE_CODING;
 }

 break;

 case APP_STATE_WAIT_FOR_SET_LINE_CODING:

 if(appData.controlRequestDone)
 {
 if(appData.controlRequestResult != USB_HOST_CDC_RESULT_SUCCESS)
 {
 /* The control request was not successful. */
 appData.state = APP_STATE_ERROR;
 }
 else

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 413

 {
 /* Next we set the Control Line State */
 appData.state = APP_STATE_SEND_SET_CONTROL_LINE_STATE;
 }
 }
 break;

 case APP_STATE_SEND_SET_CONTROL_LINE_STATE:

 /* Here we set the control line state */
 appData.controlRequestDone = false;
 result = USB_HOST_CDC_ACM_ControlLineStateSet(appData.cdcHostHandle, NULL,
 &appData.controlLineState);

 if(result == USB_HOST_CDC_RESULT_SUCCESS)
 {
 /* We wait for the set line coding to complete */
 appData.state = APP_STATE_WAIT_FOR_SET_CONTROL_LINE_STATE;
 }

 break;

 case APP_STATE_WAIT_FOR_SET_CONTROL_LINE_STATE:

 /* Here we wait for the control line state set request to complete */
 if(appData.controlRequestDone)
 {
 if(appData.controlRequestResult != USB_HOST_CDC_RESULT_SUCCESS)
 {
 /* The control request was not successful. */
 appData.state = APP_STATE_ERROR;
 }
 else
 {
 /* Next we set the Control Line State */
 appData.state = APP_STATE_SEND_PROMPT_TO_DEVICE;
 }
 }

 break;

 default:
 break;
 }
}

Reading and Writing Data

Describes how to transfer data to the attached CDC device.

Description

The application can use the USB_HOST_CDC_Read and USB_HOST_CDC_Write functions to transfer data to the attached CDC device. While
calling these function, the client handle specifies the target CDC device and the event handler function to which the events should be sent. It is
possible for multiple client to open the same instance of the CDC Host Client Driver instance and transfer data to the attached CDC Device.

Calling the USB_HOST_CDC_Read and USB_HOST_CDC_Write functions while a read/write transfer is already in progress will cause the
transfer result to be queued. If the transfer was successfully queued or scheduled, the USB_HOST_CDC_Read and USB_HOST_CDC_Write
functions will return a valid transfer handle. This transfer handle identifies the transfer request. The application clients can use the transfer handles
to keep track of multiple queued transfers. When a transfer completes, the CDC Host Client Driver generates an event. The following tables shows
the event and the event data associated with the event.

Table 1: Read

Function USB_HOST_CDC_Read

Event USB_HOST_CDC_EVENT_READ_COMPLETE

Event Data Type USB_HOST_CDC_EVENT_READ_COMPLETE_DATA

Table 2: Write

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 414

Function USB_HOST_CDC_ACM_LineCodingGet

Event USB_HOST_CDC_EVENT_READ_COMPLETE

Event Data Type USB_HOST_CDC_EVENT_READ_COMPLETE_DATA

The event data contains information on the amount of data transferred, completion status and the transfer handle of the transfer. The following
code shows an example of reading and writing data.

Example:
/* In this code example, the USB_HOST_CDC_Read and the USB_HOST_CDC_Write
 * functions are used to read and write data. The event related to the read and
 * write operations are handled in the APP_USBHostCDCEventHandler function. */

USB_HOST_CDC_EVENT_RESPONSE APP_USBHostCDCEventHandler
(
 USB_HOST_CDC_HANDLE cdcHandle,
 USB_HOST_CDC_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 /* This function is called when a CDC Host event has occurred. A pointer to
 * this function is registered after opening the device. */

 USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA * writeCompleteEventData;
 USB_HOST_CDC_EVENT_READ_COMPLETE_DATA * readCompleteEventData;

 switch(event)
 {
 case USB_HOST_CDC_EVENT_WRITE_COMPLETE:

 /* This means an application requested write has completed */
 appData.writeTransferDone = true;
 writeCompleteEventData = (USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA *)(eventData);
 appData.writeTransferResult = writeCompleteEventData->result;
 break;

 case USB_HOST_CDC_EVENT_READ_COMPLETE:

 /* This means an application requested write has completed */
 appData.readTransferDone = true;
 readCompleteEventData = (USB_HOST_CDC_EVENT_READ_COMPLETE_DATA *)(eventData);
 appData.readTransferResult = readCompleteEventData->result;
 break;

 default:
 break;
 }

 return(USB_HOST_CDC_EVENT_RESPONE_NONE);
}

void APP_Tasks(void)
{
 switch(appData.state)
 {
 /* The application states that wait for device attach and open the CDC
 * Host Client Driver are not shown here for brevity */

 case APP_STATE_SEND_PROMPT_TO_DEVICE:

 /* The prompt is sent to the device here. The write transfer done
 * flag is updated in the event handler. */

 appData.writeTransferDone = false;
 result = USB_HOST_CDC_Write(appData.cdcHostHandle, NULL, prompt, 8);

 if(result == USB_HOST_CDC_RESULT_SUCCESS)
 {

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 415

 appData.state = APP_STATE_WAIT_FOR_PROMPT_SEND_COMPLETE;
 }
 break;

 case APP_STATE_WAIT_FOR_PROMPT_SEND_COMPLETE:

 /* Here we check if the write transfer is done */
 if(appData.writeTransferDone)
 {
 if(appData.writeTransferResult == USB_HOST_CDC_RESULT_SUCCESS)
 {
 /* Now to get data from the device */
 appData.state = APP_STATE_GET_DATA_FROM_DEVICE;
 }
 else
 {
 /* Try sending the prompt again. */
 appData.state = APP_STATE_SEND_PROMPT_TO_DEVICE;
 }
 }

 break;

 case APP_STATE_GET_DATA_FROM_DEVICE:

 /* Here we request data from the device */
 appData.readTransferDone = false;
 result = USB_HOST_CDC_Read(appData.cdcHostHandle, NULL, appData.inDataArray, 1);
 if(result == USB_HOST_CDC_RESULT_SUCCESS)
 {
 appData.state = APP_STATE_WAIT_FOR_DATA_FROM_DEVICE;
 }
 break;

 case APP_STATE_WAIT_FOR_DATA_FROM_DEVICE:

 /* Wait for data from device. */
 if(appData.readTransferDone)
 {
 if(appData.readTransferResult == USB_HOST_CDC_RESULT_SUCCESS)
 {
 /* Do something with the data here */
 }
 }

 break;

 default:
 break;
 }
}

Event Handling

Describes how to set event handlers.

Description

The CDC Host Client Driver presents an event driven interface to the application. The CDC Host Client Driver requires the application client to set
two event handlers for meaningful operation:

• The Attach event handler is not client specific and is registered before the USB_HOST_BusEnable function is called. This event handler and
the attach event is discussed in the Detecting Device Attach section.

• The client specific command, data transfer and detach events. The CDC Class specific command request events are discussed in the Sending
Class Specific Control Transfers section. The data transfer related events are discussed in the Reading and Writing Data section. Some
general points about these events are discussed below.

A request to send a command or transfer data typically completes after the command request or transfer function has exited. The application must
then use the CDC Host Client Driver event to track the completion of this command or data transfer request. In a case where multiple data
transfers are queued, the transfer handles can be used to identify the transfer requests.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 416

The application must use the USB_HOST_CDC_EventHandlerSet function to register a client specific event handler. This event handler will be
called when a command, data transfer or detach event has occurred and should be registered before the client request for command or a data
transfer. The following code shows an example of registering an event handler.

Example:
/* This code shows an example of setting an event handler and an example
 * event handler. For the full set of events that the CDC Host Client generates,
 * refer to USB_HOST_CDC_EVENT enumeration description */

USB_HOST_CDC_EVENT_RESPONSE APP_USBHostCDCEventHandler
(
 USB_HOST_CDC_HANDLE cdcHandle,
 USB_HOST_CDC_EVENT event,
 void * eventData,
 uintptr_t context
)
{
 /* This function is called when a CDC Host event has occurred. A pointer to
 * this function is registered after opening the device. See the call to
 * USB_HOST_CDC_EventHandlerSet() function. */

 USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA * setLineCodingEventData;
 USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA * setControlLineStateEventData;
 USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA * writeCompleteEventData;
 USB_HOST_CDC_EVENT_READ_COMPLETE_DATA * readCompleteEventData;

 switch(event)
 {
 case USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE:

 /* This means the application requested Set Line Coding request is
 * complete. */
 setLineCodingEventData = (USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA *)(eventData);
 appData.controlRequestDone = true;
 appData.controlRequestResult = setLineCodingEventData->result;
 break;

 case USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE:

 /* This means the application requested Set Control Line State
 * request has completed. */
 setControlLineStateEventData = (USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA
*)(eventData);
 appData.controlRequestDone = true;
 appData.controlRequestResult = setControlLineStateEventData->result;
 break;

 case USB_HOST_CDC_EVENT_WRITE_COMPLETE:

 /* This means an application requested write has completed */
 appData.writeTransferDone = true;
 writeCompleteEventData = (USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA *)(eventData);
 appData.writeTransferResult = writeCompleteEventData->result;
 break;

 case USB_HOST_CDC_EVENT_READ_COMPLETE:

 /* This means an application requested write has completed */
 appData.readTransferDone = true;
 readCompleteEventData = (USB_HOST_CDC_EVENT_READ_COMPLETE_DATA *)(eventData);
 appData.readTransferResult = readCompleteEventData->result;
 break;

 case USB_HOST_CDC_EVENT_DEVICE_DETACHED:

 /* The device was detached */
 appData.deviceWasDetached = true;
 break;

 default:

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 417

 break;
 }

 return(USB_HOST_CDC_EVENT_RESPONE_NONE);
}

void APP_Tasks(void)
{
 switch(appData.state)
 {
 /* The application states that enable the bus and wait for device attach
 * are not shown here for brevity */
 case APP_STATE_OPEN_DEVICE:

 /* In this state the application opens the attached device */
 appData.cdcHostHandle = USB_HOST_CDC_Open(appData.cdcObj);
 if(appData.cdcHostHandle != USB_HOST_CDC_HANDLE_INVALID)
 {
 /* The driver was opened successfully. Set the event handler
 * and then go to the next state. */
 USB_HOST_CDC_EventHandlerSet(appData.cdcHostHandle, APP_USBHostCDCEventHandler,
(uintptr_t)0);
 appData.state = APP_STATE_SET_LINE_CODING;
 }
 break;

 default:
 break;

 }
}

Configuring the Library

Describes how to configure the USB CDC Host Library.

Macros

Name Description

USB_HOST_CDC_ATTACH_LISTENERS_NUMBER Defines the number of attach event listeners that can be registered with
CDC Host Client Driver.

USB_HOST_CDC_INSTANCES_NUMBER Specifies the number of CDC instances.

Description

The CDC Host Client Driver requires configuration constants to be specified in system_config.h file. These constants define the build time
configuration (functionality and static resources) of the CDC Host Client Driver.

USB_HOST_CDC_ATTACH_LISTENERS_NUMBER Macro

Defines the number of attach event listeners that can be registered with CDC Host Client Driver.

File

usb_host_cdc_config_template.h

C
#define USB_HOST_CDC_ATTACH_LISTENERS_NUMBER

Description

USB Host CDC Attach Listeners Number

The USB CDC Host Client Driver provides attach notification to listeners who have registered with the client driver via the
USB_HOST_CDC_AttachEventHandlerSet() function. The USB_HOST_CDC_ATTACH_LISTENERS_NUMBER configuration constant defines
the maximum number of event handlers that can be set. This number should be set to equal the number of entities that interested in knowing when
a CDC device is attached.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 418

Remarks

None.

USB_HOST_CDC_INSTANCES_NUMBER Macro

Specifies the number of CDC instances.

File

usb_host_cdc_config_template.h

C
#define USB_HOST_CDC_INSTANCES_NUMBER

Description

USB Host CDC Maximum Number of Instances

This macro defines the number of instances of the CDC host Driver. For example, if the application needs to implement two instances of the CDC
host Driver should be set to 2.

Remarks

None.

Building the Library

Describes the files to be included in the project while using the USB CDC Host Client Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_host_cdc.h This header file should be included in any .c file that accesses the CDC Host Client Driver API.

sub_host_cdc_acm.h This header file should be included in any .c file that accesses the CDC Host Client Driver command request API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_host_cdc.c This file implements the CDC Host Client Driver interface and should be included in the project if the
CDC Host Client Driver operation is desired.

/src/dynamic/usb_host_cdc_acm.c This file implements the CDC Host Client Driver command request functions and should be included
if any class specific function must be called.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB CDC Host Library depends on the following modules:

• USB Host Layer Library

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 419

Library Interface

a) Client Access Functions

Name Description

USB_HOST_CDC_Open This function opens the specified CDC device.

USB_HOST_CDC_Close This function closes the CDC device.

USB_HOST_CDC_AttachEventHandlerSet This function will set an attach event handler.

USB_HOST_CDC_EventHandlerSet Registers an event handler with the CDC Host Client Driver.

USB_HOST_CDC_DeviceObjHandleGet This function returns the Device Object Handle for this CDC device.

b) Data Transfer Functions

Name Description

USB_HOST_CDC_Read This function will read data from the attached device.

USB_HOST_CDC_SerialStateNotificationGet This function will request Serial State Notification from the attached device.

USB_HOST_CDC_Write This function will write data to the attached device.

c) CDC Class-specific Functions

Name Description

USB_HOST_CDC_ACM_BreakSend This function sends a request to the attached device to update its break duration.

USB_HOST_CDC_ACM_ControlLineStateSet This function sends a request to the attached device to set its Control Line State.

USB_HOST_CDC_ACM_LineCodingGet This function sends a request to the attached device to get its Line Coding.

USB_HOST_CDC_ACM_LineCodingSet This function sends a request to the attached device to set its Line Coding.

d) Data Types and Constants

Name Description

USB_HOST_CDC_EVENT Identifies the possible events that the
CDC Class Driver can generate.

USB_HOST_CDC_RESULT USB Host CDC Client Driver Result
enumeration.

USB_HOST_CDC_TRANSFER_HANDLE USB Host CDC Client Driver Transfer
Handle

USB_HOST_CDC_TRANSFER_HANDLE_INVALID USB Host CDC Client Driver Invalid
Transfer Handle Definition.

USB_HOST_CDC_ATTACH_EVENT_HANDLER USB Host CDC Client Driver Attach Event
Handler Function Pointer Type.

USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_HANDLE Defines the type of the CDC Host Client
Driver Handle

USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_EVENT_HANDLER USB Host CDC Client Driver Event
Handler Function Pointer Type.

USB_HOST_CDC_EVENT_READ_COMPLETE_DATA USB Host CDC Client Driver Event Data.

USB_HOST_CDC_EVENT_RESPONSE Return type of the USB CDC Host Client
Driver Event Handler.

USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED_DATA USB Host CDC Client Driver Event Data.

USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA USB Host CDC Client Driver Event Data.

USB_HOST_CDC_OBJ Defines the type of the CDC Host Client
Object.

USB_HOST_CDC_REQUEST_HANDLE USB Host CDC Client Driver Request
Handle

USB_HOST_CDC_INTERFACE USB HOST CDC Client Driver Interface

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 420

USB_HOST_CDC_REQUEST_HANDLE_INVALID USB Host CDC Client Driver Invalid
Request Handle

USB_HOST_CDC_HANDLE_INVALID Defines an Invalid CDC Client Driver
Handle.

Description

a) Client Access Functions

USB_HOST_CDC_Open Function

This function opens the specified CDC device.

File

usb_host_cdc.h

C
USB_HOST_CDC_HANDLE USB_HOST_CDC_Open(USB_HOST_CDC_OBJ cdcDeviceObj);

Returns

Will return a valid handle if the device could be opened successfully, else will return USB_HOST_CDC_HANDLE_INVALID. The function will
return a valid handle if the device is ready to be opened.

Description

This function will open the specified CDC device. Once opened, the CDC device can be accessed via the handle which this function returns. The
cdcDeviceObj parameter is the value returned in the USB_HOST_CDC_ATTACH_EVENT_HANDLER event handling function.

Remarks

None.

Preconditions

The client handle should be valid.

Example

Parameters

Parameters Description

cdcDeviceObj CDC device object handle returned in the USB_HOST_CDC_ATTACH_EVENT_HANDLER
function.

Function

USB_HOST_CDC_HANDLE USB_HOST_CDC_Open

(

USB_HOST_CDC_OBJ cdcDeviceObj

);

USB_HOST_CDC_Close Function

This function closes the CDC device.

File

usb_host_cdc.h

C
void USB_HOST_CDC_Close(USB_HOST_CDC_HANDLE cdcDeviceHandle);

Returns

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 421

Description

This function will close the open CDC device. This closes the association between the application entity that opened the device and device. The
driver handle becomes invalid.

Remarks

The device handle becomes invalid after calling this function.

Preconditions

None.

Example

Parameters

Parameters Description

cdcDeviceHandle handle to the CDC device obtained from the USB_HOST_CDC_Open() function.

Function

void USB_HOST_CDC_Close

(

USB_HOST_CDC_HANDLE cdcDeviceHandle

);

USB_HOST_CDC_AttachEventHandlerSet Function

This function will set an attach event handler.

File

usb_host_cdc.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_AttachEventHandlerSet(USB_HOST_CDC_ATTACH_EVENT_HANDLER eventHandler,
uintptr_t context);

Returns

USB_HOST_CDC_RESULT_SUCCESS - if the attach event handler was registered successfully.

USB_HOST_CDC_RESULT_FAILURE - if the number of registered event handlers has exceeded
USB_HOST_CDC_ATTACH_LISTENERS_NUMBER.

Description

This function will set an attach event handler. The attach event handler will be called when a CDC device has been attached. The context will be
returned in the event handler. This function should be called before the bus has been enabled.

Remarks

Function should be called before USB_HOST_BusEnable() function is called.

Preconditions

None.

Example

Parameters

Parameters Description

eventHandler pointer to the attach event handler

context an application defined context that will be returned in the event handler.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_AttachEventHandlerSet

(

USB_HOST_CDC_ATTACH_EVENT_HANDLER eventHandler,

uintptr_t context

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 422

);

USB_HOST_CDC_EventHandlerSet Function

Registers an event handler with the CDC Host Client Driver.

File

usb_host_cdc.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_EventHandlerSet(USB_HOST_CDC_HANDLE handle, USB_HOST_CDC_EVENT_HANDLER
eventHandler, uintptr_t context);

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful USB_HOST_CDC_RESULT_HANDLE_INVALID - The specified instance
does not exist. USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

Description

This function registers a client specific CDC Host Client Driver event handler. The CDC Host Client Driver will call this function with relevant event
and associated event data, in response to command requests and data transfers that have been scheduled by the client.

Remarks

None.

Preconditions

None.

Example

Parameters

Parameters Description

handle handle to the CDC Host Client Driver.

eventHandler A pointer to event handler function. If NULL, then events will not be generated.

context Application specific context that is returned in the event handler.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_EventHandlerSet

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_EVENT_HANDLER eventHandler,

uintptr_t context

);

USB_HOST_CDC_DeviceObjHandleGet Function

This function returns the Device Object Handle for this CDC device.

File

usb_host_cdc.h

C
USB_HOST_DEVICE_OBJ_HANDLE USB_HOST_CDC_DeviceObjHandleGet(USB_HOST_CDC_OBJ cdcDeviceObj);

Returns

Will return a valid device object handle if the device is still connected to the system. Will return an USB_HOST_DEVICE_OBJ_HANDLE_INVALID
otherwise.

Description

This function returns the Device Object Handle for this CDC device. This returned Device Object Handle can be used by the application to perform
device level operations such as getting the string descriptors.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 423

Remarks

None.

Preconditions

None.

Example

Parameters

Parameters Description

cdcDeviceObj CDC device object handle returned in the USB_HOST_CDC_ATTACH_EVENT_HANDLER
function.

Function

USB_HOST_DEVICE_OBJ_HANDLE USB_HOST_CDC_DeviceObjHandleGet

(

USB_HOST_CDC_OBJ cdcDeviceObj

);

b) Data Transfer Functions

USB_HOST_CDC_Read Function

This function will read data from the attached device.

File

usb_host_cdc.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_Read(USB_HOST_CDC_HANDLE handle, USB_HOST_CDC_TRANSFER_HANDLE *
transferHandle, void * data, size_t size);

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful.

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN - The device that this request was targeted to does not exist in the system.

USB_HOST_CDC_RESULT_BUSY - The request could not be scheduled at this time. The client should try again.

USB_HOST_CDC_RESULT_INVALID_PARAMETER - An input parameter was NULL.

USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

USB_HOST_CDC_RESULT_HANDLE_INVALID - The client handle is not valid.

Description

This function will read data from the attached CDC device. The function will try to read size amount of bytes but will stop reading when the device
terminates the USB transfer (sends a short packet or a ZLP). If the request was accepted, transferHandle will contain a valid transfer handle, else
it will contain USB_HOST_CDC_TRANSFER_HANDLE_INVALID. The completion of the request will be indicated by the
USB_HOST_CDC_EVENT_READ_COMPLETE event. The transfer handle will be returned in the event.

Remarks

None.

Preconditions

The client handle should be valid.

Example

Parameters

Parameters Description

handle handle to the CDC device instance to which the request should be sent.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 424

transferHandle Pointer to USB_HOST_CDC_TRANSFER_HANDLE type of a variable. This will contain a
valid transfer handle if the request was successful.

data pointer to the buffer where the received data will be stored. The contents of the buffer will be
valid only when the USB_HOST_CDC_EVENT_READ_COMPLETE event has occurred.

size size of the data buffer. Only these many bytes or less will be read.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_Read

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_TRANSFER_HANDLE * transferHandle,

void * data,

size_t size

);

USB_HOST_CDC_SerialStateNotificationGet Function

This function will request Serial State Notification from the attached device.

File

usb_host_cdc.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_SerialStateNotificationGet(USB_HOST_CDC_HANDLE handle,
USB_HOST_CDC_TRANSFER_HANDLE * transferHandle, USB_CDC_SERIAL_STATE * serialState);

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful.

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN - The device that this request was targeted to does not exist in the system.

USB_HOST_CDC_RESULT_BUSY - The request could not be scheduled at this time. The client should try again.

