
MPLAB Harmony Applications Help

MPLAB Harmony Integrated Software Framework

© 2013-2018 Microchip Technology Inc. All rights reserved.

Volume I: Getting Started With MPLAB Harmony Libraries and Applications
This volume introduces the MPLAB® Harmony Integrated Software Framework.

Description

MPLAB Harmony is a layered framework of modular libraries that provide flexible and interoperable software "building
blocks" for developing embedded PIC32 applications. MPLAB Harmony is also part of a broad and expandable
ecosystem, providing demonstration applications, third-party offerings, and convenient development tools, such as the
MPLAB Harmony Configurator (MHC), which integrate with the MPLAB X IDE and MPLAB XC32 language tools.

Legal Notices

Please review the Software License Agreement prior to using MPLAB Harmony. It is the responsibility of the end-user to know and understand the
software license agreement terms regarding the Microchip and third-party software that is provided in this installation. A copy of the agreement is
available in the <install-dir>/doc folder of your MPLAB Harmony installation.

The OPENRTOS® demonstrations provided in MPLAB Harmony use the OPENRTOS evaluation license, which is meant for demonstration
purposes only. Customers desiring development and production on OPENRTOS must procure a suitable license. Please refer to one of the
following documents, which are located in the <install-dir>/third_party/rtos/OPENRTOS/Documents folder of your MPLAB Harmony
installation, for information on obtaining an evaluation license for your device:

• OpenRTOS Click Thru Eval License PIC32MXxx.pdf

• OpenRTOS Click Thru Eval License PIC32MZxx.pdf

 TIP!
Throughout this documentation, occurrences of <install-dir> refer to the default MPLAB Harmony installation path:

• Windows: C:/microchip/harmony/<version>

• Mac OS/Linux: ~/microchip/harmony/<version>

Volume I: Getting Started With MPLAB Harmony

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 2

Applications Help

This section provides information on the various application demonstrations that are included in MPLAB Harmony.

Description

Applications determine how MPLAB Harmony libraries (device drivers, middleware, and system services) are used to do something useful. In a
MPLAB Harmony system, there may be one main application, there may be multiple independent applications or there may be one or more
Operating System (OS) specific applications. Applications interact with MPLAB Harmony libraries through well defined interfaces. Applications may
operate in a strictly polling environment, they may be interrupt driven, they may be executed in OS-specific threads, or they may be written so as to
be flexible and easily configured for any of these environments. Applications generally fit into one of the following categories.

Demonstration Applications

Demonstration applications are provided (with MPLAB Harmony or in separate installations) to demonstrate typical or interesting usage models of
one or more MPLAB Harmony libraries. Demonstration applications can demonstrate realistic solutions to real-life problems.

Sample Applications

Sample applications are extremely simple applications provided with MPLAB Harmony as examples of how to use individual features of a library.
They will not normally accomplish anything useful on their own. They are provided primarily as documentation to show how to use a library.

Audio Demonstrations

This section provides information on the Audio Demonstrations provided in your installation of MPLAB Harmony.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

MPLAB Harmony Audio Demonstrations Help.

Description

This help file contains instructions and associated information about MPLAB Harmony Audio demonstration applications, which are contained in
the MPLAB Harmony Library distribution.

Demonstrations

This topic provides instructions about how to run the demonstration applications.

audio_microphone_loopback

This topic provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the AK4642 or AK4954 Codec Driver sets up the codec, which is the on-board device on the Audio Codec
Daughter Board AK4642EN, or AK4954A and can receive audio data through the microphone onboard the daughter board and sends this audio
data out through the on-board headphones. Either the Audio Codec Daughter Board AK4642EN, or the Audio Codec Board AC324954, which are
available for purchase from Microchip, can be connected to the PIC32 Bluetooth Audio Development Kit.

The demonstration application also shows how to configure the I2S client and DMA channels for applications that need two-way data
communication between the Codec and the PIC32 microcontroller.

Refer to the Framework Help > Driver Libraries Help > Decoder Libraries Help > AK4642 (or AK4954) Codec Driver Library section for more
information on the driver, including configuration details as well as the available APIs.

The DRV_CODEC_IO_INTENT_READWRITE mode of the codec driver is useful when the application can guarantee that the I2S playback buffers
(even if it is zeros) are the same size and same sampling rate as the microphone (record) buffers that are received over I2S.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz and uses the following additional feature of the PIC32 Bluetooth Audio Development Kit:

• 220x176 color LCD

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 3

http://www.microchip.com/mplabharmony

 Note:
The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth Daughter Board and an AK4384 Audio DAC
Daughter Board ,mounted on headers (J8/J11 and J9/J10); however, you must replace the AK4384 Audio DAC Daughter Board
with either the PIC32 Audio Codec Daughter Board AK4642EN, which is sold separately on microchipDIRECT as part number
AC320100, or the PIC32 Audio Codec Daughter Board AK4954A, which is sold separately on microchipDIRECT as part number
AC324954..

Surrounding the PIC32MX470F512L microcontroller are a set of headers, which accept various plug-in modules (PIM), including one for a
PIC32MX270F512L PIM (with 512 KB of Flash and 64 KB of RAM), and also a PIC32MZ2048EFH144 PIM (with 2 MB of Flash and 512 KB of
RAM) as alternate configurations for this project.

The program takes up only about 27% (142K) of the PIC32MX470F512 microcontroller’s program space, and 15% (20K) of its RAM. The two
audio buffers take up 3200 bytes, with the rest largely used by graphics. The heap uses an additional 8K, with its size based on the graphics taking
up about half of that.

The following figure illustrates the application architecture.

The PIC32 microcontroller (MCU) runs the application code, and communicates with the codec using an I2C interface.

The interface between the PIC32 MCU and the LCD is an 8-bit parallel master port (PMP). The program uses the MPLAB Harmony v2.x Graphics
Library to draw on the screen.

As with any MPLAB Harmony application, the SYS_Initialize function, which is located in the system_init.c source file, makes calls to initialize
various subsystems, such as the clock, ports, board support package (BSP), PMP, codec, graphics, and interrupts.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 4

The codec driver, graphics, and the application state machines are all updated through calls located in the SYS_Tasks function in the
system_tasks.c file. Interrupt handlers in the system_interrupt.c file are used for the two DMA channels, and the I2C driver which controls
the codec.

The application code is contained in the source file app.c, which contains a state machine (APP_Tasks). It first initializes the application, then
receives a handle to the codec driver by calling the codec’s DRV_CODEC_Open function with a mode of DRV_IO_INTENT_READWRITE. Then it
registers an event handler, APP_CodecBufferEventHandler as a callback with the codec driver. Finally it makes an initial call to the codec’s
DRV_CODEC_BufferAddWriteRead is done to get things started (writing zeros to the output for the first buffer only).

The event handler callback is given control whenever a buffer has been processed. Two 400 word (uint16_t) buffers, micbuf1 and micbuf2, are
toggled back and forth in a ping-pong fashion (one used for reading, one used for writing) so that when a buffer is filled on the receive side (from
the microphone on the codec daughter board), it is turned right around and sent back as output to the transmit side and played through the
headphones.

Although the codec driver interfaces with the codec via I2S and DMA, which is largely transparent to the application, it is all taken care of by
MPLAB Harmony.

As a minimum, the buffers must be large enough so that there is enough time when the event handler callback is handled to process the swapping
of the buffer pointers, plus a call to BufferAddWriteRead. At 48000 samples per second, a buffer with 400 entries will result in a callback every 8.3
ms. This could probably be reduced down to as low as 50 entries, or about 1 ms and still work. However, there would not be much time in the
application to do anything else. If a lot of graphics processing was added to this application, or other work not associated with the audio
processing, the buffer size might even need to be increased to 800 (16.7 ms) or even more.

Demonstration Features

• Uses the AK4642 or AK4954 Codec Driver Library to read audio samples from the built-in microphone on the codec daughter board, and send
audio back to the headphone output

• I2S audio output/speaker driver

• I2S microphone driver

• At a lower level, using the I2S Driver Library between the codec library and the codec for audio, and the I2C Driver Library for control of the
codec

• Use of “ping-pong” audio buffers

• Simultaneous I2S data

• Displays graphics on the 220x176 LCD of the PIC32 Bluetooth Audio Development Kit using the MPLAB Harmony Graphics Library (see
MPLAB Harmony Graphics Composer Suite) and the Parallel Master Port (see PMP Driver Library)

Tools Setup Differences

When building a new application, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select the
desired processor (PICMX470F512L or PIC32MX270F512L), and the PIC32MX Bluetooth Audio Development Kit. Click the MPLAB Harmony icon
to start the MPLAB Harmony Configurator (MHC). Under BSP Configuration, select PIC32 Bluetooth Audio Development Kit (AK4384) or
(AK4954), or PIC32MX270F512L with Bluetooth Audio Development Kit (AK4384), as appropriate for your hardware.

Under Drivers >CODEC, select Use Codec AK4642? or Use Codec AK4954?. Under I2S, Use I2S Driver should already be checked. Expand
that option and select DMA Mode, and then also select Transmit DMA Support and Receive DMA Support. Under Audio Communication Width,
select SPI_AUDIO_COMMUNICATION_16DATA_16FIFO_32CHANNEL. Under Audio Protocol Mode, select DRV_I2S_LEFT_JUSTIFIED if using
the AK4642, or DRV_I2S_AUDIO_I2S if using the AK4954. Change the Receive DMA Channel Instance to 1.

Under System Services >DMA, select Use DMA System Services. Change the Number of DMA Channel Instances to 2 and press Enter. Under
DMA Channel Instance 1, change the DMA Channel to DMA_CHANNEL_2.

Note that the I2C Driver has been automatically selected and properly setup so you do not need to do anything further with it if using the AK4642.
If using the Ak4954, check the box Include Force Write I2C Function.

If your application is going to be using graphics, as this one does, within Graphics Stack, select Use Graphics Stack?. Further down, within Use
Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch since the LCD on the PIC32 Bluetooth
Audio Development Kit does not support a touchscreen. Since you are using the LCD, you will also need to go back to the Drivers section, and

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 5

within PMP, select Use PMP Driver?. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the audio_microphone_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/audio_microphone_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

audio_microphone_loopback.X <install-dir>/apps/audio/audio_microphone_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk_16bit bt_audio_dk This demonstration runs on the PIC32MX470F512L mounted on the
PIC32 Bluetooth Audio Development Kit and the Audio Codec
Daughter Board AK4642EN.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk This demonstration runs on the PIC32MX270F512L PIM mounted on
the PIC32 Bluetooth Audio Development Kit and the Audio Codec
Daughter Board AK4642EN.

pic32mz_ef_pim_bt_audio_dk pic32mz_ef_pim+bt_audio_dk This demonstration runs on the PIC32MZ2048EFH144 PIM mounted
on the PIC32 Bluetooth Audio Development Kit and the Audio Codec
Daughter Board AK4642EN.

bt_audio_dk_16bit_ak4954 bt_audio_dk+ak4954 This demonstration runs on the PIC32MX470F512L mounted on the
PIC32 Bluetooth Audio Development Kit and the Audio Codec
Daughter Board AK4954A.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with PIC32MX270F512L PIM for Bluetooth Audio Development Kit and the Audio Codec Daughter Board
AK4642EN (see Note)

Switch S1 on the PIC32 Bluetooth Audio Development Board (between the audio DAC daughter board and the microcontroller PIM) should be set
to PIM_MCLR.

The PIC32 Bluetooth Audio Development Kit with PIC32MZ2048EFH144 Plug-in Module (PIM) and the Audio Codec Daughter Board AK4642EN
(see Note)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIM_MCLR.

PIC32 Bluetooth Audio Development Kit with the PIC32MX470F512L and the Audio Codec Daughter Board AK4642EN (see Note).

Switch S1 on the PIC32 Bluetooth Audio Development Board (between the audio DAC daughter board and the microcontroller PIM) should be set
to PIC32_MCLR.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 6

PIC32 Bluetooth Audio Development Kit with the PIC32MX470F512L and the Audio Codec Daughter Board AK4954A (see Note).

Switch S1 on the PIC32 Bluetooth Audio Development Board (between the audio DAC daughter board and the microcontroller PIM) should be set
to PIC32_MCLR.

 Note:
The PIC32 Bluetooth Audio Development Kit includes an Audio DAC Daughter Board; however, the Audio DAC Daughter Board
must be replaced by the PIC32 Audio Codec Daughter Board AK4642 which is sold separately on micochipDIRECT as part
number AC320100 , or the PIC32 Audio Codec Daughter Board AK4954A, which is sold separately on microchipDIRECT as part
number AC324954.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

Important!

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Do the following to run the demonstration:

1. Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. Connect headphones to the HP OUT connector on the Audio Codec Daughter Board AK4642EN or AK4954A.

3. The on-board microphone (MIC3) will begin capturing surrounding audio and start looping it through the Codec to the microprocessor and back
to the Codec headphones where you should be able to audibly observe the microphone input. An easy way to test this is to gently rub the
microphone with your fingertip and listen for the resulting sound in your speaker or headphones.

 Note:
The screen is static; therefore, there are no user controls.

audio_tone

This topic provides instructions and information about the MPLAB Harmony Codec Driver demonstration application, which is included in the
MPLAB Harmony Library distribution.

Description

In this demonstration application, depending on the configuration, the Codec Driver sets up the AK4384 DAC, AK4953 Codec, or AK4954 Codec.
The demonstration sends out generated audio waveforms (sine tone and chirp) with parameters modifiable through on-board push buttons.
Success is indicated by an audible output corresponding to displayed parameters.

The sine tone is of any frequency that is four times less than the sampling rate using a 32-bit fixed point algorithm. The tone can be continuously

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 7

modified in frequency so as to also generate a chirp waveform. A timer is used control the duration of the sine tone or chirp, based on displayed
settings modified by the buttons.

To know more about the MPLAB Harmony Codec Drivers, configuring the Codec Drivers, and the APIs provided by the Codec Drivers, refer to
Codec Driver Libraries.

Architecture

PIC32 Bluetooth Audio Development Kit Configurations:

Three of the configurations run on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB
of Flash memory and 128 KB of RAM running at 96 MHz using the following features:

• 220x176 color LCD

• Five push buttons (SW1-SW5)

• Five LEDs

• PIC32 Audio AK 4384 DAC Daughter Board, or AK4954A Codec Daughter Board mounted on a X32 socket

• Potentiometer

The program takes up to approximately 32% (166K) of the PIC32MX470F512L microcontroller’s program space. The 16-bit configuration uses
20% (25K) of the RAM (with 15K of that used by the three audio buffers), and the 24-bit configuration uses 32% (40K) of the RAM (with 30K used
by the audio buffers). The rest is largely used by graphics. The heap uses an additional 16K, with its size based on the graphics taking up about
12K of that.

A fourth configuration also makes use of the PIC32 Bluetooth Audio Development Kit, but runs on a PIC32MX270F512L PIM attached to the
board. It has 512 KB of Flash memory and 64 KB of RAM running at 48 MHz.

The program takes up to approximately 34% (173K) of the PIC32MX270F512L microcontroller’s program space, and uses 39% (25K) of the RAM
(with 15K of that used by the three audio buffers). The rest is largely used by graphics. The heap uses an additional 16K, with its size based on the
graphics taking up about 12K.

The following figure illustrates the application architecture, for the four PIC32 Bluetooth Audio Development Kit configurations:

Multimedia Expansion Board II configuration:

This configuration runs on a PIC32MZ EF Starter Kit, mounted on a Multimedia Expansion Board II (MEB-II). The PIC32MZ2048EF microcontroller
has 2 MB of Flash memory and 512 KB of RAM, running at 198 MHz. The program makes use of the following features on the MEB-II board:

• PDA 480x272 (WQVGA) MaxTouch LCD display daughter board

• PIC32 AK4953 Audio Codec

The program takes up to approximately 11% (220K) of the PIC32MZ2048EF microcontroller’s program space. The 16-bit configuration uses 55%

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 8

(284K) of the RAM (only 15K of that used by the three audio buffers). The rest is largely used by graphics. The heap uses an additional 20K, with
its size based on the graphics taking up about 15K of that. The following figure illustrates the application architecture:

Curiosity PIC32MX470 Development Board configuration:

This configuration runs on the Curiosity PIC32MX470 Development Board, which contains a PIC32MX470F512H microcontroller with 512 KB of
Flash memory and 128 KB of RAM running at 120 MHz making use of the following features:

• One push button (S1)

• Two of the four LEDs

• PIC32 AK4954 Audio Codec Daughter Card mounted on an X32 socket

The program takes up to approximately 7% (34K) of the PIC32MX470F512H microcontroller’s program space. The 16-bit configuration uses 13%
(17K) of the RAM (with 15K of that used by the three audio buffers). The heap is not used. The following figure illustrates the application
architecture.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 9

The PIC32 microcontroller (MCU) runs the application code, and communicates with the AK4384 DAC via I2S and a bit-banged SPI interface.

The audio interface between the PIC32 and the AK4384 DAC, AK4953, or AK4954 codecs use the I2S interface. There are two configurations as
set up in MPLAB Harmony Configurator (MHC):

• 16-bit, 48,000 samples/second, right-justified. 16-bit, 48 kHz is the standard rate used for DVD audio. This rate reproduces music faithfully.

• 24-bit, 44,100 samples/second, I2S format. This is the same sample rate as used for CD's, but at a higher bit depth (CD uses 16-bit at 44.1
kHz). This rate also reproduces music very well. The higher bit depth (24) provides a significantly better (49 dB) signal to quantization noise
ratio than 16-bits.

The Master Clock (MCLK) signal used by the DAC is generated by the Reference Clock section of the PIC32. For a sample rate of 48 kHz it is
48,000 times 256, or 12,288,000 Hz. (The 256 value is set up in MHC as the Sampling Rate Multiplier.) MCLK, or REFCLKO, is generated from
the 96 MHz PLL clock of the PIC32MX470512L using the formula shown in the following figure:

The calculations for the other PIC32 boards is similar, just substituting different clock inputs for the 96000000 Hz in the formula.

For a sample rate of 44.1 kHz it is 44,100 times 256, or 11,289,600 Hz. MCLK, or REFCLKO, is generated from the 96 MHz PLL clock using the
formula as shown below. Note that it is not possible to generate the desired frequency exactly. The first value is the one used by the application,
as it is the one generated using the Auto_Calulate button in the Clock Diagram:

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 10

The calculations for the other PIC32 boards is similar, just substituting different clock inputs for the 96000000 Hz in the formula.

For configurations running on the Bluetooth Audio Development Kit, the interface between the PIC32 MCU and the LCD is an 8-bit parallel master
port (PMP). The program uses the MPLAB Harmony v2.x Graphics Library to draw on the screen. The buttons are also interfaced using GPIO
pins. Volume is controlled by a potentiometer, which is read via an ADC interface.

For the configuration running on the Multimedia Expansion Board II, the interface between the PIC32 MCU and the LCD uses the External Bus
Interface (EBI).

For the configuration running on the Curiosity PIC32MX470 Development Board, the button and LEDs are interfaced using GPIO pins. There is no
screen.

As with any MPLAB Harmony application, the SYS_Initialize function, which is located in the system_init.c source file, makes calls to initialize
various subsystems as needed, such as the clock, ports, board support package (BSP), ADC, AK4384 DAC, AK4953 codec, AK4954 codec, I2S,
PMP, EBI, DMA, timers, graphics, and interrupts.

The DAC or codec driver, graphics (if used), and the application state machines are all updated through calls located in the SYS_Tasks function in
the system_tasks.c file. Interrupt handlers in the system_interrupt.c file are used for the single DMA channel, port change notices (if
physical buttons are used), and three timers.

The application code is contained in the several source files. The application’s state machine (APP_Tasks) is contained in app.c. It first initializes
the application, which includes getting a handle to a timer driver instance and sets up a periodic (alarm) callback. For the configurations running on
the Bluetooth Audio Development Kit, APP_Tasks then periodically calls APP_ButtonTask in btad_buttons.c to process any pending button
presses and APP_VolumeTasks in volume_mx.c to process the potentiometer input (ADC). Once the DAC or codec has been initialized, it also
calls APP_DisplayTask in display_task.c to process any pending screen updates.

For the configuration running on the MEB-II, APP_Tasks then periodically calls APP_ButtonTask in meb2_buttons.c to process any pending
button presses coming from the touch screen. Once the AK4954 has been initialized, it also calls APP_DisplayTask in display_task.c to
process ant pending screen updates.

For the configuration running on the Curiosity Board, APP_Tasks then periodically calls APP_ButtonTask in curiosity_button.c to process
any pending button press. It then initializes the AK4954 codec.

Then the application state machine inside APP_Tasks is given control, which first gets a handle to the DAC or codec driver by calling the
DRV_CODEC_Open function (in audio_codec.c) with a mode of DRV_IO_INTENT_WRITE and sets up the sampling rate. It then calls the
function AudioGenerateFx (in either AudioGenerate24BitFx.c or AudioGenerateFx.c to generate audio samples for the next cycle. These
are then added to a queue of buffers via a call to PlayBufferQueueAdd in AudioPlayBufferQueue.c.

The application state machine then registers an event handler APP_CODEC_BufferEventHandler as a callback with the DAC or codec driver.
Finally it makes an initial call to the codec’s DRV_CODEC_BufferAddWrite (in audio_codec.c) to start playing the generated tone.

As buffers are freed up, additional cycles are generated. However in the current scheme, only one cycle is generated per buffer, so at 1000 KHz,
this means a the audio generator must be called every millisecond to keep up, and at 5 KHz, every 200 µs. Since a screen update can take over
10 ms, this means an audio artifact will be heard whenever the screen is updated while audio is being played, for example when turning the
volume control on the Bluetooth Audio Development Kit or adjusting the volume using touch buttons on the MEB II screen. To fix this, more cycles
should be generated at a time.

Currently, the play buffer is sized as 1280 * 2 samples, where 2 refers to the number of channels. Since each buffer is only used to generate one
cycle of a tone, this means the lowest frequency that can be generated at 44100 samples per second is 1 / (1280 / 44100) = 34.5 Hz.

Although the driver interfaces with the DAC or codec via I2S and DMA, which is largely transparent to the application, it is all taken care of by
MPLAB Harmony.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 11

Demonstration Features

• Uses the appropriate Codec Driver Library to write audio samples to the AK4384 DAC, AK4953, or AK4954

• At a lower level, uses the I2S Driver Library between the codec library and the DAC or codec for audio

• Use of a circular buffer queue

• Displays graphics on the 220x176 LCD of the PIC32 Bluetooth Audio Development Kit using the MPLAB Harmony Graphics Library (see
MPLAB Harmony Graphics Composer Suite) and the Parallel Master Port (see PMP Driver Library)

• Displays graphics on the 480x272 LCD of the Multimedia Expansion Board II using the MPLAB Harmony Graphics Library (see MPLAB
Harmony Graphics Composer Suite) and the External Bus Interface

• Processing of button pushes on the PIC32 Bluetooth Audio Development Kit and Curiosity PIC32MX470 Development Board (see Ports
Peripheral Library)

• Processing of touch events on the MaxTouch display mounted on the MEB II using the touch API calls of the MPLAB Harmony Graphics Library

• Use of three timers: one as a periodic 1 ms timer for the application, and a second used by the Codec Driver (see Timer Driver Library)

Tools Setup Differences

When building a new application, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select the
appropriate processor (PIC32MX470F512L, PIC32MX270F512L, PIC32MX470F512H or PIC32MZ2048EFH144) and either the PIC32 Bluetooth
Audio Development Kit, PIC32MZ (EF) Starter Kit + MEB II, or PIC32MX470 Curiosity Development Board. Click the MPLAB Harmony icon to start
the MPLAB Harmony Configurator (MHC).

Under BSP Configuration, select either PIC32 Bluetooth Audio Development Kit (AK4384) or (AK4954); PIC32MX270F512L w/ Bluetooth Audio
Development Kit (AK4384); PIC32MZ EF Starter Kit w/ Multimedia Expansion Board (MEB) II; or PIC32MX470 Curiosity Development Board as
appropriate for your hardware.

If running on the PIC32 Bluetooth Audio Development Kit, navigate to Harmony Framework Configuration > Drivers > ADC, and select Use ADC
Driver?. Expand Clock Options, and for TAD Clock (Tad), enter 32. Expand ADC Analog Channel Instance 0, and for Select Dedicated Analog
Channel select ADC_INPUT_POSITIVE_AN1.

Under Drivers > CODEC, select the appropriate device: Use Codec AK4384? or Use Codec AK4954?, for the Bluetooth Audio Development Kit,
Use Codec AK4953? for the MEB II, or Use Codec AK4954? for the Curiosity Board. The remaining default values do not require any changes. If
using the AK4954, then under Drivers > I2C, check the box Include Force Write I2C Function.

Under Drivers > I2S, select Use I2S Driver?. Also, select DMA Mode along with Transmit DMA Support. Enable DMA Channel Interrupts
should also be selected. Under I2S Driver Instance 0, for Audio Communication Width, select
SPI_AUDIO_COMMUNICATION_16DATA_16FIFO_32CHANNEL. Under Audio Protocol Mode, select DRV_I2S_RIGHT_JUSTIFIED.

If running on a Bluetooth Audio Development Kit, under Drivers > Timer, select Use Timer Driver?, and change the Number of Timer Instances to
3. Under TMR Driver Instance 0, change the Timer Module ID to TMR_ID_4, and the Interrupt Priority to INT_PRIORITY_LEVEL_4. Under TMR
Driver Instance 1, change the Prescale value to TMR_PRESCALE_VALUE_1. Under TMR Driver Instance 2, change the Timer Module ID to
TMR_ID_2, the Interrupt Priority to INT_PRIORITY_LEVEL_4, and the Prescale value to TMR_PRESCALE_VALUE_1, and the Operation Mode to
DVR_TMR_OPERATION_MODE_32_BIT.

Under Math Library, expand LibQ Fixed-Point Math Library Configuration and select Use LibQ C Fixed Point Math Library?.

Under System Services >DMA, select Use DMA System Services. Under DMA Channel Instance 0, change the channel number to
DMA_CHANNEL_2 AND THE Interrupt Priority to to INT_PRIORITY_LEVEL_2.

For the Bluetooth Audio Development Kit or MEBII, within Graphics Stack, select Use Graphics Stack?. For the Bluetooth Audio Development Kit
configurations only, further down, within Use Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library?, clear Enable
Touch since the LCD on the PIC32 Bluetooth Audio Development Kit does not support a touchscreen. Since you are using the LCD, you will also
need to go back to the Drivers section, and within PMP, select Use PMP Driver?. Expand that section, and change the value of Strobe Wait Sates
to PMP_STROBE_WAIT_4.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the audio_tone.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/audio_tone.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

audio_tone.X <install-dir>/apps/audio/audio_tone/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 12

Project Configuration Name BSP Used Description

bt_audio_dk_16bit_48000_RJ bt_audio_dk This demonstration runs on the PIC32MX470F512L device on
the PIC32 Bluetooth Audio Development Kit and the AK4384
Audio DAC Daughter Board. The configuration is for a sine tone
or chirp signal with 16-bit data width, 48000 Hz sampling
frequency, and right-justified audio protocol.

bt_audio_dk_24bit_44100_I2S bt_audio_dk This demonstration runs on the PIC32MX470F512L device on
the PIC32 Bluetooth Audio Development Kit and the AK4384
Audio DAC Daughter Board. The configuration is for a sine tone
or chirp signal with 24-bit data width in a 32-bit channel, 44100
Hz sampling frequency, and I2S audio protocol.

pic32mz_ef_sk_meb2_16bit_48000_RJ pic32mz_ef_sk+meb2 This demonstration runs on the PIC32MZ EF Starter Kit mounted
on the Multimedia Expansion Board II (MEB-II) with a PDA 4.3”
WQVGA MaxTouch PCAP touch display module. The
configuration is for a sine tone or chirp signal with 16-bit data
width, 48000 Hz sampling frequency, and right-justified audio
protocol.

pic32mx470_curiosity_16bit_48000_RJ_

ak4954

pic32mx470_curiosity This demonstration runs on the Curiosity PIC32MX470
Development Board with the AK4954 Audio Codec Daughter
Board. The configuration is for a sine tone or chirp signal with
16-bit data width, 48000 Hz sampling frequency, and
right-justified audio protocol.

pic32mx270f512l_pim_bt_audio_dk_

16bit_48000_RJ

pic32mx270f512l_pim_bt_audio_dk This demonstration runs on the PIC32MX270F512L PIM
mounted on the PIC32 Bluetooth Audio Development Kit along
with the AK4384 Audio DAC Daughter Board. The configuration
is for a sine tone or chirp signal with 16-bit data width, 48000 Hz
sampling frequency, and right-justified audio protocol.

bt_audio_dk_16bit_48000_RJ_ak4954 bt_audio_dk+ak4954 This demonstration runs on the PIC32MX470F512L device on
the PIC32 Bluetooth Audio Development Kit and the AK4954A
Audio DAC Daughter Board. The configuration is for a sine tone
or chirp signal with 16-bit data width, 48000 Hz sampling
frequency and right-justified audio protocol.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit and AK4384 Audio DAC Daughter Board, or AK4954A Codec Daughter Board

Switch S1 on the PIC32 Bluetooth Audio Development Board (between the audio DAC daughter board and the microcontroller PIM) should be set
to PIC32_MCLR.

PIC32MZ EF Starter Kit mounted on the Multimedia Expansion Board II (MEB-II):

The jumper for J9, located on the backside of the MEB-II underneath the PIC32MZ EF Starter Kit daughter board, should be placed on pins
LCD_PCLK and EBIWE as shown below in yellow, so as to enable the internal frame buffer.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 13

Curiosity PIC32MX470 Development Board:

(No special configuration.)

PIC32 Bluetooth Audio Development Kit with PIC32MX270F512L PIM and Audio AK4384 DAC Daughter Board:

Switch S1 on the PIC32 Bluetooth Audio Development Board (between the audio DAC daughter board and the microcontroller PIM) should be set
to PIM_MCLR.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

PIC32 Bluetooth Audio Development Kit configurations:

Both continuous sine tones and finite length sine tones and chirps can be generated. Table 1 provides a summary of the button actions that can
used to control the audio output waveform characteristics.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. Refer to Building the Application for details.

1. Connect headphones to the line-out connector of the Audio DAC/Codec Daughter Board (see Figure 1).

2. The tone can be quite loud, especially when using a pair of headphones. Before running the demonstration, turn the volume control, P2, which
is located on the development board underneath the codec daughter board, all the way clockwise, and then turn it counterclockwise until the
tone can be heard clearly.

3. Initially, the tone is disabled and the screen will appear, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 14

4. SW4 will turn the audio on or off, as indicated by the audible output and the two illuminated green LEDs on the Audio DAC Daughter Board (if
being used) along with the speaker icon on the screen, which changes, as shown in the following figure.

5. Modifiable parameters are selected by pressing SW3, which cycles through the parameters: "f1 (Hz)", f2 (Hz), and "t (ms)". Initially, the "f1 (Hz)"
parameter is selected (initially, it is 1000 Hz). The value of any selected parameter can be changed by using SW1/SW2 to raise or lower the
value, respectively. The "f2 (Hz)" parameter, is the chirp final frequency. The "t (ms)" parameter is the duration of the signal in milliseconds.
Note that as SW3 is pressed, the LEDs D5, D6, and D7 illuminate to indicate the mode f1, f2, or t;, the demonstration is advancing to the next
parameter, and then wraps around.

 Note:
A long press (5 seconds) of SW3 will set the selected parameter value to its maximum allowable value. A long press of SW5 will
set the minimum value.

6. The Sine Tone or Chirp modes are selected by pressing SW5. Chirp mode is indicated by LED D8 being illuminated and the display changing
from "Sine" to "Chirp". The output automatically turns off when a new mode is selected. Pressing SW4 initiates the audible output based on the
current settings of the parameters.

 Notes:
1. When the "t (ms)" parameter is disabled, a continuous sine tone is generated at the "f1 (Hz)" frequency for either mode.

Incrementing the value by pressing SW1 will initiate finite length chirps or sine tones starting from 0 and increasing by 10 ms
steps for each increment/decrement. A non-zero t value is indicated by LED D9 being illuminated.

2. Long presses of SW1/SW2 will accelerate the incrementing/decrementing of the selected value.

7. As an optional step, if there is interest and the necessary equipment, the displayed sampling frequency can be verified by probing the point
"LRCK Pin Point" of the Audio DAC/Codec Daughter Board (PIC32 Bluetooth Audio Development Kit configurations using the AK4384), as
shown in Figure 1.

8. As an optional step, if there is interest and the necessary equipment, the signal frequency of the continuous Sine Tone output can be verified
by probing the "Line Out Point" of the Audio DAC/Codec Daughter Board, as shown in Figure 1. Finite length sine tones and chirp parameters
can also be verified by probing this point with a storage oscilloscope.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 15

Figure 1: Audio DAC Daughter Board on PIC32 Bluetooth Audio Development Kit

Figure 2: Audio Tone Graphics Display

Control Descriptions

Table 1: Button Controls for Bluetooth Audio Development Kit

Control Description

SW1/SW2 Parameter increment/decrement (long press - accelerates increment/decrement).

SW3 f1/f2/t parameter selection (long press - parameter maximum value).

SW4 Audio ON/OFF

Note: Finite length waveforms will play, and then turn OFF.

SW5 Chirp/Sine mode selection (long press - parameter minimum value).

Multimedia Expansion Board II configuration:

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 16

Both continuous sine tones and finite length sine tones and chirps can be generated. Table 3 provides a summary of the button actions that can
used to control the audio output waveform characteristics.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the

demonstration board. Refer toBuilding the Application for details.

1. Connect headphones to the line-out connector of the MEB-II (see Figure 3).

2. Initially, the tone is disabled and the screen will appear as shown in the following figure:

3. Pressing the speaker icon will turn the audio on, as indicated by the audible output along with the speaker icon on the screen changing to a
muted speaker (see below). Pressing the button again will turn off the audio.

4. Modifiable parameters are selected by pressing the touch buttons + or - associated with each of the parameters: "f1 (Hz)", f2 (Hz), "t (ms)", and
“Volume”.

5. Initially, the "f1 (Hz)" parameter is selected (default 1000 Hz). The "f2 (Hz)" parameter is the chirp final frequency. The "t (ms)" parameter is the
duration of the audio signal (sine or chirp) in milliseconds.

6. The Sine Tone or Chirp modes are selected by pressing the Mode button on the lower-left corner of the screen. The text above it indicates the
current mode.

 Notes:
1. When the "t (ms)" parameter is disabled, a continuous sine tone is generated at the "f1 (Hz)" frequency for either mode.

Incrementing the value by the + button will initiate finite length chirps or sine tones starting from 10 ms and increasing by 10
ms steps for each increment/decrement.

2. Long presses of any of the + or - buttons will accelerate the incrementing/decrementing of the associated value.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 17

Curiosity PIC32MX470 Development Board configuration:

The following can be generated; continuous sine tones, finite length sine tones, and chirps. The table below provides a summary of the button
actions that can used to control the audio output waveform characteristics.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board.

Refer to Building the Application for details.

1. Connect headphones to the headphone connector (HP OUT) of the Audio DAC/Codec Daughter Board (refer to the following figure).

2. Initially, the tone is disabled and all LEDs are off.

3. Pressing and releasing S1 button will turn the audio on or off, as indicated by the audible output and LED 1 (red) being illuminated.

4. A long press (four seconds) and release of S1 will toggle the mode from a continuous sine tone to a two second chirp tone and back. Chirp
mode is indicated by LED 2 (green) being illuminated.

5. In chirp mode, pressing and releasing S1 will enable the chirp tone, which will go off automatically after the two second period.

 Note:
Due to the lack of sufficient user buttons, the frequencies, duration and volume cannot be changed by the user interface as with
the other configurations. The starting and ending frequencies can be modified by changing the fHz1 and fHz2 members of the
agParamInit and guiDataInit structures in app.c, and the duration can be modified by changing the FIXED_CHIRP_DURATION
macro in app_config.h. The volume can be configured using MHC.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 18

Control Descriptions

Button Controls for Curiosity Board

Control Description

S1 Audio ON/OFF (long press – toggles between sine and chirp modes)

emwin_media_player

This topic demonstrates an audio player application based on Segger emWin graphics

Description

This application demonstrates the creation of an audio player that plays WAV files from an SD Card and from a USB flash-drive. The graphical
user interface (GUI) with touch screen support is designed using the SEGGER emWin Graphics Library. The GUI provides options to select media
type (SD Card / Flash-drive), volume controls, random selection and shuffling of tracks, and play list view with progress bar and seek bar.

Architecture

The emwin_media_player application uses the SEGGER emWin Graphics Library to render graphics to the display. The graphics library draws the
widgets and images into the internal frame buffer. This frame buffer is transferred to the LCD display panel by the Low Cost Controllerless (LCC)
driver using the DMA. Using the I2C Driver, the touch inputs from the touch controller are read by the touch driver. The Touch System Service
passes the touch-related information to the graphics library using the messaging system service and the touch wrapper.

The application can play .wav files either from the SD Card or the USB Flash drive. The SD Card driver uses the SPI driver to interact with the SD
Card. The application uses the File System Service to read/write data to the selected media (SD Card/USB Flash drive). The File System Media
Manager directs the calls from the native file system to the selected media. The audio data read from the SD card is decoded by passing it to the
WAV decoder. The decoded output is saved in the output buffers 1 and 2, which are used in ping pong manner. The output buffers 1 and 2 are
submitted to the Codec driver for playing. Similarly, the audio data read from the USB flash drive is saved in the ping pong buffers which are then
submitted to the Codec driver for playing.

The Codec driver sends the audio data to the AK4953 Codec using the I2S Driver, which in turn uses DMA to transfer the audio data. The Codec
driver uses the I2C Driver to send commands to the AK4953 Codec.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 19

Demonstration Features

• SEGGER emWin Graphics Library

• SD Card Driver

• USB MSD Host Client Driver Library

• AK4953 Codec Driver

• MTCH6301 Touch Driver

• File System Service

• WAV Decoder

• Low-Cost Controllerless (LCC) Graphics Driver

• SPI Driver used by SD Card Driver

• I2S Driver used by Codec Driver for audio data transfer

• I2C Driver used by Codec (for command transfer) and Touch Drivers

• DMA System Service

• Random Number Generator System Service

Tools Setup Differences

• The Master Clock Input (MCKI) to the Codec is provided by Reference Clock Generator Output1 (REFCLKO1) of PIC32. The value for
REFCLKO1 is set by navigating to MPLAB Harmony Configurator > Clock Diagram and selecting Auto Calculate under REFCLKO1. Here,
select Target I2S Input Frequency and click Apply. The REFCLKO1 will be set to 256 times the sampling frequency or 48000 x 256 =
12288000 Hz.

• The output of the System PLL is set to 198 MHz to accurately generate the REFCLKO1, which is set to 48000 x 256 = 12288000 Hz. This is
done by setting the System PLL in the MPLAB Harmony Configurator > Clock Diagram. Here, select Auto Calculate and set the “Desired
System Frequency” to 198 MHz.

• The REFCLKO1 signal is mapped to PIN 70 (RD15). This is done in the MPLAB Harmony Configurator > Pin Table.

• The touch driver uses the PIC32's "External Interrupt 1" (INT1) signal for touch events. The "External Interrupt 1" signal is mapped to pin RE8
(Pin 23). This is done through the MPLAB Harmony Configurator > Pin Table.

• “Include Force Write I2C Function” is checked under Harmony Framework Configuration > Drivers > I2C. This will include an API that sends
data to the slave even if the slave NACKs data. This is needed by the AK4953 CODEC since it NACKs I2C data during the initialization
sequence.

• “Use SEGGER emWin Touch Wrapper?” is enabled under Third Party Libraries > Graphics > Use SEGGER emWin Graphics Library? >

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 20

SEGGER emWin Graphics Library, which integrates the touch-related SEGGER emWin application code with MPLAB Harmony.

• “Use SEGGER emWin GUI Wrapper?” is enabled, which is used for integrating the GUI related SEGGER emWin code with MPLAB Harmony.
This is done through Third Party Libraries > Graphics > Use SEGGER emWin Graphics Library? > SEGGER emWin Graphics Library. Here,
the memory block used by the SEGGER emWin graphics library is set to 10000 to allow sufficient memory to the internal memory management
system of the graphics library.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the emWin Media
Player Demonstration.

Description

To build this project, you must open the emwin_media_player.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/emwin_media_player.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

emwin_media_player.X <install-dir>/apps/audio/emwin_media_player/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2_legacy pic32mz_ef_sk+meb2_legacy This configuration runs on the PIC32MZ EF Starter Kit connected to the legacy
MEB II. The micro SD card is used in SPI mode and is configured for Interrupt
mode and dynamic operation. The USB library is configured for High-Speed
operation with the MSD Host client driver.

The Codec is interfaced over I2C for command and I2S for data and uses DMA
for data transfers.

The graphical display is driven by the LCC driver and uses DMA for data
transfers. The touch screen driver is interfaced using I2C configured for Interrupt
mode and dynamic operation.

The Graphical User Interface is designed using the SEGGER emWin Graphics
Library.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and First Generation Multimedia Expansion Board II (MEB II)

Configuration: pic32mz_ef_sk_meb2_legacy

On the MEB II, the EBIWE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side of the MEB II board. See the
following figure for the jumper location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board.

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or through a USB cable to the USB DEBUG
port J3 on the Starter Kit board.

• Insert your micro SD card into the SD card slot (J8) on the MEB II board. Ensure that the SD card contains .wav audio files

• Connect speakers or headphones to the headphone out (HP OUT) on the MEB II

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 21

Running the Demonstration

This section provides instructions about how to build and run the emWin Media Player Audio Demonstration.

Description

By default, the application has the SD card selected as the media source. After the board powers up, the GUI should appear as shown in the
following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 22

Refer to the following figure for the locations of the GUI options.

1. Touch Play/Pause (1) to listen to the audio. The volume slider (5) will allow you to increase/decrease the volume level and the mute button (4)
to mute/un-mute the audio. The track can be changed by pressing the next (3) and previous (2) buttons.

2. The progress bar (12) will indicate the progress (elapsed time) of the track being played. The progress bar also acts as a seek-bar allowing you
to seek the track in forward or reverse direction by touching the progress bar.

3. To open the Settings window (9), click on the settings button (8). Here, there are three options.

• Mode: To select between the SD Card and Flash-drive (USB) as the media source. By default, the SD Card is selected as the media source.
Insert the Flash-drive after changing the mode to the Flash-drive (USB) mode.

• Play List: To show/hide the play list (10). By default, the play list is hidden.

• Background: To change the background image (11). By default, the BG1 is selected as the background image.

4. In the Settings window (9), click on the Play List button to un-hide (show) the play list. Any random track can be selected through the play list.

5. Pressing the Repeat Button (7) will allow you to either:

• Unloop the track list (default). Track list will end when the last song in the list is played out.

• Loop the track list. Track list will loop continuously.

• Repeat single track. The selected track will loop continuously.

6. The Shuffle button (6) will allow you to shuffle the track list. This is done through a random number generator which selects a random track in
the play list for playing.

Notes:
1. Shuffling is turned off when the Repeat Button (7) is in “Repeat Single Track” mode.

2. When the player is in flash-drive (USB) mode, removing the flash drive causes the player to automatically switch back to the
default (SD Card) mode.

Important:
1. The plug-and-play feature of the SD card is not supported. The demonstration does not respond if you remove the SD

card and then insert it while the audio is being played. If you want to remove/connect or replace an SD card, power down
the device, remove/connect or replace the SD card, and then power up the device.

2. The USB Flash drive must be inserted when the player is in the Flash drive (USB) mode. Trying to insert a Flash drive
while in the SD Card mode may result in the Flash drive not being detected and may require a power reset to detect the
Flash drive.

mac_audio_hi_res

This topic demonstrates a USB Audio 2.0 Device that emulates a USB speaker.

Description

This demonstration application uses the USB Audio 2.0 Device class to implement a speaker.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 23

 Note:
This demonstration can be used only with an Apple® Mac® personal computer such as the Apple MacBook Air® OS X 10.9.4 with
iTunes® 11.2.1 or VLC media player version 2.2.1. Any versions prior to those listed may not work with this demonstration.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit and uses the following features:

• 220x176 color LCD

• Three push buttons (SW1-2 and SW4)

• Five LEDs

• USB Device interface

• AK4384 Audio DAC Daughter Board mounted on X32 socket

Surrounding the PIC32MX470F512L microcontroller are a set of headers, which accept various plug-in modules (PIM), including one for a
PIC32MZ2048EFH144 PIM (which has 2 MB of flash and 512 KB of RAM) which Is used instead of the on-board X32 PIC32MX470F512L.

The program takes up only about 10% (202K) of the PIC32MZ2048EFH144 microcontroller’s program space, and 6% (33K) of its RAM. The 64
audio buffers take up 12K of that, and another 7K is used by graphics. The heap uses an additional 16K, with its size based on the graphics taking
up about 6K of that.

The following figure illustrates the application architecture.

The PIC32 microcontroller (MCU) runs the application code.

The interface between the PIC32 MCU and the LCD is an 8-bit parallel master port (PMP). The program uses the MPLAB Harmony v2.0 Graphics
Library to draw on the screen. The buttons are also interfaced using GPIO pins.

The audio interface between the PIC32 and the AK4384 DAC uses a I2S interface. The default configuration is set up for 24-bit and 192,000
samples/second. 192K, or high-definition audio, is four times the 48K standard normally used for professional audio recording. The higher bit depth
(24) provides a significantly better (49 dB) signal to quantization noise ratio than 16-bits.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 24

The Master Clock (MCLK) signal used by the DAC is generated by the Reference Clock section of the PIC32. For a sample rate of 192 kHz it is
48,000 times 128, or 24,576,000 Hz. (The 128 value is set up in MHC as the Sampling Rate Multiplier.) MCLK, or REFCLKO, is generated from
the 198 MHz SPLL clock using the formula as shown below. The desired clock can not be obtained exactly, but instead the resulting rate (192046
Hz) is 0.024% high.

As with any MPLAB Harmony application, the SYS_Initialize function, which is located in the system_init.c source file, makes calls to initialize
various subsystems, such as the clock, ports, board support package (BSP), USB, AK4384 DAC, I2S, PMP, DMA, timers, graphics, and interrupts.

The USB 2.0 driver, AK4384 driver, graphics, and the application state machines are all updated through calls located in the SYS_Tasks function
in the system_tasks.c file. Interrupt handlers in the system_interrupt.c file are used for the two DMA channels, port change notices, and
two timers.

The application code is contained in the several source files. The application’s state machine (APP_Tasks) is contained in app.c. It first initializes
the application, which includes getting a handle to the USB Device driver via a call to USB_DEVICE_Open. It then sets up an event handler
APP_UsbDeviceEventCallBack for endpoint 0 (control events).

Once the device has been configured, the application gets a handle to the AK4384 driver by calling DRV_CODEC_Open, and sets up an event
handler APP_CodecBufferEventHandler to get buffer-related events. It then submits a request to get USB 2.0 audio from the host PC using the
call USB_DEVICE_AUDIO_V2_Read.

When data is available from the USB host, it is sent to the AK4384 DAC via a call to DRV_CODEC_BufferAddWrite. A set of circular buffers are
used, and the number of available buffers is continually compared with upper and lower limits, with feedback given back to the PC whether to
speed up, slow down or remain the same via a call to USB_DEVICE_AUDIO_V2_Write.

The app state machine also calls APP_ButtonTask in btad_buttons.c to process any pending button requests, which will be either for mute
on/off (SW4), or volume level changes (SW1/SW2). Any status change will be reflected in a screen update processed in display.c.

This application uses USB Audio Class 2.0, which uses sends a frame every 125 µs, eight times faster than USB Audio Class 1.0, which is limited
to a frame very 1 ms. So USB Audio Class 2.0 allows audio formats as high as 384K samples per second, compared to a maximum of 96K
samples per second for the 1.0 standard.

In this application, we are using up to a maximum of 24-bits and 192K samples per second, limited by the AK4383 DAC. The nominal number of
bytes transferred per frame is set at 192, so in 1 ms you have 192*4(bytes/sample)*2(channels) or 192000 32-bit samples per second per channel.
(The 24-bit audio is carried inside a 32-bit frame.) This represents a bandwidth of 12MB/s (plus overhead).

A total of 64 200-byte buffers, using 12K of RAM, are made available in the receive queue. (The eight extra bytes are allowed for tuning.) So they
will be rotated every 8 ms.

Although the AK4642 Codec Driver interfaces with the codec via I2S and DMA, and the USB also uses the DMA, which is largely transparent to
the application, it is all taken care of by MPLAB Harmony.

Demonstration Features

• Uses the USB Audio 2.0 Device Library to receive audio samples from the host PC over the USB 2.0 audio interface

• Uses the AK4384 Codec Driver Library to write audio samples to the AK4384 DAC

• At a lower level, uses the I2S Driver Library between the codec library and the DAC for audio

• Use of a circular buffer queue with a throttling mechanism

• Displays graphics on the 220x176 LCD of the PIC32 Bluetooth Audio Development Kit using the MPLAB Harmony Graphics Library (see
MPLAB Harmony Graphics Composer Suite) and the Parallel Master Port (see PMP Driver Library)

• Processing of button pushes on the PIC32 Bluetooth Audio Development Kit (see Ports Peripheral Library)

• Use of two timers: one as a periodic 1 ms timer for the application, and a second used by the AK4384 driver (see Timer Driver Library)

Tools Setup Differences

When building a new application, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select the
PIC32MX Bluetooth Audio Development Kit and the configuration audio_bt_dk. Click the MPLAB Harmony icon to start the MPLAB Harmony
Configurator (MHC).

Expand Drivers >CODEC and select Use Codec AK4384?. Select Specify MCLK value, and enter 128. Expand Use Bit Banged SPI Control

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 25

Interface and also Code AK4384 Driver Instance 0. Change the Timer driver (used for bit banging) instance to 1.

Under I2S, select Use I2S Driver?. Select DMA Mode, along with Transmit DMA Support, Use DMA Channel Chaining, and Enable DMA Channel
Interrupts. Under Sampling Rate, enter 44100. For Master Clock\Bit Clock Ratio, enter 2. Expand I2S Driver Instance 1, and for Audio
Communication Width, choose SPI_AUDIO_COMMUNICATIONS_32DATA_32FIFO_32CHANNEL. Change Queue Size Transmit to 64.

In the Timer section, select a second timer (change Number of Timer Instances from 1 to 2), and then change the Timer Module ID for TMR Driver
Instance 0 to TMR_ID_2, and the Timer Module ID for TMR Driver Instance 1 to TMR_ID_4.

Under Harmony Framework Configuration >USB Library, select Use USB Stack?. Expand Select Host or Device Stack. USB Device should
already be selected. Change the Number of Endpoints Used to 23. Under USB Device Instance 0, expand Function 1. Change the Device Class to
AUDIO_2_0. Change the Number of Interfaces to 2, Speed to USB_SPEED_HIGH, Audio Read Queue Size to 64, and Audio Write Queue Size to
2. Change the Product ID Selection to “mac_audio_hi_res_demo”, which will fill in the Vendor and Product ID fields.

Under System Services >DMA, select Use DMA System Services. Change the Number of DMA Channel Instances to 2 and press Enter. Under
both DMA Channel Instances 0 and 1, change the Interrupt Priority to INT_PRIORITY_LEVEL_5.

If your application is going to be using graphics, as this one does, within Graphics Stack, select Use Graphics Stack?. Further down, within Use
Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch since the LCD on the PIC32 Bluetooth
Audio Development Kit does not support a touchscreen. Since you are using the LCD, you will also need to go back to the Drivers section, and
within PMP, select Use PMP Driver?. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the High-resolution
Audio Demonstration.

Description

To build this project, you must open the mac_audio_hi_res.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/mac_audio_hi_res.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

mac_audio_hi_res.X <install-dir>/apps/audio/mac_audio_hi_res/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_pim_bt_audio_dk pic32mz_ef_pim+bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 Bluetooth Audio Development Kit configured for Interrupt mode and
dynamic operation. This configuration also requires the PIC32MZ2048EFH144
Audio PIM.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit and PIC32MZ2048EFH144 Audio Plug-in Module (PIM)

1. Insert the PIC32MZ Audio PIM onto the PIC32 Bluetooth Audio Development Kit.

2. Switch S1 on the PIC32 Bluetooth Audio Development Kit (between the audio DAC daughter board and the microcontroller PIM) should set to
PIM_MCLR.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 26

3. Connect headphones to the jack on the Audio DAC Daughter Board, which is included with the PIC32 Bluetooth Audio Development Kit.

Running the Demonstration

This section provides instructions about how to build and run the High-resolution Audio Demonstration.

Description

This demonstration functions as a speaker when plugged into a computer that supports USB Audio 2.0 devices.

 Notes:
1. At the time of release, only Apple Mac personal computers natively support Audio 2.0 USB devices.

2. The demonstration has been tested with a third-party Audio 2.0 USB device driver on Windows® 7.

Do the following to run the demonstration:

1. Build the demonstration application and program the device.

2. Connect the device to a computer. For example, an Apple Mac book.

3. Use a feature of the computer that outputs sound to a speaker. On the Apple Mac book with OS X 10.9.4, the Audio MIDI Setup application
could be used, as follows:

• Open Audio MIDI Setup

• Right click Harmony USB Speaker 2.0, which is listed in the left column

• Select Use this device for sound output

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 27

4. Open the Audio player (iTunes or VLC) and play the audio of your choice.

5. The feature unit only supports Mute control. Audio being played can also be muted using switch SW4 on the development board.

6. The audio volume can be controlled through the computer media player (iTunes or VLC on Apple Mac book) and also through the switches
SW1 and SW2 on the development board.

7. Note that some applications lock into a sound source when they open or close (such as some Web browsers or plug-ins). Therefore, if the
speaker is plugged in with a Web page or an already playing video, the sound may not be redirected to the USB-based speakers until the
browser is closed and reopened.

8. The audio device created in this demonstration has the following characteristics:

• Supported sampling rates:

• 32000 Hz

• 44100 Hz

• 48000 Hz

• 88200 Hz

• 96000 Hz

• 176400 Hz

• 192000 Hz

• 2-Channel (Stereo)

• PCM format (24 bits per sample)

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 28

Sampling Rate

The demonstration application allows the default sampling rate (set to 192000 Hz) to be changed. This can be done using the following procedure
on an Apple Mac book.

1. If audio is being played, Stop it (PAUSE on iTunes).

2. Open the Audio MIDI Setup application.

3. Select Harmony USB Speaker 2.0 listed in the left column.

4. In the right pane, select the desired sampling rate from the Format drop-down menu, as shown in the following figure.

5. Verify that the sampling rate has changed on the display on the board.

6. Select ‘PLAY’ on the Audio player to play the audio with the changed sampling rate.

real_time_fft

This application demonstrates the usage of DSP Fixed-Point Math Library.

Description

This application analyzes the audio data received from the microphone and displays the spectrum of frequencies present in the audio data. The
application also allows users to generate complex signals by mixing up to three pure sine tones of different frequencies and amplitude. The
generated complex signal is then fed as an input to the FFT algorithm, and the frequency components present in the signal are displayed on the
GUI. The application demonstrates the usage of windowing functions before the time domain signal is passed to the FFT algorithm.

Architecture

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 29

The real_time_fft application provides two modes of operation, MIC and Tone, selected through the GUI.

1. MIC mode: By default, the application is in the microphone mode. In this mode, the AK4953A codec is configured to sample the microphone
data at 48000 Hz. (The codec driver internally uses the I2S driver with DMA for data interface and the I2C driver for the command interface).
Using the AK4953A codec driver, the application reads chunks of 4096 samples (or 4096/48000 = 85.33 ms) of single channel microphone data
and saves it in a buffer. This data is then passed to the FFT task for frequency analysis. The FFT transform assumes the signal to be
continuous, as the input signal to the FFT algorithm contains nonintegral cycles of the signal, the sharp discontinuities spread out in the
frequency domain resulting in spectral leakage. To reduce the spectral leakage, the data is first passed through a Hanning window function,
using the windowing functions provided by the math library. The windowed output is then passed through the FFT function provided by the
math library, which calculates the frequency components present in the time-domain signal. In this case, the FFT output will have a frequency
resolution of 11.71875 Hz (?f = Fs/N = 48000/4096 = 11.71875 Hz). The frequency output is then represented in one-third octave frequency
bands, with the entire frequency spectrum divided into 24 bands (100Hz, 125Hz … 16kHz, 20kHz). The center frequency of each band is
calculated by multiplying the center frequency of previous band by 2 1/3. The amplitude is displayed in the dBFS unit.

2. Tone mode: The Tone mode allows the user to generate complex signals by mixing up to three pure sine tones of different frequencies and
amplitudes. This complex signal is passed through a window function (Hanning or Blackman window, selected by user through the GUI). The
windowed signal is then passed to the FFT algorithm for frequency analysis. The FFT results on the display can be used to verify the frequency
components present in the complex signal. The signal data is also sent to the codec and can be heard by connecting a headphone to the HP
OUT on the MEB II board. The time domain view of the generated signal can also be viewed on the GUI.

Demonstration Features

• DSP Fixed-Point Math Library (see Volume V: MPLAB Harmony Framework Reference > Math Libraries Help > DSP Fixed-Point Math Library).

• AK4953 Codec Driver (see Volume V: MPLAB Harmony Framework Reference > Driver Libraries Help > Codec Driver Libraries > AK4953
Codec Driver Library).

• I2S Driver used by the Codec Driver for audio data transfer (see Volume V: MPLAB Harmony Framework Reference > Driver Libraries Help >
I2S Driver Library Help).

• I2C Driver used by the Codec (for command transfer) and Touch Drivers (see Volume V: MPLAB Harmony Framework Reference > Driver
Libraries Help > I2C Driver Library Help).

• DMA System Service (see Volume V: MPLAB Harmony Framework Reference > System Service Libraries Help > Direct Memory Access
(DMA) System Service Library).

• Aria User Interface Library (see Volume V: MPLAB Harmony Framework Reference > Graphics Libraries Help > MPLAB Harmony Graphics
Composer (MHGC) Suite > Aria User Interface Library).

• MXT336T Touch Driver (see Volume V: MPLAB Harmony Framework Reference > Driver Libraries Help > Touch Driver Libraries Help >
mXT336T Touch Driver Library).

• Low Cost Controllerless (LCC) Graphics Driver.

Tools Setup Differences

pic32mz_ef_sk_meb2 Configuration

MHC changes:

• The output of the System PLL is set to 198 MHz to accurately generate the REFCLKO1 which is set to 48000 x 256 = 12288000 Hz. This is
done by setting the System PLL in the MPLAB Harmony Configurator > Clock Diagram. Here, click on the Auto Calculate button and set the
desired system frequency to 198 MHz

• The MCKI (Master Clock Input) to the Codec is provided by the Reference Clock Generator Output1 (REFCLKO1) of the PIC32. The value for
REFCLKO1 is set by navigating to the MPLAB Harmony Configurator > Clock Diagram and clicking on the Auto Calculate button under the
REFCLKO1. Here, select the Target I2S Input Frequency Radio button and click on Apply. The REFCLKO1 will be set to 256 times the
sampling frequency or 48000 x 256 = 12288000 Hz.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 30

• The REFCLKO1 signal is mapped to PIN 70 (RD15). This is done in the MPLAB Harmony Configurator > Pin Table.

• The touch driver uses the PIC32's "External Interrupt 1" (INT1) signal for touch events. The "External Interrupt 1" signal is mapped to pin RE8
(Pin 23). This is done in the MPLAB Harmony Configurator > Pin Table.

• Under Harmony Framework Configuration select Use Graphics stack? Under Graphics Controller>Low Cost Controllerless set Frame Buffer
Mode to Double Buffer. Expand Draw Settings>Draw Count Limited and set the Max Draw Count Per DMA Transmit to 100. Expand
Memory Settings and set the Memory Interface Mode to External Memory.

• Under Harmony Framework Configuration>Math Library>DSP Fixed-Point Math Library Configuration, select Use DSP Fixed-Point Math
Library?

• Under Harmony Framework Configuration>Drivers>CODEC select Use Codec AK4953? And set the number of AK4953 Driver Clients to
2. One client will transmit data to the codec (speaker output), and the other client will receive data from the codec (microphone input). The
codec will use I2S driver instance 0 and I2C driver instance 0.

• Under Harmony Framework Configuration>Drivers>Input Drivers>Touch Drivers>Use MXT336T Driver? set the I2C driver module index to
DRV_I2C_INDEX_1 to use I2C driver instance 1.

• Under Harmony Framework Configuration>Drivers>I2C>Use I2C Driver? set the number of I2C Driver Instances to 2 and select Include Force
Write I2C Function. This is needed by the AK4953 CODEC since it NACKs I2C data during the initialization sequence. Expand I2C Driver
Instance 0 and set the I2C Module ID to I2C_ID_2. Set the Bit Bang Timer Source to TIMER_ID_8. Expand I2C Driver Instance 1 and set
I2C CLOCK FREQUENCY (Hz) to 10000.

• Under Harmony Framework Configuration>Drivers>I2S>Use I2S Driver, select DMA Mode and select Transmit DMA Support and
Receive DMA Support. Set the number of I2S Driver Clients to 2. Expand I2S Driver Instance 0 and set Audio Communication Width to
SPI_AUDIO_COMMUNICATION_16DATA_16FIFO_32CHANNEL and Audio Mode to SPI_AUDIO_TRANSMIT_MONO. Set Queue Size Transmit
to 5 and Queue Size Receive to 3. Set Receive DMA Channel Instance to 1.

• Under Harmony Framework Configuration>System Services>DMA set the number of DMA Channel Instances to 2. DMA Instance 0 will be
used for the I2S data transmission, and DMA Instance 1 will be used for I2S data reception. Expand DMA System Channel Instance 0 and set
the DMA Channel to use DMA_CHANNEL_2. Expand DMA System Channel Instance 1 and set the DMA Channel to use DMA_CHANNEL_3.

• The heap size is set to 60,000 to ensure enough memory for dynamic memory allocations. This is done in the MPLAB Harmony Configurator
(MHC) by setting the size in Device & Project Configuration >Project Configuration >XC32 (Global Options) >xc32-ld >General.

Building the Application

This section identifies the MPLAB X IDE project name and location, and lists and describes the available configurations for the real time fft demo.

Description

To build this project, you must open the real_time_fft.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/real_time_fft.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

real_time_fft.x <install-dir>/apps/audio/real_time_fft/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2_ext pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II. The Codec is
interfaced over I2C for command and I2S for data and uses DMA for data transfers. The
Codec is configured for 16-bit data width and 48kHz sampling frequency.

The graphical display is driven by the LCC driver and uses DMA for data transfers. The touch
screen driver is interfaced using I2C configured for Interrupt mode and dynamic operation.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

Configuration: PIC32MZ EF Starter Kit and MEB II

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 31

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side of the MEB II board. See the
following figure for the jumper location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to the J3 power connector on the MEB II board, or through a USB cable to the USB
DEBUG port J3 on the Starter Kit board

• If the demo is in MIC mode, connect a microphone to the microphone input (MIC IN) on the MEB II

• If the demo is in TONE mode, a headphone may optionally be connected to the headphone output (HP OUT) on the MEB II board

Running the Demonstration

This section provides instructions on how to use the real time fft application.

Description

After the board powers up, the GUI should appear as shown in the following figure. By default, the application is in the MIC mode.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 32

1. In MIC mode, speak into the microphone connected to the microphone input (MIC IN) on the MEB II board, and observe the amplitude of the
frequency components present in the audio input on the GUI.

2. Enter Tone mode, by pressing the TONE button. In Tone mode, the GUI should appear as shown in the following figure.

3. Generate a complex signal by mixing sine tones of different frequency and amplitude. Three sine tones can be added by selecting F1, F2 and
F3. The frequency for each sine tone can be set by pressing the Hz or kHz button and then pressing the plus or minus buttons to increase or
decrease the frequency. Similarly, the amplitude can be set by pressing the dBFS button. By default, the amplitude of the tone is set to -12
dBFS.

4. Hanning or Blackman window function may be applied by selecting the Hanning or Blackman radio buttons.

5. Once done, press the Play button to start the generation of the complex signal. The generated tone can be heard by connecting a headphone
to the headphone output (HP OUT) on the MEB II board.

6. Verify that the GUI shows the different frequency components present in the generated tone.

7. The time domain view of the generated signal can be seen by pressing the Graph button located on the bottom right of the screen. Navigate

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 33

back to the Tone mode screen by pressing the Graph button again.

 Notes:
1. In Tone mode, if the generated signal is saturated, a message is displayed saying “Signal saturated. Lower the signal

amplitude”. When the signal is saturated the FFT output may contain several high frequency components. Lowering the
signal amplitude will remove the message on the GUI.

2. In Tone mode, the signal generation will stop after 300 seconds.

sdcard_player

This section demonstrates an SD card Audio Player for .WAV audio files.

Description

The demonstration application creates an audio player that reads audio files (.WAV format only) from an SD card mounted on the click interface.
The audio is played through the CODEC placed on the X32 header interface. It also provides feature to switch to the next track on the media.

Architecture

The sdcard_player application plays .wav files from the SD Card. The SD Card driver uses the SPI driver to interact with the SD Card. The
application uses the File System Service to read/write data on the SD Card. The audio data read from the SD card is decoded by passing it to the
WAV decoder. The decoded output is saved in the output buffers 1 and 2 which are used in ping pong manner. The output buffers 1 and 2 are
submitted to the Codec driver for playing.

The Codec is initially configured for 16-bit data and 48 kHz sampling frequency. The sampling frequency is changed on the fly based on the media
sampling frequency. The Codec driver sends the audio data to the AK4642 Codec using the I2S driver, which in turn uses DMA to transfer the
audio data. The Codec driver uses the I2C driver to send commands to the AK4642 Codec.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 34

Tools Setup Differences

• The Master Clock Input (MCKI) to the Codec is provided by Reference Clock Generator Output1 (REFCLKO1) of PIC32. The value for
REFCLKO1 is set by navigating to the MPLAB Harmony Configurator > Clock Diagram and selecting Auto Calculate under REFCLKO1. Here,
select Target I2S Input Frequency and click Apply. The REFCLKO1 will be set to 256 times the sampling frequency or 48000 x 256 =
12288000 Hz.

• The output of the System PLL is set to 198 MHz for the MZ Curiosity configuration and 80 MHz for the MX Curiosity Configuration to accurately
generate the REFCLKO1, which is set to 48000 x 256 = 12288000 Hz. This is done by setting the System PLL in the MPLAB Harmony
Configurator > Clock Diagram. Here, select Auto Calculate and set the “Desired System Frequency” to 198 MHz for the MZ Curiosity
configuration and 80 MHz for the MX Curiosity configuration.

• The REFCLKO1 signal is mapped to Pin 21 (RB8) on MX Curiosity Board and Pin3 (RE5) on MZ Curiosity Board. This is done through the
MPLAB Harmony Configurator > Pin Table.

• The heap size is set to 4096 bytes to ensure enough memory for dynamic allocations. This is done by setting the size in MHC through the
following menu selection: Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld >General.

Demonstration Features

• AK4642 Codec Driver

• SD Card Driver

• File System Service

• WAV Decoder

• SPI Driver used by SD Card Driver

• I2S Driver used by Codec Driver for audio data transfer

• I2C Driver used by Codec (for command transfer)

• DMA System Service

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SD card audio
player demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 35

Description

To build this project, you must open the sdcard_player.X project in MPLAB X IDE, and then select the desired configuration. The following tables
list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/audio/sdcard_player.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sdcard_player.X <install-dir>/apps/audio/sdcard_player/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx470_curiosity pic32mx470_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to run on the
PIC32MX470 Curiosity Development Board, with the PIC32MX470F512H microcontroller.