USB_HOST_CDC_RESULT_INVALID_PARAMETER - An input parameter was NULL.

USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

USB_HOST_CDC_RESULT_HANDLE_INVALID - The client handle is not valid.

Description

This function will request Serial State Notification from the attached device. If the request was accepted, transferHandle will contain a valid transfer
handle, else it will contain USB_HOST_CDC_TRANSFER_HANDLE_INVALID. The completion of the request will be indicated by the
USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED event. The transfer handle will be returned in the event.

Remarks

None.

Preconditions

The client handle should be valid.

Example

Parameters

Parameters Description

handle handle to the CDC device instance to which the request should be sent.

transferHandle Pointer to USB_HOST_CDC_TRANSFER_HANDLE type of a variable. This will contain a
valid transfer handle if the request was successful.

serialState Pointer to the serial state data structure where the received serial state will be stored.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_SerialStateNotificationGet

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_TRANSFER_HANDLE * transferHandle,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 425

USB_CDC_SERIAL_STATE * serialState

);

USB_HOST_CDC_Write Function

This function will write data to the attached device.

File

usb_host_cdc.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_Write(USB_HOST_CDC_HANDLE handle, USB_HOST_CDC_TRANSFER_HANDLE *
transferHandle, void * data, size_t size);

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful.

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN - The device that this request was targeted to does not exist in the system.

USB_HOST_CDC_RESULT_BUSY - The request could not be scheduled at this time. The client should try again.

USB_HOST_CDC_RESULT_INVALID_PARAMETER - An input parameter was NULL.

USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

USB_HOST_CDC_RESULT_HANDLE_INVALID - The client handle is not valid.

Description

This function will write data to the attached CDC device. The function will write size amount of bytes. If the request was accepted, transferHandle
will contain a valid transfer handle, else it will contain USB_HOST_CDC_TRANSFER_HANDLE_INVALID. The completion of the request will be
indicated by the USB_HOST_CDC_EVENT_WRITE_COMPLETE event. The transfer handle will be returned in the event.

Remarks

None.

Preconditions

The client handle should be valid.

Example

Parameters

Parameters Description

handle handle to the CDC device instance to which the request should be sent.

transferHandle Pointer to USB_HOST_CDC_TRANSFER_HANDLE type of a variable. This will contain a
valid transfer handle if the request was successful.

data pointer to the buffer containing the data to be written. The contents of the buffer should not be
changed till the USB_HOST_CDC_EVENT_WRITE_COMPLETE event has occurred.

size Number of bytes to write.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_Write

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_TRANSFER_HANDLE * transferHandle,

void * data,

size_t size

);

c) CDC Class-specific Functions

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 426

USB_HOST_CDC_ACM_BreakSend Function

This function sends a request to the attached device to update its break duration.

File

usb_host_cdc_acm.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_BreakSend(USB_HOST_CDC_HANDLE handle, USB_HOST_CDC_REQUEST_HANDLE *
requestHandle, uint16_t breakDuration);

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful.

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN - The device that this request was targeted to does not exist in the system.

USB_HOST_CDC_RESULT_BUSY - The request could not be scheduled at this time. The client should try again.

USB_HOST_CDC_RESULT_INVALID_PARAMETER - An input parameter was NULL.

USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

USB_HOST_CDC_RESULT_HANDLE_INVALID - The client handle is not valid.

Description

This function sends a request to the attached to update its break duration. The function schedules a SEND BREAK control transfer. If successful,
the transferHandle parameter will contain a valid request handle, else it will contain USB_HOST_CDC_REQUEST_HANDLE_INVALID. When
completed, the CDC client driver will generate a USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE event.

Remarks

None.

Preconditions

The client handle should be valid.

Example

Parameters

Parameters Description

handle handle to the CDC device instance to which the request should be sent.

requestHandle Pointer to USB_HOST_CDC_REQUEST_HANDLE type of a variable. This will contain a valid
transfer handle if the request was successful.

breakDuration Break duration.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_BreakSend

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_REQUEST_HANDLE * requestHandle,

uint16_t breakDuration

);

USB_HOST_CDC_ACM_ControlLineStateSet Function

This function sends a request to the attached device to set its Control Line State.

File

usb_host_cdc_acm.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_ControlLineStateSet(USB_HOST_CDC_HANDLE handle,
USB_HOST_CDC_REQUEST_HANDLE * requestHandle, USB_CDC_CONTROL_LINE_STATE * controlLineState);

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 427

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful.

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN - The device that this request was targeted to does not exist in the system.

USB_HOST_CDC_RESULT_BUSY - The request could not be scheduled at this time. The client should try again.

USB_HOST_CDC_RESULT_INVALID_PARAMETER - An input parameter was NULL.

USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

USB_HOST_CDC_RESULT_HANDLE_INVALID - The client handle is not valid.

Description

This function sends a request to the attached to set its Control Line State. The function schedules a SET CONTROL LINE STATE control transfer.
If successful, the requestHandle parameter will contain a valid request handle, else it will contain
USB_HOST_CDC_REQUEST_HANDLE_INVALID. When completed, the CDC client driver will generate a
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE event.

Remarks

None.

Preconditions

The client handle should be valid.

Example

Parameters

Parameters Description

handle handle to the CDC device instance to which the request should be sent.

requestHandle Pointer to USB_HOST_CDC_REQUEST_HANDLE type of a variable. This will contain a valid
transfer handle if the request was successful.

controlLineState Pointer to the control line state data structure.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_ControlLineStateSet

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_REQUEST_HANDLE * requestHandle,

USB_CDC_HOST_CONTROL_LINE_STATE * controlLineState

);

USB_HOST_CDC_ACM_LineCodingGet Function

This function sends a request to the attached device to get its Line Coding.

File

usb_host_cdc_acm.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_LineCodingGet(USB_HOST_CDC_HANDLE handle, USB_HOST_CDC_REQUEST_HANDLE
* requestHandle, USB_CDC_LINE_CODING * lineCoding);

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful.

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN - The device that this request was targeted to does not exist in the system.

USB_HOST_CDC_RESULT_BUSY - The request could not be scheduled at this time. The client should try again.

USB_HOST_CDC_RESULT_INVALID_PARAMETER - An input parameter was NULL.

USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

USB_HOST_CDC_RESULT_HANDLE_INVALID - The client handle is not valid.

Description

This function sends a request to the attached device to get its line coding. The function schedules a GET LINE CODING control transfer. If

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 428

successful, the requestHandle parameter will contain a valid request handle, else it will contain
USB_HOST_CDC_REQUEST_HANDLE_INVALID. When completed, the CDC client driver will generate a
USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE event.

Remarks

None.

Preconditions

The client handle should be valid.

Example

Parameters

Parameters Description

handle handle to the CDC device instance to which the request should be sent.

requestHandle Pointer to USB_HOST_CDC_REQUEST_HANDLE type of a variable. This will contain a valid
transfer handle if the request was successful.

lineCoding Pointer to the line coding data structure where the obtained line coding will be stored. The
contents of this data structure will be valid only when the
USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE event has been
generated.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_LineCodingGet

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_REQUEST_HANDLE * requestHandle,

USB_CDC_LINE_CODING * lineCoding

);

USB_HOST_CDC_ACM_LineCodingSet Function

This function sends a request to the attached device to set its Line Coding.

File

usb_host_cdc_acm.h

C
USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_LineCodingSet(USB_HOST_CDC_HANDLE handle, USB_HOST_CDC_REQUEST_HANDLE
* requestHandle, USB_CDC_LINE_CODING * lineCoding);

Returns

USB_HOST_CDC_RESULT_SUCCESS - The operation was successful.

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN - The device that this request was targeted to does not exist in the system.

USB_HOST_CDC_RESULT_BUSY - The request could not be scheduled at this time. The client should try again.

USB_HOST_CDC_RESULT_INVALID_PARAMETER - An input parameter was NULL.

USB_HOST_CDC_RESULT_FAILURE - An unknown failure occurred.

USB_HOST_CDC_RESULT_HANDLE_INVALID - The client handle is not valid.

Description

This function sends a request to the attached device to set its line coding. The function schedules a SET LINE CODING control transfer. If
successful, the requestHandle parameter will contain a valid request handle, else it will contain
USB_HOST_CDC_REQUEST_HANDLE_INVALID. When completed, the CDC client driver will generate a
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE event.

Remarks

None.

Preconditions

The client handle should be valid.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 429

Example

Parameters

Parameters Description

handle handle to the CDC device instance to which the request should be sent.

requestHandle Pointer to USB_HOST_CDC_REQUEST_HANDLE type of a variable. This will contain a valid
transfer handle if the request was successful.

lineCoding Pointer to the line coding data structure containing the line coding to be set. The contents of
this data structure should not be changed until the
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE event has been
generated.

Function

USB_HOST_CDC_RESULT USB_HOST_CDC_ACM_LineCodingSet

(

USB_HOST_CDC_HANDLE handle,

USB_HOST_CDC_REQUEST_HANDLE * requestHandle,

USB_CDC_LINE_CODING * lineCoding

);

d) Data Types and Constants

USB_HOST_CDC_EVENT Enumeration

Identifies the possible events that the CDC Class Driver can generate.

File

usb_host_cdc.h

C
typedef enum {
 USB_HOST_CDC_EVENT_READ_COMPLETE,
 USB_HOST_CDC_EVENT_WRITE_COMPLETE,
 USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE,
 USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE,
 USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE,
 USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE,
 USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED,
 USB_HOST_CDC_EVENT_DEVICE_DETACHED
} USB_HOST_CDC_EVENT;

Members

Members Description

USB_HOST_CDC_EVENT_READ_COMPLETE This event occurs when a CDC Client Driver Read operation has
completed i.e when the data has been received from the
connected CDC device. This event is generated after the
application calls the USB_HOST_CDC_Read function. The
eventData parameter in the event call back function will be of a
pointer to a
USB_HOST_CDC_EVENT_READ_COMPLETE_DATA
structure. This contains details about the transfer handle
associated with this read request, the amount of data read and
the termination status of the read request.

USB_HOST_CDC_EVENT_WRITE_COMPLETE This event occurs when a CDC Client Driver Write operation has
completed i.e when the data has been written to the connected
CDC device. This event is generated after the application calls
the USB_HOST_CDC_Write function. The eventData parameter
in the event call back function will be a pointer to a
USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA
structure. This contains details about the transfer handle
associated with this write request, the amount of data written
and the termination status of the write request.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 430

USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE This event occurs when a CDC Client Driver Send Break
request has completed. This event is generated after the
application calls the USB_HOST_CDC_ACM_BreakSend
function and the device has either acknowledged or stalled the
request. The eventData parameter in the event call back
function will be of a pointer to a
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STAT
E_COMPLETE_DATA
structure. This contains details about the transfer handle
associated with this request, the amount of data sent and the
termination status of the set request.

USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE This event occurs when a CDC Client Driver Set Control Line
State request has completed. This event is generated after the
application calls the
USB_HOST_CDC_ACM_ControlLineStateSet function and the
device has either acknowledged or stalled the request. The
eventData parameter in the event call back function will be of a
pointer to a
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STAT
E_COMPLETE_DATA
structure. This contains details about the transfer handle
associated with this request, the amount of data sent and the
termination status of the set request.

USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE This event occurs when a CDC Client Driver Set Line Coding
request has completed. This event is generated after the
application calls the USB_HOST_CDC_ACM_LineCodingSet
function and the device either acknowledged or stalled the
request. The eventData parameter in the event call back
function will be of a pointer to a
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPL
ETE_DATA
structure. This contains details about the transfer handle
associated with this request, the amount of data sent and the
termination status of the set request.

USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE This event occurs when a CDC Client Driver Get Line Coding
request has completed. This event is generated after the
application calls the USB_HOST_CDC_ACM_LineCodingGet
function and the device sends the line coding to the host. The
eventData parameter in the event call back function will be of a
pointer to a
USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPL
ETE_DATA
structure. This contains details about the transfer handle
associated with this request, the amount of data received and
the termination status of the get request.

USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED This event occurs when a CDC Client Driver Serial State
Notification Get operation has completed. This event is
generated after the application calls the
USB_HOST_CDC_SerialStateNotificationGet and the device
sends a serial state notification to the host. The eventData
parameter in the event call back function will be of a pointer to a
USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_R
ECEIVED_DATA
structure. This contains details about the transfer handle
associated with this request, the amount of data received and
the termination status of the get request.

USB_HOST_CDC_EVENT_DEVICE_DETACHED This event occurs when the device that this client was
connected to has

• been detached. The client should close the CDC instance.
There is no

• event data associated with this event

Description

CDC Class Driver Events

This enumeration identifies the possible events that the CDC Class Driver can generate. The application should register an event handler using
the USB_HOST_CDC_EventHandlerSet function to receive CDC Class Driver events.

An event may have data associated with it. Events that are generated due to a transfer of data between the host and device are accompanied by
data structures that provide the status of the transfer termination. For example, the
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE event is accompanied by a pointer to a
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA data structure. The transferStatus member of this data structure
indicates the success or failure of the transfer. A transfer may fail due to device not responding on the bus, if the device stalls any stages of the

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 431

transfer or due to NAK timeouts. The event description provides details on the nature of the event and the data that is associated with the event.

Remarks

None.

USB_HOST_CDC_RESULT Enumeration

USB Host CDC Client Driver Result enumeration.

File

usb_host_cdc.h

C
typedef enum {
 USB_HOST_CDC_RESULT_FAILURE,
 USB_HOST_CDC_RESULT_BUSY,
 USB_HOST_CDC_RESULT_REQUEST_STALLED,
 USB_HOST_CDC_RESULT_INVALID_PARAMETER,
 USB_HOST_CDC_RESULT_DEVICE_UNKNOWN,
 USB_HOST_CDC_RESULT_ABORTED,
 USB_HOST_CDC_RESULT_HANDLE_INVALID,
 USB_HOST_CDC_RESULT_SUCCESS
} USB_HOST_CDC_RESULT;

Members

Members Description

USB_HOST_CDC_RESULT_FAILURE An unknown failure has occurred

USB_HOST_CDC_RESULT_BUSY The transfer or request could not be scheduled because internal

• queues are full. The request or transfer should be retried
USB_HOST_CDC_RESULT_REQUEST_STALLED The request was stalled

USB_HOST_CDC_RESULT_INVALID_PARAMETER A required parameter was invalid

USB_HOST_CDC_RESULT_DEVICE_UNKNOWN The associated device does not exist in the system.

USB_HOST_CDC_RESULT_ABORTED The transfer or requested was aborted

USB_HOST_CDC_RESULT_HANDLE_INVALID The specified handle is not valid

USB_HOST_CDC_RESULT_SUCCESS The operation was successful

Description

USB Host CDC Client Driver Result.

This enumeration lists the possible results the CDC client driver uses. Only some results are applicable to some functions and events. Refer to the
event and function documentation for more details.

Remarks

None.

USB_HOST_CDC_TRANSFER_HANDLE Type

USB Host CDC Client Driver Transfer Handle

File

usb_host_cdc.h

C
typedef uintptr_t USB_HOST_CDC_TRANSFER_HANDLE;

Description

USB Host CDC Client Driver Transfer Handle

This is returned by the CDC Client driver data transfer routines and should be used by the application to track the transfer especially in cases
where transfers are queued.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 432

USB_HOST_CDC_TRANSFER_HANDLE_INVALID Macro

USB Host CDC Client Driver Invalid Transfer Handle Definition.

File

usb_host_cdc.h

C
#define USB_HOST_CDC_TRANSFER_HANDLE_INVALID ((USB_HOST_CDC_TRANSFER_HANDLE)(-1))

Description

USB Host CDC Client Driver Invalid Transfer Handle Definition

This definition defines a USB Host CDC Client Driver Invalid Transfer Handle. A Invalid Transfer Handle is returned by the CDC Client Driver data
transfer routines when the request was not successful.

Remarks

None.

USB_HOST_CDC_ATTACH_EVENT_HANDLER Type

USB Host CDC Client Driver Attach Event Handler Function Pointer Type.

File

usb_host_cdc.h

C
typedef void (* USB_HOST_CDC_ATTACH_EVENT_HANDLER)(USB_HOST_CDC_OBJ cdcObjHandle, uintptr_t context);

Description

USB Host CDC Client Driver Attach Event Handler Function Pointer Type.

This data type defines the required function signature of the USB Host CDC Client Driver attach event handling callback function. The application
must register a pointer to a CDC Client Driver attach events handling function whose function signature (parameter and return value types) match
the types specified by this function pointer in order to receive attach event call backs from the CDC Client Driver. The client driver will invoke this
function with event relevant parameters. The description of the event handler function parameters is given here.

cdcObjHandle - Handle of the client to which this event is directed.

context - Value identifying the context of the application that was registered along with the event handling function.

Remarks

None.

USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA Structure

USB Host CDC Client Driver Command Event Data.

File

usb_host_cdc.h

C
typedef struct {
 USB_HOST_CDC_REQUEST_HANDLE requestHandle;
 USB_HOST_CDC_RESULT result;
 size_t length;
} USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA;

Members

Members Description

USB_HOST_CDC_REQUEST_HANDLE
requestHandle;

Request handle of this request

USB_HOST_CDC_RESULT result; Termination status

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 433

size_t length; Size of the data transferred in the request

Description

USB Host CDC Client Driver Command Event Data.

This data type defines the data structure returned by the driver along with the following events:
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,

Remarks

None.

USB_HOST_CDC_HANDLE Type

Defines the type of the CDC Host Client Driver Handle

File

usb_host_cdc.h

C
typedef uintptr_t USB_HOST_CDC_HANDLE;

Description

USB Host CDC Client Driver Handle

This type defines the type of the handle returned by USB_HOST_CDC_Open() function. This application uses this handle to specify the instance
of the CDC client driver being accessed while calling a CDC Client driver function.

Remarks

None.

USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA Structure

USB Host CDC Client Driver Command Event Data.

File

usb_host_cdc.h

C
typedef struct {
 USB_HOST_CDC_REQUEST_HANDLE requestHandle;
 USB_HOST_CDC_RESULT result;
 size_t length;
} USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA;

Members

Members Description

USB_HOST_CDC_REQUEST_HANDLE
requestHandle;

Request handle of this request

USB_HOST_CDC_RESULT result; Termination status

size_t length; Size of the data transferred in the request

Description

USB Host CDC Client Driver Command Event Data.

This data type defines the data structure returned by the driver along with the following events:
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 434

Remarks

None.

USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA Structure

USB Host CDC Client Driver Command Event Data.

File

usb_host_cdc.h

C
typedef struct {
 USB_HOST_CDC_REQUEST_HANDLE requestHandle;
 USB_HOST_CDC_RESULT result;
 size_t length;
} USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA;

Members

Members Description

USB_HOST_CDC_REQUEST_HANDLE
requestHandle;

Request handle of this request

USB_HOST_CDC_RESULT result; Termination status

size_t length; Size of the data transferred in the request

Description

USB Host CDC Client Driver Command Event Data.

This data type defines the data structure returned by the driver along with the following events:
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,

Remarks

None.

USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA Structure

USB Host CDC Client Driver Command Event Data.

File

usb_host_cdc.h

C
typedef struct {
 USB_HOST_CDC_REQUEST_HANDLE requestHandle;
 USB_HOST_CDC_RESULT result;
 size_t length;
} USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA;

Members

Members Description

USB_HOST_CDC_REQUEST_HANDLE
requestHandle;

Request handle of this request

USB_HOST_CDC_RESULT result; Termination status

size_t length; Size of the data transferred in the request

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 435

Description

USB Host CDC Client Driver Command Event Data.

This data type defines the data structure returned by the driver along with the following events:
USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA,
USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA,

Remarks

None.

USB_HOST_CDC_EVENT_HANDLER Type

USB Host CDC Client Driver Event Handler Function Pointer Type.

File

usb_host_cdc.h

C
typedef USB_HOST_CDC_EVENT_RESPONSE (* USB_HOST_CDC_EVENT_HANDLER)(USB_HOST_CDC_HANDLE cdcHandle,
USB_HOST_CDC_EVENT event, void * eventData, uintptr_t context);

Description

USB Host CDC Client Driver Event Handler Function Pointer Type.

This data type defines the required function signature of the USB Host CDC Client Driver event handling callback function. The application must
register a pointer to a CDC Client Driver events handling function whose function signature (parameter and return value types) match the types
specified by this function pointer in order to receive event call backs from the CDC Client Driver. The class driver will invoke this function with
event relevant parameters. The description of the event handler function parameters is given here.

handle - Handle of the client to which this event is directed.

event - Type of event generated.

eventData - This parameter should be type casted to a event specific pointer type based on the event that has occurred. Refer to the
USB_HOST_CDC_EVENT enumeration description for more details.

context - Value identifying the context of the application that was registered along with the event handling function.

Remarks

None.

USB_HOST_CDC_EVENT_READ_COMPLETE_DATA Structure

USB Host CDC Client Driver Event Data.

File

usb_host_cdc.h

C
typedef struct {
 USB_HOST_CDC_TRANSFER_HANDLE transferHandle;
 USB_HOST_CDC_RESULT result;
 size_t length;
} USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED_DATA, USB_HOST_CDC_EVENT_READ_COMPLETE_DATA,
USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA;

Members

Members Description

USB_HOST_CDC_TRANSFER_HANDLE
transferHandle;

Transfer handle of this transfer

USB_HOST_CDC_RESULT result; Termination transfer status

size_t length; Size of the data transferred in the request

Description

USB Host CDC Client Driver Event Data.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 436

This data type defines the data structure returned by the driver along with the following events:
USB_HOST_CDC_EVENT_READ_COMPLETE_DATA, USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA,

Remarks

None.

USB_HOST_CDC_EVENT_RESPONSE Enumeration

Return type of the USB CDC Host Client Driver Event Handler.

File

usb_host_cdc.h

C
typedef enum {
 USB_HOST_CDC_EVENT_RESPONE_NONE
} USB_HOST_CDC_EVENT_RESPONSE;

Members

Members Description

USB_HOST_CDC_EVENT_RESPONE_NONE This means no response is required

Description

USB Host CDC Event Handler Return Type

This enumeration list the possible return values of the USB CDC Host Client Driver Event Handler.

Remarks

None.

USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED_DATA Structure

USB Host CDC Client Driver Event Data.