This configuration uses "microSD click" from MikroElektronika mounted on the mikroBUS header
interface and PIC32 Audio Codec Daughter Card - AK4642EN mounted on the X32 header
interface.

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to run on the
PIC32MZ EF Curiosity Development Board, with the PIC32MZ2048EFM100 microcontroller.

This configuration uses "microSD click" from MikroElektronika mounted on the mikroBUS header
interface and PIC32 Audio Codec Daughter Card - AK4642EN mounted on the X32 header
interface.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MX470 Curiosity Development Board

Configuration: pic32mx470_curiosity

1. Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

2. Power the PIC32MX470 Curiosity Development Board from a Host PC through a Type-A male to mini-B USB cable connected to Mini-B port
(J3).

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 36

3. Mount the SD Click board, "microSD click" from MikroElektronika (http://www.mikroe.com/click/microsd/) on the mikro bus interface J5.

4. Plug a micro SD card into the microSD click board card slot.

5. Mount the is PIC32 Audio Codec Daughter Card - AK4642EN
(http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac320100) on the X32 interface header (J14, J15)

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 37

http://www.mikroe.com/click/microsd

PIC32MZ EF Curiosity Development Board

Configuration: pic32mz_ef_curiosity

1. Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

2. Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro-B USB cable connected to Micro-B port
(J3).

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 38

3. Mount the SD Click board, ‘microSD click’ from MikroElektronika (http://www.mikroe.com/click/microsd/) on the mikro bus interface J5.

4. Insert a micro SD card into the microSD click board card slot.

5. Mount the is PIC32 Audio Codec Daughter Card - AK4642EN
(http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ac320100) on the X32 interface header (J14, J15).

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 39

http://www.mikroe.com/click/microsd

Running the Demonstration

This section provides instructions about how to build and run the SD card Audio Player demonstration.

Description

 Important!
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

In MPLAB X IDE, compile and program the target device. While the target device is compiling, select the appropriate MPLAB X IDE project
configuration for the demonstration board. These configurations set the target processor and the board to be used in the output interface.

This demonstration plays WAV audio files stored on the SD card.

Refer to Building the Application for details.

Run the demonstration as follows:

1. Insert your micro SD card into the SD card slot on the micro SD click board. Ensure that the SD card contains WAV audio files.

2. Connect speaker or headphone to the headphone out (HP OUT) connector on top of the PIC32 Audio Codec Daughter Card.

3. Connect power to the board. After the board powers up, the first WAV audio track on the media is played, indicated by the glowing of LED1 on
the board.

4. Plug in the headphone and you should be able to hear the audio track being played from the SD card.

5. Switch to the next track on the media by pressing button S1. The changing of the track is indicated by the toggling of LED3 on the board.

sdcard_usb_audio

This topic demonstrates playback of audio files stored on a SD card and audio data streamed over a USB interface.

Description

This application demonstrates an audio player application by playing audio files stored on a SD card. This demonstration also acts as a USB
speaker with audio data streaming from a personal computer to PIC32 device.

Full-Speed USB is used for communication between the host computer and PIC32 device. The application also provides a Graphical User
Interface with touch screen support to access and randomly select media tracks, and also provides controls to increase or decrease volume and
mute or unmute the audio output. Additionally, the demonstration provides an option to select the media source, either a SD card or USB. The
application supports playing 48 kHz, 16-bit audio.

 Note:
The Audio Player application only support playback of WAVE (.wav) files.

Architecture

The sdcard_usb_audio application uses Graphics Library to render graphics to the display. The graphics library draws the widgets and images into
the internal frame buffer. This frame buffer is transferred to the LCD display panel by the Low Cost Controllerless (LCC) driver using the DMA.
Touch input from the touch controller goes through the I2C port, and the Touch System Service acquires the touch input information from the
Touch and I2C drivers. The Touch System Service sends touch events to the Graphics Library, which processes these events and updates the
frame data accordingly.

The application plays WAV files from the SD Card. The SD Card driver uses the SPI driver to interact with the SD Card. The application uses the
File System Service to read/write data on the SD Card. The audio data read from the SD card is decoded by passing it to the WAV decoder. The
decoded output is saved in the output buffers 1 and 2 which are used in ping pong manner. The output buffers 1 and 2 are submitted to the Codec
driver for playing. Similarly, the audio data read from the USB host is saved in ping pong buffers which are then submitted to the Codec driver for
playing.

The Codec is configured for 16-bit data and 48 kHz sampling frequency. The Codec driver sends the audio data to the AK4953 Codec using the
I2S driver which in turn uses DMA to transfer the audio data. The Codec driver uses the I2C driver to send commands to the AK4953 Codec.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 40

Demonstration Features

• AK4953 Codec Driver

• SD Card Driver

• USB Device (Audio Class) Library

• MTCH6301 Touch Driver Library

• File System Service

• WAV Decoder

• SPI Driver used by SD Card Driver

• I2S Driver used by Codec Driver for audio data transfer

• I2C Driver used by Codec (for command transfer)

• DMA System Service

Tools Setup Differences

• The Master Clock Input (MCKI) to the Codec is provided by Reference Clock Generator Output1 (REFCLKO1) of PIC32. The value for
REFCLKO1 is set by navigating to MPLAB Harmony Configurator > Clock Diagram and selecting Auto Calculate under REFCLKO1. Here,
select Target I2S Input Frequency and click Apply. The REFCLKO1 will be set to 256 times the sampling frequency or 48000 x 256 =
12288000 Hz.

• The output of the System PLL is set to 198 MHz to accurately generate the REFCLKO1, which is set to 48000 x 256 = 12288000 Hz. This is
done by setting the System PLL in MPLAB Harmony Configurator > Clock Diagram. Here, select Auto Calculate and set the “Desired System
Frequency” to 198 MHz

• The REFCLKO1 signal is mapped to PIN 70 (RD15). This is done through the MPLAB Harmony Configurator > Pin Table.

• The touch driver uses the PIC32's "External Interrupt 1" (INT1) signal for touch events. The "External Interrupt 1" signal is mapped to pin RE8
(Pin 23). This is done through the MPLAB Harmony Configurator > Pin Table.

• The “Include Force Write I2C Function” is selected in Harmony Framework Configuration > Drivers > I2C. This will include an API that sends
data to the slave even if the slave NACKs data. This is needed by the AK4953 CODEC since it NACKs I2C data during the initialization

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 41

sequence.

• The heap size is set to 100000 bytes to ensure enough memory for dynamic allocations. This is done by setting the size in MHC through the
following menu selection: Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld > General.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the sdcard_usb_audio.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/sdcard_usb_audio.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sdcard_usb_audio.X <install-dir>/apps/audio/sdcard_usb_audio/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2_legacy pic32mz_ef_sk+meb2_legacy This configuration runs on the PIC32MZ EF Starter Kit connected to the legacy
MEB II.

The micro SD card is used in SPI mode and is configured for Interrupt mode and
dynamic operation. The USB library is configured for Full-Speed operation in
Audio Device mode.

The Codec is interfaced over I2C for command and I2S for data and uses DMA
for data transfers. The Codec is also configured for 16-bit data width and 4 8kHz
sampling frequency.

The graphical display is driven by the LCC driver and uses DMA for data
transfers. The touch screen driver is interfaced using I2C configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and Legacy MEB II

Configuration: pic32mz_ef_sk_meb2_legacy

• On the MEB II, the EBIWE and LCD_PCLK (J9) must be closed. The jumper (J9) is available on the bottom side of the MEB II. See the
following figure for jumper location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Insert your micro SD card into the SD card slot (J8) on the MEB II board. Ensure that the SD card contains .wav audio files.

• Connect speakers or headphones to the headphone out (HP OUT) on the MEB II.

• Connect a micro-B USB cable between the port J4 on the PIC32MZ EF Starter Kit and the Host computer.

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or through a USB cable to the USB DEBUG
port J3 on the Starter Kit board.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 42

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Note:
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

In MPLAB X IDE, compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration for the
demonstration board. These configurations set the target processor and the board, to be used in the output interface.

This demonstration plays .wav audio files stored on SD card as the storage media, when the source of audio is selected as SD card (default audio
source).

When the source of audio is selected as USB, the demonstration plays audio data streamed by PC over a USB interface. The device can then be
used as USB speaker.

Refer to Building the Application for details.

By default, the application has the SD card selected as the audio source. After the board powers up, the GUI should appear like the following
figure.

As shown in the figure, the default audio source selected is SD card, with tracks displayed in the tracks list box. You can scroll through the tracks
list by using the scroll bar, which allows you to select and play random tracks. The volume button allows you to increase/decrease the volume and
the mute button to mute/unmute audio.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 43

1. Plug in the headphones and you should be able to hear the audio track being played from the SD card.

2. Connect a micro-B USB cable between the port J4 on the PIC32MZ EF Starter Kit and the Host computer.

3. Change the audio source to USB, by selecting the ‘USB’ radio button on the GUI. The GUI should now appear as shown in the following figure.
The track list will be blank, as the audio is now being streamed by the host computer.

4. Allow the Host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the host
side.

5. If needed, configure the Host computer to use the MPLAB Harmony USB speaker as the selected audio device. This may be done in the
system configuration or Control Panel depending on the operating system.

6. Play audio on the Host computer. This may be done with a standard media player or through a variety of sources including operating system
generated sounds or video.

7. Listen to the audio output on the speakers or headphones connected to the board. You can adjust the volume and mute/unmute either by the
application running on the host, or from the on board GUI.

8. You can easily switch between the two sources of audio, SD card and USB, through the radio button selection on the GUI.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 44

universal_audio_decoders

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The Universal Audio Decoder application configures the development board to be in USB Host mode. The application supports the FAT32 file
system. When a mass storage device is connected to the development board, the application begins to scan the root directory. Once the scan is
complete, the first track in the list will be opened and played. The fill buffer routine will read a chunk of data as an input to the decoder of the
supported file format. The decoder will decode the packet and send the first frame of audio data to the codec driver through I2S Driver and the
output will be audible through the speakers. The following block diagram depicts a representation of the application.

Button controls provide support to traverse the directory tree and play audio files from other directories or sub-directories. By default, the
application only supports WAVE (.wav) format files.

In addition to WAVE formats, the application also supports MP3, AAC, WMA, ADPCM, and Speex provided the decoder libraries and the
supported source files are added as plug-ins. The MP3, AAC, and WMA are premium packages and must be purchased, whereas the PCM (i.e.,
WAVE format), ADPCM, Speex, Opus, and FLAC are included free of charge. Refer to the Microchip Premium MPLAB Harmony Audio web page
(http://www.microchip.com/design-centers/audio-and-speech) for information.

Once purchased, the MP3, AAC, and WMA decoder modules can be added to the application as described in Selecting the Decoders Using MHC.
Separate from purchasing the MP3, AAC and WMA libraries from Microchip, the use of MP3, AAC, and WMA in product design must be licensed
from the third-party under their patents.

If support for any decoder is not available or was removed using MHC, the particular file format will not be scanned.

Audio
Format

Package Sampling
Rates
(kHz)

Description

ADPCM Free of
charge

8, 16 Adaptive Delta Pulse Code Modulation (ADPCM) is a sub-class of the Microsoft waveform (.wav) file format.
In this demonstration, it only decodes ADPCM audio, which has a WAV header. The extension name for this
format is pcm or PCM.

Speex Free of
charge

8, 16 Speex is an Open Source/Free Software patent-free audio compression format designed for speech. In this
demonstration, only Speex bit-streams within an Ogg container can be decoded. The extension name for this
format is spx or SPX. The library is built on Speex v1.0.5 source code from www.speex.org.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 45

http://www.microchip.com/design-centers/audio-and-speech

WAVE Free of
charge

8 through
96

The WAVE file format is the native file format used by Microsoft Windows for storing digital audio data.

AAC Premium
(must be
purchased)

8, 11.025,
12, 16,
22.05, 24,
32, 44.1,
48, 64,
88.2, and
96

The AAC format is a lossy digital compression format of audio data with an ADTS header. The AAC decoder
supports MPEG-2 and MPEG-4 AAC. To make sure the AAC audio files work with the AAC decoder, you can
always convert any audio files to MPEG-2, 4 AAC files by a MPEG-2, 4 AAC encoder, one known working
encoder is FAAC (Freeware Advanced Audio Coder). The current version of the AAC Library in MPLAB
Harmony is v1.0.

MP3 Premium
(must be
purchased)

8 through
48

The MPEG1, MPEG2, and MPEG2.5 Layer 3 are lossy digital compression formats for audio data. The
current version of the MP3 Library version in MPLAB Harmony is v3.0.

WMA Premium
(must be
purchased)

8, 11.025,
16, 22.05,
32, 44.1,
and 48

The Windows Media Application (WMA) format allows storing digital audio using lossy compression
algorithm. The WMA decoder supports the ASF container format. The Windows Media Encoder 9 Series can
be downloaded from the Microsoft website to convert any audio files to WMA v9.2 files to work with this WMA
decoder. The current version of the WMA Library in MPLAB Harmony is v1.01.

FLAC Free of
charge

44.1,
88.2, and
96

The Free Lossless Audio Codec (FLAC) is an audio format similar to MP3, but lossless, meaning that audio is
compressed without any loss in quality. The FLAC Library was built using source code v1.3.2 from
http://downloads.xiph.org/releases/flac/.

OPUS Free of
charge

8 through
48

Opus is an open source audio codec, which is specifically designed for interactive speech and music
transmission over the Internet. The Opus Library was built using source code v1.1.2 from
http://opus-codec.org/.

 Note:
The AAC and MP3 Decoder Libraries have two versions: PIC32MX (for use with PIC32MX devices) and microAptiv (for use with
PIC32MZ devices with the microAptiv core). When selecting either the AAC or MP3 library in MHC, for PIC32MX devices, the
PIC32MX version of the library will be automatically added in the project. For PIC32MZ devices that have the microAptiv core, the
microAptiv version of the library will be added in the project. Theoretically, MHC will automatically add the correct library; however,
be sure to use the correct libraries on different devices.

The macro DISK_MAX_DIRS and DISK_MAX_FILES in system_config.h under each configuration, determines the maximum number of
directories that should be scanned at each level (to prevent stack overflow, the traversing level is limited to 5), and the maximum number of songs
in total the demonstration should scan. For each configuration, the value could be different. For example, for the PIC32MX270F512L PIM,
DISK_MAX_FILES can be approximately 600, while for the PIC32MZ EF Starter Kit, DISK_MAX_FILES may be as large as 800.

Refer to AAC Decoder Library, MP3 Decoder Library, and WMA Decoder Library in the Framework Help, as well as the Microchip Premium
MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for additional information on the Decoder Libraries.

Architecture

The universal_audio_decoders application uses the MPLAB Harmony Decoder Library to decode music files on a USB thumb drive. By default, it
scans WAV (PCM) format files on mounted FAT32 USB thumb drive and streaming audio through a AKM DAC/Codec to a speaker; however,
more decoders can be enabled by selecting decoders in MHC and regenerating the project. In the application, the number of audio output buffers
can always set to be more than two to enhance the audio quality. And, the size of input buffer in this application is be chosen to be able to handle
all decoders supported in MPLAB Harmony. Generally for non-Hi-Fi quality audio files, the size gives the application 23 ms to 26 ms buffering time
on the AAC and MP3 decoders, 130 ms for Opus and Speex, 9 2ms for WMA, and 42 ms for FLAC. The following figure shows the architecture for
the demonstration.

Architecture Block Diagram

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 46

http://downloads.xiph.org/releases/flac
http://opus-codec.org

Demonstration Features

• USB MSD Host Client Driver (see USB MSD Host Client Driver Library)

• FAT32 File System (see File System Service Library)

• Audio real-time buffer handling

• Decoding Multiple Audio decoders in real-time

• AKM Codec Drivers (see Codec Driver Libraries)

• I2S usage in audio system (see I2S Driver Library Help)

Tools Setup Differences

The application supports the WAVE, Compact MP3, AAC (ADTS header), WMA (v9.2), ADPCM (WAV header), and Speex (Ogg container) audio
formats.

 Note:
The MP3, AAC, and WMA Decoder Libraries are premium packages and must be purchased. Refer to the Microchip Premium
MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for information.

The audio format can be chosen as required using MHC as follows:

1. Open the project on MPLAB X IDE and select the project configuration depending upon the hardware.

2. Open the MHC and select the Decoder.

3. Select Use audio decoders libraries? and the list of available decoders will be listed in the drop-down menu.

4. Select the decoders that are required and click Generate to add the supporting decoder files and libraries to the project.

Audio Codec Driver

For Configurations using the Audio DAC Daughter Board (AK4384). In the Timer driver instance field, the index number is changed to 1.

This is because Timer instance 0 is occupied by other drivers or services.

Timer Driver

The Timer driver configuration, Timer driver instance 0, is used by a system driver (which is also a MHC setting in System Service section), and
Timer instance 1 is for the Audio DAC driver, timer instance 2 is set up for ticking function in application.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 47

I2S Driver

Initial sampling rate is set to 48000; however, this demonstration is supported for different sampling rates during run-time, with an API available in
the Audio Codec Driver.

SPI/I2S Module

SPI/I2S module pin setting is needed for to ensure that the I2S running correctly.

For the Bluetooth Audio Development Kit configuration, configure the following settings:

• SCK of I2S1 is set to port 70

• SDI1 is set to port 73

• SDO1 is set to 72

• SS1(out) is set to 69

Heap Size Setting

This application intends to set the heap size to the MCU at maximum SRAM capacity. This is done to support as many audio decoders as possible.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the universal_audio_decoders.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/universal_audio_decoders.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

universal_audio_decoders.X <install-dir>/apps/audio/universal_audio_decoders/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

ak7755_bt_audio_dk bt_audio_dk+ak7755 This configuration runs on the PIC32 Bluetooth Audio Development Kit with
the AK7755 Codec Daughter Board.

bt_audio_dk bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with
the Audio DAC Daughter Board included with the kit.

270f512lpim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk This configuration runs on the PIC32MX270F512L PIM and the PIC32
Bluetooth Audio Development Kit with the Audio DAC Daughter Board
included with the kit.

pic32mz_ef_sk_meb2 pic32_mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the Multimedia
Expansion Board II with a high-performance 4.3" WQVGA maXTouch
Display Module

pic32mz_ef_sk_meb2_legacy pic32_mz_ef_sk+meb2_legacy This configuration runs on the PIC32MZ EF Starter Kit and the Multimedia
Expansion Board II with a 4.3'' WQVGA Display Board.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

For all configurations, a speaker or headset should be connected to the HP Out jack of the Audio Codec. A FAT32 file system USB Flash drive will
be needed to inserted in the USB Type-A female connector on the board.

PIC32 Bluetooth Audio Development Kit with the PIC32 Audio DAC Daughter Board

Attach the Audio DAC (i.e., AK4383) Codec to the PIC32 Bluetooth Development Board J8 Connector. Switch S1 should be set to PIC32_MCLR.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 48

PIC32 Bluetooth Audio Development Kit with the PIC32 Audio Codec Daughter Board - AK7755

Attach the AK7755 Codec to the PIC32 Bluetooth Development Board J8 Connector. Switch S1 should be set to PIC32_MCLR.

PIC32 Bluetooth Audio Development Kit with the PIC32MX270F512L Plug-in Module (PIM) and the PIC32 Audio DAC Daughter Board

Attach the Audio DAC (i.e., AK4384) Codec to the PIC32 Bluetooth Development Board J8 Connector. Attach the PIC32MX270F512L PIM to the
PIM socket connector on the board. Switch S1 should be set to PIM_MCLR.

Multimedia Expansion Board II (MEB II) with 4.3'' WQVGA Display Board and the PIC32MZ Embedded Connectivity with FPU (EF) Starter Kit

In this configuration, Jumper J9 must be set to EBIOE, otherwise the display will be blank white. Jumper J9 is located at back side of MEB II. See
the following figure.

• Set the Jumper 9 to EBIOE

• Connect PIC32EF Starter Kit

• Plug in Power cord

Note that setting jumper 9 to EBIOE is meant to enable external SRAM, which is used by graphics double buffering in this configuration. In fact,
external SRAM is not mandatory for graphics double buffering. In this application, enabling external SRAM is to save more internal SRAM space
for memory-consuming audio decoders.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 49

 Note:
This configuration is for use with the original MEB II, which is no longer available for purchase.

Multimedia Expansion Board II (MEB II) with the 4.3'' WQVGA Display Module with maXTouch and the PIC32MZ Embedded Connectivity with
FPU (EF) Starter Kit

In this configuration, Jumper J9 must be set to EBIOE, otherwise the display will be blank white. Jumper J9 is located at back side of MEB II. See
the above figure.

• Set the Jumper 9 to EBIOE

• Connect PIC32EF Starter Kit

• Plug in Power cord.

Note that setting jumper 9 to EBIOE is to enable external SRAM, which is used by graphics double buffering in this configuration. In fact, external
SRAM is not mandatory for graphics double buffering. In this application, enabling external SRAM is to save more internal SRAM space for
memory-consuming audio decoders.

 Note:
This configuration is for use with the latest version of the MEB II.

Selecting the Decoders Using MHC

This topic describes how to select the decoders using the MPLAB Harmony Configurator (MHC).

Description

The application supports the WAVE, Compact MP3, AAC (ADTS header), WMA (v9.2), ADPCM (WAV header), and Speex (Ogg container) audio
formats.

 Note:
The MP3, AAC, and WMA Decoder Libraries are premium packages and must be purchased. Refer to the Microchip Premium
MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for information.

The audio format can be chosen as required using MHC as follows:

1. Open the project on MPLAB X IDE and select the project configuration depending upon the hardware.

2. Open the MHC and select the Decoder, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 50

3. Select Use audio decoders libraries? and the list of available decoders will be listed in the drop-down menu.

4. Select the decoders that are required and click Generate to add the supporting decoder files and libraries to the project.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Note:
Before running this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface.

Refer to Building the Application for details.

Do the following to run the demonstration:

1. Connect speakers or headphones with a 3.5 mm jack to the output line connector on the Audio DAC Daughter Board (included with the PIC32
Bluetooth Audio Development Kit), or the headphone (HP Out) connector on the Audio Codec Daughter Board AK7755, or the Speaker
Out/Line Out connectors on the Multimedia Expansion Board II (MEB II), as appropriate.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 51

2. Connect power to the board. The system will be in a wait state for USB to be connected. The LEDs, D5, D6, and D7 (PIC32 Bluetooth Audio
Development Board only), will be OFF during the wait state. Screen displays are for the PIC32MZ EF Starter Kit with MEB II board
configurations.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 52

Multimedia Expansion Board II (MEB II) Legacy Version Welcome Screen

3. Connect a USB mass storage device that contains songs of supported audio format. The application by default can stream WAVE (.wav)
format audio files.

4. When the USB device is connected the system will scan for audio files. The LEDs, D5 and D7 (PIC32 Bluetooth Audio Development Board
only), will be ON during scanning.

5. Once the scanning is complete, listen to the audio output on the speakers or headset connected to the board. The LED, D5, will be ON for
WAVE audio, the LED, D6, will be ON for AAC, and the LED, D7, will be ON for MP3 (PIC32 Bluetooth Audio Development Board only).

Bluetooth Audio Development Kit Playback Screen

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 53

Multimedia Expansion Board II (MEB II) Playback Screen

LED States (PIC32 Bluetooth Audio Development Board only)

State D5 D6 D7

Wait for USB OFF OFF OFF

Scan for files ON OFF ON

WAVE audio stream ON OFF OFF

AAC audio stream OFF ON OFF

MP3 audio stream OFF OFF ON

WMA audio stream OFF ON ON

Demonstration Controls

Component Label PIC32 Bluetooth Audio Development Kit PIC32MZ EF Starter Kit

Switch SW1 N/A Next Track (Toggle)/Fast Forward (Long Hold)

Switch SW2 N/A Play/Pause (Toggle)

Switch SW3 Next Track (Toggle)/Fast Forward (Long Hold) Previous Track (Toggle)/Fast Rewind (Long Hold)

Switch SW4 Play/Pause (Toggle) N/A

Switch SW5 Previous Track (Toggle)/Fast Rewind (Long Hold) N/A

universal_audio_encoders

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application demonstrates an audio encoder by taking a voice recording from a microphone, and storing encoded voice data to a mass storage
device (USB Flash drive). This application first waits for a USB Flash drive to connect, and after connection is successful, voice data from a
microphone is ready to be captured. During capture, data is encoded at the same time, the encoded data is written to a new create file on the root
level of USB thumb drive file system, and when the voice capture ends, a .wav format will be saved on the USB Flash drive.

This application provides examples on encoding PCM and Opus data. In the configuration ak4642_bt_audio_dk, 16 kHz, Stereo 16-bit audio PCM
data is encoded and encapsulated in WAV format, while in the configuration pic32mz_ef_sk_meb2, 16 kHz, Stereo 16-bit audio Opus data is
encoded and encapsulated in Ogg format. The Opus Encoder is not supported on the ak4642bt_audio_dk configuration, since the Opus Codec
Library requires 292 KB program memory.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 54

Architecture

This universal audio encoders application demonstrates a framework to encode data to an audio file. the ping-pong buffer technique is used in the
application to record and encode voice data simultaneously. This application also provides a graphics screen displaying prompting help messages
at each step in the demonstration process.

Demonstration Features

• USB MSD Host Client Driver

• FAT32 File System

• AKM Codec Drivers

• I2S Driver usage in audio system

• I2C Driver for AKM Codec control

• Graphics Library usage

• Audio Encoders and Audio Containers System

Tools Setup Differences

The following descriptions explain the different MHC settings for this demonstration.

I2S Driver

The Sampling rate field is set to 16000 for voice recording. In DMA mode, only receive DMA support and Enable DMA channel Interrupts are
selected. Under I2S Driver Instance, choose the Audio Communication Width to be
SPI_AUDIO_COMMUNICATION_16DATA_16FIFO_32CHANNEL and choose Queue Size Receive to be 2.

SPI/I2S Module Pin

The SPI/I2S module pin setting is needed to ensure that I2S is running correctly.

For example, on the PIC32 Bluetooth Audio Development Kit, SCK of I2S1 is set to port 70, SDI1 is to port 73, SDO1 is to 72, and SS1(out) is set
to 69.

Audio Encoders and Containers

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 55

In the ak4642_bt_audio_dk, and ak4954_bt_audio_dk configurations, the PCM and ADPCM encoders are enabled, and the WAV container is
selected in MHC, as shown in the following figure.

In the pic32mz_ef_sk_meb2 configuration, all encoders are selected in MHC, as shown in the following figure.

.

 Note:
PCM and ADPCM encoders can only be composited with WAV container, and Opus encoder can only be composited with Ogg
containers. Any combinations other than these are not guaranteed to work properly.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the universal_audio_encoders.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/universal_audio_encoders.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

universal_audio_encoders.X <install-dir>/apps/audio/universal_audio_encoders/firmware

MPLAB X IDE Project Configurations

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 56

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

ak4642_bt_audio_dk bt_audio_dk+ak4642 This configuration runs on the PIC32 Bluetooth Audio Development Kit with the AK4642
Codec Daughter Board.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit and the Multimedia Expansion
Board II (MEB II) with a high-performance 4.3" WQVGA maXTouch Display Module.

ak4954_bt_audio_dk bt_audio_dk+ak4954 This configuration runs on the PIC32 Bluetooth Audio Development Kit with the AK4954
Codec Daughter Board.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the PIC32 Audio Codec Daughter Board – AK4642EN

The microphone (labeled MIC2) on the AK4642 daughter board will be used as the input microphone.

Multimedia Expansion Board II (MEB II) with the 4.3'' WQVGA Display Module with maXTouch and the PIC32MZ Embedded Connectivity with
FPU (EF) Starter Kit

In this configuration, Jumper J9 must be set to EBIOE, otherwise the display will be blank white. Jumper J9 is located at back side of MEB II.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 57

• Set the Jumper 9 to EBIOE

• Connect PIC32EF Starter Kit

• Connect a microphone device to MIC IN Jack of the AK4953 Codec on MEB II board

• Plug in Power cord.

Note that setting jumper 9 to EBIOE is to enable external SRAM, which is used by graphics double buffering in this configuration. In fact, external
SRAM is not mandatory for graphics double buffering. In this application, enabling external SRAM is to save more internal SRAM space.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface.

Refer to Building the Application for details.

The following steps show the demonstration running using the pic32mz_ef_sk_meb2 configuration.

1. For the pic32mz_ef_sk_meb2 configuration, connect a microphone with a 3.5 mm jack to the MIC-IN line connector on the MEB II.

2. Connect power to the board. The system will be in a wait state for the USB Flash drive to connect. Select desired encoder in list wheel, use
finger to scroll list down or up.

3. Connect a USB mass storage device that is formatted as FAT32 file system. After the USB Flash drive is connected and the file system has
mounted successfully, the display prompts you to begin recording.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 58

4. Press switch 5 to start recording for the ak4642_bt_audio_dk configuration. Press switch 3 to start recording for the pic32mz_ef_sk_meb2
configuration.

5. Once recording has started, the microphone will immediately begin to capture audio data, and at the same time, the application begins
encoding and saving data to a created file on the USB Flash drive. Do not remove the USB Flash drive while recording.

6. Press switch 3 to stop recording for the ak4642_bt_audio_dk configuration. Press switch 1 to stop recording for the pic32mz_ef_sk_meb2
configuration.

7. After recording has stopped, the application will encapsulate the encoded data in a corresponding format depends on which encoder is
selected before encoding. The name for this file will be called encoder.{format name} on the USB Flash drive.

usb_headset

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application configures the a USB headset system configurable to 48/32/16 kHz sampling rate at 16 bit per sample.

The system will interface to a USB Host (such as a personal computer), which can accommodate a USB device class headset. The embedded
system will enumerate with a USB audio device endpoint and enable the host system to input audio from the USB port using a standard USB
Full-Speed implementation. The embedded system will take the data from a microphone the Codec and send it to the audio USB interface, while

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 59

simultaneously streaming playback audio to the Codec. The Codec Driver sets up the audio interface, timing, DMA channels and buffer queue to
enable a continuous audio stream. The digital audio is transmitted/received to/from the Codec through a bidirectional I2S data module.

The application runs on the PIC32 Bluetooth Audio Development Kit with the AK4642 Codec interfaced to the PIC33MX470F512L processor.
microcontroller. It also runs on the PIC32MZ EF Starter Kit on the Multimedia Entertainment Board II (MEB II) with the AK4953 Codec interfaced to
the PIC32MZ2048EFH144 processor.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz, using the following hardware:

• 220x176 color LCD

• Single push button

• USB Device and Host interfaces

• Five LEDs

• Two X32 sockets, one of which will be used to host a AK4642 Codec module daughter board having both an on-board internal microphone that
will be used for the demonstration, and an external microphone input through a 3.5 mm audio jack

The PIC32 Bluetooth Audio Development Kit comes with an AK4384 Audio DAC daughter board; however, you must replace this board with the
AK4642 daughter board.

This application also runs on the PIC32MZ EF Starter Kit on the Multimedia Expansion Board II (MEB II). The SK contains a
PIC32MZ2048EFH144 microcontroller with 2M bytes of flash memory and 144K bytes of RAM running at 198 MHz. The SK interfaces to the
MEB2, which supports a 480x272 pixel color LCD touch screen; USB device and USB host interfaces; and an AK4953 Codec that connects to an
external microphone input through a 3.5 mm audio jack.

The following figure shows the application structure and hardware used. The PIC32 runs all of the application code. The buttons are interfaced
using GPIO pins.

The interface between the PIC32MX480F512L and the LCD display on the PIC32 Bluetooth Development Kit is an 8-bit parallel master port (PMP)
used for data transfer of graphics commands implemented by a graphics processor. The program uses the MPLAB Harmony v2.0 Graphics Library
to draw on the screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 60

The PIC32MZ2048EFH144 writes pixels directly to the graphics frame buffer memory, not using a off-chip graphics process, thus the PMP is not
needed for the PIC32MZ EF Starter Kit/MEB II configuration.

The Codec utilizes 1 instance of I2S , with the I2S module and Codec configured, as shown in the following tables. The I2S is configured for
bidirectional data flow, using the SDI1 pin for input from the microphone and SDO1 for output to the headphone jack. The I2S Parameters value
table shows the parameters being used to generate these clocks and configure the Codec device (either AK4642 or AK4953) over I2C. Initially, the
Codec is set for 16 kHz; however the USB can change this to also be 32 or 48 kHz. This is performed automatically by changing the value of the
MCLK1/REFCLK1, BCLK Multiplier value and/or the MCLK Multiplier value using a call to the DRV_CODEC_SampleRateSet function.

The I2S is set up for 16 bit data per stereo channel data transferred serially using 32 bit framing per channel (the 2 least significant bytes are 0 and
ignored by the module). The data is configured as stereo, despite the microphone data being mono with the data duplicated across both 16 kHz
channels (left and right). The 16bit stereo samples are transferred to the memory buffer via DMA Channel 3 (PIC32MZ EF Starter Kit/AK4953) or
DMA Channel 2 (PIC32 Bluetooth Development Kit/AK4642).

The I2S clock values generated by the master are derived from the following formulas, starting with the REFCLK0 value (4.096 Khz) used for the
I2S MCLK and the sample rate, Fs (16000, 32000, and 48000 Hz):

MCLK = 4096000 Hz

NUM_CHANNELS = 2

FRAME_SIZE = 32 bits/channel*NUM_CHANNELS = 64

BCLK = FRAME_SIZE * Fs

LRCK = Fs

The codec slave uses the following parameters calculated from the clock values:

MCLK_DIV = MCLK/LRCK

BCLK_DIV = MCLK/BCLK

The folowing table shows the values used for Fs=16000

16 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 16.000000 kHz Sample rate clock /SS1 on pin 69 (RD1)

BCLK 1024000 Hz Bit rate clock /SCK1 on pin 70 (RD10)

MCLK 4.096000 MHz Master clock /REFCLK0 on pin 53 (RF8)

32 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 32000000 kHz Sample rate clock /SS1

BCLK 2048000 Hz Bit rate clock /SCK1

MCLK N/A Master clock /SCK1

48 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 48.000000 kHz Sample rate clock /SS1

BLCK 3072000 Hz Bit rate clock /SCK1

MCLK N/A Master clock /SCK1

PIC32MX470F512L I2S Data Pins

PIC32 Name Description I2S PIC32 Bluetooth Audio Development
Kit Pin

PIC32MZ EF Starter Kit/MEB II Pin

SDI1 Serial Data In SDI1 73 (RC13) 69 (RD14)

SDO1 Serial Data Out SDI1 72 (RD0) 49 (RB10)

SS1 Bit Clock BCLK 69 (RD0) 58 (RF12)

SCK1 Master Clock MCLK 70 (RD10) 109 (RD1)

REFCLKO1 Reference Clock N/A 53 (RF8) 70 (RD15)

I2S Parameter Values

I2S Value Description/PIC32 Pin (Port)

PIC32 Mode HOST

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 61

AK4642 Mode SLAVE Controlled by the PIC32

MCLK_MULT (mhc) 256 16 kHz sample rate multiplier for MCLK

MCLK_BCLK_RATIO 4 16 kHz sample rate multiplier for BCLK

Data Sizes 16/16/32 16-bit data/16-deep queue/32-bit frame

Channels Stereo 2-channel

Timing LJ Left-justified

The I2S interface used 4 device pins as shown in the table. The REFCLOCK01 is available but unused by the Codec interface.

The application uses USB Library as a "Device" stack, which will connect to a "Host". It is configured for 5 USB endpoints with a single function
having three interfaces. All of these are defined for a USB Microphone device in the fullSpeedConfigurationDescriptor array variable structure
(located in system_init.c). This structure defines the connection to the host, variable sample rates of 48, 32, or 16 kHz; with a 16-bit stereo
channel data. A 64 packet queue is used for playback data, and a ping-pong buffer scheme is used for microphone record data. The maximum
USB packets size is set to 482 channels/sample 2 bytes/channel= 192 bytes, which gives a 1 ms stereo sample packet size at 48 kHz; therefore,
the buffer size needs to be of the same size.

All Harmony applications use the function SYS_Initialize located in the source file system_init.c and executed from main to initialize various
subsystems such as the clock, ports, BSP (board support package), PMP, Codec, timers, UART, graphics, and interrupts. The USB, AK4642
driver, graphics, and the application state machines are all updated via calls located in the function SYS_Tasks, executed from the main polling
loop, located in system_tasks.c.

The application code is contained in the standard source file app.c. The application code is initialized in SYS_Initialize using the application
APP_Initialize function to instantiate driver objects and start the USB Device interface. The application utilizes a simple state machine (APP_Tasks
executed from SYS_Tasks) with the following functions:

• Sets up the drivers and USB Library interface

• Responds to USB Host commands ("USB Record at 48Khz/32Khz/16Khz", "USB Playback at 48Khz/32Khz/16Khz")

• Initiate and maintains the bidirectional data audio streaming for "USB Record" and "USB Playback" functions.

Demonstration Features

• Record and Playback using an AK4642 codec daughter board using multiple sample rates

• USB connection to a host system using the USB Library Device Stack for a USB Headset device for multiple selectable sample rates (16/32/48
kHz)

• Displaying graphics on the PIC32 Bluetooth Audio Development Kit 220x176 LCD using the Graphics Library and the Parallel Master Port
(PMP) Driver Library

• Displaying graphics on the PIC32 MZ EF Starter Kit/MEB II 480X272 pixel touchscreen using MPLAB Harmony Graphics Library Library and
the Parallel Master Port (PMP) Driver Library

Tools Setup Differences

bt_audio_dk_ak4642 Configuration

If building this application from scratch, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select
the PIC32MX Bluetooth Audio Development Kit and the configuration bt_audio_dk_AK4642. Click the green MPLAB Harmony icon to open the
MPLAB Harmony Configurator (MHC).

Expand Harmony Configurator Framework > Drivers, and then expand Codec > AK4642. Select Use AK4642 Driver? and a sub-menu will
appear. For this application the default values will suffice, although the volume setting can be adjusted between a -75 dB and +12 dB gain range.
The I2S and I2C driver (default to DRV_I2S_INSTANCE_0 and DRV_I2C_INSTANCE_0, respectively) associated to the Codec driver can be
configured as described previously.

To use the Graphics Stack Library, under Graphics Stack, select Use Graphics Stack?. Further down, under Use Harmony Graphics Composer
Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch. Since the board uses the Crystal Fontz 176x220 pixel LCD with the
OTM2201A controller the PIC32 Bluetooth Audio Development Kit does not support a touchscreen. Under PMP, select Use PMP Driver?, which is
used for graphics data transfer. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

To use the USB Stack Library, under USB Library, select Use USB Stack Under Select Host or for the Device Stack, select Device. Change the
Number of Endpoints Used to 5. Below that, select USB Device Instance 0 and under that make Function 1 (matching the
fullSpeedConfigurationDescriptor struct in system_init.c: AUDIO Device Class, 3 Interfaces, 2 Audio Streaming interfaces; with a Write Queue Size
of 2 (for the ping-pong buffer arrangement) and a Read Queue Size of 2 (not used). The Product ID Selection gives the name shown at the Host,
which in this case is "usb_microphone_demo". A USB Interrupt Priority of 1 is also used.

 Note:
Do not change the current fullSpeedConfigurationDescriptor values in system_init.c when using MHC to generate the project
files.

pic32mz_ef_sk_meb2 Configuration

If building this application from scratch, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select
the PIC32MZ(EF) Starter Kit plus MEB II and the configuration pic32mz_ef_sk_meb2. Click the green MPLAB Harmony icon to open the MPLAB
Harmony Configurator (MHC).

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 62

Expand the Harmony Configurator Framework > Drivers section, and then expand Codec > AK4953. Select Use AK4953 Driver? and a sub-menu
will appear. For this application the default values will suffice, except two clients are used (read and write), and volume setting can be adjusted
between a -75 dB and +12 dB gain range. The I2S and I2C driver (default to DRV_I2S_INSTANCE_0 and DRV_I2C_INSTANCE_0, respectively)
associated to the Codec driver. I2S can be configured as described previously, using the 16 kHz values, although the application can modify these
during runtime.

The bit-banged implementation and "Include Force Write ...)" is required for the PIC32MZ I2C module (I2C_ID_2). TMR1 is used for the bit-banged
I2C signal timing over GPIO pins.

To use the Graphics Stack Library, under Graphics Stack, select Use Graphics Stack?. The default values given by the BSP can be used, which
select the LCC graphics interface to a WQVGA screen and Touch Screen Controller with event processing. The only change is to use a V-Sync
Refresh Strategy of "Conventional" rather than "Aggressive" to allow more processing time away from graphics processing and data bus transfer.

To use the USB Stack Library, under USB Library, select Use USB Stack Under Select Host or Device Stack Select Device. Change the
Number of Endpoints Used to 2. Below that select USB Device Instance 0 and under that select a Device Speed of USB_SPEED_FULL Select
Function 1 and the AUDIO Device Class 3 Interfaces, 2 Audio Streaming interfaces; with a Write Queue Size of 8 (but using a ping-pong buffer
arrangement with the microphone buffers) and a Read Queue Size of 64 (to minimize "underflow/overflow" due to mismatched clocks between
USB and the CODEC. The Product ID Selection gives the name shown at the Host, which in this case is "usb_headset_demo".

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the usb_headset.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/usb_headset.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_headset.X <install-dir>/apps/audio/usb_headset/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

bt_audio_dk_ak4642 bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with the
Audio Codec Daughter Board AK4642EN.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit with the MEB II.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit and Audio Codec Daughter Board AK4642EN

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32MZ EF Starter Kit and MEB II

In this configuration, Jumper J9 must be set to EBIOE, otherwise the display will be blank white. Jumper J9 is located at back side of MEB II.

• Set the Jumper 9 to EBIOE

• Connect PIC32EF Starter Kit

• Connect a microphone device to MIC IN Jack of the AK4953 Codec on MEB II board

• Plug in Power cord.

Note that setting jumper 9 to EBIOE is to enable external SRAM, which is used by graphics double buffering in this configuration. In fact, external
SRAM is not mandatory for graphics double buffering. In this application, enabling external SRAM is to save more internal SRAM space.

Running the Demonstration

This section demonstrates how to run the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 63

Description

 Important!
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface. Refer to Building the Application
for details.

Do the following to run the demonstration:

1. Power up the board and connect the programmer. Compile the application, program the target device, and run it. After the program starts, the
name of the application should appear on the display, as shown in the following figure.

2. The PIC32 Audio DAC Daughter Board AK4642EN provides an on-board microphone. Place it near the source of audio to be recorded. The
configuration using the MEB II requires an external microphone connected to the MIC IN jack.

3. Connect the board using the USB mini-B connector (for the PIC32 Bluetooth Audio Development Kit or to the mini-micro connector on the
starter kit) to the Host computer with a standard USB cable.

4. Allow the Host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the Host
side.

5. If needed, configure the Host computer to use the usb_microphone as the selected audio recording device and playback device. For Windows,
this is done in the "Recording" and "Playback" tabs in the "Sound" dialog (as shown in the following figure) accessed by right clicking the
loudspeaker icon in the taskbar.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 64

 Note:
The device "Harmony USB Microphone Example" should be available along with a sound level meter indication audio input when
touching the microphone. If no sound level is registering, uninstall the driver and reboot the host computer, since it may have
incorrect configuration set by a similar connection to one of the other MPLAB-X Harmony Audio Demos.

6. Open a recording application (such as Audacity, as shown in the following figure) and initiate a recording from the USB microphone source.
You can also play back the recording using the usb_headset as the playback device at the same time. This can be demonstrated by
overdubbing the first recording as it is playing back through the headphones by making a new recording at the same time on another track.

7. Playback of the recording should demonstrate that the audio is being received from the microphone and saved on the Host Computer.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 65

usb_host_headset

This specifies a host interface for a USB headset connected to a smartphone.

Description

The demonstration implements a USB Audio 1.0 Host interface to connect the USB headset to a Type A USB connector at 48 kHz sampling rate,
and 16-bit stereo data. The source of the audio will be an analog input (LINE-IN) to the codec. If the device is a headset, the USB microphone can
also be monitored through the Codec output (HP-OUT).

Once attached, the embedded system will detect the USB headset, enumerate the available interfaces, feature units, terminal links, and endpoints,
and select an OUT Stream (to the headset) and optionally an IN steam from the microphone. Both streams are sources and synced from/to the
codec.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX270F512L microcontroller with 512 KB of Flash
memory and 64 KB of RAM running at 48 MHz, or a PIC32MX470F512L microcontroller with 512 KB of Flash memory and 128 KB of RAM running
at 96 MHz using the following hardware:

• 220x176 color LCD using the OTM2201B Controller

• USB Host interface using a Type-A connector, which must be selected in place of the USB device interface

• Five LEDs

• Two X32 sockets, one of which will be used to host a Codec module daughter board. The Codec will be used for the analog audio source to the
USB headset through the 3.5 mm audio jack(LINE-IN). The HP out of the Codec DB will be used to monitor the USB Microphone, if available.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 66

The interface between the processor and the LCD display on the PIC32 Bluetooth Audio Development Kit is an 8-bit Parallel Master Port (PMP)
used for data transfer of graphics commands implemented by a graphics processor. The program uses the MPLAB Harmony 2.0 Graphics Library
to draw on the screen.

The Codec utilizes one instance of I2S, with the I2S module and Codec configured, as shown in the following tables. The I2S is configured for
bidirectional data flow, using the SDI1 pin for input (unused) and SDO1 for output to the headset jack. Table 3 provides the parameters being used
to generate these clocks, and configure the Codec device (either AK4642 or AK4953) over I2C. Initially, the Codec is set for 16 kHz

The I2S is set up for 16-bit data per stereo channel data transferred serially using 32-bit framing per channel (the two least significant bytes are
zero and ignored by the module). The data is configured as stereo. The 16-bit stereo samples are transferred to the Codec memory buffer via
DMA.

Table 1. 48 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 48.000000 kHz Sample Rate Clock

BCLK 3072000 Hz Bit Rate Clock

MCLK 12.288000 Master Clock

Table 2. I2S Data Pins PIC32MX480F512L (PIC32 Bluetooth Audio Development Kit)

PIC32 Name Description I2S PIC32 Pin

SDI1 Serial Data In SDI1 73 (RC13)

SD01 Serial Data Out SDI1 72 (RD0)

SS1 Bit Clock BCLK 69 (RD9)

SCK1 Master Clock MCLK 70 (RD10)

REFCLK01 Reference Clock - 53 (RF8)

Table 3. I2S Parameter Values (48 kHz Sampling)

I2S Value Description/PIC32 Pin (Port)

PIC32 Mode HOST Description

AK4642 Mode SLAVE Controlled by the PIC32

MCLK_MULT (mhc) 512 Sample rate multiplier for MCLK

MCLK_BCLK_RATIO 4 Sample rate multiplier for BCLK

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 67

Data Sizes 16/16/32 16 bit data/16 deep queue/32 bit frame

Channels Stereo 2-channels

Timing LJ Left Justified

The application uses the USB Library as a host stack, which accepts the device connection. It is configured for six USB endpoints to account for
the IN and OUT audio stream interfaces possibly requiring three endpoints (0-bandwidth, audio stream, and control).

When the USB headset is attached to the Type-A connector, the device enumeration process is executed by the application, where the device will
transmit descriptors describing its function and the host application identifies the available functions. The USB headset will send a v1.0 USB
device descriptor to the USB host that must contain an OUT audio stream. It will also send a descriptor for an IN Audio stream if it is a full headset
and not just a headset.

The OUT stream format can be identified in the device enumeration process, as shown in the following:
const APP_USB_HOST_AUDIO_STREAM_FORMAT audioSpeakerStreamFormat =
{
 .streamDirection = USB_HOST_AUDIO_V1_DIRECTION_OUT,
 .format = USB_AUDIO_FORMAT_PCM,
 .nChannels = 2,
 .bitResolution = 16,
 .subFrameSize = 2,
 .samplingRate = AUDIO_SAMPLING_RATE
};

This indicates a stereo (2-channel) stream (nChannels) in the out direction from the host (streamDirection), with 16 bits per channel (bitResolution
in bits), with a framing of 16 bits (subFrameSize * 2 bytes) at the AUDIO_SAMPLING_RATE, which is fixed for this application at 48000 Hz. The IN
stream used for the USB microphone data uses the same format except for the streamDirection.

The enumerated device descriptor will contain a descriptor that can accept the required 48000 Hz sampling rate. Two forms of the descriptor are
possible. The discrete frequency format is shown in the following table.

Table 4: Audio Streaming Format Type Descriptor

Descriptor Name Value

bLength 0x0E

bDescriptorType 0x24

bDescriptorSubtype 0x02

bFormatType 0x01

bNrChannels 0x02

bSubframeSize 0x02

bBitResolution 0x10

bSamFreqType 0x01

tSamFreq 0x00BB80 (48000 Hz)

Where bSamFreqType gives the number of discrete values in the tSamFreq array, of which there is only one value given here (48000 Hz). Note
that the bNrChannels, bBitResolution, and the bSubframeSize also match the usable stream values.

The second form of the descriptor gives a continuous range of frequencies, as shown in the following table.

Table 5: Audio Streaming Format Type Descriptor

Descriptor Name Value

bLength 0x0E

bDescriptorType 0x24

bDescriptorSubtype 0x02

bFormatType 0x01

bNrChannels 0x02

bSubframeSize 0x02

bBitResolution 0x10

bSamFreqType 0x00

tLowerSamFreq 0x001F40 (8000 Hz)

tUpperSamFreq 0x00BB80 (48000 Hz)

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 68

The bSamFreqType is '0' which indicates the next two 24 bit values give a frequency range of 8000 Hz to 48000 Hz. Again this audio interface
descriptor describes a usable stream interface.

The USB full speed interface uses a 1 ms packet size for audio streaming. This requires that the USB packet size is set to 48000 Hz/1000 ms/sec
* 2 channels/sample * 2 bytes/channel= 192 bytes. This should match the wMaxPacketSize parameter in the Endpoint descriptor for the interface.

Software Structure

All MPLAB Harmony applications use the function SYS_Initialize located in the source file system_init.c and executed from the main function
to initialize various subsystems such as the clock, ports, Board Support Package (BSP), PMP, Codec, timers, graphics, and interrupts. The USB,
AK4642 driver, graphics, and the application state machines are all updated via calls located in the function SYS_Tasks, executed from the main
polling loop, located in system_tasks.c.

The application code is contained in the standard source file app.c. The application code is initialized in SYS_Initialize using the application
APP_Initialize function to instantiate driver objects and start the USB Device interface. The application utilizes a simple state machine (APP_Tasks
executed from SYS_Tasks) with the following functions:

• Setup the device peripheral drivers and USB Library interface

• Responses to USB host stream requests ("Initiate stream interface completed," “Change stream sample rate completed," “Read packet
received," and “Write packet sent”

• Responses to USB host control requests

• The Data buffer completes from the codec read and write buffer DMA complete interrupts, used to initiate USB buffer read and write requests

The USB interface uses a separate host and device data timing. Buffering between the Codec reads from LINE-OUT to USB OUT stream writes
uses a ping-pong buffer arrangement, which is allowable since clock domain mismatches generating buffer underflow and overflow will be
mitigated as the USB device. The USB host receiving the USB IN stream must mitigate underflow and overflow problems to the Codec, which is
done by using a packet buffer queue. A queue length of 64 eliminates most of the dropouts due to packet underflow.

Demonstration Features

• USB headset playback using the AK4642 Codec Daughter Board LINE-IN analog audio source

• USB headset microphone monitoring using the AK4642 Codec Daughter Board HP-OUT

• USB connection to a USB audio device using the MPLAB Harmony USB Library Host Stack

• Displaying graphics on the BTADK 220x176 LCD using MPLAB Harmony Graphics Library and PMP interface to OTM0221B Graphics
Controller

Tools Setup Differences

PIC32MX470F512L on PIC32 Bluetooth Audio Development Kit with AK4642 Configuration

If building this application from scratch, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project dialog.
Select PIC32MX Bluetooth Audio Development Kit and a configuration name, such as pic32mx270f512l_pim_btadk_ak4642, indicating the
processor, the board and the Codec Daughter Board. Click the MPLAB Harmony icon to open the MPLAB Harmony Configurator (MHC). When
using a PIM, select the board with the associated PIM, after selecting the device: PIC32MX270F512L.

Open the Harmony Configurator Framework > Drivers section, and then expand Codec >. Then, select the required Codec/DAC Driver?** and a
sub-menu will appear. For this application, the default values will suffice, except for the following:

• The volume setting can be adjusted between a -75 dB and +12 dB gain range

• The number of clients should be 2, to accommodate a read and a write client

Expand the I2S, the Use I2S Driver? option should be selected. The driver callbacks require Transmit DMA Support (for the write client), Receive
DMA Support (for the read client). This automatically selects Enable DMA Channel Interrupts for the callback when the buffer transfer has
completed.

 Note:
The AK4953 driver is also used for the AK4954 Codec.

To use the Graphics Stack Library, within Graphics Stack, select Use Graphics Stack?. Further down, within Use Harmony Graphics Composer
Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch. Since the board uses the Crystal Fontz 176x220 pixel LCD with the
OTM2201A Graphics Controller the PIC32 Bluetooth Audio Development Kit does not support a touchscreen. Within PMP, select Use PMP
Driver? This is used for graphics data transfer. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

To use the USB Stack Library, within USB Library, select Use USB Stack Under Select Host or Device Stack Select Host. Change the Number of
Endpoints Used to 6" and also select Use Audio v1.0 Host Client Driver. The number of AUDIO v1.0 Streaming Interfaces is 2 (IN and OUT
streaming). The Number of Audio V1.0 Sampling Frequencies is 0 since the application overrides the driver and accepts all the frequencies given
by the device audio stream descriptor and ignores this value.

Building the Application

This section identifies the MPLAB X IDE project name, location,lists and descriptions for the available configurations of the demonstration.

Description

To build this project, you must open the usb_host_headset.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 69

The following tables list and describe the project and supported configurations. The parent folder for these files is <install-dir>/apps/audio

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_host_headset.X <install-dir>/apps/audio/usb_host_headset/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk_ak4642 bt_audio_dk+4642 This demonstration runs on the PIC32MX470F512L device
mounted on the PIC32 Bluetooth Audio Development Kit with
the AK4642 Codec Daughter Board.

pic32mx270f512l_pim_bt_audio_dk_ak4642 pic32mx270f512l_pim+bt_audio_dk This demonstration runs on the PIC32 Bluetooth Audio
Development Kit with the PIC32MX270F512L Plug-in Module
(PIM) and AK4642 Codec Daughter Board.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the PIC32MX470F512L and the AK4642 Codec Module daughter
board.

Connect switch S1 located in the middle of the PIC32 Bluetooth Audio Development Board to PIC32_MCLR. Connect the AK4642 Codec
Daughter Board to the X32 Connector, as shown in the following figure.

PIC32 Bluetooth Audio Development Kit with the PIC32MX270F512L PIM, and the AK4642 Codec Module
daughter board.

Attach the PIM and switch S1 located in the middle of the PIC32 Bluetooth Audio Development Board to PIM_MCLR. Attach the AK4642 Codec
Daughter Board to the X32 Connector, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 70

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

Important!

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Do the following to run the demonstration:

1. Power up the board and connect the programmer. Compile the application, program the target device, and run it. After the program starts, the
name of the application should appear on the display (for those configurations with a display), as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 71

2. Connect a line audio source to the 3.5 mm LINE-IN jack for the AK4642 Codec Daughter Board (see the following figure).

3. Connect the board to the USB Headset to the Type-A connector (see the following figure).

4. LED 1 indicates the device attachment. LED 4 indicates that the OUT Stream has been enumerated and that the LINE-IN audio can be heard in
the headset. LED 5 indicates that the IN stream has been enumerated and that the headset microphone can be monitored on the HP-OUT jack
on the AK4642 Codec Daughter Board.

usb_microphone

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 72

Description

This demonstration application configures a USB microphone system operating at a 16 kHz sampling rate with 16-bit data.

The system will interface to a USB Host (such as a personal computer), which can accommodate a USB device class microphone. The embedded
system will enumerate with a USB audio device endpoint and enable the host system to input audio from the USB port at 16 kHz/16-bit stereo
using a standard USB Full-Speed implementation.

The embedded system will take the data from a microphone via the Codec Driver and send it to the audio USB interface. The Codec Driver sets up
the audio output interface, timing, DMA channels and buffer queue to enable a continuous audio stream. The digital audio is received from the
Codec through an I2S data channel at 16 kHz via USB to the host computer. The AK4642 Codec is utilized with the PIC33MX470F512L
microcontroller on the PIC32 Bluetooth Audio Development Kit.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz, using the following hardware:

• 220x176 color LCD

• Five LEDs

• USB Device interfaces

• Two X32 sockets, one of which will be used to host a AK4642 Codec module daughter board having both an on-board internal microphone that
will be used for the demonstration, and an external microphone input through a 3.5 mm audio jack

The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth daughter board and an AK4384 Audio DAC daughter board;
however, you must replace the AK4384 daughter board with the AK4642 daughter board.

The following figure shows the application structure and hardware used. The PIC32 device runs all of the application code.

The interface between the PIC32 and the LCD display is an 8-bit parallel master port (PMP) used for data transfer. The program uses the MPLAB
Harmony 2.0 Graphics Library to draw on the screen. The buttons are interfaced using GPIO pins.

The AK4642 utilizes one instance of I2S at Port 1, with the I2S module and Codec configured as shown in the following tables. The I2S is

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 73

configured for bidirectional data flow, however only the SDI1 pin is utilized in order to receive the microphone data. The I2S Parameters Values
table shows the parameters being used to generate these clocks and configure the Codec device over I2C. The I2S is set up for 16-bit data per
stereo channel data transferred serially using 32 bit framing per channel (the 2 least significant bytes are 0 and ignored by the module). The data
is configured as stereo, despite the microphone data being mono with the data duplicated across both 16 kHz channels (left and right). The 16-bit
stereo samples are transferred to the memory buffer via DMA Channel 1.

The I2S clock values generated by the PIC32 master are derived from the following formulas, starting with the REFCLK0 value (4.096 Mhz) used
for the I2S MCLK and the sample rate, Fs (48000 Hz):

MCLK = 12,288,000 Hz

Fs = 16000 Hz

NUM_CHANNELS = 2 channels

FRAME_SIZE = 32 bits/channel * NUM_CHANNELS = 64 bits

BCLK = FRAME_SIZE * Fs

LRCK = Fs

The codec slave uses the following parameters calculated from the clock values:

MCLK_DIV = MCLK/LRCK

BCLK_DIV = MCLK/BCLK

The table shows the calculated parameters and generated clock rates.

16 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 16.000000 kHz Sample rate clock /SS1 on pin 69 (RD1)

BLCK 1024000 Hz Bit rate clock /SCK1 on pin 70 (RD10)

MCLK 4.096000 MHz Master clock /REFCLK0 on pin 53 (RF8)

I2S Data Pins

PIC32 Name Description I2S PIC32 Bluetooth Audio Development Kit Pin

SDI1 Serial Data In SDI1 73 (RC13)

SDO1 Serial Data Out SDI1 72 (RD0)

I2S Parameter Values

I2S Value Description/PIC32 Pin (Port)

PIC32 Mode HOST

AK4642 Mode SLAVE Controlled by the PIC32

MCLK_MULT (mhc) 256 16 kHz sample rate multiplier for MCLK

MCLK_BCLK_RATIO 4 16 kHz sample rate multiplier for BCLK

Data Sizes 16/16/32 16-bit data/16-deep queue/32-bit frame

Channels Stereo 2-channel

Timing LJ Left-justified

The application uses the USB Library as a "Device" stack, which will connect to a "Host". It is configured for five USB endpoints with a single
function having three interfaces. All of these are defined for a USB Microphone device in the fullSpeedConfigurationDescriptor array variable
structure (located in system_init.c). This structure defines the connection to the host, with a sample rate of 48 kHz, 16-bit mono channel data.
buffer queue of size 2 is used for USB packets of size 482 samples 2 bytes/sample = 192 bytes. This gives a pin-pong buffer arrangement using 2
ms buffers.

All MPLAB Harmony applications use the function SYS_Initialize located in the source file system_init.c and executed from main to initialize
various sub-systems such as the clock, ports, board support package (BSP), PMP, Codec, timers, UART, graphics, and interrupts. The USB,
AK4642 driver, graphics, and the application state machines are all updated via calls located in the function SYS_Tasks, executed from the main
polling loop, located in system_tasks.c.

The application code is contained in the standard source file app.c. The application code is initialized in SYS_Initialize using the application
APP_Initialize function to instantiate driver objects and start the USB Device interface. The application utilizes a simple state machine (APP_Tasks
executed from SYS_Tasks) with the following functions:

• Sets up the drivers and USB Library interface

• Responds to USB Host commands ("USB Record at 48Khz")

• Initiates and maintains the microphone data audio streaming for "USB Record" function.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 74

Demonstration Features

• Microphone data input using a AK4642 codec daughter board

• USB connection to a host system using the USB Library Device Stack

• Displaying graphics on the PIC32 Bluetooth Audio Development Kit 220x176 LCD using MPLAB Harmony Graphics Library and the Parallel
Master Port (PMP) Driver Library

Tools Setup Differences

If building this application from scratch, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select
the PIC32MX Bluetooth Audio Development Kit and the configuration name of bt_audio_dk_AK4642. Click the green MPLAB Harmony icon to
open the MPLAB Harmony Configurator (MHC).

Expand Harmony Configurator Framework > Drivers, and then expand Codec > AK4642. Select Use AK4642 Driver? and a sub-menu will
appear. For this application the default values will suffice, although volume setting can be adjusted between a -75 dB and +12 dB gain range. The
I2S and I2C driver (default to DRV_I2S_INSTANCE_0 and DRV_I2C_INSTANCE_0, respectively) associated to the Codec driver can be
configured, as described previously.

To use the Graphics Stack Library, under Graphics Stack, select Use Graphics Stack?. Further down, under Use Harmony Graphics Composer
Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch. Since the board uses the Crystal Fontz 176x220 pixel LCD with the
OTM2201A controller the PIC32 Bluetooth Audio Development Kit does not support a touchscreen. Under PMP, select Use PMP Driver?, which is
used for graphics data transfer. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

To use the USB Stack Library, under USB Library, select either Use USB Stack Under Select Host or Device Stack Select Device. Change the
Number of Endpoints Used to 5. Below that select USB Device Instance 0 and under that make Function 1 (matching the
fullSpeedConfigurationDescriptor struct in system_init.c: AUDIO Device Class, 3 Interfaces, 2 Audio Streaming interfaces; with a Write Queue Size
of 2 (for the ping-pong buffer arrangement) and a Read Queue Size of 2 (not used). The Product ID Selection gives the name shown at the Host,
which in this case is "usb_microphone_demo". A USB Interrupt Priority of 1 is also used.

 Note:
Do not change the current fullSpeedConfigurationDescriptor values in system_init.c when using MHC to generate the project
files.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the usb_microphone.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/usb_microphone.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_microphone.X <install-dir>/apps/audio/usb_microphone/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

bt_audio_dk_ak4642 bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with the Audio
Codec Daughter Board AK4642EN.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the Audio Codec Daughter Board AK4642EN

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 75

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Important!
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface. Refer to Building the Application
for details.

Do the following to run the demonstration:

1. Power up the board and connect the programmer. Compile the application, program the target device, and run it. After the program starts, the
name of the application should appear on the display.

2. The PIC32 Audio DAC Daughter Board AK4642EN provides an on-board microphone. Place it near the source of audio to be recorded.

3. Connect the board using the USB mini-B connector (Device) to the Host computer with a standard USB cable.

4. Allow the Host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the Host
side.

5. Audio recording device. For Windows, this is done in the "Recording" tab in the "Sound" dialog (as shown in the following figure) accessed by
right clicking the loudspeaker icon in the taskbar.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 76

 Note:
The device "Harmony USB Microphone Example" should be available along with a sound level meter indication audio input when
touching the microphone. If no sound level is registering, uninstall the driver and reboot the host computer, since it may have
incorrect configuration set by a similar connection to one of the other MPLAB Harmony audio Demonstrations.

6. Open a recording application (such as Audacity, as shown in the following figure) and initiate a recording from the USB microphone source.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 77

7. Playback of the recording should demonstrate that the audio is being received from the microphone and saved on the Host Computer.

8. Listen to the audio output on the speakers or headphones connected to the board. The volume will typically be adjusted by the host.

usb_microphone_multirate

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application configures a USB microphone system operating at a 16 kHz sampling rate with 16-bit data.

The system will interface to a USB Host (such as a personal computer), which can accommodate a USB device class microphone. The embedded
system will enumerate with a USB audio device endpoint and enable the host system to input audio from the USB port at 16 kHz/16-bit stereo
using a standard USB Full-Speed implementation.

The embedded system will take the data from a microphone via the Codec Driver and send it to the audio USB interface. The Codec Driver sets up
the audio output interface, timing, DMA channels and buffer queue to enable a continuous audio stream. The digital audio is received from the
Codec through an I2S data channel at 16 kHz via USB to the host computer. The AK4642 Codec is utilized with the PIC33MX470F512L
microcontroller on the PIC32 Bluetooth Audio Development Kit.

Architecture

The board can also be configured for an external microphone through the 3.5 mm audio jack.

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz with the following features:

• 220x176 color LCD

• Five LEDs

• USB Device interfaces

• Two X32 sockets, one of which will be used to host a AK4642 Codec module daughter board having both an on-board internal microphone that
will be used for the demonstration, and an external microphone input through a 3.5 mm audio jack

The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth daughter board and an AK4384 Audio DAC daughter board;
however, you must replace the AK4384 daughter board with the AK4642 daughter board. The BTM805 daughter board is unused.

The following figure shows the application structure and hardware used. The PIC32 device runs all of the application code.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 78

The interface between the PIC32 and the LCD display is an 8-bit parallel master port (PMP) used for data transfer. The program uses the MPLAB
Harmony 2.0 Graphics Library to draw on the screen. The buttons are interfaced using GPIO pins.

As with any MPLAB Harmony application, the function SYS_Initialize located in the source file system_init.c makes calls to initialize various
sub-systems, such as the clock, ports, board support package (BSP), PMP, Codec, timers, UART, graphics, and interrupts. The USB, Codec
driver, graphics, and the application state machines are all updated via calls located in the function SYS_Tasks in system_tasks.c. Interrupt
handlers in the file system_interrupt.c are only used for receiving characters from the UART, and for the two timers

The AK4642 utilizes one instance of I2S at Port 1, with the I2S module and Codec configured as shown in the following tables. The I2S is
configured for bidirectional data flow, however only the SDI1 pin is utilized in order to receive the microphone data. The I2S Parameters Values
table shows the parameters being used to generate these clocks and configure the Codec device over I2C. The I2S is set up for 16-bit data per
stereo channel data transferred serially using 32 bit framing per channel (the 2 least significant bytes are 0 and ignored by the module). The data
is configured as stereo, despite the microphone data being mono with the data duplicated across both 16 kHz channels (left and right). The 16-bit
stereo samples are transferred to the memory buffer via DMA Channel 1.

The I2S clock values generated by the PIC32 master are derived from the following formulas, starting with the REFCLK0 value (4.096 Mhz) used
for the I2S MCLK and the sample rate, Fs (48000 Hz):

MCLK = 12288000Hz

Fs = 48000

NUM_CHANNELS = 2 channels

FRAME_SIZE = 32 bits/channel * NUM_CHANNELS

BCLK = FRAME_SIZE * Fs

LRCK = Fs

The codec slave uses the following parameters calculated from the clock values:

MCLK_DIV = MCLK/LRCK

BCLK_DIV = MCLK/BCLK

The table shows the calculated parameters and generated clock rates.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 79

16 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 48000 Hz Sample rate clock /SS1 on pin 69 (RD1)

BCLK 1,536,000 Hz Bit rate clock /SCK1 on pin 70 (RD10)

MCLK 12,288,000 Hz Master clock /REFCLK0 on pin 53 (RF8)

I2S Data Pins

PIC32 Name Description I2S PIC32 Bluetooth Audio Development Kit Pin

SDI1 Serial Data In SDI1 73 (RC13)

SDO1 Serial Data Out SDI1 72 (RD0)

I2S Parameter Values

I2S Value Description/PIC32 Pin (Port)

PIC32 Mode HOST

AK4642 Mode SLAVE Controlled by the PIC32

MCLK_MULT (mhc) 256 48 kHz sample rate multiplier for MCLK

MCLK_BCLK_RATIO 4 48 kHz sample rate multiplier for BCLK

Data Sizes 16/16/32 16-bit data/16-deep queue/32-bit frame

Channels Stereo 2-channel

Timing LJ Left-justified

The application uses the USB Library as a "Device" stack, which will connect to a "Host". It is configured for five USB endpoints with a single
function having three interfaces. All of these are defined for a USB Microphone device in the fullSpeedConfigurationDescriptor array variable
structure (located in system_init.c). This structure defines the connection to the host, with a sample rate of 48 kHz, 16-bit mono channel data.
buffer queue of size 2 is used for USB packets of size 482 samples 2 bytes/sample = 192 bytes. This gives a pin-pong buffer arrangement using 2
ms buffers.

All MPLAB Harmony applications use the function SYS_Initialize located in the source file system_init.c and executed from main to initialize
various sub-systems such as the clock, ports, board support package (BSP), PMP, Codec, timers, UART, graphics, and interrupts. The USB,
AK4642 driver, graphics, and the application state machines are all updated via calls located in the function SYS_Tasks, executed from the main
polling loop, located in system_tasks.c.

The conversion of the 16 kHz/16-bit stereo buffers from the Codec/I2S to the 48 kHz/16-bit mono buffers requires that one input channel be
removed and that the SRC be applied as a 3x upsample on the remaining channel. A single stage upsample filter using the efficient multi-rate
linear interpolation FIR structure is used with a 6-tap filter and three phases of 2-taps/phase each (see Note). The advantage of this structure is
that a single 5th order filter can be used to calculate all three output samples at the 16 kHz input rate. The response of the linear interpolation filter
showing the rejection of aliasing artifacts (in red), as shown in the following figure. Other filters (11th order with 3-taps/phase, as shown in blue and
green) can be designed the give even greater rejection.

 Note:
Refer to Multirate Systems and Filter Banks by P. P. Vaidyanathan, Prentice-Hall, 1993. ISBN-13: 978-0136057185; ISBN-10:
0136057187.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 80

The application code is contained in the standard source file app.c. The application code is initialized in SYS_Initialize using the application
APP_Initialize function to instantiate driver objects and start the USB Device interface. The application utilizes a simple state machine (APP_Tasks
executed from SYS_Tasks) with the following functions:

• Sets up the drivers and USB Library interface

• Responds to USB Host commands ("USB Record at 48Khz")

• Initiates and maintains the microphone data audio streaming for "USB Record" function.

Demonstration Features

• Microphone data input using a Audio Codec Daughter Board AK4642EN

• Sample Rate Conversion using the LibQ Fixed-Point 'C' Math Library to implement an efficient 3x upsampler

• USB connection to a host system using the USB Library Device Stack

• Displaying graphics on the PIC32 Bluetooth Audio Development Kit 220x176 LCD using the MPLAB Harmony Graphics Library and the Parallel
Master Port (PMP) Driver Library

Tools Setup Differences

If building this application from scratch, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select
the PIC32MX Bluetooth Audio Development Kit and the configuration name of bt_audio_dk_AK4642. Click the green MPLAB Harmony icon to
open the MPLAB Harmony Configurator (MHC).

Expand Harmony Configurator Framework > Drivers, and then expand Codec > AK4642. Select Use AK4642 Driver? and a sub-menu will
appear. For this application the default values will suffice, although volume setting can be adjusted between a -75 dB and +12 dB gain range. The
I2S and I2C driver (default to DRV_I2S_INSTANCE_0 and DRV_I2C_INSTANCE_0, respectively) associated to the Codec driver can be
configured, as described previously.

To use the Graphics Stack Library, under Graphics Stack, select Use Graphics Stack?. Further down, under Use Harmony Graphics Composer
Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch. Since the board uses the Crystal Fontz 176x220 pixel LCD with the
OTM2201A controller the PIC32 Bluetooth Audio Development Kit does not support a touchscreen. Under PMP, select Use PMP Driver?, which is
used for graphics data transfer. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

To use the USB Stack Library, under USB Library, select either Use USB Stack Under Select Host or Device Stack Select Device. Change the
Number of Endpoints Used to 5. Below that select USB Device Instance 0 and under that make Function 1 (matching the
fullSpeedConfigurationDescriptor struct in system_init.c: AUDIO Device Class, 3 Interfaces, 2 Audio Streaming interfaces; with a Write Queue Size
of 2 (for the ping-pong buffer arrangement) and a Read Queue Size of 2 (not used). The Product ID Selection gives the name shown at the Host,
which in this case is "usb_microphone_demo". A USB Interrupt Priority of 1 is also used.

 Note:
Do not change the current fullSpeedConfigurationDescriptor values in system_init.c when using MHC to generate the project
files.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the usb_microphone_multirate.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 81

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/usb_microphone_multirate.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_microphone_multirate.X <install-dir>/apps/audio/usb_microphone_multirate/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

bt_audio_dk_ak4642 bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit with the Audio
Codec Daughter Board AK4642EN.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the Audio Codec Daughter Board AK4642EN

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Important!
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface. Refer to Building the Application
for details.

Do the following to run the demonstration:

1. Power up the board and connect the programmer. Compile the application, program the target device, and run it. After the program starts, the
name of the application should appear on the display.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 82

2. The PIC32 Audio DAC Daughter Board AK4642EN provides an on-board microphone. Place it near the source of audio to be recorded.

3. Connect the board using the USB mini-B connector (Device) to the Host computer with a standard USB cable.

4. Allow the Host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the Host
side.

5. audio recording device. For Windows, this is done in the "Recording" tab in the "Sound" dialog (as shown in the following figure) accessed by
right clicking the loudspeaker icon in the taskbar.

 Note:
The device "Harmony USB Microphone Example" should be available along with a sound level meter indication audio input when
touching the microphone. If no sound level is registering, uninstall the driver and reboot the host computer, since it may have
incorrect configuration set by a similar connection to one of the other MPLAB Harmony audio Demonstrations.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 83

6. Open a recording application (such as Audacity, as shown in the following figure) and initiate a recording from the USB microphone source.

7. Playback of the recording should demonstrate that the audio is being received from the microphone and saved on the Host Computer.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 84

usb_smart_speaker

This demonstrates full-duplex USB audio playback and recording through a loudspeaker and an input microphone, respectively. The echo of the
playback audio to the microphone is removed using Acoustic Echo Cancellation (AEC), which allows near speech to be recorded without
interference. It is possible to use the recorded near speech to be used for the local trigger word or phrase recognition that initiates more involved
speech recognition tasks, such as required for Google Voice Assistant and Amazon Alexa server API’s.

Description

In this demonstration application:

1. Record and Playback audio streams are setup to a PC Through a PIC32 USB V1.1 peripheral audio device interface.

2. The users voice is received using the Codec (AK4953) microphone interface, while the playback occurs through the Codec line out interface to
an amplified loudspeaker.

3. The echo of the playback is used to train a robust normalized Least Mean Squares (rnLMS) adaptive filter during playback, which is used to
cancel that same acoustic echo when someone speaks into the microphone.

The adaptive filter block diagram is shown below:

The rnLMS algorithm is used to adapt the coefficients of a 512 tap FIR filter running at an 8Khz sampling rate. This filter structure incorporates
features of robust error scaling to mitigate divergence of the FIR filter coefficients, hk, once the filter has converged to a high quality solution of the
echo path.

Audacity can be used for playback of one track, and concurrent recording to another track, to demonstrate echo cancellation and to measure
performance of the echo canceller. During Single Talk (ST), when only playback is occurring, the residual echo can be measured along with low
level approximately stationary background noise. The following measurements provide performance information of the AEC:

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 85

1. ERL (Echo Return Loss): the ratio of the loudspeaker input to the power of the echo received.

2. ERLE (Echo Return Loss Enhancement) measurement: the ratio of the echo residual to input echo.

During Double Talk (DT), when near speech is occurring during playback, the ENR (Echo to Near Ratio) can be measured, i.e. the ratio of the
power of the echo at the microphone relative to the power of the near speech. The ERLE will determine the ENR requirement for the residual echo
to be at a level where the near speech is recognizable by a human or a computer.

Architecture

The block diagram is given below:

Demonstration features

• AK453 Codec driver

• Acoustic Echo Cancellation (AEC)

• Double Talk Detection (DTD)

• USB V1.1 Audio Device Library

Building the Application

This section details where to find the project configurations for building the application.

Description

To build this project, you must open the usb_smart_speakerX project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is:

<install-dir>/apps/audio/usb_smart_speaker

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_smart_speaker.X <install-dir>/apps/audio/usb_smart_speaker/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit with the
MEB II.

Configuring the Hardware

This section describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 86

Description

PIC32MZ EF Starter Kit and MEB II

In this configuration, Jumper J9 must be set to EBIOE, otherwise the display will be blank white. Jumper J9 is located at back side of MEB II.

• Set the Jumper 9 to EBIOE (for internal SRAM)

• Connect PIC32EF Starter Kit

• Connect a microphone device to MIC IN jack of the AK4953 Codec on MEB II board

• Connect a amplified loudspeaker device to the HP OUT jack

• Plug in Power cord

Note that setting jumper 9 to EBIOE is to enable the external SRAM, which is used by graphics double buffering in this configuration. External
SRAM is not mandatory for graphics double buffering. In this application, enabling external SRAM is used to save internal SRAM space.

Running the Demonstration

This section provides instructions on how to build and run the usb_smart_speaker demonstration.

Description

Important!

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, and the board and the Codec to be used in the output interface. Refer to Building the
Application for details.

Do the following to run the demonstration:

1. Power up the board and connect the programmer. Compile the application, program the target device, and run it. After the program starts, the
name of the application should appear on the display, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 87

2. The MEB II has an on-board AK4953 Codec. An external microphone connected to the "MIC IN" jack and loudspeaker, which is connected to
the "HP OUT" jack is required, as shown. For demonstration purposes align the loudspeaker to the microphone so it can receive the echo to
train the adaptive filter.

3. Connect the board using the USB mini-B connector (for the PIC32 Bluetooth Audio Development Kit or to the mini-micro connector on the
starter kit) to the Host computer with a standard USB cable.

4. Allow the Host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the Host
side.

5. If needed, configure the Host computer to use the usb_microphone as the selected audio recording device and playback device. For Windows,
this is done in the "Recording" and "Playback" tabs in the "Sound" dialog accessed by right clicking the loudspeaker icon in the taskbar, as
shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 88

 Note:
The device Harmony USB Smart Speaker Example should be available along with a sound level meter indicating audio input when
touching the microphone. If no sound level is registering, uninstall the driver and reboot the Host computer, since it may have
incorrect configuration set by a similar connection to one of the other MPLAB-X Harmony Audio Demostrations.

Initial AEC Training (ST Training Test)

1. Audacity is used as the playback and record application on the PC. This is freely available and works well with this demonstration, although
other playback and record applications will work also. Typically a smart speaker will initiate a training signal before general playback, such as
the WN_p25_30Sec.wav white noise file available in the usb_smart_speaker/Audio folder. This can be played initially to pretrain the AEC. After
that any audio can be played if the speaker is not moved, and nothing has changed the echo path. Using Audacity to train the AEC requires the
following:

• Audacity must be set up in overdub mode. Therefore, playback occurs at the same time as record.

• The record button must be used (Playback can be used to listen to the recording after muting the training signal track in audacity). This will
initiate playback at the same time as record when in overdub mode.

The initial training recording will show the echo gradually reduced to the background noise level, as shown below:

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 89

2. The Echo Return Loss (ERL) and Echo Return Loss Enhancement (ERLE) can be measured by making a recording without echo cancellation
using the usb_headset demo with the same setup, and comparing the recording to the recording in step 1. ERL gives the power lost from the
echo reference signal through the loudspeaker, to the signal received by the AEC from the microphone. The ERLE provides further echo power
reduction through the AEC.

Echo Cancellation while Playing Music (DT Echo Cancellation Test)

1. The recording of near speech without echo is demonstrated by repeating the training setup with the following differences:

• The playback file can be any audio file (preferably continuous audio)

• After hitting the record button, speak into the microphone a test sequence. Typically this is a number sequence, or the ABC’s, which will
allow you to know what is supposed to be heard. However, any speech is allowed.

2. The recording should only have echo residual plus the near microphone speech, as shown in the following figure.

usb_speaker

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application configures a USB Speaker device to run at a 48 kHz sampling rate at 16-bits per sample.

The system will interface to a USB Host (such as a personal computer), which can accommodate a USB device class speaker. The embedded
system will enumerate with a USB audio device endpoint and enable the host system to input audio from the USB port using a standard USB
Full-Speed implementation. The embedded system will stream USB playback audio to the Codec. The Codec Driver sets up the audio interface,
timing, DMA channels and buffer queue to enable a continuous audio stream. The digital audio is transmitted to the Codec through a bidirectional
I2S data module.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz with the following features:

• 220x176 color LCD

• Five LEDs

• USB Device and Host interfaces

• Two X32 sockets, one of which will be used to host a Codec module daughter board that will be used for the USB playback demonstration
through a 3.5 mm audio jack (labeled HP Out)

The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth Daughter Board and an AK4384 Audio DAC Daughter Board; you

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 90

must replace the AK4384 Daughter Board with the AK4642, AK4394, or AK7755 daughter board. The BTM805 daughter board is unused.

The board can also be configured for an external microphone through the 3.5 mm audio jack.

This application also runs on the PIC32MZ EF Starter Kit with the Multimedia Expansion Board II (MEB II). The starter kit contains a
PIC32MZ2048EFH144 microcontroller with 2 MB of Flash memory and 144 KB of RAM running at 198 MHz. The starter kit interfaces to the MEB
II, which supports a 480x272 pixel color LCD touch screen, USB device and USB host interfaces, and a AK4953 Codec that connects to
headphones through a 3.5 mm audio jack (HP Out)

The following figure shows the application structure and hardware used. The PIC32 runs all the application code. The buttons are interfaced using
GPIO pins.

This demonstration application configures the a USB Speaker device configured to run at a 48 kHz sampling rate at 16-bits per sample.

The system will interface to a USB Host (such as a personal computer), which can accommodate a USB device class speaker. The embedded
system will enumerate with a USB audio device endpoint and enable the host system to input audio from the USB port using a standard USB
Full-Speed implementation.

The embedded system will stream USB playback audio to the Codec.

The Codec Driver sets up the audio interface, timing, DMA channels and buffer queue to enable a continuous audio stream.

The digital audio is transmitted to the Codec through a bidirectional I2S data module.

48 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 48,000 Hz Sample rate clock

BLCK 3,072,000 Hz Bit rate clock

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 91

MCLK 12.288000 Master clock

PIC32MX470F512L I2S Data Pins

PIC32 Name Description I2S PIC32 Bluetooth Audio Development
Kit Pin

PIC32MZ EF Starter Kit/MEB II Pin

SDI1 Serial Data In SDI1 73 (RC13) 69 (RD14)

SDO1 Serial Data Out SDI1 72 (RD0) 49 (RB10)

SS1 Bit Clock BCLK 69 (RD0) 58 (RF12)

SCK1 Master Clock MCLK 70 (RD10) 109 (RD1)

REFCLKO1 Reference Clock N/A 53 (RF8) 70 (RD15)

I2S Parameter Values (48 kHz Sampling)

I2S Value Description/PIC32 Pin (Port)

PIC32 Mode HOST

AK4642 Mode SLAVE Controlled by the PIC32

MCLK_MULT (mhc) 256 48 kHz sample rate multiplier for MCLK

MCLK_BCLK_RATIO 4 48 kHz sample rate multiplier for BCLK

Data Sizes 16/16/32 16-bit data/16-deep queue/32-bit frame

Channels Stereo 2-channel

Timing LJ Left-justified

The I2S clock values generated by the PIC32 master are derived from the following formulas, starting with the REFCLK0 value (4.096 Mhz) used
for the I2S MCLK and the sample rate, Fs (48000 Hz):

MCLK = 12,288,000 Hz

Fs = 48,000 Hz

NUM_CHANNELS = 2 channels

FRAME_SIZE = 32 bits/channel * NUM_CHANNELS = 64 bits/frame

LRCK = Fs

BCLK = FRAME_SIZE * Fs

The codec slave uses the following parameters calculated from the clock values:

MCLK_DIV = MCLK/LRCK

BCLK_DIV = MCLK/BCLK

The table shows the calculated parameters and generated clock rates.

The application uses the USB Library as a "Device" stack, which will connect to a "Host". It is configured for five USB endpoints with a single
function having three interfaces. All of these are defined for a USB microphone device in the fullSpeedConfigurationDescriptor array variable
structure (located in system_init.c). This structure defines the connection to the host at 48 kHz with 16-bit stereo channel data. A 64 packet
queue is used for playback data, and a ping-pong buffer scheme is used for microphone record data. The maximum USB packets size is set to 48
* 2 channels/sample * 2 bytes/channel= 192 bytes, which gives a 1 ms stereo sample packet size at 48 kHz; therefore, the buffer size needs to be
of the same size.

All MPLAB Harmony applications use the function SYS_Initialize located in the source file system_init.c and are executed from main to
initialize various sub-systems such as the clock, ports, board support package (BSP), PMP, Codec, timers, UART, graphics, and interrupts. The
USB, AK4642 driver, graphics, and the application state machines are all updated via calls located in the function SYS_Tasks, executed from the
main polling loop, located in system_tasks.c.

The application code is contained in the standard source file app.c. The application code is initialized in SYS_Initialize using the application
APP_Initialize function to instantiate driver objects and start the USB Device interface. The application utilizes a simple state machine (APP_Tasks
executed from SYS_Tasks) with the following functions

• Sets up the drivers and the USB Library interface

• Responds to USB Host commands ("USB Record at 48 kHz/32 kHz/16 kHz", "USB Playback at 48 kHz/32 kHz/16 kHz")

• Initiates and maintains the bidirectional data audio streaming for "USB Record" and "USB Playback" functions.

Demonstration Features

• Playback using an AK4384 DAC daughter board on the PIC32 Bluetooth Audio Development Kit

• Playback using an AK4642 codec daughter board on the PIC32 Bluetooth Audio Development Kit

• Playback using an AK4954 codec daughter board on the PIC32 Bluetooth Audio Development Kit

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 92

• Playback using an AK7755 codec daughter board on the PIC32 Bluetooth Audio Development Kit

• USB connection to a host system using the USB Library Device Stack for a USB Speaker device using PIC32 Bluetooth Audio Development
Kit, PIC32MZ EF STARTER KIT with MEB2, and BTSK

• Displaying graphics on the PIC32 Bluetooth Audio Development Kit 220x176 LCD using MPLAB Harmony Graphics Library Library (add link to
MPLAB Harmony Graphics Composer Suite) and PMP (add link to Parallel Master Port (PMP) Driver Library) interface to OTM0221B graphics
controller.

• Displaying graphics on the PIC32 MZ EF SK/MEB2 480X272 pixel touchscreen using MPLAB Harmony Graphics Library Library * with the LCC
Interface to memory mapped frame buffer.

Tools Setup Differences

bt_audio_dk_ak4642 Configuration

If building this application from scratch, one would start by creating a 32-bit MPLAB Harmony project in MPLAB X (File -> New Project dialog).
Select PIC32MX Bluetooth Audio Development Kit and a configuration name of bt_audio_dk_. Click on the green MPLAB Harmony icon to bring
up the MPLAB Harmony Configurator (MHC). When using a PIM, select the board with the associated PIM, after selecting the device:
PIC32MZ2048EFH144

Open the Harmony Configurator Framework -> Drivers section, then expand Codec -> Click on the box for the required Codec/DAC Driver?** and
a submenu will appear. For this application the default values will suffice, although volume setting can be adjusted between a -75dB and +12dB
gain range. The I2S and I2C driver (default to DRV_I2S_INSTANCE_0 and DRV_I2C_INSTANCE_0, respectively) associated to the Codec driver
can be configured as described previously.

 Note:
The AK4953 driver is also used for the AK4954 Codec.

To use the Graphics Stack Library, under Graphics Stack, select Use Graphics Stack?. Further down, under Use Harmony Graphics Composer
Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch. Since the board uses the Crystal Fontz 176x220 pixel LCD with the
OTM2201A controller the PIC32 Bluetooth Audio Development Kit does not support a touchscreen. Under PMP, select Use PMP Driver?, which is
used for graphics data transfer. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

To use the USB Stack Library, under USB Library, select either Use USB Stack Under Select Host or Device Stack Select Device. Change the
Number of Endpoints Used to 5. Below that select USB Device Instance 0 and under that make Function 1 (matching the
fullSpeedConfigurationDescriptor struct in system_init.c: AUDIO Device Class, 3 Interfaces, 2 Audio Streaming interface; with a Write Queue Size
of 2 (not used) and a Read Queue Size of 64 (to mitigate any clock synchronization underflow/overflow audio artifacts). The Product ID Selection
gives the name shown at the Host, which in this case is "usb_speaker_demo". A USB Interrupt Priority of 1 is also used.

 Note:
Do not change the current fullSpeedConfigurationDescriptor values in system_init.c when using MHC to generate the project files.

pic32mz_ef_sk_meb2 Configuration

If building this application from scratch, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting in File > New Project.
Select the PIC32MZ EF Starter Kit plus MEB II and a configuration name of pic32mz_ef_sk_meb2. Click the green MPLAB Harmony icon to open
the MPLAB Harmony Configurator (MHC).

Expand the Harmony Configurator Framework > Drivers section, and then expand Codec > AK4953. Select Use AK4953 Driver? and a sub-menu
will appear. For this application the default values will suffice, except two clients are used (read and write), and the volume setting can be adjusted
between a -75 dB and +12 dB gain range. The I2S and I2C driver (default to DRV_I2S_INSTANCE_0 and DRV_I2C_INSTANCE_0, respectively)
associated to the Codec driver. I2S can be configured as described previously, using the 16 kHz values, although the application can modify these
during run-time.

The bit-banged implementation and "Include Force Write ...)" is required for the PIC32MZ I2C module (I2C_ID_2). TMR1 is used for the bit-banged
I2C signal timing over GPIO pins.

To use the Graphics Stack Library, under Graphics Stack, select Use Graphics Stack?. The default values given by the BSP can be used, which
select the LCC graphics interface to a WQVGA screen and Touch Screen Controller with event processing. The only change is to use a V-Sync
Refresh Strategy of "Conventional" rather than "Aggressive" to allow more processing time away from graphics processing and data bus transfer.

To use the USB Stack Library, under USB Library, select Use USB Stack Under Select Host or Device Stack Select Device. Change the
Number of Endpoints Used to 2. Below that select USB Device Instance 0 and under that select a Device Speed of USB_SPEED_FULL Select
Function 1 and the AUDIO Device Class 3 Interfaces, 2 Audio Streaming interfaces; with a Write Queue Size of 8 (not used) buffers) and a Read
Queue Size of 64 (to minimize "underflow/overflow" audio artifacts due to mismatched clocks between USB and the Codec). The Product ID
Selection gives the name shown at the Host, which in this case is "usb_speaker_demo".

pic32mz_ef_pim_bt_audio_dk Configuration

PIC32MX270F512L on BTSK with AK4642/AK4755/AK4954 Configurations

These configurations are similar to that used for PIC32MX270F512L PIM on the PIC32 Bluetooth Audio Development Kit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 93

Description

To build this project, you must open the usb_speaker.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/audio/usb_speaker.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_speaker.X <install-dir>/apps/audio/usb_speaker/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
using the Audio DAC Daughter Board included with the kit.

bt_audio_dk_ak4642 bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
with the Audio Codec Daughter Board AK4642EN.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
configured with the PIC32MX270F512L PIM and the Audio DAC
Daughter Board included with the kit.

pic32mz_ef_pim_bt_audio_dk pic32mz_ef_pim+bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit
configured with the PIC32MZ2048EFH144 PIM and the Audio DAC
Daughter Board included with the kit.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit with the MEB II.

bt_audio_dk_ak4954 bt_audio_dk+ak4954 This configuration runs on thePIC32 Bluetooth Audio Development Kit
with the Audio Codec Daughter Board AK4954EN.

bt_audio_dk_ak7755 bt_audio_dk+ak7755 This configuration runs on the PIC32 Bluetooth Audio Development Kit
with the Audio Codec Daughter Board AK7755EN.

pic32mx_bt_sk_ak4642 bt_sk+ak4642 This configuration runs on the PIC32 Bluetooth Starter Kit with the
Audio Codec Daughter Board AK4642EN.

pic32mx_bt_sk_ak4954 bt_sk+ak4954 This configuration runs on the PIC32 Bluetooth Starter Kit with the
Audio Codec Daughter Board AK4954EN.

pic32mx_bt_sk_ak7755 bt_sk_+ak7755 This configuration runs on the PIC32 Bluetooth Starter Kit with the
Audio Codec Daughter Board AK7755EN.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit and the Audio DAC Daughter Board (included in the kit)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32 Bluetooth Audio Development Kit and the Audio Codec Daughter Board AK4642EN (see Note)

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

 Note:
The PIC32 Bluetooth Audio Development Kit includes an Audio DAC Daughter Board; however, the Audio DAC Daughter Board
must be replaced by the Audio Codec Daughter Board AK4642.

PIC32 Bluetooth Audio Development Kit with PIC32MX270F512L PIM and the Audio Codec Daughter Board AK4384EN

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32MZ EF Starter Kit and the Multimedia Expansion Board II (MEB II)

In this configuration, Jumper J9 must be set to EBIOE, otherwise the display will be blank white. Jumper J9 is located at back side of MEB II.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 94

• Set the Jumper 9 to EBIOE

• Connect PIC32EF Starter Kit

• Connect a microphone device to MIC IN Jack of the AK4953 Codec on MEB II board

• Plug in Power cord.

Note that setting jumper 9 to EBIOE is to enable external SRAM, which is used by graphics double buffering in this configuration. In fact, external
SRAM is not mandatory for graphics double buffering. In this application, enabling external SRAM is to save more internal SRAM space.

Running the Demonstration

This section demonstrates how to run the demonstration.

Description

 Important!
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues.
A PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. These configurations set the target processor, the board and the Codec to be used in the output interface. Refer to Building the Application
for details.

Do the following to run the demonstration:

1. Connect speakers or headphones to the headphone (HP) or line-out connector on the Audio DAC Daughter Board or the PIC32 Audio Codec
Daughter Board AK4642EN, or the MEB II, as appropriate.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 95

2. Connect power to the board.

3. Connect the board using the USB mini-B connector (Device) for the PIC32 Bluetooth Audio Development Board, or the USB micro-B connector
for the MEB II to the Host computer with a standard USB cable.

4. Allow the Host computer to acknowledge, install drivers (if needed) and enumerate the device. No special software is necessary on the host
side.

5. If needed, configure the Host computer to use the usb_speaker outputs as the selected audio device. This may be done in the system
configuration or "Control Panel" depending on the operating system. For Windows, this is done in the Playback Devices dialog, which is
accessed by right clicking the loudspeaker icon in the taskbar.

6. Play audio on the Host computer. This may be done with a standard media player or through a variety of sources including operating system
generated sounds or video. You can observe that the USB connection through the Playback tab in the Sound Dialog.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 96

7. Listen to the audio output on the speakers or headphones connected to the board. The volume will typically be adjusted by the host.

usb_speaker_hi_res

This section describes a USB Speaker that operates at 96 kHz sampling rate and 24-bit data. Information is provided on the supported
demonstration boards, how to configure the hardware, and how to run the demonstration.

Description

This demonstration application configures a USB Speaker device to run at a 96 kHz sampling rate and 24-bits per stereo sample.

The system will attach to a USB host (such as a personal computer) using a USB Audio 1.0 Device interface, which can accommodate a USB
Device class speaker. The embedded system will enumerate with a USB audio device endpoint, and enable the host system to input audio from
the USB port using a standard USB full-speed implementation. The embedded system will stream USB playback audio to the codec over the I2S
interface. The codec driver sets up this audio interface, timing, DMA channels and buffer queue, to enable a continuous audio stream. The digital
audio is transmitted to the codec through a bidirectional I2S data module. The codec is configured through and I2C command interface.

System Application Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz. The demonstration uses the following features:

• 220x176 color LCD

• Five LEDs

• USB Device interfaces

• Two X32 sockets, one of which will be used to host a codec module daughter board that will be used for the USB playback demonstration
through a 3.5 mm audio jack (labeled HP Out)

 Note:
The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth Daughter Board and an PIC32 Audio DAC
Daughter Board - AK4384VT; however, the BTM805 Daughter Board is unused.

The following figure shows the applications system architecture.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 97

The interface between the processor and the LCD display on the Bluetooth Audio Development Kit is an 8-bit Parallel Master Port (PMP) used for
data transfer of graphics commands implemented by a graphics processor. The program uses the MPLAB Harmony Graphics Composer User's
Guide to draw on the screen.

The codec utilizes one instance of I2S , with the I2S module and codec configured, as shown in the following tables.

The following table displays the I2S clock values generated by the PIC32 master. These values are derived from the following formulas, starting
with the REFCLK0 value (12.288 MHz) used for the I2S MCLK, and the sample rate, Fs (48000 Hz), as given by:
MCLK = 12,288,000 Hz
Fs = 96,000 Hz
NUM_CHANNELS = 2 channels
FRAME_SIZE = 32 bits/channel * NUM_CHANNELS = 64 bits/frame
LRCK = Fs
BCLK = FRAME_SIZE * Fs

Table 1. 96 kHz Sampling I2S Clock Values

I2S Function Value Description/PIC32 Pin (Port)

LRCK 96.000000 kHz Sample rate clock

BCLK 6.144000 kHz Bit Rate Clock

MCLK 12.288000 kHz Master Clock (REFCLK01)

The I2S is configured for bidirectional data flow, using the SDI1 pin for input (unused) and SDO1 for output to the headphone jack. The following
table displays the pins used on the PIC32 Bluetooth Audio Development Kit for the I2S interface to the codec.

Table 2. I2S Data pins PIC32MX480F512L (Bluetooth Audio Development Kit)

PIC32 Name Description I2S PIC32 Pin

SDI1 Serial Data In SDI1 73(RC13)

SD01 Serial Data Out SDI1 72(RD0)

SS1 Bit Clock BCLK 69(RD9)

SCK1 Master Clock MCLK 70(RD10)

REFCLK01 Reference Clock - 53(RF8)

The following table displays the I2S set up for 24-bit data per stereo channel data transferred serially using 32-bit framing per channel (the least
significant byte is 0). The data is configured as stereo (two channel). The 24-bit stereo samples are transferred to the codec memory buffer via
DMA using 32-bit words. A 16-deep buffer queue is used to mitigate USB host, and USB device clock synchronization issues. The codec I2S slave
is configured using the following parameters calculated from the clock values:
MCLK_DIV = MCLK/LRCK

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 98

BCLK_DIV = MCLK/BCLK

Table 3. I2S Parameter Values (48 kHz Sampling)

I2S Value Description/PIC32 Pin (Port)

PIC32 Mode HOST Description

AK4642 Mode SLAVE Controlled by the PIC32

MCLK_MULT (mhc) 128 Sample rate multiplier for MCLK

MCLK_BCLK_RATIO 2 Sample rate multiplier for BCLK

Data Sizes 32/32/32 32-bit data/32 FIFO/32 bits per channel

Channels Stereo 2-channels

Timing LJ Left Justified

Software Architecture

All MPLAB Harmony applications use the function SYS_Initialize located in the source file system_init.c, which is part of the main
function used to initialize various subsystems such as: the clock, ports, Board Support Package (BSP), PMP, codec, timers, graphics, and
interrupts. The USB, AK4642 driver, graphics, and the application state machines are all updated via calls located in the function SYS_Tasks,
executed from the main polling loop, located in system_tasks.c.

The application code is contained in the standard source file app.c. The application code is initialized within SYS_Initialize using the
application APP_Initialize function to instantiate driver objects and start the USB device interface. The application utilizes a simple state
machine (APP_Tasks executed from SYS_Tasks) with the following functions:

1. Set up the device peripheral drivers and USB Library interface.

2. Initiating read requests to the USB host over the USB device interface to start the playback audio stream.

3. Initiating the write data stream to the codec when the USB read data packet buffer has filled to a set level.

4. Execute responses to the USB device stream requests “read packet received” to maintain the stream and to playback the data through writes
to the codec.

5. Respond to data buffer completes from the codec read and write buffer DMA complete interrupts, used to initiate USB device data reads to
maintain the audio stream from the USB host.

6. To control the muting function of the USB device interface when the stream data is paused, or playback resumes of the USB interface, (i.e.,
change of the USB audio interface alternate settings).

The USB interface uses separate host and device data timing. The USB Device receiving the playback stream must mitigate buffer underflow and
overflow problems to the codec, which is done by using a 64-deep packet buffer queue. Dropouts can occur if the receive rate is lower than the
transmit rate to the codec, however this occurs rarely using a buffer of this length.

Demonstration Features

• High-speed (96 kHz) and high-definition (24-bit) USB audio connection to a host system using the USB V1.0 Library Device Stack for a USB
speaker device using PIC32 Bluetooth Audio Development Kit.

• Playback of 96 kHz/24 bit audio using an AK4384 DAC daughter board on the PIC32 Bluetooth Audio Development Kit.

• Displaying graphics on the PIC32 Bluetooth Audio Development Kit 220x176 LCD using MPLAB Harmony Graphics Composer Suite and the
Parallel Master Port Driver Library interface to OTM0221B graphics controller.

Tools Setup Differences

PIC32MX470F512L on the PIC32 Bluetooth Audio Development Kit with AK4384 Configuration

When building this application, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Next, select
PIC32 Bluetooth Audio Development Kit and a configuration name, such as bt_audio_dk indicating the default processor and codec daughter
board for the PIC32 Bluetooth Audio Development Kit. Click the MPLAB Harmony icon to open the MPLAB Harmony Configurator (MHC).

Expand the MPLAB Harmony Configurator Framework > Drivers section, and then expand Codec >. Select the required Codec (AK4384) and a
sub-menu will appear. For this application the default values will suffice, except for the following:

• The volume setting can be adjusted between a -75 dB and +12 dB gain range using the range 0 to 255 setting.

Expand I2S, the Use I2S Driver? option should already be selected. The driver callbacks require Receive DMA Support (for the read client). This
automatically selects Enable DMA Channel Interrupts for the callback when buffer transfer has completed. Expand I2S Driver Instance and select
Audio Communication Width corresponding to 32 Data/32 FIFO/32 per Channel. The Audio Protocol Mode is left justified. The Queue Size
Transmit is set to 64. Note that the transmit queue is used for the codec read client of the AK4384. Queue Size Receive is used for the read client
for other codecs.

The codec I2S driver is implemented using the PIC32 SPI peripheral block. The AK4384 Codec Driver also uses a bit-banged SPI control interface
by default, which defaults to Timer instance 0 when used with the Prescale value of one to control the SPI timing.

To use the Graphics Stack Library, select Use Graphics Stack?. Further down, within Use Harmony Graphics Composer Suite? > Middleware >
Use Aria User Interface Library?, clear Enable Touch. Since the board uses the Crystal Fontz 176x220 pixel LCD with the OTM2201A controller,
the PIC32 Bluetooth Audio Development Kit does not support a touchscreen. Within PMP, select Use PMP Driver?, which is used for graphics

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 99

data transfer. Expand that section, and change the value of Strobe Wait States to PMP_STROBE_WAIT_4.

Under the USB Stack Library select Use USB Stack, and then use the default selection, which is Use Device. Change the Number of Endpoints
Used to "2". Below that select USB Device Instance 0, and then select usb_speaker_demo from Product ID Selection. This selection generates the
fullSpeedConfigurationDescriptor struct in system_init.c: AUDIO Device Class, 3 Interfaces, 2 Audio Streaming interface; with a Write Queue
Size of 2 (not used) and a Read Queue Size of 64 (the same as the codec write queue size). The Product ID Selection also gives the name shown
at the host, which in this case is usb_speaker_demo. A USB Interrupt Priority of "1" is also used.

 Note:
Do not change the current fullSpeedConfigurationDescriptor values in system_init.c when using MHC to generate the project
files, since it has been modified from 16-bit data and 48 kHz sampling rate to 96 kHz and 24-bit data, which also changes the
packet size (1 ms audio packets are used for the full speed USB interface).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the usb_speaker_hi_res.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and the supported configurations. The parent folder for these files is
<install-dir>/apps/audio.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_speaker_hi_res.X <install-dir>/apps/audio/usb_speaker_hi_res/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

bt_audio_dk bt_audio_dk This demonstration runs on the PIC32MX470F512L mounted on the PIC32 Bluetooth Audio
Development Kit with the PIC32 Audio DAC Daughter Board - AK4384VT.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the PIC32MX470F512L and the PIC32 Audio DAC Daughter Board - AK4384VT.

Connect switch S1 in the middle of the PIC32 Bluetooth Audio Development Board to PIC32_MCLR. Connect the AK4384 Daughter Board to the
X32 Connector, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 100

Running the Application

This section demonstrates how to run the demonstration.

Description

Important!

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF
copy of the release notes is provided in the /doc folder of your installation.

Do the following to run the demonstration:

1. Power up the board and connect the programmer. Compile the application, program the target device, and run it. After the program starts, the
name of the application should appear on the display.

2. Connect speakers or headphones to the headphone (HP) connector of the PIC32 Audio DAC Daughter Board - AK4384VT, as shown in the
following figure.

3. Connect the board using the USB mini-B connector (Device) for the PIC32 Bluetooth Audio Development Kit, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 101

4. Allow the host computer to acknowledge, install drivers (if needed), and enumerate the device. No special software is necessary on the host
side.

5. If needed, configure the host computer to use the usb_speaker_hi_res outputs as the selected audio device. This may be done in the system
configuration or Control Panel depending on the operating system. For Windows, this is done in the Playback Devices tab of the Sound dialog,
which is accessed by right clicking the loudspeaker icon in the taskbar. Make the USB Speaker Example the default device, as shown in the
following figure.

6. Play audio on the host computer. This may be done with a standard media player, or through a variety of sources including operating system
generated sounds or video. You can observe the USB connection through the Playback tab in the Sound dialog.

Volume I: Getting Started With MPLAB Harmony Applications Help Audio Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 102

7. Listen to the audio output on the speakers or headphones connected to the board. The volume will typically be adjusted by the host.

Bluetooth Demonstrations

This section provides descriptions of the PIC32 Bluetooth demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

PIC32 Bluetooth Demonstration Applications Help.

Description

This help file contains instructions and associated information about MPLAB Harmony Bluetooth demonstration applications, which are contained
in the MPLAB Harmony Library distribution.

There are two types of applications: those built using a Bluetooth Driver (currently there are only two, for the BM64), and those using the MPLAB
Harmony PIC32 Bluetooth Stack Library (which is not written as a driver).

The Bluetooth Stack Library, which is considered the "basic" Bluetooth Stack , includes basic demonstrations that are referred to as Data
Demonstrations. This section describes the hardware requirement and procedures to run these Basic Bluetooth Stack firmware projects on
Microchip demonstration and development boards.

In addition to the Data Demonstrations provided with the PIC32 Bluetooth Basic Stack Library, additional Premium Demonstrations, which are
available for purchase, demonstrate the capabilities of the Bluetooth Audio Stack Library. Information is provided in the Premium Demonstrations
section on how to obtain, configure, and run these demonstrations.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This section provides information on the standard Data Demonstrations and demonstration applications built with the BM64 Driver, as well as the
purchased Premium Demonstrations.

Demonstration Functionality

Describes the functionality of the demonstrations.

Description

Basic Functionality

Bluetooth Module

The PIC32 Bluetooth Starter Kit and the PIC32 Bluetooth Audio Development Kit provide hardware support for the BlueCore® CSR8811™.

CSR8811

The CSR8811 is a single-chip radio and baseband IC for Bluetooth 2.4 GHz systems including Enhanced Data Rate (EDR) to 3 Mbps and
Bluetooth low energy. The CSR8811 supports Bluetooth Class 1 transmission, and supports multiple device connection. The PIC32 Bluetooth
Starter Kit and the PIC32 Bluetooth Audio Development Kit use a module based on the CSR8811 radio in its default configuration (see Note).

 Note:
The Flairmicro BTM805 module using the CSR8811 device is integrated in the PIC32 Bluetooth Starter Kit and is integrated in the
BTM805 Bluetooth Daughter Board that is mounted on the PIC32 Bluetooth Audio Development Kit.

Bluetooth Device IDs

The Bluetooth software remembers and stores in Flash memory the last 10 unique Bluetooth device IDs to which it successfully paired to facilitate
faster automatic reconnection when there is no currently active Bluetooth connection. If Bluetooth is turned OFF on a user smartphone that is
currently connected and re-enabled later, it will automatically reconnect if in range or when it comes back into range.

 Note:
Currently, the demonstration does not have support for SPI Flash memory due to limitations in MPLAB Harmony, and therefore,
the pairing information will not be stored or recovered on a power or hardware reset.

Bluetooth Device Address

When the development kit is powered on, it generates a random unique Bluetooth Device Address for any given development kit hardware.
Optionally, at design time, the user can specify a Bluetooth Device Address in the application code of the development kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 103

http://www.microchip.com/mplabharmony

The device address is a six byte hexadecimal value. The macro, BT_DEVICE_ID, defines the first four bytes of the hexadecimal value and
BT_DEVICE_ID_2LSB defines the last two bytes of the hexadecimal value. The last two bytes of the device address can be randomized by
enabling BT_DEVICE_ID_2LSB_RANDOMIZE. These macros are defined in btconfig.h.

Setting a specific hard-coded device address is not recommended during the design and development state, as Bluetooth connection problems
may be experienced if another development board with the same Bluetooth Device Address is within range.

Additional Bluetooth Resources

Provides information on additional Bluetooth demonstration resources.

Description

In addition to the demonstration capabilities described in the Demonstrations section, additional Bluetooth demonstration resources are available.

Other Android Applications

The Bluetooth data smartphone demonstration can also be executed using the Bluetooth SPP-pro application. This app can be downloaded by
visiting:

https://play.google.com/store/apps/details?id=mobi.dzs.android.BLE_SPP_PRO&hl=en

Once installed, the commands can be sent and received in CMD line mode/Keyboard mode of the terminal emulator of the application. The
commands will be sent and received in the format shown in the following table.

Windows Handset Applications

For a Windows mobile handset, the commands can be sent and received via data terminal. The application can be downloaded by visiting:

http://www.windowsphone.com/en-us/store/app/bt-terminal/09d679af-bdd8-40b2-b54e-56d68aeb03e0

Once installed, the commands can be sent and received from the terminal emulator of the application. The commands can be sent and received in
the format shown in the following table.

Bluetooth Data Windows Personal Computer Demonstration Setup

Program the device with the hex file, data_temp_sens_rgb.X.production.hex.

1. On the Windows personal computer, select Start> Control Panel > Hardware and Sounds > Add a device. A list of available Bluetooth devices
appears.

2. From the list, select BTSK.

3. Open a terminal emulator. For this example PuTTY was used. This Windows application can be obtained by visiting:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

4. A connection is required to be established between PuTTY and the PIC32 Bluetooth Starter Kit development board. This can be done by
selecting the "Serial" Connection type and the COM port assigned to the board in the PuTTY configuration window. The assigned COM ports
can be identified from Device Manager > Ports.

5. Once connection is established, the following commands can be sent.

Command Description

R Programs LED for 100% of Red

G Programs LED for 100% of Green

B Programs LED for 100% of Blue

r Programs LED for 50% of Red

g Programs LED for 50% of Green

b Programs LED for 50% of Blue

BM64 Driver Demonstrations

This section provides instructions about how to run the demonstration applications built using the BM64 Driver.

BM64_a2dp_hfp

This topic provides information on the supported demonstration boards, how to configure the hardware, and how to run the demonstration.

Description

In this demonstration application, the BM64 Module Daughter Board, installed on the PIC32 Bluetooth Audio Development Kit (BTADK), is used to
stream A2DP audio from a Bluetooth host, such as a smartphone, to a pair of headphones connected to the Audio DAC Daughter Board which
comes with the BTADK.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 104

http://www.windowsphone.com/en-us/store/app/bt-terminal/09d679af-bdd8-40b2-b54e-56d68aeb03e0
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

The demonstration can also automatically answer a voice call coming in via Hands-Free Protocol (HFP), interrupting (and pausing) any A2DP
streaming in progress. Local audio is input using a microphone connected to the MIC IN input of the BM64 Module Daughter Board. When the call
is terminated, streaming resumes.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz with the following features:

• 220x176 color LCD

• Six push buttons (SW1-SW6)

• Five LEDs

• USB Device and Host interfaces

• Two X32 sockets, one for Bluetooth module and a second for a codec or DAC

 Notes:
1. The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth Daughter Board and an AK4384 Audio DAC

daughter Board; however, you must replace the BTM805 daughter board with the daughter board for the BM64, and the
AK4384 DAC with the AK4954A Codec Daughter Board, if applicable.

2. The USB Device and Host interfaces are not used in this application.

Surrounding the PIC32MX470F512L microcontroller are a set of headers, which accept various plug-in modules (PIM), including one for a
PIC32MX270F512L PIM as a second configuration for this project.

The following figure illustrates the application architecture.

The PIC32 microcontroller (MCU) runs the application code, and communicates with the BM64 over a USART interface operating at 115,200 baud.
The BM64 module contains its own Bluetooth stack, so it is unnecessary to include a software Bluetooth stack in the PIC32 MCU. The program
takes up about 40% of the PIC32MX470F512 microcontroller’s program space, and 27% of its RAM.

The interface between the PIC32 MCU and the LCD is an 8-bit parallel master port (PMP). The program uses the MPLAB Harmony v2.0 Graphics
Library to draw on the screen. The buttons are also interfaced using GPIO pins.

As with any MPLAB Harmony application, the SYS_Initialize function, which is located in the system_init.c source file, makes calls to initialize
various subsystems, such as the clock, ports, board support package (BSP), BM64, codec, PMP, timers, graphics, and interrupts.

The BM64 and codec drivers, graphics, timers, and the application state machines are all updated through calls located in the SYS_Tasks function
in system_tasks.c file. Interrupt handlers in the system_interrupt.c file are used for the four DMA channels (only channels 0 and 1 are used),
the USART, and the two timers.

The application code is contained in two source files, app.c and audio.c. The former contains the application state machine (APP_Tasks). It

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 105

first initializes the application, sets up a periodic timing callback, and then waits for the BM64 driver’s internal state machine to complete
initialization (indicated by the function DRV_BT_GetPowerStatus returning RV_BT_STATUS_READY). At that point the application calls a
function called audioStart which initiates audio processing.

Meanwhile, the audio state machine in audio.c has received a handle to the BM64 driver by calling DRV_BT_Open, and then setting callbacks for
two event handlers (AUDIO_BT_RxBufferEventHandler for buffer event handling, and _audioEventHandler for general event handling). After that it
gets a handle to the codec driver by calling its DRV_CODEC_Open function with a mode of DRV_IO_INTENT_WRITE. Then it registers an event
handler, AUDIO_CODEC_TxBufferEventHandler as a callback with the codec driver. Then, it waits for the application to call audioStart before it
makes its first call to DRV_BT_BufferAddRead to request audio samples from the BM64.

The event handler callback is given control whenever a buffer has been processed. By default two sets of buffers are used (AUDIO_QUEUE_SIZE
= 2), each with 1250 32-bit samples; however, simply by changing the queue size a circular buffer scheme can be used instead. As each buffer is
handed off to thebe sent to the codec, the other one becomes available to be filled by the BM64.

The BM64 and codec drivers interface with their respective I2S interfaces via DMA, but this is largely transparent to the application, as it is all
taken care of by MPLAB Harmony.

Demonstration Features

• Uses the BM64 Bluetooth Driver Library to read audio samples from the BM64

• Use of either a “ping-pong” or circular buffer scheme

• At a lower level, the BM64 driver uses the USART Driver Library to talk to the BM64 module

• Uses the AK4954 or AK4384 Codec Driver Library to write samples to the AK4384 DAC or AK4954 Codec

• At a lower level, using the I2S Driver Library between the BM64 and BM64 driver, and the AK4384 or AK4954 Codec Library and the AK4384
DAC or AK4954 Codec

• Use of “ping-pong” audio buffers

• Sending and receiving characters between the USART of the PIC32 MCU and the BM64 (see USART Driver Library)

• Displays graphics on the 220x176 LCD of the PIC32 Bluetooth Audio Development Kit using the MPLAB Harmony Graphics Library (see
MPLAB Harmony Graphics Composer Suite) and the Parallel Master Port (see PMP Driver Library)

• Processing of button pushes on the PIC32 Bluetooth Audio Development Kit using a state machine for contact debouncing (see Ports
Peripheral Library)

• Use of two timers: one as a periodic 1 ms timer for the application, and a second used by the BM64 driver (see Timer Driver Library)

Tools Setup Differences

When building a new application, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select the
desired processor (PICMX470F512L or PIC32MX270F512L), and the PIC32MX Bluetooth Audio Development Kit. Click the MPLAB Harmony icon
to start the MPLAB Harmony Configurator (MHC). Under BSP Configuration, select the PIC32 Bluetooth Audio Development Kit (BM64+AK4384),
(BM64+AK4954), or PIC32MX270F512L w/ Bluetooth Audio Development Kit (BM64+AK4384) as appropriate for the hardware.

Open the Harmony Configurator Framework > Drivers section, and then expand Bluetooth > BM64 and select Use BM64 Driver?. A sub-menu will
appear with all options selected. Since you will only be using HFP, A2DP, and AVRCP protocols, clear the BLE Features? check box. Leaving the
HFP, A2DP, AVRCP Protocols selected will by default bring in the drivers for both the codec and the I2S (and I2C driver, if using the AK4954).

If using the AK4384 DAC, expand Drivers >CODEC > Use Codec AK4384?, which should already be selected. Select Specify MCLK value, and
enter 256. Expand Use Bit Banged SPI Control Interface and also Code AK4384 Driver Instance 0. Change the Timer driver (used for bit banging)
instance to 1. If using the AK4954 Codec instead, expand Drivers >CODEC > Use Codec AK4954?, which should already be selected. Select
Specify MCLK value, and enter 256. Then expand Drivers > Use I2C, which should also already be selected, and check the box Include Force
Write I2C Function.

Under I2S, Use I2S Driver should already be selected. Under Sampling Rate, enter 44100. Expand I2S Driver Instance 1, and change Transmit
DMA Channel to 1, and Receive DMA Channel to 3.

You will also want to go into the Timer section, select a second timer (change Number of Timer Instances from 1 to 2), and then within TMR Driver
Instance 1, change the Timer Module ID to TMR_ID_2, and the Prescale value to TMR_PRESCALE_VALUE_1.

In the USART section, Use USART Driver? should already be selected. The default parameters are okay as is.

Under System Services >DMA, Use DMA System Service should already be selected. Change the Number of DMA Channel Instances to 4 and
press Enter. Under DMA Channel Instance 0, change the Interrupt Priority to INT_PRIORITY_LEVEL2. Under DMA Channel Instance 1, change
the Interrupt Priority to INT_PRIORITY_LEVEL4. Under DMA Channel Instances 2 and 3, change the Interrupt Priority to
INT_DISABLE_INTERRUPT.

If your application is going to be using graphics, as this one does, within Graphics Stack, select Use Graphics Stack?. Further down, within Use
Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch since the LCD on the PIC32 Bluetooth
Audio Development Kit does not support a touchscreen. Since you are using the LCD, you will also need to go back to the Drivers section, and
within PMP, select Use PMP Driver?. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bluetooth
Demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 106

Description

To build this project, you must open the a2dp_avrcp_hfp.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/audio/BM64_a2dp_hfp.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

a2dp_avrcp_hfp.X <install-dir>/apps/bluetooth/audio/BM64_a2dp_hfp/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk+bm64 This demonstration runs on the PIC32MX470F512L mounted
on the PIC32 Bluetooth Audio Development Kit and the BM64
Bluetooth Module Daughter Board.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk+bm64 This demonstration runs on the PIC32MX270F512L PIM
mounted on the PIC32 Bluetooth Audio Development Kit and
the BM64 Bluetooth Module Daughter Board.

bt_audio_dk_ak4954 bt_audio_dk+bm64+ak4954 This demonstration runs on the PIC32MX470F512L mounted
on the PIC32 Bluetooth Audio Development Kit and the BM64
Bluetooth Module Daughter Board plus AK4954 Codec
Daughter Board.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the on-board PIC32MX470F512L device and the BM64 Bluetooth Module Daughter Board (see
Note), using either the AK4384 Audio DAC Daughter Board, or the AK4954A Codec Daughter Board.

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

PIC32 Bluetooth Audio Development Kit with the PIC32MX270F512L Plug-in Module (PIM) and the BM64 Bluetooth Module Daughter Board (see
Note).

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIM_MCLR.

PIC32 Bluetooth Audio Development Kit with the on-board PIC32MX470F512L device and the BM64 Bluetooth Module Daughter Board (see
Note), plus AK4954 Codec Daughter Board.

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 107

 Note:
The PIC32 Bluetooth Audio Development Kit includes a BTM805 Bluetooth Daughter Board; however, it must be replaced by the
BM64 Bluetooth Module Daughter Board (AC320032-3). If using the AK4954 codec, the Audio DAC Daughter board must be
replaced by the PIC32 Audio Codec Daughter Board AK4954A, which is sold separately on microchipDIRECT as part number
AC324954.

Running the Demonstration

This section describes how to run the demonstration.

Description

Do the following to run the demonstration:

1. Using the BM64_bootloader application, if you have not done so, configure the BM64 as an I2S slave device and give it a unique device name.

2. Connect a pair of headphones to the headphone out connector on the Audio DAC Daughter Board which comes by default with the PIC32
Bluetooth Audio Development Kit.

3. Compile the application, program the target device, and run it. While compiling, select the appropriate MPLAB X IDE project configuration
based on whether you are using the PIM, and AK4954 Codec instead of the AK4384 DAC. Refer to Building the Application for details. After the
program starts, the device name and address should appear on the display and the connection icon in the top-right corner will be gray.

4. Press and hold the SW1 button on the Bluetooth Audio Development Kit to put the BM64 Module into pairing mode, indicated by the LEDs on
the BM64 Module flashing alternately.

5. In the Bluetooth Settings of your smartphone, find the name of the BM64 which you set up in Step 1, then select and pair with it. The two LEDs
on the BM64 Module should stop flashing, and instead just one should flash twice every few seconds. Meanwhile the connection icon in the top
right of the LCD should have changed from gray to bright blue.

6. Go into an application on the smartphone that outputs audio, such as Music. Select a song and press play. A Play icon should appear on the
LCD screen of the Bluetooth Audio Development Kit as shown below and you should hear audio from the headphones.

7. Use SW1 and SW2 on the Bluetooth Audio Development Kit to increase and decrease the volume, SW4 to alternately pause and resume the
playback, SW3 and SW5 to go to the next or previous song (or use a long press of SW3/SW5 for fast forward or rewind). Set Table 1 below.

8. Use a long press of SW2 to disconnect from the smartphone, and a another long press of SW2 to reconnect. Use a long press of Sw4 to forget
all previous pairings.

9. Call the smartphone from another phone such as a wired desk phone. When the smartphone is answered, either automatically or manually, the

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 108

audio should switch over to the BM64. Talking into the handset of the desk phone should come out of the headphones, and talking into a
microphone connected to the BM64 Module should come out of the desk phone handset. When the call is terminated, any A2DP streaming that
was in progress should resume.

Control Descriptions

Control Description

SW1 Volume Up (hold > 1 second for Begin Pairing function).

SW2 Volume Down (hold > 1 second for Disconnect or Link Last function).

SW3 Play Next Song (hold > 1 second for Fast Forward).

SW4 Play Next Song (hold > 1 second for Fast Forward).

SW5 Play Previous Song (hold > 1 second for Rewind).

BM64_ble_comm

This topic provides information on the supported demonstration boards, how to configure the hardware, and how to run the demonstration.

Description

In this demonstration application, the Bluetooth® Low Energy (BLE) capabilities of the BM64 Module Daughter Board, installed on the PIC32
Bluetooth Audio Development Kit, are used to send a string of characters to a smartphone when one of the push buttons is pressed on the
BTADK, and to receive a string of characters from the smartphone and display them on the LCD of the PIC32 Bluetooth Audio Development Kit.

Although the current BM64 module does not support standard BLE GATT predefined profiles, it does provide what is called a Transparent Service,
which allows generic text strings up to 20 bytes in length to be sent back and forth between a server (e.g., BM64) and a client (e.g., smartphone).
Therefore, users can add their own structure on top of this capability and implement their own protocol such as a command/data format.

The Transparent Service provides a BLE substitute for the Serial Port Protocol (SPP) of classic Bluetooth for use with an Apple® iPhone®, which
does not support SPP.

To successfully run this application, you will need an iPhone 4s or later, which supports Bluetooth 4.0.

 Note:
This MPLAB Harmony application has been designed to also work with a smartphones running Android™, as well as an iPhone;
however, the firmware on the BM64 module currently does not support connections to Android smartphones. If you need this
application to work with an Android™ phone, please contact your local Microchip Marketing Representative as to the possibility of
getting an update to the BM64 firmware.

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz with the following features:

• 220x176 color LCD

• Six push buttons (SW1-SW6)

• Five LEDs

• USB Device and Host interfaces

• Two X32 sockets, one one for a Bluetooth module and a second for a Codec or DAC

 Notes:
1. The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth Daughter Board and an AK4384 Audio DAC

daughter Board; however, you must replace the BTM805 daughter board with the daughter board for the BM64.

2. The USB Device and Host interfaces, as well as the LEDs, and the AK4384 Audio DAC Daughter Board are not used in this
application.

Surrounding the PIC32MX470F512L microcontroller are a set of headers, which accept various plug-in modules (PIM), including one for the
PIC32MX270F512L as a second configuration for this project.

The following figure illustrates the application architecture.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 109

The PIC32 microcontroller (MCU) runs the application code, and communicates with the BM64 over a USART interface operating at 115,200 baud.
The BM64 module contains its own Bluetooth stack, so it is unnecessary to include a software Bluetooth stack in the PIC32 MCU. The program
takes up only about 35% of the PIC32MX470F512 microcontroller’s program space, and 25% of its RAM.

The interface between the PIC32 MCU and the LCD is an 8-bit parallel master port (PMP). The program uses the MPLAB Harmony v2.0 Graphics
Library to draw on the screen. The buttons are also interfaced using GPIO pins.

As with any MPLAB Harmony application, the SYS_Initialize function, which is located in the system_init.c source file, makes calls to initialize
various subsystems, such as the clock, ports, board support package (BSP), PMP, BM64, timers, UART, graphics, and interrupts.

The BM64 driver, graphics, and the application state machines are all updated through calls located in the SYS_Tasks function in
system_tasks.c file. Interrupt handlers in the system_interrupt.c file are only used for receiving characters from the UART and for the two
timers.

The application code is contained in two principal source files. The first, app.c, contains a simple state machine (APP_Tasks), which initializes the
application, and then while idle, calls a secondary state machine, buttonTasks, to process any button pushes (resulting in a call to the BM64 driver
to send a string from the BM64 to a connected smartphone).

APP_Tasks also calls another secondary state machine (bleTasks), which is located in the source file ble.c to process BLE-related tasks.
bleTasks receives a handle to the BM64 driver by calling DRV_BT_Open, and then registers an event handler, _BLEEventHandler, as a callback
with the BM64 driver. The callback is called when either a message is received from the BM64 (which is then put on the display) or when the BLE
status changes (i.e., when it is connected or disconnected). Both of these actions result in updates to the LCD display through calls to the graphics
sub-system.

Demonstration Features

• BM64 Bluetooth Driver Library

• At a lower level, the BM64 Driver uses the USART Driver Library to communicate with the BM64 module

• BLE advertising

• Connection of BM64 to the smartphone

• Display of service and characteristic UUIDs on the smartphone

• Sending of a text string from the BTADK/BM64 to the smartphone when a button is pressed

• Sending of a text string from the smartphone to the BM64/BTADK, which displays it on the LCD

• Sending and receiving characters between the USART of the PIC32 MCU and the BM64. (see USART Driver Library)

• Displaying graphics on the 220x176 LCD of the PIC32 Bluetooth Audio Development Kit using the MPLAB Harmony Graphics Library (see

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 110

MPLAB Harmony Graphics Composer Suite) and the Parallel Master Port (PMP) Driver Library.)

• Processing of button pushes on the PIC32 Bluetooth Audio Development Kit using a state machine for contact debouncing. (see Ports
Peripheral Library)

• Use of two timers: one as a periodic 1 ms timer for the application, and a second used by the BM64 driver (see Timer Driver Library)

Tools Setup Differences

When building a new application, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select the
desired processor (PICMX470F512L or PIC32MX270F512L) and the PIC32MX Bluetooth Audio Development Kit. Click the green MPLAB
Harmony icon to start the MPLAB Harmony Configurator (MHC). Under BSP Configuration, select PIC32 Bluetooth Audio Development Kit
(BM64+AK4384) or PICMX270F512L w/ Bluetooth Audio Development Kit (BM64+AK4384).

Open the Harmony Configurator Framework > Drivers section, and then expand Bluetooth > BM64 and select Use BM64 Driver?. A submenu will
appear with all options selected. Since you will only be using BLE functions, clear HFP,A2DP,AVRCP protocols?. If this option is selected, it
would also by default, bring in the drivers for the AK4384 codec and I2S.

You will also want to go into the Timer section, select a second timer (change Number of Timer Instances from 1 to 2), and then within TMR Driver
Instance 1, change the Prescale value to TMR_PRESCALE_VALUE_1.

In addition, go into the USART section and select Use USART Driver? and use the default parameters.

If your application is going to be using graphics, as this one does, within Graphics Stack, select Use Graphics Stack?. Further down, within Use
Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch since the LCD on the PIC32 Bluetooth
Audio Development Kit does not support a touchscreen. Since you are using the LCD, you will also need to go back to the Drivers section, and
within PMP, select Use PMP Driver?. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the BM64_ble_comm.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/audio/BM64_ble_comm.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

BM64_ble_comm.X <install-dir>/apps/bluetooth/utilities/BM64_ble_comm/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 111

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk+bm64 This demonstration runs on the PIC32MX470F512L mounted
on the PIC32 Bluetooth Audio Development Kit and the BM64
Bluetooth Module Daughter Board.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk+bm64 This demonstration runs on the PIC32MX270F512L PIM
mounted on the PIC32 Bluetooth Audio Development Kit and
the BM64 Bluetooth Module Daughter Board.

Configuring the Hardware

Description

PIC32 Bluetooth Audio Development Kit with the on-board PIC32MX470F512L device and the BM64 Bluetooth Module Daughter Board (see Note)

When using the PIC32MX470F512L and the BM64 Bluetooth Module Daughter Board, switch S1 on the PIC32 Bluetooth Audio Development
Board should be set to PIC32_MCLR.

When using the PIC32MX270F512L PIM and the BM64 Bluetooth Module Daughter Board, switch S1 on the PIC32 Bluetooth Audio Development
Board must be set to PIM_MCLR (see Note).

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 112

 Note:
The PIC32 Bluetooth Audio Development Kit includes a BTM805 Bluetooth Daughter Board; however, it must be replaced by the
BM64 Bluetooth Module Daughter Board (AC320032-3) on headers J8 and J11.

Running the Demonstration

This section describes how to run the demonstration.

Description

Do the following to run the demonstration:

1. If you have not already done so, use the BM64_bootloader application to give the BM64 module a unique device name.

2. Compile the application selecting the appropriate MPLAB X IDE project configuration based on whether or not you are using the PIM (refer to
Building the Application for details).

3. Program the target device, and run the application. After the program starts, the name of the application should appear on the display and the
connection icon in the top-right corner will be white (advertising).

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 113

4. The mobile application, BLE Scanner, by Bluepixel Technologies LLP, is used in this demonstration. This application is available as a free
download from iTunes. Locate and download this application to your smartphone.

 Note:
If you are unable find this application for your smartphone, there are several other BLE scanner applications available for the
iPhone, which can be used with this MPLAB Harmony application. The functionality will be the same, but the screens may appear
somewhat different from those shown here.

6. Start the BLE Scanner app. Once opened, it will begin scanning for BLE devices.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 114

7. Select the device name that you set up for your BM64 in Step 1 (running the BM64_bootloader program) and tap Connect. The connection
icon in the top right corner of the LCD should change from gray to bright blue.

8. A list of services is displayed.

9. Select the service named CUSTOM SERVICE, with the UUID starting with 4953 and ending in E455. This service matches the Transparent
Service UUID set up in the BLE section of the UI tool.

10. A list of characteristics are displayed.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 115

11. If necessary, scroll down and tap the characteristic labeled Notify. Tap the Updating ? icon to the right, which will display the following screen
(ensure that the slider switch to the right of Notify is enabled (set to the right position). Tap the white less than (<) symbol in the upper left
corner of the screen to return to the previous screen).

12. On the PIC32 Bluetooth Audio Development Kit, press one of the push buttons, SW1 through SW5.

13. The text string 'Button SWx pressed' (where 'x' is the number of the button you pressed) should appear on your smartphone (in this example,
SW4 was pressed):

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 116

14. To send a text string from your smartphone back to the BM64, tap Write in the BLE Scanner screen:

15. On the next screen, tap Write Value:

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 117

16. When the popup appears, tap Text.

17. Enter a message in the text box up to 20 characters in length, such as 'Sending text to BM64, and then tap Write.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 118

18. The message you entered should appear in the LCD screen of the PIC32 Bluetooth Audio Development Kit.

19. If you send additional messages to the BM64 (always less than or equal to 20 characters in length), the previous messages will scroll up, and
the newest message will appear at the bottom of the screen.

BM64_bootloader

This topic provides information on the supported demonstration boards, how to configure the hardware and how to run the demonstration.

Description

In this demonstration application, the processor on the PIC32 Bluetooth Audio Development Kit (BTADK) is used as a bootloader to configure the
EEPROM of the BM64 module on the BM64 Module Daughter Board. This must be done prior to using the BM64 module with the BM64_a2dp_hfp
application, since the I2S interface of the BM64 must be changed from being a I2S master (default) to an I2S slave.