File

usb_host_cdc.h

C
typedef struct {
 USB_HOST_CDC_TRANSFER_HANDLE transferHandle;
 USB_HOST_CDC_RESULT result;
 size_t length;
} USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED_DATA, USB_HOST_CDC_EVENT_READ_COMPLETE_DATA,
USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA;

Members

Members Description

USB_HOST_CDC_TRANSFER_HANDLE
transferHandle;

Transfer handle of this transfer

USB_HOST_CDC_RESULT result; Termination transfer status

size_t length; Size of the data transferred in the request

Description

USB Host CDC Client Driver Event Data.

This data type defines the data structure returned by the driver along with the following events:
USB_HOST_CDC_EVENT_READ_COMPLETE_DATA, USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA,

Remarks

None.

USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA Structure

USB Host CDC Client Driver Event Data.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 437

File

usb_host_cdc.h

C
typedef struct {
 USB_HOST_CDC_TRANSFER_HANDLE transferHandle;
 USB_HOST_CDC_RESULT result;
 size_t length;
} USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED_DATA, USB_HOST_CDC_EVENT_READ_COMPLETE_DATA,
USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA;

Members

Members Description

USB_HOST_CDC_TRANSFER_HANDLE
transferHandle;

Transfer handle of this transfer

USB_HOST_CDC_RESULT result; Termination transfer status

size_t length; Size of the data transferred in the request

Description

USB Host CDC Client Driver Event Data.

This data type defines the data structure returned by the driver along with the following events:
USB_HOST_CDC_EVENT_READ_COMPLETE_DATA, USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA,

Remarks

None.

USB_HOST_CDC_OBJ Type

Defines the type of the CDC Host Client Object.

File

usb_host_cdc.h

C
typedef uintptr_t USB_HOST_CDC_OBJ;

Description

USB Host CDC Object

This type defines the type of the CDC Host Client Object. This type is returned by the Attach Event Handler and is used by the application to open
the attached CDC Device.

Remarks

None.

USB_HOST_CDC_REQUEST_HANDLE Type

USB Host CDC Client Driver Request Handle

File

usb_host_cdc.h

C
typedef uintptr_t USB_HOST_CDC_REQUEST_HANDLE;

Description

USB Host CDC Client Driver Request Handle

This is returned by the CDC Client driver command routines and should be used by the application to track the command especially in cases
where transfers are queued.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 438

USB_HOST_CDC_INTERFACE Macro

USB HOST CDC Client Driver Interface

File

usb_host_cdc.h

C
#define USB_HOST_CDC_INTERFACE

Description

USB HOST CDC Client Driver Interface

This macro should be used by the application in TPL table while adding support for the USB CDC Host Client Driver.

Remarks

None.

USB_HOST_CDC_REQUEST_HANDLE_INVALID Macro

USB Host CDC Client Driver Invalid Request Handle

File

usb_host_cdc.h

C
#define USB_HOST_CDC_REQUEST_HANDLE_INVALID ((USB_HOST_CDC_REQUEST_HANDLE)(-1))

Description

USB Host CDC Client Driver Invalid Request Handle

This is returned by the CDC Client driver command routines when the request could not be scheduled.

Remarks

None.

USB_HOST_CDC_HANDLE_INVALID Macro

Defines an Invalid CDC Client Driver Handle.

File

usb_host_cdc.h

C
#define USB_HOST_CDC_HANDLE_INVALID ((USB_HOST_CDC_HANDLE)(-1))

Description

USB Host CDC Client Driver Invalid Handle

This type defines an Invalid CDC Client Driver Handle. The USB_HOST_CDC_Open() function returns an invalid handle when it fails to open the
specified CDC device instance.

Remarks

None.

Files

Files

Name Description

usb_host_cdc.h USB Host CDC Client Driver Interface Header

usb_host_cdc_acm.h USB Host CDC Client Driver Interface Header

usb_host_cdc_config_template.h USB host CDC Class configuration definitions template

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 439

Description

usb_host_cdc.h

USB Host CDC Client Driver Interface Header

Enumerations

Name Description

USB_HOST_CDC_EVENT Identifies the possible events that the CDC Class Driver can generate.

USB_HOST_CDC_EVENT_RESPONSE Return type of the USB CDC Host Client Driver Event Handler.

USB_HOST_CDC_RESULT USB Host CDC Client Driver Result enumeration.

Functions

Name Description

USB_HOST_CDC_AttachEventHandlerSet This function will set an attach event handler.

USB_HOST_CDC_Close This function closes the CDC device.

USB_HOST_CDC_DeviceObjHandleGet This function returns the Device Object Handle for this CDC device.

USB_HOST_CDC_EventHandlerSet Registers an event handler with the CDC Host Client Driver.

USB_HOST_CDC_Open This function opens the specified CDC device.

USB_HOST_CDC_Read This function will read data from the attached device.

USB_HOST_CDC_SerialStateNotificationGet This function will request Serial State Notification from the attached device.

USB_HOST_CDC_Write This function will write data to the attached device.

Macros

Name Description

USB_HOST_CDC_HANDLE_INVALID Defines an Invalid CDC Client Driver Handle.

USB_HOST_CDC_INTERFACE USB HOST CDC Client Driver Interface

USB_HOST_CDC_REQUEST_HANDLE_INVALID USB Host CDC Client Driver Invalid Request Handle

USB_HOST_CDC_TRANSFER_HANDLE_INVALID USB Host CDC Client Driver Invalid Transfer Handle Definition.

Structures

Name Description

USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA USB Host CDC Client Driver Command
Event Data.

USB_HOST_CDC_EVENT_READ_COMPLETE_DATA USB Host CDC Client Driver Event Data.

USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED_DATA USB Host CDC Client Driver Event Data.

USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA USB Host CDC Client Driver Event Data.

Types

Name Description

USB_HOST_CDC_ATTACH_EVENT_HANDLER USB Host CDC Client Driver Attach Event Handler Function Pointer Type.

USB_HOST_CDC_EVENT_HANDLER USB Host CDC Client Driver Event Handler Function Pointer Type.

USB_HOST_CDC_HANDLE Defines the type of the CDC Host Client Driver Handle

USB_HOST_CDC_OBJ Defines the type of the CDC Host Client Object.

USB_HOST_CDC_REQUEST_HANDLE USB Host CDC Client Driver Request Handle

USB_HOST_CDC_TRANSFER_HANDLE USB Host CDC Client Driver Transfer Handle

Description

USB Host CDC Client Driver Interface Definition

This header file contains the function prototypes and definitions of the data types and constants that make up the interface to the USB Host CDC

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 440

Client Driver.

File Name

usb_host_cdc.h

Company

Microchip Technology Inc.

usb_host_cdc_acm.h

USB Host CDC Client Driver Interface Header

Functions

Name Description

USB_HOST_CDC_ACM_BreakSend This function sends a request to the attached device to update its break duration.

USB_HOST_CDC_ACM_ControlLineStateSet This function sends a request to the attached device to set its Control Line State.

USB_HOST_CDC_ACM_LineCodingGet This function sends a request to the attached device to get its Line Coding.

USB_HOST_CDC_ACM_LineCodingSet This function sends a request to the attached device to set its Line Coding.

Description

USB Host CDC Client Driver Interface Definition

This header file contains the CDC ACM specific function prototypes and definitions of the data types and constants that make up the interface to
the USB Host CDC Client Driver.

File Name

usb_host_cdc_acm.h

Company

Microchip Technology Inc.

usb_host_cdc_config_template.h

USB host CDC Class configuration definitions template

Macros

Name Description

USB_HOST_CDC_ATTACH_LISTENERS_NUMBER Defines the number of attach event listeners that can be registered with
CDC Host Client Driver.

USB_HOST_CDC_INSTANCES_NUMBER Specifies the number of CDC instances.

Description

USB Host CDC Class Configuration Definitions

This file contains configurations macros needed to configure the CDC host Driver. This file is a template file only. It should not be included by the
application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_host_cdc_config_template.h

Company

Microchip Technology Inc.

USB HID Host Mouse Driver Library

This section describes the USB HID Host Mouse Driver Library.

Introduction

Introduces the MPLAB Harmony USB HID Host Mouse Driver Library.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 441

Description

The HID Host Mouse Driver in the MPLAB Harmony USB Host Stack allows USB Host Applications to support and interact with USB Mouse
devices. The USB HID Host Mouse Driver has the following features:

• Supports USB HID Mouse devices

• Supports HID device matching at both device descriptor and interface descriptor level

• Supports both Boot and Non Boot interface USB Mouse devices

• Performs parsing of Mouse Report descriptor by using USB HID Host client driver APIs

• Supports detection of Mouse X, Y, and Z movements, as well as button click events

Using the Library

This topic describes the basic architecture of the USB HID Host Mouse Driver Library and provides information and examples on its use.

Library Overview

The USB HID Host Mouse Driver can be grouped functionally as shown in the following table.

Library Interface Section Description

Mouse Access Functions These functions allow application to register event handlers with the mouse driver. These functions are
implemented in usb_host_hid_mouse.c.

Abstraction Model

Describes the Abstraction Model of the USB HID Host Mouse Driver Library.

Description

The USB HID Host Mouse Driver interacts with the USB Host HID Client Driver to control the attached HID device. The USB Host Layer attaches
the USB HID Host Client Driver to the HID device when it meets the matching criteria specified in the USB Host TPL table.

The USB HID Host Client driver notifies the mouse driver of device attach and detach information and with report receive events with relevant
event data. On a report receive event, the USB Host HID Mouse Driver obtains all of the field information present in the Report Descriptor of the
mouse device and uses that field information and the INTERRUPT IN data received to understand mouse parameter values.

How the Library Works

Describes how the library works and how it should be used.

Description

The USB HID Host Mouse Driver provides the user application with an easy to use interface to the attached HID device. The USB Host Layer
initializes the USB HID Host Client Driver when a device is attached. This process does not require application intervention. The following sections
describe the steps and methods required for the user application to interact with the attached mouse devices through the USB Host HID Mouse
Driver.

HID Device TPL Table Configuration

Provides information on configuring the TPL table for HID devices.

Description

The Host Layer attaches the USB HID Host Client Driver to a device when the device class, subclass, protocol in the device descriptor or when the
class, subclass and protocol fields in the Interface descriptor matches the entry in the TPL table. When specifying the entry for the HID device
along with the Usage driver, the driver interface must be set to USB_HOST_HID_INTERFACE and the usage driver interface must be set to
usageDriverInterface. usageDriverInterface must be properly initialized to capture the Mouse driver APIs. This will attach the USB HID Host Mouse
Driver to the device when the USB Host HID Client Driver is attached. The following code shows possible TPL table options for matching HID
Devices.

Example:
/* This code shows an example of TPL table entries for supporting HID mouse devices.
 * Note that the driver interface is set to USB_HOST_HID_INTERFACE. This
 * will load the HID Host Client Driver when there is TPL match. Usage driver
 * interface is initialized with appropriate function pointer for Mouse driver.
 * This facilitates subsequent loading of Mouse driver post HID client driver.
 */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 442

 USB_HOST_HID_USAGE_DRIVER_INTERFACE usageDriverInterface =
{
 .initialize = NULL,
 .deinitialize = NULL,
 .usageDriverEventHandler = _USB_HOST_HID_MOUSE_EventHandler,
 .usageDriverTask = _USB_HOST_HID_MOUSE_Task
};

USB_HOST_HID_USAGE_DRIVER_TABLE_ENTRY usageDriverTableEntry[1] =
{
 {
 .usage = USB_HID_USAGE_MOUSE,
 .initializeData = NULL,
 .interface = &usageDriverInterface
 }
};
const USB_HOST_TPL_ENTRY USBTPList[1] =
{
 /* This entry looks for any HID Mouse device */
 TPL_INTERFACE_CLASS_SUBCLASS_PROTOCOL(0x03, 0x01, 0x02, usageDriverTableEntry,
 USB_HOST_HID_INTERFACE) ,
};

Detecting Device Attach

Describe how to detect when a HID mouse device is attached.

Description

The application will need to know when a HID mouse device is attached. To receive this attach event from the USB HID Host Mouse Driver, the
application must register an Attach Event Handler by calling the USB_HOST_HID_MOUSE_EventHandlerSet function. This function should be
called before calling the USB_HOST_BusEnable function; otherwise, the application may miss HID attach events.

Mouse Data Event Handling

Describes mouse data event handling, which includes a code example.

Description

No extra event handler is required to be registered to receive mouse data. A call to function USB_HOST_HID_MOUSE_EventHandlerSet once is
adequate to receive mouse data as well.

The mouse button state along with the X, Y, and Z relative coordinate positions are provided by the USB Host HID Mouse Driver. The data type is
USB_HOST_HID_MOUSE_DATA and is defined in usb_host_hid_mouse.h. The following code shows an event handler example.

Example:
/* This code shows an example of HID Mouse Event Handler */

void APP_USBHostHIDMouseEventHandler
(
 USB_HOST_HID_MOUSE_HANDLE handle,
 USB_HOST_HID_MOUSE_EVENT event,
 void * pData
)
{
 /* This function gets called in the following scenarios:
 1. USB Mouse is Attached
 2. USB Mouse is detached
 3. USB Mouse data has been obtained.
 */

 switch (event)
 {
 case USB_HOST_HID_MOUSE_EVENT_ATTACH:
 /* Mouse Attached */
 appData.state = APP_STATE_DEVICE_ATTACHED;
 break;

 case USB_HOST_HID_MOUSE_EVENT_DETACH:
 /* Mouse Detached */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 443

 appData.state = APP_STATE_DEVICE_DETACHED;
 break;

 case USB_HOST_HID_MOUSE_EVENT_REPORT_RECEIVED:
 /* Mouse data event */
 appData.state = APP_STATE_READ_HID;
 /* Mouse Data from device */
 memcpy(&appData.data, pData, sizeof(appData.data));

 /* Now the Mouse data has been obtained. This is a parsed data
 in a simple format defined by USB_HOST_HID_MOUSE_DATA type.
 */
 break;
 }

}

void APP_Tasks(void)
{
 switch (appData.state)
 {
 case APP_STATE_BUS_ENABLE:

 /* In this state the application enables the USB Host Bus. Note
 * how the USB Mouse event handler is registered before the bus
 * is enabled. */

 USB_HOST_HID_MOUSE_EventHandlerSet(APP_USBHostHIDMouseEventHandler);
 USB_HOST_BusEnable(0);
 appData.state = APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE;
 break;

 case APP_STATE_WAIT_FOR_BUS_ENABLE_COMPLETE:
 /* Here we wait for the bus enable operation to complete. */
 break;
 }
}

Configuring the Library

Describes how to configure the USB HID Host Mouse Driver.

Macros

Name Description

USB_HID_GLOBAL_PUSH_POP_STACK_SIZE Specifies the Global PUSH POP stack size supported.

USB_HOST_HID_INSTANCES_NUMBER Specifies the number of HID instances.

USB_HOST_HID_INTERRUPT_IN_ENDPOINTS_NUMBER Specifies the maximum number of INTERRUPT IN endpoints
supported.

USB_HOST_HID_MOUSE_BUTTONS_NUMBER Specifies the number of Mouse buttons supported.

USB_HOST_HID_USAGE_DRIVER_SUPPORT_NUMBER Specifies the number of Usage driver registered

Description

The USB HID Host Mouse Driver requires configuration constants to be specified in the system_config.h file. These constants define the build
time configuration (functionality and static resources) of the USB HID Host Mouse Driver.

USB_HID_GLOBAL_PUSH_POP_STACK_SIZE Macro

Specifies the Global PUSH POP stack size supported.

File

usb_host_hid_config_template.h

C
#define USB_HID_GLOBAL_PUSH_POP_STACK_SIZE

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 444

Description

USB Host HID Global PUSH POP stack size supported

This macro defines the size of the Global PUSH POP stack per HID driver instance. If the application wants to support HID device having 2
continuous PUSH item or 2 continuous POP item in the Report Descriptor, then the value should be set to 2.

Remarks

None.

USB_HOST_HID_INSTANCES_NUMBER Macro

Specifies the number of HID instances.

File

usb_host_hid_config_template.h

C
#define USB_HOST_HID_INSTANCES_NUMBER

Description

USB host HID Maximum Number of instances

This macro defines the number of instances of the HID host Driver. For example, if the application needs to implement two instances of the HID
host Driver, value should be set to 2.

Remarks

None.

USB_HOST_HID_INTERRUPT_IN_ENDPOINTS_NUMBER Macro

Specifies the maximum number of INTERRUPT IN endpoints supported.

File

usb_host_hid_config_template.h

C
#define USB_HOST_HID_INTERRUPT_IN_ENDPOINTS_NUMBER

Description

USB Host HID Maximum Number of INTERRUPT IN endpoints supported

This macro defines the number of INTERRUPT IN endpoints supported by USB Host HID driver. If the application needs to work with HID device
which has 2 INTERRUPT IN endpoints, the value should be set to 2.

Remarks

None.

USB_HOST_HID_MOUSE_BUTTONS_NUMBER Macro

Specifies the number of Mouse buttons supported.

File

usb_host_hid_config_template.h

C
#define USB_HOST_HID_MOUSE_BUTTONS_NUMBER

Description

USB Host HID number of Mouse buttons supported

This macro defines the number of Mouse buttons supported. If the application wants to support HID Mouse device having 5 buttons, then the value
should be set to 5.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 445

USB_HOST_HID_USAGE_DRIVER_SUPPORT_NUMBER Macro

Specifies the number of Usage driver registered

File

usb_host_hid_config_template.h

C
#define USB_HOST_HID_USAGE_DRIVER_SUPPORT_NUMBER

Description

USB Host HID number of Usage driver registered

This macro defines the number of Usage driver registered with USB Host Hid driver. If the application wants HID driver to support 2 HID device
having different usage, then the value should be set to 2.

Remarks

None.

Building the Library

Describes the files to be included in the project while using the USB HID Host Mouse Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_host_hid_mouse.h This header file should be included in any .c file that accesses the YSB HID Host Mouse Driver API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_host_hid.c This file implements the USB HID Host Client Driver interface and should be included in the project
if any usage driver operation is desired.

/src/dynamic/usb_host_hid_mouse.c This file implements the USB HID Host Mouse Driver interface and should be included in the
project if any usage driver operation is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB HID Host Mouse Driver Library depends on the following modules:

• USB Host Layer Library

• USB Host HID Client Driver Library

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 446

Library Interface

a) Mouse Access Functions

Name Description

USB_HOST_HID_MOUSE_EventHandlerSet This function registers application callback function with the mouse driver.

_USB_HOST_HID_MOUSE_EventHandler This is function _USB_HOST_HID_MOUSE_EventHandler.

_USB_HOST_HID_MOUSE_Task This is function _USB_HOST_HID_MOUSE_Task.

b) Data Types and Constants

Name Description

USB_HOST_HID_MOUSE_DATA Defines the USB Host HID mouse data object.

USB_HOST_HID_MOUSE_EVENT Defines the possible USB HOST HID mouse driver events.

USB_HOST_HID_MOUSE_EVENT_HANDLER USB HOST mouse driver event handler function pointer type.

USB_HOST_HID_MOUSE_HANDLE USB HOST HID mouse driver instance handle.

USB_HOST_HID_MOUSE_RESULT USB Host HID mouse driver results.

USB_HOST_HID_MOUSE_RESULT_MIN USB Host HID mouse driver result minimum constant.

USB_HOST_HID_MOUSE_HANDLE_INVALID This is macro USB_HOST_HID_MOUSE_HANDLE_INVALID.

Description

This section describes the Application Programming Interface (API) functions of the USB HID Host Mouse Driver Library.

The USB Mouse driver does not require explicit API call by the application to obtain Mouse data. The data in the appropriate format is sent to the
application during an application event handler function call.

a) Mouse Access Functions

USB_HOST_HID_MOUSE_EventHandlerSet Function

This function registers application callback function with the mouse driver.

File

usb_host_hid_mouse.h

C
USB_HOST_HID_MOUSE_RESULT USB_HOST_HID_MOUSE_EventHandlerSet(USB_HOST_HID_MOUSE_EVENT_HANDLER
appMouseEventHandler);

Returns

Returns data structure of USB_HOST_HID_MOUSE_RESULT type. USB_HOST_HID_MOUSE_RESULT_INVALID_PARAMETER: Invalid
Parameter USB_HOST_HID_MOUSE_RESULT_FAILURE: On failure USB_HOST_HID_MOUSE_RESULT_SUCCESS: On success

Description

This function registers application callback function with the mouse driver. Any subsequent mouse events is passed to the application by calling
the registered application function. The function prototype should be of the USB_HOST_HID_MOUSE_EVENT_HANDLER type.

Remarks

This function should be called before the USB bus is enabled.

Preconditions

This function should be called before the USB bus is enabled.

Parameters

Parameters Description

appMouseEventHandler Function pointer to the application function.

Function

USB_HOST_HID_MOUSE_RESULT USB_HOST_HID_MOUSE_EventHandlerSet

(

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 447

USB_HOST_HID_MOUSE_EVENT_HANDLER appMouseEventHandler

);

_USB_HOST_HID_MOUSE_EventHandler Function

File

usb_host_hid_mouse.h

C
void _USB_HOST_HID_MOUSE_EventHandler(USB_HOST_HID_OBJ_HANDLE handle, USB_HOST_HID_EVENT event, void *
eventData);

Description

This is function _USB_HOST_HID_MOUSE_EventHandler.

_USB_HOST_HID_MOUSE_Task Function

File

usb_host_hid_mouse.h

C
void _USB_HOST_HID_MOUSE_Task(USB_HOST_HID_OBJ_HANDLE handle);

Description

This is function _USB_HOST_HID_MOUSE_Task.

b) Data Types and Constants

USB_HOST_HID_MOUSE_DATA Structure

Defines the USB Host HID mouse data object.