When the application is running, the PIC32 Bluetooth Audio Development Kit processor appears as a virtual COM port on the PC.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 119

Architecture

This application runs on the PIC32 Bluetooth Audio Development Kit, which contains a PIC32MX470F512L microcontroller with 512 KB of Flash
memory and 128 KB of RAM running at 96 MHz with the following features:

• 220x176 color LCD

• Six push buttons (SW1-SW6)

• Five LEDs

• USB Device and Host interfaces

• Two X32 sockets, one for a Bluetooth module and a second for a codec or DAC

 Notes:
1. The PIC32 Bluetooth Audio Development Kit comes with a BTM805 Bluetooth Daughter Board and an AK4384 Audio DAC

daughter Board; however, you must replace the BTM805 daughter board with the daughter board for the BM64.

2. The USB Host interface as well as the AK4384 Audio DAC Daughter Board are not used in this application.

The following figure illustrates the application architecture.

The PIC32 microcontroller (MCU) runs the application code, and communicates with the BM64 over a USART interface operating at 115,200 baud.
The BM64 module contains its own Bluetooth stack, but it is not used in this application since it is only used to update the BM64’s configuration.
The program takes up only about 32% of the PIC32MX470F512 microcontroller’s program space, and 65% of its RAM.

The interface between the PIC32 MCU and the LCD is an 8-bit parallel master port (PMP). The program uses the MPLAB Harmony v2.x Graphics
Library to draw on the screen. The buttons are also interfaced using GPIO pins.

As with any MPLAB Harmony application, the SYS_Initialize function, which is located in the system_init.c source file, makes calls to initialize
various sub-systems, such as the clock, ports, board support package (BSP), USB, BM64, timers, UART, PMP, graphics, and interrupts.

The USB driver, timer, graphics, and the application state machines are all updated through calls located in the SYS_Tasks function in the
system_tasks.c file. An interrupt handler in the system_interrupt.c file is used for receiving characters from the BM64. To avoid missing
any characters, the UART driver’s DRV_USART_TasksReceive is not used, and instead bytes are read directly in the interrupt routine using

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 120

DRV_USART_ReadByte and placed into the uartReceivedData buffer.

The program is derived from the cdc_serial_emulator demonstration program. The USB interface looks like a virtual communications port on the
PC. It reads characters from the host PC over the USB interface and sends them straight through to the BM64 over the UART; likewise, it reads
characters from the BM64 via the UART and sends them back to the host PC.

The application code is contained in the source file app.c, which contains a state machine (APP_Tasks) for the application, as well as two state
machines for handling the USB interface. It first initializes the application, then receives a handle to the USB Device driver by calling
USB_DEVICE_Open function with a mode of DRV_IO_INTENT_READWRITE. It also gets a handle to the UART driver by calling
DRV_USART_Open also with a mode of DRV_IO_INTENT_READWRITE. Then it sets up a fixed baud rate of 115,200 baud, and registers an
event handler, APP_USBDeviceEventHandler as a callback with the USB driver. It then does an initial call to USB_DEVICE_CDC_Read to receive
any characters from the PC over the USB interface.

After that, it waits for characters from either side of the interface and transfers them to the other. Once the first character has come in from the
UART via the interrupt, it disables interrupts temporarily and gets any further characters in the UART’s FIFO in a tight loop, transferring them to the
outgoing CDC buffer. If characters were received, it calls USB_DEVICE_CDC_Write to send them on to the PC.

If characters have come in through from the USB interface from the PC, it writes them to the transmit side of the UART interface to the BM64.
Once all pending characters have been written, it issues a new USB_DEVICE_CDC_Read call to get more.

The APP_Tasks function also takes care of polling the buttons, and if pressed, either asserts the BM64’s reset line for SW5 or asserts the BM64’s
MFB (multi-function button line) for SW4.

Demonstration Features

• Sending and receiving characters between the USB device interface of the PIC32 MCU and a host PC (see USB Device Driver Library)

• Sending and receiving characters between the USART of the PIC32 MCU and the BM64. (see USART Driver Library)

• Displays graphics on the 220x176 LCD of the PIC32 Bluetooth Audio Development Kit using the MPLAB Harmony Graphics Library (see
MPLAB Harmony Graphics Composer Suite) and the Parallel Master Port (see PMP Driver Library)

• Processing of button pushes on the PIC32 Bluetooth Audio Development Kit using a state machine for contact debouncing (see Ports
Peripheral Library)

• Use of two timers: one as a periodic 1 ms timer for the application, and a second used by the BM64 driver (see Timer Driver Library)

Tools Setup Differences

When building a new application, start by creating a 32-bit MPLAB Harmony project in MPLAB X IDE by selecting File > New Project. Select the
PIC32MX Bluetooth Audio Development Kit. Click the MPLAB Harmony icon to start the MPLAB Harmony Configurator (MHC). Under BSP
Configuration, select PIC32 Bluetooth Audio Development Kit (BM64+AK4384).

Under Harmony Framework Configuration >Drivers >Timers, select Use Timer Driver. The remaining options in this section do not require any
changes.

In the USART section, select Use USART Driver?. Expand USART Driver Instance 0. Change the USART Module ID to USART_ID_2, and the
Baud Rate to 115200.

Under Harmony Framework Configuration >USB Library, select Use USB Stack?. Expand Select Host or Device Stack. USB Device should
already be selected. Change the Number of Endpoints Used to 3. Under USB Device Instance 0, expand Function 1. Change the Device Class to
CDC. Change the Product ID Selection to “cdc_serial_emulator_demo”, which will fill in the Vendor and Product ID fields.

If your application is going to be using graphics, as this one does, within Graphics Stack, select Use Graphics Stack?. Further down, within Use
Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library?, clear Enable Touch since the LCD on the PIC32 Bluetooth
Audio Development Kit does not support a touchscreen. Since you are using the LCD, you will also need to go back to the Drivers section, and
within PMP, select Use PMP Driver?. Expand that section, and change the value of Strobe Wait Sates to PMP_STROBE_WAIT_4.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the BM64_bootloader.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/audio/BM64_bootloader.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

BM64_bootloader.X <install-dir>/apps/bluetooth/utilities/BM64_bootloader/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 121

Project
Configuration
Name

BSP Used Description

bt_audio_dk bt_audio_dk+bm64 This demonstration runs on the PIC32MX470F512L mounted on the PIC32 Bluetooth Audio
Development Kit and the BM64 Bluetooth Module Daughter Board.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit with the on-board PIC32MX470F512L device and the BM64 Bluetooth Module Daughter Board (see
Note).

Switch S1 on the PIC32 Bluetooth Audio Development Board should be set to PIC32_MCLR.

 Note:
The PIC32 Bluetooth Audio Development Kit includes a BTM805 Bluetooth Daughter Board; however, it must be replaced by the
BM64 Bluetooth Module Daughter Board (AC320032-3).

Running the Demonstration

This section describes how to run the demonstration.

Description

Do the following to run the demonstration:

Program the Device and Obtain Tools

1. Compile, download, and run the program on the target device. There is only one MPLAB X IDE project configuration for the Bootloader.

2. Download the BM64 Software and Tools from here: http://www.microchip.com/wwwproducts/en/BM64, under Documentation > Software >
(IS2064 / BM64 Software and Tools).

Unzip wherever it is convenient for you (e.g., C:\ IS2064_BM64 Software & Tools), and unzip any zip files contained within the folders.

Program the BM64 Module

The sequence of steps to program the BM64 Module are as follows:

1. Run the tool C:\IS2064_BM64 Software & Tools\ DSPTool_IS206x_012_DualModeSPK1.1_v1.06.exe.

2. Do not click on the Load button. Under the I2S/PCM tab, set the I2S Mode to “Slave mode”. Then, save the file as: slave-BM64.txt, and exit
the DSP Tool.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 122

http://www.microchip.com/wwwproducts/en/BM64

3. Run the tool: C:\IS2064_BM64 Software & Tools\UI Tool\UITool_IS206x_012_DualModeSPK1.1_v1.03.exe.

4. Click Load, and load the file: UITool_IS206x_012_DualModeSPK1.1_v1.03_UI_Default_Table.txt. Then, change the IC Package
type to BM64CLS1, and then click Edit.

5. Do the following In the Main dialog:

• Clear SPP

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 123

• Clear all of the Button check boxes

• Select UART Command and I2S, and then click Next

6. Under the Sys Setup1 tab, change the Power Switch Setting/Power Switch Type to “Power ON Directly”, and then click Next.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 124

7. Under the Sys Setup2 tab, change the Name Fragment to whatever you want (this name will show up in your Smart Phone’s Bluetooth setup).
Change the Report Battery Status to Smart Phone setting to Disable, and then select the PMU Setup tab.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 125

8. Under PMU Setup, change Battery Detection/Battery Detection Enable to Disable and also change Charging Setting/ Charging Detect Enable
to Disable, and then select the BLE Setup tab.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 126

9. Under BLE Setup tab, change the Device Name to whatever you want (this name will show up in your Smart Phone’s BLE setup), and then
click Finish.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 127

10. Save the file as: BM64 UI, and then click Exit.

11. Run the tool: C:\IS2064_BM64 Software & Tools\MPET Tool\MPET.exe.

12. Select UI Patch Only, and then click Next.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 128

13. Click Browse, and browse to the folder C:\IS2064_BM64 Software & Tools\MPET Tool\default_bin and select the .bin file there,
and then click Next.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 129

14. Click the icon and load the file slave-BM64.txt that you saved earlier in Step 2. Click the icon again and load the file BM64
UI.txt you saved earlier in Step 10, and then click Next.

15. Click the Output File button and save the file as BM64 Patch, and then click Next.

16. On this screen, click Generate.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 130

17. In the next dialog, select all 11 check boxes, and then click Next.

18. Finally, click Finish.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 131

Running the Demonstration on the Development Hardware

1. Plug one end of a USB cable into the mini-B USB jack of the Bluetooth Audio Development Kit (next to SW6 at the top of the board), and the
other into your PC. Set both switches SW1-1 and SW1-2 on the BM64 Module daughter board to the ON position.

2. Press and release SW5 (Reset button), and then press and release SW4 (MFB button). The two LEDs on the BM64 module should light up
steady as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 132

3. Run the tool: C:\IS2064_BM64 Software & Tools\EEPROM Tool\ EEPROM_Tool_V4851.exe.

4. Ensure that the correct COM Port is selected (you can use Window’s Device Manager to verify this), and then click IC/Module Identify. It
should display one or two strings starting with IS206X…

5. To the right of WRITE EEPROM, click on the button and browse to the BM64 Patch.ipf file you specified earlier, and then click Write.
When done and the dialog appears, click OK, and then click Exit.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 133

6. On the BM64 Module Daughter Board, set both switches SW1-1 and SW1-2 to the OFF position.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 134

7. On the Bluetooth Audio Development Kit, press and release the SW5 (Reset) button. The two LEDs on the BM64 Module should turn off. The
BM64 Module is now ready to run with the BM64_a2dp_hfp application.

Control Descriptions

Control

SW4 Multi-Function Button (MFB)

SW5 Reset

Data Demonstrations

This topic provides information on how to run the PIC32 Bluetooth Basic Stack Library "Data Demonstration" applications that are included
free-of-charge in this release of MPLAB Harmony.

ble_rn4871_comm

This topic provides information on how to run the PIC32 Bluetooth Low-Energy Data Demonstration that in this release of MPLAB Harmony.

Description

This demonstration application shows how to connect to a RN4871 BLE radio that is a Stack on Radio, which communicates through a USART
interface. These USART commands are ASCII-level commands that set up the radio, which includes broadcast name, setting of public and private
services, and data to these services. This demonstration also has a USB CDC COM port for printf style message debug.

Demonstration Features

USART Driver

Timer Driver

USB CDC (Print message debug)

Tools Setup Differences

Not applicable.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bluetooth
Demonstration.

Description

To build this project, you must open the ble_rn4871_comm.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/data/ble_rn4871_comm.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 135

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ble_rn4871_comm.X <install-dir>/apps/bluetooth/data/ble_rn4871_comm/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_xlp_sk pic32mx_xlp_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 XLP Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX XLP Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Configuration: pic32mx_xlp_sk

Wall power option:

Connect power to the debugger “J9”.

Battery Operation:

AA battery holder located on the back side of the board (batteries not included with starter kit). Insert batteries per the holder markings. Put the
switch, SW2, to “ON” to power the board from the batteries. Put the switch, SW2, to “OFF” to stop powering the board from the batteries.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 136

Running the Demonstration

This demonstration performs basic BLE data transmission.

Description

 Note:
Before running the demonstration, it is necessary to install the Smart Discover Android™ application or Smart Discover app from
the iTunes® Play Store.

1. Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. If you have not already done so, install the Smart Discover App on either your Android or Apple® iOS device, found on the Play Store/App
Store; otherwise, skip this step.

3. Open the Smart Discover App.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 137

4. Scan for the available Bluetooth devices. The target Bluetooth device, Harmony ble, should also be displayed in the list of available devices on
your smartphone.

5. Select the device to pair and connect.

6. Select the box at the bottom (highlighted in Red).

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 138

7. Enable Notify.

8. Select Read Log to view the data coming across.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 139

BLE Status LED Color

Ready to be connected Blue

Connected Green

Additional Debug messages and output are available via the USB CDC com port. To view this information, open a terminal window and connect to
the new com port that will appear once the USB has been connected. Set the baud rate to 115200 and send 1 command/character/line feed to the
device in the terminal window. Debug information will begin to stream in the terminal.

data_basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration performs full duplex data transfer over a Bluetooth connection using the SPP profile.

The data transfer from the smartphone to the development board is demonstrated by the user sending and receiving data from an Android

Smartphone application that performs the following actions:

• Executes a command entered on the smartphone to turn a "Virtual" LED (simulated on the display) ON or OFF

• Executes a command entered on the smartphone to change the color of a "Virtual" RGB LED (simulated on the color display) as selected from
a palette

• Button presses are signalled to the smartphone application over the connection. The data received by the smartphone is displayed on its
screen as ‘Button 1’, ‘Button 2’, etc., by pressing buttons on top of the board.

 Note:
Only an Android™ smartphone can be used with the SPP profile. For the SPP profile to be used with an Apple® iPhone®, iPad®
or iPod®; the iPod, the Accessory Protocol (iAP) must be used as part of the Apple MFi Program (refer to the Apple MFi
Frequently Asked Questions page for information on the MFi program by visiting: https://mfi.apple.com/faqs). Data demonstrations
utilizing iAP can be obtained by contacting your local Microchip distributor as part of the MFi program. An alternative to using iAP
for iPhone data is to use a BLE (Bluetooth Low Energy) profile, as is demonstrated in the BM64_ble_comm) application.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 140

Architecture

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bluetooth
Demonstration.

Description

To build this project, you must open the data_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/data/data_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

data_basic.X <install-dir>/apps/bluetooth/data/data_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk Select this MPLAB X IDE project configuration to run the
demonstration on the PIC32 Bluetooth Audio Development Kit.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk Select this MPLAB X IDE project configuration to run the
demonstration on the PIC32 Bluetooth Audio Development Kit using
the PIC32MX270F512L PIM.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 141

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Audio Development Kit and PIC32MX270F512L Plug-in Module (PIM)

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Bluetooth basic data demonstration.

Description

This demonstration performs basic SPP full-duplex data transmission.

Note: Before running the demonstration, it is necessary to install the Bluetooth SPP-pro Android application. See Additional Bluetooth
Resources > Other Android Applications in the Demonstrations section for details.

Running the Demonstration

1. Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. The running of Bluetooth device demonstration is indicated when LED1 and LED2 turn ON.

3. Enable Bluetooth on your smartphone.

4. Start the Android application on your smartphone.

5. Scan for the available Bluetooth devices. The target Bluetooth device should also be displayed in the list of available devices on your
smartphone.

6. The name of the target Bluetooth device will be one of the following:

Configuration Device Name

bt_audio_dk BTAD

pic32mx270f512l_pim_bt_audio_dk BTAD+MX270

 Note:
Occasionally, the name of the Bluetooth device is not resolved and will appear as "null". After some time the name will change
from "null" to the configuration specific name mentioned previously. The visible MAC Address will be fixed for the first eight digits
and the last four will vary (12:34:56:78:XX: XX). If the name of the Bluetooth device is not found during the application scan, try
pairing it using the Settings > Bluetooth menu.

7. Select the device to pair and_connect.

8. If the connection is successful, the message "connected to <Device Name>" appears on top of the screen.

9. Select the "CMD Line Mode" tab, enter characters and press the "Send" button. The reception of characters by the Bluetooth device is

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 142

indicated by the LEDs, ‘LED4’ and ‘LED5’, switching from OFF to ON and back to OFF. Every time data is received the Bluetooth device
repeats this sequence.

9. Data can also be sent from the Bluetooth device to the connected smartphone. This can be done by pressing the switches SW1 to SW5 placed
on the development board. When the switch is pressed the two LEDs, 'LED4' and 'LED5', should toggle from OFF to ON and back to OFF. The
smartphone receives the data and displays "Button 1" for the SW1 switch, "Button 2" for the SW2 switch, "Button 3" for the SW3 switch, "Button
4" for the SW4 switch, and "Button 5" for the SW5 switch.

The following table describes the controls used in the supported configuration of the demonstration.

Control bt_audio_dk

LED1 Red Color LED 'D5' on the PIC32 Bluetooth Audio Development Kit development board.

LED2 Red Color LED 'D6' on the PIC32 Bluetooth Audio Development Kit development board.

LED3 Red Color LED 'D7' on the PIC32 Bluetooth Audio Development Kit development board.

LED4 Red Color LED 'D8' on the PIC32 Bluetooth Audio Development Kit development board.

LED5 Red Color LED 'D9' on the PIC32 Bluetooth Audio Development Kit development board.

SW1 SW1 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW2 SW2 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW3 SW3 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW4 SW4 switch located on the PIC32 Bluetooth Audio Development Kit development board.

SW5 SW5 switch located on the PIC32 Bluetooth Audio Development Kit development board.

Demonstration Display

The following figure describes the display format when running the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 143

Connection Status

The color of the Connection Status icon on the display indicates the Bluetooth status of the demonstration, as described in the following table.

Icon
Color

Display Example Description

Gray Bluetooth is not paired and connected.

White Bluetooth is paired, or is paired but is not connected.

Blue Bluetooth is paired and connected.

Demonstration Commands

Commands to control different aspects of the demonstration are listed in the following table. Note that all commands are case-sensitive and
commands that are recognized by the demonstration will not display in the Text Field by default. To see all text that is transmitted, a
"DISPLAY_ALL" or "DAI" command must be sent first.

Commands Sent Over Bluetooth

Command Shortcut Action Example

DISPLAY_ALL DAI Displays all text. DISPLAY_ALL

DISPLAY_ALL_STOP DAS Stop displaying all messages and will only display non-recognized commands
(default).

DISPLAY_ALL_STOP

ledxon ('x' = 1-5) Turns on the specified virtual LED (LED1 = left, LED5 = right). led3on

ledxoff ('x' = 1-5) Turns off the specified virtual LED (LED1 = left, LED5 = right). led3off

ledxtoggle ('x' = 1-5) Toggles the state of the specified virtual LED (LED1 = left, LED5 = right). led3toggle

Lx ('x' = 1-31) Displays a binary pattern using the virtual LEDs (MSB = left, LSB = right). L21

255,03,R,G,B The color of the virtual RGB LED is modified to the specified RGB value, varying from
0-254, respectively.

255,03,127,127,127

data_temp_sens_rgb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration performs full duplex data transfer over a Bluetooth connection using the SPP profile.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 144

The data transfer from the smartphone to the development board is demonstrated by the user sending and receiving data from an Android

Smartphone application that performs the following actions:

• Executes a command enter on the smartphone to change the color of a RGB LED (simulated on the color display) as selected from a palette

• Button pushes are signaled to the smartphone application over the connection. The data received by the smartphone is displayed on its screen
as ‘Button 1’, ‘Button 2’, etc., by pressing buttons on top of the board.

 Note:
Only an Android™ smartphone can be used with the SPP profile. For the SPP profile to be used with an Apple® iPhone®, iPad®
or iPod®; the iPod, the Accessory Protocol (iAP) must be used as part of the Apple MFi Program (refer to the Apple MFi
Frequently Asked Questions page for information on the MFi program by visiting: https://mfi.apple.com/faqs). Data demonstrations
utilizing iAP can be obtained by contacting your local Microchip distributor as part of the MFi program. An alternative to using iAP
for iPhone data is to use a BLE (Bluetooth Low Energy) profile, as is demonstrated in the BM64_ble_comm) application.

Architecture

This application runs on the PIC32 Bluetooth Starter Kit, which contains a PIC32MX470F256D microcontroller with 512 KB of Flash memory and
128 KB of RAM running at 48 MHz with the following features:

• Six push buttons (SW1-SW6)

• Cree RGB LED

• Temperature Sensor/Accelerometer

• USB Device and Host interfaces

• One X32 sockets

• CSR881x HCI Bluetooth Module

Demonstration Features

• Uses the Bluetooth Stack Library SPP Profile on the PIC32 Bluetooth Starter Kit to send and receive data from an Android smartphone

• Shows how to interface and use the temperature measurement module and Cree RGB LED of the PIC32 Bluetooth Starter Kit

Tool Setup Differences

The Bluetooth Stack is configured to use the SPP profile to communication with the Android smartphone running the Microchip SPP Applications.

Timer1 is used to time the reporting of the temperature when this is enabled. A prescale value of 8 is used on the Secondary Oscillator clock.

USART2 is used for HCI protocol communication with the Bluetooth modules at 115200 baud.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 145

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bluetooth
Demonstration.

Description

To build this project, you must open the data_temp_sens_rgb.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/data/data_temp_sens_rgb.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

data_temp_sens_rgb.X <install-dir>/apps/bluetooth/data/data_temp_sens_rgb/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_bt_sk pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 Bluetooth Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Bluetooth temperature sensor and RGB data demonstration.

Description

This demonstration allows the SPP data transfer/receive of temperature sensor and RGB data.

 Note:
Before running the demonstration, it is necessary to install the PIC32 Bluetooth Starter Kit Android application to your Android v4.0
or later smartphone.

Installing the PIC32 Bluetooth Starter Kit Android Application

1. Install the Android application, BTSK_Android_App.apk, to your Android 4.0 or later smartphone. This file is available in the following MPLAB
Harmony installation folder: <install-dir>/apps/bluetooth/data_temp_sens_rgb/android_app.

2. Connect the Android device to a computer using a mini-B USB connector.

3. It is suggested to copy the Android application into the Download folder of the Android device.

4. On the Android device, select My Files>All Files>Download>BTSK_Android_App.apk.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 146

5. After selecting the .apk file, the warning message, "blocking installation", will appear.

6. Select Settings and the security window will appear.

7. Choose the option to install applications from unknown sources.

8. Once the option is selected, a warning will appear, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 147

9. After selecting OK a window will appear requesting confirmation for installing the application.

10. Once the installation is complete, select Open to run the application, as shown in the following figure.

Running the Temperature Sensor and RGB Demonstration

1. Compile and program the target device with the hex file, data_temp_sens_rgb.X.production.hex.

2. Select the PIC32 Bluetooth Starter Kit on the Android device and a window will appear, as shown in the following figure.

3. Select the Bluetooth Starter Kit icon in the application window.

4. If prompted, turn on Bluetooth by selecting Yes.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 148

5. There are three methods for performing the next steps depending on the phone and Android version you are using. [A] Pressing the Microchip
logo and the words "Bluetooth Starter Kit", [B] pressing the on-screen Menu button [B] (if supported), or [C] Pressing the Menu button
(hardware). In general, if you have a hardware button you will not have an on-screen button and vice versa. After opening the menu, select
Connect a device - Insecure.

6. Select the option "Connect a device – Insecure" and a window will appear showing a list of paired device and option to scan for devices, as
shown in the following figure.

7. A list of paired devices will appear. If this is the first time connecting with the PIC32 Bluetooth Starter Kit, select Scan for Devices. It should be
noted that sometimes the name is not resolved and will appear as "null". After some time the name will change from "null" to "BTSK". The MAC
Address will be fixed for the first eight digits and the last four will vary (12:34:45:78: XX: XX) when the device is programmed with code. If the
name of the Bluetooth device is not found during the application scan, try pairing it using the Settings > Bluetooth menu.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 149

8. When selected, the Android application will pair and_connect_with the PIC32 Bluetooth Starter Kit. Accept any pair requests, as follows.

9. Status indicators will confirm that the connection was successful, as shown in the following figure.

 Note:
If the application was unable to_connect, verify that the PIC32 Bluetooth Starter Kit is powered on, within range, and is not
connected to another Bluetooth device.

LED Color Control

The application consists of three color sliders for Red (R), Green (G), and Blue (B), respectively. The color of the LED is programmed as the slider
(1) is modified. The color of the LED can also be modified using the increment button or the decrement button (2). Similarly, the color can be
modified by selecting the color based on hue and saturation on the color palette (3). The slider and the increment/decrement buttons send
commands to the PIC32 Bluetooth Starter Kit via SPP to program the LED color. The colors of R, G, and B can vary from 0 to 254, respectively.
The color bar (4) indicates the resulting modified color of the RGB combination. The LED changes in real-time to approximate the color in the color
bar. The LED color will be of an uncalibrated nature of the integrated three color diodes.

This is a demonstration of full-duplex data transmission from and to the Android device to the development board. Each time the color is modified,
a command is sent in a string format via SPP to the development board. The command sent can be viewed in the Text menu.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 150

Temperature Sensor

Select the Temperature menu on the Android application and the window will appear as shown in the next figure. Fahrenheit temperature readings
are shown in a graph, which updates automatically as new readings are received. The graph is zoomable and scrollable in the X direction. The last
received reading is also displayed as large text.

The PIC32 Bluetooth Starter Kit has a temperature sensor and once Start is selected, the temperature will be updated for every second by default
in a periodic mode. The update rate can be modified from 250 milliseconds to 8 seconds by using the increment or the decrement button (1). The
time duration can also be modified by the slider provided in the application (2). Once the time duration is set, select Set Timer to initiate periodic
update for the modified duration. The temperature update can be halted by selecting Stop. Start/Stop and Set Timer sends/receives commands
to/from the PIC32 Bluetooth Starter Kit through SPP full-duplex transmission. The commands sent and received can be viewed in the Text menu.

Text Control

LED Control

The LED color can be modified by sending command via Terminal emulator of the app. Select the Text menu to view the terminal window of the
application. To modify the LED color the following command is sent in the format, 255, 03, R, G, B, where:

• 255 is the command to modify the LED color.

• 03 determines the number of Bytes to be sent, currently it is 3 (R, G, B)

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 151

• R specifies the value for Red color from 0-254

• G specifies the value for Green color from 0-254

• B specifies the value for Blue from 0-254

For example, 255, 03, 127, 60, 128 (R = 127, G = 60, B = 128)

The commands ‘r' or ‘g' or ‘b' set the LED to 50% of Red, Green, or Blue, respectively. Similarly, the commands ‘R' or ‘G' or ‘B' set the LED to
100% of Red, Green, or Blue, respectively. Refer to Table 1: Text Commands for details.

Temperature Control

The command 254 is sent to the PIC32 Bluetooth Starter Kit via SPP data transmission. This command transmits the current temperature to the
Android device terminal emulator once on request. Similarly, command 253 is sent to the PIC32 Bluetooth Starter Kit to receive the current
temperature on a periodic time period for every one second by default. The rate of the update can be modified by the following command 252, with
the time in milliseconds.

252 - Command the update timer rate change. The periodic temperature update can be stopped by sending command 253.

Refer to Table 1: Text Commands for details.

Table 1: Text Commands

Feature Command TX Format RX Format Description Example

LED 255 255,03,R,G,B N/A The led color is modified depending on the value of R, G and B
varying from 0-254 respectively.

255,03,127,127,127

LED R R N/A Programs LED for 100% of Red R

LED G G N/A Programs LED for 100% of Green G

LED B B N/A Programs LED for 100% of Blue B

LED r r N/A Programs LED for 50% of Red r

LED g g N/A Programs LED for 50% of Green g

LED b b N/A Programs LED for 50% of Blue b

Temperature 254 254 Temperature
in Fahrenheit

On transmitting 254 command, the PIC32 Bluetooth Starter Kit
sends the current temperature once per request

254

Temperature 253 253 253,
temperature
in Fahrenheit

On transmitting 253, the PIC32 Bluetooth Starter Kit updates the
temperature for every one second

TX: 253

RX:253,80

Temperature 252 252, rate in
milliseconds

253,
temperature

On transmitting 252, the PIC32 Bluetooth Starter Kit updates the
temperature every 'n' milliseconds

TX: 253,399

RX: 253,80

Temperature 253 253 N/A The periodic display can be halted by resending 253 N/A

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 152

bt_data_voice_control

This demonstration uses Google Voice to control LEDs. There are two applications:

1. A PIC32 firmware application on the Bluetooth Audio Development Kit to receive and encode voice data.

2. An Android application for decoding voice speech data, and getting speech recognized as text from the Google Cloud engine.

Description

In this demonstration application:

1. The users voice is received using the Codec (AK4642) microphone interface.

2. The PIC32 microcontroller compression codes the voice data, and sends the encoded data to an Android phone app via the Bluetooth SPP
protocol.

3. The Android phone app receives the encoded data, and decodes the voice back to linear PCM data, which is then sent to the Google Cloud.

4. The Google Cloud Engine Voice Recognition sends recognized speech text to the Android app.

5. The Android app sends a corresponding Bluetooth SPP command to the PIC32 application over Bluetooth.

In this release, there are two voice commands supported: light on, and light off.

Architecture

Demonstration Features

• AK4642 Codec driver

• ADPCM Encoder and Decoder

• Bluetooth Classic Stack and Bluetooth SPP transmit

• Google Cloud Speech API

Building the Application

Description

To build this project, first open the bt_data_voice_control.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is:

<install-dir>/apps/bluetooth/data/bt_data_voice_control.

To build Android application, first follow the Google Cloud Speech API Android Sample readme page to setup your credential file for android
application.

Open <install-dir>/apps/bluetooth/data/bt_data_voice_control/android_app/Bluetooth_Voice_Control_App in Android Studio, upload your own
credentials json file to the app/src/main/res/raw folder, then build the application to an android phone with internet connection.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

bt_data_voice_control.X <install-dir>/apps/bluetooth/data/ bt_data_voice_control/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 153

MPLAB X IDE Project Configurations

The following table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk This demonstration runs on the PIC32MX470F512L mounted on the
PIC32 Bluetooth Audio Development Kit, the CSR8811 Bluetooth
Module Daughter Board, and AK4642EN Codec Daughter Board.

pic32mx270f512l_pim_bt_audio_dk pic32mx270f512l_pim+bt_audio_dk This demonstration runs on the PIC32MX270F512L PIM mounted on
the PIC32 Bluetooth Audio Development Kit, the CSR8811 Bluetooth
Module Daughter Board, and AK4642EN Codec Daughter Board.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

Replace the AK4384VT DAC with the AK4642EN Codec.

PIC32 Bluetooth Audio Development Kit and PIC32MX270F512L Plug-in Module (PIM)

Replace the AK4384VT DAC with the AK4642EN Codec and Set the S1 to PIM_MCLR position.

Running the Demonstration

This section provides instructions on how to build and run the Bluetooth basic data demonstration.

Description

This demonstration performs a voice control to the Bluetooth Audio Development Kit.

1. Compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. The running of the Bluetooth device demonstration is indicated when D5 and D6 turn ON. Make sure the Bluetooth address shows on the
display.

3. Enable Bluetooth and internet access on the device.

4. Start the Android application on the device and press the action bar at the top right.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 154

5. Select Pair and Connect a Device from the dropdown list when pressing the action bar.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 155

6. The name of the target Bluetooth device will be spp voice control.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 156

7. Select the device to pair and connect.

8. If the connection is successful, the message, connected to spp voice control, will appear on the screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 157

9. Navigate to the TEXT tab, speak any English words or sentences to the AK4642EN Microphone, and Google Cloud speech recognition starts
to work if the corresponding text shows on screen.

10. Speak the Light on command to the microphone, and the light on text will show on the screen, and all virtual LEDs will be on.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 158

11. Speak the Light off command to the microphone, and the light off text will show on the screen, and all virtual LEDs will turn off on the board
display.

Premium Demonstrations

This topic provides information on how to obtain, build, configure, and run the purchased "Premium" demonstration.

Description

For information on purchasing the premium demonstration, please refer to the Microchip Premium MPLAB Harmony Audio web page
(www.microchip.com/pic32harmonypremiumaudio).

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 159

a2dp_avrcp

 Note:
The Premium Demonstrations are not included in the standard release of MPLAB Harmony and must be purchased. Refer to the
Microchip Premium MPLAB Harmony Audio web page (www.microchip.com/pic32harmonypremiumaudio) for more information.

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration performs streaming of wireless Bluetooth audio from any smartphone (i.e., Apple, Samsung, Google, etc.), personal computer,
or Bluetooth-enabled device. The demonstration supports the following features:

• A2DP

• AVRCP

• SSP

• SBC Decoder

Architecture

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Premium
Demonstration.

Description

To build this project, you must open the a2dp_avrcp.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bluetooth/premium/audio/a2dp_avrcp.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 160

Project Name Location

a2dp_avrcp.X <install-dir>/apps/bluetooth/premium/audio/a2dp_avrcp/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

ak7755_bt_audio_dk bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Audio Development Kit with the AKM AK7755 Codec.

bt_audio_dk bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Audio Development Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Audio Development Kit and AK7755 Codec

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Premium audio demonstration

Description

1. Build and program the target device. While building, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. Refer to Building the Application for details.

2. When LED2 and LED3 turn ON, this indicates that the demonstration is running on the PIC32 Bluetooth Audio Development Kit.

3. Enable Bluetooth on the Bluetooth audio device (for example, Smartphone).

4. Scan for the available Bluetooth devices. The target Bluetooth device should also be displayed in the list of available devices on your Bluetooth
audio device.

5. The name of the target Bluetooth device will be as follows:

Configuration Device Name

bt_audio_dk Microchip A2DP

ak7755_bt_audio_dk Microchip A2DP

 Note:
Occasionally, the name of the Bluetooth device is not resolved and will appear as "null". After some time the name will change
from "null" to the configuration-specific name previously mentioned. The visible MAC Address will be fixed for the first eight digits
and the last four will vary (12:34:45:78:XX: XX).

6. Select the device to pair and connect.

7. If prompted by your device for a PIN, enter 0000.

8. If the connection is successful, the message "connected to <Device Name>" appears at the top of the screen of your Bluetooth audio device.

9. Connect a speaker or headphones to the line-out/headphone jack of the development board.

10. Select the music track and tap Play.

Demonstration Controls

Bluetooth Mode Control bt_audio_dk and

ak7755_bt_audio_dk

pic32mz_da_sk_meb2

Shuffle (Toggle) / Force Bluetooth
Device to Unpair

SW1 Switch, SW1, located on top of the board. N/A

Volume I: Getting Started With MPLAB Harmony Applications Help Bluetooth Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 161

Repeat Track (Toggle) / Bluetooth
Device Disconnect

SW2 Switch, SW2, located on top of the board. N/A

Next Track/Fast Forward SW3 Switch, SW3, located on top of the board. N/A

Play/Pause (Toggle) / Soft Mute
(toggle)

SW4 Switch, SW4, located on top of the board. N/A

Previous Track / Rewind SW5 Switch, SW5, located on top of the board. N/A

N/A LED1 Red LED, D5, located on top of the board. Red LED, D3, located on top of
the board.

Bluetooth Device Connection Ready LED2 Red LED, D6, located on top of the board. Red LED, D4, located on top of
the board.

Bluetooth Device Connection Ready LED3 Red LED, D7, located on top of the board. Red LED, D5, located on top of
the board.

Audio Stream Indication LED4 Red LED, D8, located on top of the board. Red LED, D6, located on top of
the board.

N/A LED5 Red LED, D9, located on top of the board. Red LED, D7, located on top of
the board.

CPU Exception Error LED1-LED5 Red LEDs, D5-D9, located on top of the board. Red LEDs, D3-D7, located on
top of the board.

Bootloader Demonstrations

This section provides descriptions of the Bootloader demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

Bootloader Demonstration Applications Help.

Description

This distribution package contains firmware projects that demonstrate the capabilities of the MPLAB Harmony Bootloader. This section describes
the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Bootloader demonstration applications included in this release.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration implements a Bootloader that resides in boot Flash. With the Bootloader operating on the target device, the device can then be
programmed with application code without the need for an external programmer or debugger.

The Bootloader is, operationally, similar to the bootloader described in AN1388 "PIC32 Bootloader", and will work with the personal computer
application provided with the related source archive file. The application note and archive file are available for download from the Microchip web
site (www.microchip.com).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bootloader
Demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 162

http://www.microchip.com/mplabharmony
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en554836

Description

To build this project, you must open the basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bootloader/basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic.X <install-dir>/apps/bootloader/basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration Name BSP(s) Used Description

udp_pic32mx_eth_sk pic32mx_eth_sk Demonstrates the UDP Ethernet mode on the PIC32 Ethernet Starter Kit.

udp_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the UDP Ethernet mode on the PIC32MZ EF Starter Kit

udp_pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates the UDP Ethernet mode on the PIC32MZ DA Starter Kit.

usart_pic32mx_eth_sk pic32mx_eth_sk Demonstrates the UART Bootloader on the PIC32 Ethernet Starter Kit.

usart_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the UART Bootloader on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

usart_pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates the UART Bootloader on the PIC32MZ DA Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

usbdevice_pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the USB Device mode on the PIC32 USB Starter Kit II.

usbdevice_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the USB Device mode on the PIC32MZ EF Starter Kit.

usbhost_pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the USB Host Bootloader on the PIC32 USB Starter Kit II.

usbhost_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the USB Host Bootloader on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

sdcard_pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates the SD Card Bootloader on the PIC32MZ EF Starter Kit and MEB
II.

 Note: This demonstration does not rely on the hardware encryption
module..

Configuring the Hardware

Describes how to configure the supported hardware.

Description

The following configuration information is for UART mode.

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, or PIC332 USB Starter Kit II

UART communication is done through the UART2 module. The U2RX and U2TX pins can be accessed through the Starter Kit I/O Expansion
Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to pin 46 on connector J11. Connect the RX
pin of the module to pin 48 on connector J11. Connect GND pins together to ensure shared grounding.

Figure 1 and Figure 2 show the hardware configuration and close-ups of the jumper wire connections.

Figure 1 - Hardware Configuration

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 163

Figure 2 - Jumper Wire Connections

PIC32MZ EF Starter Kit

Connect the host computer to J11 of the PIC32MZ EF Starter Kit.

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

Connect the host computer to J5 of the PIC32MZ DA Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the Bootloader demonstration.

Description

This demonstration requires a host application running on another computer, which will allow the UART, USB Device, and Ethernet UDP
Bootloaders to communicate with it and to send commands and the new program to it. A host application is available at
http://ww1.microchip.com/downloads/en/DeviceDoc/UnifiedHost-0.1.8-dist.zip, which can be used on computers running Windows®, Linux, or
macOS®. These instructions will use that application to run them.

Personal Computer-based Host Demonstration

Do the following when using the configurations:

Operation

The Bootloader is operated as follows:

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 164

http://ww1.microchip.com/downloads/en/DeviceDoc/UnifiedHost-0.1.8-dist.zip

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

3. Press and hold SW1 on the starter kit to force Bootloader operation.

4. LED1 will start blinking to indicate the Bootloader is operating. If a program had previously been programmed, it may be necessary to press
and hold SW1 prior to applying power to the board or resetting the board.

5. Open the Unified Bootloader Host application by starting the Unified Bootloader-x.y.z.jar file.

6. Select 32-bit for the Device Architecture.

7. Select the appropriate communication path using the Protocol drop-down. Then click Configure to change the options. For most Bootloaders,
these are the options to use:

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 165

• UART - Set the baud rate to 115,200

• UDP - Set the IP address at 192.168.1.11 and the UDP port at 6234

• Set the IP address for your host PC to 192.168.1.12 with default subnet mask

• USB Device - Set the VID at 0x4D8 and the PID at 0x03C

8. Select File >Open/Load File (*.hex), and navigate to the desired Hex file for the application to be bootloaded. Select the file, and click Open.

9. Click Program Device. The program combines the steps of identifying the Bootloader, erasing the device, sending down the new program,
verifying the application, and starting the new program. The application will display the message "Disconnected after Programming was
Successful" to indicate the programming was complete.

10. If desired, a Console window is available by selecting Tools >Console. The console will display messages showing the progress of the

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 166

bootloading process.

11. If the application has been programmed correctly, the green, yellow, and red LEDs will blink in an alternating pattern..

USB Host-based Demonstration

Do the following when using the configurations:

Operation

The Bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

3. If a program had previously been programmed in the application space, press and hold the applicable switch for the hardware in use prior to
applying power to the board or resetting the board or resetting the board to force into Booloader operation:

• For PIC32M-based hardware, press and hold SWITCH_1

4. Depending on the hardware in use, an LED will blink to indicate the Bootloader mode:

• For PIC32M-based hardware, LED_1

Setup

The demonstration application is prepared as follows:

1. Open the demonstration application to be Bootloaded for the hardware in use:

• For PIC32M-based hardware, dma_led_pattern.X project from
<install-dir>/apps/examples/peripheral/dma/dma_led_pattern/firmware/

2. Select the configuration suitable for the target hardware.

3. Compile the program, but do not program the device.

4. Copy the resultant .hex file to the Flash drive that will be inserted into the target USB port. The files are located in the paths mentioned in Step
1.

5. Rename the hex file on the Flash drive to image.hex.

Programming the Device

With the demonstration application compiled, the generated hex file can now be programmed into the device using the Bootloader.

To program the application into the device:

1. Insert the Flash drive into the type-A USB port on the starter kit.

2. The program will be loaded from the Flash drive and programmed into the device.

3. Remove the Flash drive when the program starts running.

SD Card-based Demonstration

Do the following when using this configuration:

Operation

The Bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 167

2. Compile and program the device.

3. If a program had previously been programmed in the application space, press and hold the applicable switch for the hardware in use prior to
applying power to the board or resetting the board or resetting the board to force into Bootloader operation:

• For PIC32M-based hardware, press and hold SWITCH_1

4. Depending on the hardware in use, an LED will blink to indicate the Bootloader mode:

• For PIC32M-based hardware, LED_1

Setup

The demonstration application is prepared as follows:

1. Open the demonstration application to be Bootloaded for the hardware in use:

• For PIC32M-based hardware, dma_led_pattern.X project from
<install-dir>/apps/examples/peripheral/dma/dma_led_pattern/firmware/

2. Select the configuration suitable for the target hardware.

3. Compile the program, but do not program the device.

4. Copy the resultant .hex file to the Flash drive that will be inserted into the target USB port. The files are located in the paths mentioned in Step
1.

5. Rename the hex file on the SD Card drive to image.hex.

Programming the Device

1. To program the application into the device:

• For PIC32M-based hardware, insert the SD Card into the slot on the MEB II. Connect the starter kit to the MEB II.

2. When power is applied, or the device is Reset, the image.hex file is read from the SD Card and programmed into the device.

LiveUpdate_App

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration implements a LiveUpdate application, which can be bootloaded by the LiveUpdate_Switcher application already programmed
and running on the PIC32MZ EF Starter Kit.

This application can also program another LiveUpdate application into the opposite program Flash panel without affecting its application task.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bootloader
demonstration.

Description

To build this project, you must open the LiveUpdate_App.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bootloader/LiveUpdate_App.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

LiveUpdate_App.X <install-dir>/apps/bootloader/LiveUpdate_App/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration Name

BSP(s) Used Description

pic32mz_ef_sk_Inst_1 pic32mz_ef_sk Demonstrates the LiveUpate application on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

pic32mz_ef_sk_Inst_2 pic32mz_ef_sk Demonstrates the LiveUpate application on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 168

pic32mz_ef_sk_Inst_3 pic32mz_ef_sk Demonstrates the LiveUpate application on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

Connect the host computer to J11 of the PIC32MZ EF Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the LiveUpdate_App demonstration.

Description

Operation

The LiveUpdate_Switcher needs to be running on the target device for the first instance to be bootloaded.

Setup

1. In MPLAB X IDE, open the LiveUpdate_App.X project from <install-dir>/apps/bootloader/LiveUpdate/LiveUpdate_App/firmware

2. Select the configuration suitable for the target hardware.

3. Compile the program, but do not program the device.

4. Repeat step 2 and step 3 for all three of the configurations (pic32mz_ef_sk_Inst_[1-3]).

5. Refer to step 5 through step 10 of the Running the Demonstration topic of the basic demonstration for instructions on setting up the Unified
Bootloader Host application.

Programming the Device

With the LiveUpdate_App.X demonstration application has been compiled for all three instances, the generated hex files can now be
programmed into the device using the Bootloader or the application itself (LiveUpdate feature).

1. BootLoad (first time) the LiveUpdate_App.X\dist\pic32mz_ef_sk_Inst_1\production\LiveUpdate_App.X.production.hex
file and program the device.

2. LiveUpdate_App Instance 1 is Bootloaded into Panel 1 and LED_1 is illuminated.

3. Load the LiveUpdate_App.X\dist\pic32mz_ef_sk_Inst_2\production\LiveUpdate_App.X.production.hex file and program
device. LED_1 should continue to be illuminated.

4. Reset the device to jump to LiveUpdate_App Instance 2 loaded in panel 2.

5. LiveUpdate_App Instance 2 is loaded in panel 2 and LED_2 is illuminated.

6. Load the LiveUpdate_App.X\dist\pic32mz_ef_sk_Inst_3\production\LiveUpdate_App.X.production.hex file and program
device. LED_2 should continue to be illuminated.

7. Reset the device to jump to LiveUpdate_App Instance 3 loaded in panel 1.

8. LiveUpdate_App Instance 3 is loaded in panel 1 and LED_2 is illuminated.

9. Steps 1 through 8 can be repeated for the same application or different Applications, which are configured to LiveUpdate mode through the
MHC (Refer to Generating the Application Linker Script in the Bootloader Library Help).

 Note:
If the device is reset without programming a new application, LiveUpdate_Switcher will always jump to the latest application
programmed in either of the panels.

LiveUpdate_Switcher

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration implements a live update Bootloader that looks for a change during start-up that swaps the Flash panels on the PIC32MZ EF
Starter Kit. The same LiveUpdate_App demonstration application as the basic Bootloader demonstration can be used as the application source for
a programming example with this Bootloader demonstration.

The Bootloader is, operationally, similar to the Bootloader described in AN1388 "PIC32 Bootloader", and will work with the personal computer

Volume I: Getting Started With MPLAB Harmony Applications Help Bootloader Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 169

application provided with the related source archive file. The application note and archive file are available for download from the Microchip web
site (www.microchip.com).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Bootloader
Demonstration.

Description

To build this project, you must open the LiveUpdate_Switcher.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/bootloader/LiveUpdate_Switcher.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

LiveUpdate_Switcher.X <install-dir>/apps/bootloader/LiveUpdate_Switcher/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration Name

BSP(s) Used Description

usart_pic32mz_ef_sk pic32mz_ef_sk Demonstrates the UART LiveUpate Bootloader on the PIC32MZ EF Starter Kit.

 Note: This demonstration does not rely on the hardware encryption module.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

Connect the host computer to J11 of the PIC32MZ EF Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the Bootloader demonstration.

Description

The Bootloader is operated as follows:

1. Select the configuration suitable for the target hardware.

2. Compile and program the device.

3. Press and hold SW1 on the starter kit to force Bootloader operation.

4. LED1 will start blinking to indicate the Bootloader is operating. If a program had previously been programmed, it may be necessary to press
and hold SW1 prior to applying power to the board or resetting the board.

Class B Library Demonstrations

This section provides descriptions of the Class B Library demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

Class B Library Demonstration Applications Help.

Volume I: Getting Started With MPLAB Harmony Applications Help Class B Library Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 170

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en554836
http://www.microchip.com/mplabharmony

Description

This distribution package contains one Class B-related firmware project that demonstrates the capabilities of the MPLAB Harmony Class B Library.
This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Class B Library demonstration applications included in this release.

ClassBDemo

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application invokes each of the Class B Safety software Library interfaces one at a time and collects the responses into a single structure.
This demonstrates the use of the library, as well as some of the prerequisites that must be met to use the library.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Class B Library
demonstration.

Description

To build this project, you must open the ClassBDemo.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/ClassBDemo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ClassBDemo.X <install-dir>/apps/crypto/ClassBDemo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration Name

BSP(s) Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates each of the Class B Safety Library functions on the PIC32 Ethernet
Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates each of the Class B Safety Library functions on the PIC32MZ EF
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help Class B Library Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 171

Running the Demonstration

Provides instructions on how to build and run the Class B Library demonstration.

Description

This demonstration tests device core components and demonstrates the use of the Class B Software Safety Library API.

1. Select the desired MPLAB X IDE project configuration:

• pic32mz_ef_sk (for PIC32MZ EF devices)

• pic32mx_eth_sk (for PIC32MX devices)

2. Build the selected configuration in the MPLAB X IDE project and program the demonstration board by selecting Debug Main Project from the
Debug Menu. The program should build, download, and run.

3. Either single step into, or step over each test in turn. As each test completes, look at the appropriate bit of the ClassB_Test_Flags structure.
They will be set with either a '1' indicating failure or a '0' indicating success.

Crypto Demonstrations

This section provides descriptions of the Crypto demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

Crypto Library Demonstration Applications Help.

Description

This distribution package contains three Crypto-related firmware projects that demonstrate the capabilities of the MPLAB Harmony Crypto Library.
This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Crypto Library demonstration applications included in this release.

encrypt_decrypt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration exercises several cryptographic functions, including MD5, TDES, DES, AES, RSA, ECC, and Random Number Generation, to
verify that the software or hardware is performing correctly. While the demonstration is running, the yellow LED on the starter kit will light to
indicate processing. If all functions execute successfully, the green LED on the starter kit will illuminate.

When testing hardware encryption, the Starter Kit with Crypto Engine (DM320006-C) must be used. Software encryption can be performed on
either PIC32MX795F512L or any version of PIC32MZ device.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Crypto
Demonstration.

Description

To build this project, you must open the encrypt_decrypt.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/encrypt_decrypt.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 172

http://www.microchip.com/mplabharmony

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

encrypt_decrypt.X <install-dir>/apps/crypto/encrypt_decrypt/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration
Name

BSP(s) Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates encryption, decryption, hashing, and random number generation using Software
Libraries on the PIC32 Ethernet Starter Kit.

pic32mz_ec_sk_hw pic32mz_ec_sk Demonstrates encryption, decryption, hashing, and random number generation using the Hardware
Encryption module on the PIC32MZ Embedded Connectivity (EC) Starter Kit with Crypto.

pic32mz_ef_sk_hw pic32mz_ef_sk Demonstrates encryption, decryption, hashing, and random number generation using the Hardware
Encryption module on the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit
with Crypto.

pic32mz_ec_sk_sw pic32mz_ec_sk Demonstrates encryption, decryption, hashing, and random number generation using Software
Libraries on the PIC32MZ Embedded Connectivity (EC) Starter Kit.

pic32mz_ef_sk_sw pic32mz_ef_sk Demonstrates encryption, decryption, hashing, and random number generation using Software
Libraries on the PIC32MZ Embedded Connectivity with Floating Point Unit (EC) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Crypto demonstration.

Description

This demonstration exercises various encryption, decryption, hashing, and random number functions.

1. First compile and program the target device. While compiling, select the configuration for the hardware in use.

2. Observe the status of LEDs on the starter kit. The yellow LED will be illuminated while the demonstration executes. If all function passes
succeed, the green LED will illuminate. If an error occurred, the red LED is illuminated.

large_hash

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application demonstrates how to execute hashes on large blocks of data. In this case, the demonstration performs MD5, SHA-1, SHA-256,
SHA-384, and SHA-512 hashing on a 512 * 1024 block of the letter 'a'.

On PIC32MZ devices, which have adequate Flash memory, the linker script is configured to create the 512 * 1024 block starting at physical

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 173

address 0x9D08_0000.

The application runs the hashes in two ways:

• On PIC32MZ devices, the first way it runs it is by passing the entire 512 * 1024 block in one function call.

• With the second way, which is the only one that runs on PIC32MX devices, it passes a 1024 block of the letter 'a' that is allocated on the stack
to the engine, doing it 512 times.

After the hashing has been performed, the application outputs via the system console the results of the hashing, and the time it took to perform
each form. It then compares the generated hashes with known values for each algorithm. If all tests pass, the green LED is lit, and a message is
presented through the system console. If any tests fail, the red LED is lit, and a corresponding message is presented through the system console.

When testing hardware encryption, the PIC32MZ EC Starter Kit configured with the Crypto Engine (DM320006-C) must be used. Software
encryption can be performed on any version of a PIC32MX or PIC32MZ device.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Crypto
Demonstration.

Description

To build this project, you must open the large_hash.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/large_hash.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

large_hash.X <install-dir>/apps/crypto/large_hash/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project
Configuration
Name

BSP(s) Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates hashing large blocks of data using Software Libraries on the PIC32 Ethernet
Starter Kit.

pic32mz_ec_sk_hw pic32mz_ec_sk Demonstrates hashing large blocks of data using the Hardware Encryption module on the
PIC32MZ Embedded Connectivity (EC) Starter Kit with Crypto.

pic32mz_ef_sk_hw pic32mz_ef_sk Demonstrates hashing large blocks of data using the Hardware Encryption module on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with Crypto.

pic32mz_ec_sk_sw pic32mz_ec_sk Demonstrates hashing large blocks of data using Software Libraries on the PIC32MZ
Embedded Connectivity (EC) Starter Kit.

pic32mz_ef_sk_sw pic32mz_ef_sk Demonstrates hashing large blocks of data using Software Libraries on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

UART communication is done through the UART2 module. The U2RX and U2TX pins can be accessed through the Starter Kit I/O Expansion
Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to pin 46 on connector J11. Connect the RX
pin of the module to pin 48 on connector J11. Connect GND pins together to ensure shared grounding.

Figure 1 and Figure 2 show the hardware configuration and close-ups of the jumper wire connections.

Figure 1 - Hardware Configuration

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 174

Figure 2 - Jumper Wire Connections

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ Embedded Connectivity (EC) Starter Kit

UART communication is done through the UART1 module, routed through PPS to RPF0 and RPF1. The U1RX and U1TX pins can be accessed
through the PIC32MZ Starter Kit Adapter Board. One way to do this is with the MCP2200 Breakout Module. Connect the TX pin of the module to
the EBID10 pin of JP3 on the underside of the adapter. Connect the RX pin of the module to the EBID11 pin of JP1 on the underside of the
adapter. Connect grounds between the module and the starter kit to ensure shared grounding.

Figure 3 and Figure 4 show the hardware configuration.

Figure 3 - Hardware Configuration (Front)

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 175

Figure 4 - Hardware Configuration (Back)

Running the Demonstration

Provides instructions on how to build and run the Crypto demonstration.

Description

This demonstration exercises hashing functions on large blocks of data.

1. First, compile and program the target device. While compiling, select the configuration suitable for hardware.

2. Open a serial terminal program, such as PuTTY or TeraTerm, and connect it to the serial port for the MCP2200 Breakout Module. The serial
configuration is 115200 baud, 8 data bits, no parity bit, 1 stop bit.

3. Observe the status of LEDs on the starter kit. The yellow LED will be illuminated while the demonstration executes. If all function passes
succeed, the green LED will illuminate. If an error occurred, the red LED is illuminated.

4. Observe the output of the program in the serial terminal program. It will report the results of the hashes, and the cycles taken to execute. The
actual cycles taken will depend on the hardware used, and the size of the buffers available to the hardware engine. The following example
shows the output using the PIC32MZ EC Starter Kit configured with the Crypto Engine:

Starting the test.

MD5 from Flash: 30C2557E8302A5BEB290C71520D87F42 took 481405 clock cycles

MD5 from feed: 30C2557E8302A5BEB290C71520D87F42 took 804934 clock cycles

SHA from Flash: F7FEC128D7FCD59222BA37368D3B7210D4C7B6EF took 481151 clock cycles

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 176

SHA from feed: F7FEC128D7FCD59222BA37368D3B7210D4C7B6EF took 804901 clock cycles

SHA256 from Flash: 85A84A75886E8A526DBEC4E16E3375FAA307B4AEAD79C9ED3264C0477A6F6EBA took 702033 clock cycles

SHA256 from feed: 85A84A75886E8A526DBEC4E16E3375FAA307B4AEAD79C9ED3264C0477A6F6EBA took 806480 clock cycles

SHA384 from Flash:
A550561A6330048EFE826A97E5FED843FA1CE646A9BF546CCB433C2FCB0E54821C4C945EED9A592B5BF43157E212F277 took
45452328 clock cycles

SHA384 from feed:
A550561A6330048EFE826A97E5FED843FA1CE646A9BF546CCB433C2FCB0E54821C4C945EED9A592B5BF43157E212F277 took
45391039 clock cycles

SHA512 from Flash:
7F49157FB359B39EA6DA934DC9A10709FEDF8846D139D0E637A3C0FC833B6F42703858DBACEE28F4489B5E95FAB5E5655A25F838B0DC
7BF3C84C7CC0264F6A4F
took 45807606 clock cycles

SHA512 from feed:
7F49157FB359B39EA6DA934DC9A10709FEDF8846D139D0E637A3C0FC833B6F42703858DBACEE28F4489B5E95FAB5E5655A25F838B0DC
7BF3C84C7CC0264F6A4F
took 45775518 clock cycles

All tests passed.

ecc_asymmetric

This application demonstrates the authentication of a remote device with a host (The Curiosity PIC32MZ EF Development Board and the secure 4
click board using the cryptography module ATECC608A) by using an asymmetric authentication method, where the host verifies the signature from
the remote through the public key of the remote.

The application allows adding information to the configuration, using the configuration data, and key data to configure a secure 4 click board. The
application flow is realized through an interactive user interface through the serial terminal program (Tera term) interfaced through the USB of a
computer.

For more information on the features and layout of the Curiosity PIC32MZ EF Development Board, refer to the PIC32MZ EF Curiosity
Development Board User's Guide.

For more information on the features of the ATECC608A module, refer to the Product Data Sheet.

Description

This application demonstrates the use of the ATECC608A module to authenticate and verify if the device is secure or not. The authentication
method used is Asymmetric.

In asymmetric authentication, a verifier checks the authenticity of remote by validating the signature.

Asymmetric authentication is based on the use of two keys. One of the keys needs to be kept secret. This key is called the Private Key. The
second key is mathematically related to the Private Key and is called the Public Key. The public key is openly shared. The key owner will use the
Public Key to authenticate the signature.

In this application, a secure hardware key storage device (ATECC608A on a Secure 4 click board) is used to generate a signature by the remote,
and the host uses the public key of the remote, and verifies the signature.

The following figure represents the functional block diagram of the application.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 177

http://ww1.microchip.com/downloads/en/DeviceDoc/70005282B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70005282B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001977A.pdf

Note:
The Secure 4 click board 1 and Secure 4 click board 2 house the ATECC608A module and interface with the
Curiosity PIC32MZ EF Development Board microcontroller over I2C interface.

Authentication Process

The host sends a random challenge to the remote device. The remote device responds with a signature. However, the host only needs the public
key from the remote (not a secret key) to verify the signature on the challenge.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 178

If the signature verification matches, then the remote device has successfully responded to the challenge and the host can trust the remote device.

Building the Application

Description

To build this project, you must open the ecc_asymmetric.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/ecc_asymmetric.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ecc_asymmetric.X <install-dir>/apps/crypto/ecc_asymmetric/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to run on the
PIC32MZ EF Curiosity Development Board, with the PIC32MZ2048EFM100 microcontroller.

This configuration uses "Secure 4 click" board from MikroElektronika mounted on the mikroBUS
header interfaces.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 179

Configuring the Hardware

The following section describes how to configure the hardware for the demonstration.

Description

PIC32MZ EF Curiosity Development Board

Configuration: pic32mz_ef_curiosity

To configure the hardware, use the following steps:

1. For the host operation, mount a Secure 4 Click board on the mikroBUS socket J5.

2. For the remote device operation, mount a Secure 4 Click board on the mikroBUS socket J10.

3. Power the Curiosity PIC32MZ EF Development Board from the host computer through a Type-A male to Micro-B USB cable connected to the
Micro-B port (J3). The cable is not included with the kit. Ensure that a jumper is placed in the J8 header (between 4 and 3) to select the supply
from the debug USB connector.

4. Ensure that the jumper is not present in the J13 header to use the Curiosity board in Device mode. In Device mode, the board acts as a USB
device to the computer. Plug in a USB cable with a Micro-B type connector to Micro-B port (J12), and plug the other end into the computer.

Running the Demonstration

The following section describes how to run the demonstration.

Description

 Important!
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes
for any known issues. A PDF copy of the release notes is provided in the <install-dir>/doc folder of
your installation.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 180

The following steps are used to run the demonstration:

1. Open the project in MPLAB X IDE and select the pic32mz_ef_curiosity project configuration.

2. Build the code and program the device by clicking on the program button as shown below.

3. After power up, the demonstration is active. This is indicated by a yellow LED (LED3) on the board.

4. Plug in a USB cable with a Micro-B type connector to the Micro-B port (J12) of the Curiosity board, and plug the other end into the computer.

5. If this is the first time using this device with a personal computer, there may be a prompt for a .inf file.

6. Select the Install from a list or specific location (Advanced) option. Specify the path from <install-dir>/apps/crypto/ecc_asymmetric/inf directory.

Note:
Optionally, to specify the driver, open the device manager and expand the Ports (COM & LPT) tab, then right click
on Update Driver Software.

7. Once the device is installed, open a terminal program, such as Tera Term or HyperTerminal. Select the appropriate COM port for the terminal.
The following figure shows the COM port selection for the Tera Term terminal program.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 181

8. Once the Tera Term screen is displayed, Press the Enter key. The following modes of operation will be displayed.

9. The application demonstration offers the following two modes of operation.

• Configuration Mode: This mode is used to configure a blank ATECC608A module with the configuration data and keys to be stored. A blank
ATECC608A device is in an unlocked state. This operation performs a lock on the Configuration Zone and Data Zones on the ATECC608A
device. The locking operation is a one time operation and is irreversible.

• Authentication Mode: This mode performs the secured authentication of the Remote ATECC608A device.

10. Selecting Option 1 - Configuration Mode

The display prompts the user to perform an action:

When the Secure 4 click board is plugged-in, the application enters into Configuration Write mode, and prints the existing or default configuration.

Note:
The existing or default configuration may be different from what is shown in the following figure.

If the plugged-in board is a brand new Secure 4 click board, the application will write the new configuration to the configuration zone and lock it.
The application will display the following messages:

• Configuration Write Complete

• Locking Configuration Zone

• Configuration Zone Lock Complete

This would be followed by the writing of the new data (data slot contents and new keys) to the data zone and locking it. It would display the
following messages:

• Writing Data Zone

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 182

• Data Zone Write Complete

• Locking Data Zone

• Data Zone Lock Complete

• **Host board Configuration Done**

If the plugged-in board is already configured, the application displays the following message:

• ATCA already configured

Once the host configuration is completed, the display prompts the user to choose an action:

• Plug in remote Secure 4 Click board in Mikro Bus Interface 2 and press S1.

When the Secure 4 click board is plugged-in, the application enters the configuration write mode and prints the existing or default configuration.

Note:
The existing or default configuration may be different from what is shown in the following figure.

If the plugged-in board is a brand new Secure 4 click board, the application will write the new

configuration to the configuration zone and lock it. It will display the following messages:

• Configuration Write Complete

• Locking Configuration Zone..

• Configuration Zone Lock Complete

This would be followed by writing of the new data (data slot contents and new keys) to the

data zone and locking it. It would display the following messages:

• Writing Data Zone

• Data Zone Write Complete

• Locking Data Zone..

• Data Zone Lock Complete

• **Remote board Configuration Done**

If the plugged-in board is already configured, the application displays the following message:

• ATCA already configured.

The application provides a user the option to return to main menu:

• Press a key followed by 'enter' key to return to Options Menu.

11. Selecting option 2 - Authentication Mode

Fail Case:

• By default, if the application fails to authenticate the Remote Secure 4 click (plugged in J10), it will be indicated by a red LED (LED1) on the
board

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 183

The Remote Secure 4 click fails to authenticate when the host does not have the public key for the remote in its database. The host will verify only
those remote devices whose public key it possesses.

Pass Case:

To verify the signature of the remote, place the Disposable Public Key of the remote in the database of the host. Copy the Remote Disposable
Public Key from the previous figure and paste the key into the array key_store[] in ecc_asymmetric_app.c file as shown in the following figure.

Build and program the code. Repeat the user actions to select Authentication mode. The application now passes to verify the signature from the
Remote Secure 4 click (plugged in J10). This is indicated by a green LED (LED2) on the board.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 184

The signature of the Remote Secure 4 click is successfully verified as the remote had generated the signature using its private key and the random
challenge from the host, while the host verified the signature by authenticating it against the public key of the remote.

The application provides the following option to return to the main menu:

• Press a key followed by 'enter' key to return to Options Menu.

ecc_symmetric

This application demonstrates the authentication of a remote device with a host (The Curiosity PIC32MZ EF Development Board and the secure 4
click board using the cryptography module ATECC608A) by using symmetric authentication method, where the host and the remote devices share
the same key. The application allows adding information to the configuration, using the configuration data, and key data to configure a secure 4
click board. The application flow is realized through an interactive user interface through the serial terminal program (Tera term) interfaced through
the USB of a computer.

For more information on the features and layout of the Curiosity PIC32MZ EF Development Board, refer to the PIC32MZ EF Curiosity
Development Board User's Guide.

For more information on the features of the ATECC608A module, refer to the Product Data Sheet.

Description

This application demonstrates the use of the ATECC608A module to authenticate the security of the

connected device. The authentication method used is Symmetric.

Symmetric authentication uses a challenge and response process. The host challenges a remote device to assure that it is authentic and can be
trusted. The challenged device responds with the expected results. This method requires that both the host and the remote devices share the
same key. Additionally, the remote device can send a unique serial number so the responses are unique from other remote devices.

In this application, a secure hardware key storage device (ATECC608A on a Secure 4 click board) is used to contain the shared key and unique
serial number, in the host and remote device.

The following figure represents a functional block diagram of the application.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 185

http://ww1.microchip.com/downloads/en/DeviceDoc/70005282B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70005282B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001977A.pdf

Note:
The Secure 4 click board 1 and Secure 4 click board 2 house the ATECC608A module and interface with the
Curiosity PIC32MZ EF Development Board microcontroller over I2C interface.

Authentication Process

The authentication begins with the host asking for the serial number of the remote device. The host sends a random number, which it expects the
remote device to hash with the shared secret key. This is called a challenge because it challenges the remote device to provide a correct answer.
This challenge process is shown in the following figure.

The remote device hashes the random number with the shared key and the unique serial number, then sends back the resulting output of the
hash, which is referred to as a Message Authentication Code (MAC).

The host checks the returned MAC by repeating the same operation. It hashes the shared key with the random number and the unique serial
number of the remote device. The host compares the two results.

A matching result indicates that the challenge has been successfully responded to by the remote device and the host can trust the external device.

Building the Application

The following section describes how to build the application.

Description

To build this project, you must open the ecc_symmetric.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/crypto/ecc_symmetric.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ecc_symmetric.X <install-dir>/apps/crypto/ecc_symmetric/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to run on the
PIC32MZ EF Curiosity Development Board, with the PIC32MZ2048EFM100 microcontroller.

This configuration uses "Secure 4 click" board from MikroElektronika mounted on the mikroBUS
header interfaces.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 186

Configuring the Hardware

This section describes how to configure the hardware for the demonstration.

Description

PIC32MZ EF Curiosity Development Board

Configuration: pic32mz_ef_curiosity

To configure the hardware, use the following steps:

1. For the host operation, mount a Secure 4 click board on the mikroBUS socket J5.

2. For the remote device operation, mount a Secure 4 click board on the mikroBUS socket J10.

3. Power the Curiosity PIC32MZ EF Development Board from the host computer through a Type-A male to Micro-B USB cable connected to the
Micro-B port (J3). The cable is not included with the kit. Ensure that a jumper is placed in the J8 header (between 4 and 3) to select the supply
from the debug USB connector.

4. Ensure that the jumper is not present in the J13 header to use the Curiosity board in Device mode. In Device mode, the board acts as a USB
device to the computer. Plug in a USB cable with a Micro-B type connector to Micro-B port (J12), and plug the other end into the computer.

Running the Demonstration

The following section describes how to run the demonstration.

Description

 Important!
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes
for any known issues. A PDF copy of the release notes is provided in the <install-dir>/doc folder of
your installation.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 187

The following steps are used to run the demonstration:

1. Open the project in MPLAB X IDE and select the pic32mz_ef_curiosity project configuration.

2. Build the code and program the device by clicking on the program button as shown below.

3. After power up, the demonstration is active. This is indicated by a yellow LED (LED3) on the board.

4. Plug in a USB cable with a Micro-B type connector to the Micro-B port (J12) of the Curiosity board, and plug the other end into the computer.

5. If this is the first time using this device with a personal computer, there may be a prompt for a .inf file.

6. Select the Install from a list or specific location (Advanced) option. Specify the path from <install-dir>/apps/crypto/ecc_symmetric/inf directory.

Note:
Optionally, to specify the driver, open the device manager and expand the Ports (COM & LPT) tab, then right click
on Update Driver Software.

7. Once the device is installed, open a terminal program, such as Tera Term or HyperTerminal. Select the appropriate COM port for the terminal.
The following figure shows the COM port selection for the Tera Term terminal program.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 188

8. Once the Tera Term screen is displayed, Press the Enter key. The following modes of operation will be displayed.

9. The application demonstration offers the following two modes of operation.

• Configuration Mode: This mode is used to configure a blank ATECC608A module with the configuration data and keys to be stored. A blank
ATECC608A device is in an unlocked state. This operation performs a lock on the Configuration Zone and Data Zones on the ATECC608A
device. The locking operation is a one time operation and is irreversible.

• Authentication Mode: This mode performs the secured authentication of the Remote ATECC608A device.

10. Selecting Option 1 - Configuration Mode

• The display prompts the user to perform an action

When the Secure 4 click board is plugged-in, the application enters into Configuration Write mode, and prints the existing or default configuration.

Note:
The existing or default configuration may be different from what is shown in the following figure.

If the plugged-in board is a brand new Secure 4 click board, the application will write the new configuration to the configuration zone and lock it.
The application will display the following messages:

• Configuration Write Complete

• Locking Configuration Zone..

• Configuration Zone Lock Complete

This would be followed by the writing of the new data (data slot contents and new keys) to the

data zone and locking it. It would display the following messages:

• Writing Data Zone

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 189

• Data Zone Write Complete

• Locking Data Zone..

• Data Zone Lock Complete

• **Host board Configuration Done**

If the plugged-in board is already configured, the application displays the following message:

• ATCA already configured.

Once the host configuration is completed, the display prompts the user to choose an action:

• Plug in remote Secure 4 Click board in Mikro Bus Interface 2 and press S1.

When the Secure 4 click board is plugged-in, the application enters the configuration write mode and prints the existing or default configuration.

Note:
The existing or default configuration may be different from what is shown in the following figure.

If the plugged-in board is a brand new Secure 4 click board, the application will write the new configuration to the configuration zone and lock it. It
will display the following messages:

• Configuration Write Complete

• Locking Configuration Zone

• Configuration Zone Lock Complete

This would be followed by writing of the new data (data slot contents and new keys) to the data zone and locking it. It would display the following
messages:

• Writing Data Zone

• Data Zone Write Complete

• Locking Data Zone

• Data Zone Lock Complete

• **Remote board Configuration Done**

If the plugged-in board is already configured, the application displays the following message:

• ATCA already configured

The application provides a user the option to return to main menu:

• Press a key followed by 'enter' key to return to Options Menu.

11. Selecting Option 2 - Authentication Mode

Pass Case:

• By default, the application performs successful authentication of the Remote Secure 4 click (plugged in J10). The successful authentication will
be indicated by a green LED (LED2) on the board

• The Remote Secure 4 click successfully authenticates as it shares the secret key with the host.

Volume I: Getting Started With MPLAB Harmony Applications Help Crypto Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 190

Note:
In configuration mode, both the host and device (ATECC608A) are programmed with four identical keys. Refer to
the function, ECC_ATCA_CONFIGURE_WriteData in ecc_atca_configure.c.

• In the file ecc_symmetric_app.c the implementation of the function _ECC_SYMMETRIC_APP_Handle_Authentication, the MAC is computed
and verified for Slot 0, which corresponds to Key 0 being used to compute the MAC on the remote device. The same Key 0 is used to verify the
MAC on the host device. Since the key is same, the MAC verification on the host is successful.

Fail Case:

• To test the Authentication Failure case, uncomment and comment the below lines of code in the function
_ECC_SYMMETRIC_APP_Handle_Authentication in the file ecc_symmetric_app.c.

• Build and program the code. Repeat the user actions to select Authentication Mode. The application will fail to authenticate the Remote Secure
4 click (plugged in J10). The failure is indicated by a red LED (LED1) on the board.

• The remote Secure 4 click failed to authenticate because the secret key used to compute the MAC by the remote, and the secret key used to
verify the MAC from the remote by the host are different. The remote used the Key 0 to compute the MAC, while the host used Key 1 to verify
the computed MAC. Since the Keys are not identical, the MAC verification fails, indicating that the host and the remote do not share a key.

• The application then provides the following message to return to the main menu:

• Press a key followed by 'enter' key to return to Option Menu.

Driver Demonstrations

This section provides descriptions of the Driver demonstrations.

Data EEPROM Driver Demonstration

This topic provides descriptions of the Data EEPROM Driver demonstration.

Introduction

This help file contains instructions and associated information about MPLAB Harmony Data EEPROM Driver Library application demonstrations,
which are included in the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony Data EEPROM Driver Library. This section describes the hardware
requirement and procedures to build and run the demonstration project on Microchip development tools. In this demonstration application, the Data

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 191

EEPROM Driver is used to access the Data EEPROM of an PIC32MK family device to perform read, write operations.

To know more about MPLAB Harmony EEPROM Driver, configuring the Data EEPROM Driver and the APIs provided by the Data EEPROM
Driver, refer to the MPLAB Harmony Data EEPROM Driver Library documentation.

Demonstrations

This topic provides information on how to run the Data EEPROM Driver demonstration applications included in this release.

eeprom_read_write

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Data EEPROM
Read/Write Demonstration.

Description

To build this project, you must open the eeprom_read_write.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/eeprom/eeprom_read_write.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

eeprom_read_write.X <install-dir>/apps/driver/eeprom/eeprom_read_write/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mk_gp_db_int_dyn pic32mk_gp_db This configuration runs on the PIC32MK GP Development
Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MK GP Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section describes how to run the Data EEPROM Driver demonstration.

Description

This is a simple demonstration to show how to configure and make use of EEPROM Driver APIs to implement and access the on-board Flash
memory of PIC32MX and PIC32MZ devices.

How to Run This Demonstration Application

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 192

The execution status (pass/fail) of the demonstration is indicated by LEDs on the demonstration board, as shown in the following table.

Demonstration Board Success Indication Failure Indication

PIC32MK GP Development Board LED3 LED1

The application does the following:

• Opens the Data EEPROM Driver with read and write intent

• Fetches the geometry of the media and determines the block size and number of blocks of read, write and erase regions

• Writes 16 bytes of known data starting at block address 0

• Waits for the Write operation to complete

• Reads back and verifies the 16 bytes of data

• If the verification is successful, LED3 is turned ON; otherwise, LED1 is turned ON

I2C Driver Demonstrations

This topic provides descriptions of the I2C Driver demonstrations.

Introduction

This help file contains instructions and associated information about MPLAB Harmony I2C Driver application demonstrations, which are included in
the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony I2C Driver. This section describes the hardware requirements and
procedures to build and run the demonstration project using Microchip development tools.

One demonstration application is provided:

• i2c_rtcc - In this demonstration, one instance of the I2C peripherals acts as a Master and sends and receives data from two an external slave
device. The slave device is the external MCP7049N Real-Time Clock Calendar (RTCC) device.

To know more about the MPLAB Harmony I2C Driver, configuring the driver and APIs provided by the I2C Driver, refer to the I2C Driver Library
Help documentation.

Demonstrations

This topic provides information on how to run the I2C Driver demonstration applications included in this release.

i2c_rtcc

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the I2C RTCC
demonstration.

Description

To build this project, you must open the i2c_rtcc.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/i2c/i2c_rtcc.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

i2c_rtcc.X <install-dir>/apps/driver/i2c/i2c_rtcc/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 193

Project Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to demonstrate I2C Master mode transfer setup in
Interrupt mode and dynamic operation. The hardware used is the PIC32MX795F512L
PIM connected to the Explorer 16 Development Board.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 This configuration is the freertos version of the demo. The purpose of this configuration
is to demonstrate the I2C Master mode transfer setup in Interrupt mode and dynamic
operation. The hardware used is the PIC32MX795F512L PIM connected to the Explorer
16 Development Board.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 The purpose of this configuration is to demonstrate I2C Master mode transfer setup in
Interrupt mode and dynamic operation. The hardware used is the PIC32MZ EF Starter
Kit connected to the MEB II.

pic32mz_ef_sk_meb2_16b pic32mz_ef_sk+meb2 This configuration is microMIPS version of the demo. The purpose of this configuration
is to demonstrate I2C Master mode transfer setup in Interrupt mode and dynamic
operation. The hardware used is the PIC32MZ EF Starter Kit connected to the MEB II.

pic32mz_ef_sk_meb2_freertos pic32mz_ef_sk+meb2 This configuration is FreeRTOS version of the demo. The purpose of this configuration is
to demonstrate I2C Master mode transfer setup in Interrupt mode and dynamic
operation. The hardware used is the PIC32MZ EF Starter Kit connected to the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

 Note:
The i2c_rtcc demonstration was tested on the Microchip MCP7949N RTCC device. The address of this device is 0xDE.

Explorer 16 Development Board with the PIC32MX795F512L CAN-USB PIM

• Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

If a Starter Kit I/O Expansion Board is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) to the corresponding lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground.

If a PICtail Plus Daughter Board is used, make the following connections:

• PICtail Plus Daughter Board pins RA2 (SCL2) and RA3 (SDA2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper PICtail Plus Daughter Board pins RA2 (SCL2) and pin RA3 (SDA2) to the corresponding SCL and SDA lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit connected to the MEB II

The jumper JP2 on PIC32MZ EC/EF Starter Kit should connected according to the debugger/programmer used, as follows:

• If PKOB is used, pins 1 and 3 and pins 2 and 4 should be shorted

• If MPLAB REAL ICE or MPLAB ICD 3 is being used, pins 1 and 3 and pins 2 and 4 should be left open

The connections pertaining to I2C are as follows:

• Connect MEB II J2 pin 3 (SCL2) to the corresponding SCL line of the external I2C device

• Connect MEB II J2 pin 5 (SDA2) to the corresponding SDA line of the external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

Running the Demonstration

Provides instructions on how to build and run the I2C RTCC demonstration.

Description

1. This demonstration shows how to configure and make use of the I2C Driver APIs to support buffered operation of I2C in Interrupt mode. In this
demonstration, the I2C is configured as single instance and single client.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 194

Once the demonstration application is compiled successfully for the selected configuration, the firmware can be programmed into the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The I2C Driver configures the I2C2 instance of the I2C peripheral in Master mode. The SDA and SCL lines are connected to the Microchip
MCP7940N RTCC device as described in Configuring the Hardware. The Master writes to sequential memory locations in SRAM memory of the
RTCC device. The Master then reads back the content from the same page.

The contents of the buffer variable can be checked to determine the result of the operation.

The expected results are shown in the following table.

Test Case Contents of Buffer

I2C2 (Master) RXbuffer_4[] = "3RTCCSLAVE" (data received from RTCC device)

NVM Driver Demonstration

This topic provides descriptions of the NVM Driver demonstration.

Introduction

This help file contains instructions and associated information about MPLAB Harmony NVM Driver Library application demonstrations, which are
included in the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony NVM Driver Library. This section describes the hardware requirement and
procedures to build and run the demonstration project on Microchip development tools. In this demonstration application, the NVM driver is used to
access the internal Flash memory of PIC32MX and PIC32MZ devices to perform Write and Read operations and indicates the result by LED.

To know more about MPLAB Harmony NVM driver, configuring the NVM driver and the APIs provided by the NVM driver, refer to the MPLAB
Harmony NVM Driver Library documentation.

Demonstrations

This topic provides information on how to run the NVM Driver demonstration applications included in this release.

nvm_read_write

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM Read/Write
Demonstration.

Description

To build this project, you must open the nvm_read_write.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/nvm/nvm_read_write.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

nvm_read_write.X <install-dir>/apps/driver/nvm/nvm_read_write/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 195

Project
Configuration Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 The purpose of this configuration is to execute the demonstration on a PIC32MX family device
using the PIC32 USB Starter Kit II with the dynamic NVM Driver implementation.

pic32mx_usb_sk2_sta pic32mx_usb_sk2 The purpose of this configuration is to execute the demonstration on a PIC32MX family device
using the PIC32 USB Starter Kit II with the static NVM Driver implementation.

pic32mz_ef_sk pic32mz_ef_sk The purpose of this configuration is to execute the demonstration on a PIC32MZ EF family device
using the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the
dynamic NVM Driver implementation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section describes how to run the NVM Driver demonstration.

Description

This is a simple demonstration to show how to configure and make use of NVM Driver APIs to implement and access the on-board Flash memory
of PIC32MX and PIC32MZ devices.

How to Run This Demonstration Application

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The execution status (pass/fail) of the demonstration is indicated by LEDs on the demonstration board, as shown in the following table.

Demonstration Board Success Indication Failure Indication

PIC32 USB Starter Kit II

PIC32MZ EF Starter Kit

LED3 (Green LED) LED1 (Red LED)

The demonstration application makes use of 32 KB of NVM memory area starting at address DRV_NVM_MEDIA_START_ADDRESS.

The application does the following:

• Erases the entire 32 KB of memory and verifies the erase operation by reading back the data

• Performs sequential writes within a page by queuing the write operations. Reads back and verifies the data.

• Repeats step 1 to erase all data of the previous operation

• Performs random writes to addresses spread across the available memory area. This operation demonstrates the queuing of the write
operations at the driver layer. It also demonstrates the usage of the driver event handler to track the completion of the queued operations.
Reads back and verifies the data.

• Repeats step 1 to erase all data from the previous operation

• Performs an EraseWrite operation. This operation demonstrates the usage of the EraseWrite feature

SPI Driver Demonstrations

This topic provides descriptions of the SPI Driver demonstrations.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 196

Introduction

This help file contains instructions and associated information about MPLAB Harmony SPI driver application demonstrations, which are included in
the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony SPI Driver. This section describes the hardware requirements and
procedures to build and run the demonstration project using Microchip development tools.

Three demonstration applications are provided:

• serial_eeprom - In this demonstration application, the SPI Driver is used to access the external EEPROM in the Explorer 16 Development
Board to perform Write and Read operations and indicates the result by LED

• spi_loopback - In this demonstration application, the SPI driver is used to transfer data between the SPI Master and slave on the same device
and indicates the result by LED

• spi_multislave - In this demonstration application, the SPI Driver is used to transfer data between a single Master and two Slaves on the same
device using the Slave Select (SS) feature

• spi_self_loopback - In this demonstration application, the SPI driver is used to transfer data between the SPI output pin and SPI input pin of the
same SPI module/instance and the result of the transfer is indicated using LEDs

To know more about the MPLAB Harmony SPI driver, configuring the SPI driver and APIs provided by the SPI driver, refer to the SPI Driver
Library documentation.

Demonstrations

This topic provides information on how to run the SPI Driver demonstration applications included in this release.

serial_eeprom

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

In this demonstration application, the SPI Driver is used to access the external EEPROM in the Explorer 16 Development Board to perform Write
and Read operations and indicates the result by LED.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Serial EEPROM
Demonstration.

Description

To build this project, you must open the serial_eeprom.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi/serial_eeprom.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

serial_eeprom.X <install-dir>/apps/driver/spi/serial_eeprom/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx360_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to execute the demonstration using the
PIC32MX360F512L PIM connected to the Explorer 16 Development Board configured for
Interrupt mode and dynamic operation.

pic32mx795_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to execute the demonstration using the
PIC32MX795F512L PIM connected to the Explorer 16 Development Board configured for
Interrupt mode and dynamic operation.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 197

pic32mx795_pim_e16_sta pic32mx795_pim+e16 The purpose of this configuration is to execute the demonstration using the
PIC32MX795F512L PIM connected to the Explorer 16 Development Board configured for
Interrupt mode and static operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board with the PIC32MX795F512L CAN-USB PIM

• Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

Explorer 16 Development Board with the PIC32MX360F512L PIM

• Before attaching the PIC32MX360F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

Running the Demonstration

This section demonstrates how to run the SPI Driver Serial EEPROM Demonstration.

Description

This demonstration shows how to configure and make use of the SPI Driver APIs to implement and access the on-board EEPROM of the Explorer
16 Development Board.

How to run this demonstration application:

Once the demonstration application is successfully compiled, you are ready to program the firmware in the target device.

To run the demonstration in debug mode, perform the following steps:

1. Select your device programmer from Project Properties > Hardware Tools in MPLAB X IDE.

2. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

Once the device is successfully programmed, you can observe that the LED in the Explorer 16 Development Board has been turned ON. This
shows the demonstration project ran successfully. The result of the programming can be read through the other LEDs. If LED "D9" is turned ON, it
indicates the EEPROM W/R functionality has failed. If LED "D10" is turned ON, it indicates the EEPROM W/R functionality has passed.

spi_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the SPI driver is used to transfer data between the SPI Master and Slave on the same device and indicates the
result by LED.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Loopback
Demonstration.

Description

To build this project, you must open the spi_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi/spi_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

spi_loopback.X <install-dir>/apps/driver/spi/spi_loopback/firmware

MPLAB X IDE Project Configurations

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 198

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for
Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_sta pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for
Interrupt mode and static operation.

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for
Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit configured for Interrupt mode and
dynamic operation.

pic32mz_ef_sk_int_dyn_dma pic32mz_ef_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit configured for Interrupt mode and
dynamic operation using DMA.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Demonstrates SPI loopback on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit configured for Polled mode and dynamic
operation.

pic32mz_ef_sk_int_dyn_16b pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit configured for Interrupt mode and
dynamic operation in microMIPS mode.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit configured for Interrupt mode and
dynamic operation with FreeRTOS.

pic32mx_usb_sk2_int_dyn_freertos pic32mx_usb_sk2 Demonstrates SPI loopback on the PIC32 USB Starter Kit II configured for
Interrupt mode and dynamic operation with FreeRTOS.

pic32wk_sk_int_dyn pic32wk_gpb_gpd_sk+module Demonstrates SPI loopback on the PIC32WK Wi-Fi Starter Kit configured
for Interrupt mode and dynamic operation.

pic32wk_sk_int_sta pic32wk_gpb_gpd_sk+module Demonstrates SPI loopback on the PIC32WK Wi-Fi Starter Kit configured
for Interrupt mode and static operation.

pic32wk_sk_poll_dyn pic32wk_gpb_gpd_sk+module Demonstrates SPI loopback on the PIC32WK Wi-Fi Starter Kit configured
for Polled mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Required Hardware

This demonstration requires the following hardware:

• PIC32MZ EF Starter Kit or PIC32WK Wi-Fi Starter Kit

• PIC32MZ Starter Kit Adapter Board

• Starter Kit I/O Expansion Board

Depending on the starter kit in use, the SPI1 and SPI2 modules or SPI1 and SPI3 modules are used in this demonstration. PIC32MZ and
PIC32WK devices support the Peripheral Pin Select (PPS) feature. The SPI Pins of the SPI modules on this device are required to be configured
using the PPS. Any related pin mapping (PPS) configuration code along with other port initialization can be found in the sys_port_static.c
file.

 Note:
To know more about the PIC32MZ and PIC32WK PPS feature and pin configuration, please refer to Section 12.3 "Peripheral
Pin Select (PPS)" in the "I/O Ports" chapter of the specific device data.

PIC32MZ EF Starter Kit Configuration

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection
would_connect_the SPI1 lines to the SPI2 lines of the PIC32MZ2048ECH144 device on the PIC32MZ EC Starter Kit or the
PIC32MZ2048EFM144 device on the PIC32MZ EF Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 199

2. Next, the starter kit, the PIC32MZ Starter Kit Adapter Board, and the Starter Kit I/O Expansion Board, as shown in the following figure.

PIC32MZ EF Pin Mapping

The following table illustrates how the SPI1 and SPI2 pins for the PIC32MZ EF devices are mapped and connected to each other through the
Starter Kit I/O Expansion Board.

SPI Module SPI Lines PIC32MZ2048EFM144
Device Pin #

Analog Pin PIC32MZ2048EFM144
Port Pin
Name/Function

Pin # on I/O
Expansion Board
J10 Connector

For this demonstration,
attach this pin to:

SPI1 SCK1 109 No SCK1 41 SCK2

SPI1 SDI1 69 AN32 RPD14 44 SDO2

SPI1 SDO1 98 No RPD10 43 SDI2

SPI1 /SS Not Used Not Used Not Used Not Used Not Used

SPI2 SCK2 14 AN14 SCK2 23 SCK1

SPI2 SDI2 121 No RPD7 24 SDO1

SPI2 SDO2 25 AN45 RPB5 25 SDI1

SPI2 /SS Not Used Not Used Not Used Not Used Not Used

PIC32 USB Starter Kit II

This demonstration requires the following hardware:

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 200

• PIC32 USB Starter Kit II

• Starter Kit I/O Expansion Board

In this demonstration application, the SPI1 and SPI2 modules are used.

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection would attach
the SPI1 lines to the SPI2 lines of the PIC32MX795F512L device on the PIC32 USB Starter Kit II through the Starter Kit I/O Expansion Board.

2. Next,_connect_the PIC32 USB Starter Kit II and the Starter Kit I/O Expansion Board, as shown in the following figure.

For the PIC32MX795F512L device, the SPI modules has dedicated I/O pins.

PIC32 USB Starter Kit II Pin Mapping

The following table illustrates how the SPI1 and SPI2 pins are mapped and connected to each other through the Starter Kit I/O Expansion Board.

SPI Module SPI Lines PIC32MX795F512L
Device Pin #

PIC32MX795F512L Port
Pin Name/Function

Pin # on I/O Expansion
Board J10 Connector

For this demonstration,
attach this pin to:

SPI1 SCK1 70 SCK1 41 SCK2

SPI1 SDI1 9 SDI1 44 SDO2

SPI1 SDO1 72 SDO1 43 SDI2

SPI1 /SS Not Used Not Used Not Used Not Used

SPI2 SCK2 10 SCK2 23 SCK1

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 201

SPI2 SDI2 11 SDI2 24 SDO1

SPI2 SDO2 12 SDO2 25 SDI1

SPI2 /SS Not Used Not Used Not Used Not Used

PIC32WK Wi-Fi Starter Kit II

This demonstration requires the following hardware:

• PIC32WK Wi-Fi Starter Kit

In this this demonstration application, the SPI1 and SPI2 modules are used. Connect (using wires) the pins on the Starter Kit I/O Expansion Board,
as shown in the table and image below. This hardwired connection would attach the SPI1 lines to the SPI2 lines of the PIC32WK2057GPD132
device on the PIC32WK WiFI starter kit through the GPIO headers.

SPI
Module

SPI Lines PIC32WK2057GPD132 Device Pin # PIC32WK2057GPD132
Port Pin

Name/Function

Pin #
on
starter
kit

For this
demonstration, attach
this pin to:

SP1 SCK1 Pin 2 (GPIO header 2) SCK1 SCK2

SP1 SDI1 Pin 5 (GPIO header 2) SDI1 SDO2

SP1 SDO1 Pin 3 (GPIO header 2) SDO1 SDI2

SP1 /SS Not Used Not Used Not Used

SP2 SCK2 Pin 6 (GPIO header 1) SCK2 SCK1

SP2 SDI2 Pin1 6 (GPIO header 1) SDI2 SDO1

SP2 SDO2 Pin 12 (GPIO header 1) SDO2 SDI1

SP2 /SS Not Used Not Used Not Used

Running the Demonstration

This section demonstrates how to run the SPI Driver SPI Loopback Demonstration.

Description

This demonstration shows how to configure and make use of the SPI Driver APIs to support multiple SPI hardware instances to multiple clients of
the driver in both interrupt mode and polled mode. This demonstration shows the SPI driver's "multi-instance multi-client" feature.

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 202

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The SPI Driver configures the SPI1 as Master and SPI2 as Slave on the same PIC32 device. The SPI1 and SPI2 lines are connected to each
other as described in Configuring the Hardware. The Master sends a chunk of data (64 bytes) to the Slave. The data is sent and received back on
the same PIC32 device through the SPI. The data is looped back to the sender.

Upon execution of the program, the SPI Master (SPI1) will transmit a sequence of character string/data through the SPI channel using the settings
defined in the application to SPI1.

After transmitting the data from SPI1, the driver will read SPI2 for any data received. if the data is received, the program will verify the validity of
the received data. Based on the verification result, the program will go either to a success or error state.

If an error occurs, or if the transmitted data is not the same as the received data, LED2 (Yellow) of the starter kit will illuminate, which indicates the
demonstration has failed.

If the transmitted data is exactly the same as the received data, LED3 (Green) of the starter kit will illuminate, which indicates the demonstration
was successful.

spi_multislave

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

In this demonstration application, the SPI driver is used to demonstrate the single Master and multiple Slaves capability of the SPI protocol using
the DRV_SPI_ClientConfigure function of the SPI Driver to switch between slaves.

There are two data transfers in this demonstration, where the Master transfers a chunk of data to each Slave.

The Slaves are selected using the Slave Select (/SSx) pins, which means that when the Slave /SSx pin is active-low, only the Slave can receive
the data. Therefore, while one Slave is receiving the data, the other Slave is kept idle by making the /SSx pin of that Slave high.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Multi-slave
Demonstration.

Description

To build this project, you must open the spi_multislave.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi/spi_multislave.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

spi_multislave.X <install-dir>/apps/driver/spi/spi_multislave/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with Floating Point
Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_16b pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with Floating Point
Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation in microMIPS
mode.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk Demonstrates SPI multi-slave on the PIC32MZ Embedded Connectivity with Floating Point
Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation with FreeRTOS.

Configuring the Hardware

Describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 203

Description

Required Hardware

This demonstration requires the following hardware:

• PIC32MZ EF Starter Kit

• PIC32MZ Starter Kit Adapter Board

• Starter Kit I/O Expansion Board

SPI1, SPI2 and SPI3 modules are used in this demonstration as Master, Slave 1 and Slave 2 respectively. In addition, two GPIO pins are used to
control the Slave Select (/SSx) pins.

PIC32MZ devices support the Peripheral Pin Select (PPS) feature. The SPI Pins of the SPI modules on this device must be configured using the
PPS.

 Note:
To know more about the PIC32MZ PPS feature and pin configuration, please refer to Section 12.3 "Peripheral Pin Select
(PPS)" in the "I/O Ports" chapter of the specific device data.

PIC32MZ EF Starter Kit Configuration

1. Short the pins on the J10 and J11 headers of the Starter Kit I/O Expansion Board, as follows:

• Pin 41 (J10), pin 23 (J10) and pin 48 (J11): SCK1, SCK2, and SCK3

• Pin 43 (J10), pin 24 (J10) and pin 52 (J11): SDO1, SDI2, and SDI3

• Pin 44 (J10), pin 25 (J10) and pin 37 (J11): SDI1, SDO2, and SDO3

• Pin 34 (J10) and pin 26 (J10): RH10 and SS2

• Pin 33 (J10) and pin 46 (J11): RH15 and SS3

2. Next, attach the starter kit and the Starter Kit I/O Expansion Board, as shown in the following figure.

PIC32MZ EF Pin Mapping

The following table illustrates how the SPI1, SPI2, and SPI3 pins for the PIC32MZ EF devices are mapped and connected to each other through
the Starter Kit I/O Expansion Board.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 204

Running the Demonstration

This section demonstrates how to run the SPI Driver SPI Multi-slave Demonstration.

Description

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

Once the device is successfully programmed, you can observe that the LEDs in the starter kit have turned ON. This indicates that the
demonstration project ran successfully. The result of the programming can be read through the LEDs.

The SPI Driver configures SPI1 as the Master and SPI2 and SPI3 as Slaves on the same PIC32 device. The SPI1, SPI2 and SPI3 lines are
connected to each other as described in Configuring the Hardware.

The Master sends a chunk of data (numbers 0 to 63, total 64 bytes) to the Slave 1 in the first transfer and sends one more chunk of data (numbers
64 to 1, total 64 bytes) to the Slave 2 in the second transfer.

The respective Slaves are selected in the each transfer using the /SS2 and /SS3 pins, which are driven by the GPIO pins RH10 and RH15,
respectively.

The following table explains the states of SPI Slaves in different stages of the application:

After the completion of both transfers, the received data for both of the slaves is verified with the transmitted data:

• If the data received by SPI2 matches with the data transmitted in the first transfer, LED2 (YELLOW) will illuminate

• If the data received by SPI3 matches with the data transmitted in the second transfer, LED3 (GREEN) will illuminate

• If both the transfers were not completed or the data of any Slave does not match, LED1 (RED) will illuminate

spi_self_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application demonstrates how to use the SPI Driver for a simple self loopback operation. Although this application may not be a practical use

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 205

case scenario, in general, it can be used to understand how to use MPLAB Harmony drivers, and in particular the SPI driver for a write-read
operation. It also demonstrates how callbacks work for the SPI Driver.

Demonstration Features

SPI Driver Library

Tools Setup Differences

This demonstration has multiple configurations for different devices. Configurations that are for devices with the pin remapping feature have their
SPI pins mapped in the Pin Setting window of MHC as per the device and board specifications.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Self-Loopback
demonstration.

Description

To build this project, you must open the spi_self_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi/spi_self_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

spi_self_loopback.X <install-dir>/apps/driver/spi/spi_self_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity with Floating Point Unit
(EF) Starter Kit and the Starter Kit I/O Expansion Board combination using the SPI Driver in
Dynamic mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and Starter Kit I/O Expansion Board

• Using wires, connect the SDI2 pin (J11 pin 32) and SDO2 pin (J10 pin 35) on the Starter Kit I/O Expansion Board

• Connect the PIC32MZ EF Starter Kit with the adapter board to the Starter Kit I/O Expansion Board

Running the Demonstration

This section demonstrates how to run the SPI Driver SPI Self-Loopback demonstration.

Description

This demonstration loops back data between the SDI and SDO pins of an SPI module.

1. First, compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of the LEDs on the board:

• On the PIC32MZ EF Starter Kit, if LED3 illuminates, the demonstration was successful; otherwise, if LED1 is illuminated, this indicates the
demonstration has failed.

SPI Flash Driver Demonstrations

This topic provides descriptions of the SST25VF020B SPI Flash Driver demonstrations.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 206

Introduction

This help file contains instructions and associated information about the MPLAB Harmony SPI Flash Driver application demonstration, which is
included in the MPLAB Harmony Library distribution.

Description

This application demonstrates the capabilities of the MPLAB Harmony SPI Flash Driver. This section describes the hardware requirements and
procedures to build and run the demonstration project using Microchip development tools.

Demonstrations

This topic provides information on how to run the SPI Flash Driver demonstration application included in this release.

sst25vf020b

This demonstration uses the SST25VF020B SPI Flash Driver to erase, write, and read from the on-board SST25VF020B Flash through SPI and
verifies whether or not operation occurred correctly.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Flash Driver
Demonstration.

Description

To build this project, you must open the sst25vf020b.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/spi_flash/sst25vf020b.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sst25vf020b.X <install-dir>/apps/driver/spi_flash/sst25vf020b/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

bt_audio_dk_int_dyn bt_audio_dk This configuration runs on the PIC32 Bluetooth Audio Development Kit. The SPI Driver and
SST25VF20B SPI Flash Driver are configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

Ensure that Switch S1 is set to PIC32_MCLR.

Running the Demonstration

This section describes how to run the SPI Flash Driver demonstration.

Description

To run this demonstration:

1. First compile and program the target device. While compiling, select the configuration suitable for hardware.

2. Observe the status of LEDs on the development kit. If LED 8 and LED 9 are illuminated, this indicates the demonstration is working correctly. If

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 207

either of LED 5 or LED 6 are illuminated, this indicates the demonstration is not working correctly.

USART Driver Demonstrations

This topic provides descriptions of the USART Driver demonstrations.

Introduction

This section provides instructions and information about the MPLAB Harmony USART Driver demonstration applications, which are included in the
MPLAB Harmony Library distribution.

Description

This application demonstrates how to use the MPLAB Harmony USART Driver. This section describes the hardware requirement and procedures
to build and execute the demonstration project on Microchip development tools. Two demonstration are provided:

• usart_echo - In this demonstration application, the USART Driver will initially transmit strings of data, and then accept_any characters received
and transmit the data back. Error or success status is indicated by LED.

• usart_loopback - In this demonstration application, the USART driver "multi-instance multi-client" feature is used. The application uses two
USART hardware instances of the same PIC32 device. Application transmits chunk of data (64 bytes) on USART1, receives it at USART2,
transmits back from USART2 to USART1. USART1 receives back all the data that was transmitted. The data is looped back to USART1.

To know more about the MPLAB Harmony USART driver, configuring the USART Driver and the APIs provided by the USART Driver, refer to
USART Driver Library documentation.

Demonstrations

This topic provides information on how to run the USART Driver demonstration applications included in this release.

usart_echo

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USART Echo
Demonstration.

Description

To build this project, you must open the usart_echo.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/usart/usart_echo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usart_echo.X <install-dir>/apps/driver/usart/usart_echo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_sta pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Interrupt mode and static operation.

pic32mx795_pim_e16_poll_dyn pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Polled mode and dynamic operation.

pic32mx795_pim_e16_poll_sta pic32mx795_pim+e16 This demonstration runs on the PIC32MX795F512L PIM and the Explorer 16
Development Board configured for Interrupt mode and static operation.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 208

pic32mx795_pim_int_dyn_freertos pic32mx795_pim+e16 FreeRTOS version of this demonstration, which runs on the PIC32MX795F512L
PIM and the Explorer 16 Development Board configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

Explorer 16 Development Board

Following are the hardware configuration settings required to execute this demonstration:

1. Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position.

2. Short JP2 on the Explorer 16 Development Board to enable the LEDs.

3. Use a RS-232 to USB Converter to connect to the computer.

PIC32MX795F512L CAN-USB Plug-in Module (PIM)

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section demonstrates how to run the USART Driver Demonstration.

Description

Once the demonstration application has been compiled successfully for the intended configuration, program the firmware into the target device.

Upon execution, the application will transmit the following strings through the USART using the settings defined in the application.

Welcome to Microchip USART Driver Demo Application.
Press any character, the character will be echoed back.
Press 'ESC' key to exit the Demo Application.

After transmitting the text, the firmware will read any characters received through the USART and it will transmit back the same data. If the
received character is "ESC" (0x1B), the program will enter into Idle mode. Once in Idle mode, the firmware will neither transmit nor receive any
data. If the application enters Idle mode, LED 5 of the Explorer 16 Development Board will illuminate. If any error occurs, LED 9 of the Explorer 16
Development Board will illuminate.

usart_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USART Loopback
Demonstration.

Description

To build this project, you must open the usart_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/driver/usart/usart_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usart_loopback.X <install-dir>/apps/driver/usart/usart_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 209

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Demonstrates USART loopback on the PIC32 USB Starter Kit II configured for Interrupt
mode and dynamic operation.

pic32mx_usb_sk2_int_sta pic32mx_usb_sk2 Demonstrates USART loopback on the PIC32 USB Starter Kit II configured for Interrupt
mode and static operation.

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Demonstrates USART loopback on the PIC32 USB Starter Kit II configured for Polled
mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Demonstrates USART loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Demonstrates USART loopback on the PIC32MZ Embedded Connectivity with Floating
Point Unit (EF) Starter Kit configured for Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates USART loopback on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for
Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

 Note:
For space consideration, only the PIC32MZ EC Starter Kit is shown. However, the following configuration information applies to
either starter kit.

This demonstration requires the following hardware:

• PIC32MZ EF Starter Kit

• PIC32MZ Starter Kit Adapter Board

• Starter Kit I/O Expansion Board

PIC32MZ EF Starter Kit

In this demonstration application, the USART1 and USART2 modules are used. PIC32MZ devices support the Peripheral Pin Select (PPS) feature.
The USART pins of the USART modules on this device are required to be configured using the PPS.

 Note:
To learn more about the PIC32MZ PPS feature and pin configuration, please refer to Section 12.3 "Peripheral Pin Select (PPS)"
in the "I/O Ports" chapter of the specific device data sheet. These documents are available for download from the Microchip web
site (www.microchip.com).

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection
would_connect_the USART1 lines to the USART2 lines of the PIC32MZ2048EFM144 device on the PIC32MZ EF Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 210

http://www.microchip.com

2. Next,_connect the PIC32MZ EF Starter Kit, the PIC32MZ Starter Kit Adapter Board, and the Starter Kit I/O Expansion Board, as shown in the
following figure.

PIC32MZ EF Starter Kit

The following table illustrates how the USART1 and USART2 pins are mapped and connected to each other through the Starter Kit I/O Expansion
Board.

USART
Module

USART
Lines

PIC32MZ2048EFM
Device Pin #

Analog
Pin

PIC32MZ2048EFM
Port Pin
Name/Function

Pin # on I/O
Expansion
Board J10
Connector

Pin # on I/O
Expansion Board
Pin J11
Connector

For this Demonstration,
attach this pin to:

USART1 TX 13 AN19 PMRD 13 N/A USART2 RX

USART1 RX 48 AN49 PMA7 53 N/A USART2 TX

USART2 TX 61 AN9 RPB14 N/A 48 USART1 RX

USART2 RX 62 AN10 RPB15 N/A 46 USART1 TX

PIC32 USB Starter Kit II

This demonstration requires the following hardware:

• PIC32 USB Starter Kit II

• Starter Kit I/O Expansion Board

In this demonstration application, the USART and USART2 modules are used.

1. Connect (using wires) the pins on the Starter Kit I/O Expansion Board, as shown in the following figure. This hardwired connection
would_connect_the USART1 lines to the USART2 lines of the PIC32MX795F512L device on the PIC32 USB Starter Kit II through the Starter
Kit I/O Expansion Board.

2. Next,_connect_the PIC32 USB Starter Kit II and the Starter Kit I/O Expansion Board, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 211

For the PIC32MX795F512L device, the USART modules has dedicated I/O pins.

The following table illustrates how the USART1 and USART2 pins are mapped and connected to each other through the Starter Kit I/O Expansion
Board.

USART Module USART
Lines

PIC32MX795F512L
Device Pin #

PIC32MX795F512L Port
Pin Name/Function

Pin # on I/O Expansion
Board J11 Connector

For this demonstration,
attach this pin to:

USART1 TX 53 U1TX 43 U2RX

USART1 RX 52 U1RX 41 U2TX

USART2 TX 50 U2TX 48 U1RX

USART2 RX 49 U2RX 46 U1TX

Running the Demonstration

This section demonstrates how to run the USART Driver USART Loopback Demonstration.

Description

This demonstration shows how to configure and make use of the USART Driver APIs to support multiple USART hardware instances to multiple
clients of the driver in both interrupt mode and polled mode. This demonstration shows the USART driver's "multi-instance multi-client" feature.

Once the demonstration application is compiled successfully, you are ready to program the firmware in the target device.

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The USART Driver configures the USART1 and USART2 modules on the same PIC32 device as defined in the system_config.h file. The
USART1 and USART2 lines are connected to each other as described in Configuring the Hardware. USART1 sends a chunk of data (64 bytes) to
USART2. USART2 sends back the same data to USART1. The data is sent and received back on the same USART module through another
USART. The data is looped back to the sender.

Upon execution of the program, the USART1 will transmit a sequence of character string/data through the USART1 TX channel using the settings
defined in the application for USART1.

After transmitting the data from USART1, the driver will read USART2 for any data received. If the data is received, the same data is sent back to
USART1. The program will verify the received data to the transmitted data and enter into Idle mode.

Once in Idle mode, the firmware will neither transmit nor receive any data. If the application enters Idle mode, LED2 (Yellow) of the starter kit will
illuminate.

If any error occurs, or if the transmitted data is not same to received data, LED1 (Red) of the starter kit will illuminate, which indicates the
demonstration has failed.

If the transmitted data and received data on UART1 is same, LED3 (Green) of the starter kit will illuminate, which indicates the demonstration was

Volume I: Getting Started With MPLAB Harmony Applications Help Driver Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 212

successful.

Examples

Provides information on MPLAB Harmony example applications. The MPLAB Harmony example applications provide simple single-purpose
application projects that illustrate how to use a selected MPLAB Harmony library. These are the working examples of source code that are
provided throughout the MPLAB Harmony documentation.

my_first_app

Describes the my_first_app example.

Peripheral Library Examples

This topic describes the peripheral library examples.

Introduction

The example applications for MPLAB peripheral libraries (PLIBs) provide very simple single-purpose examples of how to use MPLAB Harmony
peripheral libraries.

Description

Peripheral libraries (PLIBs) are the lowest level libraries provided with MPLAB Harmony. They provide a functional abstraction of the peripherals
available on Microchip microcontrollers to hide differences in register details that can exist from device to device. However, they do not maintain
any state data (at least not any that isn't stored in the hardware registers) from call to call and they do not provide any protection of the peripheral's
resources. As such, any code that calls the PLIB for a peripheral must take responsibility for ownership of that peripheral and is responsible for
managing the behavior of that peripheral.

As such, PLIBs are normally only used by MPLAB Harmony device drivers or system services. However, there are some times when it is
necessary and appropriate to interact with a PLIB directly from an application. Therefore, simple examples are provided to show how to use the
interfaces to the peripheral libraries. These examples are available in the MPLAB Harmony installation in the following location:
<install-dir>/apps/examples/peripheral.

PIC32MX device examples are written for the Explorer16 Development Board with a PIC32MX795F512L PIM. PIC32MZ device examples are
written for the PIC32MZ Embedded Connectivity (EC) Starter Kit. The examples are tested and working on the Explorer 16 Development Board,
the PIC32 USB Starter Kit II, and the PIC32MZ Embedded Connectivity (EC) Starter Kit, and the appropriate board configuration for each project
can be selected in MPLAB X IDE.

ADC Peripheral Library Examples

This topic provides descriptions of the ADC Peripheral Library examples.

Introduction

ADC Peripheral Library Demonstration Applications Help

Description

This distribution package contains one ADC related firmware project that demonstrates the capabilities of the MPLAB Harmony ADC Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the ADC Peripheral Library demonstration applications included in this release.

adc_pot

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 213

Description

This example reads the potentiometer, R6 on the Explorer 16 Development Board using a PIC32MX795F512L PIM. The results of the read are
displayed on the LEDs. As the potentiometer is adjusted, the LEDs displayed will "slide" up or down.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADC Peripheral
Library demonstration.

Description

To build this project, you must open the adc_pot.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adc/adc_pot.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adc_pot.X <install-dir>/apps/examples/peripheral/adc/adc_pot/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the ADC reading potentiometer R6 on the PIC32MX795F512L
PIM and the Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ADC demonstration.

Description

This demonstration reads the setting of the potentiometer through the ADC.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Turn the potentiometer R6 in either direction. Check the state of the LEDs on the Explorer 16 Development Board. As the potentiometer is
turned clockwise, more LEDs will be lit. As the potentiometer is turned counter-clockwise, fewer LEDs are lit.

adc_pot_dma

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example reads the potentiometer, R6 on the Explorer 16 Development Board (PIC32MX795F512L PIM) using the ADC while storing data on
RAM using DMA.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADC Peripheral
Library demonstration.

Description

To build this project, you must open the adc_pot_dma.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adc/adc_pot_dma.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 214

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adc_pot_dma.X <install-dir>/apps/examples/peripheral/adc/adc_pot_dma/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the ADC using a DMA channel to read the potentiometer R6 on the
PIC32MX795F512L PIM and the Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ADC demonstration.

Description

This demonstration reads the setting of the potentiometer through the ADC.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Turn the potentiometer R6 in either direction. Check the state of the LEDs on the Explorer 16 Development Board. As the potentiometer is
turned clockwise, more LEDs will be lit. As the potentiometer is turned counter-clockwise, fewer LEDs are lit.

12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Examples

This topic provides descriptions of the 12-bit High-Speed SAR ADC (ADCHS) Peripheral Library examples.

Introduction

12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Demonstration Applications Help

Description

This distribution package contains one ADC-related firmware project that demonstrates the capabilities of the MPLAB Harmony ADCHS Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the ADCHS Peripheral Library demonstration applications included in this release.

adchs_3ch_dma

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstrates the use of system DMA to automatically store conversion data of three ADC channels into three separate buffers.
Each channel is set to sample at a conversion rate of 2 Msps using a single timer trigger to synchronize the conversion of all three channels. An
average converted data displays on a terminal emulator, such as RealTerm.

This application is to be used with the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit using the Starter Kit I/O
Expansion Board with the Adapter Board.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 215

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_3ch_dma.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_3ch_dma.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_3ch_dma.X <install-dir>/apps/examples/peripheral/adchs/adchs_3ch_dma/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates operation of three system DMA channels to store conversion of a Class 1 analog
input (potentiometer) when connected to the PIC32MZ EF Starter Kit using the Starter Kit I/O
Expansion Board and the PIC32MZ EC Starter Kit Adapter Board.

pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates operation of three system DMA channels to store conversion of a Class 1 analog
input when connected to the PIC32MZ DA Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

1. Connect the PIC32MZ EF Starter Kit to the PIC32MZ EC Starter Kit Adapter Board.

2. Connect the combination of two boards (as described in Step 1) on the Starter Kit I/O Expansion Board.

3. A 3 analog signal or 3 potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and
wiper of potentiometer to J11 pin 34 and 33 (AN0 and AN1) and J10 pin 32 (AN2) on the Starter Kit I/O Expansion Board.

4. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

5. Power the Starter Kit I/O Expansion Board with a 9V power supply.

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

1. A 3 analog signal or 3 potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and
wiper of potentiometer to J15 pin 35, 27, and 16 (AN0, AN1, and AN2) on the PIC32MZ EF Starter Kit.

2. Power and download firmware to the Starter Kit by connecting a mini-USB cable from a PC to the mini-USB connector J19 (DEGUG) on the
PIC32MZ EF Starter Kit.

3. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

To build this project, you must open the adchs_3ch_dma.X project in MPLAB X IDE, and then select the desired configuration.

Do the following to run the demonstration:

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following message will appear in the console window: Result: 3171.

4. This example demonstrates the use of system DMA to automatically store conversion data of three ADC channels into three separate buffers.
Each channel is set to sample at a conversion rate of 2 Msps using a single timer trigger to synchronize the conversion of all three channels.
An average converted data displays on a terminal emulator, such as RealTerm.

The following figure shows a working terminal emulator window.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 216

adchs_oversample

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstration reads the potentiometer that is connected to the PIC32MZ DA Starter Kit or the PIC32MZ EF Starter Kit using the
Starter Kit I/O Expansion Board with the PIC32MZ EC Starter Kit Adapter Board, and performs oversampling of the converted data and displays
the higher resolution ADC converted readings on a terminal emulator (such as RealTerm).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_oversample.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_oversample.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_oversample.X <install-dir>/apps/examples/peripheral/adchs/adchs_oversample/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates operation of a digital filter in Oversampling mode, while converting a Class 1 analog input
(potentiometer) when connected to the PIC32MZ EF Starter Kit using the Starter Kit I/O Expansion Board
and the PIC32MZ EC Starter Kit Adapter Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 217

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

1. Connect the PIC32MZ EF Starter Kit to the PIC32MZ EC Starter Kit Adapter Board.

2. Connect the combination of two boards (as described in Step 1) on the Starter Kit I/O Expansion Board.

3. A potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and wiper of potentiometer
to pin 34 of J11 on the Starter Kit I/O Expansion Board.

4. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

5. Power the Starter Kit I/O Expansion Board with a 9V power supply.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This demonstration oversamples the converted data of the potentiometer using digital filters. Do the following to run the demonstration:

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following message will appear in the console window: Result: 3171.

4. As the potentiometer is turned, the "Result:" on the console shows the high resolution ADC converted value.

5. The higher resolution data can be verified by first running the adchs_pot demonstration and observing the 12-bit converted data. Later, keeping
the potentiometer setting same, the adchs_oversample demonstration is run and the higher resolution 15-bit converted data can be observed
and verified. Theoretical calculation is as follows:

• Max count of 12 bit resolution: 4096

• Max count of 15 bit resolution: 32768

• ADC Ref input voltage: 3.3 Volts

Consider an analog input of 0.319 Volts:

• 12-bit resolution ADC reading (obtained by adchs_pot): ((4096/3.3) * 0.319) = 396

• 15-bit resolution ADC reading (oversampled by adchs_oversample): ((32768/3.3) * 0.319) = 3167

The following figure shows a working terminal emulator window.

adchs_pot

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstration reads the potentiometer that is connected to the PIC32MZ DA Starter Kit or the PIC32MZ EF Starter Kit using the
Starter Kit I/O Expansion Board with the PIC32MZ EC Starter Kit Adapter Board or the PIC32WK WiFi Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 218

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_pot.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_pot.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_pot.X <install-dir>/apps/examples/peripheral/adchs/adchs_pot/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates a read of the potentiometer by the ADC when connected to the PIC32MZ EF
Starter Kit using the Starter Kit I/O Expansion Board and the PIC32MZ EC Starter Kit Adapter
Board.

pic32wk_sk pic32wk_gpb_gpd_sk+module Demonstrates a read of the potentiometer by the ADC when connected to the PIC32WK WiFi
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

1. Connect the PIC32MZ EF Starter Kit to the PIC32MZ EC Starter Kit Adapter Board.

2. Connect the combination of two boards (as described in Step 1) on the Starter Kit I/O Expansion Board.

3. A potentiometer of suitable value (4.7K or 10K) should be connected with two ends to 3.3V and the GND pin of J11; and wiper of potentiometer
to pin 34 of J11 on the Starter Kit I/O Expansion Board.

4. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

5. Power the Starter Kit I/O Expansion Board with a 9V power supply.

PIC32WK WiFi Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This demonstration reads the setting of the potentiometer through the ADC.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following messages will appear in the console window:

• Comparator 1 has detected the ADC value to be between 0 and 2000

• Result: 960

4. As the potentiometer is turned, the "Result:" on the console shows the ADC converted value. Two digital comparators process the ADC
converted value and generate an event. The conditions for digital comparator events are as follows:

• Digital Comparator 1 generates an event when the ADC converted value is between 0 to 2000. Also, LED D1 on the starter kit turns ON.

• Digital Comparator 2 generates an event when the ADC converted value is between 2000 to 4000. Also, LED D2 on the starter kit turns ON.

5. The following figure shows a working terminal emulator window.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 219

adchs_sensor

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This peripheral library example demonstrates the conversion of three Class 2 and one Class 3 analog inputs in Channel Scan mode, triggered by a
Timer3 match. On the MEB II board, the chosen three Class 2 analog inputs are connected to the three axes of an accelerometer and the Class 3
analog input is connected to a temperature sensor. The demonstration application code uses the converted value of the three axes of the
accelerometer, converts them into the tilt of the three axes, and displays the results on the serial port terminal (in radians). Also, the converted
data from the temperature sensor is scaled to degrees Celsius and displayed on the serial port terminal.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_sensor.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_sensor.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_sensor.X <install-dir>/apps/examples/peripheral/adchs/adchs_sensor/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates the scan conversion feature with a timer trigger, while converting three Class 2
analog inputs (accelerometer) and one Class 3 analog input (temperature sensor) when
connected to the PIC32MZ EF Starter Kit on the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit connected to the MEB II

1. Mount the PIC32MZ EF Starter Kit on the MEB II.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

3. Power the Starter Kit I/O Expansion Board with a 9V power supply on the MEB II or through the Debug connector (J3) on SK.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 220

 Note:
The accelerometer y and z axes are connected to AN7 (RB12) and AN8 (RB13) on the PIC32MZ EF Starter kit. The same pins
are also used for switch inputs, SW1 and SW2. During the application initialization, the ports are configured as analog. While
running this demonstration care should be taken not to press SW1 or SW2. Otherwise, the converted ADC values will be incorrect.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This demonstration reads the accelerometer and temperature sensor. Do the following to run the demonstration:

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration. The following messages will appear in the console window:

• Temp: 27 deg C

• x-axis: 0.001 radians

• y-axis: 0.01 radians

• z-axis: 1.52 radians

4. As the MEB II board is tilted, the angles for each axis displayed on the console windows changes.

5. If the temperature sensor "U8" is heated (by touching), the displayed temperature on the console window changes.

The following figure shows a working terminal emulator window.

adchs_touchsense

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This peripheral library example demonstrates the Capacitive Voltage Divider (CVD) feature of the ADCHS Peripheral Library and analog channel
scan features using the PIC32MZ EF Starter Kit and the touch pad (B2) on the Multimedia Expansion Board II (MEB II).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ADCHS Peripheral
Library demonstration.

Description

To build this project, you must open the adchs_touchsense.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adchs/adchs_touchsense.

MPLAB X IDE Project

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 221

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adchs_touchsense.X <install-dir>/apps/examples/peripheral/adchs/adchs_touchsense/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates the CVD feature of ADCHS while converting a Class 3 analog input (AN28),
in Scan mode when connected to the PIC32MZ EF Starter Kit on the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

1. Mount the PIC32MZ EF Starter Kit on the MEB II.

2. Connect a mini-USB cable from a PC to the mini-USB connector J11 on the PIC32MZ EF Starter Kit.

3. Power the Starter Kit I/O Expansion Board with a 9V power supply on the MEB II or through the debug connector (J3) on the PIC32MZ EF
Starter Kit.

Running the Demonstration

Provides instructions on how to build and run the ADCHS Peripheral Library demonstration.

Description

This example demonstrates the CVD feature of ADCHS and senses the touch event on the B2 touchpad of the MEB II.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Launch a terminal emulator (RealTerm/Tera Term, etc.,) and select the appropriate COM port and set the serial port settings to 115200-N-1.

3. Launch the demonstration.

4. Touch the B2 touch pad on the MEB II. The B2 touch pad is located on the LCD side of the MEB II and not on the starter kit side of MEB II.
Once touched, the LED D4 on the MEB II illuminates and "Touch Detected!!!" is displayed on the serial terminal program. This display repeats
every 1 second, until B2 is no longer being touched.

5. Once B2 is not longer being touched, the LED D4 turns off and after a brief delay, LED D3 illuminates.

The following figure shows a working terminal emulator window.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 222

Pipelined ADC (ADCP) Peripheral Library Examples

This topic provides descriptions of the Pipelined Analog-to-Digital Converter (ADCP) Peripheral Library examples.

Introduction

Pipelined ADC Peripheral Library Demonstration Applications Help

Description

This distribution package contains one ADC related firmware project that demonstrates the capabilities of the MPLAB Harmony Pipelined ADC
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Pipelined ADC Peripheral Library demonstration applications included in this release.

adcp_cal

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example illustrates how to configure the Pipelined ADC prior to using it for normal operations. It also illustrates the required errata setup of
channel, oversampling, and DMA transfer of data to achieve the best results.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Pipelined ADC
calibration demonstration.

Description

To build this project, you must open the adcp_cal.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/adcp/adcp_cal.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

adcp_cal.X <install-dir>/apps/examples/peripheral/adcp/adcp_cal/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ec_pim_e16 pic32mz_ec_pim+e16 Using the PIC32MZ2048ECH100 Plug-in Module (PIM) connected to the Explorer 16
Development Board, this demonstration illustrates a software calibration step that is needed
before using the Pipelined ADC. This calibration calculates the DC offset by sampling the internal
voltage reference (IVREF) attached to the ADC.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ2048ECH100 PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 223

The software is configured to use an external VREF+ and VREF- attached to pins 33 and 32, respectively, of the PIM. This can be accomplished
through the Starter Kit I/O Expansion board or a PICtail™ Prototyping Daughter Board.

The VREF+ pin voltage needs to be applied either after, or at the same time as the main VDD power is applied. The software is set to accept 3.3V
as the VREF+ voltage. The software is set to accept 0.0V as the VREF- voltage, so that pin may be connected to GND or AVSS.

If another voltage is used for VREF+ or VREF-, the corresponding setting in the software, in adcp.h, needs to be updated to make the
calculations correct.

The potentiometer R6 on the Explorer 16 Development Board can be used to drive one of the inputs in the demonstration. Run a jumper between
RB5 and RG8 on the PICtail prototyping daughter board, inserted into the PICtail slot. This board can also be used to set up the VREF+ and
VREF- connections.

VREF+ can be set up by connecting RB9 on the PICtail prototyping daughter board to +3.3V. VREF- can be set up by connecting RB8 on the
PICtail Prototyping Daughter Board.

Running the Demonstration

Provides instructions on how to build and run the Pipelined ADC demonstration.

Description

This demonstration shows how the Pipelined ADC module operates on PIC32MZ devices in accordance with the Errata and Data Sheet
clarifications.

1. Connect and program the device using your debugger.

2. Set a breakpoint in app.c, near line 234, which reads:
 appData.state = APP_STATE_NORMALIZE_DATA;

3. Set a breakpoint in app.c, near line 241, which reads:
 appData.state = APP_STATE_DISPLAY_DATA;

4. Run the program.

5. When the program reaches the first breakpoint, you can use the debugger variables window to observe the data in appData.ADC_Data1.

6. Continue running the program from the breakpoint.

7. When the program reaches the second breakpoint, you can use the debugger variables window to observe the data in appData.ADC_Data1.
This data has now been normalized, meaning that the values have been converted to 8-bit results. This would be the data an application would
use.

8. Continue running the program to collect a new set of data, repeating Steps 5 through 7, as desired. If you have connected the jumper to allow
potentiometer R6 operation, turn the potentiometer and observe the change in results.

9. The scale of the readings on the channel connected to the potentiometer is also reflected on the LEDs of the Explorer 16 Development Board.

 Note:
Timer3 is used to trigger the ADC scan automatically. If the number of channels to be used is changed, the Timer3 period needs
to be adjusted accordingly.

Do the following to make the adjustment:

1. Open the Microchip Harmony Configurator.

2. Load the configuration for the adcp_cal project.

3. Navigate to Harmony Framework Configuration > Drivers > Timer > Use Timer Driver? and select TMR Driver Instance 0.

4. Change the Timer Period value according to this formula:

• Timer Period = 721 * APP_NUM_ANX_PINS (where, APP_NUM_ANX_PINS is defined in adcp_config.h and
represents the number of pins to sample)

5. Generate and run the demonstration again

BMX Peripheral Library Examples

This topic provides descriptions of the BMX Peripheral Library examples.

Introduction

BMX Peripheral Library Demonstration Applications Help

Description

This distribution package contains one BMX related firmware project that demonstrates the capabilities of the MPLAB Harmony BMX Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 224

Demonstrations

This topic provides information on how to run the BMX Peripheral Library demonstration applications included in this release.

mem_partition

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example sets up a memory partition in the PIC32MX device for Kernel and User segments. If the memory is set correctly, the LEDs on the
Explorer 16 Development Board are lit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the BMX Peripheral
Library BMX Handler demonstration.

Description

To build this project, you must open the mem_partition.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/bmx/mem_partition.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

mem_partition.X <install-dir>/apps/examples/peripheral/bmx/mem_partition/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the BMX memory partition demonstration on the
PIC32MX795F512L PIM and Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the BMX demonstration.

Description

This demonstration sets up Kernel and User memory partitions through the BMX Peripheral Library.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe the status of the LEDs on the Explorer 16 Development Board. If the memory was correctly partitioned, the LEDs on the Explorer 16
Development Board are lit.

CAN Peripheral Library Examples

This topic provides descriptions of the CAN demonstrations.

Introduction

CAN Library Demonstration Applications Help.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 225

Description

This distribution package contains one CAN-related firmware project that demonstrates the capabilities of the MPLAB Harmony CAN Library. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries, refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the CAN Library demonstration applications included in this release.

echo_send

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration shows how to use the CAN Peripheral Library and CAN peripheral on a device to send out a message over the CAN bus. This
demonstration uses message filtering to echo back user data sent to its specific address. This demonstration does not use a CAN Driver or the
CAN Stack.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the CAN Echo Send
demonstration.

Description

To build this project, you must open the echo_send.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/can/echo_send.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

echo_send.X <install-dir>/apps/examples/peripheral/can/echo_send/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration Name BSP(s) Used Description

pic32mx_125_sk pic32mx_125_sk Demonstrates sending a message over the CAN bus on the PIC32MX1/2/5
Starter Kit.

pic32mz_ef_sk_io_ebrd_can_pictail pic32mz_ef_sk Demonstrates sending a message over the CAN bus using the CAN/LIN PICtail
Plus Daughter Board and the PIC32MZ EF Starter Kit connected to the PIC32MZ
Starter Kit Adapter Board and Starter Kit I/O Expansion Board.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates sending a message over the CAN bus using the combined
CAN/LIN PICtail Plus Daughter Board and the PIC32 USB Starter Kit II.

pic32mz_ef_sk_io_ebrd_can_pictail_16b pic32mz_ef_sk Demonstrates sending a message over the CAN bus with 16-bit configuration
using the CAN/LIN PICtail Plus Daughter Board and the PIC32MZ EF Starter Kit
connected to the PIC32MZ Starter Kit Adapter Board and the Starter Kit I/O
Expansion Board.

pic32mk_gp_db pic32mk_gp_db Demonstrates sending a message over the CAN bus using the CAN socket
available on the PIC32MK GP Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX1/2/5 Starter Kit

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 226

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Connect DB9 on CAN1 socket using CAN/LIN PICtail Plus Daughter Board. Use I/O expansion board as interface between Starter kit and PICtail
board.

PIC32MZ EF Starter Kit connected to the PIC32MZ Starter Kit Adapter Board

On the PIC32MZ Starter Kit Adapter Board, short pins 1 and 2 of JP1 and short pins 1 and 2 of JP3.

Connect DB9 on CAN1 socket using CAN/LIN PICtail Plus Daughter Board. Use the I/O expansion board as the interface between the starter kit
and the PICtail daughter board.

CAN/LIN PICtail Plus Daughter Board

For CAN1, set J4 to 1 and J2 to 2-3.

PIC32MK GP Development Board

No hardware related configuration or jumper setting changes are necessary.

Connect DB9 on the CAN1 socket.

Running the Demonstration

Provides instructions on how to build and run the CAN Echo Send demonstration.

Description

The following tools are required to run this demonstration:

• MPLAB X IDE

• MPLAB XC32 C/C++ Compiler

 Note:
Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for the specific versions. A
PDF copy of the release notes is provided in the <install-dir>/doc folder of your installation.

• One of the following:

• PIC32MX1/2/5 Starter Kit

• CAN/LIN PICtail Plus Daughter Board and PIC32 USB Starter Kit II combination

• PIC32MZ EF Starter Kit and PIC32MZ Starter Kit Adapter Board combination

• PIC32MK GP Development Board

• One Microchip CAN BUS Analyzer (APGDT002) or equivalent

• One DB9 cable

• Two USB A-to-B mini cables

• A personal computer

Hardware Example

The following figure illustrates the hardware setup for the PIC32MX1/2/5 Starter Kit.

Refer to "CAN BUS Analyzer User's Guide" (DS50001848) for further operating instructions regarding the CAN BUS Analyzer.

For more information on the CAN Bus, visit: http://www.can-cia.org/

Do the following to run the demonstration:

1. Connect one end of the DB9 cable to the starter kit and the other end to the CAN BUS Analyzer.

2. Connect the USB cables to J3 on the starter kit and to the CAN BUS Analyzer.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 227

http://www.can-cia.org

3. Open the CAN BUS Analyzer software.

4. Configure the Analyzer for the Baud Rate Selected inside MHC (1 Mbps Typical), Normal Operation, Termination Resistor: ON.

5. Start MPLAB X IDE and open the project, echo_send.X.

6. Program the starter kit.

7. Open the Rolling Trace window in the CAN BUS Analyzer software.

8. LED1 must be ON by default. Press switch 1 to see the output in the trace window. Note: While switch is pressed LED should turn OFF.

 Note:
When the switch is pressed, the LED should turn OFF.

9. Press the button(s) on the starter kit to see the output in the trace window.

10. Open the Transmit window.

11. To get a response from the starter kit, the following address must be used: ID = 0x201. Following the address, enter the DLC, which is the
Data Length Code (the number of bytes to follow). For example, if 0x201, DLC, Byte1, Byte2, Byte3, Byte4 was entered, the starter kit will
respond with: 0x102, DLC, Byte1, Byte2, Byte3, Byte4.

Demonstration Output

The following figure shows the Rolling Trace send/receive output from the CAN Bus Analyzer.

Button Press Mapping

SW1 Press - 0x12C, 2, 0x11, 0x222.

The following figure shows the Rolling Trace output message.

can_display

This topic provides information on how to run the can_display demonstration application included in this release.

Description

The purpose of this demonstration is to show how to use the CAN Peripheral Library and Graphics Library together. This demonstration should
show you all incoming messages it sees on the bus. In addition to reading all incoming messages, it is capable of transmitting messages using the
two on-screen buttons.

 Note:
The messages transmitted have no meaning other than a placeholder and to show that messages can be sent and is random
made up data that is within the allowable ranges (0x0-0xFF).

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 228

Architecture

SSD1963

The SSD1963 is and on-board LCD controller. This dedicated device contains the logic that generates the LCD timing, as well as the frame buffers
used for storing graphics.

MCP2562

The MCP2562 is a CAN transceiver, it takes CAN Receive (RX) and CAN Transmit (TX) from the microcontroller and converts the signals into a
split differential pair for communicating on the bus.

DB9 connector

This is connector interface that is a standard CAN to DP9 pin-out interface.

CAN Bus Analyzer

This is a tool that allows the user to view, send, and receive messages on the CAN bus.

LCD Display

There are currently two display options available for this demonstration:

• 4.3” WQVGA TFT display that is 480x272 and has a maXTouch touch controller

• 5.0” WVGA TFT display that is 800x480 and has a maXTouch touch controller

Demonstration Features

• CAN Driver

• I2C Driver

• PMP Driver

• SSD1963 Driver

• CAN Peripheral Library

• Aria User Interface Library

Tools Setup Differences

• The following was changed in MHC: operation mode. This was set to “CAN_LISTEN_ALL_MESSAGE_MODE” because we want to see all
traffic on the CAN bus and display it on the LCD under the CAN RX Messages (HEX) group box.