File

usb_host_hid_mouse.h

C
typedef struct {
 USB_HID_BUTTON_STATE buttonState[USB_HOST_HID_MOUSE_BUTTONS_NUMBER];
 USB_HID_BUTTON_ID buttonID[USB_HOST_HID_MOUSE_BUTTONS_NUMBER];
 int16_t xMovement;
 int16_t yMovement;
 int16_t zMovement;
} USB_HOST_HID_MOUSE_DATA;

Members

Members Description

USB_HID_BUTTON_STATE
buttonState[USB_HOST_HID_MOUSE_BUTTONS_NUMBER];

Button state for the buttons. USB_HOST_HID_MOUSE_BUTTONS_NUMBER is
system configurable option. The actual number of buttons in the mouse needs to
be <= USB_HOST_HID_MOUSE_BUTTONS_NUMBER

int16_t xMovement; Applicable for 2D Mouse Y - Coordinate displacement

int16_t yMovement; Applicable for 2D Mouse Z - Coordinate displacement

int16_t zMovement; Applicable only for 3D Mouse

Description

USB Host HID Mouse Data Object

This structure defines the USB Host HID mouse data object.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 448

USB_HOST_HID_MOUSE_EVENT Enumeration

Defines the possible USB HOST HID mouse driver events.

File

usb_host_hid_mouse.h

C
typedef enum {
 USB_HOST_HID_MOUSE_EVENT_ATTACH = 0,
 USB_HOST_HID_MOUSE_EVENT_DETACH,
 USB_HOST_HID_MOUSE_EVENT_REPORT_RECEIVED
} USB_HOST_HID_MOUSE_EVENT;

Members

Members Description

USB_HOST_HID_MOUSE_EVENT_ATTACH = 0 Mouse has been attached

USB_HOST_HID_MOUSE_EVENT_DETACH Mouse has been detached

USB_HOST_HID_MOUSE_EVENT_REPORT_RECEIVED Mouse IN Report data available

Description

USB HOST HID Mouse Driver Events

This enumeration lists the possible mouse events that the mouse driver can provide to the application. Some of these events have event data
associated with them.

USB_HOST_HID_MOUSE_EVENT_HANDLER Type

USB HOST mouse driver event handler function pointer type.

File

usb_host_hid_mouse.h

C
typedef void (* USB_HOST_HID_MOUSE_EVENT_HANDLER)(USB_HOST_HID_MOUSE_HANDLE handle,
USB_HOST_HID_MOUSE_EVENT event, void *pData);

Description

USB HOST Mouse Driver Event Handler Function Pointer Type.

This defines the USB HOST HID mouse driver event handler function pointer type. Application must register a function of this type to receive HID
mouse events. Registration should happen before USB BUS is enabled by the application.

USB_HOST_HID_MOUSE_HANDLE Type

USB HOST HID mouse driver instance handle.

File

usb_host_hid_mouse.h

C
typedef uintptr_t USB_HOST_HID_MOUSE_HANDLE;

Description

USB HOST HID Mouse Driver Instance Handle

This defines a USB Host HID mouse driver handle.

Remarks

None.

USB_HOST_HID_MOUSE_RESULT Enumeration

USB Host HID mouse driver results.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 449

File

usb_host_hid_mouse.h

C
typedef enum {
 USB_HOST_HID_MOUSE_RESULT_FAILURE = USB_HOST_HID_MOUSE_RESULT_MIN,
 USB_HOST_HID_MOUSE_RESULT_INVALID_PARAMETER,
 USB_HOST_HID_MOUSE_RESULT_SUCCESS = 0
} USB_HOST_HID_MOUSE_RESULT;

Members

Members Description

USB_HOST_HID_MOUSE_RESULT_FAILURE =
USB_HOST_HID_MOUSE_RESULT_MIN

An unknown failure occurred

USB_HOST_HID_MOUSE_RESULT_INVALID_PARAMETER Invalid or NULL parameter passed

USB_HOST_HID_MOUSE_RESULT_SUCCESS = 0 Indicates that the operation succeeded or the request was accepted and will be
processed.

Description

USB Host HID MOUSE Result

This enumeration defines the possible returns values of USB Host HID mouse driver API. A function may only return some of the values in this
enumeration. Refer to function description for details on which values will be returned.

Remarks

None.

USB_HOST_HID_MOUSE_RESULT_MIN Macro

USB Host HID mouse driver result minimum constant.

File

usb_host_hid_mouse.h

C
#define USB_HOST_HID_MOUSE_RESULT_MIN -50

Description

USB Host HID Mouse Driver Result Minimum Constant

This constant identifies the minimum value of the USB Host HID mouse driver and is used in the USB_HOST_HID_MOUSE_RESULT
enumeration.

Remarks

None.

USB_HOST_HID_MOUSE_HANDLE_INVALID Macro

File

usb_host_hid_mouse.h

C
#define USB_HOST_HID_MOUSE_HANDLE_INVALID ((USB_HOST_HID_MOUSE_HANDLE)(-1))

Description

This is macro USB_HOST_HID_MOUSE_HANDLE_INVALID.

Files

Files

Name Description

usb_host_hid_mouse.h USB Host HID Mouse Driver Definition Header

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 450

usb_host_hid_config_template.h USB host HID Class configuration definitions template

Description

This section lists the source and header files used by the library.

usb_host_hid_mouse.h

USB Host HID Mouse Driver Definition Header

Enumerations

Name Description

USB_HOST_HID_MOUSE_EVENT Defines the possible USB HOST HID mouse driver events.

USB_HOST_HID_MOUSE_RESULT USB Host HID mouse driver results.

Functions

Name Description

_USB_HOST_HID_MOUSE_EventHandler This is function _USB_HOST_HID_MOUSE_EventHandler.

_USB_HOST_HID_MOUSE_Task This is function _USB_HOST_HID_MOUSE_Task.

USB_HOST_HID_MOUSE_EventHandlerSet This function registers application callback function with the mouse driver.

Macros

Name Description

USB_HOST_HID_MOUSE_HANDLE_INVALID This is macro USB_HOST_HID_MOUSE_HANDLE_INVALID.

USB_HOST_HID_MOUSE_RESULT_MIN USB Host HID mouse driver result minimum constant.

Structures

Name Description

USB_HOST_HID_MOUSE_DATA Defines the USB Host HID mouse data object.

Types

Name Description

USB_HOST_HID_MOUSE_EVENT_HANDLER USB HOST mouse driver event handler function pointer type.

USB_HOST_HID_MOUSE_HANDLE USB HOST HID mouse driver instance handle.

Description

USB HOST HID Mouse Driver Interface Definition

This header file contains the function prototypes and definitions of the data types and constants that make up the interface between HID Mouse
driver and top level application.

File Name

usb_host_hid_mouse.h

Company

Microchip Technology Inc.

usb_host_hid_config_template.h

USB host HID Class configuration definitions template

Macros

Name Description

USB_HID_GLOBAL_PUSH_POP_STACK_SIZE Specifies the Global PUSH POP stack size supported.

USB_HOST_HID_INSTANCES_NUMBER Specifies the number of HID instances.

USB_HOST_HID_INTERRUPT_IN_ENDPOINTS_NUMBER Specifies the maximum number of INTERRUPT IN endpoints
supported.

USB_HOST_HID_MOUSE_BUTTONS_NUMBER Specifies the number of Mouse buttons supported.

USB_HOST_HID_USAGE_DRIVER_SUPPORT_NUMBER Specifies the number of Usage driver registered

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 451

Description

USB Host HID Class Configuration Definitions

This file contains configurations macros needed to configure the HID host Driver. This file is a template file only. It should not be included by the
application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_host_hid_config_template.h

Company

Microchip Technology Inc.

USB Hub Host Client Driver Library

This section describes the USB Hub Host Client Driver Library.

Introduction

Introduces the MPLAB Harmony USB Hub Host Client Driver Library.

Description

The USB Hub Host Client Driver in the MPLAB Harmony USB Host Stack allows USB Host Applications to interact with a USB Hub and thus
manage multiple USB devices simultaneously in one application. The key features of the Hub Host Client Driver include:

• Allows multiple USB devices to be connected to the host and hence allow the USB Host application to interact simultaneously with multiple
USB devices.

• Implemented as per Chapter 11 of the USB 2.0 specification.

• Support multiple Hub tiers. A Hub can be connected to another Hub.

• Does not require application intervention for its operation. The application does not have to call an Hub Driver API.

Abstraction Model

Describes the Abstraction Model of the USB Hub Host Client Driver Library.

Description

The USB Hub Host Client Driver abstracts the complexities of Hub operation and presents a simple interface to the Host Layer. The interface
allows the Host Layer to perform port operations such as port reset, port suspend and port resume. The port interface offered by the Hub Host
Client Driver is the same as that offered by the root hub driver. In that, the Host Layer does not differentiate between an external hub and the root
hub.

The USB Hub Host Client Driver does not have any application callable API. It only interacts with the Host Layer. The USB Hub Host Client Driver
performs the task of powering up the ports, detecting device attach and detach and notifying the same to the Host Layer and detecting over current
conditions. The USB Hub Host Client Driver performs the control transfers required for these tasks.

Library Overview

The USB Hub Host Client Driver does not contain any application callable functions.

Using the Library

This topic describes the basic architecture of the USB Hub Host Client Driver Library and provides information and examples on its use.

How the Library Works

Describes how the Library works and how it should be used.

Description

The USB Hub Host Client Driver does not contain any application callable functions. The only step that the application code must implement is to
enable USB Host Layer Hub support and to provision the USB Hub Host Client Driver in the TPL table.

The USB Host Layer enables Hub Support when the USB_HOST_HUB_SUPPORT_ENABLE configuration macro is defined in
system_config.h. Refer to the Configuring the Library section of the USB Host Layer Library Help Topic for more information.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 452

Hub TPL Table Configuration

Provides information on configuring the TPL table for adding Hub support.

Description

The Host Layer attaches the USB Hub Host Client Driver to a Hub device only if the TPL table contains an entry to enable this feature. The driver
interface for such a TPL entry should point to USB_HOST_HUB_INTERFACE. The following code shows an example of the TPL entry for the
adding Hub support to the application.

Example:
/* This code shows an example of how to initialize the TPL table to
 * support a USB Hub Host Client Driver */

#include "usb/usb_host_hub.h"
#include "usb/usb_hub.h"

const USB_HOST_TPL_ENTRY USBTPList[2] =
{
 TPL_INTERFACE_CLASS_SUBCLASS_PROTOCOL(USB_HUB_CLASS_CODE, 0x00, 0x00, NULL, USB_HOST_HUB_INTERFACE),

 /* A high-speed hub will report the number of transaction translators in the
 * protocol field. We can ignore this and let the host layer load the hub
 * driver for a high-speed hub */

 TPL_INTERFACE_CLASS (USB_HUB_CLASS_CODE, NULL, USB_HOST_HUB_INTERFACE)
};

USB Hub Host Client Driver Test Results

Provides test results for the USB Hub Host Client Driver.

Description

The following table lists the commercially available USB hubs, which have been tested to successfully enumerate and operate with the USB Hub
Host Client Driver in the MPLAB Harmony USB Host Stack. Note that if the Hub you are using is not included in the table, this indicates that this
Hub has not been tested with the USB Hub Host Client Driver. However, the Hub could still potentially work with the USB Hub Host Client Driver.

The hubs were tested with the hub_msd USB Host demonstration in the latest version of the MPLAB Harmony USB Host Stack.

Hub Model Number of Ports VID PID

Belkin USB 2.0 4 0x050D 0x0233

QHMPL 4 0x1A40 0x0101

Portronics 3 0x1A40 0x0101

Sanda 4 0x05E3 0x0606

iBall 4 0x1A40 0x0101

Configuring the Library

Describes how to configure the USB Hub Host Client Driver.

Macros

Name Description

USB_HOST_HUB_INSTANCES_NUMBER Specifies the number of Hub to be supported in the system.

USB_HOST_HUB_PORTS_NUMBER Specifies the number of ports per Hub.

Description

The USB Hub Host Client Driver requires configuration constants to be specified in system_config.h file. These constants define the build time
configuration (functionality and static resources) of the Hub Host Client Driver.

USB_HOST_HUB_INSTANCES_NUMBER Macro

Specifies the number of Hub to be supported in the system.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 453

File

usb_host_hub_config_template.h

C
#define USB_HOST_HUB_INSTANCES_NUMBER

Description

USB Host Hub Instances Number

This configuration constant defines the total number of hubs to be supported in the application. This includes hubs connected across multiple
USBs. If the hub connected to the host exceed this number, then the additional hubs will not be enumerated.

Remarks

Increasing number of Hubs to be supported will also increase memory consumption.

USB_HOST_HUB_PORTS_NUMBER Macro

Specifies the number of ports per Hub.

File

usb_host_hub_config_template.h

C
#define USB_HOST_HUB_PORTS_NUMBER

Description

USB Host Hub Number of Ports per Hub

This configuration macros specifies the number of Ports per Hub. If any Hub connected to host will a have a maximum of 4 ports, then this number
should be set to 4. A hub with more ports than the value defined by this constant will not be supported.

Remarks

Supporting a hub with more ports increases the memory requirement.

Building the Library

Describes the files to be included in the project while using the USB Hub Host Client Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_host_hub.h This header file should be included in any .c file that accesses the USB Hub Host Client Driver API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_host_hub.c This file implements the USB Hub Host Client Driver interface and should be included in the project if the
USB Hub Host Client Driver operation is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 454

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB Hub Host Client Driver Library depends on the following modules:

• USB Host Layer Library

Library Interface

Data Types and Constants

Name Description

USB_HOST_HUB_INTERFACE USB Hub Host Client Driver Interface Pointer.

Description

This section describes the Application Programming Interface (API) functions of the USB Hub Host Client Driver Library.

Refer to each section for a detailed description.

Data Types and Constants

USB_HOST_HUB_INTERFACE Macro

USB Hub Host Client Driver Interface Pointer.

File

usb_host_hub.h

C
#define USB_HOST_HUB_INTERFACE

Description

USB Hub Host Client Driver Interface Pointer

This constant is a pointer to a table of function pointers that define the interface between the Hub Host Client Driver and the USB Host Layer. This
constant should be used while adding support for the Hub Driver in TPL table.

Remarks

None.

Files

Files

Name Description

usb_host_hub.h USB Host Hub Client Driver Interface Header

usb_host_hub_config_template.h USB host CDC Class configuration definitions template

Description

This section lists the source and header files used by the library.

usb_host_hub.h

USB Host Hub Client Driver Interface Header

Macros

Name Description

USB_HOST_HUB_INTERFACE USB Hub Host Client Driver Interface Pointer.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 455

Description

USB Host Hub Client Driver Interface Definition

This header file contains the function prototypes and definitions of the data types and constants that make up the interface to the USB HOST Hub
Client Driver.

File Name

usb_host_hub.h

Company

Microchip Technology Inc.

usb_host_hub_config_template.h

USB host CDC Class configuration definitions template

Macros

Name Description

USB_HOST_HUB_INSTANCES_NUMBER Specifies the number of Hub to be supported in the system.

USB_HOST_HUB_PORTS_NUMBER Specifies the number of ports per Hub.

Description

USB Host Hub Configuration Definitions

This file contains configurations macros needed to configure the Hub Driver. This file is a template file only. It should not be included by the
application. The configuration macros defined in the file should be defined in the configuration specific system_config.h.

File Name

usb_host_hub_config_template.h

Company

Microchip Technology Inc.

USB MSD Host Client Driver Library

This section describes the USB MSD Host Client Driver Library.

Introduction

Introduces the MPLAB Harmony USB Mass Storage Device (MSD) Host Client Driver Library.

Description

The USB MSD Host Client Driver in the MPLAB Harmony USB Host Stack allows USB Host Applications to support and interact with Mass
Storage Class (MSC) USB devices. Examples of such devices are USB Pen Drives and USB Card readers. The USB MSD Host Client Driver
along with the SCSI Block Storage Driver Library implement a multi-layer solution to reading and writing to mass storage USB device that
implement the SCSI command protocol. The USB MSD Host Client Driver has the following features:

• Implements the Bulk Only Transport (BOT) protocol in the USB MSD specification

• Supports multiple instances, which allows the application to interact with multiple storage devices

• Supports multi-LUN devices such as USB Card Reader

• Automatically (without application intervention) attaches the SCSI Block Driver to an identified device

• Implements automatic clearing of endpoint stall conditions

• Implements all three stages of a BOT transfer and provide a simple event driver transfer interface to the top-level application (which is typically
a block storage driver library such as the SCSI Block Storage Driver Library)

• Typically operates without application intervention. The BOT transfers are typically invoked by the SCSI Block Storage Driver Library.

Using the Library

This topic describes the basic architecture of the USB MSD Host Client Drier Library and provides information and examples on its use.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 456

Library Overview

Provides an overview of the USB Host MSD Library.

Description

The USB MSD Host Client Driver can be grouped functionally as shown in the following table.

Library Interface Section Descriptions

Data Transfer Functions These functions allow the application client to transfer data to the attached device.

Abstraction Model

Describes the Abstraction Model of the USB MSD Host Client Driver Library.

Description

The USB MSD Host Client Driver provides the transport for SCSI commands that implements that media read, write and control operations. If
abstracts the details of initiating and completing a BOT transfer and performing error handling and presents a simple event driven interface to the
top-level block storage command driver library.

The USB MSD Host Client Driver uses the USB Host data transfer and pipe management routines to implement the three stages of a BOT
transfer. The library accepts a SCSI command from the SCSI Block Storage driver and transports this command in the command block of the
Command Block Wrapper in the CBW stage of the BOT transfer. If the command requires a data stage, the USB MSD Host Client Driver library
will transfer data between the USB Host and the device. The USB MSD Host Client Driver will then terminate the BOT transfer by requesting for
the Command Status Wrapper (CSW) from the device.

If the device stalls any stage of the transfer, the USB MSD Host Client Driver will clear the stall and will automatically initiate the CSW stage to
complete the transfer. The transfer result is communicated to the top level block storage driver library through a callback mechanism.

The USB Host layer will attach the USB MSD Host Client Driver to a mass storage device based on a TPL entry match. The USB MSD Host Client
Driver will then open data and communication control pipes to the device. It will first get the number of logical units (LUN) that the device contains.
It will then initialize the SCSI block storage driver for each reported LUN and mark the device state as being ready for data transfers.

How the Library Works

Describes how the library works and how it should be used.

Description

The USB MSD Host Client Driver provides the top level block storage driver with an easy to use, event driven, interface to transport the block
storage command and data between the block storage command driver library and a compliant mass storage device. The USB MSD Host Client
Driver in the MPLAB Harmony USB Host stack immediately supports mass storage devices that advertise support of the SCSI command set.
Indeed, most of the commercially available USB storage devices such as USB pen driver and USB card readers respond to SCSI command
requests.

The process of initializing the SCSI block storage driver library when a device is attached is performed automatically, by the USB MSD Host Client
Driver. This does not require user application intervention. The following sections describe the TPL table design (application responsibility) and
USB MSD Host Client Driver data transfer function (typically called by the SCSI block storage driver library).

MSD TPL Table Configuration

Describes TPL table design for matching MSD devices.

Description

The Host Layer attaches the MSD Host Client Driver to a device when the class, subclass and protocol fields in the Interface Association
Descriptor (IAD) or Interface descriptor match the entry in the TPL table. When specifying the entry for the MSD device, the driver interface must
be set to USB_HOST_MSD_INTERFACE. This will attach the USB MSD Host Client Driver to the device when the USB Host matches the TPL
entry to the device. The following code shows a TPL table design for matching MSD Devices.

Example:
/* This code shows an example TPL table entry for supporting a Mass
 * Storage Device */

const USB_HOST_TPL_ENTRY USBTPList[1] =
{
 TPL_INTERFACE_CLASS_SUBCLASS_PROTOCOL(USB_MSD_CLASS_CODE,
 USB_MSD_SUBCLASS_CODE_SCSI_TRANSPARENT_COMMAND_SET, USB_MSD_PROTOCOL, NULL,
USB_HOST_MSD_INTERFACE)

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 457

};

Data Transfer

Describes how to transfer data, which includes a code example.

Description

The USB MSD Host Client Driver data transfer function is typically called by the SCSI Block Storage Driver Library. The
USB_HOST_MSD_Transfer function allows the SCSI Block Storage Driver to transport SCSI commands to the mass storage device. The cdb
parameter and the cdbLength parameter of the function specify the command and its size respectively. If the command requires the transport of
data, then data must contain the pointer to the buffer and size specifies the amount of data expected to be transported. When the BOT transfer
complete, the USB MSD Host Client Diver will call the callback function. The following code snippet shows an example of using the
USB_HOST_MSD_Transfer function.

Example:
/* This code shows usage of the USB_HOST_MSD_Transfer function. The SCSI Block
 * Driver Library uses this function to send a SCSI Inquiry Command to the
 * device. Note how the commandCompleted flag in the SCSI instance object
 * tracks the completion of the transfer. This flag is updated in the transfer
 * callback. */

void _USB_HOST_SCSI_TransferCallback
(
 USB_HOST_MSD_LUN_HANDLE lunHandle,
 USB_HOST_MSD_TRANSFER_HANDLE transferHandle,
 USB_HOST_MSD_RESULT result,
 size_t size,
 uintptr_t context
)
{
 int scsiObjIndex;
 USB_HOST_SCSI_OBJ * scsiObj;
 USB_HOST_SCSI_COMMAND_OBJ * commandObj;
 USB_HOST_SCSI_EVENT event;

 /* Get the SCSI object index from the lunHandle */
 scsiObjIndex = _USB_HOST_SCSI_LUNHandleToSCSIInstance(lunHandle);

 /* Get the pointer to the SCSI object */
 scsiObj = &gUSBHostSCSIObj[scsiObjIndex];

 /* Pointer to the command object */
 commandObj = &scsiObj->commandObj;

 /* The processed size */
 commandObj->size = size;

 /* The result of the command */
 commandObj->result = result;

 /* Let the main state machine know that the command is completed */
 commandObj->commandCompleted = true;

 /* The rest of code is not shown here for the sake of brevity */
}

void USB_HOST_SCSI_Tasks(USB_HOST_MSD_LUN_HANDLE lunHandle)
{
 switch(scsiObj->state)
 {
 /* For the sake of brevity, only one SCSI command is show here */
 case USB_HOST_SCSI_STATE_INQUIRY_RESPONSE:

 /* We get the SCSI Enquiry response. Although there isn't much
 * that we can do with this data */
 _USB_HOST_SCSI_InquiryResponseCommand(scsiObj->commandObj.cdb);

 /* The commandCompleted flag will be updated in the callback.
 * Update the state and send the command. */

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 458

 scsiObj->commandObj.inUse = true;
 scsiObj->commandObj.commandCompleted = false;
 scsiObj->commandObj.generateEvent = false;

 result = USB_HOST_MSD_Transfer(scsiObj->lunHandle,
 scsiObj->commandObj.cdb, 6, scsiObj->buffer, 36,
 USB_HOST_MSD_TRANSFER_DIRECTION_DEVICE_TO_HOST,
 _USB_HOST_SCSI_TransferCallback, (uintptr_t)(scsiObj));

 if(result == USB_HOST_MSD_RESULT_SUCCESS)
 {
 scsiObj->state = USB_HOST_SCSI_STATE_WAIT_INQUIRY_RESPONSE;
 }

 break;

 default:
 break;

 }
}

Configuring the Library

Describes how to configure the USB Host Layer.

Macros

Name Description

USB_HOST_MSD_INSTANCES_NUMBER Defines the maximum number of MSD devices to be supported by this host
application.

USB_HOST_MSD_LUNS_NUMBER Defines the maximum number of MSD Device LUNs to be supported in the application.

Description

The USB MSD Host Client Driver requires configuration constants to be specified in system_config.h file. These constants define the build time
configuration (functionality and static resources) of the USB MSD Host Client Driver.

USB_HOST_MSD_INSTANCES_NUMBER Macro

Defines the maximum number of MSD devices to be supported by this host application.

File

usb_host_msd_config_template.h

C
#define USB_HOST_MSD_INSTANCES_NUMBER

Description

USB Host MSD Client Driver Instances Number.

This constant defines the maximum number of MSD devices to be supported by this host application. For example, if 3 USB Pen Drives need to be
supported, then this value should be 3. This value cannot be greater than USB_HOST_DEVICES_NUMBER, which defines the maximum number
of devices to be supported in the application. If this constant is less than USB_HOST_DEVICES_NUMBER, then only
USB_HOST_MSD_INSTANCES_NUMBER of MSD devices will be enumerated.

Remarks

None

USB_HOST_MSD_LUNS_NUMBER Macro

Defines the maximum number of MSD Device LUNs to be supported in the application.

File

usb_host_msd_config_template.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 459

C
#define USB_HOST_MSD_LUNS_NUMBER

Description

USB Host MSD Client Driver LUNs Number.

An MSD device may have mutliple storage units, each addressable through a LUN number. An example is a USB Card reader with multiple card
slots. Each card slot has a LUN number. The USB_HOST_MSD_LUNS_NUMBER constant defines the maximum number of such logical units
that can be managed by the USB Host application. This number should atleast be equal to USB_HOST_MSD_INSTANCES_NUMBER. To
configure this value, consider an example of an application that will support a maximum of 2 USB Storage device. These 2 storage devices are
expected to have at the most 3 LUNs each. Then the the USB_HOST_MSD_LUNS_NUMBER constant should be set to 6 (2 devices and 3 LUNs
per device)/

Remarks

None

Building the Library

Describes the files to be included in the project while using the MSD Host Function Driver.

Description

The following three tables list and describe the header (.h) and source (.c) files that implement this library. The parent folder for these files is
<install-dir>/framework/usb.

Interface File(s)

This table lists and describes the header files that must be included (i.e., using #include) by any code that uses this library.

Source File Name Description

usb_host_msd.h This header file should be included in any .c file that accesses the USB Host MSD Client Driver API.

Required File(s)

All of the required files listed in the following table are automatically added into the MPLAB X IDE project by the MHC
when the library is selected for use.

This table lists and describes the source and header files that must always be included in the MPLAB X IDE project to build this library.

Source File Name Description

/src/dynamic/usb_host_msd.c This file implements the USB Host MSD Client Driver interface and should be included in the project if USB
Host MSD Client Driver operation is desired.

Optional File(s)

This table lists and describes the source and header files that may optionally be included if required for the desired implementation.

Source File Name Description

N/A There are no optional files for this library.

Module Dependencies

The USB MSD Host Library depends on the following modules:

• USB Host Layer Library

Library Interface

a) Data Transfer Functions

Name Description

USB_HOST_MSD_Transfer This function schedules a MSD BOT transfer.

USB_HOST_MSD_TransferErrorTasks This function maintains the MSD transfer error handling state machine.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 460

b) Data Types and Constants

Name Description

USB_HOST_MSD_RESULT USB HOST MSD Result

USB_HOST_MSD_TRANSFER_CALLBACK USB HOST MSD Transfer Complete Callback

USB_HOST_MSD_TRANSFER_DIRECTION USB HOST MSD Transfer Direction.

USB_HOST_MSD_TRANSFER_HANDLE USB HOST MSD Transfer Handle

USB_HOST_MSD_INTERFACE USB HOST MSD Client Driver Interface

USB_HOST_MSD_TRANSFER_HANDLE_INVALID USB HOST MSD Transfer Handle Invalid

USB_HOST_MSD_LUN_HANDLE USB HOST MSD LUN Handle

USB_HOST_MSD_LUN_HANDLE_INVALID USB HOST MSD LUN Handle Invalid

USB_HOST_MSD_ERROR_CODE USB Host MSD Error Codes.

Description

a) Data Transfer Functions

USB_HOST_MSD_Transfer Function

This function schedules a MSD BOT transfer.

File

usb_host_msd.h

C
USB_HOST_MSD_RESULT USB_HOST_MSD_Transfer(USB_HOST_MSD_LUN_HANDLE lunHandle, uint8_t * cdb, uint8_t
cdbLength, void * data, size_t size, USB_HOST_MSD_TRANSFER_DIRECTION transferDirection,
USB_HOST_MSD_TRANSFER_CALLBACK callback, uintptr_t context);

Returns

USB_HOST_MSD_RESULT_FAILURE - An unknown failure occurred. USB_HOST_MSD_RESULT_BUSY - The transfer cannot be scheduled
right now. The caller should retry. USB_HOST_MSD_RESULT_LUN_HANDLE_INVALID - This LUN does not exist in the system.
USB_HOST_MSD_RESULT_SUCCESS - The transfer request was scheduled.

Description

This function schedules a MSD BOT transfer. The command to be executed is specified in the cdb. This should be pointer to a 16 byte command
descriptor block. The actual length of the command is specified by cdbLength. If there is data to be transferred, the pointer to the buffer is specified
by data. The size of the buffer is specified in size. When the transfer completes, the callback function will be called. The context will be returned in
the callback function.

Remarks

This is a local function and should not be called directly by the application.

Preconditions

None.

Parameters

Parameters Description

cdb pointer to the command to be executted. Should be a pointer to a 16 byte array. Unused bytes
should be zero-padded.

cdbLength Actual size of the command.

data pointer to the data buffer if a data stage is involved.

size size of the data buffer.

callback callback function to called when the transfer has completed.

transferDirection specifies the direction of the MSD transfer.

context caller defined context that is returned in the callback function.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 461

Function

USB_HOST_MSD_RESULT USB_HOST_MSD_Transfer

(

uint8_t * cdb,

uint8_t cdbLength,

void * data,

size_t size,

USB_HOST_MSD_TRANSFER_CALLBACK callback,

uintptr_t context

)

USB_HOST_MSD_TransferErrorTasks Function

This function maintains the MSD transfer error handling state machine.

File

usb_host_msd.h

C
void USB_HOST_MSD_TransferErrorTasks(USB_HOST_MSD_LUN_HANDLE lunHandle);

Returns

None.

Description

This function maintains the MSD transfer error handling state machine. This function should be called periodically after the
USB_HOST_MSD_Transfer function has been called to schedule a transfer. The function should be called periodically atleast till the transfer
completion event has been received. Calling this function while a BOT transfer is in progress allows the MSD Host Client driver to perform BOT
error handling in a non-blocking manner.

Calling this function when there is no BOT transfer in progress will not have any effect. In case of BOT error handling, calling this function will
eventually result in a BOT transfer event. It is not necessary to call this function after this event has occurred (till the next BOT transfer has been
scheduled).

Remarks

While running in an RTOS application, this function should be called in the same thread that requested the BOT Transfer and operating the logical
unit.

Preconditions

The lunHandle should be valid.

Parameters

Parameters Description

lunHandle handle to valid LUN.

Function

void USB_HOST_MSD_TransferErrorTasks

(

USB_HOST_MSD_LUN_HANDLE lunHandle,

);

b) Data Types and Constants

USB_HOST_MSD_RESULT Enumeration

USB HOST MSD Result

File

usb_host_msd.h

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 462

C
typedef enum {
 USB_HOST_MSD_RESULT_COMMAND_PASSED = 0,
 USB_HOST_MSD_RESULT_COMMAND_FAILED = 1,
 USB_HOST_MSD_RESULT_COMMAND_PHASE_ERROR = 2,
 USB_HOST_MSD_RESULT_SUCCESS,
 USB_HOST_MSD_RESULT_FAILURE,
 USB_HOST_MSD_RESULT_BUSY,
 USB_HOST_MSD_RESULT_LUN_HANDLE_INVALID,
 USB_HOST_MSD_RESULT_COMMAND_STALLED
} USB_HOST_MSD_RESULT;

Members

Members Description

USB_HOST_MSD_RESULT_COMMAND_PASSED = 0 MSD Command result was success. The command issued to the MSD device

• passed.
USB_HOST_MSD_RESULT_COMMAND_FAILED = 1 MSD Command failed. The command issued to the MSD device failed. The

• device BOT state machine is in sync with the host. The data residue

• length is valid.
USB_HOST_MSD_RESULT_COMMAND_PHASE_ERROR
= 2

MSD Command failed with phase error. The command issued to the MSD device

• has failed. The failure reason is unknown. The MSD Host Client driver has

• reset the device BOT state machine.
USB_HOST_MSD_RESULT_SUCCESS The operation was successful

USB_HOST_MSD_RESULT_FAILURE An unknown failure has occurred.

USB_HOST_MSD_RESULT_BUSY The request cannot be accepted at this time

USB_HOST_MSD_RESULT_LUN_HANDLE_INVALID The specified LUN is not valid

USB_HOST_MSD_RESULT_COMMAND_STALLED The MSD request was stalled

Description

USB HOST MSD Result

This enumeration defines the possible return values of different USB HOST MSD Client driver function call. Refer to the specific function
documentation for details on the return values.

Remarks

None.

USB_HOST_MSD_TRANSFER_CALLBACK Type

USB HOST MSD Transfer Complete Callback

File

usb_host_msd.h

C
typedef void (* USB_HOST_MSD_TRANSFER_CALLBACK)(USB_HOST_MSD_LUN_HANDLE lunHandle,
USB_HOST_MSD_TRANSFER_HANDLE transferHandle, USB_HOST_MSD_RESULT result, size_t size, uintptr_t context);

Description

USB HOST MSD Transfer Complete Callback

This type defines the type of the callback function that the application must register in the USB_HOST_MSD_Transfer function to receive
notification when a transfer has completed. The callback function will be called with the following parameters.

lunHandle - The handle to the LUN from where this notification originated.

transferHandle - the handle to the MSD transfer.

result - result of the transfer.

size - of the transfer.

context - context that specified when this transfer was scheduled.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 463

USB_HOST_MSD_TRANSFER_DIRECTION Enumeration

USB HOST MSD Transfer Direction.

File

usb_host_msd.h

C
typedef enum {
 USB_HOST_MSD_TRANSFER_DIRECTION_HOST_TO_DEVICE = 0x00,
 USB_HOST_MSD_TRANSFER_DIRECTION_DEVICE_TO_HOST = 0x80
} USB_HOST_MSD_TRANSFER_DIRECTION;

Members

Members Description

USB_HOST_MSD_TRANSFER_DIRECTION_HOST_TO_DEVICE
= 0x00

Data moves from host to device

USB_HOST_MSD_TRANSFER_DIRECTION_DEVICE_TO_HOST
= 0x80

Data moves from device to host

Description

USB HOST Transfer Direction

This enumeration specifies the direction of the data stage.

Remarks

None.

USB_HOST_MSD_TRANSFER_HANDLE Type

USB HOST MSD Transfer Handle

File

usb_host_msd.h

C
typedef uintptr_t USB_HOST_MSD_TRANSFER_HANDLE;

Description

USB HOST MSD Transfer Handle

This type defines a USB Host MSD Transfer Handle.

Remarks

None.

USB_HOST_MSD_INTERFACE Macro

USB HOST MSD Client Driver Interface

File

usb_host_msd.h

C
#define USB_HOST_MSD_INTERFACE

Description

USB HOST MSD Client Driver Interface

This macro should be used by the application in TPL table while adding support for the USB MSD Host Client Driver.

Remarks

None.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 464

USB_HOST_MSD_TRANSFER_HANDLE_INVALID Macro

USB HOST MSD Transfer Handle Invalid

File

usb_host_msd.h

C
#define USB_HOST_MSD_TRANSFER_HANDLE_INVALID

Description

USB HOST MSD Transfer Handle Invalid

This value defines an invalid Transfer Handle.

Remarks

None.

USB_HOST_MSD_LUN_HANDLE Type

USB HOST MSD LUN Handle

File

usb_host_msd.h

C
typedef uintptr_t USB_HOST_MSD_LUN_HANDLE;

Description

USB HOST MSD LUN Handle

This type defines a MSD LUN Handle. This handle is used by SCSI driver to identify the LUN.

Remarks

None.

USB_HOST_MSD_LUN_HANDLE_INVALID Macro

USB HOST MSD LUN Handle Invalid

File

usb_host_msd.h

C
#define USB_HOST_MSD_LUN_HANDLE_INVALID

Description

USB HOST MSD LUN Handle Invalid

This value defines an invalid LUN Handle.

Remarks

None.

USB_HOST_MSD_ERROR_CODE Enumeration

USB Host MSD Error Codes.

File

usb_host_msd.h

C
typedef enum {
 USB_HOST_MSD_ERROR_CODE_INSUFFICIENT_INSTANCES = 1,

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 465

 USB_HOST_MSD_ERROR_CODE_NOT_FOUND_BULK_IN_ENDPOINT,
 USB_HOST_MSD_ERROR_CODE_NOT_FOUND_BULK_OUT_ENDPOINT,
 USB_HOST_MSD_ERROR_CODE_FAILED_PIPE_OPEN,
 USB_HOST_MSD_ERROR_CODE_FAILED_GET_MAX_LUN,
 USB_HOST_MSD_ERROR_CODE_FAILED_BOT_TRANSFER,
 USB_HOST_MSD_ERROR_CODE_FAILED_RESET_RECOVERY,
 USB_HOST_MSD_ERROR_CODE_CBW_STALL_RESET_RECOVERY,
 USB_HOST_MSD_ERROR_CODE_TRANSFER_BUSY,
 USB_HOST_MSD_ERROR_CODE_CSW_PHASE_ERROR,
 USB_HOST_MSD_ERROR_CODE_CSW_UNKNOWN_ERROR
} USB_HOST_MSD_ERROR_CODE;

Members

Members Description

USB_HOST_MSD_ERROR_CODE_INSUFFICIENT_INSTANCES = 1 This error occurs when the number of MSD instances defined via

• USB_HOST_MSD_INSTANCES_NUMBER (in
system_config.h) is insufficient. For

• example, this error would occur if the value of

• USB_HOST_MSD_INSTANCES_NUMBER is 2, two MSC
devices are already connected

• and third MSC device is connected to the host. The object
identifier in

• this case will be the USB_HOST_DEVICE_OBJ_HANDLE
value.

USB_HOST_MSD_ERROR_CODE_NOT_FOUND_BULK_IN_ENDPOINT This error occurs when the driver descriptor parser could not find a
Bulk

• IN endpoint in the interface descriptor. The object identifier in
this

• case will be the USB_HOST_DEVICE_OBJ_HANDLE value.
USB_HOST_MSD_ERROR_CODE_NOT_FOUND_BULK_OUT_ENDPOINT This error occurs when the driver descriptor parser could not find a

Bulk

• OUT endpoint in the interface descriptor. The object identifier
in this

• case will be USB_HOST_DEVICE_OBJ_HANDLE value.
USB_HOST_MSD_ERROR_CODE_FAILED_PIPE_OPEN This error occurs when the driver could not open a Bulk pipe. This

• typically happens either due to a host layer error or due to
insufficient

• number of pipes (which is configured via
USB_HOST_PIPES_NUMBER). The

• object idenfier in this case will be
USB_HOST_DEVICE_OBJ_HANDLE value.

USB_HOST_MSD_ERROR_CODE_FAILED_GET_MAX_LUN This error occurs when the Get Max LUN request issued by the
driver fails

• for any reason. The object identifier in this case will be the
MSC device

• instance index.
USB_HOST_MSD_ERROR_CODE_FAILED_BOT_TRANSFER This error occurs when any stage of the BOT has failed due to bus

error

• or an unknown failure. The object identifier in this case will be
the MSC

• device instance index.
USB_HOST_MSD_ERROR_CODE_FAILED_RESET_RECOVERY This error occurs when the MSD Reset Recovery procedure has

failed. A MSC

• device should not fail a MSD Reset Recovery procedure. The
object

• identifier in this case will be the device instance index.
USB_HOST_MSD_ERROR_CODE_CBW_STALL_RESET_RECOVERY This error code indicates a condtion where the CBW stage of the

BOT was

• stalled and the driver is about to launch MSD reset recovery.
The

• identifier in this case if the MSC Device instance index. This
code is

• generated from an interrupt context. The driver may continue
to function

• normally post this condition.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 466

USB_HOST_MSD_ERROR_CODE_TRANSFER_BUSY This error code indicates a condition where the BOT transfer could
not be

• initiated because a transfer is already in progress. The
identifier in

• this case is the MSC Device Instance Index. The driver may
continue to

• function normall post this condition. This condition may occur
several

• times.
USB_HOST_MSD_ERROR_CODE_CSW_PHASE_ERROR This error code indicates a condition where the BOT transfer failed

due a

• phase error in the CSW stage of the BOT. The identifier in
this case if

• the MSC Device instance index. This code is generated from
an interrupt

• context. The driver may continue to function normally post this

• condition.
USB_HOST_MSD_ERROR_CODE_CSW_UNKNOWN_ERROR This error code indicates that a condition where an unknown error

has

• occured during the CSW stage of the BOT. The identifier in
this case if

• the MSC Device instance index. This code is generated from
an interrupt

• context. The driver may continue to function normally post this

• condition.

Description

USB Host MSD Error Codes.

This enumeration defines the codes that the MSD Client Driver returns for possible errors that lead to the device being placed in an error state.
The MSD client driver will not operate on a device which is in an error state. The error are returned in the USB_HOST_MSD_ErrorCallback
function.

Remarks

None.

Files

Files

Name Description

usb_host_msd.h USB Host MSD Class Driver Interface Header

usb_host_msd_config_template.h USB Host MSD configuration template header file

Description

usb_host_msd.h

USB Host MSD Class Driver Interface Header

Enumerations

Name Description

USB_HOST_MSD_ERROR_CODE USB Host MSD Error Codes.

USB_HOST_MSD_RESULT USB HOST MSD Result

USB_HOST_MSD_TRANSFER_DIRECTION USB HOST MSD Transfer Direction.

Functions

Name Description

USB_HOST_MSD_Transfer This function schedules a MSD BOT transfer.

USB_HOST_MSD_TransferErrorTasks This function maintains the MSD transfer error handling state machine.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 467

Macros

Name Description

USB_HOST_MSD_INTERFACE USB HOST MSD Client Driver Interface

USB_HOST_MSD_LUN_HANDLE_INVALID USB HOST MSD LUN Handle Invalid

USB_HOST_MSD_TRANSFER_HANDLE_INVALID USB HOST MSD Transfer Handle Invalid

Types

Name Description

USB_HOST_MSD_LUN_HANDLE USB HOST MSD LUN Handle

USB_HOST_MSD_TRANSFER_CALLBACK USB HOST MSD Transfer Complete Callback

USB_HOST_MSD_TRANSFER_HANDLE USB HOST MSD Transfer Handle

Description

USB Host MSD Class Driver Interface Definition

This header file contains the function prototypes and definitions of the data types and constants that make up the interface to the USB Host MSD
Class Driver.

File Name

usb_host_msd.h

Company

Microchip Technology Inc.

usb_host_msd_config_template.h

USB Host MSD configuration template header file

Macros

Name Description

USB_HOST_MSD_INSTANCES_NUMBER Defines the maximum number of MSD devices to be supported by this host
application.

USB_HOST_MSD_LUNS_NUMBER Defines the maximum number of MSD Device LUNs to be supported in the application.

Description

USB Host MSD function driver compile time options

This file contains USB host MSD function driver compile time options(macros) that has to be configured by the user. This file is a template file and
must be used as an example only. This file must not be directly included in the project.

File Name

usb_host_msd_config_template.h

Company

Microchip Technology Inc.