• Setting the baud rate for the CAN module can be very complicated, a calculator in included in MHC to make this easier. Enter the desired baud
rate and click Execute

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the CAN Display
demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 229

Description

To build this project, you must open the can_display.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/can/can_display.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

can_display.X <install-dir>/apps/examples/peripheral/can/can_display/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32mk_gp_db_wqvga_mxt pic32mk_gp_db_wqvga_mxt Demonstrates the use of the CAN Peripheral Library and graphics library in the form
of an application. GUI information is displayed on a 4.3” touch screen.

pic32mk_gp_db_wvga_mxt pic32mk_gp_db_wvga_mxt Demonstrates the use of the CAN Peripheral Library and graphics library in the form
of an application. GUI information is displayed on a 5.0” touch screen

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MK GP Development Board

Configurations: pic32mk_gp_db_wqvga and pic32mk_gp_db_wvga

• pic32mk_gp_db_wqvga_mxt requires the 4.3” High-Performance WQVGA Display with maXTouch (Microchip P/N: AC320005-4)

• pic32mk_gp_db_wvga_mxt requires the 5.0” High-Performance WQVGA Display with maXTouch (Microchip P/N: AC320005-5)

No hardware related configuration or jumper setting changes are necessary.

Connect the hardware as follows:

1. Connect the desired display to the 50-pin flex cable located at the bottom of the board. The arrow points to PIN 1.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 230

2. Connect the CAN bus analyzer to J18 located on the top of the board.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 231

3. Connect a MPLAB REAL ICE In-Circuit Emulator or MPLAB ICD3 In-Circuit Emulator to J9 (RJ-11 socket).

4. Connect power by using a USB A to B micro into J2.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 232

Running the Demonstration

Provides instructions on how to build and run the CAN Display demonstration.

Description

This demonstration exercises the MPLAB Harmony CAN Peripheral Library and Graphics Library.

1. Start MPLAB X IDE and open the project, can_display.X.

2. Program the starter kit.

3. You should see a screen very similar to that of the following figure. Due to the difference in screen sizes (WVGA versus WQVGA) the layout
had to be changed slightly to fit everything on the screen.

• 1) Shows the Harmony Version number

• 2) Shows all data being transmitted from the demonstration board

• 3) Shows all the data being transmitted on the bus

5. Open your CAN tool of choice and set it to 1 Mbps, press either message button to the transmitting message (below in red). From your CAN
tool, send a message to see it on the screen under “CAN RX Messages (HEX)”.

The following figure shows the Microchip CAN Bus Analyzer tool interface (APGDT002). This tool can send and receive messages. The values
shown above are just examples of data of what could be sent. For more information on using this tool refer to the CAN Bus Analyzer User's Guide
(DS51848), which is available for download from the Microchip website (www.microchip.com).

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 233

http://www.microchip.com

The next figure shows the demonstration running in real-time. The values under “CAN TX” correspond to “Send Message 2” and can also been
seen in the red box in the Microchip CAN Bus Analyzer tool.

 Note:
All values for this are in HEX, 0x is not show as the leading values. The values being transmitted is just example data.

Comparator Peripheral Library Examples

This topic provides descriptions of the Comparator Peripheral Library examples.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 234

Introduction

Comparator Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Comparator related firmware project that demonstrates the capabilities of the MPLAB Harmony Comparator
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Comparator Peripheral Library demonstration applications included in this release.

simple_comparator

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example sets up the Comparator in the PIC32MX device to compare the potentiometer input on inverting input to the reference voltage on
non-inverting input. Depending on the comparison, one half of the LEDs on the Explorer 16 Development Board will be lit.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Comparator
Peripheral Library demonstration.

Description

To build this project, you must open the simple_comparator.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/cmp/simple_comparator.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

simple_comparator.X <install-dir>/apps/examples/peripheral/cmp/simple_comparator/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Simple comparator demonstration on the PIC32MX795F512L PIM and
Explorer 16 Development Board.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the simple comparator demonstration on the
PIC32MX795F512L PIM and Explorer 16 Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Comparator demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 235

Description

This demonstration sets up the analog comparator to trigger an interrupt when the inverting and non-inverting inputs change relative value.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe the status of the LEDs on the Explorer 16 Development Board. Depending on the comparison between the inverting and non-inverting
inputs, one half of the LEDs (D3-D6 or D7-D10) will be lit.

CVREF Peripheral Library Examples

This topic provides descriptions of the CVREF Peripheral Library examples.

Introduction

CVREF Peripheral Library Demonstration Applications Help.

Description

This distribution package contains one CVREF related firmware project that demonstrates the capabilities of the MPLAB Harmony CVREF
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the CVREF Peripheral Library demonstration applications included in this release.

triangle_wave

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example sets up the CVREF voltage divider in the PIC32 devices to create a triangle waveform that can be observed on an oscilloscope.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the CVREF Peripheral
Library demonstration.

Description

To build this project, you must open the triangle_wave.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/cvref/triangle_wave.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

triangle_wave.X <install-dir>/apps/examples/peripheral/cvref/triangle_wave/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 CVREF triangle wave demonstration on the PIC32MX795F512L PIM and
Explorer 16 Development Board.

pic32mz_ef_pim_e16 pic32mz_ef_pim+e16 CVREF triangle wave demonstration on the PIC32MZ2048EFH100 PIM and
Explorer 16 Development Board.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the CVREF triangle wave demonstration on the
PIC32MX795F512L PIM and Explorer 16 Development Board.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 236

pic32mz_ef_pim_e16_freertos pic32mz_ef_pim+e16 FreeRTOS version of the CVREF triangle wave demonstration on the
PIC32MZ2048EFH100 PIM and Explorer 16 Development Board.

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the CVREF triangle wave demonstration on the
PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

Attach an oscilloscope probe to RB10, which is the CVREFOUT pin.

PIC32MZ2048EFH100 PIM and Explorer 16 Development Board

Attach an oscilloscope probe to RB10, which is the CVREFOUT pin.

PIC32MZ EF Starter Kit, PIC32MZ Starter Kit Adapter Board and Starter Kit I/O Expansion Board

Attach an oscilloscope probe to CVREF pin on J11 in Starter Kit I/O Expansion Board, which is the CVREFOUT pin.

Running the Demonstration

Provides instructions on how to build and run the CVREF demonstration.

Description

This demonstration changes the voltage output on the CVREF pin to create a triangle waveform, which can be observed using an oscilloscope.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe the output of the CVREFOUT pin using the oscilloscope. A triangle waveform of different voltage levels should be observed.

DDR Peripheral Library Examples

This topic provides descriptions of the DDR Peripheral Library examples.

Introduction

DDR Peripheral Library Demonstration Applications Help

Description

This distribution package contains one DDR related firmware project that demonstrates the capabilities of the MPLAB Harmony DDR Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the DDR Peripheral Library demonstration applications included in this release.

Description

This release contains one demonstration:

• write_read_ddr2

write_read_ddr2

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstration tests the DDR functionality that is included on the PIC32MZ DA Family Starter Kits.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 237

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the DDR Peripheral
Library demonstration.

Description

To build this project, you must open the write_read_ddr2.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ddr/write_read_ddr2.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

write_read_ddr2.X <install-dir>/apps/examples/peripheral/ddr/write_read_ddr2/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_da_sk_extddr pic32mz_da_sk_extddr Demonstrates DDR functionality on the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit.

pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates DDR functionality on the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit and PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the DDR demonstration.

Description

This demonstration tests the functionality of the DDR SDRAM included on the PIC32MZ Graphics (DA) Family Starter Kit.

1. First compile and program the target device. While compiling, select the available configuration for the hardware in use.

2. Run the application. LED1 and LED2 (Red and Yellow) will flash as the DDR is being filled. LED2 and LED3 (Yellow and Green) will flash as
the DDR is read and the pattern verified. LED3 (Green) will flash if all patterns match those written. LED1 (RED) will flash if any pattern does
not match the one written.

3. Pressing Switch 1 at any time will restart the test.

DMA Peripheral Library Examples

This topic provides descriptions of the DMA Peripheral Library examples.

Introduction

DMA Peripheral Library Demonstration Applications Help

Description

This distribution package contains one DMA related firmware project that demonstrates the capabilities of the MPLAB Harmony DMA Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 238

Demonstrations

This topic provides information on how to run the DMA Peripheral Library demonstration applications included in this release.

dma_led_pattern

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration displays a pattern stored in Flash on LEDs using DMA transfers (by exercising the DMA Peripheral Library), which are
triggered by a Timer1 interrupt.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the DMA Peripheral
Library DMA Handler demonstration.

Description

To build this project, you must open the dma_led_pattern.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/dma/dma_led_pattern.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

dma_led_pattern.X <install-dir>/apps/examples/peripheral/dma/dma_led_pattern/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bootloader_pic32mx_eth_sk pic32mx_eth_sk This configuration is used and programmed by the Bootloader Demonstrations.
Refer to those demonstrations for more information.

bootloader_pic32mz_ef_sk pic32mz_ef_sk This configuration is used and programmed by the Bootloader Demonstrations.
Refer to those demonstrations for more information.

bootloader_pic32mz_da_sk_intddr pic32mz_da_sk_intddr This configuration is used and programmed by the Bootloader Demonstrations.
Refer to those demonstrations for more information.

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the DMA led pattern on PIC32MX795F512L CAN-USB PIM and
Explorer 16 Development Board combination.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the DMA LED pattern on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates the DMA LED pattern on the PIC32MZ Embedded Graphics with
Internal DRAM (DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 239

No hardware related configuration or jumper setting changes are necessary.

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the DMA demonstration.

Description

This demonstration triggers an interrupt based on the DMA alarm.

1. First compile and program the target device. While compiling, select the configuration for the hardware in use.

2. Observe the pattern on the LEDs upon successful execution. The pattern will repeat and continuously blink the LEDs in succession. If there is a
failure, the LEDs will stop toggling.

EBI Peripheral Library Examples

This topic provides descriptions of the EBI Peripheral Library examples.

Introduction

External Bus Interface (EBI) Peripheral Library Demonstration Applications Help

Description

This distribution package contains an EBI SRAM read/write demonstration project that demonstrates the capabilities of the EBI and its ability to
store data and access data that is attached to it.

This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the EBI Peripheral Library demonstration applications included in this release.

sram_read_write

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

for the EBI Peripheral Library SRAM Read/Write Demonstration.

Description

To build this project, you must open the sram_read_write.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ebi/sram_read_write.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sram_read_write.X <install-dir>/apps/examples/peripheral/ebi/sram_read_write

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates SRAM read/write on the PIC32MZ EF Starter Kit with the MEB II.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 240

pic32mz_ef_sk_meb2_16b pic32mz_ef_sk+meb2 This configuration is the microMIPS version of the demonstration. Demonstrates
SRAM read/write on the PIC32MZ EF Starter Kit with the MEB II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the EBI basic demonstration.

Description

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the PIC32MZ EC Starter Kit to the MEB II.

3. Connect the USB cable to the mini-B debugger port on the PIC32MZ EC Starter Kit and the other end to the computer.

4. Build, download, and run the demonstration project on the target board.

There are four states to the state machine in this demonstration, APP_STATE_WRITE, APP_STATE_READBACK, APP_STATE_DONE, and
APP_STATE_FAIL.

The demonstration will initialize the EBI hardware module. After the hardware had been configured, the demonstration will write in a walking
address to the entire memory array. After the demonstration has finished writing in data, it reads back the entire memory array and checks it
against the expected data.

If the check PASSES, the demonstration will go to APP_STATE_DONE state where it will remain and indicate the demonstration success by
turning ON LED3 (GREEN LED) of the PIC32MZ EC Starter Kit.

If the check FAILS, the demonstration will go to APP_STATE_FAIL state where it will remain and indicate the failure by turning ON LED1 (RED
LED) of the PIC32MZ EC Starter Kit.

I2C Peripheral Library Examples

This topic provides descriptions of the I2C Peripheral Library examples.

Introduction

I2C Peripheral Library Demonstration Applications Help

Description

This distribution package contains I2C-related firmware projects that demonstrate the capabilities of the MPLAB Harmony I2C Peripheral Library.

This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the I2C Peripheral Library demonstration applications included in this release.

i2c_interrupt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the I2C Peripheral
Library example demonstration.

Description

To build this project, you must open the i2c_interrupt.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 241

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/i2c/i2c_interrupt.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

i2c_interrupt.X <install-dir>/apps/examples/peripheral/i2c/i2c_interrupt/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 The purpose of this configuration is to demonstrate I2C Master mode transfer setup in
Interrupt mode and static operation. The hardware used is the PIC32MX795F512L PIM
connected to the Explorer 16 Development Board.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 This configuration is FreeRTOS version of the demo. The purpose of this configuration is
to demonstrate I2C Master mode transfer setup in Interrupt mode and static operation.
The hardware used is the PIC32MX795F512L PIM connected to the Explorer 16
Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

 Note:
The i2c_interrupt demonstration was tested on the Microchip MCP7949N RTCC device. The address of this device is 0xDE.

Explorer 16 Development Board with the PIC32MX795F512L CAN-USB PIM

• Before attaching the PIC32MX795F512L PIM to the Explorer 16 Development Board, ensure that the processor select switch (S2) is in the PIM
Position

• Short JP2 on the Explorer 16 Development Board to enable the LEDs

If a Starter Kit I/O Expansion Board is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper I/O Expansion board J11 pin 36 (SDA2) and J11 pin 38 (SCL2) to the corresponding lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground.

If a PICtail Plus Daughter Board is used, make the following connections:

• PICtail Plus Daughter Board pins RA2 (SCL2) and RA3 (SDA2) should be pulled up to 3.3V through a 2.2k ohm resistor

If an external RTCC is used, make the following connections:

• Jumper PICtail Plus Daughter Board pins RA2 (SCL2) and pin RA3 (SDA2) to the corresponding SCL and SDA lines of an external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit connected to MEB II

The jumper JP2 on PIC32MZ EC/EF Starter Kit should be connected according to the debugger/programmer used, as follows:

• If PKOB is used, pins 1 and 3 and pins 2 and 4 should be shorted

• If MPLAB REAL ICE or MPLAB ICD 3 is being used, pins 1 and 3 and pins 2 and 4 should be left open

The connections pertaining to I2C are as follows:

• Connect MEB II J2 pin 3 (SCL2) to the corresponding SCL line of the external I2C device

• Connect MEB II J2 pin 5 (SDA2) to the corresponding SDA line of the external I2C device

• If an external I2C device is connected, ensure that the Master and Slave device share a common ground

Running the Demonstration

Provides instructions on how to build and run the I2C demonstration.

Description

This demonstration shows how to configure and make use of the I2C Driver APIs to support buffered operation of I2C in Interrupt mode. In this
demonstration, the I2C is configured as single instance and single client.

Once the demonstration application is compiled successfully for the selected configuration, the firmware can be programmed into the target device.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 242

To run the demonstration in Debug mode, perform the following steps:

1. Select the appropriate configuration from the MPLAB X IDE Project Properties based on the target hardware.

2. Select your device programmer from the Hardware Tool menu in MPLAB X IDE.

3. Select either Debug > Debug Main Project or click Debug Main Project in the toolbar.

4. Build the selected configuration in the MPLAB X IDE project and program the demonstration board.

The I2C Driver configures the I2C2 instance of the I2C peripheral in Master mode. The SDA and SCL lines are connected to the Microchip
MCP7940N RTCC device as described in Configuring the Hardware. The Master writes to sequential memory locations in SRAM memory of the
RTCC device. The Master then reads back the content from the same page.

The contents of the buffer variable can be checked to determine the result of the operation.

The expected results are shown in the following table.

Test Case Contents of Buffer

I2C2 (Master) RXbuffer_6[] = "3RTCCSLAVE" (data received from RTCC device)

Input Capture Peripheral Library Examples

This topic provides descriptions of the Input Capture Peripheral Library examples.

Introduction

Input Capture Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Input Capture related firmware project that demonstrates the capabilities of the MPLAB Harmony Input
Capture Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Input Capture Peripheral Library demonstration applications included in this release.

ic_basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration exercise the timer capture based on the rising edge of the Input Capture 1 pin (RD8). The timer capture value is stored in
'CaptureTime' variable.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Input Capture
Peripheral Library Input Capture Handler demonstration.

Description

To build this project, you must open the ic_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ic/ic_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

ic_basic.X <install-dir>/apps/examples/peripheral/ic/ic_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 243

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Input Capture Peripheral Library on the PIC32 USB Starter Kit II and
the I/O Expansion Board combination.

pic32mx_usb_sk2_freertos pic32mx_usb_sk2 Demonstrates the Input Capture Peripheral Library on the PIC32 USB Starter Kit II and
the I/O Expansion Board combination.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the IC demonstration.

Description

This demonstration triggers an interrupt.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. LED3 will turn ON once a successful input capture has been made.

Flash/NVM Peripheral Library Examples

This topic provides descriptions of the Flash/NVM Peripheral Library examples.

Introduction

NVM Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Flash-related firmware project that demonstrates the capabilities of the MPLAB Harmony NVM Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the NVM Peripheral Library demonstration applications included in this release.

flash_modify

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration does the following:

• Erases a page in the program Flash

• Writes a row of data into the program Flash

• Reads and verifies the written data

• Indicates the success or failure of the operation through on-board LEDs

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM Peripheral
Library demonstration.

Description

To build this project, you must open the flash_modify.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 244

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/flash/flash_modify.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_modify.X <install-dir>/apps/examples/peripheral/flash/flash_modify/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the NVM Peripheral Library on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the NVM Peripheral Library on the PIC32MZ Embedded Connectivity
(EC) Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the NVM Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the NVM Peripheral Library with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mz795_pim_e16_freertos pic32mx795_pim+e16 Demonstrates the NVM Peripheral Library on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination with FreeRTOS.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the NVM Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit with FreeRTOS.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

• Switch S2 should be set to PIM

• Jumper J2 should be in place

PIC32MZ EC Starter Kit

Remove Jumper JP1.

PIC32MZ EF Starter Kit

Remove Jumper JP1.

Running the Demonstration

Provides instructions on how to build and run the NVM demonstration.

Description

This demonstration exercises internal Flash erase, write, and read operations through the NVM Peripheral Library.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Upon successful execution of the demonstration, the LEDs on the respective hardware turn ON to indicate success or failure. Refer to the
following table for the LED status for the different configurations.

Project Configuration Success State Failure State

pic32mx795_pim_e16 LED4 ON LED3 ON

pic32mz_ec_sk

pic32mz_ef_sk

pic32mz_da_sk

LED3 ON LED1 ON

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 245

Output Compare Peripheral Library Examples

This topic provides descriptions of the Output Compare Peripheral Library examples.

Introduction

Output Compare Peripheral Library Demonstration Applications Help.

Description

This distribution package contains one Output Compare related firmware project that demonstrates the capabilities of the MPLAB Harmony Output
Compare Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Output Compare Peripheral Library demonstration applications included in this release.

oc_pwm

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration generates a 40 kHz PWM with a 25% duty cycle on the Output Compare 1 output pin.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Output Compare
Peripheral Library Output Compare Handler demonstration.

Description

To build this project, you must open the oc_pwm.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/oc/oc_pwm.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

oc_pwm.X <install-dir>/apps/examples/peripheral/oc/oc_pwm

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Output Compare PWM on PIC32 USB Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk+meb2 Demonstrates the Output Compare PWM on the PIC32MZ EF Starter Kit
and MEB II combination.

pic32mx_usb_sk2_freertos pic32mx_usb_sk2 Demonstrates the Output Compare PWM on PIC32 USB Starter Kit II.

pic32mz_ef_sk_freertos pic32mz_ef_sk+meb2 Demonstrates the Output Compare PWM on the PIC32MZ EF Starter Kit
and MEB II combination.

Configuring the Hardware

Describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 246

Description

PIC32 USB Starter Kit II and Starter Kit I/O Expansion Board

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the OC demonstration.

Description

This demonstration exhibits the generated PWM on the Output Compare pin.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. The user should see a 40 kHz signal with 25% duty cycle on the oscilloscope on the following pins for the respective configurations:

• pic32mx_usb_sk2: Output Compare 1 output pin on the I/O Expansion Board

• pic32mz_ec_sk or pic32mz_ef_sk: Output Compare 5 output pin (pin 22) on the PICtail connector of the MEB II

Oscillator Peripheral Library Examples

This topic provides descriptions of the Oscillator Peripheral Library examples.

Introduction

Oscillator Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Oscillator related firmware project that demonstrates the capabilities of the MPLAB Harmony Oscillator
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Oscillator Peripheral Library demonstration applications included in this release.

osc_config

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example demonstrates how to change the system clock source and PLL values during run-time.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Oscillator Peripheral
Library.

Description

To build this project, you must open the osc_config.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/osc/osc_config.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 247

Project Name Location

osc_config.X <install-dir>/apps/examples/peripheral/osc/osc_config/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Timer3 interrupt on the PIC32 USB Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_ef_sk_meb2_16b pic32mz_ef_sk+meb2 This configuration is the microMIPS version of the demonstration. Demonstrates the
Timer3 interrupt on the PIC32MZ Embedded Connectivity with the Floating Point Unit
(EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Oscillator demonstration.

Description

This demonstration configures the Oscillator for different setups at run-time.

1. First compile and program the target device. While compiling, select the appropriate configuration for the hardware in use.

2. LED3 will turn ON if the clock settings have changed during run-time.

PMP Peripheral Library Examples

This topic provides descriptions of the PMP Peripheral Library examples.

Introduction

PMP Peripheral Library Demonstration Applications Help

Description

This distribution package contains one PMP related firmware project that demonstrates the capabilities of the MPLAB Harmony PMP Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the PMP Peripheral Library demonstration applications included in this release.

pmp_lcd

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 248

Description

This example initializes the LCD on the Explorer 16 Development Board and a sends string of information to it using the PMP Peripheral Library.

Building the Application

for the PMP Peripheral Library PMP Alarm Demonstration.

Description

To build this project, you must open the pmp_lcd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/pmp/pmp_lcd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pmp_lcd.X <install-dir>/apps/examples/peripheral/pmp/pmp_lcd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the PMP LCD configuration on the Explorer 16 Development
Board with the PIC32MX795F512L PIM.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the PMP demonstration.

Description

This demonstration shows the PMP/counter capabilities using PMP peripheral library functions.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the LCD of the Explorer 16 Development Board. The message, "Hello! Testing...", should appear on the display at run-time.

Ports Peripheral Library Examples

This topic provides descriptions of the PORTS Peripheral Library examples.

Introduction

Ports Peripheral Library Demonstration Applications Help.

Description

This distribution package contains two Ports related firmware projects that demonstrate the capabilities of the MPLAB Harmony Ports Peripheral
Library.

This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Ports Peripheral Library demonstration applications included in this release.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 249

blinky_leds

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example blinks and LED with the selected frequency.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Ports Peripheral
Library.

Description

To build this project, you must open the blinky_leds.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ports/blinky_leds.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

blinky_leds.X <install-dir>/apps/examples/peripheral/ports/blinky_leds/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Ports Peripheral Library on the PIC32 Ethernet Starter Kit.

pic32mx_xlp_sk pic32mx_xlp_sk Demonstrates the Ports Peripheral Library on the PIC32MX XLP Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mk_gp_db pic32mk_gp_db Demonstrates the Ports Peripheral Library on the PIC32MK General Purpose (GP)
Development Board.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the Ports Peripheral Library with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32wk_sk pic32wk_gpb_gpd_sk+module Demonstrates the Ports Peripheral Library on the PIC32WK Wi-Fi Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX XLP Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MK GP Development Board

No hardware related configuration or jumper setting changes are necessary.

PIC32WK Wi-Fi Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 250

Running the Demonstration

Provides instructions on how to build and run the PORTS demonstration.

Description

This demonstration exercises the Ports Peripheral Library functionality.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe that LED3 (see Note) is blinking.

 Note:
On the PIC32MX XLP Starter Kit, the red LED (LED1) should be blinking.

3. Change the value of APP_LED_BLINK_DELAY in app.h, and then compile and run the code. Observe the change in frequency of the blinking
of the LED.

cn_interrupt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example controls LED toggling using change notice interrupts associated with the peripheral libraries and specific hardware.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Ports Peripheral
Library.

Description

To build this project, you must open the cn_interrupt.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/ports/cn_interrupt.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cn_interrupt.X <install-dir>/apps/examples/peripheral/ports/cn_interrupt/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Ports Peripheral Library on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk_freertos pic32mx_eth_sk Demonstrates the Ports Peripheral Library on the PIC32 Ethernet Starter Kit with
FreeRTOS enabled.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the Ports Peripheral Library on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit with FreeRTOS enabled.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the Ports Peripheral Library with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32wk_sk pic32wk_gpb_gpd_sk+module Demonstrates the Ports Peripheral Library on the PIC32WK WiFi Starter Kit.

pic32mz_da_sk pic32mz_da_sk_extddr Demonstrates the Ports Peripheral Library on the PIC32MZ DA Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 251

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32WK Wi-Fi Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ DA Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides information on how to build and run the Change Notice Interrupt demonstration.

Description

This demonstration exercises the control of on board LED toggling on the basis of change in the switch state using Port Peripheral Library.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Observe the status of the LEDs on the demonstration board. Once the demonstration starts running on the demonstration board, the LED3 will
begin toggling. Pressing switch SW1, LED3 from toggling and it will be in an OFF state. On another press of switch SW1, LED3 will begin
toggling again.

Power Peripheral Library Examples

This topic provides descriptions of the Power Peripheral Library examples.

Introduction

Power Peripheral Library Demonstration Applications Help.

Description

This distribution package contains two Power related firmware project that demonstrates the capabilities of the MPLAB Harmony Power Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Power Peripheral Library demonstration applications included in this release.

sleep_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration uses the Watchdog Timer to wake the device from Sleep mode and then toggle LEDs based on the status.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Power Peripheral
Library Sleep Mode demonstration.

Description

To build this project, you must open the sleep_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/power/sleep_mode.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 252

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sleep_mode.X <install-dir>/apps/examples/peripheral/power/sleep_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates Sleep mode on the PIC32 Ethernet Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Sleep mode on the PIC32MZ Embedded Connectivity with Floating Point
Unit (EF) Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Sleep mode with 16-bit configuration on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Power demonstration.

Description

This demonstration puts the device in Sleep mode and than wakes it using the Watchdog Timer.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of the LEDs. LED1 should glow for a few seconds and then turn off and then LED3 will begin toggling.

Reset Peripheral Library Examples

This topic provides descriptions of the Reset Peripheral Library examples.

Introduction

Reset Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Reset related firmware project that demonstrates the capabilities of the MPLAB Harmony Reset Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Reset Peripheral Library demonstration applications included in this release.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 253

reset_handler

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example performs checks on various reset flags, assigning each one to an I/O port pin. If the flag is set, the corresponding LED is turned ON.
All of the flags can then be cleared by pressing a switch on the board.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Reset Peripheral
Library Reset Handler demonstration.

Description

To build this project, you must open the reset_handler.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/reset/reset_handler.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

reset_handler.X <install-dir>/apps/examples/peripheral/reset/reset_handler/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the Reset Peripheral Library on the PIC32MX795F512L PIM and the
Explorer 16 Development Board.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Reset Peripheral Library on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates the Reset Peripheral
Library on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

Jumper JP2 should be connected (shorted) for the LEDs to function.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the RESET demonstration.

Description

This demonstration finds the reason for a Reset and illuminates the LEDs accordingly.

First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

PIC32MX795F512L PIM with Explorer 16 Development Board:

Check the status of the LEDs to observe the different reasons for a Reset, as follows:

1. Press Switch S6 to clear all Reset flags, which turns all LEDs OFF.

2. Press the MCLR switch on the board to cause a Reset. LED D9 should turn ON.

3. Unplug the power and plug it again to cause a Power-on Reset (POR). LED D5 should turn ON.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 254

4. Press the MCLR switch again. LED D5 and D9 should both turn ON.

5. Press Switch S6 again to clear all Resets, which turns all LEDs OFF.

6. Press Switch S4 to enable the Watchdog Timer. After a few seconds, LED 10 should turn ON indicating a WDT reset has occurred.

These steps can be repeated from the beginning.

PIC32MZ EF Starter Kit:

1. Press Switch S3 to clear all Reset flags, which turns all LEDs OFF.

2. Press Switch S1 to enable the Watchdog Timer. After a few seconds, LED 1 should turn ON indicating a WDT reset has occurred.

 Note:
A POR clears all the other Reset flags, with the exception of a BOR and a POR flags.

SPI Peripheral Library Examples

This topic provides descriptions of the SPI Peripheral Library examples.

Introduction

SPI Peripheral Library Demonstration Applications Help

Description

This distribution package contains two SPI related firmware project that demonstrates the capabilities of the MPLAB Harmony SPI Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the SPI Peripheral Library demonstration applications included in this release.

spi_loopback

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration loops back data transfer. This example assumes that the SPI SDO (output) is connected to the SDI (input).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SPI Peripheral
Library Flash Read in PIO Mode Demonstration.

Description

To build this project, you must open the spi_loopback.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/spi/spi_loopback.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

spi_loopback.X <install-dir>/apps/examples/peripheral/spi/spi_loopback/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 255

Project Configuration Name BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the SPI loopback on the PIC32 USB Starter Kit II and the Starter
Kit I/O Expansion Board combination.

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the SPI loopback on the PIC32MX795F512L PIM, Explorer 16
Development Board, and the Starter Kit I/O Expansion Board combination.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit and the Starter Kit I/O Expansion Board
combination.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit and the Starter Kit I/O Expansion Board
combination in microMIPS mode.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the SPI loopback on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit and the Starter Kit I/O Expansion Board
combination with FreeRTOS.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 Demonstrates the SPI loopback on the PIC32MX795F512L PIM, Explorer 16
Development Board, and the Starter Kit I/O Expansion Board combination with
FreeRTOS.

pic32wk_sk pic32wk_gpb_gpd_sk+module Demonstrates the SPI loopback on the PIC32WK WiFi Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM, Explorer 16 Development Board, and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI1 and SDO1 pins on the Starter Kit I/O expansion board

• Connect the Starter Kit I/O Expansion Board to the Explorer 16 Development Board and mount the PIM on the development board

PIC32MZ EF Starter Kit and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI2 pin (J11 pin 32) and SDO2 pin (J10 pin 35) on the Starter Kit I/O Expansion Board

• Connect the PIC32MZ EF Starter Kit with the adapter board to the Starter Kit I/O Expansion Board

PIC32 USB Starter Kit II and Starter Kit I/O Expansion Board

• Connect (using wires) the SDI1 and SDO1 pins on the Starter Kit I/O Expansion Board

• Connect the Starter Kit I/O Expansion Board to the PIC32 USB Starter Kit II

PIC32WK Wi-Fi Starter Kit

• Connect (by using wires) the SDI1 and SDO1 pins on the Starter Kit

Running the Demonstration

Provides instructions on how to build and run the SPI PIO mode transfer demonstration.

Description

This demonstration loops back data on the SPI module (SPI1 and SPI2 when using the PIC32MZ EC Starter Kit or the PIC32MZ EF Starter Kit,
and SPI1 and SPI3 when using the PIC32MZ DA Starter Kit.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of LEDs:

• LED D4 and D5 on the Explorer 16 Development Board

• LED3 and LED2 on the PIC32 USB Starter Kit II, PIC32MZ EC Starter Kit, PIC32MZ EF Starter Kit, PIC32MZ DA Starter Kit, or PIC32WK WiFi
Starter Kit.

3. If the demonstration was successful, the LED D5 or LED3 illuminates. If the demonstration fails, LED D4 or LED2 illuminates.

SQI Peripheral Library Examples

This topic provides descriptions of the SQI Peripheral Library examples.

Introduction

SQI Peripheral Library Demonstration Applications Help

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 256

Description

This distribution package contains two SQI related firmware projects that demonstrate the capabilities of the MPLAB Harmony SQI peripheral
libraries. This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and
development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the SQI Peripheral Library demonstration applications included in this release.

flash_read_dma_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises SQI module in DMA mode, by reading a page in the SQI Flash (SST26VF032/SST26VF032B) device on
the PIC32MZ EC Starter Kit or the PIC32MZ EF Starter Kit. This demonstration uses PIO mode to write the Flash. Following steps describe the
functionality per the calls during run time:

1. Sets up SQI to run at 25 MHz. (system_init.c:: SYS_Initialize, app.c:: APP_Initialize)

2. Once the clock frequency is programmed, the demonstration prepares the connected Serial Flash device for a write read transaction (app.c::
APP_Tasks:: APP_STATE_INIT_FLASH:: SQI_Flash_Setup).

3. Reads the device ID of the attached Flash device (app.c:: APP_Tasks:: APP_STATE_FLASH_ID_READ:: SQI_FlashID_Read).

4. Writes a page in Flash in PIO mode (app.c:: APP_Tasks:: APP_STATE_WRITE_FLASH:: SQI_PIO_PageWrite(FLASH_PAGE_ADDR)).

5. Reads the contents of the page in Flash using DMA mode and compares it to the data written to make sure the operation is successful
(app.c:: APP_Tasks:: APP_STATE_READ_FLASH_DMA_MODE:: SQI_DMA_Read(FLASH_PAGE_ADDR)).

6. Indicates demonstration success using LED3 (Green LED) on the starter kit (app.c:: APP_Tasks:: APP_STATE_DONE::
BSP_SwitchONLED(LED_GRN)).

7. LED3 OFF, indicates demonstration FAILURE (stuck in one of the states).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SQI Peripheral
Library Flash Read in DMA Mode Demonstration.

Description

To build this project, you must open the flash_read_dma_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/sqi/flash_read_dma_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_read_dma_mode.X <install-dir>/apps/examples/peripheral/sqi/flash_read_dma_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SQI DMA mode transfer on the PIC32MZ EF
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 257

Running the Demonstration

Provides instructions on how to build and run the SQI DMA mode transfer demonstration.

Description

This demonstration allows page writes and reads to/from an SQI Flash device.

1. First compile and program the target device. While compiling, select the appropriate configuration for the starter kit in use.

2. Check the state of LED3 on the starter kit in use to determine the status of the demonstration (LED ON indicates success, LED OFF indicates
failure).

flash_read_pio_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises the SQI module in PIO mode, by writing and reading a page in the SQI Flash
(SST26VF032/SST26F032B) device on the PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit using the SQI Peripheral Library.

The following steps describe the functionality per the calls during run-time:

1. Sets up SQI to run at 25 MHz. (system_init.c:: SYS_Initialize, app.c:: APP_Initialize).

2. Once the clock frequency is programmed, the demonstration prepares the connected Serial Flash device for a write read transaction (app.c::
APP_Tasks:: APP_STATE_INIT_FLASH:: SQI_Flash_Setup).

3. Reads the device ID of the attached Flash device (app.c:: APP_Tasks:: APP_STATE_FLASH_ID_READ:: SQI_FlashID_Read)

4. Writes a page in Flash in PIO mode (app.c:: APP_Tasks:: APP_STATE_WRITE_FLASH:: SQI_PIO_PageWrite(FLASH_PAGE_ADDR)).

5. Reads the contents of the page in Flash and compares it to the data written to make sure the operation is successful (app.c:: APP_Tasks::
APP_STATE_READ_FLASH_PIO_MODE:: SQI_PIO_Read(FLASH_PAGE_ADDR)).

6. Indicates demonstration success using LED3 (Green LED) on the starter kit (app.c:: APP_Tasks:: APP_STATE_DONE::
BSP_SwitchONLED(LED_GRN)).

7. LED3 OFF, indicates demonstration FAILURE (stuck in one of the states).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SQI Peripheral
Library Flash Read in PIO Mode Demonstration.

Description

To build this project, you must open the flash_read_pio_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/sqi/flash_read_pio_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_read_pio_mode.X <install-dir>/apps/examples/peripheral/sqi/flash_read_pio_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SQI PIO mode transfer on the PIC32MZ EF Starter
Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 258

Running the Demonstration

Provides instructions on how to build and run the SQI PIO mode transfer demonstration.

Description

This demonstration allows page writes and reads to/from an SQI Flash device.

1. First compile and program the target device. While compiling, select the appropriate configuration for the starter kit in use.

2. Check the state of LED3 on the starter kit in use to determine the status of the demonstration (LED3 ON indicates success, LED3 OFF
indicates failure).

flash_read_xip_mode

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises the SQI module in XIP mode, by reading a page in the SQI Flash (SST26VF032/SST26VF032B) device
on the PIC32MZ EC Starter Kit or the PIC32MZ EF Starter Kit. This demonstration uses PIO mode to write the Flash.

The following steps describe the functionality per the calls during run-time:

1. Sets up SQI to run at 25 MHz. (system_init.c:: SYS_Initialize, app.c:: APP_Initialize)

2. Once the clock frequency is programmed, the demonstration prepares the connected Serial Flash device for a write read transaction (app.c::
APP_Tasks:: APP_STATE_INIT_FLASH:: SQI_Flash_Setup).

3. Reads the device ID of the attached Flash device (app.c:: APP_Tasks:: APP_STATE_FLASH_ID_READ:: SQI_FlashID_Read).

4. Writes a page in Flash in PIO mode (app.c:: APP_Tasks:: APP_STATE_WRITE_FLASH:: SQI_PIO_PageWrite(FLASH_PAGE_ADDR)).

5. Reads the contents of the page in Flash using DMA mode and compares it to the data written to make sure the operation is successful (app.c::
APP_Tasks:: APP_STATE_READ_FLASH_DMA_MODE:: SQI_XIP_Read(FLASH_PAGE_ADDR)).

6. Indicates demonstration success using LED3 (Green LED) on the starter kit (app.c:: APP_Tasks:: APP_STATE_DONE::
BSP_SwitchONLED(LED_GRN)).

7. LED3 OFF, indicates demonstration FAILURE (stuck in one of the states).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SQI Peripheral
Library Flash Read in XIP Mode Demonstration.

Description

To build this project, you must open the flash_read_xip_mode.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/sqi/flash_read_pio_mode.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

flash_read_xip_mode.X <install-dir>/apps/examples/peripheral/sqi/flash_read_xip_mode/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SQI XIP mode transfer on the PIC32MZ EF Starter
Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SQI XIP mode transfer demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 259

Description

This demonstration allows page writes and reads to/from an SQI Flash device.

1. First compile and program the target device. While compiling, select the appropriate configuration for the starter kit in use.

2. Check the state of LED3 on the starter kit to determine the status of the demonstration (LED3 ON indicates success, LED3 OFF indicates
failure).

Timer Peripheral Library Examples

This topic provides descriptions of the TMR Peripheral Library examples.

Introduction

Timer Peripheral Library Demonstration Applications Help

Description

This distribution package contains one Timer related firmware project that demonstrates the capabilities of the MPLAB Harmony Timer Peripheral
Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Timer Peripheral Library demonstration applications included in this release.

timer3_interrupt

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration uses Timer3 to generate an interrupt based on the time-out (1 second).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TMR Peripheral
Library TMR Alarm Demonstration.

Description

To build this project, you must open the timer3_interrupt.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/tmr/timer3_interrupt.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

timer3_interrupt.X <install-dir>/apps/examples/peripheral/tmr/timer3_interrupt/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the Timer3 interrupt on the PIC32MX795F512L CAN-USB PIM and
Explorer 16 Development Board combination.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the Timer3 interrupt on the PIC32 USB Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity (EC)
Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 260

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Graphics with
Internal DRAM (DA) Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the Timer3 interrupt with 16-bit configuration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mx_usb_sk2_freertos pic32mx_usb_sk2 Demonstrates the Timer3 interrupt on the PIC32 USB Starter Kit II with FreeRTOS
running on the configuration.

pic32mz_ef_sk_freertos pic32mz_ef_sk Demonstrates the Timer3 interrupt on the PIC32MZ Embedded Connectivity with
Floating Point Unit (EF) Starter Kit with FreeRTOS running on the configuration.

pic32wk_sk pic32wk_gpb_gpd_sk+module Demonstrates the Timer3 interrupt on the PIC32WK Wi-Fi Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

Jumper JP2 should be connected (shorted) for the LEDs to function.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32WK Wi-Fi Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Timer demonstration.

Description

This demonstration shows the timer/counter capabilities using TMR peripheral library functions.

PIC32MZ, PIC32MX, and PIC32WK

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Check the state of the LEDs. LED3 ON status indicates success and LED3 OFF status indicates failure.

USART Peripheral Library Examples

This topic provides descriptions of the USART Peripheral Library examples.

Introduction

USART (USART) Peripheral Library Demonstration Applications Help

Description

This distribution package contains one USART related firmware project that demonstrates the capabilities of the MPLAB Harmony USART
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 261

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the USART Peripheral Library demonstration applications included in this release.

uart_basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration uses USART2 in UART mode to transmit characters to the console and echo received characters on the console while turning
on a LED.

Building the Application

for the USART Peripheral Library USART Alarm Demonstration.

Description

To build this project, you must open the uart_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/usart/uart_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

uart_basic.X <install-dir>/apps/examples/peripheral/usart/uart_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the USART time-out function on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the USART peripheral library on PIC32 USB Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the USART peripheral library on PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates the USART peripheral library on PIC32MZ Embedded Graphics with
Internal DRAM (DA) Starter Kit.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration, which demonstrates the USART time-out
function on the PIC32MX795F512L PIM and Explorer 16 Development Board
combination.

pic32mz_ef_sk_freertos pic32mz_ef_sk FreeRTOS version of the demonstration, which demonstrates the USART peripheral
library on PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates the USART peripheral
library on PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mk_gp_db pic32mk_gp_db Demonstrates USART functionality on the PIC32MK General Purpose (GP)
Development Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

Connect a standard serial cable or USB-to-RS-232 adapter cable between the personal computer and the Explorer 16 Development Board P1
(UART) port.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 262

PIC32MZ EF Starter Kit

Connect a USB cable to the J11 Mini Type B connector on the PIC32MZ EF Starter Kit. Connect this USB cable to the computer running the
terminal emulation program.

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

Connect a USB cable to the J5 Mini Type B connector on the PIC32MZ DA Starter Kit. Connect this USB cable to the computer running the
terminal emulation program.

PIC32 USB Starter Kit II

The optional MCP2200 Breakout Module, which is a USB-to-UART serial converter adapter board, may be used to run this demonstration. If the
Breakout Module will be used, an additional interface is required. The acceptable interface is the Starter Kit I/O Expansion Board. Jumper from
pins 48 and 46 of J11 header to RX and TX of the Breakout Module, respectively. In addition, GND must be shorted.

PIC32MK GP Development Board

Connect a USB cable to the Mini USB-to-UART connector on the bottom side of PIC32MK GP Development Board. Connect this USB cable to the
computer running the terminal emulation program.

Running the Demonstration

Provides instructions on how to build and run the USART demonstration.

Description

This demonstration shows the USART capabilities using the USART Peripheral Library functions.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. Launch a console client (OS native/Tera Term, etc.,) and set the serial port settings to 9600-N-1.

3. Launch the demonstration. The following messages will appear in the console window:
 *** UART Interrupt-driven Application Example ***
 *** Type some characters and observe the LED turn ON ***

4. As indicated in the message, notice the typed characters echoed on the console window and LED.

5. Turn on LED (D3 on Explorer 16 Development Board or LED3 on the starter kit in use) indicating interrupt processing.

WDT Peripheral Library examples

This topic provides descriptions of the WDT Peripheral Library examples.

Introduction

Watchdog Timer (WDT) Peripheral Library Demonstration Applications Help

Description

This distribution package contains one WDT related firmware project that demonstrates the capabilities of the MPLAB Harmony Watchdog Timer
Peripheral Library.

This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the WDT Peripheral Library demonstration applications included in this release.

wdt_timeout

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration exercises the watchdog time-out function using the WDT Peripheral Library.

Building the Application

for the WDT Peripheral Library WDT Alarm Demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 263

Description

To build this project, you must open the wdt_timeout.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/peripheral/wdt/wdt_timeout.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wdt_timeout.X <install-dir>/apps/examples/peripheral/wdt/wdt_timeout/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Configuration Name BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates the WDT time-out function on the PIC32MX795F512L PIM and
Explorer 16 Development Board combination.

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates the WDT time-out function on the PIC32 USB Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the WDT time-out function on the PIC32MZ Embedded Connectivity
(EC) Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the WDT time-out function on the PIC32MZ Embedded Connectivity
with Floating Point Unit (EF) Starter Kit.

pic32mx795_pim_e16_freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration, which demonstrates the WDT time-out
function on the PIC32MX795F512L PIM and Explorer 16 Development Board
combination.

pic32mz_ef_sk_freertos pic32mz_ef_sk FreeRTOS version of the demonstration, which demonstrates the WDT time-out
function on the PIC32MZ Embedded Connectivity with Floating Point Unit (EF)
Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk microMIPS version of the demonstration, which demonstrates the WDT time-out
function on the PIC32MZ Embedded Connectivity with Floating Point Unit (EF)
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX795F512L CAN-USB PIM and Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the WDT time-out demonstration.

Description

This demonstration exercises the WDT time-out function.

1. First compile and program the target device. While compiling, select the configuration suitable for the hardware in use.

2. The LEDs (LED1 on the PIC32 USB Starter Kit II, PIC32MZ EC Starter Kit, PIC32MZ EF Starter Kit and PIC32MZ DA Starter Kit, or LED D3 on
the Explorer 16 Development Board) will blink during normal operation.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 264

3. Press Switch 1 (PIC32 USB Starter Kit II, PIC32MZ EC Starter Kit, PIC32MZ EF Starter Kit and PIC32MZ DA Starter Kit) or Switch S3
(Explorer 16 Development Board) for the WDT time-out reset. If the demonstration is successful, LED3 (PIC32 USB Starter Kit II, PIC32MZ EC
Starter Kit, PIC32MZ EF Starter Kit, and PIC32MZ DA Starter Kit) or LED D5 (Explorer 16 Development Board) will illuminate. If they do not,
this indicates demonstration failure.

System Service Library Examples

Introduction

The example applications provide very simple single-purpose examples of how to use MPLAB Harmony system service libraries.

Description

System services have two primary types of implementations:

• System Service Libraries

• Low-Level Support

Most system service libraries follow the same basic model as a device driver (directly using a peripheral library to access hardware) or a
middleware library (using a device driver to access hardware) as the rest of the system.

Command Processor System Service Examples

This topic provides descriptions of the Command Processor System Service examples.

Introduction

Command Processor System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Command Processor System
Service. This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and
development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Command Processor System Service Library demonstration applications included in this release.

command_appio

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises the Command Processor System Service by receiving user keyboard input and displaying the output
string to the PIC AppIO window in MPLAB X IDE.

The demonstration application does the following:

1. Launches the application via MPLAB REAL ICE to a target device.

2. Displays "Ready to accept command input" in the PIC AppIO window in MPLAB X IDE at initialization.

3. Listens for user command input.

4. Supports two simple commands native to this application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Command
Processor System Service Demonstration.

Description

To build this project, you must open the command_appio.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/command_appio

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 265

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

command_appio.X <install-dir>/apps/examples/system/command_appio/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates application I/O using the PIC32 USB Starter Kit II, the Starter Kit I/O
Expansion Board and the MPLAB REAL ICE in-circuit debugger.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

This demonstration requires the MPLAB REAL ICE in-circuit emulator and the Starter Kit I/O Expansion Board.

Running the Demonstration

Provides instructions on how to build and run the Command Processor System Service demonstration.

Description

Do the following to run the demonstration:

1. Ensure that the PIC32 USB Starter Kit II, the Starter Kit I/O Expansion Board, and the MPLAB REAL ICE in-circuit emulator are connected and
ready.

2. Open the PIC AppIO window in MPLAB X IDE by selecting Window > Debugging > PIC AppIO.

3. Make sure the Output Format in PIC AppIO is set to "Text" (the default is 8-bit hex).

4. Debug the project.

5. Wait for "Ready to accept command input" to display in the Output Format section.

6. Type keyboard input into the Input Format bar and press <ENTER>.

7. Typing "help" will display the general help sections. Typing "help app" will display the commands unique to the application including a brief
description.

8. Try the commands listed by "help app".

Console System Service Examples

This topic provides descriptions of the Console System Service examples.

Introduction

Console System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Console System Service. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 266

Reference.

Demonstrations

This topic provides information on how to run the Console System Service Library demonstration applications included in this release.

multi_instance_console

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration illustrates the read and write operation on the Console when multiple Console instances are running simultaneously. The
project has three configurations, the first configuration demonstrates simultaneous operation of the UART Console and the USB CDC Console, the
second configuration shows the UART Console and the AppIO Console and the third configuration shows the USB CDC Console and the AppIO
Console.

The application perform the following tasks:

• Each instance of Console prints a welcome message and prompts the user to enter a string

• The string that is entered by the user is echoed back to the Console

• The read operation completion can be checked through both polling and by indication of a callback

• The application is designed so that the two Console instances can run independently of each other

Libraries Used

The Console System Service resides as the top layer. The UART and USB Drivers are used depending on the choice of Console selected. The
UART and USB Drivers call their respective Peripheral Libraries (PLIBs) to interact with the hardware. If AppIO is selected as the Console choice,
the AppIO service is used, which is provided with the MPLAB X IDE C/C++ XC32 Compiler.

The application interacts directly with the Console System Service Library. The Console System Service Library, depending upon the choice of
console driver, makes calls to the UART, USB, or AppIO.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Command
Processor System Service Demonstration.

Description

To build this project, you must open the multi_instance_console.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/multi_instance_console

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

multi_instance_console.X <install-dir>/apps/examples/system/multi_instance_console/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates USB CDC and AppIO Console instances running simultaneously on the
PIC32 USB Starter Kit II.

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstrates UART and AppIO Console instances running simultaneously on the the
PIC32MX795F512L PIM with the Explorer 16 Development Board.

pic32mz_ef_sk_meb2 pic32mz_ef_sk Demonstrates UART and USB CDC Console instances running simultaneously on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 267

Description

PIC32 USB Starter Kit II

This demonstration requires the MPLAB REAL ICE in-circuit emulator for communication with AppIO and the Starter Kit I/O Expansion Board.

PIC32MX795F512L CAN-USB PIM with the Explorer 16 Development Board

This demonstration requires the MPLAB REAL ICE in-circuit emulator for communication with AppIO.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Console System Service demonstration.

Description

Depending on the hardware in use, use on the of the following three procedures to run the demonstration.

PIC32 USB Starter Kit II

This demonstration writes and reads to/from a terminal program running on a personal computer host and also from the AppIO interface in MPLAB
X IDE.

This demonstration utilizes the PIC32 USB Starter Kit II and requires the starter kit to be paired with the Starter Kit I/O Expansion Board.

Since AppIO uses the Debug interface, it also requires the MPLAB REAL ICE in-circuit emulator.

1. In MPLAB X IDE, select the hardware configuration to be used. Compile and program the target device in Debug mode with the selected
configuration.

2. Open the AppIO window in MPLAB X IDE by selecting Window > Debugging > PIC AppIO.

3. Ensure that the Output Format in PIC AppIO is set to "Text" (the default is 8-bit hex), as shown in the following figure.

4. Before connecting the micro-USB cable to the host computer, the demonstration must be running for the terminal program to recognize the
USB COM device. Once the demonstration is running, start a terminal emulator program (Tera Term shown) with serial port settings (921600
baud, 8 bit data, no parity, 1 bit stop, no flow control), as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 268

Demonstration Output

When running the program in debug mode, the AppIO interface will display messages, as shown in the following figure.

USB can be executed only after the AppIO demonstration is complete (see Notes 1 and 2).

 Notes:
1. The AppIO interface implements a blocking read call expecting data from the debug interface until the user enters a

RETURN. Therefore, all of the necessary AppIO read operations should be executed first before proceeding with the USB
Console.

2. The USB interface implements a blocking write out to the console until the user presses any key to start the communication.

A display similar to the following figure can be expected after execution of the USB Console demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 269

PIC32MX795F512 PIM and Explorer 16 Development Board

This demonstration reads and writes to a terminal program running on a personal computer host and also from the AppIO interface in MPLAB X
IDE.

This demonstration utilizes the PIC32795F512L PIM paired with the Explorer 16 Development Board.

1. In MPLAB X IDE, select the hardware configuration to be used. Compile and program the target device in Debug mode with the selected
configuration.

2. Open the AppIO window in MPLAB X IDE by selecting Window > Debugging > PIC AppIO.

3. Ensure that the Output Format in PIC AppIO is set to "Text" (the default is 8-bit hex), as shown in the following figure.

4. Connect the Explorer 16 Development Board to the host personal computer using a RS-232 UART connection.

5. A terminal program like Tera Term can be used with the settings shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 270

Demonstration Output

When running the program in debug mode, the AppIO interface will display messages, as shown in the following figure.

Once AppIO operation is complete, the UART Console can be executed (see Notes 1 and 2.

 Notes:
1. The AppIO interface implements a blocking read call expecting data from the debug interface until the user enters a

RETURN. Therefore, all of the necessary AppIO read operations should be executed first before proceeding with the UART
Console.

2. The USB interface implements a blocking write out to the console until the user presses any key to start the communication.

A display similar to the following figure can be expected.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 271

PIC32MZ EF Starter Kit

This demonstration reads and writes and to a terminal program running on a personal computer host that uses the UART and USB CDC 2
Console.

This demonstration utilizes the PIC32MZ EF Starter Kit.

1. In MPLAB X IDE, select the hardware configuration to be used. Compile and program the target device in Debug mode with the selected
configuration.

2. Connect the PIC32MZ EF Starter Kit to the host personal computer using a mini-USB cable for the UART connection and a micro-USB cable
for the USB connection.

3. A terminal program such as Tera Term can be used with the following UART settings.

4. Before connecting the micro-USB cable to the host computer, the demonstration must be running for the terminal program to recognize the
USB COM device. Once the demonstration is running, start a terminal emulator program (e.g., Tera Term) with serial port with the following
USB settings: (921600 baud, 8 bit data, no parity, 1 bit stop, no flow control), as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 272

Demonstration Output

Since the UART and USB Console are running independently, the order in which the user interacts with each Console is irrelevant.

The UART Console should show an output similar to the following figure.

The USB Console should show an output similar to the following figure.

 Note:
The USB interface implements a blocking write out to the console until the user presses any key to start the communication.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 273

Debug System Service Examples

This topic provides descriptions of the Debug System Service examples.

Introduction

Debug System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Debug System Service. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Debug System Service Library demonstration applications included in this release.

debug_uart

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application exercises the Debug and Console System Services by routing messages from the Debug System Service through
the Console System Service to a terminal program running on a personal computer via the UART communications protocol.

The demonstration application does the following:

• Demonstrates a direct console write by outputting a string to the terminal

• Demonstrates formatted and unformatted message writes to the terminal

• Demonstrates the use of the global error level

• Demonstrates debug output messaging using both polling and callback notification of completion

• Demonstrates what happens when the write queue overflows

• Demonstrates console flush in reaction to an error condition

• Demonstrates console read using both polling and callback notification

• Demonstrates an echo function in which the characters are written back to the terminal as they are read

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Debug System
Service Demonstration.

Description

To build this project, you must open the debug_uart.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 274

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/debug_uart

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

debug_uart.X <install-dir>/apps/examples/system/debug_uart/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx795_pim_e16 pic32mx795_pim+e16 Demonstration console communication via UART RS-232 using the Explorer 16
Development Board and the PIC32MX795F512L PIM.

pic32mz_ef_sk pic32mz_ef_sk Demonstration console communication via UART RS-232 using using the PIC32MZ
EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM combined with the Explorer 16 Development Board

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

Ground pin 1 on the ICSP header (master clear bar) to ground, to reset the device.

Running the Demonstration

Provides instructions on how to build and run the Debug System Service demonstration.

Description

This demonstration writes and reads to/from a terminal program running on a personal computer host.

PIC32MX

1. First compile and program the target device. While compiling, select the configuration for the hardware in use.

2. Connect the Explorer 16 Development Board to the host personal computer using a RS-232 UART connection. Connect on board USB to CDC
converter to the PC via USB cable.

3. The demonstration must be running for the terminal program to recognize the COM device. Start a terminal emulator program (Tera Term
shown).

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 275

4. Configure the terminal for 115200 baud, 8 bits, 1 stop bit, no parity.

5. Press SW1 to start the demonstration.

6. Follow the instructions on the terminal.

PIC32MZ

1. First compile and program the target device. While compiling, select the configuration for the hardware in use.

2. Connect the on board USB to the CDC converter, then connect to the personal computer using a USB cable.

3. The demonstration must be running for the terminal program to recognize the COM device. Start a terminal emulator program (Tera Term
shown).

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 276

4. Configure the terminal for 115200 baud, 8 bits, 1 stop bit, no parity.

5. Follow the instructions on the terminal.

debug_usb_cdc_2

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 277

Description

This demonstration application exercises the Debug and Console System Services by routing messages from the Debug System Service through
the Console System Service to a terminal program running on a personal computer via the USB-CDC communications protocol.

The demonstration application does the following:

• Demonstrates a direct console write by outputting a string to the terminal

• Demonstrates formatted and unformatted message writes to the terminal

• Demonstrates the use of the global error level

• Demonstrates debug output messaging using both polling and callback notification of completion

• Demonstrates what happens when the write queue overflows

• Demonstrates console flush in reaction to an error condition

• Demonstrates console read using both polling and callback notification

• Demonstrates an echo function in which the characters are written back to the terminal as they are read

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Debug System
Service Demonstration.

Description

To build this project, you must open the debug_usb_cdc_2.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/debug_usb_cdc_2

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

debug_usb_cdc_2.X <install-dir>/apps/examples/system/debug_usb_cdc_2/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 Demonstrates console communication through USB with the PIC32 USB
Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates console communication through USB with the PIC32MZ EF
Starter Kit.

pic32mx_usb_sk2_freertos pic32mx_usb_sk2 FreeRTOS version of the console communication through USB using the
PIC32 USB Starter Kit II.

pic32mz_ef_sk_freertos pic32mz_ef_sk FreeRTOS version of the console communication through USB using the
PIC32MZ EF Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates console communication through USB using Micro-MIPS and
PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Debug System Service demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 278

Description

This demonstration writes and reads to/from a terminal program running on a personal computer host.

1. First compile and program the target device. While compiling, select the appropriate configuration based on the hardware in use:

• pic32mz_ef_sk, pic32mz_ef_sk_16b and pic32mz_ef_sk_freertos configuration for the PIC32MZ EF Starter Kit

• pic32mx_usb_sk2 and pic32mx_usb_sk2_freertos configuration for the PIC32MX USB Starter Kit II

2. Connect the desired hardware to the host personal computer using an A to micro-A/B USB cable.

3. The demonstration must be running for the terminal program to recognize the COM device. Start a terminal emulator program (Tera Term
shown) with serial port with the following settings: (921600 baud, 8 bit data, no parity, 1 bit stop, no flow control).

4. The terminal will indicate a successful connection. Click on the terminal window and press any key on the computer to start the demonstration.

5. Follow the instructions on the terminal.

Device Control System Service Examples

This topic provides descriptions of the Device Control System Service examples.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 279

Introduction

Device Control System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony Device Control System Service.
This section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Device Control System Service Library demonstration applications included in this release.

devcon_cache_clean

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example application demonstrates how cache coherency issues arise when transferring data out of memory using DMA. The MPLAB
Harmony Device Control System Service contains various cache functions, which are used in this example to resolve the problem.

The application first allocates two buffers, with the intention of copying the data in one buffer to the other using DMA. The source buffer is first
loaded with data and then the DMA transfer is initiated. After the transfer is complete, it is clear that the two buffers contain different values. This is
an issue relating to cache coherency. When data is written by the CPU, it is stored in the cache but it is not written back to RAM unless the line is
evicted or an explicit cache write-back instruction is executed. The cache instructions are accessed through the Device Control System Service
and serve as a wrapper to the underlying MIPS® cache operations.

In this specific example, the data in the source buffer was never written back to RAM before being transferred to the destination buffer using DMA.
Data that is stored in cache but has not yet been written back to RAM is termed "dirty". In the second part of the application, the correct method of
maintaining cache coherency is demonstrated. After writing data to the source buffer, the function SYS_DEVCON_DataCacheClean is executed,
forcing the data to be written back to main memory. When the DMA transfer is initiated, it then pulls the data out of RAM and transfers it to the
destination buffer – this time, the data in both buffers will match.

If the application runs as intended, the red and green LEDs will be lit. The yellow LED will only be lit if an error has occurred.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Device Control
System Service Cache Clean Demonstration.

Description

To build this project, you must open the devcon_cache_clean.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/devcon.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

devcon_cache_clean.X <install-dir>/apps/examples/system/devcon/devcon_cache_clean/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EF
Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Device Control System Service cache functions in microMIPS mode
using the PIC32MZ EF Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 280

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This application demonstrates the necessity and proper use of the SYS_DEVCON_DataCacheClean function.

1. First compile and program the target device. When compiling, select the correct configuration for the device.

2. Observe the LEDs on the starter kit development board. If the red and green LEDs are both lit, the application executed successfully. If the
yellow LED is lit, an error has occurred.

devcon_cache_invalidate

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This example application demonstrates how cache coherency issues arise when transferring data into memory using DMA. The MPLAB Harmony
Device Control System Service contains various cache functions, which are used in this example to resolve the problem.

The application first allocates three buffers – two source buffers and one destination buffer. The two source buffers are filled with two different sets
of data. The first buffer is copied to the destination buffer using DMA and the application checks to ensure they both contain the same data (which
they do). The second source buffer is then copied to the destination buffer using DMA and once again the data is compared. This time the data
does not match and once again, it is due to a cache coherency issue.

After the first DMA transfer and read of the destination buffer, the data is pulled into the cache. The second DMA transfer then updates the data
contained in the destination buffer, but only the data contained in RAM. As far as the cache is aware, the stale data in the cache still matches the
fresh data that is now in RAM. The cache simply sees that it is already storing a copy of the destination buffer, so it need not bother to pull the
fresh data into itself when the CPU does the second set of reads. What we need is a way to tell the CPU to get rid of the stale cached data and
pull in fresh data from main memory – this is known as an ‘invalidate'. The example application demonstrates the proper technique for taking care
of this issue. After the second DMA transfer, the destination buffer must be invalidated with the use of the function
SYS_DEVCON_DataCacheInvalidate. This marks the data of interest in the cache as invalid. Now when the CPU performs a read on the
destination buffer, fresh data is pulled out of main memory and into the cache, before being presented to the CPU.

If the application runs as intended, the red and green LEDs will be lit. The yellow LED will only be lit if an error has occurred.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Device Control
System Service Cache Invalidate Demonstration.

Description

To build this project, you must open the devcon_cache_invalidate.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/devcon.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

devcon_cache_invalidate.X <install-dir>/apps/examples/system/devcon/devcon_cache_invalidate/firmw
are

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EF
Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 281

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Device Control System Service cache functions in microMIPS mode
using the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This application demonstrates the necessity and proper use of the SYS_DEVCON_DataCacheInvalidate API.

1. First compile and program the target device. When compiling, select the correct configuration for the device.

2. Observe the LEDs on the starter kit development board. If the red and green LEDs are both lit, the application executed successfully. If the
yellow LED is lit, an error has occurred.

devcon_sys_config_perf

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration provides an example of how to initialize the service and configure optimum system performance using the
SYS_DEVCON_PerformanceConfig API.

The demonstration application does the following:

• Initializes the Device Control System Service

• Calls the SYS_DEVCON_PerformanceConfig API

• Waits in a busy loop

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Device Control
System Service Demonstration.

Description

To build this project, you must open the devcon_sys_config_perf.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/devcon.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

devcon_sys_config_perf.X <install-dir>/apps/examples/system/devcon/devcon_sys_config_perf/firmwar
e

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates various Device Control System Service cache functions using the PIC32
Ethernet Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates Device Control System Service cache functions using the PIC32MZ EF
Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 282

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates Device Control System Service cache functions in microMIPS mode using
the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Device Control System Service demonstration.

Description

This demonstration initializes the Device Control System Service and demonstrates the use of the SYS_DEVCON_PerformanceConfig API.

1. Select the desired MPLAB X IDE project configuration:

• pic32mz_ef_sk (for PIC32MZ EF devices)

• pic32mx_eth_sk (for PIC32MX devices)

2. Build the selected configuration in the MPLAB X IDE project and program the demonstration board by selecting Debug Main Project from the
Debug Menu. The program should build, download, and run.

3. Select Pause from the Debug menu. The program should pause in one of Tasks routines.

4. To verify that the device was initialized correctly, select Window > PIC Memory Views > Peripherals and check for the following:

• for PIC32MZ, verify in the PRECON register

• PFMWS is set to 2

• PREFEN is set to 3

• PIC32MX, verify in the CHECON register

• PFMWS is set to 2

• PREFEN is set to 3

DMA System Service Examples

This topic provides descriptions of the DMA System Service examples.

Introduction

DMA System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony DMA System Service. This section
describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the DMA System Service Library demonstration applications included in this release.

dma_crc

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application demonstrates how to use the special function of CRC computation of the PIC32 DMA module by using the MPLAB Harmony DMA
System Service Library. This section describes the hardware requirement and procedures to build and execute the demonstration project on
Microchip development tools.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 283

In this demonstration application, the DMA System Service sets up a memory to memory data transfer. It also enables the CRC engine to compute
the CRC of the data being transferred from source location to destination location.

To know more about the MPLAB Harmony DMA System Service, configuring the DMA System Service and the APIs provided by the DMA System
service, refer to the DMA System Service Library section of the help.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the DMA System
Service Demonstration.

Description

To build this project, you must open the dma_crc.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/dma.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

dma_crc.X <install-dir>/apps/examples/system/dma/dma_crc/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This demonstration runs on the PIC32MZ2048EFM144 device on-board the PIC32MZ EF starter
kit. The configuration can be used for generating CRC using a 16-bit polynomial in background
mode.

pic32mz_ef_sk_16b pic32mz_ef_sk This demonstration runs on the PIC32MZ2048EFM144 device on-board the PIC32MZ EF starter
kit. The configuration can be used for generating CRC using a 16-bit polynomial in background
mode.

pic32mz_ef_sk_freertos pic32mz_ef_sk This demonstration runs on the PIC32MZ2048EFM144 device on-board the PIC32MZ EF starter
kit. The configuration can be used for generating CRC using a 16-bit polynomial in background
mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

1. Compile the demonstration application. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. Refer to Building the Application for details.

2. Run the demonstration application in Debug mode by clicking Debug in MPLAB X IDE

3. The LED2 should illuminate. The illumination of LED2 indicates that the data is being transferred from the source to the destination and the
CRC is computed as the data was transferred.

4. Click Pause in the MPLAB X IDE.

5. In the Variables window, observe the debug variable blockCrc. The blockCrc variable should have a value 0x31C3, which is the CRC value
for 16-bit polynomial with an initial seed value of ‘0’.

Note on CRC Calculation: The CRC computation on the various websites usually uses the table approach method for CRC calculation. The table
approach CRC calculation method generally pads the incoming message with extra 0 bits (16 bits in the case of a 16-bit polynomial, and 32 bits in
the case of 32-bit polynomial). The PIC32 DMA CRC generation does not pad with any extra bits. The PIC32 DMA CRC calculation engine strictly
calculates CRC of the input data buffer.

To obtain comparable results with the websites we have to append extra bits; 16 bits, or two zeros (bytes) for 16-bit polynomial computation. 32
bits or four zeros (bytes) for 32-bit polynomial computation. Therefore, the data transfer call in our DMA System Service CRC computation
application has the size appended with polynomial length as shown in the following example:

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 284

dma_mem2mem

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This application demonstrates how to transfer a block of data from one memory location to another memory location using the MPLAB Harmony
DMA System Service Library.

This section describes the hardware requirement and procedure to build and execute the demonstration project on Microchip development tools.