Volume V: MPLAB Harmony Framework USB Libraries Help USB Host Library

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 468

Index

\

\ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL)
enumeration 287

\ .tplFlags.driverType = (TPL_FLAG_VID_PID) enumeration 287

_

_USB_DEVICE_IRP structure 153

_USB_HOST_HID_MOUSE_EventHandler function 448

_USB_HOST_HID_MOUSE_Task function 448

_USB_HOST_IRP structure 157

_USB_HOST_IRP_STATUS enumeration 158

0

0 enumeration 288

0x0000 enumeration 289

0xFF } enumeration 290

0xFF enumeration 290

0xFFFF } enumeration 292

0xFFFF enumeration 291

1

1 enumeration 293

A

a) Functions 64

Abstract Control Model (ACM) 166

Abstraction Model 24, 56, 82, 165, 200, 231, 240, 262, 311, 408, 442,
452, 457

Generic USB Device Library 240

USB CDC Device Library 165

USB Device Layer Library 82

USB MSD Device Library 231

Application Client Interaction 88

Audio Data Streaming 329

Audio Stream Event Handling 318

B

b) Data Types and Constants 69

BOS Descriptor Support 98

Building the Library 32, 64, 101, 176, 210, 235, 247, 272, 338, 419, 446,
454, 460

Generic USB Device Library 247

USB Audio 2.0 Device Library 64

USB Audio Device Library 32

USB Audio v1.0 Host Client Driver Library 338

USB CDC Host Library 419

USB Device Layer Library 101

USB HID Device Library 210

USB HID Host Mouse Driver Library 446

USB Host Layer Library 272

USB Hub Host Client Driver Library 454

USB MSD Device Library 235

USB MSD Host Library 460

C

Calling the Device Layer API 14

classCode enumeration 293

Configuring the Library 30, 62, 99, 175, 209, 234, 247, 269, 337, 418,

444, 453, 459

Generic USB Device Library 247

USB Audio 2.0 Device Library 62

USB Audio Device Library 30

USB Device Layer Library 99

Configuring the Stack 14

Control Transfer Events 242

Creating Your Own USB Device 7

D

Data Transfer 234, 458

Demonstration Application Logic 20

Detecting Device Attach 311, 409, 443

Device Layer Control Transfers 91

Device Layer Task Routines 87

Device Stack Configuration 22

E

Enabling Audio Stream 321

Endpoint Data Transfer 246

Endpoint Data Transfer Events 245

Endpoint Management 245

Event Handling 15, 21, 26, 58, 89, 168, 203, 242, 269, 416

F

false enumeration 294

Files 54, 80, 161, 198, 229, 239, 308, 403, 439, 450, 455, 467

USB Audio 1.0 Device Library 54

USB Audio 2.0 Device Library 80

USB Audio v1.0 Host Client Driver Library 403

USB CDC Device Library 198

USB Device Layer Library 161

USB HID Device Library 229

USB HID Host Mouse Driver Library 450

USB Host Layer Library 308

USB Hub Host Client Driver Library 455

USB MSD Device Library 239

Files to Include

USB CDC Device Library 176

USB Device Stack Porting 13

Function Driver Registration Table 85

Fuse Configuration and Initialization 19

G

Generic USB Device Library 240

Getting Started

USB Device Library 3

USB Host Library 248

H

Handling Endpoint 0 (EP0) Packets 16

HID Device TPL Table Configuration 442

Host Layer - Application Interaction 266

Host Layer Initialization 262

How the Library Works 24, 57, 83, 167, 201, 231, 241, 262, 311, 409,
442, 452, 457

Generic USB Device Library 241

USB Device Layer Library 83

USB MSD Device Library 231

Hub TPL Table Configuration 453

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 469

I

initData enumeration 295

Initializing and Communicating with the Endpoint 16

Initializing the Device Layer 86

Initializing the Library 25, 57

Initializing the USB Device Stack 13

Introduction 3, 13, 23, 55, 81, 164, 199, 230, 240, 248, 251, 261, 310,
408, 441, 452, 456

Invoking the Tasks Routine 22

L

Library Architecture

USB Device Library 3

USB Host Library 249

Library Configuration

USB CDC Device Library 175

USB HID Device Library 209

Library Initialization 83, 167, 201, 231, 241

USB CDC Device Library 167

USB HID Device Library 201

Library Interface 33, 64, 102, 177, 211, 236, 248, 273, 339, 420, 447,
455, 460

Generic USB Device Library 248

USB Audio 1.0 Device Library 33

USB Audio 2.0 Device Library 64

USB Audio v1.0 Host Client Driver Library 339

USB CDC Device Library 177

USB Device Layer Library 102

USB HID Device Library 211

USB HID Host Mouse Driver Library 447

USB Host Layer Library 273

USB Hub Host Client Driver Library 455

USB MSD Device Library 236

Library Overview 24, 56, 83, 164, 201, 231, 241, 262, 311, 408, 442,
452, 457

Generic USB Device Library 241

USB Audio 1.0 Device Library 24

USB Audio 2.0 Device Library 56

USB Audio v1.0 Host Client Driver Library 311

USB CDC Device Library 164

USB Device Layer Library 83

USB HID Device Library 201

USB HID Host Mouse Driver Library 442

USB Hub Host Client Driver Library 452

USB MSD Host Library 457

M

mask enumeration 296

Master Descriptor Table 83

MLA and MPLAB Harmony USB Device Stack Files 18

Mouse Data Event Handling 443

MSD TPL Table Configuration 457

O

Obtaining an Audio Stream 315

Obtaining Audio v1.0 Device Audio Stream Details 313

Opening the CDC Host Client Driver 410

P

pid } enumeration 297

pid enumeration 297

Prerequisites 17

R

Reading and Writing Data 414

Receiving a Report 209

Receiving Data 175

S

Sending a Report 209

Sending Class Specific Control Transfers 334

Sending Class-specific Control Transfers 411

Sending Data 172

Setting the Desired Audio Stream Sampling Rate 325

Source Code Analysis 19

Source Files to Include 13

String Descriptor Table 94

subClassCode enumeration 298

T

TPL Table Configuration for Audio v1.0 Devices 311

TPL Table Configuration for CDC Devices 409

Transferring Data 30, 62

true enumeration 299

U

USB Audio 1.0 Device Library 23

USB Audio 2.0 Device Library 55

USB Audio v1.0 Host Client Driver Library 310

USB CDC Device Library 164

USB CDC Host Client Driver 257

USB CDC Host Library 408

USB Device Descriptors 22

USB Device Layer Library 81

USB Device Library 3

USB Device Library - Application Interaction 5

USB Device Library - Getting Started 3

USB Device Library Architecture 3

USB Device Stack in MLA and MPLAB Harmony 18

USB Device Stack Porting Example 17

USB Device Stack Porting Guide 13

USB HID Device Library 199

USB HID Host Mouse Driver Library 441

USB Host Layer 251

USB Host Layer Library 261

USB Host Library 248

USB Host Library - Application Interaction 250

USB Host Library - Getting Started 248

USB Host Library Architecture 249

USB Host Library Migration Guide 251

USB Hub Host Client Driver Library 452

USB Hub Host Client Driver Test Results 453

USB Libraries Help 3

USB MSD Device Library 230

USB MSD Host Client Driver and SCSI Block Storage Driver 253

USB MSD Host Client Driver Library 456

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 470

usb_common.h 163

USB_DATA_DIRECTION enumeration 159

usb_device.h 161

USB_DEVICE_ActiveConfigurationGet function 120

USB_DEVICE_ActiveSpeedGet function 120

USB_DEVICE_Attach function 118

USB_DEVICE_AUDIO_EVENT enumeration 41

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR type 50

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX type 50

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM type 50

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN type 50

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES type 50

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR type 51

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX type 51

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM type 51

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN type 51

USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES type 51

USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT type 53

USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANG
ED
structure 52

USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE structure 46

USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLETE
structure 53

USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE structure 47

USB_DEVICE_AUDIO_EVENT_HANDLER type 47

USB_DEVICE_AUDIO_EVENT_RESPONSE type 48

USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE macro 40

USB_DEVICE_AUDIO_EventHandlerSet function 34

USB_DEVICE_AUDIO_FUNCTION_DRIVER macro 49

USB_DEVICE_AUDIO_INDEX type 48

USB_DEVICE_AUDIO_INIT structure 52

USB_DEVICE_AUDIO_INSTANCES_NUMBER macro 31

USB_DEVICE_AUDIO_MAX_ALTERNATE_SETTING macro 31

USB_DEVICE_AUDIO_MAX_STREAMING_INTERFACES macro 31

USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED macro 32

USB_DEVICE_AUDIO_Read function 35

USB_DEVICE_AUDIO_RESULT enumeration 48

USB_DEVICE_AUDIO_StatusSend function 39

USB_DEVICE_AUDIO_TRANSFER_ABORT_NOTIFY macro 53

USB_DEVICE_AUDIO_TRANSFER_HANDLE type 49

USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID macro 40

USB_DEVICE_AUDIO_TransferCancel function 36

usb_device_audio_v1_0.h 54

usb_device_audio_v1_0_config_template.h 55

usb_device_audio_v2_0.h 80

usb_device_audio_v2_0_config_template.h 81

USB_DEVICE_AUDIO_V2_EVENT enumeration 70

USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE
structure 75

USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERF
ACE
structure 75

USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE
structure 76

USB_DEVICE_AUDIO_V2_EVENT_HANDLER type 76

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE type 77

USB_DEVICE_AUDIO_V2_EVENT_RESPONSE_NONE macro 79

USB_DEVICE_AUDIO_V2_EventHandlerSet function 65

USB_DEVICE_AUDIO_V2_FUNCTION_DRIVER macro 79

USB_DEVICE_AUDIO_V2_INDEX type 77

USB_DEVICE_AUDIO_V2_INIT structure 77

USB_DEVICE_AUDIO_V2_INSTANCES_NUMBER macro 62

USB_DEVICE_AUDIO_V2_MAX_ALTERNATE_SETTING macro 63

USB_DEVICE_AUDIO_V2_MAX_STREAMING_INTERFACES macro 63

USB_DEVICE_AUDIO_V2_QUEUE_DEPTH_COMBINED macro 63

USB_DEVICE_AUDIO_V2_Read function 66

USB_DEVICE_AUDIO_V2_RESULT enumeration 78

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE type 78

USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID macro 79

USB_DEVICE_AUDIO_V2_TransferCancel function 67

USB_DEVICE_AUDIO_V2_Write function 68

USB_DEVICE_AUDIO_Write function 37

USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE macro 160

usb_device_cdc.h 198

usb_device_cdc_config_template.h 199

USB_DEVICE_CDC_EVENT enumeration 187

USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE structure 190

USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK structure 192

USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_
COMPLETE
structure 191

USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE structure 191

USB_DEVICE_CDC_EVENT_HANDLER type 192

USB_DEVICE_CDC_EVENT_RESPONSE type 192

USB_DEVICE_CDC_EVENT_RESPONSE_NONE macro 195

USB_DEVICE_CDC_EventHandlerSet function 178

USB_DEVICE_CDC_FUNCTION_DRIVER macro 196

USB_DEVICE_CDC_INDEX type 193

USB_DEVICE_CDC_INDEX_0 macro 196

USB_DEVICE_CDC_INDEX_1 macro 196

USB_DEVICE_CDC_INDEX_2 macro 196

USB_DEVICE_CDC_INDEX_3 macro 197

USB_DEVICE_CDC_INDEX_4 macro 197

USB_DEVICE_CDC_INDEX_5 macro 197

USB_DEVICE_CDC_INDEX_6 macro 197

USB_DEVICE_CDC_INDEX_7 macro 197

USB_DEVICE_CDC_INIT structure 193

USB_DEVICE_CDC_INSTANCES_NUMBER macro 175

USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED macro 176

USB_DEVICE_CDC_Read function 182

USB_DEVICE_CDC_RESULT enumeration 194

USB_DEVICE_CDC_SerialStateNotificationSend function 185

USB_DEVICE_CDC_TRANSFER_FLAGS enumeration 194

USB_DEVICE_CDC_TRANSFER_HANDLE type 195

USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID macro 195

USB_DEVICE_CDC_Write function 183

USB_DEVICE_CLIENT_STATUS enumeration 146

USB_DEVICE_ClientStatusGet function 109

USB_DEVICE_Close function 108

usb_device_config_template.h 164

USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE type 147

USB_DEVICE_CONTROL_STATUS enumeration 138

USB_DEVICE_CONTROL_TRANSFER_RESULT enumeration 138

USB_DEVICE_ControlReceive function 131

USB_DEVICE_ControlSend function 133

USB_DEVICE_ControlStatus function 135

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 471

USB_DEVICE_Deinitialize function 105

USB_DEVICE_Detach function 119

USB_DEVICE_DRIVER_INITIALIZE_EXPLICIT macro 160

USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED macro 99

USB_DEVICE_EndpointDisable function 123

USB_DEVICE_EndpointEnable function 124

USB_DEVICE_EndpointIsEnabled function 126

USB_DEVICE_EndpointIsStalled function 121

USB_DEVICE_EndpointRead function 127

USB_DEVICE_EndpointStall function 122

USB_DEVICE_EndpointStallClear function 123

USB_DEVICE_EndpointTransferCancel function 128

USB_DEVICE_EndpointWrite function 129

USB_DEVICE_EP0_BUFFER_SIZE macro 101

USB_DEVICE_EVENT enumeration 139

USB_DEVICE_EVENT_DATA_CONFIGURED structure 145

USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE
structure 149

USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE
structure 150

USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR structure 150

USB_DEVICE_EVENT_DATA_SOF structure 151

USB_DEVICE_EVENT_DATA_SYNCH_FRAME structure 151

USB_DEVICE_EVENT_HANDLER type 147

USB_DEVICE_EVENT_RESPONSE type 147

USB_DEVICE_EVENT_RESPONSE_NONE macro 146

USB_DEVICE_EventHandlerSet function 110

USB_DEVICE_FUNCTION_REGISTRATION_TABLE structure 148

USB_DEVICE_HANDLE type 143

USB_DEVICE_HANDLE_INVALID macro 146

usb_device_hid.h 229

usb_device_hid_config_template.h 230

USB_DEVICE_HID_EVENT enumeration 217

USB_DEVICE_HID_EVENT_DATA_GET_IDLE structure 223

USB_DEVICE_HID_EVENT_DATA_GET_REPORT structure 221

USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED structure 221

USB_DEVICE_HID_EVENT_DATA_REPORT_SENT structure 222

USB_DEVICE_HID_EVENT_DATA_SET_IDLE structure 222

USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL structure 224

USB_DEVICE_HID_EVENT_DATA_SET_REPORT structure 222

USB_DEVICE_HID_EVENT_HANDLER type 224

USB_DEVICE_HID_EVENT_RESPONSE type 225

USB_DEVICE_HID_EVENT_RESPONSE_NONE macro 226

USB_DEVICE_HID_EventHandlerSet function 211

USB_DEVICE_HID_FUNCTION_DRIVER macro 227

USB_DEVICE_HID_INDEX type 223

USB_DEVICE_HID_INDEX_0 macro 227

USB_DEVICE_HID_INDEX_1 macro 227

USB_DEVICE_HID_INDEX_2 macro 227

USB_DEVICE_HID_INDEX_3 macro 228

USB_DEVICE_HID_INDEX_4 macro 228

USB_DEVICE_HID_INDEX_5 macro 228

USB_DEVICE_HID_INDEX_6 macro 228

USB_DEVICE_HID_INDEX_7 macro 228

USB_DEVICE_HID_INIT structure 225

USB_DEVICE_HID_INSTANCES_NUMBER macro 210

USB_DEVICE_HID_QUEUE_DEPTH_COMINED macro 210

USB_DEVICE_HID_ReportReceive function 213

USB_DEVICE_HID_ReportSend function 214

USB_DEVICE_HID_RESULT enumeration 225

USB_DEVICE_HID_TRANSFER_HANDLE type 224

USB_DEVICE_HID_TRANSFER_HANDLE_INVALID macro 226

USB_DEVICE_HID_TransferCancel function 216

USB_DEVICE_INDEX_0 macro 136

USB_DEVICE_INDEX_1 macro 137

USB_DEVICE_INDEX_2 macro 137

USB_DEVICE_INDEX_3 macro 137

USB_DEVICE_INDEX_4 macro 137

USB_DEVICE_INDEX_5 macro 137

USB_DEVICE_INIT structure 143

USB_DEVICE_Initialize function 104

USB_DEVICE_INSTANCES_NUMBER macro 99

USB_DEVICE_IRP structure 153

USB_DEVICE_IRP_FLAG enumeration 154

USB_DEVICE_IRP_STATUS enumeration 154

USB_DEVICE_IsSuspended function 114

USB_DEVICE_MASTER_DESCRIPTOR structure 148

USB_DEVICE_MICROSOFT_OS_DESCRIPTOR_SUPPORT_ENABLE
macro 101

usb_device_msd.h 239

usb_device_msd_config_template.h 239

USB_DEVICE_MSD_FUNCTION_DRIVER macro 239

USB_DEVICE_MSD_INIT structure 237

USB_DEVICE_MSD_INSTANCES_NUMBER macro 234

USB_DEVICE_MSD_LUNS_NUMBER macro 235

USB_DEVICE_MSD_MEDIA_FUNCTIONS structure 236

USB_DEVICE_MSD_MEDIA_INIT_DATA structure 238

USB_DEVICE_Open function 108

USB_DEVICE_POWER_STATE enumeration 144

USB_DEVICE_PowerStateSet function 112

USB_DEVICE_REMOTE_WAKEUP_STATUS enumeration 145

USB_DEVICE_RemoteWakeupStart function 115

USB_DEVICE_RemoteWakeupStartTimed function 116

USB_DEVICE_RemoteWakeupStatusGet function 113

USB_DEVICE_RemoteWakeupStop function 116

USB_DEVICE_RESULT enumeration 151

USB_DEVICE_SET_DESCRIPTOR_EVENT_ENABLE macro 100

USB_DEVICE_SOF_EVENT_ENABLE macro 100

USB_DEVICE_StateGet function 117

USB_DEVICE_Status function 106

USB_DEVICE_STRING_DESCRIPTOR_TABLE_ADVANCED_ENABLE
macro 161

USB_DEVICE_STRING_DESCRIPTORS_TABLE type 149

USB_DEVICE_SYNCH_FRAME_EVENT_ENABLE macro 100

USB_DEVICE_Tasks function 107

USB_DEVICE_TRANSFER_FLAGS enumeration 152

USB_DEVICE_TRANSFER_HANDLE type 152

USB_DEVICE_TRANSFER_HANDLE_INVALID macro 153

USB_ENDPOINT type 155

USB_ENDPOINT_AND_DIRECTION macro 159

USB_ERROR enumeration 155

USB_HID_GLOBAL_PUSH_POP_STACK_SIZE macro 444

usb_host.h 308

usb_host_audio_v1_0.h 404

USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER type 382

USB_HOST_AUDIO_V1_0_AttachEventHandlerSet macro 399

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 472

usb_host_audio_v1_0_config_template.h 407

USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK type 386

USB_HOST_AUDIO_V1_0_ControlRequest function 344

USB_HOST_AUDIO_V1_0_DeviceObjHandleGet macro 400

USB_HOST_AUDIO_V1_0_DIRECTION_IN macro 400

USB_HOST_AUDIO_V1_0_DIRECTION_OUT macro 400

USB_HOST_AUDIO_V1_0_EVENT macro 387

USB_HOST_AUDIO_V1_0_EVENT_ATTACH macro 401

USB_HOST_AUDIO_V1_0_EVENT_DETACH macro 401

USB_HOST_AUDIO_V1_0_INTERFACE macro 398

USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet function 357

USB_HOST_AUDIO_V1_0_OBJ macro 388

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE macro 388

USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID macro 398

USB_HOST_AUDIO_V1_0_RESULT enumeration 389

USB_HOST_AUDIO_V1_0_STREAM_DIRECTION macro 390

USB_HOST_AUDIO_V1_0_STREAM_EVENT enumeration 391

USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_
DATA
structure 392

USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_D
ATA
structure 393

USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER type 393

USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DAT
A
macro 394

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE macro 394

USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE
macro 401

USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DA
TA
macro 394

USB_HOST_AUDIO_V1_0_STREAM_HANDLE macro 394

USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID macro 398

USB_HOST_AUDIO_V1_0_STREAM_INFO structure 395

USB_HOST_AUDIO_V1_0_STREAM_OBJ type 396

USB_HOST_AUDIO_V1_0_STREAM_RESULT enumeration 396

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE macro 398

USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE_INVALID
macro 399

USB_HOST_AUDIO_V1_0_StreamClose macro 401

USB_HOST_AUDIO_V1_0_StreamDisable function 359

USB_HOST_AUDIO_V1_0_StreamEnable function 361

USB_HOST_AUDIO_V1_0_StreamEventHandlerSet function 362

USB_HOST_AUDIO_V1_0_StreamGetFirst function 363

USB_HOST_AUDIO_V1_0_StreamGetNext function 365

USB_HOST_AUDIO_V1_0_StreamOpen macro 402

USB_HOST_AUDIO_V1_0_StreamRead function 375

USB_HOST_AUDIO_V1_0_StreamSamplingRateSet function 366

USB_HOST_AUDIO_V1_0_StreamWrite function 376

USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER type 379

USB_HOST_AUDIO_V1_ATTACH_LISTENERS_NUMBER macro 337

USB_HOST_AUDIO_V1_AttachEventHandlerSet function 343

USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ type 380

USB_HOST_AUDIO_V1_ControlEntityGetFirst function 345

USB_HOST_AUDIO_V1_ControlEntityGetNext function 345

USB_HOST_AUDIO_V1_DeviceObjHandleGet function 346

USB_HOST_AUDIO_V1_ENTITY_REQUEST_CALLBACK type 380

USB_HOST_AUDIO_V1_EntityObjectGet function 346

USB_HOST_AUDIO_V1_EntityRequestCallbackSet function 347

USB_HOST_AUDIO_V1_EntityTypeGet function 348

USB_HOST_AUDIO_V1_EVENT enumeration 381

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists function 348

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteGet function 349

USB_HOST_AUDIO_V1_FeatureUnitChannelMuteSet function 350

USB_HOST_AUDIO_V1_FeatureUnitChannelNumbersGet function 351

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists function 351

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeGet function 352

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeRangeGet function
378

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSet function 353

USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbers
Get
function 378

USB_HOST_AUDIO_V1_FeatureUnitIDGet function 353

USB_HOST_AUDIO_V1_FeatureUnitSourceIDGet function 354

USB_HOST_AUDIO_V1_INSTANCES_NUMBER macro 337

USB_HOST_AUDIO_V1_INTERFACE macro 395

USB_HOST_AUDIO_V1_OBJ type 381

USB_HOST_AUDIO_V1_REQUEST_HANDLE type 381

USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID macro 396

USB_HOST_AUDIO_V1_RESULT enumeration 382

USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER
macro 403

USB_HOST_AUDIO_V1_STREAM_DIRECTION enumeration 383

USB_HOST_AUDIO_V1_STREAM_EVENT enumeration 383

USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER type 385

USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPL
ETE_DATA
structure 385

USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA
structure 386

USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE enumeration
387

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_C
OMPLETE_DATA
structure 403

USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_C
OMPLETE_DATA
structure 387

USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA

structure 388

USB_HOST_AUDIO_V1_STREAM_HANDLE type 389

USB_HOST_AUDIO_V1_STREAM_HANDLE_INVALID macro 396

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE type 390

USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE_INVALID
macro 397

USB_HOST_AUDIO_V1_StreamClose function 358

USB_HOST_AUDIO_V1_StreamEventHandlerSet function 359

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_ALTERNATE_SET
TINGS_NUMBER
macro 338

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ type 390

USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ
type 392

USB_HOST_AUDIO_V1_STREAMING_INTERFACES_NUMBER macro
338

USB_HOST_AUDIO_V1_StreamingInterfaceBitResolutionGet function
369

USB_HOST_AUDIO_V1_StreamingInterfaceChannelNumbersGet
function 370

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 473

USB_HOST_AUDIO_V1_StreamingInterfaceDirectionGet function 370

USB_HOST_AUDIO_V1_StreamingInterfaceFormatTagGet function 371

USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst function 360

USB_HOST_AUDIO_V1_StreamingInterfaceGetNext function 361

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequenciesGet
function 371

USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequencyTypeGe
t
function 372

USB_HOST_AUDIO_V1_StreamingInterfaceSet function 363

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetFirst function 364

USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetNext function 365

USB_HOST_AUDIO_V1_StreamingInterfaceSubFrameSizeGet function
373

USB_HOST_AUDIO_V1_StreamingInterfaceTerminalLinkGet function
373

USB_HOST_AUDIO_V1_StreamOpen function 367

USB_HOST_AUDIO_V1_StreamRead function 367

USB_HOST_AUDIO_V1_StreamSamplingFrequencyGet function 374

USB_HOST_AUDIO_V1_StreamSamplingFrequencySet function 375

USB_HOST_AUDIO_V1_StreamWrite function 368

USB_HOST_AUDIO_V1_TerminalAssociationGet function 355

USB_HOST_AUDIO_V1_TerminalIDGet function 355

USB_HOST_AUDIO_V1_TerminalInputChannelConfigGet function 377

USB_HOST_AUDIO_V1_TerminalInputChannelNumbersGet function
356

USB_HOST_AUDIO_V1_TerminalSourceIDGet function 356

USB_HOST_AUDIO_V1_TerminalTypeGet function 357

USB_HOST_BUS type 300

USB_HOST_BUS_ALL macro 307

USB_HOST_BusDisable function 285

USB_HOST_BusEnable function 276

USB_HOST_BusIsDisabled function 285

USB_HOST_BusIsEnabled function 277

USB_HOST_BusIsSuspended function 277

USB_HOST_BusResume function 278

USB_HOST_BusSuspend function 278

usb_host_cdc.h 440

usb_host_cdc_acm.h 441

USB_HOST_CDC_ACM_BreakSend function 427

USB_HOST_CDC_ACM_ControlLineStateSet function 427

USB_HOST_CDC_ACM_LineCodingGet function 428

USB_HOST_CDC_ACM_LineCodingSet function 429

USB_HOST_CDC_ATTACH_EVENT_HANDLER type 433

USB_HOST_CDC_ATTACH_LISTENERS_NUMBER macro 418

USB_HOST_CDC_AttachEventHandlerSet function 422

USB_HOST_CDC_Close function 421

usb_host_cdc_config_template.h 441

USB_HOST_CDC_DeviceObjHandleGet function 423

USB_HOST_CDC_EVENT enumeration 430

USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_D
ATA
structure 433

USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA
structure 434

USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COM
PLETE_DATA
structure 435

USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_D
ATA
structure 435

USB_HOST_CDC_EVENT_HANDLER type 436

USB_HOST_CDC_EVENT_READ_COMPLETE_DATA structure 436

USB_HOST_CDC_EVENT_RESPONSE enumeration 437

USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVE
D_DATA
structure 437

USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA structure 437

USB_HOST_CDC_EventHandlerSet function 423

USB_HOST_CDC_HANDLE type 434

USB_HOST_CDC_HANDLE_INVALID macro 439

USB_HOST_CDC_INSTANCES_NUMBER macro 419

USB_HOST_CDC_INTERFACE macro 439

USB_HOST_CDC_OBJ type 438

USB_HOST_CDC_Open function 421

USB_HOST_CDC_Read function 424

USB_HOST_CDC_REQUEST_HANDLE type 438

USB_HOST_CDC_REQUEST_HANDLE_INVALID macro 439

USB_HOST_CDC_RESULT enumeration 432

USB_HOST_CDC_SerialStateNotificationGet function 425

USB_HOST_CDC_TRANSFER_HANDLE type 432

USB_HOST_CDC_TRANSFER_HANDLE_INVALID macro 433

USB_HOST_CDC_Write function 426

usb_host_config_template.h 310

USB_HOST_CONTROLLERS_NUMBER macro 269

USB_HOST_Deinitialize function 274

USB_HOST_DEVICE_INFO structure 300

USB_HOST_DEVICE_INTERFACES_NUMBER macro 270

USB_HOST_DEVICE_OBJ_HANDLE type 300

USB_HOST_DEVICE_OBJ_HANDLE_INVALID macro 307

USB_HOST_DEVICE_STRING enumeration 301

USB_HOST_DEVICE_STRING_LANG_ID_DEFAULT macro 307

USB_HOST_DeviceGetFirst function 279

USB_HOST_DeviceGetNext function 280

USB_HOST_DeviceIsSuspended function 280

USB_HOST_DeviceResume function 281

USB_HOST_DEVICES_NUMBER macro 270

USB_HOST_DeviceSpeedGet function 282

USB_HOST_DeviceStringDescriptorGet function 282

USB_HOST_DeviceSuspend function 283

USB_HOST_EVENT enumeration 301

USB_HOST_EVENT_HANDLER type 302

USB_HOST_EVENT_RESPONSE enumeration 286

USB_HOST_EventHandlerSet function 284

USB_HOST_HCD structure 302

usb_host_hid_config_template.h 451

USB_HOST_HID_INSTANCES_NUMBER macro 445

USB_HOST_HID_INTERRUPT_IN_ENDPOINTS_NUMBER macro 445

usb_host_hid_mouse.h 451

USB_HOST_HID_MOUSE_BUTTONS_NUMBER macro 445

USB_HOST_HID_MOUSE_DATA structure 448

USB_HOST_HID_MOUSE_EVENT enumeration 449

USB_HOST_HID_MOUSE_EVENT_HANDLER type 449

USB_HOST_HID_MOUSE_EventHandlerSet function 447

USB_HOST_HID_MOUSE_HANDLE type 449

USB_HOST_HID_MOUSE_HANDLE_INVALID macro 450

USB_HOST_HID_MOUSE_RESULT enumeration 449

USB_HOST_HID_MOUSE_RESULT_MIN macro 450

USB_HOST_HID_USAGE_DRIVER_SUPPORT_NUMBER macro 446

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 474

usb_host_hub.h 455

usb_host_hub_config_template.h 456

USB_HOST_HUB_INSTANCES_NUMBER macro 453

USB_HOST_HUB_INTERFACE macro 455

USB_HOST_HUB_PORTS_NUMBER macro 454

USB_HOST_HUB_SUPPORT_ENABLE macro 270

USB_HOST_HUB_TIER_LEVEL macro 271

USB_HOST_INIT structure 286

USB_HOST_Initialize function 285

USB_HOST_IRP structure 157

USB_HOST_IRP_FLAG enumeration 157

USB_HOST_IRP_STATUS enumeration 158

USB_HOST_IRP_STATUS_ABORTED enumeration member 158

USB_HOST_IRP_STATUS_COMPLETED enumeration member 158

USB_HOST_IRP_STATUS_COMPLETED_SHORT enumeration
member 158

USB_HOST_IRP_STATUS_ERROR_BUS enumeration member 158

USB_HOST_IRP_STATUS_ERROR_DATA enumeration member 158

USB_HOST_IRP_STATUS_ERROR_NAK_TIMEOUT enumeration
member 158

USB_HOST_IRP_STATUS_ERROR_STALL enumeration member 158

USB_HOST_IRP_STATUS_ERROR_UNKNOWN enumeration member
158

USB_HOST_IRP_STATUS_IN_PROGRESS enumeration member 158

USB_HOST_IRP_STATUS_PENDING enumeration member 158

usb_host_msd.h 467

usb_host_msd_config_template.h 468

USB_HOST_MSD_ERROR_CODE enumeration 465

USB_HOST_MSD_INSTANCES_NUMBER macro 459

USB_HOST_MSD_INTERFACE macro 464

USB_HOST_MSD_LUN_HANDLE type 465

USB_HOST_MSD_LUN_HANDLE_INVALID macro 465

USB_HOST_MSD_LUNS_NUMBER macro 459

USB_HOST_MSD_RESULT enumeration 462

USB_HOST_MSD_Transfer function 461

USB_HOST_MSD_TRANSFER_CALLBACK type 463

USB_HOST_MSD_TRANSFER_DIRECTION enumeration 464

USB_HOST_MSD_TRANSFER_HANDLE type 464

USB_HOST_MSD_TRANSFER_HANDLE_INVALID macro 465

USB_HOST_MSD_TransferErrorTasks function 462

USB_HOST_PIPES_NUMBER macro 271

USB_HOST_REQUEST_HANDLE type 303

USB_HOST_REQUEST_HANDLE_INVALID macro 307

USB_HOST_RESULT enumeration 303

USB_HOST_RESULT_MIN macro 308

USB_HOST_Status function 275

USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK type 304

USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY enumeration 304

USB_HOST_Tasks function 275

USB_HOST_TPL_ENTRY enumeration 305

USB_HOST_TRANSFERS_NUMBER macro 272

USB_SPEED enumeration 159

Using the Library 24, 56, 82, 164, 200, 230, 240, 262, 310, 408, 442,
452, 456

Generic USB Device Library 240

USB Audio 1.0 Device Library 24

USB Audio 2.0 Device Library 56

USB Audio v1.0 Host Client Driver Library 310

USB CDC Device Library 164

USB Device Layer Library 82

USB HID Device Library 200

USB HID Host Mouse Driver Library 442

USB Hub Host Client Driver Library 452

USB MSD Device Library 230

USB MSD Host Library 456

V

vid enumeration 306

Volume V: MPLAB Harmony Framework Reference 2

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 475

	MPLAB Harmony Help
	Volume V: MPLAB Harmony Framework Reference
	USB Libraries Help
	USB Device Library
	USB Device Library - Getting Started
	Introduction
	USB Device Library Architecture
	USB Device Library - Application Interaction
	Creating Your Own USB Device

	USB Device Stack Porting Guide
	Introduction
	Source Files to Include
	Initializing the USB Device Stack
	Configuring the Stack
	Calling the Device Layer API
	Event Handling
	Initializing and Communicating with the Endpoint
	Handling Endpoint 0 (EP0) Packets
	USB Device Stack Porting Example
	Prerequisites
	USB Device Stack in MLA and MPLAB Harmony
	MLA and MPLAB Harmony USB Device Stack Files
	Source Code Analysis
	Fuse Configuration and Initialization
	Demonstration Application Logic
	Event Handling
	Invoking the Tasks Routine
	USB Device Descriptors

	Device Stack Configuration

	USB Audio 1.0 Device Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Initializing the Library
	Event Handling
	Transferring Data

	Configuring the Library
	USB_DEVICE_AUDIO_INSTANCES_NUMBER Macro
	USB_DEVICE_AUDIO_MAX_ALTERNATE_SETTING Macro
	USB_DEVICE_AUDIO_MAX_STREAMING_INTERFACES Macro
	USB_DEVICE_AUDIO_QUEUE_DEPTH_COMBINED Macro

	Building the Library
	Library Interface
	a) Functions
	USB_DEVICE_AUDIO_EventHandlerSet Function
	USB_DEVICE_AUDIO_Read Function
	USB_DEVICE_AUDIO_TransferCancel Function
	USB_DEVICE_AUDIO_Write Function
	USB_DEVICE_AUDIO_StatusSend Function

	b) Data Types and Constants
	USB_DEVICE_AUDIO_EVENT_RESPONSE_NONE Macro
	USB_DEVICE_AUDIO_TRANSFER_HANDLE_INVALID Macro
	USB_DEVICE_AUDIO_EVENT Enumeration
	USB_DEVICE_AUDIO_EVENT_DATA_READ_COMPLETE Structure
	USB_DEVICE_AUDIO_EVENT_DATA_WRITE_COMPLETE Structure
	USB_DEVICE_AUDIO_EVENT_HANDLER Type
	USB_DEVICE_AUDIO_EVENT_RESPONSE Type
	USB_DEVICE_AUDIO_INDEX Type
	USB_DEVICE_AUDIO_RESULT Enumeration
	USB_DEVICE_AUDIO_TRANSFER_HANDLE Type
	USB_DEVICE_AUDIO_FUNCTION_DRIVER Macro
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_CUR Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MAX Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MEM Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_MIN Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_GET_RES Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_CUR Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MAX Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MEM Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_MIN Type
	USB_DEVICE_AUDIO_EVENT_DATA_CONTROL_SET_RES Type
	USB_DEVICE_AUDIO_EVENT_DATA_INTERFACE_SETTING_CHANGED Structure
	USB_DEVICE_AUDIO_INIT Structure
	USB_DEVICE_AUDIO_EVENT_DATA_ENTITY_GET_STAT Type
	USB_DEVICE_AUDIO_TRANSFER_ABORT_NOTIFY Macro
	USB_DEVICE_AUDIO_EVENT_DATA_STATUS_SEND_COMPLETE Structure

	Files
	usb_device_audio_v1_0.h
	usb_device_audio_v1_0_config_template.h

	USB Audio 2.0 Device Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Initializing the Library
	Event Handling
	Transferring Data

	Configuring the Library
	USB_DEVICE_AUDIO_V2_INSTANCES_NUMBER Macro
	USB_DEVICE_AUDIO_V2_MAX_ALTERNATE_SETTING Macro
	USB_DEVICE_AUDIO_V2_MAX_STREAMING_INTERFACES Macro
	USB_DEVICE_AUDIO_V2_QUEUE_DEPTH_COMBINED Macro

	Building the Library
	Library Interface
	a) Functions
	USB_DEVICE_AUDIO_V2_EventHandlerSet Function
	USB_DEVICE_AUDIO_V2_Read Function
	USB_DEVICE_AUDIO_V2_TransferCancel Function
	USB_DEVICE_AUDIO_V2_Write Function

	b) Data Types and Constants
	USB_DEVICE_AUDIO_V2_EVENT Enumeration
	USB_DEVICE_AUDIO_V2_EVENT_DATA_READ_COMPLETE Structure
	USB_DEVICE_AUDIO_V2_EVENT_DATA_SET_ALTERNATE_INTERFACE Structure
	USB_DEVICE_AUDIO_V2_EVENT_DATA_WRITE_COMPLETE Structure
	USB_DEVICE_AUDIO_V2_EVENT_HANDLER Type
	USB_DEVICE_AUDIO_V2_EVENT_RESPONSE Type
	USB_DEVICE_AUDIO_V2_INDEX Type
	USB_DEVICE_AUDIO_V2_INIT Structure
	USB_DEVICE_AUDIO_V2_RESULT Enumeration
	USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE Type
	USB_DEVICE_AUDIO_V2_EVENT_RESPONSE_NONE Macro
	USB_DEVICE_AUDIO_V2_FUNCTION_DRIVER Macro
	USB_DEVICE_AUDIO_V2_TRANSFER_HANDLE_INVALID Macro

	Files
	usb_device_audio_v2_0.h

	USB Device Layer Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Library Initialization
	Application Client Interaction
	Event Handling
	String Descriptor Table
	BOS Descriptor Support

	Configuring the Library
	USB_DEVICE_INSTANCES_NUMBER Macro
	USB_DEVICE_ENDPOINT_QUEUE_DEPTH_COMBINED Macro
	USB_DEVICE_SET_DESCRIPTOR_EVENT_ENABLE Macro
	USB_DEVICE_SOF_EVENT_ENABLE Macro
	USB_DEVICE_SYNCH_FRAME_EVENT_ENABLE Macro
	USB_DEVICE_EP0_BUFFER_SIZE Macro
	USB_DEVICE_MICROSOFT_OS_DESCRIPTOR_SUPPORT_ENABLE Macro

	Building the Library
	Library Interface
	a) System Interaction Functions
	USB_DEVICE_Initialize Function
	USB_DEVICE_Deinitialize Function
	USB_DEVICE_Status Function
	USB_DEVICE_Tasks Function

	b) Client Core Functions
	USB_DEVICE_Open Function
	USB_DEVICE_Close Function
	USB_DEVICE_ClientStatusGet Function
	USB_DEVICE_EventHandlerSet Function

	c) Device Power State Management Functions
	USB_DEVICE_PowerStateSet Function
	USB_DEVICE_RemoteWakeupStatusGet Function
	USB_DEVICE_IsSuspended Function
	USB_DEVICE_RemoteWakeupStart Function
	USB_DEVICE_RemoteWakeupStartTimed Function
	USB_DEVICE_RemoteWakeupStop Function

	d) Device Management Functions
	USB_DEVICE_StateGet Function
	USB_DEVICE_Attach Function
	USB_DEVICE_Detach Function
	USB_DEVICE_ActiveConfigurationGet Function
	USB_DEVICE_ActiveSpeedGet Function

	e) Endpoint Management Functions
	USB_DEVICE_EndpointIsStalled Function
	USB_DEVICE_EndpointStall Function
	USB_DEVICE_EndpointStallClear Function
	USB_DEVICE_EndpointDisable Function
	USB_DEVICE_EndpointEnable Function
	USB_DEVICE_EndpointIsEnabled Function
	USB_DEVICE_EndpointRead Function
	USB_DEVICE_EndpointTransferCancel Function
	USB_DEVICE_EndpointWrite Function

	f) Control Transfer Functions
	USB_DEVICE_ControlReceive Function
	USB_DEVICE_ControlSend Function
	USB_DEVICE_ControlStatus Function

	g) Data Types and Constants
	USB_DEVICE_INDEX_0 Macro
	USB_DEVICE_INDEX_1 Macro
	USB_DEVICE_INDEX_2 Macro
	USB_DEVICE_INDEX_3 Macro
	USB_DEVICE_INDEX_4 Macro
	USB_DEVICE_INDEX_5 Macro
	USB_DEVICE_CONTROL_STATUS Enumeration
	USB_DEVICE_CONTROL_TRANSFER_RESULT Enumeration
	USB_DEVICE_EVENT Enumeration
	USB_DEVICE_HANDLE Type
	USB_DEVICE_INIT Structure
	USB_DEVICE_POWER_STATE Enumeration
	USB_DEVICE_REMOTE_WAKEUP_STATUS Enumeration
	USB_DEVICE_EVENT_DATA_CONFIGURED Structure
	USB_DEVICE_HANDLE_INVALID Macro
	USB_DEVICE_EVENT_RESPONSE_NONE Macro
	USB_DEVICE_CLIENT_STATUS Enumeration
	USB_DEVICE_CONFIGURATION_DESCRIPTORS_TABLE Type
	USB_DEVICE_EVENT_HANDLER Type
	USB_DEVICE_EVENT_RESPONSE Type
	USB_DEVICE_FUNCTION_REGISTRATION_TABLE Structure
	USB_DEVICE_MASTER_DESCRIPTOR Structure
	USB_DEVICE_STRING_DESCRIPTORS_TABLE Type
	USB_DEVICE_EVENT_DATA_ENDPOINT_READ_COMPLETE Structure
	USB_DEVICE_EVENT_DATA_ENDPOINT_WRITE_COMPLETE Structure
	USB_DEVICE_EVENT_DATA_SET_DESCRIPTOR Structure
	USB_DEVICE_EVENT_DATA_SOF Structure
	USB_DEVICE_EVENT_DATA_SYNCH_FRAME Structure
	USB_DEVICE_RESULT Enumeration
	USB_DEVICE_TRANSFER_FLAGS Enumeration
	USB_DEVICE_TRANSFER_HANDLE Type
	USB_DEVICE_TRANSFER_HANDLE_INVALID Macro
	USB_DEVICE_IRP Structure
	USB_DEVICE_IRP_FLAG Enumeration
	USB_DEVICE_IRP_STATUS Enumeration
	USB_ENDPOINT Type
	USB_ERROR Enumeration
	USB_HOST_IRP Structure
	USB_HOST_IRP_FLAG Enumeration
	USB_HOST_IRP_STATUS Enumeration
	USB_SPEED Enumeration
	USB_ENDPOINT_AND_DIRECTION Macro
	USB_DATA_DIRECTION Enumeration
	USB_DEVICE_BOS_DESCRIPTOR_SUPPORT_ENABLE Macro
	USB_DEVICE_DRIVER_INITIALIZE_EXPLICIT Macro
	USB_DEVICE_STRING_DESCRIPTOR_TABLE_ADVANCED_ENABLE Macro

	Files
	usb_device.h
	usb_common.h

	USB CDC Device Library
	Introduction
	Using the Library
	Library Overview
	Abstraction Model
	Abstract Control Model (ACM)
	How the Library Works
	Library Initialization
	Event Handling
	Sending Data
	Receiving Data

	Configuring the Library
	USB_DEVICE_CDC_INSTANCES_NUMBER Macro
	USB_DEVICE_CDC_QUEUE_DEPTH_COMBINED Macro

	Building the Library
	Library Interface
	a) Functions
	USB_DEVICE_CDC_EventHandlerSet Function
	USB_DEVICE_CDC_Read Function
	USB_DEVICE_CDC_Write Function
	USB_DEVICE_CDC_SerialStateNotificationSend Function

	b) Data Types and Constants
	USB_DEVICE_CDC_EVENT Enumeration
	USB_DEVICE_CDC_EVENT_DATA_READ_COMPLETE Structure
	USB_DEVICE_CDC_EVENT_DATA_SERIAL_STATE_NOTIFICATION_COMPLETE Structure
	USB_DEVICE_CDC_EVENT_DATA_WRITE_COMPLETE Structure
	USB_DEVICE_CDC_EVENT_HANDLER Type
	USB_DEVICE_CDC_EVENT_RESPONSE Type
	USB_DEVICE_CDC_EVENT_DATA_SEND_BREAK Structure
	USB_DEVICE_CDC_INDEX Type
	USB_DEVICE_CDC_INIT Structure
	USB_DEVICE_CDC_RESULT Enumeration
	USB_DEVICE_CDC_TRANSFER_FLAGS Enumeration
	USB_DEVICE_CDC_TRANSFER_HANDLE Type
	USB_DEVICE_CDC_EVENT_RESPONSE_NONE Macro
	USB_DEVICE_CDC_TRANSFER_HANDLE_INVALID Macro
	USB_DEVICE_CDC_FUNCTION_DRIVER Macro
	USB_DEVICE_CDC_INDEX_0 Macro
	USB_DEVICE_CDC_INDEX_1 Macro
	USB_DEVICE_CDC_INDEX_2 Macro
	USB_DEVICE_CDC_INDEX_3 Macro
	USB_DEVICE_CDC_INDEX_4 Macro
	USB_DEVICE_CDC_INDEX_5 Macro
	USB_DEVICE_CDC_INDEX_6 Macro
	USB_DEVICE_CDC_INDEX_7 Macro