To know more about the MPLAB Harmony DMA System Service, configuring the DMA System Service and the APIs provided by the DMA System
service, refer to the DMA System Service Library section of the help.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the DMA System
Service Demonstration.

Description

To build this project, you must open the dma_mem2mem.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/dma.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

dma_mem2mem.X <install-dir>/apps/examples/system/dma/dma_mem2mem/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 This demonstration runs on the PIC32MX795F512L device of the PIC32
USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

To run the demonstration, perform the following steps:

1. Compile the demonstration application. While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration
board. Refer to Building the Application for details.

2. Program the firmware into the target board using the Program button in MPLAB X IDE.

3. Demonstration success or failure is indicated by an LED:

Demonstration Board Success Indication Failure Indication

PIC32 USB Starter Kit II LED3 LED1

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 285

RTCC System Service Examples

This topic provides descriptions of the RTCC System Service examples.

Introduction

RTCC System Service Library Demonstration Applications Help.

Description

This distribution package contains a firmware project that demonstrates the capabilities of the MPLAB Harmony RTCC System Service. This
section describes the hardware requirement and procedures to run this firmware project on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the RTCC System Service Library demonstration applications included in this release.

rtcc_timestamps

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration application shows how to use the RTCC System Service. A simple callback is registered with the RTCC System Service and
the alarm causes the current time to be stored in an array. The RTCC System Service can be set to be interrupt-driven to increase efficiency in
that it will only be called when the alarm interrupt occurs.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Command
Processor System Service Demonstration.

Description

To build this project, you must open the rtcc_timestamps.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/examples/system/rtcc/rtcc_timestamps

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

rtcc_timestamps.X <install-dir>/apps/examples/system/rtcc/rtcc_timestamps/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk RTCC demonstration using the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_freertos pic32mz_ef_sk FreeRTOS version of the RTCC demonstration using the PIC32MZ EF
Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help Examples

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 286

Running the Demonstration

Provides instructions on how to build and run the RTCC System Service demonstration.

Description

Do the following to run the demonstration:

1. Compile the demonstration application. While compiling, select the appropriate MPLAB X IDE project configuration based on the hardware in
use. Refer to Building the Application for details.

2. As shown in the following figure, create a breakpoint near line 155 with the following text:

• appData.rtccTimeStateMachine = APP_RTCC_TIMESTAMP_DONE;

3. Run the demonstration application in Debug mode by clicking Debug in MPLAB X IDE.

4. When the debug session reaches the breakpoint (in approximately 10 seconds), the 'timestamps' array can be observed with the timestamps
recorded at each second, as shown in the following figure.

File System Demonstrations

This section provides descriptions of the File System demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Description

Introduction

MPLAB Harmony File System Demonstration Help.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 287

Description

This help file contains instructions and associated information about MPLAB Harmony File System demonstration applications, which are
contained in the MPLAB Harmony Library distribution.

Demonstrations

Provides instructions on how to run the demonstration applications.

nvm_fat_single_disk

This demonstration uses a FAT12 image of a file on NVM Flash memory and demonstrates the working of all file system functions.

Description

This demonstration shows an example of implementing a FAT12 disk in device Flash memory. The demonstration contains a FAT12 disk image
consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table, and Root Directory Area.

The demonstration opens an existing file named FILE.TXT and performs all file system related function calls on the file: SYS_FS_FileStat,
SYS_FS_FileSize, SYS_FS_FileSeek, and SYS_FS_FileEOF. Finally, the string "Hello World" is written to this file. The string is then read and
compared with the string that was written to the file. If the string compare is successful, LED indication is provided.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM FAT Single
Disk Demonstration.

Description

To build this project, you must open the nvm_fat_single_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_fat_single_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

nvm_fat_single_disk.X <install-dir>/apps/fs/nvm_fat_single_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_bt_sk_int_dyn pic32mx_bt_sk This configuration runs on PIC32 Bluetooth Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn_freertos pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

pic32mx_usb3_sk_int_dyn pic32mx_usb_sk3 This configuration runs on PIC32 USB Starter Kit III. The media drivers are configured
for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 288

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the NVM FAT single disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx_usb_sk2_int_dyn (for PIC32MX devices)

• pic32mx_usb_sk_int_dyn_freertos (for PIC32MX devices)

• pic32mx_bt_sk_int_dyn (for PIC32MX devices)

• pic32mx_usb_sk3_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Build the selected configuration in the MPLAB X IDE project and program the demonstration board. The execution status (pass/fail) of the
demonstration is indicated by LEDs on the demonstration board.

Demonstration Board Demonstration Success Demonstration Failure

PIC32 USB Starter Kit II LED3 LED1

PIC32 Bluetooth Starter Kit Green LED Red LED

PIC32 USB Starter Kit III LED3 LED1

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the Demonstration:

This demonstration shows an example of:

• Implementing a FAT12 disk in device Flash memory

• Opening a file for read or write

• Implements file system functions

• Closing a file

The demonstration contains a FAT12 disk image consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table, and
Root Directory Area. This image is implemented in the file nvm_disk_images.c (this is project configuration specific file and is contained in the
nvm_disk_images logical folder in the MPLAB X IDE project). The image contains a single file named FILE.TXT which contains the string
"Data".

The demonstration opens an existing file named FILE.TXT and performs all file system related function calls on the file: SYS_FS_FileStat,
SYS_FS_FileSize, SYS_FS_FileSeek, and SYS_FS_FileEOF. Finally, the string "Hello World" is written to this file. The string is then read and
compared with the string that was written to the file. If the string compare is successful, LED indication is provided.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 289

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The disk is first mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount an internal Flash
volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive/.

2. If the mount is successful, the application opens a file FILE.TXT for reading and writing (SYS_FS_FILE_OPEN_READ_PLUS) with a
SYS_FS_FileOpen function. The valid file handle is received once a successful opening of the file is performed.

3. If file open is successful, the status of file FILE.TXT is stored in the appData.fileStatus structure, using SYS_FS_FileStat function.

4. If the file status check is successful, the size of the FILE.TXT is checked by passing the file handle to the SYS_FS_FileSize function.

5. If the file size check is successful, the size of file is compared with the size element received earlier as a part of appData.fileStatus structure. If
both values match, the code moves to the next step of file seek.

6. The file pointer is then moved by 4 bytes from the start of the file by calling the function SYS_FS_FileSeek and passing parameter as
SYS_FS_SEEK_SET (seek from the beginning of the file).

7. If the file seek operation is successful, the file pointer should have reached the end of the file. This is because, the content of the FILE.TXT
had only 4 byte string = "Data". The end of file is verified by calling the function SYS_FS_FileEOF. If the function returns "true" (end of file
reached), the next step is performed.

8. In the next step, the file pointer is moved again by [(-1)*size of file], from the end of the file by calling the function SYS_FS_FileSeek and
passing parameter SYS_FS_SEEK_END (seek from the end of the file).

9. If the file seek operation is successful, the file pointer should have reached the beginning of the file. Then, 4 Bytes are read from the file using
SYS_FS_FileRead function (into a buffer).

10. If the read is successful, the content of file (present in the buffer) is compared with the "Data" string. If the comparison passed, the code moves
to the next step.

11. In the next step, the file pointer is moved again by [(-1)*size of file], from the end of the file by calling the function SYS_FS_FileSeek and
passing parameter SYS_FS_SEEK_END (seek from the end of the file).

12. If the file seek operation is successful, the string "Hello World" is written to the file using SYS_FS_FileWrite function.

13. If the write operation is successful, the file pointer is moved to the beginning of the file.

14. If the file seek is successful, the contents of the file is read using SYS_FS_FileRead function (into a buffer).

15. If the read operation is successful, the content of the file (present in the buffer) is compared with the "Hello World" string using the strcmp
function. A LED indicates the success of the demonstration.

nvm_mpfs_single_disk

This demonstration uses a MPFS image of two files on NVM Flash memory and demonstrates the working of all file system functions.

Description

This demonstration shows an example of implementing a MPFS disk in device Flash memory. The demonstration contains a MPFS disk image in
the internal Flash memory. The disk image contains two files named:

• FILE.txt, Size = 11 Bytes. The content of the file is: "Hello World".

• TEST.txt, Size = 72 Bytes. The content of the file is: "This file contains a test string and it is meant for testing. 1234567890".

The demonstration performs all file system related function calls on the file: SYS_FS_FileRead, SYS_FS_FileStat, SYS_FS_FileSize,
SYS_FS_FileSeek, SYS_FS_FileEOF. If all tests are successful, LED indication is provided.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM MPFS Single
Disk Demonstration.

Description

To build this project, you must open the nvm_mpfs_single_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_mpfs_single_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

nvm_mpfs_single_disk.X <install-dir>/apps/fs/nvm_mpfs_single_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 290

Project Configuration Name BSP Used Description

pic32mx_bt_sk_int_dyn pic32mx_bt_sk This configuration runs on PIC32 Bluetooth Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk_int_dyn_freertos pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

pic32mx_usb3_sk_int_dyn pic32mx_usb_sk3 This configuration runs on PIC32 USB Starter Kit III. The media drivers are configured
for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit and makes use of FreeRTOS
as the underlying RTOS. The media drivers are configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the NVM MPFS single disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx_usb_sk2_int_dyn (for PIC32MX devices)

• pic32mx_usb_sk_int_dyn_freertos (for PIC32MX devices)

• pic32mx_usb_sk3_int_dyn (for PIC32MX devices)

• pic32mx_bt_sk_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Build the selected configuration in the MPLAB X IDE project and program the demonstration board. The execution status (pass/fail) of the
demonstration is indicated by LEDs on the demonstration board.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 291

Demonstration Board Demonstration Success Demonstration
Failure

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

LED3 LED1

PIC32 Bluetooth Starter Kit Green LED Red LED

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the demonstration:

This demonstration shows an example of:

• Implementing a MPFS disk in device Flash memory

• Opening a file for read

• Implements all the file system functions

• Closing a file

This demonstration shows an example of implementing a MPFS disk in device Flash memory. The demonstration contains a MPFS disk image in
the internal Flash memory. The disk image contains two files named:

• FILE.txt, Size = 11 bytes. The content of the file is: "Hello World".

• TEST.txt, Size = 72 bytes. The content of the file is: "This file contains a test string and it is meant for testing. 1234567890".

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The disk is first mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount an internal Flash
volume. The volume is mounted against a MPFS2 type file system and mounted at /mnt/myDrive/.

2. If the mount is successful, the application opens a file FILE.txt for reading with a SYS_FS_FileOpen function.

3. If the open is successful, the application opens another file TEST.txt for reading with SYS_FS_FileOpen function.

4. If the open is successful, the application checks for size of file FILE.txt, by passing the handle obtained during file open, to the function
SYS_FS_FileSize.

5. If the file size matches the known value of 11 bytes, the application moves the file pointer for the file TEST.txt 10 bytes from the end of file,
using the function SYS_FS_FileSeek.

6. If file seek is successful, 10 bytes of content of the file TEST.txt is read into the application buffer, using the function SYS_FS_FileRead.

7. If read is successful, the application buffer content is compared with the known string of 1234567890 using the strncmp function.

8. If the comparison is successful, the application checks if the file pointer for file "TEST.txt" has reached the end of file using the
SYS_FS_FileEOF function.

9. If end of file is reached, a LED indicates the success of the demonstration.

nvm_sdcard_fat_mpfs_multi_disk

This demonstration uses NVM and a Secure Digital (SD) Card with MPFS and FAT image of file and performs a read/write/verify operation from
file of one media to another media.

Description

This demonstration shows an example of using the MPLAB Harmony File System to access files across multiple disks and multiple file system.
The demonstration contains a MPFS disk image in the internal Flash memory. The disk image contains a file named abc.txt with content "Hello
World". Another disk is a SD card, which is formatted to FAT (FAT16 or FAT32). The demonstration reads the contents of abc.txt from the disk
implemented on internal Flash memory and writes the contents to FILE.TXT on the SD card. A successful write is indicated by an illuminated
LED.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM SD Card FAT
MPFS Multi-disk Demonstration

Description

To build this project, you must open the nvm_sdcard_fat_mpfs_multi_disk.X project in MPLAB X IDE, and then select the desired
configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_sdcard_fat_mpfs_multi_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 292

Project Name Location

nvm_sdcard_fat_mpfs_multi_disk.X <install-dir>/apps/fs/nvm_sdcard_fat_mpfs_multi_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_dyn_freertos pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC and
makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx470_pim_e16_int_dyn pic32mx470_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX470F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit connected to the MEB
II. The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II.
The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II
and makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board, PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L CAN-USB Plug-in Module (PIM), and
PICtail Daughter Board for SD and MMC

Use the following instructions for all Explorer 16 Development Board-based demonstration boards.

Since some peripheral functions are multiplexed through the Peripheral Pin Select (PPS) feature, the hardware on the following PIM must be
modified by connecting the PIM pins, as follows:

PIC32MX470F512L PIM (MA320002-2) - PIM pin 99 to PIM pin 24 for CS

Refer to PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L CAN-USB Plug-in Module (PIM) for PIM pin locations.

Use the following general test setup for either PIM:

1. Insert the PIM into the Explorer 16 Development Board PIM connector.

2. Jumpers JP1, JP2 and JP3 on the PICtail Daughter Board for SD and MMC should_connect_to points 1 and 2 on their respective connectors
(see PICtail Daughter Board for SD and MMC).

3. Insert the Daughter Board into the PICtail Plus connector on the Explorer 16 Development Board.

4. Insert a SD card into the SD card connector on the Daughter Board.

5. Power up the board.

PIC32MZ EC Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ EF Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

Running the Demonstration

Provides instructions on how to build and run the NVM SD card FAT MPFS multi disk demonstration.

Description

Select the MPLAB X IDE project configuration:

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 293

• pic32mx795_pim_e16_int_dyn (for PIC32MX devices)

• pic32mx795_pim_e16_int_dyn_freertos (for PIC32MX devices)

• pic32mx470_pim_e16_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Insert the SD card, which contains the file FILE.TXT (the file contains some arbitrary existing content).

Compile the selected configuration in the MPLAB X IDE project and run the code. After a few seconds, once the LED illuminates, remove the SD
card from the SD Card PICtail Daughter Board and insert it into the SD card reader on a personal computer. Examine the contents of the file
named FILE.TXT. The file should contain the string "Hello World".

Demonstration Board Demonstration Success Demonstration Failure

Explorer 16 Development Board LED5 (D5) LED6 (D6)

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the Demonstration:

This demonstration shows an example of:

• Implementing a multi-disk demonstration with MPFS on internal Flash memory (NVM) and FAT File system (FAT16/ FAT32) on SD card

• Opening two files from two different disks and read the contents of the file from the first disk and write into the file of the second disk

• Closing the files

The demonstration contains a MPFS disk image in the internal Flash memory. The disk image contains a file named abc.txt with content "Hello
World". Another disk is a SD card, which is formatted to FAT (FAT16 or FAT32). The demonstration reads the contents of abc.txt from the disk
implemented on internal Flash memory and writes the contents to FILE.TXT on the SD card. A successful write is indicated by illumination of an
LED.

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The first disk is mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount a internal Flash
volume. The volume is mounted against a MPFS2 type file system and mounted at /mnt/myDrive1/.

2. If the mount is successful, the second disks is mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount
command to mount a SD card volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive2/.

3. If the mount is successful, the application opens the file abc.txt from /mnt/myDrive1/ for reading and FILE.TXT from /mnt/myDrive2/
for writing with the SYS_FS_FileOpen function.

4. If the file open is successful, the application reads 13 bytes from abc.txt of the internal Flash volume using SYS_FS_FileRead.

5. If the read is successful, the application closes abc.txt from the internal Flash volume, and then writes the 13 bytes into FILE.TXT of the SD
card volume using the SYS_FS_FileWrite function. If the file write is successful, the application closes FILE.TXT from the SD card volume.

6. If file close is successful, a LED indicates the success of the operation.

nvm_sdcard_fat_multi_disk

This demonstration uses NVM and a Secure Digital (SD) card as media, searches a file from the NVM media, opens and reads the file, and then
writes the data into another file in the SD card media.

Description

This demonstration shows an example of using the MPLAB Harmony File System to access files across multiple media. The demonstration
contains a FAT12 disk image consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table, and Root Directory
Area, placed in the internal Flash memory (NVM). Also, a SD card is used as another disk, which might have FAT16 or FAT32 implemented on it
(dependent on the formatting of SD card). The demonstration searches the NVM media for a named FILE.TXT, opens and reads the contents of
the file in NVM and copies the contents to the file, FILE.TXT, in the SD card. Once the copy is successful, an addition string "Test is successful"
is added to the file. If the write operation is successful, LED indication is provided.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the NVM SD Card FAT
Multi-disk Demonstration.

Description

To build this project, you must open the nvm_sdcard_fat_multi_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/nvm_sdcard_fat_multi_disk.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 294

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

nvm_sdcard_fat_multi_disk.X <install-dir>/apps/fs/nvm_sdcard_fat_multi_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_dyn_freertos pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC and
makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx470_pim_e16_int_dyn pic32mx470_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX470F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit connected to the MEB
II. The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II.
The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II
and makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board, PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L CAN-USB Plug-in Module (PIM), and
PICtail Daughter Board for SD and MMC

Use the following instructions for all Explorer 16 Development Board-based demonstration boards.

Since some peripheral functions are multiplexed through the Peripheral Pin Select (PPS) feature, the hardware on the following PIM must be
modified by connecting the PIM pins, as follows:

PIC32MX470F512L PIM (MA320002-2) - PIM pin 99 to PIM pin 24 for CS

Refer to PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L CAN-USB Plug-in Module (PIM) for PIM pin locations.

Use the following general test setup for either PIM:

1. Insert the PIM into the Explorer 16 Development Board PIM connector.

2. Jumpers JP1, JP2 and JP3 on the PICtail Daughter Board for SD and MMC should_connect_to points 1 and 2 on their respective connectors
(see PICtail Daughter Board for SD and MMC).

3. Insert the Daughter Board into the PICtail Plus connector on the Explorer 16 Development Board.

4. Insert a SD card into the SD card connector on the Daughter Board.

5. Power up the board.

PIC32MZ EC Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ EF Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

Running the Demonstration

Provides instructions on how to build and run the NVM SD card FAT multi-disk demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 295

Description

Select the MPLAB X IDE project configuration:

• pic32mx795_pim_e16_int_dyn (for PIC32MX devices)

• pic32mx795_pim_e16_int_dyn_freertos (for PIC32MX devices)

• pic32mx470_pim_e16_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

Insert the SD card, which contains the file FILE.TXT and the file contains "abc" (some arbitrary existing content).

Compile the selected configuration in the MPLAB X IDE project and run the code. After a few seconds, once the LED is illuminated, remove the
SD card from the Board and insert it into the SD card reader on a personal computer. Examine the contents of the file named FILE.TXT. The file
should contain the string "This data from NVM Disk Test is successful".

Demonstration Board Demonstration Success Demonstration Failure

Explorer 16 Development Board LED5 (D5) LED6 (D6)

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

Green LED Red LED

About the demonstration:

This demonstration shows an example of:

• Implementing a multi-disk demonstration with FAT12 on internal Flash memory (NVM) and FAT File system (FAT16/FAT32) on a SD card

• Opening two files from two different disks, read content of file from first disk and write into the file of second disk

• Closing the files

The demonstration contains a FAT12 disk image consisting of a Master Boot Record (MBR) sector, Logical Boot Sector, File Allocation Table,
Root Directory Area, placed in the internal Flash memory (NVM). Also, a SD card is used as another disk, which might have FAT16 or FAT32
implemented on it (depends on the formatting of SD card).The demonstration searches the NVM media for a file named FILE.TXT, opens and
reads the contents of the file in NVM and copies the contents to FILE.TXT to the SD Card. Once the copy is successful, an additional string "Test
is successful" is added to the file. If the write operation is successful, LED indication is provided.

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The first disk is mounted using the SYS_FS_Mount function. The /dev/nvma1 path instructs the mount command to mount a internal Flash
volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive1/.

2. If the mount is successful, the second disk is mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount
command to mount a SD card volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive2/.

3. If the mount is successful, the application opens the root directory of /mnt/myDrive1/ with the function SYS_FS_DirOpen.

4. If the directory open is successful, the application searches for the file, FILE.TXT, using the wildcard character FIL*.*. The function used for
directory search is SYS_FS_DirSearch.

5. If the directory search returns a file found, the directory is closed with the function SYS_FS_DirClose. Also, the searched file name is compared
with the FILE.TXT name.

6. If the file name matches successfully, the application opens the file, FILE.TXT, from /mnt/myDrive1/ for reading and FILE.TXT from
/mnt/myDrive2/ for writing with a SYS_FS_FileOpen function.

7. If the file open is successful, the application reads 27 Bytes from FILE.TXT of internal Flash volume using SYS_FS_FileRead.

8. If the read is successful, the application closes FILE.TXT from internal Flash volume and then writes the 27 bytes into FILE.TXT of SD card
volume using SYS_FS_FileWrite.

9. If the write is successful, a character and string are written to the file using SYS_FS_FileCharacterPut and SYS_FS_FileStringPut.

10. If the write is successful, the application closes FILE.TXT from the SD card volume.

11. If file close is successful, a LED indicates the success of the operation.

sdcard_fat_single_disk

This demonstration uses a Secure Digital (SD) card with a FAT file system as media, performs a read/write/verify operation on the files using long
file names (LFN), and performs directory creation.

Description

This demonstration shows an example of using the MPLAB Harmony File System to access and modify the contents of a SD card. The
demonstration opens a file named FILE_TOO_LONG_NAME_EXAMPLE_123.JPG on the SD card, reads the content of the file, creates a directory
named Dir1 and inside the directory, writes the content into another file FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG (creates a copy of one
file into another file, inside a directory).

The input file FILE_TOO_LONG_NAME_EXAMPLE_123.JPG is not provided along with the release package. It could be any arbitrary JPEG (image)
file chosen by the user and then renamed to FILE_TOO_LONG_NAME_EXAMPLE_123.JPG. The reason for choosing a JPEG file for test purposes
is that the duplicate file, FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG, created by the FS demonstration could be easily verified for correctness

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 296

by inserting the SD card into a computer and opening the FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG file. If the file opens for viewing on the
computer, the test is deemed to have passed. Otherwise, if the file does not open (i.e., is corrupted), the test will be considered to have failed.
Since the demonstration creates a directory named Dir1, it is important that the a folder with the same name does not exist on the SD card. If a
directory named Dir1 is already present on the SD card, the demonstration will fail.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SD Card FAT Single
Disk Demonstration.

Description

To build this project, you must open the sdcard_fat_single_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/sdcard_fat_single_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sdcard_fat_single_disk.X <install-dir>/apps/fs/sdcard_fat_single_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mx795_pim_e16_int_dyn_freertos pic32mx795_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX795F512L PIM and PICtail Daughter Board for SD and MMC and
makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mx470_pim_e16_int_dyn pic32mx470_pim+e16 This configuration runs on the Explorer 16 Development Board using the
PIC32MX470F512L PIM and PICtail Daughter Board for SD and MMC. The
media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 This configuration runs on the PIC32MZ EC Starter Kit connected to the MEB
II. The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II.
The media drivers are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II
and makes use of FreeRTOS as the underlying RTOS. The media drivers are
configured for Interrupt mode and dynamic operation.

pic32mz_da_sk_adma pic32mz_da_sk_intddr This configuration runs on the PIC32MZ Embedded Graphics with Internal
DRAM (DA) Starter Kit. The media driver is configured to use SD Host
Controller ADMA2 Transfer mode operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

Explorer 16 Development Board, PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L CAN-USB Plug-in Module (PIM), and
PICtail Daughter Board for SD and MMC

Use the following instructions for all Explorer 16 Development Board-based demonstration boards.

Since some peripheral functions are multiplexed through the Peripheral Pin Select (PPS) feature, the hardware on the following PIM must be
modified by connecting the PIM pins, as follows:

PIC32MX470F512L PIM (MA320002-2) - PIM pin 99 to PIM pin 24 for CS

Refer to PIC32MX450/470F512L Plug-in Module (PIM) or PIC32MX795F512L CAN-USB Plug-in Module (PIM) for PIM pin locations.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 297

Use the following general test setup for either PIM:

1. Insert the PIM into the Explorer 16 Development Board PIM connector.

2. Jumpers JP1, JP2 and JP3 on the PICtail Daughter Board for SD and MMC should_connect_to points 1 and 2 on their respective connectors
(see PICtail Daughter Board for SD and MMC).

3. Insert the Daughter Board into the PICtail Plus connector on the Explorer 16 Development Board.

4. Insert a SD card into the SD card connector on the Daughter Board.

5. Power up the board.

PIC32MZ EC Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ EF Starter Kit and MEB II

No hardware setting change is required. Insert the microSD card into the connector and power up the board.

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit and MEB II

No hardware setting change is required.

Running the Demonstration

Provides instructions on how to build and run the SD card FAT single disk demonstration.

Description

Select the MPLAB X IDE project configuration:

• pic32mx795_pim_e16_int_dyn (for PIC32MX devices)

• pic32mx795_pim_e16_int_dyn_freertos (for PIC32MX devices)

• pic32mx470_pim_e16_int_dyn (for PIC32MX devices)

• pic32mz_ec_sk_int_dyn (for PIC32MZ EC devices)

• pic32mz_ef_sk_int_dyn (for PIC32MZ EF devices)

• pic32mz_ef_sk_int_dyn_freertos (for PIC32MZ EF devices)

• pic32mz_da_sk_adma (for PIC32MZ DA devices)

Insert the SD card, which contains the file named FILE_TOO_LONG_NAME_EXAMPLE_123.JPG. The file can be of any size.

Compile the selected configuration in the MPLAB X IDE project and run the code. After a few seconds, once the LED illuminates, remove the SD
card from the SD Card PICtail Daughter Board (for PIC32MX) or MEB II (for PIC32MZ) and insert it into the SD card reader on a personal
computer. Upon examining the contents of the SD card, a directory Dir1 will have been created. Inside the Dir1 folder, a file named
FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG will be present. The file, FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG, will be a copy of
FILE_TOO_LONG_NAME_EXAMPLE_123.JPG. Verify that both files open for viewing on a personal computer.

Demonstration Board Demonstration Success Demonstration Failure

Explorer 16 Development Board LED5 (D5) LED6 (D6)

PIC32MZ Embedded Connectivity (EC) Starter Kit Green LED Red LED

About the Demonstration:

This demonstration shows an example of:

• Implementing a FAT File system (FAT16/ FAT32) on a SD card

• Implementing long file name (LFN)

• Opening a file for read or write

• Closing a file

The demonstration opens a file named FILE_TOO_LONG_NAME_EXAMPLE_123.JPG on the SD Card, reads the content of the file, creates a
directory named Dir1 and inside the directory, writes the content into another file FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG (creates a
copy of one file into another file, inside a directory).

The demonstration application logic is implemented as a state machine in the APP_Tasks function in the file main.c.

1. The disk is first mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount command to mount a SD card
volume. The volume is mounted against a FAT type file system and mounted at /mnt/myDrive/.

2. If the mount is successful, the volume is unmounted by passing the mount name /mnt/myDrive to SYS_FS_Unmount function. This
unmounting is done for demonstration purposes only. Real applications do not need to unmount unless it is required for the application.

3. If the unmount is successful, the mounting process is repeated.

4. If the mount is successful, the application opens the file FILE_TOO_LONG_NAME_EXAMPLE_123.JPG for reading with the SYS_FS_FileOpen
function.

5. If the file open is successful,the application creates a directory named Dir1, with the SYS_FS_DirectoryMake function.

6. If the directory creation is successful, the application opens the file, FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG, inside the directory Dir1

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 298

for writing with the SYS_FS_FileOpen function. The attributes for file write is selected as "SYS_FS_FILE_OPEN_WRITE". Therefore, if the file
does not exist, the file is created.

7. If the file open is successful, 512 bytes from the file FILE_TOO_LONG_NAME_EXAMPLE_123.JPG is read into application buffer using the
SYS_FS_FileRead function.

8. If the file read successful, the 512 bytes is written from the application buffer to the FILE_TOO_LONG_NAME_EXAMPLE_123_1.JPG file using
the SYS_FS_FileWrite function.

9. If the write operation is successful, the end of file for FILE_TOO_LONG_NAME_EXAMPLE_123.JPG is checked. If the end of file is not reached,
the process of reading and writing continues (step 7 and step 8).

10. Once the end of the file is reached, both files are closed with the SYS_FS_FileClose function.

11. Finally, a LED indicates the success of the demonstration.

sdcard_msd_fat_multi_disk

This demonstration uses a USB Flash drive and a Secure Digital (SD) card as media. The application searches for a file on the USB Flash drive,
opens and reads the file, and then writes the data into another file in the SD card media.

Description

This demonstration searches for a file using wildcard characters "mch*.*", reads the content of the file, and then writes the contents of the file to
the SD card.

The demonstration application logic is implemented as a state machine in the APP_USB_MSDTasks and APP_SDCardTasks functions in the file
app.c.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SD Card MSD FAT
Multi-disk Demonstration.

Description

To build this project, you must open the sdcard_msd_fat_multi_disk.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/sdcard_msd_fat_multi_disk.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sdcard_msd_fat_multi_disk.X <install-dir>/apps/fs/sdcard_msd_fat_multi_disk/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ec_sk_meb2 pic32mz_ec_sk+meb2 This configuration runs on PIC32MZ EC Starter Kit with the MEB II. The media drivers
are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 This configuration runs on PIC32MZ EF Starter Kit with the MEB II. The media drivers
are configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_meb2_freertos pic32mz_ef_sk+meb2 This configuration runs on the PIC32MZ EF Starter Kit connected to the MEB II and
makes use of FreeRTOS as the underlying RTOS. The media drivers are configured
for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit and MEB II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit and MEB II

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 299

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SD card MSD FAT multi-disk demonstration.

Description

This demonstration shows an example of:

• Implementing a FAT File System on a SD card and a USB Flash drive

• Opening a file for read or write

• Searching for a file

• Checking for end of the file

• Closing a file

Do the following to run the demonstration:

1. Select the desired MPLAB X IDE project configuration for the hardware in use.

2. Copy the mchpLogo.bmp file from <install-dir>/apps/fs/sdcard_msd_fat_multi_disk/firmware/src to the USB Flash drive.

3. Insert the SD card into the MEB II.

4. Inset the USB Flash drive card into the starter kit.

5. Compile the selected configuration in the MPLAB X IDE project and run the code.

6. The demonstration searches for the mchpLogo.bmp on the USB Flash drive and copies it from the USB Flash drive to the SD card. The Green
LED indicates the file has been successfully copied from the USB Flash drive to SD card.

7. Remove the SD card from the MEB II board and_connect_it to a personal computer to verify that the mchpLogo.bmp file is available on SD
card.

Demonstration Board Demonstration Success Demonstration Failure

PIC32MZ EC Starter Kit

PIC32MZ EF Starter Kit

PIC32MZ DA Starter Kit

Green LED ON Red LED ON

This demonstration searches for a file using wildcard characters "mch*.*", reads the content of the file, and then writes the contents of the file to
the SD card.

The demonstration application logic is implemented as a state machine in the APP_USB_MSDTasks and APP_SDCardTasks functions in the file
app.c.

The demonstration process is as follows:

1. The SD card is mounted using the SYS_FS_Mount function. The /dev/mmcblka1 path instructs the mount function to mount a SD card
volume. The volume is mounted with a FAT file system and mounted as /mnt/sdDrive/.

2. If the mount is successful, the SD card state machine waits until the USB Flash drive is connected and mounted.

3. The USB MSD task function opens an instance of the USB Host stack and enables the USB Host operations before mounting the USB Flash
drive.

4. The USB Flash drive is mounted once it is connected using the SYS_FS_Mount function. The /dev/sda1 path instructs the mount function to
mount a SD USB Flash drive volume. The volume is mounted with the FAT file system as /mnt/msdDrive/.

5. If the USB Flash drive is mounted successfully, the application opens the root directory on the USB Flash drive and searches for the file using
the wildcard characters "mch*.*" using SYS_FS_DirSearch.

6. If the search operation is successful, the application opens the file in read mode using SYS_FS_FileOpen.

7. If the file open is successful, the application sets the current working directory as sdDrive using SYS_FS_CurrentDriveSet and creates a new
file on the SD card in write mode. The name of the new file is the same as was returned from SYS_FS_DirSearch.

8. If the file is created successfully, the application reads the data from the file on the USB Flash drive using SYS_FS_FileRead and writes it to
the file on the SD card using SYS_FS_FileWrite until the end of file is reached.

9. Once the end of the file is reached, both files are closed with the SYS_FS_FileClose function.

10. Green LED indicates successful operation.

sqi_fat

This application demonstrates the use of the MPLAB Harmony File System with SQI Flash media.

Description

This application demonstrates the use of the MPLAB Harmony File System with SQI Flash media. The application formats the SQI Flash media,
opens a file named “newFile.txt”, and writes the string “Hello World” to the file. The string is then read and compared with the string that was
written to the file. If the string comparison is successful, LED indication is provided.

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 300

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SQI Flash
Demonstration.

Description

To build this project, you must open sqi_fat.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/sqi_fat.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sqi_fat.X <install-dir>/apps/fs/sqi_fat/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SQI Flash demonstration.

Description

This demonstration illustrates how the MPLAB Harmony File System works with SST26VF SQI Flash media. The application does the following:

• Formats the SQI Flash media

• Opens a file named “newFile.txt”

• Writes the string “Hello World” to the file and then flushes the data onto the disk using the Sync operation

• Performs a file size check using the Stat operation, does a seek to the end of the file. The end of file is verified by using the EOF check
operation.

• Another seek to the beginning of the file is done. The file data is read and compared. If the comparison is successful, the file is closed and the
disk is unmounted.

• The application then enters an Idle state and LED3 is turned ON to indicate the the demonstration was successful

• If an error occurs at any stage of the demonstration, LED1 is turned ON to indicate the demonstration failed

sst25_fat

This application demonstrates the use of the MPLAB Harmony File System with SST25 Flash media.

Description

This application demonstrates the use of the MPLAB Harmony File System with SST25 Flash media. The application formats the SST25 Flash
media, opens a file named “newFile.txt”, and writes the string “Hello World” to the file. The string is then read and compared with the string that
was written to the file. If the string comparison is successful, LED indication is provided.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SST25 Flash

Volume I: Getting Started With MPLAB Harmony Applications Help File System Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 301

Demonstration.

Description

To build this project, you must open sst25_fat.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/fs/sst25_fat.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

sst25_fat.X <install-dir>/apps/fs/sst25_fat/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk_int_dyn bt_audio_dk This configuration runs on PIC32 Bluetooth Audio Development Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

Ensure that switch S1 is set to PIC32_MCLR.

Running the Demonstration

Provides instructions on how to build and run the SST25 Flash demonstration.

Description

This demonstration illustrates the how the MPLAB Harmony File System works with the SST25VF SPI Flash media. The application does the
following:

• Formats the SPI Flash media

• Opens a file named “newFile.txt”

• Writes the string “Hello World” to the file and then flushes the data onto the disk using the Sync operation

• Performs a file size check using the Stat operation, does a seek to the end of the file. The end of file is verified by using the EOF check
operation.

• Another seek to the beginning of the file is done. The file data is read and compared. If the comparison is successful, the file is closed.

• The application then enters an Idle state and LED D9 is turned ON to indicate the demonstration was successful

• If an error occurs at any stage of the demonstration, LED D8 is turned ON to indicate the demonstration failed

Graphics Demonstrations

This section provides descriptions of the Graphics demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system.

Description

Introduction

Graphics Library Demonstrations Applications Help

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 302

http://www.microchip.com/mplabharmony

Description

This distribution package contains a variety of Graphics-related firmware projects that demonstrate the capabilities of the MPLAB Harmony
Graphics library. This help file describes the hardware requirements, hardware setups, and procedures to run these demonstration projects on
Microchip graphics boards.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

To learn how to create graphics applications within MPLAB Harmony, see Volume III,MPLAB Harmony Graphics Composer User's Guide. In
Volume III, the Advanced Topics section of the MPLAB Harmony Graphics Composer User's Guide also discusses how to add a third-party display
to MPLAB Harmony graphics. In Volume I there are three Quick Start Guides related to graphics, including "Creating New Graphics Applications".
To know more about MPLAB Harmony Graphics, configuring the library and the APIs provided; refer to the Graphics Library documentation found
in Volume V.

Demonstrations

This topic provides information on how to run the Graphics Library demonstration applications included in this release.

aria_adventure

The application demonstrates advanced graphics techniques such as parallax and sprite animation.

Description

This application showcases how parallax and sprite animation can be achieved using the Aria Graphics Library.

The demonstration launches with a splash screen highlighting basic motion capability supported by the Aria Graphics Library. When running the
application, the user can interface with it via capacitive single-fingered touch and swiping gestures.

The primary mode is presented in a mobile-game like style.

In addition, two other features demonstrated by this application includes the circular gauge widget and the ability to display updating text at a high
update rate (showing the score count).

The lamb sprite character is animated using more than one hundred frames of animation and is blitted quickly using the GPU and the image
preprocessing technique which stores lamb frames as raw pixels in DDR SDRAM.

Architecture

The diagrams below show the various software and hardware components for each configuration.

pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_wvga

For these configurations, the application uses the Graphics library to render graphics to the display. The Graphics library passes draw commands
into the GPU Library, which then draws the widgets and images to the three individual write frame buffers (one for each layer) that are stored on
the external DDR2 Memory. The GLCD display controller peripheral continuously transfers frame data from the all three read buffers onto to the
LCD display using the DDR2 Memory Controller. The write and read frame buffer pairs are swapped independently as required when the Graphics
Library finishes rendering to the write frame buffer and GLCD driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

The core timer is used by the application and the Graphics library to manage the movement of the splash screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 303

Demonstration Features

• Integrated PCAP Touch Input (Input System Service Library Help) (High-Performance 4.3 Inch WQVGA Display Module with maXTouch)

• Three graphics layer supported via the GLCD peripheral on the PIC32MZ DA device (GLCD Controller Peripheral Library)

• GPU peripheral supported, can be enabled/disabled at run-time (GFXLIB Nano2D Driver Library)

• 32-bit RGBA8888 color depth support (16.7 million unique colors)

• Per-layer frame double-buffering

• Image compression techniques using Run-Length Encoding, PNG, and JPEG

• Simultaneous MP3 decoding from internal flash

Tools Setup Differences

For all configurations:

• Use Graphics Stack is selected in MHC. This enables the graphics and touch libraries and drivers for the pic32mz_da_sk_extddr_meb2, and
pic32mz_da_sk_extddr_meb2_wvga.

• Pin Settings: External Interrupt 4 mapped to pin A14 (RB1)

Building the Application

This sections describes how to build the application for the demonstration.

Description

To build this project, you must open the aria_adventuret.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_adventure.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_adventure.X <install-dir>/apps/gfx/aria_adventure/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 304

Project Configuration Name BSP Used Description

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit plus Multimedia Expansion Board II (MEB II).

pic32mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit Memory plus the Multimedia Expansion
Board II (MEB II) with a High-Performance (5") WVGA Display
Module with maXTouch.

Configuring the Hardware

This section details how to configure the hardware for the demonstration.

Description

PIC32MZ Embedded Graphics with DA Starter Kit with the Multimedia Expansion Board II (MEB II) (First and Second Generation)

Configurations: pic32mz_da_sk_extddr_meb2,, and pic32mz_da_sk_extddr_meb2_wvga

• These configurations require that the J9 jumper be set to provide the GLCD's pixel clock. Set the J9 jumper to connect EPIOE to LCD_PCLK.
The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the followin figure
for the exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section details how to run the demonstration.

Description

Splash Screen

On start-up, the application will display a splash screen:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 305

Main Screen

Subsequently, the demonstrations main mode will appear:

Without any touch interaction, the lamb sprite character remains stationary and loops in an idle animation. Pressing a finger on left or right half of
the screen near one of the semi-transparent chevrons will trigger the lamb sprite to start moving towards that respective side of the screen. The
longer the finger remain pressed, the “faster” the lamb will travel. Note the speed of the background increases as the lamb seemingly speeds up.
The needle on the circular gauge will increase as the lamb travels. When the needle is in the yellow area, the lamb is in “super speed” mode. But if
the needle touches the red section of the meter, the lamb becomes “exhausted”. It would fall and become dizzy before recovering. Touch
interaction is disabled while the lamb takes a fall and is dizzy. A score is tallied based on how “far” the lamb has travelled before becoming
exhausted. A high score is kept for as long as the application has power.

Parallax

The parallax feature is in full demonstration while the lamb is moving, as the speed of the clouds, the rolling hills and the pathway that the lamb is
traveling on are all moving at different speed to create an illusion of movement and distance. The art of the background was chosen to be
“loop-able”. The application keeps track of which part of the background scenery that is being shown and loops back to the start position
seamlessly when the end is reached.

Animations

The animations used to support the lamb include:

• Idle Facing Right

• Idle Facing Left

• Walk/Run Facing Right

• Walk/Run Facing Left

• Super Speed Facing Right

• Super Speed Facing Left

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 306

• Fall Facing Right

• Fall Facing Left

• Dizzy Facing Right

• Dizzy Facing Left

The application contains a decision-tree that picks the right set of animation to play out based on the facing direction and the “speed” of the lamb
movement on-screen.

Information Screen

Tapping the Microchip logo on the upper corner of the main screen will switch the application to the information screen.

The information screen serves as a screen to list out the demonstrated features of the demo. It also provides two features.

• The features are located on layer1. Sliding your finger up or down will cause the feature list to scroll up and down as if it’s on an invisible glass
pane. The MPLAB Harmony logo that is rendered on layer0 is another demonstration of the real-time alpha-blending capability of the GLCD.

• Touching the Microchip logo will trigger no visible change on-screen, but will toggle on/off a hidden “Easter Egg” mode. When the hidden mode
is enabled, after going back to the main screen, the lamb character can go into “super speed” mode in-definitely without succumbing to
exhaustion.

aria_basic_motion

This application demonstrates the use of double-buffered frame buffers in internal SRAM through the use of a global palette look-up table that
reduces frame buffers to just one byte per pixel for the LCC driver. In addition, basic motion through the use of the Graphic Suite's
ImageSequenceWidget is demonstrated.

Description

This application demonstrates basic motion through the use of Graphics Suite’s ImageSequenceWidget. The demonstration spins a set of 3D
images and cycles through a set of battery level image presentations. The demonstration also shows the use of a 480x272x1 (8-bit) frame buffer,
in a double buffered configuration, using a 256 custom generated color palette created from colors obtained from the User Interface (UI)
designer-based graphic image assets. The demonstration illustrates that two buffers (261 KB total) of internal SRAM is sufficient to produce
appealing, low-memory use applications.

The following key features of this demonstration application include:

• Using motion to show double buffering

• Double buffering in internal SRAM

• New tool that generates a global palette, so that this can be an easy process without apparent color loss in many graphic schemes

Architecture

The following figure shows the various software and hardware components used by this application for the pic32mz_ef_sk_meb2 target
configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 307

The aria_basic_motion application uses the MPLAB Harmony Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images as 8-bit indices to an 8-bit frame buffer, which is stored in the internal SRAM of the PIC32 device. Using the DMA, the
Low-Cost Controllerless (LCC) Display Driver continuously transfers the frame data to the LCD display. During display refresh, the LCC driver
performs a 16-bit color lookup using the indices stored in the refreshable framebuffer.

The final RGB565 color is derived from a custom palette Color Look-up Table (CLUT). The global palette is created for the entire application. It is
created using the new palette generation tool which is capable of extracting colors from existing User Interface (UI) assets to establish a color
array specific to the application with no wasted color positions.

The application is touch enabled. It features user touch input through the integrated touch screen on the display panel. Touch input from the touch
controller goes through the I2C port, and the Input System Service acquires the touch input information from the Touch and I2C Drivers. The Input
System Service sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

In addition, the application uses the Timer System Service and core timer manage clock ticks for image motion control.

Demonstration Features

• 8-bit Custom Palette created using the new palette tool

• 2 Framebuffers (double-buffered UI)

• Graphic designer image assets

• Internal memory – low memory framebuffer footprint 261 KB

• LCC CLUT lookup driver – 8-bit index to 16-bit RGB565 color

• Graphics Image Sequence Widget

Tools Setup

• Enable Graphics Stack

• Enable Graphics Controller

• Low-Cost Controllerless

• Framebuffer Mode – Double-Buffer

• Select Palette Mode

• Enable Global Palette

• Use Harmony Graphics Composer tool

• Auto-Calculate Global Palette after creating UI elements

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Basic Motion
demonstration.

Description

To build this project, you must open the aria_basic_motion.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 308

<install-dir>/apps/gfx/aria_basic_motion.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_basic_motion.X <install-dir>/apps/gfx/aria_basic_motion/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within

./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit with the Multimedia
Expansion Board II (MEB II).

Important!

This application may contain custom code that is marked by the comments // START OF CUSTOM CODE ... and // END OF
CUSTOM CODE. If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For All
Differences" merging strategy and do not remove or replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides instructions on how to use the Aria Basic Motion demonstration.

Description

The aria_basic_motion demonstration has two UI screens. The main (default) screen is displayed upon boot-up. This screen has two user controls,

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 309

a battery indicator (simulated), application name, information button, and a 3-D Microchip logo. The second screen is the info_screen, which
contains information text about the demonstration and an Exit button.

• Note that the battery indicator is “simulated” as an example of a multi-color image

• The motion is intended to show double buffering, so artifacts are minimized

• The battery will be discharged after approximately 4-5 revolutions of the image.

• The “recharge” is also simulated. The battery is just a user experience example (no recharging is actually done). The battery recharges in three
seconds

Demonstration Symbols

Name Icon

Power Button

 Activates image spinning

 Turns green on toggle

 Indicates battery is empty

Battery
 Battery is fully charged

 Battery is discharging

 Battery is not charged

 Battery is recharging

Information
 Transitions to the info screen

Exit
 Exit and return to the main screen

Touching the Power Button activates image spinning. When toggling, the power button turns green.

The battery image will transition from green to white if the demonstration continues to cycle for at least six seconds. If empty, the power button
turns gray.

When the battery is empty, the recharge button is displayed, allowing the user to recharge the battery. When recharging the battery the recharge
symbol is displayed,

Touching the info button allows the user to transition to the info screen. The info screen contains the Exit button, located at the top right of the
screen, which exits the info screen and returns to the default (main) screen.

Standalone Demonstration Mode

As built, Demonstration mode is always active, which consists of two phases: Record or Playback.

Record Phase

The application starts in the Record Phase once it reaches the main screen after startup. Touch events are recorded until the event buffer is full or
no touch events are seen and an idle period times out (Idle is typically 20-60 seconds). Having recorded a buffer of touch events the Playback
Phase starts.

Playback Phase

Playback starts after the idle period times out. The application returns to the opening splash screen and the playback of recorded touch events
starts when the application reaches the main screen. After executing the touch events recorded, the application will wait until a replay delay
(typically 5-15 seconds) before restarting the replay.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 310

If the user initiates a touch event during playback it will terminate and not start up again until the idle period times out again. After the idle time out,
the application will return to the splash screen and event replay will start once the main screen is active.

Once the initial idle time out occurs it is not possible to record a new set of touch events except by restarting the application via a power up or
master clear.

Disabling Standalone Demonstration Mode

Demonstration mode can be disabled through MHC by selecting Harmony Framework Configuration > Graphics Stack > Use Graphics Stack? >
Use Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library> > Enable Demo Mode?. Then, reconfigure the
application using MHC, rebuild, and then reload.

aria_benchmark

This application presents frame update rate metrics on the various rendering operations in the Harmony graphics library.

Description

This application shows the frame update rates for various operations in the MPLAB Harmony Graphics Library, including string rendering, area fills
and image decode and rendering. The benchmarks can be configured for different text sizes, number and size of discrete area fills and different
image formats. The instantaneous and averaged frame update rates are shown at real-time on the demo. For microcontrollers with a 2D Graphics
Processing Unit (GPU) (e.g., PIC32MZ DA), the GPU can be turned on and off at run-time.

Architecture

The application continuously uses the graphics library to render text, fill areas, and draw images to the screen. Once a layer is completely
rendered to, the graphics library increments a layer swap counter. The application periodically (at one second intervals) samples the layer swap
counter, and calculates the difference from the previous sample. This difference is shown as the Frame Update Rate (Hz).

The following diagrams show the various software and hardware blocks used in this application:

pic32mz_da_sk_extddr_meb2

In this configuration, the frame buffer is located in the external DDR and the GLCD display controller continuously fetches the frame buffer data
and writes them to the display panel.

pic32mz_da_sk_intddr_meb2

In this configuration, the frame buffer is located in the internal DDR and the GLCD display controller continuously fetches the frame buffer data and
writes them to the display panel.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 311

pic32mz_ef_sk_meb2

In this configuration, the frame buffer is located in the internal SRAM and the Low-Cost Controllerless (LCC) display driver uses the DMA to
continuously fetch the frame buffer data and write them to the display panel.

pic32mz_da_sk_noddr_meb2

In this configuration, the frame buffer is located in the internal SRAM and the GLCD display controller continuously fetches the frame buffer data
and writes them to the display panel.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 312

Demonstration Features

• Timer hardware and Timer System Service

• Text rendering

• Rectangle widget motion and fills

• Image rendering of various formats (PNG, RAW RLE 16-bit, RAW 16-bit, JPEG 24-bit, RAW 32-bit predecoded in DDR)

Tools Setup Differences

• Enable “Timer” in “System Services” in MHC

• Set the Heap Size by selecting Device & Project Configuration > Project Configuration > XC32(Global Options) > xc32-ld > General and
specifying 204800. This is needed to support decoding of large PNG files.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Benchmark
demonstration.

Description

To build this project, you must open the aria_benchmark.X project in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_benchmark.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_benchmark.X <install-dir>/apps/gfx/aria_benchmark/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within

./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32_mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit,
Multimedia Expansion Board II (MEB II) and Graphics Display Powertip 4.3"
480x272 Board.

pic32_mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit, Multimedia
Expansion Board II (MEB II) and Graphics Display Powertip 4.3" 480x272
Board.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 313

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit with the Multimedia Expansion
Board II (MEB II).

pic32mz_da_sk_noddr_meb2 pic32mz_da_sk_noddr+meb2 Demonstration for PIC32MZ Embedded Graphics with Disabled DRAM (DA)
Starter Kit, Multimedia Expansion Board II (MEB II) and 4.3” WQVGA
(480x272) Display.

Important!

This application may contain custom code that is marked by the comments // START OF CUSTOM CODE ... and // END OF
CUSTOM CODE. If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For All
Differences" merging strategy and do not remove or replace the custom code.

Configuring the Hardware

Description

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit , PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit,
PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit, and MEB II

Configurations: pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_intddr_meb2, pic32mz_da_sk_noddr_meb2

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the
exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 314

Running the Demonstration

This section provides information on how to run and use the application.

Description

On start-up, the application will display a splash screen.

After the splash-screen completes, the String Update benchmark screen is shown. In this screen, a counter is incremented at every application
cycle. The screen demonstrates the rate at which the graphics library renders a string on the screen. This involves a fill operation that clears the
background, lookup of the glyphs from the string library, and the drawing of the glyphs on the frame buffer.

The “Frame Update (Hz)” field shows the current or instantaneous rate at which the graphics library updates the label widget that shows the
counter value. Tapping the Frame Update value switches between the current value (curr) and the average (avg) value across 10 samples.

Tapping the “+” and “-“ buttons increases and decreases the size of the string, respectively.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 315

On the PIC32MZ DA configurations, toggling the “GPU On” / “GPUOff” button switches the GPU on and off.

Tapping the “Next” button switches to the Motion and Fill benchmark screen. In this screen, squares are shown moving across the screen. The
Frame Update value is the rate at which the graphics library is able to render all the squares on the screen at their new positions. This involves a
fill operation of the background color at the old location of the squares and a fill of the squares’ colors at the new position.

The number and size of the squares can be increased and decreased using the “+“ and “-“ buttons. If the maximum or minimum size is reached,
touching “+” or “-“, respectively, will switch to a full screen fill of alternating colors.

Tapping the “Next” button transitions to the Image Decode and Rendering screen. In this screen, two images of the same size are alternately
rendered between application cycles. This involves a fill of the background color, decode and conversion of the image to the frame buffer format,
and the drawing of the image to the frame buffer. The Frame Update value is the rate at which the graphics library is able to render an image on
the screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 316

The size of the images can be increased and decreased using the “+“ and “-“ buttons.

Tapping the “<” and “>” buttons switches between the various image formats. The formats that are supported are PNG, RAW RLE 16-bit, RAW
16-bit and JPEG 24-bit. RAW 32-bit predecoded in DDR is also supported in the PIC32MZ DA configurations with DDR memory. Due to heap
limitations, the maximum size of PNG images is 100x100 pixels.

aria_coffee_maker

This demonstration provides a practical multi-layered application using the Aria User Interface Library.

Description

This application showcases an example of how a graphics controller with multiple graphical layer support can be achieved using the Aria User
Interface Library. The demonstration also highlights how tightly integrated the MPLAB Harmony Graphics Composer Suite can be in supporting a
rich feature set in an application.

Various Aria Graphics Library features such as turning on/off the GPU at run-time, adjusting the GLCD’s per-layer alpha-blending, cycling through
multi-language localization support is embedded within the demo disguised as a user-interface for a coffee maker appliance.

The demonstration launches with a splash screen highlighting basic motion capability supported by Aria Graphics Library. When running the
application, the user can interface with it via capacitive single-fingered touch and swiping gestures.

Images used with the demonstration are preprocessed in the DDR at start. The purpose of the preprocessing is to highlight the GPU's block
transfer capability. The text in the information screen is also handled as a preprocessed image to leverage this same capability.

As a showcase application, it also features ‘demo mode’, where it autonomously runs the demonstrations after a specified period of idle time.

Architecture

The following diagrams show the various software and hardware components for each MPLAB X IDE project configuration.

pic32mz_da_sk_extddr_meb2, and pic32mz_da_sk_extddr_meb2_wvga

For these configurations, the application uses the Graphics library to render graphics to the display. The Graphics library passes draw commands
into the GPU Library, which then draws the widgets and images to the three individual write frame buffers (one for each layer) that are stored on
the external DDR2 Memory. The Graphics library Draw commands going into the GPU Library can be dynamically enabled/disabled at run-time
and redirected to the write frame buffer directly. The intent is to contrast draw performance of one versus the other. Via the DDR2 Memory
Controller, the GLCD display controller peripheral continuously transfers frame data from the all three read buffers onto to the LCD display. The
write and read frame buffer pairs are swapped independently as required when the Graphics Library is done rendering to the write frame buffer
and GLCD driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

The application also uses the Timer System Service and driver to send timer events for Demo Mode.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 317

The core timer is used by the application and the Graphics library to manage the movement of the splash screen and the momentum decay of the
list wheel tumbler.

pic32mz_da_sk_intddr_meb2, and pic32mz_da_sk_intddr_meb2_wvga

For these configurations, the application uses the Graphics library to render graphics to the display. The Graphics library passes draw commands
into the GPU Library, which in-turn draws the widgets and images to the three individual write frame buffers (one for each layer) that are stored on
the internal DDR2 memory. The Graphics Library Draw commands going into the GPU Library can be dynamically enabled or disabled at run-time
and redirected to the write frame buffer directly. The intent is to contrast draw performance of one or the other. Via the DDR2 Memory Controller,
the GLCD display controller peripheral continuously transfers frame data from the all three read buffers onto to the LCD display. The write and
read frame buffer pairs are swapped independently as required when the Graphics Library is done rendering to the write frame buffer and GLCD
driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

The application also uses the Timer System Service and driver to send timer events for Demo Mode.

The core timer is used by the application and the Graphics library to manage the movement of the splash screen and the momentum decay of the
list wheel tumbler.

pic32mz_da_sk_intddr_meb2_freertos

This configuration runs in a run-time operating system (FreeRTOS) environment. The tasks are managed and scheduled for execution by the
FreeRTOS Task Scheduler. The Aria User Interface Library runs as a high priority, blocking task that waits for events from other tasks like the

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 318

Application or the Input System Service. When an event is received, say a touch event from the Input System Service, the Aria User Interface
Library unblocks and processes this event. If an event requires that the screen be updated, the graphics library uses the GPU to draw to the layer
frame buffers in internal DDR. The contents of the frame buffers are continuously delivered to the display panel using the Graphics LCD (GLCD)
controller.

pic32mz_da_sk_extddr_meb2_freertos

This configuration runs in a run-time operating (FreeRTOS) environment, the pic32mz_da_sk_intddr_meb2_freertos configuration. The main
difference in this configuration is the frame buffers are stored in external DDR.

Demonstration Features

• Integrated PCAP Touch Input

• Three graphics layer supported via the GLCD peripheral on the PIC32MZ DA device

• GPU peripheral supported, can be enabled/disabled at run-time

• Support of RTOS by the entire Graphics Stack

• 32-bit RGBA8888 color depth support (16.7 million unique colors) (see Options)

• Per-layer runtime adjustable global alpha-blending

• Per-layer frame double-buffering

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 319

• Language localization in English, French, German, and Italian (see Widget Tool Box Panel)

• Image compression techniques using Run-Length Encoding and JPEG (see Enabling Demo Mode in a MPLAB Harmony Graphics Application)

• Run-time JPEG decoding

• UTF-16 character font support (see Font Assets)

• Software-based single-touched gestured movement detection

• Run-time graphic widget motion

• Button and List Wheel Widgets

• Trigger external event via button press (see Event Manager)

• Time-delayed self-demonstration mode (see Enabling Demo Mode in a MPLAB Harmony Graphics Application)

Tools Setup Differences

• “Use Graphics Stack” is selected in MHC. This enables the graphics and touch libraries and drivers for the BSP.

• In the Clock Diagram, the Memory PLL is configured to output at 220 MHz (MPLLIDV = 1, MPLLMULT = 55, MPLLODIV1 = 6, MPLLODIV2 = 1)

• Graphics Processor NANO 2D has been enabled

• Demo Mode has been enabled, records up to 1000 input events, the idle timeout is set to 60 seconds

There are custom code blocks identified by // CUSTOM CODE – DO NOT DELETE … // END OF CUSTOM CODE comments that represent
modifications to the code outside of MHC. These code blocks are necessary for correct operation of the demonstration under these configurations.

Important!

When regenerating the project from within MHC use the "Prompt Merge For All Differences" merging strategy and do not change
these custom code blocks.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Coffee Maker
demonstration.

Description

To build this project, you must open the aria_coffee_maker.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_coffee_maker.

There are custom code blocks identified by // CUSTOM CODE – DO NOT DELETE … // END OF CUSTOM CODE comments that represent
modifications to the code outside of MHC. These code blocks are necessary for correct operation of the demonstration under the following
configurations.

Important!

When regenerating the project from within MHC do not change these custom code blocks.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_coffee_maker.X <install-dir>/apps/gfx/aria_coffee_maker/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within

./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit.

pic32mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the PIC32MZ Embedded Graphics with
External DRAM (DA) Starter Kit Memory plus the Multimedia
Expansion Board II (MEB II) with a High-Performance (5") WVGA
Display Module with maXTouch.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 320

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal
DRAM (DA) Starter Kit.

pic32mz_da_sk_intddr_meb2_wvga pic32mz_da_sk_intddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal
DRAM (DA) Starter Kit and High-Performance 5" WVGA Display
Module with maXTouch.

pic32mz_da_sk_extddr_meb2_freertos pic32mz_da_sk_extddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit using FreeRTOS.

pic32mz_da_sk_intddr_meb2_freertos pic32mz_da_sk_intddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal
DRAM (DA) Starter Kit using FreeRTOS.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

Configurations: pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_freertos, pic32mz_da_sk_extddr_meb2_wvga,
pic32mz_da_sk_intddr_meb2,pic32mz_da_sk_intddr_meb2_freertos, and pic32mz_da_sk_intddr_meb2_wvga

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the
exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides a brief description of what to expect once the demonstration is running.

Description

On start-up, the application will display a splash screen:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 321

Subsequently, the demonstration’s main screen will appear. The following image shows the main screen for the pic32mz_da_sk_extddr_meb2,and
pic32mz_da_sk_intddr_meb2, configurations.

As indicated by the hand icon (), the gray areas on each side are trays that can slide horizontally.

To reveal or hide the trays from the screen area, the application can recognize two different behaviors when pressing your finger near the hand
icon:

1. Moving your finger slowly in a horizontal direction while maintaining contact with the touch screen and the tray you are in contact with will
perform a pixel-by-pixel movement until the tray reaches its minimum/maximum constraint of movement.

2. Swiping your finger in a quicker horizontal motion will trigger the application to automatically move the tray in the same direction as your finger
swipe.

Left Tray

The left tray has six buttons. Touching each demonstrates a different feature.

The flag button triggers the Aria User Interface Library multi-lingual localization feature to cycle through English, German, Italian and French. The
image on the button changes to American, German, Italian and French flags to indicate the current language being displayed. Note that it is not
just the labels in the current screen that has their text changed. The label widgets within the Info Screen also have their text changed to reflect the
current language selected.

The coffee bean button simulates changing the coffee maker appliance to use coffee beans from different roast level (Dark, Medium and Light).
Each time the button is touched and released, the coffee bean image in the background changes along with the label widget indicating which roast
level the application is at currently. There is one image for dark, two for medium and one for light. The image and the label widget are actually
rendered on layer 0 in the application. Changing them independently while trays and list wheels are moving in the foreground serves as a way to
demonstrate the hardware accelerated per-layer blending capability supported by the GLCD.

The tea cup button cycles the two trays (each on its own layer) through three different alpha-blend settings. This button demonstrates the
capability for the GLCD peripheral to manage the layer-wide “global” alpha-blend value.

The coffee cup button simulates adjusting the temperature of the water for the coffee maker appliance. There are three temperature levels as
indicated by the icon on the button. As the temperature level changes, the images on the list wheel on the right tray change accordingly. Touching

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 322

this button also triggers the right tray to automatically slide out if it is not completely exposed.

The GPU button turns the GPU support to the Graphics Library ON or OFF at real-time. When the button shows “GPU ON”, the Graphics Library is
using the Nano2D library to drive the GPU to draw to the frame buffer. When it is showing “GPU OFF”, the Graphics Library is relying solely on its
own software-based drawing algorithms to compose the frame buffer.

The “?” button leads the application to switch to the Information Screen, where the features demonstrated by this application is listed in a vertically
touch draggable text plane.

Right Tray

The right tray has a list wheel and a button.

The list wheel simulates the brew size selection for a coffee maker. There are four different sizes. Depending on which one is selected, the button
below the list wheel updates to the current brew size selected. As mentioned before, the images on the list wheel will change depending on the
temperature selected by the button on the left tray.

Touching the brew button below the list wheel activates an LED on the MEB II to simulate triggering a motor in the appliance to begin the brewing
process. Depending on which brew size is selected, a different LED is enabled.

Information Screen

The information screen serves as a screen to list out the demonstrated features of the demo. It also provides two features.

• The features are located on layer1. Sliding your finger up or down will cause the feature list to scroll up and down as if it’s on an invisible glass
pane. The MPLAB Harmony logo that is rendered on layer0 is another demonstration of the real-time alpha-blending capability of the GLCD.

• Touching the Microchip logo will trigger the application to the splash screen. Once the splash screen animation has complete, the application
will return to the information screen.

Autonomous Demonstration Mode

As built, Demonstration Mode is always active. It consists of two phases: Record or Playback.

Record Phase:

The application starts in the Record Phase once it reaches the main screen after startup. Touch events are recorded until the event buffer is full or
no touch events are seen and an idle period times out. (Idle is typically 20-60 seconds). Having recorded a buffer of touch events the Playback
Phase starts.

Playback Phase:

Playback starts after the idle period times out. The application returns to the opening splash screen and the playback of recorded touch events
starts when the application reaches the main screen. After executing the touch events recorded, the application will wait until a replay delay
(typically 5-15 seconds) before starting the replay over.

If the user initiates a touch event during playback it will terminate and not start up again until the idle period times out again. After the idle time out,
the application will return to the splash screen and event replay will start once the main screen is active.

Once the initial idle time out occurs it is not possible to record a new set of touch events except by restarting the application via a power up or
master clear.

Disabling Demo Mode:

Demo mode can be disabled through MHC by selecting Harmony Framework Configuration > Graphics Stack > Use Graphics Stack? > Use
Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library> Enable Demo Mode?. Then, reconfigure the application
using MHC, rebuild, and then reload.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 323

aria_counter

This application demonstrates the use of double buffering to show multiple counters running at high speed on a fixed (high-spatial frequency)
image background.

Description

This application demonstrates the use of double-buffering to show multiple counters running at high speed on a fixed, high-spatial frequency,
image background. Double-buffering helps eliminate tearing and artifacts in graphics applications. The application can also switch between
double- and single-buffering at run-time to show the advantages of double-buffering.

This application also provides a reference on how to update the text in a label widget at run-time.

Architecture

The aria_counter application uses the MPLAB Harmony Graphics Library to render graphics to the display. The application uses double buffering
to eliminate tearing, and this requires two frame buffers; a read buffer and a write buffer. The Graphics library draws the widgets and images to the
write frame buffer, while the contents of the read frame buffer are being delivered to the display panel. The write and read frame buffers are
swapped when the Graphics library is done rendering to the write frame buffer, and the contents of the read frame buffer have been sent to the
display panel.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the Touch and I2C Drivers. The Input System Service
sends touch events to the Graphics library, which processes these events and updates the frame data accordingly.

The following figures display the various software and hardware components used by the different configurations in this application.

pic32mz_ef_sk_meb2_ext

Two 16-bit WQVGA frame buffers (~522kB) will not fit into the internal SRAM, thus the external SRAM is used for the frame buffers. These
configurations use the Low Cost Controller-less (LCC) display driver to manage the DMA that transfers the frame buffer contents to the display.

pic32mz_da_sk_intddr_meb2

In this configuration, the frame buffers are stored in the internal DDR memory. The DDR memory is large enough to allow 3 layers, each with
double frame buffers. The contents of the read frame buffer are transferred continuously by the Graphics LCD (GLCD) controller to the display
panel.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 324

pic32mz_da_sk_extddr_meb2

This configurations works similar to the pic32mz_da_sk_intddr_meb2 except that the frame buffers are stored in external DDR.

Demonstration Features

• Input System Service and Touch driver

• DMA System Service

• Low-Cost Controllerless (LCC) Graphics Driver (PIC32MZ EF)

• I2C Driver

• Graphics LCD (GLCD) controller (PIC32MZ DA)

• 16-bit RGB565 color depth support (65535 unique colors)

• JPEG and RAW images stored in internal Flash (see Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer
User’s Guide > Graphics Composer Window User Interface > Graphics Composer Asset Management > Image Assets)

• GFX widgets: Label and Buttons (see Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer User’s Guide
> Graphics Composer Window User Interface >Graphics Composer Asset Management > String Assets)

• Double-buffering

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 325

Tools Setup Differences

• “Use Graphics Stack” is selected in the MPLAB Harmony Configurator (MHC), which enables the Graphics and Touch libraries and drivers for
the Board Support Package (BSP).

• The heap size is set to 102400 bytes to ensure enough memory for dynamic allocations. This is done by setting the size in MHC through the
following menu selection: Device & Project Configuration >Project Configuration > XC32 (Global Options) >xc32-ld >General.