	Files
	usb_device_cdc.h

	USB HID Device Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Library Initialization
	Event Handling
	Sending a Report
	Receiving a Report

	Configuring the Library
	USB_DEVICE_HID_INSTANCES_NUMBER Macro
	USB_DEVICE_HID_QUEUE_DEPTH_COMINED Macro

	Building the Library
	Library Interface
	a) Functions
	USB_DEVICE_HID_EventHandlerSet Function
	USB_DEVICE_HID_ReportReceive Function
	USB_DEVICE_HID_ReportSend Function
	USB_DEVICE_HID_TransferCancel Function

	b) Data Types and Constants
	USB_DEVICE_HID_EVENT Enumeration
	USB_DEVICE_HID_EVENT_DATA_GET_REPORT Structure
	USB_DEVICE_HID_EVENT_DATA_REPORT_RECEIVED Structure
	USB_DEVICE_HID_EVENT_DATA_REPORT_SENT Structure
	USB_DEVICE_HID_EVENT_DATA_SET_IDLE Structure
	USB_DEVICE_HID_EVENT_DATA_SET_REPORT Structure
	USB_DEVICE_HID_INDEX Type
	USB_DEVICE_HID_EVENT_DATA_GET_IDLE Structure
	USB_DEVICE_HID_TRANSFER_HANDLE Type
	USB_DEVICE_HID_EVENT_DATA_SET_PROTOCOL Structure
	USB_DEVICE_HID_EVENT_HANDLER Type
	USB_DEVICE_HID_EVENT_RESPONSE Type
	USB_DEVICE_HID_INIT Structure
	USB_DEVICE_HID_RESULT Enumeration
	USB_DEVICE_HID_EVENT_RESPONSE_NONE Macro
	USB_DEVICE_HID_TRANSFER_HANDLE_INVALID Macro
	USB_DEVICE_HID_FUNCTION_DRIVER Macro
	USB_DEVICE_HID_INDEX_0 Macro
	USB_DEVICE_HID_INDEX_1 Macro
	USB_DEVICE_HID_INDEX_2 Macro
	USB_DEVICE_HID_INDEX_3 Macro
	USB_DEVICE_HID_INDEX_4 Macro
	USB_DEVICE_HID_INDEX_5 Macro
	USB_DEVICE_HID_INDEX_6 Macro
	USB_DEVICE_HID_INDEX_7 Macro

	Files
	usb_device_hid.h

	USB MSD Device Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Library Initialization
	Data Transfer

	Configuring the Library
	USB_DEVICE_MSD_INSTANCES_NUMBER Macro
	USB_DEVICE_MSD_LUNS_NUMBER Macro

	Building the Library
	Library Interface
	a) System Configuration Functions
	Data Types and Constants
	USB_DEVICE_MSD_MEDIA_FUNCTIONS Structure
	USB_DEVICE_MSD_INIT Structure
	USB_DEVICE_MSD_MEDIA_INIT_DATA Structure
	USB_DEVICE_MSD_FUNCTION_DRIVER Macro

	Files
	usb_device_msd.h

	Generic USB Device Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Library Initialization
	Event Handling
	Endpoint Management
	Endpoint Data Transfer

	Configuring the Library
	Building the Library
	Library Interface

	USB Host Library
	USB Host Library - Getting Started
	Introduction
	USB Host Library Architecture
	USB Host Library - Application Interaction

	USB Host Library Migration Guide
	Introduction
	USB Host Layer
	USB MSD Host Client Driver and SCSI Block Storage Driver
	USB CDC Host Client Driver

	USB Host Layer Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	Host Layer Initialization
	Host Layer - Application Interaction
	Event Handling

	Configuring the Library
	USB_HOST_CONTROLLERS_NUMBER Macro
	USB_HOST_DEVICE_INTERFACES_NUMBER Macro
	USB_HOST_DEVICES_NUMBER Macro
	USB_HOST_HUB_SUPPORT_ENABLE Macro
	USB_HOST_HUB_TIER_LEVEL Macro
	USB_HOST_PIPES_NUMBER Macro
	USB_HOST_TRANSFERS_NUMBER Macro

	Building the Library
	Library Interface
	a) Functions
	USB_HOST_Deinitialize Function
	USB_HOST_Status Function
	USB_HOST_Tasks Function
	USB_HOST_BusEnable Function
	USB_HOST_BusIsEnabled Function
	USB_HOST_BusIsSuspended Function
	USB_HOST_BusResume Function
	USB_HOST_BusSuspend Function
	USB_HOST_DeviceGetFirst Function
	USB_HOST_DeviceGetNext Function
	USB_HOST_DeviceIsSuspended Function
	USB_HOST_DeviceResume Function
	USB_HOST_DeviceSpeedGet Function
	USB_HOST_DeviceStringDescriptorGet Function
	USB_HOST_DeviceSuspend Function
	USB_HOST_EventHandlerSet Function
	USB_HOST_Initialize Function
	USB_HOST_BusDisable Function
	USB_HOST_BusIsDisabled Function

	b) Data Types and Constants
	USB_HOST_INIT Structure
	USB_HOST_EVENT_RESPONSE Enumeration
	\ .tplFlags.driverType = (TPL_FLAG_CLASS_SUBCLASS_PROTOCOL) Enumeration
	\ .tplFlags.driverType = (TPL_FLAG_VID_PID) Enumeration
	0 Enumeration
	0x0000 Enumeration
	0xFF Enumeration
	0xFF } Enumeration
	0xFFFF Enumeration
	0xFFFF } Enumeration
	1 Enumeration
	classCode Enumeration
	false Enumeration
	initData Enumeration
	mask Enumeration
	pid Enumeration
	pid } Enumeration
	subClassCode Enumeration
	true Enumeration
	USB_HOST_BUS Type
	USB_HOST_DEVICE_INFO Structure
	USB_HOST_DEVICE_OBJ_HANDLE Type
	USB_HOST_DEVICE_STRING Enumeration
	USB_HOST_EVENT Enumeration
	USB_HOST_EVENT_HANDLER Type
	USB_HOST_HCD Structure
	USB_HOST_REQUEST_HANDLE Type
	USB_HOST_RESULT Enumeration
	USB_HOST_STRING_REQUEST_COMPLETE_CALLBACK Type
	USB_HOST_TARGET_PERIPHERAL_LIST_ENTRY Enumeration
	USB_HOST_TPL_ENTRY Enumeration
	vid Enumeration
	USB_HOST_BUS_ALL Macro
	USB_HOST_DEVICE_OBJ_HANDLE_INVALID Macro
	USB_HOST_DEVICE_STRING_LANG_ID_DEFAULT Macro
	USB_HOST_REQUEST_HANDLE_INVALID Macro
	USB_HOST_RESULT_MIN Macro

	Files
	usb_host.h
	usb_host_config_template.h

	USB Audio v1.0 Host Client Driver Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	TPL Table Configuration for Audio v1.0 Devices
	Detecting Device Attach
	Obtaining Audio v1.0 Device Audio Stream Details
	Obtaining an Audio Stream
	Audio Stream Event Handling
	Enabling Audio Stream
	Setting the Desired Audio Stream Sampling Rate
	Audio Data Streaming
	Sending Class Specific Control Transfers

	Configuring the Library
	USB_HOST_AUDIO_V1_ATTACH_LISTENERS_NUMBER Macro
	USB_HOST_AUDIO_V1_INSTANCES_NUMBER Macro
	USB_HOST_AUDIO_V1_STREAMING_INTERFACE_ALTERNATE_SETTINGS_NUMBER Macro
	USB_HOST_AUDIO_V1_STREAMING_INTERFACES_NUMBER Macro

	Building the Library
	Library Interface
	a) Audio Device Access Functions
	USB_HOST_AUDIO_V1_AttachEventHandlerSet Function
	USB_HOST_AUDIO_V1_0_ControlRequest Function
	USB_HOST_AUDIO_V1_ControlEntityGetFirst Function
	USB_HOST_AUDIO_V1_ControlEntityGetNext Function
	USB_HOST_AUDIO_V1_DeviceObjHandleGet Function
	USB_HOST_AUDIO_V1_EntityObjectGet Function
	USB_HOST_AUDIO_V1_EntityRequestCallbackSet Function
	USB_HOST_AUDIO_V1_EntityTypeGet Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelMuteExists Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelMuteGet Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelMuteSet Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelNumbersGet Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeExists Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeGet Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSet Function
	USB_HOST_AUDIO_V1_FeatureUnitIDGet Function
	USB_HOST_AUDIO_V1_FeatureUnitSourceIDGet Function
	USB_HOST_AUDIO_V1_TerminalAssociationGet Function
	USB_HOST_AUDIO_V1_TerminalIDGet Function
	USB_HOST_AUDIO_V1_TerminalInputChannelNumbersGet Function
	USB_HOST_AUDIO_V1_TerminalSourceIDGet Function
	USB_HOST_AUDIO_V1_TerminalTypeGet Function

	b) Audio Stream Access Functions
	USB_HOST_AUDIO_V1_0_NumberOfStreamGroupsGet Function
	USB_HOST_AUDIO_V1_StreamClose Function
	USB_HOST_AUDIO_V1_StreamEventHandlerSet Function
	USB_HOST_AUDIO_V1_0_StreamDisable Function
	USB_HOST_AUDIO_V1_StreamingInterfaceGetFirst Function
	USB_HOST_AUDIO_V1_0_StreamEnable Function
	USB_HOST_AUDIO_V1_StreamingInterfaceGetNext Function
	USB_HOST_AUDIO_V1_0_StreamEventHandlerSet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceSet Function
	USB_HOST_AUDIO_V1_0_StreamGetFirst Function
	USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetFirst Function
	USB_HOST_AUDIO_V1_0_StreamGetNext Function
	USB_HOST_AUDIO_V1_StreamingInterfaceSettingGetNext Function
	USB_HOST_AUDIO_V1_0_StreamSamplingRateSet Function
	USB_HOST_AUDIO_V1_StreamOpen Function
	USB_HOST_AUDIO_V1_StreamRead Function
	USB_HOST_AUDIO_V1_StreamWrite Function
	USB_HOST_AUDIO_V1_StreamingInterfaceBitResolutionGet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceChannelNumbersGet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceDirectionGet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceFormatTagGet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequenciesGet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceSamplingFrequencyTypeGet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceSubFrameSizeGet Function
	USB_HOST_AUDIO_V1_StreamingInterfaceTerminalLinkGet Function
	USB_HOST_AUDIO_V1_StreamSamplingFrequencyGet Function
	USB_HOST_AUDIO_V1_StreamSamplingFrequencySet Function
	USB_HOST_AUDIO_V1_0_StreamRead Function
	USB_HOST_AUDIO_V1_0_StreamWrite Function

	c) Other Functions
	USB_HOST_AUDIO_V1_TerminalInputChannelConfigGet Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeRangeGet Function
	USB_HOST_AUDIO_V1_FeatureUnitChannelVolumeSubRangeNumbersGet Function

	d) Data Types and Constants
	USB_HOST_AUDIO_V1_ATTACH_EVENT_HANDLER Type
	USB_HOST_AUDIO_V1_CONTROL_ENTITY_OBJ Type
	USB_HOST_AUDIO_V1_ENTITY_REQUEST_CALLBACK Type
	USB_HOST_AUDIO_V1_EVENT Enumeration
	USB_HOST_AUDIO_V1_OBJ Type
	USB_HOST_AUDIO_V1_REQUEST_HANDLE Type
	USB_HOST_AUDIO_V1_RESULT Enumeration
	USB_HOST_AUDIO_V1_0_ATTACH_EVENT_HANDLER Type
	USB_HOST_AUDIO_V1_STREAM_DIRECTION Enumeration
	USB_HOST_AUDIO_V1_STREAM_EVENT Enumeration
	USB_HOST_AUDIO_V1_STREAM_EVENT_HANDLER Type
	USB_HOST_AUDIO_V1_STREAM_EVENT_INTERFACE_SET_COMPLETE_DATA Structure
	USB_HOST_AUDIO_V1_0_CONTROL_CALLBACK Type
	USB_HOST_AUDIO_V1_STREAM_EVENT_READ_COMPLETE_DATA Structure
	USB_HOST_AUDIO_V1_0_EVENT Macro
	USB_HOST_AUDIO_V1_STREAM_EVENT_RESPONSE Enumeration
	USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_SET_COMPLETE_DATA Structure
	USB_HOST_AUDIO_V1_0_OBJ Macro
	USB_HOST_AUDIO_V1_STREAM_EVENT_WRITE_COMPLETE_DATA Structure
	USB_HOST_AUDIO_V1_0_REQUEST_HANDLE Macro
	USB_HOST_AUDIO_V1_STREAM_HANDLE Type
	USB_HOST_AUDIO_V1_0_RESULT Enumeration
	USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE Type
	USB_HOST_AUDIO_V1_0_STREAM_DIRECTION Macro
	USB_HOST_AUDIO_V1_STREAMING_INTERFACE_OBJ Type
	USB_HOST_AUDIO_V1_0_STREAM_EVENT Enumeration
	USB_HOST_AUDIO_V1_STREAMING_INTERFACE_SETTING_OBJ Type
	USB_HOST_AUDIO_V1_0_STREAM_EVENT_DISABLE_COMPLETE_DATA Structure
	USB_HOST_AUDIO_V1_0_STREAM_EVENT_ENABLE_COMPLETE_DATA Structure
	USB_HOST_AUDIO_V1_0_STREAM_EVENT_HANDLER Type
	USB_HOST_AUDIO_V1_0_STREAM_EVENT_READ_COMPLETE_DATA Macro
	USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE Macro
	USB_HOST_AUDIO_V1_0_STREAM_EVENT_WRITE_COMPLETE_DATA Macro
	USB_HOST_AUDIO_V1_0_STREAM_HANDLE Macro
	USB_HOST_AUDIO_V1_INTERFACE Macro
	USB_HOST_AUDIO_V1_0_STREAM_INFO Structure
	USB_HOST_AUDIO_V1_REQUEST_HANDLE_INVALID Macro
	USB_HOST_AUDIO_V1_0_STREAM_OBJ Type
	USB_HOST_AUDIO_V1_STREAM_HANDLE_INVALID Macro
	USB_HOST_AUDIO_V1_0_STREAM_RESULT Enumeration
	USB_HOST_AUDIO_V1_STREAM_TRANSFER_HANDLE_INVALID Macro
	USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE Macro
	USB_HOST_AUDIO_V1_0_INTERFACE Macro
	USB_HOST_AUDIO_V1_0_REQUEST_HANDLE_INVALID Macro
	USB_HOST_AUDIO_V1_0_STREAM_HANDLE_INVALID Macro
	USB_HOST_AUDIO_V1_0_STREAM_TRANSFER_HANDLE_INVALID Macro
	USB_HOST_AUDIO_V1_0_AttachEventHandlerSet Macro
	USB_HOST_AUDIO_V1_0_DeviceObjHandleGet Macro
	USB_HOST_AUDIO_V1_0_DIRECTION_IN Macro
	USB_HOST_AUDIO_V1_0_DIRECTION_OUT Macro
	USB_HOST_AUDIO_V1_0_EVENT_ATTACH Macro
	USB_HOST_AUDIO_V1_0_EVENT_DETACH Macro
	USB_HOST_AUDIO_V1_0_STREAM_EVENT_RESPONSE_NONE Macro
	USB_HOST_AUDIO_V1_0_StreamClose Macro
	USB_HOST_AUDIO_V1_0_StreamOpen Macro
	USB_HOST_AUDIO_V1_SAMPLING_FREQUENCIES_NUMBER Macro
	USB_HOST_AUDIO_V1_STREAM_EVENT_SAMPLING_RATE_GET_COMPLETE_DATA Structure

	Files
	usb_host_audio_v1_0.h

	USB CDC Host Library
	Introduction
	Using the Library
	Abstraction Model
	Library Overview
	How the Library Works
	TPL Table Configuration for CDC Devices
	Detecting Device Attach
	Opening the CDC Host Client Driver
	Sending Class-specific Control Transfers
	Reading and Writing Data
	Event Handling

	Configuring the Library
	USB_HOST_CDC_ATTACH_LISTENERS_NUMBER Macro
	USB_HOST_CDC_INSTANCES_NUMBER Macro

	Building the Library
	Library Interface
	a) Client Access Functions
	USB_HOST_CDC_Open Function
	USB_HOST_CDC_Close Function
	USB_HOST_CDC_AttachEventHandlerSet Function
	USB_HOST_CDC_EventHandlerSet Function
	USB_HOST_CDC_DeviceObjHandleGet Function

	b) Data Transfer Functions
	USB_HOST_CDC_Read Function
	USB_HOST_CDC_SerialStateNotificationGet Function
	USB_HOST_CDC_Write Function

	c) CDC Class-specific Functions
	USB_HOST_CDC_ACM_BreakSend Function
	USB_HOST_CDC_ACM_ControlLineStateSet Function
	USB_HOST_CDC_ACM_LineCodingGet Function
	USB_HOST_CDC_ACM_LineCodingSet Function

	d) Data Types and Constants
	USB_HOST_CDC_EVENT Enumeration
	USB_HOST_CDC_RESULT Enumeration
	USB_HOST_CDC_TRANSFER_HANDLE Type
	USB_HOST_CDC_TRANSFER_HANDLE_INVALID Macro
	USB_HOST_CDC_ATTACH_EVENT_HANDLER Type
	USB_HOST_CDC_EVENT_ACM_GET_LINE_CODING_COMPLETE_DATA Structure
	USB_HOST_CDC_HANDLE Type
	USB_HOST_CDC_EVENT_ACM_SEND_BREAK_COMPLETE_DATA Structure
	USB_HOST_CDC_EVENT_ACM_SET_CONTROL_LINE_STATE_COMPLETE_DATA Structure
	USB_HOST_CDC_EVENT_ACM_SET_LINE_CODING_COMPLETE_DATA Structure
	USB_HOST_CDC_EVENT_HANDLER Type
	USB_HOST_CDC_EVENT_READ_COMPLETE_DATA Structure
	USB_HOST_CDC_EVENT_RESPONSE Enumeration
	USB_HOST_CDC_EVENT_SERIAL_STATE_NOTIFICATION_RECEIVED_DATA Structure
	USB_HOST_CDC_EVENT_WRITE_COMPLETE_DATA Structure
	USB_HOST_CDC_OBJ Type
	USB_HOST_CDC_REQUEST_HANDLE Type
	USB_HOST_CDC_INTERFACE Macro
	USB_HOST_CDC_REQUEST_HANDLE_INVALID Macro
	USB_HOST_CDC_HANDLE_INVALID Macro

	Files
	usb_host_cdc.h
	usb_host_cdc_acm.h

	USB HID Host Mouse Driver Library
	Introduction
	Using the Library
	Library Overview
	Abstraction Model
	How the Library Works
	HID Device TPL Table Configuration
	Detecting Device Attach
	Mouse Data Event Handling

	Configuring the Library
	USB_HID_GLOBAL_PUSH_POP_STACK_SIZE Macro
	USB_HOST_HID_INSTANCES_NUMBER Macro
	USB_HOST_HID_INTERRUPT_IN_ENDPOINTS_NUMBER Macro
	USB_HOST_HID_MOUSE_BUTTONS_NUMBER Macro
	USB_HOST_HID_USAGE_DRIVER_SUPPORT_NUMBER Macro

	Building the Library
	Library Interface
	a) Mouse Access Functions
	USB_HOST_HID_MOUSE_EventHandlerSet Function
	_USB_HOST_HID_MOUSE_EventHandler Function
	_USB_HOST_HID_MOUSE_Task Function

	b) Data Types and Constants
	USB_HOST_HID_MOUSE_DATA Structure
	USB_HOST_HID_MOUSE_EVENT Enumeration
	USB_HOST_HID_MOUSE_EVENT_HANDLER Type
	USB_HOST_HID_MOUSE_HANDLE Type
	USB_HOST_HID_MOUSE_RESULT Enumeration
	USB_HOST_HID_MOUSE_RESULT_MIN Macro
	USB_HOST_HID_MOUSE_HANDLE_INVALID Macro

	Files
	usb_host_hid_mouse.h

	USB Hub Host Client Driver Library
	Introduction
	Abstraction Model
	Library Overview
	Using the Library
	How the Library Works
	Hub TPL Table Configuration

	USB Hub Host Client Driver Test Results
	Configuring the Library
	USB_HOST_HUB_INSTANCES_NUMBER Macro
	USB_HOST_HUB_PORTS_NUMBER Macro

	Building the Library
	Library Interface
	Data Types and Constants
	USB_HOST_HUB_INTERFACE Macro

	Files
	usb_host_hub.h

	USB MSD Host Client Driver Library
	Introduction
	Using the Library
	Library Overview
	Abstraction Model
	How the Library Works
	MSD TPL Table Configuration
	Data Transfer

	Configuring the Library
	USB_HOST_MSD_INSTANCES_NUMBER Macro
	USB_HOST_MSD_LUNS_NUMBER Macro

	Building the Library
	Library Interface
	a) Data Transfer Functions
	USB_HOST_MSD_Transfer Function
	USB_HOST_MSD_TransferErrorTasks Function

	b) Data Types and Constants
	USB_HOST_MSD_RESULT Enumeration
	USB_HOST_MSD_TRANSFER_CALLBACK Type
	USB_HOST_MSD_TRANSFER_DIRECTION Enumeration
	USB_HOST_MSD_TRANSFER_HANDLE Type
	USB_HOST_MSD_INTERFACE Macro
	USB_HOST_MSD_TRANSFER_HANDLE_INVALID Macro
	USB_HOST_MSD_LUN_HANDLE Type
	USB_HOST_MSD_LUN_HANDLE_INVALID Macro
	USB_HOST_MSD_ERROR_CODE Enumeration

	Files
	usb_host_msd.h

	Index