• Double-buffering is enabled in the LCC Display Driver. This is done by selecting Double Buffer in MHC through the following menu selection:
Graphics Stack >Graphics Controller >Low Cost Controllerless >Frame Buffer Mode.

• Use external memory to fit two frame buffers. This is done by selecting “External Memory” in MHC through the following menu selection:
Graphics Stack >Graphics Controller >Low Cost Controllerless >Memory Settings >Memory Interface Mode.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Counter
demonstration.

Description

To build this project, you must open the aria_counter.X project in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_counter.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_counter.X <install-dir>/apps/gfx/aria_counter/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within

./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_meb2_ext pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit with the Multimedia Expansion
Board II (MEB II) and external memory enabled.

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for PIC32MZ Embedded Graphics with Internal DRAM (DA)
Starter Kit, Multimedia Expansion Board II (MEB II) and 4.3” WQVGA (480x272)
Display.

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for PIC32MZ Embedded Graphics with External DRAM (DA)
Starter Kit, Multimedia Expansion Board II (MEB II) and 4.3” WQVGA (480x272)
Display.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

Configurations: pic32mz_ef_sk_meb2_ext

• This configuration requires that the J9 jumper be set to enable external SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE
and LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer
to the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Important!

There are custom code blocks identified by // CUSTOM CODE – DO NOT DELETE … // END OF CUSTOM CODE comments that
represent modifications to the code outside of MHC. These code blocks are necessary for correct operation of the demonstration
under these configurations. When regenerating the project from within MHC use the "Prompt Merge For All Differences" merging
strategy and do not change these custom code blocks.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 326

BSP PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit, PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit and
MEB II

Configurations: pic32_mz_da_sk_intddr_meb2, and pic32_mz_da_sk_extddr_meb2

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged
into the board. Refer to the following figure for the exact location

• Connect the desired PIC32MZ DA Starter Kit to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides instructions on how to use the Aria Counter application.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 327

Description

Upon boot-up, the application displays the animation Splash Screen, which shows an animated splash bar while blending in the MPLAB Harmony
and Microchip PIC32 logos, as shown in the following figure.

When the Splash Screen animation is complete, the Double-Buffered Screen will be shown:

The counters will automatically start with the value of upper counter incrementing, and the lower counter in white text decrementing. Since the
application uses double-buffering, the counters update without tearing or flickering.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 328

The Single-Buffered button in the lower-right corner can be touched to switch to a single-buffered screen. In the single-buffered screen, the
counters will continue running, but they flicker as they are updated.

aria_external_resources

This demonstration illustrates the capability of storing media to internal, as well as external memory, and outlines how this can be done. The
demonstration shows a graphic design that distributes resources between internal memory, external on board memory (i.e., SQI Flash), as well as
external Memory Storage Device (MSD) (i.e, USB Flash drive). When running, the demonstration then fetches these resources from the external,
as well internal memory at run-time and displays the resources on a screen.

The aria_flash demonstration serves as an external memory programmer to flash the off-chip non-volatile memory with the resources held on an
MSD, such as a USB or a SD card.

Description

The capability of storing resources on external memory is useful for applications that have large graphics resource requirements, such as storing
large bitmap files or multiple page menu screens that require several images or large or multiple font packages, etc. In these instances, storing
these graphics resources on-chip may result in insufficient memory or may be prohibitive to a possible cost benefit. A solution is to store the
graphics resources to off-chip memory, such as non-volatile memory or MSD, thereby preserving the on-chip memory for program memory and
allowing for more complex functional features.

To demonstrate how to access graphics resources stored on an external memory device, three components are needed:

• File Packaging

• Bootloader Application

• Fetch Application

The following figure shows the external resources process diagram.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 329

File Packaging

The resources to be stored externally need to be packaged into a resource file that would be flashed into the external memory. The MPLAB
Harmony Graphics Composer, which is the primary tool used by the MPLAB Harmony application for configuring the graphic design for this
application, has the ability to generate the required resource file containing the binary data for all of the graphics images to be stored on external
memory, such as SQI, as well as a binary file to be stored on USB.

The graphics composer has the capability to manage the application assets by importing different resources including images, fonts, etc., into an
application and choosing the memory location to store it (see the following figure).

Generating the graphics composer configuration creates the SQI.hex file as well as USBBin.bin file if resources were to be placed in USB by
the composer design. The images to be stored as files on the USB can be loaded on the USB and do not need any HEX or BIN file information.
However the user must make sure, when adding images to the MHGC design in the Graphics Composer, that the USB File option is selected, and
in the Configuration tab, the None setting is selected for the memory location. Please refer to the following figure for further information.

MHGC Asset Manager for External Memory Resource Management

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 330

Memory Writer Application

A memory writer application is required to flash the .hex file containing the binary data of the external graphics resources, in this case SQI.hex into
the external non-volatile memory. The memory writer application, aria_flash, uses a USB Flash drive or SD card, which has a FAT32 file system
installed, in the Host mode as the source for the SQI.hex file. The USB Flash drive in the Host mode is scanned by the memory writer for this file
and it is flashed onto the SQI Flash external memory. Refer to aria_flash for usage information.

Fetching the Resources

The third component is the fetching of the stored external graphics resources. The aria_external_resources application will demonstrate the
fetching of the externally stored graphics images and using the MPLAB Harmony framework drivers, display controllers, etc., display those
resources on the screen. The demos aim is to showcase the capability of storing media to internal as well as external memory and outline the
procedure for the users of how this can be achieved.

The application currently supports jpeg images and fonts. The same image/ text are stored and fetched from Internal Flash, SQI memory and USB.
Selecting a listwheel setting, the user can choose which two media locations to load the resources from and compare the quality as well as
efficiency loading from the different storage locations.

Architecture

The aria_external_resources application uses the Graphics Library to render graphics to the display. The Graphics Library draws the widgets and
images to the frame buffer that is stored in internal SRAM. Using the DMA, the Low-Cost Controllerless (LCC) Display Driver continuously
transfers frame data from the frame buffer out to the LCD display. The resources (images and fonts) are fetched from the Internal SRAM, external
non-volatile SQI memory and from the USB MSD attached to the Multimedia Expansion Board II (MEB II) using the USB file system.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the Touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Demonstration Architecture Diagram: pic32mz_ef_sk_meb2

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 331

pic32mz_da_sk_intddr_meb2

pic32mz_da_sk_extddr_meb2

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 332

Demonstration Features

• Aria User Interface Library

• Input System Service

• Touch Driver

• DMA System Service

• I2C Driver

• External SQI memory

• USB system services and driver

• pic32mz_ef_sk_meb2 specific features:

• 6 bit RGB565 color depth

• LCC graphics

• pic32mz_da_sk_intddr_meb2 and pic32mz_da_sk_extddr_meb2 specific features:

• 24 bit RGBA8888 color

• GLCD internal display controller

• Multiple layer graphics facilitated by DA hardware layers

• Single frame buffer stored in the DDR

Tools Setup Differences

• “Use Graphics Stack” is selected in the MPLAB Harmony Configurator (MHC), which enables the Graphics and Touch libraries and drivers for
the Board Support Package (BSP).

• The heap size is set to 204800 bytes to ensure enough memory for dynamic allocations. This is done by setting the size in MHC through the
following menu selection: Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld > General.

• USB Stack and USB Host Mode Driver

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria External
Resources demonstration.

Description

To build this project, you must open the aria_external_resources.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_external_resources.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_external_resources.X <install-dir>/apps/gfx/aria_external_resources/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 333

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within

./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit with the Multimedia Expansion
Board II (MEB II) and external memory enabled.

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with Internal DRAM (DA)
Starter Kit with the Multimedia Expansion Board II (MEB II).

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with External DRAM
(DA) Starter with the Multimedia Expansion Board II (MEB II).

Important!

This application contains custom code that is marked by the comments // CUSTOM CODE ... and // END OF CUSTOM CODE.
If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For All Differences"
merging strategy and do not remove or replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit and Multimedia Expansion Board II (MEBII), PIC32MZ Embedded Graphics
with Internal DRAM (DA) Starter Kit and Multimedia Expansion Board II (MEB II)

Configuration: pic32mz_da_sk_intddr_meb2, and pic32mz_da_sk_extddr_meb2

On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into
the board. Refer to the following figure for the exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 334

• Use USB host port on Starter Kit for the media

Running the Demonstration

This section provides instructions on how to use the Aria External Resources demonstration.

Description

Demonstration Setup

1. In this step we are using the MPLAB Harmony Graphics Composer portion of the aria_external_resources application to create the SQI.hex
file.

• Open the <install-dir>\apps\gfx\aria_external_resources folder on your computer. The external resources to be stored on
the external non-volatile memory are available in the SQI.hex file. In this demonstration, the file has already been generated and is
available in the <install-dir>\apps\gfx\aria_external_resources\firmware\src\system_config\<target
configuration>\ folder. This file will be required by the external memory programmer application to flash the SQI memory.

• If the user chooses to change the graphics design or external resources, the project aria_external_resources should be opened using
MPLAB X IDE and the graphics should be changed using the graphics composer. Any change to the graphics would require regenerating
the configuration and regenerating the SQI.hex file before being used by the external memory programmer application. This process
requires both MPLAB X IDE and MPLAB Harmony. Refer to the MPLAB X IDE online help and Volume III: MPLAB Harmony Configurator
(MHC) > MPLAB Harmony Graphics Composer User's Guide for usage information.

• There are USB files that are images (JPEG and BMP) intended to be stored on the USB drive. These image files are located in the
\apps\gfx\aria_external_resources\firmware\src\assets.7z archive. For this application, they are named
Image_usb_1.jpg, Image_usb_2.jpg, Image_usb_3.jpg, and Image_usb_4.bmp.

• See the aria_flash demonstration for instructions covering how to program the SQI external flash memory on the MEB2 board with the
contents of the SQI.hex file.

2. The aria_external_resources application fetches and displays the external resources stored in external SQI memory. Program the
aria_external_resources application onto the device.

• The application demonstrates both internal and external resources being used together by distributing the images between internal and
external memory

• The application currently supports jpeg images and fonts. The identical image and font resources are stored and fetched from Internal Flash,
SQI memory and USB.

• The purpose of the demonstration is to showcase the capability of storing media to internal as well as external memory and outline the
procedure for the users of how this can be achieved.

3. Please note that once the aria_external_resources have been flashed into the SQI memory, it is not required to reflash the resources every
time while using the aria_external_resources application. However, if the user changes the graphics design affecting the external resources in
the demonstration, the configuration needs to be regenerated and the new SQI.hex file needs to be reflashed to external memory using Step
2. This is to ensure that the external graphics resources being flashed on external memory are synchronized with the new graphics composer
design utilizing the resources. Failure to do so will result in externally stored graphics images not being displayed correctly on screen.

The application boots up with the aria splash screen and the home screen, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 335

The home screen has an image from the internal memory loaded by default. It also loads text from the internal memory, and the load time for the
image in milliseconds. The home screen also has buttons for the other available sources with resources preloaded on them, such as the SQI Flash
memory, and the USB. If the USB is not plugged in, the USB button will not pop up on the screen. Pressing any of these buttons will load the same
image and text from the respective storage sources. Each source has a different font, which shows the user where the font is coming from, and
also displays the load times for the image for comparison.

Another button available on the home screen, is the Slides button, which starts a slide show of different images loaded from a selected storage
source. At any time during the running of the slide show, the user can press an alternate source to load images from, and the images and text start
loading from the selected storage source. The slide show can be paused by pressing the same button again.

The home screen also has a button named Load Times. This button allows the comparison of load times of the same image from the three
different storage sources - Internal Memory, SQI flash, and USB driver (when plugged in). It loads the image from each storage sequentially, and
then displays the load times for all three sources together.

Finally, the INFO button on the screen takes the user to the help screen, which outlines briefly the objective of the demonstration and its highlights.

The application currently supports JPEG and BMP images. The BMP images show a large difference in the loading times from the Internal
memory, as opposed to the external media from SQI Flash, and the USB. With JPEG images, the difference between loading a relatively smaller
sized image due to data bus bandwidth, is outweighed by the decoding overhead. The load times are considerably closer for the SQI Flash and
internal memory.

The Question mark button on the home screen takes the user to the help or Info screen, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 336

aria_flash

The aria_flash demonstration application serves as an external memory programmer to flash the off-chip non-volatile memory with the resources
held on an Memory Storage Device (MSD), such as a USB or a SD card, which can then be accessed by other applications saving on-chip
memory for other programs and resources.

The application aria_external_resources in MPLAB Harmony needs to use preloaded images/fonts from SQI flash external non-volatile memory.
This would require aria_flash to flash the required image and font resources onto the SQI flash. Refer to aria_external_resources for usage model
information.

Description

Applications that use large bitmap images or multiple page menu screens, which require several images or large or multiple font packages, etc.,
have a very large memory requirement for their graphics resources. In such applications, storing these graphics resources on-chip may result in
insufficient memory or may be prohibitive to a possible cost benefit. A solution is to store the graphics resources to off-chip memory, such as
non-volatile memory, thereby preserving the on-chip memory for program memory and allowing for more complex functional features.

The aria_flash application flashes the .hex file containing the binary data of the external graphics resources, in this case SQI.hex, into the
external non-volatile memory. The resource file is copied from the computer to a USB Flash drive or SD card, which has a FAT32 file system
installed. The USB Flash drive/SD card is then plugged into the MEB II development board and the application scans the MSD for the resource
file. The aria_flash application copies the resource file sector by sector and flashes the binary resource content onto the SQI Flash external
memory.

Architecture

The aria_flash application uses the USB and SD card file systems in MPLAB Harmony and the SPI and USB drivers to scan the MSD for a .hex
file with resources and reads them sector by sector and programs the external non-volatile SQI memory. The Graphics Library is used to render
graphics to the display. Using the DMA, the Low-Cost Controllerless (LCC) Display Driver continuously transfers frame data from the frame buffer
out to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the Touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

pic23mz_ef_sk_meb2_sqi

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 337

pic32mz_da_sk_intddr_meb2_sqi

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 338

pic32mz_da_sk_extddr_meb2_sqi

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 339

Demonstration Features

• USB file system and peripheral

• SD card file system and SPI Driver

• Aria User Interface Library

• Input System Service

• Touch Driver

• DMA System Service

• I2C Driver

• External SQI memory

Tools Setup Differences

• “Use Graphics Stack” is selected in the MPLAB Harmony Configurator (MHC), which enables the Graphics and Touch libraries and drivers for
the Board Support Package (BSP).

• The heap size is set to 204800 bytes to ensure enough memory for dynamic allocations. This is done by setting the size in MHC through the
following menu selection: Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld > General.

• USB Stack and USB Host Mode Driver

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 340

• SD card and SPI Driver selection

• SQI external memory support: Since a formal SQI driver is not available in MPLAB Harmony, the external memory programmer uses the SQI
Peripheral Library. Please note that the source and header file for SQI enabling have been manually included in the project within
SourceFiles/drv_nvm_flash_sqi_sst26.c and HeaderFiles/drv_nvm_flash_sqi_sst26.h.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Flash
demonstration.

Description

To build this project, you must open the aria_flash.X project in MPLAB X IDE, and then select the desired configuration. The following tables
list and describe the project and supported configurations. The parent folder for these files is <install-dir>/apps/gfx/aria_flash.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_flash.X <install-dir>/apps/gfx/aria_flash/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_meb2_sqi pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit with the Multimedia
Expansion Board II (MEB II) and external memory enabled.

pic32mz_da_sk_intddr_meb2_sqi pic32mz_da_sk_intddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit with the Multimedia Expansion Board II (MEB II).

pic32mz_da_sk_extddr_meb2_sqi pic32mz_da_sk_extddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with External DRAM
(DA) Starter Kit with the Multimedia Expansion Board II (MEB II).

Important!

This application may contain custom code that is marked by the comments // CUSTOM CODE ... and // END OF CUSTOM
CODE. If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For All
Differences" merging strategy and do not remove or replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2_sqi

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 341

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit with Multimedia Expansion Board II (MEBII), PIC32MZ Embedded Graphics
with Internal DRAM (DA) Starter Kit and Multimedia Expansion Board II (MEB II)

Configurations: pic32mz_da_sk_extddr_meb2_sqi, pic32mz_da_sk_intddr_meb2_sqi

On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into
the board. Refer to the following figure for the exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

• Use the microSD slot and USB host port on Starter Kit for the media. Refer to the following figure for the location of the ports

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 342

Running the Demonstration

This section provides instructions on how to use the Aria Flash demonstration.

Description

The aria_flash application loads the required SQI.hex file to an off-chip external memory to facilitate large resource requirements, which would
not be easily accommodated on on-chip internal memory. The external memory programmer is operated as follows.

1. The external resources to be flashed onto the external memory are required by the aria_flash application in the form of a HEX text file with the
default name SQI.hex. If you do not have the resource binary file, you can obtain it from the following MPLAB Harmony installation folder:
<install-dir>\apps\gfx\aria_external_resources\firmware\src\system_config\<target configuration>\SQI.hex,
which should copied and renamed to SQI.hex.

2. Connect a USB Flash drive or SD card to the computer port and copy the SQI.hex file from
<install-dir>\apps\gfx\aria_external_resources\firmware\src\system_config\<target configuration>\ to the USB
Flash drive or SD card.

3. After the file copy has finished, remove the USB Flash drive or SD card from the computer and insert it into the USB host connector on your
starter kit board or the SD card slot.

4. Program the PIC32MZ device with the external memory programmer application, aria_flash. This application flashes the SQI.hex file available
on the USB Flash drive or SD card to the external SQI memory.

5. Please make sure that the USB thumb drive or SD card is not unplugged while the program is actively flashing the memory.

6. When the USB or SD card is plugged in, the graphics display shows the USB or SD card pop-up for selection to start the flashing process.
Once selected, a progress bar shows the user the flashing process starting and progressing to completion.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 343

aria_image_viewer

This demonstration discusses how to use the aria_image_viewer application.

Description

This application demonstrates high-resolution image viewing using single and multi-touch gestures using the capabilities of the Graphics Suite’s
GPU Bit Block (Blit) rendering engine. It displays a 2716x1810 high resolution image onto the native MEBII display size using Blit stretch, shrink,
and copy features. It also demonstrates image resizing and panning through Input System Services, user gesture touch controls, and image
orientation using the User Interface (UI) button event. The application uses three layers of the GLCD, Aria Graphics Library, and low-level GPU
APIs for the Nano2D Library to realize image viewing features. The demonstration communicates fast block copying of 4.9 million 32bpp pixels,
smooth real-time motion, layer composition and blending. The key points are:

• Using GPU Blit copy to show motion

• Using DDR memory to stage a 2716x1810 high-resolution image

• Using Aria Graphics Library to for all image decoding and staging

• Using GLCD layer composition

• Input System Services (multi-touch)

Architecture

The following figure shows the various software and hardware components used by this application.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 344

The aria_image_viewer application uses the MPLAB Harmony Graphics Library to render graphics to the display. It uses the 2-D GPU and the
GLCD internal hardware peripherals. The Graphics Suite’s Graphics Composer Tool is used to establish the UI design. All images are staged to
the external DDR during initialization.

The first layer (0) is the image destination layer. At initialization, the Graphics Library decodes and stages four full 2716x1810 high-res images to
the external DDR. The staged images are used as a source for subsequent user control requests, such as shrink, stretch, and pan. A version of
the image is displayed to the destination layer 0 based on the user control request.

The second layer (1) is the UI layer. The Graphics Composer Tool is used to establish all user controls. An Orientation Button Widget is used to
set image orientation at 0, 90, 180, and 270. The UI layer also contains non-visible touch areas for multi-touch gestures. User supported gestures
are swipe to next image, two-finger pinch-zoom, and single finger pan. Lastly, the UI layer contains a touch area to display a help guide.

The third layer (2) is the help layer. The Graphics Composter Tool is used to establish helpful UI Text Labels. This layer maintains an
alpha-channel which is set to blend over the UI and image layers. It is only available at initialization and upon user request. Its alpha value
gradually transitions from opaque to fully transparent, so the panel becomes invisible after a few seconds.

The application is touch enabled. It features user touch input through the integrated touch screen on the display panel. Touch input from the touch
controller goes through the I2C port, and the Input System Service acquires the touch input information from the Touch and the I2C Drivers. The
Input System Service sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

In addition, the application uses the core timer clock ticks for some automatic image motion control.

Demonstration Features

• 32bit true-color with alpha-channel

• GPU Blit copy, shrink, stretch

• Three GLCD layers

• 2716x1810 high-resolution image

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 345

• External memory DDR2

• Graphics User controls

• Simple real-time motion

Tools Setup

• Enable Graphics Stack

• Enable Graphics Controller

• GLCD

• Enable all 2 layers

• Enable Graphics Processor

• Use Nano2D

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Image Viewer
demonstration.

Description

To build this project, you must open the aria_image_viewer.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is <install-dir>/apps/gfx/
aria_image_viewer.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Project Location

aria_image_viewer <install-dir>/apps/gfx/ aria_image_viewer /firmware

MPLAB X IDE Project Configuration

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the PIC32MZ DA Starter Kit with the Multimedia
Expansion Board II (MEB II) (blue board).

 Note:
This application may contain custom code that is marked by the comments "// START OF CUSTOM CODE ..." and "// END OF
CUSTOM CODE". If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For All
Differences" merging strategy and do not remove or replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit and MEB II

Configurations: pic32mz_da_sk_extddr_meb2

• On the MEB II, the EBIWE and LCD_PCLK (J9) must be open. A closed setting turns on internal SRC and open setting turns on I external
memory. The jumper (J9) is available on the bottom side of the MEB II board. See the following figure below for jumper location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 346

Running the Demonstration

This section provides instructions on how to use the Aria Image Viewer demonstration.

Description

The aria_image_viewer demonstration has two UI screens. The first, SplashScreen, is displayed upon boot-up. It has no user controls, but
displays a generic method that can be used to display logo content during initialization. The second UI screen is the ImageScreen. After the
SplashScreen is displayed, the application automatically transitions to the ImageScreen and displays the touch gesture areas. During the touch
gesture display, the image is loaded, then the screen will fade away showing a 2716x1810 high-resolution bridge image, that is reduced to the
native display screen size of the MEBII. At this point, the pinch-zoom and swipe gestures are available for use.

Initial Image

Initial Image at 90 Degree Orientation

Initial Image at Zoom-In Using Two-Finger Zoom and Pan

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 347

Help Overlay

The following images are the remaining three of the four images that can be used for gesture actions.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 348

Name of Motion Description of Function

Enables the user to perform zoom-in on the center aspect. User can then pan the image and perform additional
zoom or pinch gestures. Each movement exercises 2-D GPU Blit using smaller or larger rectangles clipping of the
image source placed on to the native LCD display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 349

Enables the user to swipe to the next image. The current image will dim using a A8 alpha buffer. The next image
will be displayed at zoom level 0. Each movement is tested on speed of swipe over a distance.

Enables the user to move the image in any direction limited by the image extents. Pan requires the zoom-in
operation to be greater than 0%. Each movement exercises 2-D GPU Blit operation.

Enables the user to set the orientation to an orthogonal value of 0, 90, 180, or 270 degrees. Each movement
exercises 2-D GPU buffer orientation operation.

Help Area (top of display) Enables the user to activate the help overlay. Displays the supported touch gestures.

Image Stretch Text (lower
left)

Name of demonstration

aria_oven_controller

The following demonstration details how to use the aria_oven_controller.

Description

This application demonstrates the Graphics Processing Unit (GPU) features on the PIC32MZ Embedded Graphics with Disabled DRAM (DA)
Starter Kit hardware package. This SRAM version has 640K of accessible graphics memory. The application shows dynamic movement of image
assets and basic motion control. The application performs time-based motion menu controls and User-Interface (UI) indicators. This demonstration
displays the use of 640K SRAM by allocating 480x272x2 (16-bit) frame buffer, and a 480x272x2 asset staging area for fast run-time access to
pre-rendered images. The demonstration shows that the GPU can be used in a low memory environment using 522k of internal frame buffer
memory, and can produce appealing, low memory use GPU based applications. These are the key points:

• Internal SRAM package: a DDR is not required for graphics

• Multiple image staging with the use of sprites

• High color contrast images with drop shadow shading

• Modern UI

• Use of motion to show double buffering

• 13% of SRAM remains for non-graphics use, this is about 83K

• Use of MHGC screens for image asset. Managing image locations efficiently in memory can be an easy process

Architecture

The following figure shows the various software and hardware components used by this application.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 350

The aria_oven_controller application uses the MPLAB Harmony Graphics Library to render graphics to the display in a RGB565 color mode. The
Graphics library draws the widgets and images to a 16-bit frame buffer which is stored in the internal SRAM of the PIC32MZ DA device. Using the
Graphics Display Controller (GLCD), the PIC32MZ DA Display Driver continuously transfers frame data to the LCD display. During display refresh,
the application will use the GPU to update the frame buffer using the nano2D software driver, which retrieves data from the staging area (source)
for all image assets.

The demonstration contains five UI screens:

• Splash Screen: initial boot display

• Home Screen: controller demo idle state display

• Controller Screen: brick oven roasting control UI

• Info Screen: information and help

• Asset Layout Screen: image asset memory location and usage

Image assets are pre-rendered from internal Flash memory to SRAM on application start. Each image is accessed during runtime to create
dynamic sprite affects and motion. The layout and location of images were positioned using the GFXLIB Graphics Composer Suite (MHGC) to
produce accurate coordinate location and efficient memory use. Note that there exists space for additional images. The layout is shown in the
following figure:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 351

During run-time, the GPU is used to clear, colorize, blit and draw. The application uses n2d_blit() to block copy images from the SRAM staging
area onto the refreshing frame buffer. The application uses n2d_line() to create the timer affect, and uses n2d_fill to clear the orange active
menu button bar.

All motion effects make use of the n2d_blit (stretch/shrink) feature by setting the destination rectangle smaller or larger that the source rectangle
(image). Image transparency is established by setting the background of the image to the display background. In addition, the application uses the
Timer System Service and core timer clock ticks for image motion control.

The application is touch enabled. It features user touch input through the integrated touch screen on the display panel. Touch input from the touch
controller goes through the I2C port, and the Input System Service acquires the touch input information from the Touch and I2C Drivers. The Input
System Service sends touch events to the Graphics library, which processes these events and updates the frame data accordingly.

Demonstration Features:

• 16-Bit RGB 565 Frame buffer

• Image manipulation

• 480x272x2 Image staging memory space

• Modern drop-shadow, gradient image assets

• Internal memory: low memory frame buffer footprint 262K

Tools Setup:

• Enable Graphics Stack

• Enable Graphics Controller

• GLCD

• Enable Graphics Processor

• Nano2D

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the aria_oven_controller
demonstration.

Description

To build this project, you must open the aria_oven_controller.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_oven_controller.

MPLAB X IDE Project

The following table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Location

aria_oven_controller <install-dir>/apps/gfx/aria_oven_controller/firmware

MPLAB X IDE Project Configuration

The following table lists and describes the supported configurations of the demonstration, which are located within
./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_noddr_meb2_rgb_565 pic32mz_da_sk_noddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with Disabled
DRAM (DA) Starter Kit and the Multimedia Expansion Board II (MEB II).

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 352

 Note:
This application may contain custom code that is marked by the comments "// START OF CUSTOM CODE ..." and "// END
OF CUSTOM CODE". If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For
All Differences" merging strategy and do not remove or replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit and MEB II

Configurations: pic32mz_ef_sk_intddr_meb2

• On the MEB II, the EBIWE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD’s pixel clock timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the board under the starter kit. The J9 jumper is
located on the bottom of the MEB II board, beneath where the starter kit attaches to the board. Refer to the following image for the exact
location

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB DEBUG port on the Starter
Kit board

Running the Demonstration

This section provides information on how to run the demonstration.

Description

On startup, the application will display a Splash Screen. After the splash screen completes, the Controller Screen is shown. In this screen, the
Brick Oven Logo, Information button, and current time is displayed.

When the current time area is pressed, the Controller Screen is shown. On the display, the Brick Oven logo is reduced by 50% and positioned to
the upper left corner of the screen. Three fire roasting bake options (fish, pizza, turkey) are displayed. When the user presses a button, an orange
active bar is displayed over the button, and the start button is made visible as well as the pre-set cook time. When the Start button is pressed, the

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 353

flame animation will start and the timer will tick down to zero. When the time has finished, the Done button will be made visible, or the user is
allowed to cancel before completion.

Each screen has a button that provides a transition to another screen.

aria_quickstart

This demonstration provides a touch-enabled starting point for the Aria Graphics Library using Low-Cost Controllerless technology.

Description

This demonstration serves as a preconfigured starting point for a touch-enabled application powered by the Aria User Interface Library. The
demonstration has multiple configurations to demonstrate the graphics library running on different MCUs, displays, and display drivers.

Architecture

bt_audio_dk

For this configuration, the display has an on-board OTM2202a display controller. The PIC32MX uses a 16-bit parallel interface to initialize and
communicate to the display peripheral. The aria_quickstart application uses the Graphics Library to render graphics to the display. As the Graphics
Library draws the widgets and images, it uses the OTM2202a display controller driver APIs to write to the OTM2202a internal graphics RAM.

 Note:
Touch is not supported for this configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 354

pic32mz_ef_sk_xpro

For this configuration, the display has an on-board ILI9488 display controller that interfaces to the PIC32MZ MCU through the SPI. The
aria_quickstart application uses the Graphics Library to render graphics to the display. As the Graphics Library draws the widgets and images, it
uses the ILI9488 display controller driver APIs to write to the ILI9488 internal graphics RAM. The ILI9488 display driver uses the SPI peripheral
library to talk to the ILI9488 device through the SPI peripheral port.

 Note:
Touch is not supported for these configurations.

pic32mk_gp_db_wqvga_mxt, and pic32mk_gp_db_wvga_mxt

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 355

For these configurations, the display is driven by a SSD1963 display controller (located on the underside of the PIC32MK GP Development Kit
board) that interfaces to the PIC32MK MCU through the PMP. The MCU-SSD1963 interface consists of 16 PMP data pins (PMP0-15), Read
Strobe pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by PMP peripheral library calls. As
the Graphics Library draws the widgets and images, the Graphics Library uses the SSD1963 display controller driver APIs to command pixel and
rectangle draws. The SSD1963 interfaces to the display through a 50-pin ribbon cable. This interface has 24 lines for RGB color, pixel clock line,
vertical and horizontal sync lines, and a data enable line.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly. The MCU is alerted to touch
events by the low assertion of the MAXTouch_Change event pin. This triggers a change notification ISR on the MCU, which then queues a read
request to the touch driver.

pic32mx_pcap_db

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to the write frame buffer that is stored in an external SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display driver
continuously transfers frame data from the read frame buffer out to the LCD display. The write and read frame buffers are swapped when the
Graphics Library is done rendering to the write frame buffer and the LCC driver is done transferring the frame data from the read frame buffer.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 356

pic32mx_usb_sk2_lcc_pictail_qvga

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to the write frame buffer that is stored in an external SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display driver
continuously transfers frame data from the read frame buffer out to the LCD display. The write and read frame buffers are swapped when the
Graphics Library is done rendering to the write frame buffer and the LCC driver is done transferring the frame data from the read frame buffer. The
display has a built-in SSD1289 timing controller, which is managed by the SSD1289 Timing Controller (TCON) Driver through GPIO pins. The
SSD1289 TCON Driver is initiated by the LCC Driver.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal are measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 357

pic32mx_usb_sk2_lcc_pictail_wqvga

For these configurations, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws
the widgets and images to the write frame buffer that is stored in an external SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display
driver continuously transfers frame data from the read frame buffer out to the LCD display. The write and read frame buffers are swapped when
the Graphics Library is done rendering to the write frame buffer and the LCC driver is done transferring the frame data from the read frame buffer.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 358

pic32mx_usb_sk2_meb

For this configuration, the display is driven by a SSD1926 display controller (located on the underside of the Multimedia Expansion Board II (MEB
II)) that interfaces to the PIC32MX MCU through the PMP. The MCU-SSD1926 interface consists of 16 PMP data pins (PMP0-15), Read Strobe
pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by PMP PLIB calls. As the Graphics
Library draws the widgets and images, the graphics library uses the SSD1926 display controller driver APIs to command pixel and rectangle
draws. The display has a built-in SSD1289 timing controller, which is managed by the SSD1289 Timing Controller (TCON) Driver through GPIO
pins. The SSD1289 TCON Driver is initiated by the SSD1926 display graphics controller driver.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 359

pic32mx_usb_sk2_s1d_pictail_wqvga, pic32mx_usb_sk2_s1d_pictail_wvga

For this configuration, the display is driven by a EPSON S1D13517 display controller (located on the Graphics Controller PICtail Plus Epson
S1D13517 Daughter Board) that interfaces to the PIC32MX MCU through the PMP. The MCU-S1D13517 interface consists of 16 PMP data pins
(PMP0-15), Read Strobe pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by PMP PLIB
calls. As the Graphics Library draws the widgets and images, the graphics library uses the S1D13517 display controller driver APIs to command
pixel and rectangle draws.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

pic32mx_usb_sk2_ssd_pictail_qvga

For this configuration, the display is driven by a SSD1926 display controller (located on the Graphics LCD Controller PICtail Plus SSD1926
Daughter Board) that interfaces to the PIC32MX through the PMP. The MCU-SSD1926 interface consists of 16 PMP data pins (PMP0-15), Read
Strobe pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by PMP peripheral library calls. As
the Graphics Library draws the widgets and images, the graphics library uses the SSD1926 display controller driver APIs to command pixel and

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 360

rectangle draws. The display has a built-in SSD1289 timing controller, which is managed by the SSD1289 timing controller (TCON) Driver through
GPIO pins. The SSD1289 TCON driver is initiated by the SSD1926 display graphics controller driver.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library which, processes these events and updates the frame data accordingly.

pic32mz_da_sk_extddr_meb2, and pic32mz_da_sk_extddr_meb2_wvga

For these configurations, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws
the widgets and images to the write frame buffer that is stored in an external DDR2. Through the DDR2 Memory Controller, the GLCD display
controller peripheral continuously transfers frame data from the frame buffer onto to the LCD display. The write and read frame buffers are
swapped when the Graphics Library is done rendering to the write frame buffer and GLCD driver signals the GLCD peripheral to change its read
location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller
travels through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System
Service sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

pic32mx_da_sk_intddr_meb2, and pic32mz_da_sk_intddr_meb2_wvga

For these configurations, the application uses the Graphics Library to render graphics to the display. The Graphics library passes draw commands
into the GPU Library, which in turn draws the widgets and images to the three individual write frame buffers (one for each layer) that are stored in
an internal DDR2. Via the DDR2 Memory Controller, the GLCD display controller peripheral continuously transfers frame data from all three read
buffers onto the LCD display. The write and read frame buffer pairs are swapped independently as required when the Graphics Library is done

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 361

rendering to the write frame buffer and GLCD driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller
travels through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System
Service sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

pic32mz_da_sk_noddr_meb2_rgb565

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to the write frame buffer that is stored on the internal SRAM.

Since the color format is set to RGB565 (16-bit), a frame buffer requires 261120 bytes of memory (480 wide x 272 height x 2 bytes per pixel). A
double-buffered configuration is possible with 640 kilobytes of internal SRAM in the MZ DA device.

Some of the frame buffer updates come directly from the Graphics Library while others are accelerated by the GPU.

Using internal memory directly from the frame buffer, the GLCD display controller peripheral continuously transfers frame data from the read frame
buffer onto to the LCD display.

The write and read frame buffers are swapped when the Graphics Library is done rendering to the write frame buffer and GLCD driver signals the
GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller
travels through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System
Service sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 362

pic32mz_da_sk_noddr_meb2_rgba8888

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to the frame buffer that is stored on the internal SRAM.

The color format is set to RGBA8888 (24-bit color with an 8 bit alpha channel), a frame buffer requires 522240 bytes of memory (480 wide x 272
height x 4 bytes per pixel). A single frame buffer configuration is possible within 640 kilobytes of internal SRAM on the MZ DA device.

The Graphics Library draws the widgets and images to the frame buffer that is stored on the internal SRAM. Some of the frame buffer updates
comes directly from the Graphics Library while others are accelerated by the GPU.

Using internal memory directly from the frame buffer, the GLCD display controller peripheral continuously transfers frame data from the read frame
buffer onto to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

pic32mz_da_sk_noddr_meb2_wvga_lut8

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to a compressed frame buffer that is stored on the internal SRAM.

The application is condensed to 256 colors. Each color is presented as an 8-bit index value in the Look-Up Table (LUT). The LUT is created using
the Global Palette feature within Harmony Graphics Composer. Each of these 256 colors is RGB888 (24-bit color). Because of this arrangement, a
frame buffer requires 384000 bytes of memory (800 wide x 480 height x 1 byte per pixel). A single frame buffer configuration is possible within the
640 kilobytes of internal SRAM on the MZ DA device.

The Graphics Library draws the widgets and images and remaps as an index value into the compressed frame buffer.

At launch, the 256-color LUT is loaded into the GLCD’s registers. Using the LUT in its register to translate index value into RGB888 color, the
GLCD display controller peripheral continuously transfers frame data from the frame buffer onto to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 363

pic32mz_ef_sk_meb2

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to the write frame buffer that is stored in an internal SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display driver
continuously transfers frame data from the frame buffer out to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller
travels through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System
Service sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

pic32mz_ef_sk_meb2_ext

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to the write frame buffer that is stored in an external SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display driver
continuously transfers frame data from the read frame buffer out to the LCD display. The write and read frame buffers are swapped when the
Graphics Library is done rendering to the write frame buffer and the LCC driver is done transferring the frame data from the read frame buffer.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller
travels through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System
Service sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 364

pic32mz_ef_sk_s1d_pictail_wqvga

For this configuration, the display is driven by an EPSON S1D13517 display controller (located on the Graphics LCD Controller PICtail Plus
SSD1926 Daughter Board) that interfaces to the PIC32MZ through the PMP. The MCU-S1D13517 interface consists of 16 PMP data pins
(PMP0-15), Read Strobe pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by PMP
peripheral library calls. As the Graphics Library draws the widgets and images, the graphics library uses the S1D13517 display controller driver
APIs to command pixel and rectangle draws.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal are measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 365

Demonstration Features

• RGBA8888 Color Mode (PIC32MZ DA)

• RGB565 Color Mode (PIC32MZ EF)

• Internal Flash Asset Storage

• 8-bit Palette Compressed Images

• Run-length Encoded Images

• 1bpp Font Glyph Decoding

• ASCII Character Encoding

• Single Display Layer

• Display Edge Clipping

• User Interface Tree Hierarchy

• Parent/Child Area Clipping

• UI Dragging and Touch (with the following configuration exceptions):

• pic32mz_ef_sk_xpro

• bt_audio_dk

• Button Widget

• Label Widget

• UI Widget Bounds that Exceed Display Area

• Double Buffering (PIC32MZ DA)

• Vertical Sync Swapping (PIC32MZ DA)

Tools Setup Differences

All configurations

• “Use Graphics Stack” is selected in MHC. This enables the graphics and touch libraries and drivers for the BSP.

• The heap size is set to 102400 bytes to ensure enough memory for dynamic allocations. This is done in the MPLAB Harmony Configurator
(MHC) by setting the size in Device & Project Configuration >Project Configuration >XC32 (Global Options) >xc32-ld >General.

pic32mk_gp_db_wqvga_mxt

pic32mk_gp_db_wvga_mxt

There are custom code blocks identified by // CUSTOM CODE – DO NOT DELETE … // END OF CUSTOM CODE comments that represent
modifications to the code outside of MHC. These code blocks are necessary for correct operation of the demonstration under these configurations.

Important!

When regenerating the project from within MHC use the "Prompt Merge For All Differences" merging strategy and do not change
these custom code blocks.

File: system_config.h

Custom Code: SCL/SDA port and pin assignments for the I2C bit-banged driver.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 366

Custom Code: //#define GFX_ASSERT_ENABLE // Enable asserts in GFX

File: sytem_init.c

Custom Code: Release of RESET to the maXTouch Driver

Custom Code: Setup of interrupt priority and subpriority for change notification ISR

Custom Code: SYS_CONSOLE_Write announcing that application has been initialized

Custom Code: Commented out tests for assert and exception handling

File: system_interrupt.c

Custom Code: Customization of ISRs to support monitoring touch events

Custom Code: Setup of change notification ISR to support touch events

Important!

There are custom code blocks identified by // CUSTOM CODE – DO NOT DELETE … // END OF CUSTOM CODE comments that
represent modifications to the code outside of MHC. These code blocks are necessary for correct operation of the demonstration
under these configurations. When regenerating the project from within MHC use the "Prompt Merge For All Differences" merging
strategy and do not change these custom code blocks.

pic32mx_pcap_db

Due to the pin-out, the I2C2 module is selected to support the touch operation.

pic32mx_usb_sk2_lcc_pictial_qvga

The touch driver used for this configuration is the Touch ADC Driver. The ADC Driver is configured by default when the ADC Touch Driver is
enabled. For details on the ADC Touch Driver, please refer to ADC Touch Driver Library and ADC Driver Library.

The voltage measurement pins are configured by default by the BSP and can be inspected in the Pin Manager. The ADC Touch Driver is
programmed to use exact pin names.

The QVGA display is fitted with a SSD1289 Timing Controller module. The SSD1289 driver is enabled in the LCC mode to support this project.

pic32mx_usb_sk2_lcc_pictial_wqvga

The touch driver used for this configuration is the Touch ADC Driver. The ADC Driver is configured by default when the ADC Touch Driver is
enabled. For details on the ADC Touch Driver, please refer to ADC Touch Driver Library and ADC Driver Library.

By default, the voltage measurement pins are configured by the BSP and can be inspected in the Pin Manager. The ADC Touch Driver is
programmed to use exact pin names as shown.

pic32mx_usb_sk2_meb

The touch driver used for this configuration is the ADC Touch Driver. The ADC Driver is configured by default when the ADC Touch Driver is
enabled. For details on the ADC Touch Driver, please refer to ADC Touch Driver Library and ADC Driver Library.

By default, the voltage measurement pins are configured by the BSP and can be inspected in the Pin Manager. The ADC Touch Driver is
programmed to use exact pin names.

The QVGA display is fitted with a SSD1289 Timing Controller module. The SSD128 Driver is enabled in the SSD1926 mode to support this project.

The PMP driver is enabled to support the SSD1926 Graphics Display Controller Driver.

pic32mx_usb_sk2_s1d_pictail_wqvga, and pic32mx_usb_sk2_s1d_pictail_wvga

The touch driver used for this configuration is the ADC Touch Driver. The ADC Driver is configured by default when the ADC Touch Driver is
enabled. For details on the ADC Touch Driver, please refer to ADC Touch Driver Library and ADC Driver Library.

By default, the voltage measurement pins are configured by the BSP and can be inspected in the Pin Manager. The ADC Touch Driver is
programmed to use the exact pin names as shown.

The PMP driver is enabled to support the Epson S1D13517 Graphics Display Controller driver.

pic32mx_usb_sk2_ssd_pictail_qvga

The touch driver used for this configuration is the ADC Touch Driver. The ADC Driver is configured by default when the ADC Touch Driver is
enabled. For details on the ADC Touch Driver, please refer to ADC Touch Driver Library and ADC Driver Library.

By default, the voltage measurement pins are configured by the BSP and can be inspected in the Pin Manager. The ADC Touch Driver is
programmed to use exact pin names.

The QVGA display is fitted with a SSD1289 Timing Controller module. The SSD1289 driver is enabled in SSD1926 Mode to support this project.

The PMP driver is enabled to support the SSD1926 Graphics Display Controller driver.

pic32mz_da_sk_extddr_meb2

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 367

pic32mz_da_sk_extddr_meb2_wvga

For these two configurations, the Memory System Service is enabled to support the external DDR.

On-Die Termination for Write is enabled.

Reference Clock 5 is enabled to provide a master clock signal to the GLCD peripheral.

Finally, the MPLL is set up with an output clock of 200 MHz to drive the DDR2 memory.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Quick Start
demonstration.

Description

To build this project, you must open the aria_quickstart.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_quickstart.

Important!

This application contains custom code that is marked by the comments // START OF CUSTOM CODE ... and // END OF
CUSTOM CODE. If you use the MPLAB Harmony Configurator (MHC) to regenerate the application code, do not remove or replace
the custom code.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_quickstart.X <install-dir>/apps/gfx/aria_quickstart/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

bt_audio_dk bt_audio_dk Demonstration for the Bluetooth Audio Development
Board.

pic32mk_gp_db_wqvga_mxt pic32mk_gp_db+wqvga_mxt Demonstration for the PIC32MK GP Development Kit
with a High-Performance 4.3” 480x272 WQVGA
Display Module with maXTouch.

pic32mk_gp_db_wvga_mxt pic32mk_gp_db+wvga_mxt Demonstration for the PIC32MK GP Development Kit
with a High-Performance (5”) WVGA Display Module
with maXTouch.

pic32mx_pcap_db pic32mx_pcap_db Demonstration for the PIC32 GUI Development Board
with Projected Capacitive Touch Board.

pic32mx_usb_sk2_lcc_pictail_qvga pic32mx_usb_sk2+lcc_pictail+qvga Demonstration for the PIC32MX USB Starter Kit II plus
the LCC Graphics PICtail Plus Daughter Board with
the Graphics Display Truly 3.2" 320x240 Board.

pic32mx_usb_sk2_lcc_pictail_wqvga pic32mx_usb_sk2+lcc_pictail+wqvga Demonstration for the PIC32MX USB Starter Kit II plus
the LCC Graphics PICtail Plus Daughter Board with
the Graphics Display Powertip 4.3” 480x272 display.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb Demonstration for the PIC32 MX USB Starter Kit II
plus Multimedia Expansion Board (MEB).

pic32mx_usb_sk2_s1d_pictail_wqvga pic32mx_usb_sk2+s1d_pictail+wqvga Demonstration for the PIC32MX USB Starter Kit II plus
the Graphics PICtail Plus Epson S1D13517 Daughter
Board with a Graphics Display Powertip 4.3" 480x272
Board.

pic32mx_usb_sk2+s1d_pictail+wvga pic32mx_usb_sk2+s1d_pictail+wvga PIC32 USB Starter Kit II plus the Graphics Controller
PICtail Plus Epson S1D13517 Daughter Board with
Graphics Display Truly 7" 800x400 Board.

pic32mx_usb_sk2_ssd_pictail_qvga pic32mx_usb_sk2+ssd_pictail+qvga Demonstration for the PIC32MX USB Starter Kit II plus
the Graphics LCD Controller PICtail Plus SSD1926
Board with a Graphics Display Truly 3.2" 320x240
Board.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 368

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the PIC32MZ Embedded Graphics
with External DRAM (DA) Starter Kit plus Multimedia
Expansion Board II (MEB II).

pic32mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the PIC32MZ Embedded Graphics
with External DRAM (DA) Starter Kit Memory plus the
Multimedia Expansion Board II (MEB II) with a
High-Performance (5") WVGA Display Module with
maXTouch.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit plus the
Multimedia Expansion Board II (MEB II) (Internal
SRAM Frame Buffer).

pic32mz_ef_sk_meb2_ext pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit plus the
Multimedia Expansion Board II (MEB II) (External
SRAM Frame Buffer).

pic32mz_ef_sk_s1d_pictail_wqvga pic32mz_ef_sk+s1d_pictail+wqvga Demonstration for the PIC32MZ EF Starter Kit plus the
Graphics PICtail Plus Epson S1D13517 Daughter
Board with a Graphics Display Powertip 4.3" 480x272
Board.

pic32mz_ef_sk_xpro pic32mz_ef_sk+maxtouch_xplained_pro_3_5 Demonstration for the PIC32MZ EF Starter Kit with
3.5” Xplained Pro board connected through SPI.

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the PIC32MZ Embedded Graphics
with Internal DRAM (DA) Starter Kit and the
Multimedia Expansion Board II (MEB II).

pic32mz_da_sk_intddr_meb2_wvga pic32mz_da_sk_intddr+meb2+wvga Demonstration for the PIC32MZ Embedded Graphics
with Internal DRAM (DA) Starter Kit plus Multimedia
Expansion Board II (MEB II) with a High-Performance
5” WVGA Display Module with maXTouch.

pic32mz_da_sk_noddr_meb2_rgb565 pic32mz_da_sk_noddr+meb Demonstration for the PIC32MZ Embedded Graphics
with Disabled DRAM (DA) Starter Kit plus Multimedia
Expansion Board II (MEB II) in RGB_565 Color Mode.

pic32mz_da_sk_noddr_meb2_rgba8888 pic32mz_da_sk_noddr+meb Demonstration for the PIC32MZ Embedded Graphics
with Disabled DRAM (DA) Starter Kit plus Multimedia
Expansion Board II (MEB II) in RGBA_8888 Color
Mode.

pic32mz_da_sk_noddr_meb2_wvga_lut8 pic32mz_da_sk_noddr_meb2_wvga Demonstration for the PIC32MZ Embedded Graphics
with Disabled DRAM (DA) Starter Kit plus Multimedia
Expansion Board II (MEB II) with a High-Performance
5” WVGA Display Module with maXTouch using
Global 8-Bit Palette.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Development Kit

Configuration: bt_audio_dk

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board and Graphics Display Truly 3.2" 320x240
Board

Configuration: pic32mx_usb_sk2_lcc_pictail_qvga

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board and Graphics Display Powertip 4.3"
480x272 Board

Configuration: pic32mx_usb_sk2_lcc_pictail_wqvga

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the Multimedia Expansion Board II (MEB II)

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 369

Configuration: pic32mx_usb_sk2_meb

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board

Configuration: pic32mx_usb_sk2_s1d_pictail_wqvga, pic32mx_usb_sk2_s1d_pictail_wvga

P2 on the S1D13517 Daughter Board should be closed (16-bit PMP) for the WQVGA display, and open (8-bit PMP) for the WVGA display.

PIC32 USB Starter Kit II with the Graphics LCD Controller PICtail Plus SSD1926 Daughter Board

Configuration: pic32mx_usb_sk2_ssd_pictail_qvga

JP2 on the SSD1926 Daughter Board should be set to select the 8-bit PMP interface.

PIC32MZ EF Starter Kit connected to the Multimedia Expansion Board II (MEB II) (Internal SRAM Frame Buffer)

Configuration: pic32mz_ef_sk_meb2

• The J9 Jumper on the MEB II board, located beneath the PIC32MZ EF Starter Kit, should be configured to support using internal SRAM for the
graphics frame buffer, as shown in the following figure.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ EF Starter Kit connected to the Multimedia Expansion Board II (MEB II) (External SRAM Frame Buffer)

Configuration: pic32mz_ef_sk_meb2_ext

• The J9 Jumper on the MEB II board, located beneath the PIC32MZ EF Starter Kit, should be configured to support using external SRAM for the
graphics frame buffer, as shown in the following figure.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 370

PIC32MZ EF Starter Kit with the maXTouch Xplained Pro 3.5" display.

pic32mz_ef_sk_xpro

1. Connect the pins of the maXTouch Xplained Pro board to the PIC32MZ EF Starter Kit, as described in the following table.

2. Set the interface mode switches on the maXTouch Xplained Pro to “4W SPI (111)."

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 371

3. Finally, power up the PIC32MZ EF Starter Kit by connecting a powered USB cable to the USB DEBUG mini-USB port on the board.

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the PIC32MZ Starter Kit Adapter Board (168-to-132 pin Starter Kit
Adaptor), Graphics Controller PICtail Plus Epson S1D13517 Daughter Board, and the Graphics Display Powertip 4.3" 480x272 Board

Configuration: pic32mz_ef_sk_s1d_pictail_wqvga

1. On the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board, jumper JP2 should be open to select the 8-bit PMP interface to the
display. JP2 is found on the lower half of the board between the SDRAM chip and the Display_Controller chip.

2. On the bottom of the 168-to-132 Pin Starter Kit Adapter board, JP2 and JP3 should be jumpered closed. JP1 should be jumpered to connect
PMD11 to EBID11.

3. On the EF Starter Kit: Remove R67 from U8 (MCP2221) circuitry. Jumper Pin 8 to Pin 13 on J12. J12 is located on the far right side of the
board.

4. P2 on the S1D13517 Daughter Board should be closed (16-bit PMP) for the WQVGA display.

PIC32MK General Purpose (GP) Development Board

Configurations: pic32mk_gp_db_wqvga_mxt or pic32mk_gp_db_wvga_mxt

These configurations use the PIC32MK GP Development Board (DM320106) and one of two displays plus maXTouch module setups. Either a
High-Performance 4.3" WQVGA Display Module with maXTouch (AC320005-4) board, or a High-Performance (5") WVGA Display Module with
maXTouch. (AC320005-5) board is connected to the development board using a 50-line ribbon cable from the display to the development kit board.

Both the 480x272 WQVGA and the 800x480 WVGA modules consist of two boards sandwiched together and connected via a 50-line ribbon cable.
The second board is an interposer that adapts the display to the Multimedia Expansion Board II (MEB II) (DM320005-5). By releasing the ribbon
cable from the interposer board, it is possible to connect the display to the development kit board via connector J26 on the bottom of the
development kit board.

Details for the PIC32MK GP Development Board

The top of the board is shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 372

The board can be programmed using the PICkit On-board (PKOB) interface using a microB-A USB cable or using a MPLAB REAL ICE™ In-Circuit
Emulator using an RJ11 cable. When using the REAL ICE it is required that a microB-A USB cable be connected to the “PWR IN” port on the
board to provide 5 Volts to the board from your PC.

The bottom of the board is shown in the following figure:

The microB USB port on the bottom of the board provides a USART-USB gateway connection to a HyperTerminal equivalent application (e.g.,
RealTerm) via a COM port on your PC. (Set up the PC’s COM port to be 115200 Baud, 8 bits, 1 stop bit, no parity.) Both projects are set up to
support asserts, exception handling, and System Console writes to this USART port.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 373

To switch between the PKOB and REAL ICE debuggers, you must change the J11 Jumper, as follows:

Details of the 4.3” WQVGA plus maXTouch

(The 5” WVGA plus maXTouch board is similar in appearance.)

How to connect the boards:

1. Turn over the display/interposer and release the ribbon cable from the interposer board:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 374

2. Turn over the development kit board and release the clamp on the J26 ribbon socket:

3. Insert the ribbon cable all the way into J26:

4. Close the clamp on J26:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 375

Completed Board Configurations

pic32mk_gp_db_wqvga_mxt

pic32mk_gp_db_wvga_mxt

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 376

PIC32MZ Embedded Graphics with DA Starter Kit with the Multimedia Expansion Board II (MEB II) (First and Second Generation)

Configurations: pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_intddr_meb2, pic32mz_da_sk_intddr_meb2,
pic32mz_da_sk_intddr_meb2_wvga, pic32mz_da_sk_noddr_meb2_rgb565, pic32mz_da_sk_noddr_meb2_rgba8888, and
pic32mz_da_sk_noddr_meb2_wvga_lut8

• These configurations require that the J9 jumper be set to provide the GLCD's pixel clock. Set the J9 jumper to connect EPIOE to LCD_PCLK.
The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the followin figure
for the exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides instructions about how to build and run the Aria Quick Start demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 377

Description

 Note:
For this demonstration, the following configurations do not support touch:

• pic32mz_ef_sk_xpro

• bt_audio_dk,

When power-on is successful, the demonstration will display a similar menu to that shown in the following figure (different configurations may have
slight variation in the screen aspect ratio):

When Make changes. Generate. Run. is touched, the button will toggle with each individual touch.

aria_radial_menu

The aria_radial_menu demonstrates four different applications of the radial menu widget.

Description

This application showcases four ways of using the radial menu widget.

It simulates 3D rotation by using an elliptical track as a 3D-to-2D projection. Images used in the radial menus have the option to grow or shrink to
further enhance the 3D rotation effect. The application supports touch interaction.

The demonstration launches with a splash screen highlighting basic motion capability supported by Aria Graphics Library.

When running the application, the user can interface with it via capacitive single-fingered touch and swiping gestures.

The main menu is a radial menu that features images stored as PNGs having been preprocessed at boot-time. It is also used as a navigation
menu to the other three radial menus.

The other three radial menus are used as image carousel. One shows a series of music albums arranged in an orbital track. Another is used to
show representations of famous portraits, and demonstrates how the radial menu widget handles items with varying dimensions. The last radial
menu is showing vertical rotation to simulate a business card rolodex.

An information screen is used to explain the features demonstrated in this application.

Architecture

The diagrams below show the various software and hardware components for each configuration.

pic32mz_da_sk_extddr_meb2_wvga and pic32mz_da_sk_extddr_meb2

For this configuration, the application uses the Graphics library to render graphics to the display. The Graphics library passes draw commands into
the GPU Library, which in-turn draws the widgets and images to the frame buffer that is stored in an external DDR2. Using the DDR2 Memory

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 378

Controller, the GLCD display controller peripheral continuously transfers frame data from the frame buffer onto to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

The core timer is used by the application and the Graphics library to manage the movement of the splash screen.

pic32mz_da_sk_intddr_meb2_wvga and pic32mz_da_sk_intddr_meb2

For this configuration, the application uses the Graphics library to render graphics to the display. The Graphics library passes draw commands into
the Nano2D GPU Library, which in-turn draws the widgets and images to the three individual write frame buffers (one for each layer) that are
stored in an external DDR2. Using the DDR2 Memory Controller, the Graphics LCD (GLCD) display controller peripheral continuously transfers
frame data from the all three read buffers onto to the LCD display. The write and read frame buffer pairs are swapped independently as required
when the Graphics Library is done rendering to the write frame buffer and GLCD driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

The core timer is used by the application and the Graphics library to manage the movement of the splash screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 379

Demonstration Features

• Radial Menu Widget

• Image Blit and Image Stretch supported via the Nano2D library (Nano2D Driver Library)

• Integrated PCAP Touch Input

• Three graphics layer supported via the GLCD peripheral on the PIC32MZ DA device (GLCD Controller Peripheral Library)

• GPU peripheral supported, can be enabled/disabled at run-time (GPU Hardware Accelerated Features)

• 32-bit RGBA8888 color depth support (16.7 million unique colors)

• Per-layer frame double-buffering

• Image compression techniques using Run-Length Encoding, PNG, and JPEG (Enabling Demo Mode in a MPLAB Harmony Graphics
Application)

Tools Setup Differences

For all configurations:

• Use Graphics Stack is selected in MHC. This enables the graphics and touch libraries and drivers for the BSP

pic32mz_da_sk_intddr_meb2_wvga, pic32mz_da_sk_extddr_meb2_wvga

• Pin Settings: External Interrupt 4 mapped to pin A14 (RB1)

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Radial Menu

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 380

demonstration.

Description

To build this project, you must open the aria_radial_menu.X project in MPLAB X IDE, and then select the desired configuration. The

following tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/gfx/aria_radial_menu.

MPLAB X IDE Project

The following table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_radial_menu.X <install-dir>/apps/gfx/aria_radial_menu/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within

./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_intddr_meb2_wvga pic32mz_da_sk_intddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with InternalDRAM
(DA) Starter Kit and 5” WVGA PCAP Display.

pic32mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with ExternalDRAM
(DA) Starter Kit and 5” WVGA PCAP Display.

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External DDR
(DA) Starter Kit.

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal DDR
(DA) Starter Kit.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

Configurations: pic32mz_da_sk_extddr_meb2_wvga, pic32mz_da_sk_intddr_meb2_wvga

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the
exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 381

Running the Demonstration

This section provides a brief description of what to expect once the demonstration is running.

Description

On start-up, the application will display a splash screen:

Main Screen

Subsequently, the demonstration’s main screen will appear:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 382

Using a single-finger horizontal swiping motion, each of the four available selections in the main menu can be accessed. When finger touch input
is released, the radial menu will reset such that the image closest to the front is placed front and center. Once the radial menu motion stops and
one of the images is front and center, the corresponding mode is shown in the text label. These are: Demonstrated Features, Albums, Portraits,
and Rolodex. Only the icon in this prominent position is the selectable option. Press and release the image in the prominent position to navigate to
the screen supported by the stated mode.

Information Screen

Tapping the icon corresponding to the Demonstrated Features label in the main screen will switch the application to the information screen.

The information screen serves as a screen to list out the features of the demonstration.

• The features are located on layer1. Sliding your finger up or down will cause the feature list to scroll up and down. The MPLAB Harmony logo
that is rendered on layer0 is another demonstration of the real-time alpha-blending capability of the GLCD.

• Touching the Microchip logo will trigger the application to the splash screen. Once the splash screen animation has completed, the application
will return to the information screen

• Pressing the Home icon will switch the application back to the main menu

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 383

Album Menu Screen

Tapping the icon corresponding to Albums label in the main screen will switch the application to the Album Menu screen.

• Using a single-finger horizontal swiping motion to cycle through the images. The radial menu widget in this screen is configured to follow an
8-degree tilt orbital elliptical track. Image scaling is set to Prominent Only. That means only the image that is in the Prominent position gets an
increase in size. There are 10 unique fictitious album covers, but only 7 are shown at any moment. The remaining three are hidden.

• Pressing the Home icon will switch the application back to the main menu.

Image Carousel Screen

Tapping the icon corresponding to Portraits label in the main screen will switch the application to the Image Carousel screen.

• Using a single-finger horizontal swiping motion to cycle through the images. The radial menu widget in this screen is configured to follow the
default elliptical track, which maximizes the track-travel to the rectangular area as defined by the original image. Image scaling is set to
Gradual. That means each image gradually increases in scale from 30% (of the original image size) in the back, to 100% in the front. There are

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 384

seven total unique portraits, with the widget showing three at any one time.

• Pressing the Home icon will switch the application back to the main menu.

Rolodex Menu Screen

Tapping the icon corresponding to Rolodex label in the main screen will switch the application to the Rolodex Menu screen.

• Using a single-finger vertical swiping motion to cycle through the placeholder business card images. The radial menu widget in this screen is
configured to follow a vertical track. Image scaling is set to Gradual. This means each image gradually increases in scale from 30% (of the
original image size) in the back, to 100% in the front. There are six unique business card designs, but only five are shown at any moment.

• Pressing the Home icon will switch the application back to the main menu.

aria_scrolling

This demonstration provides a preconfigured touch-enabled example of the off-screen widget management drag-based widget motion capabilities
of the Aria User Interface Library.

Description

This demonstration provides a preconfigured touch-enabled example of the off-screen widget management drag-based widget motion capabilities
of the Aria User Interface Library. The demonstration has multiple configurations to demonstrate the graphics library running on different MCUs,
displays and display drivers.

Architecture

pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_wvga

For these configurations, the application uses the Graphics Library to render graphics to the display. The Graphics Library draws the widgets and
images to the write frame buffer that is stored in an external DDR2. Through the DDR2 Memory Controller, the GLCD display controller peripheral
continuously transfers frame data from the frame buffer onto to the LCD display. The write and read frame buffers are swapped when the Graphics
Library is done rendering to the write frame buffer and GLCD driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 385

pic32mz_da_sk_intddr_meb2, pic32mz_da_sk_intddr_meb2_wvga

For these configurations, the application uses the Graphics Library to render graphics to the display. The Graphics Library draws the widgets and
images to the write frame buffer that is stored in an internal SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display driver continuously
transfers frame data from the frame buffer out to the LCD display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 386

pic32mz_ef_sk_meb2

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 387

Demonstration Features

This application demonstrates the following MPLAB Harmony Graphics features:

• RGBA8888 Color Mode (MZDA)

• RGB565 Color Mode (MZEF)

• Internal Flash Asset Storage

• 8-bit Palette Compressed Images

• Run-length Encoded Images

• 1bpp Font Glyph Decoding

• ASCII Character Encoding

• Single Display Layer

• Display Edge Clipping

• User Interface Tree Hierarchy

• Parent/Child Area Clipping

• UI Dragging and Touch

• Button Widget

• Label Widget

• UI Widget Bounds that Exceed Display Area

• Double Buffering (MZDA)

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 388

• Vertical Sync Swapping (MZDA)

Tools Setup Differences

• “Use Graphics Stack” is selected in the MPLAB Harmony Configurator (MHC), which enables the Graphics and Touch libraries and drivers for
the Board Support Package (BSP).

• The heap size for all configurations except the pic32mz_da_sk_extddr_meb2_wvga is set using the MHGC Heap Estimator Tool.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Scrolling
demonstration.

Description

To build this project, you must open the aria_scrolling.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_scrolling.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_scrolling.X <install-dir>/apps/gfx/aria_scrolling/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit.

pic32mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit and High-Performance 5" WVGA Display
Module with maXTouch.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ EF Starter Kit.

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit.

pic32mz_da_sk_intddr_meb2_wvga pic32mz_da_sk_intddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit and a High-Performance 5" WVGA Display Module
with maXTouch.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit and MEB II, PIC32MZ Embedded Graphics with External DRAM (DA) Starter
Kit with MEB II and High-Performance WVGA Display Module with maXTouch, PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit
and MEB II, PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit with MEB II and High Performance WVGA Display Module with
maXTouch

Configurations: pic32mz_da_sk_extddr_sk+meb2, pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_wvga,
pic32mz_da_sk_intddr_meb2,

and pic32mz_da_sk_intddr_meb2_wvga

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 389

exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides instructions about how to build and run the Aria Scrolling demonstration.

Description

When power-on is successful, the demonstration will display a similar menu to that shown in the following figure:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 390

The user can now touch the screen and drag their finger horizontally to scroll the list of buttons. This will cause the buttons that are off-screen to
become visible and allow interaction.

aria_showcase

This demonstration provides a subset of capabilities offered by the Aria Graphics Library using Low-Cost Controllerless features with touch screen
capabilities.

Description

This application showcases the various widgets and advanced capabilities offered by the Aria User Interface Library. The application features an
interactive menu screen where the user can access the different widget and graphics demonstrations. As a showcase application, it also features
‘Demo mode’, where it autonomously runs the demonstrations after a specified period of idle time (typically 5-20 seconds). After idle time-out, the
application will replay a series of prerecorded touch events, repeating the replay after a delay (typically 5 seconds). Event replay can be terminated
by user initiation of a touch event and will not restart until another idle time out.

Demo mode can be disabled through MHC by selecting Harmony Framework Configuration > Graphics Stack > Use Graphics Stack? > Use
Harmony Graphics Composer Suite? > Middleware > Use Aria User Interface Library> > Enable Demo Mode?. Then, reconfigure the application
using MHC, rebuild, and then reload..

Architecture

The aria_showcase application uses the MPLAB Harmony Graphics Library to render graphics to the display. The graphics library draws the
widgets and images to a frame buffer. For configurations that have a 2D Graphics Processing Unit (GPU), the graphics library uses the GPU to
draw to the frame buffer. The contents of the frame buffer are continuously transferred to refresh the contents of the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the Touch and I2C Drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Finally, the application uses the Timer System Service and driver to send timer events for Demo mode and for transitioning images in the
Slideshow Demo at specified intervals.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 391

The following diagrams show the various software and hardware components used by the different configurations in this application.

pic32mz_ef_sk_meb2

In this configuration, the frame buffer is stored in the internal SRAM. Due to the limited size of the internal SRAM, only a single frame buffer can be
used which can cause tearing to be visible as the GFX library draws on the screen. These configurations use the Low Cost Controller-less (LCC)
display driver to manage the DMA that transfers the framebuffer contents to the display.

pic32mz_da_sk_intddr_meb2

In this configuration, the frame buffers are stored in the internal DDR memory. The DDR memory is large enough to allow 3 layers with double
frame buffers. Double buffering eliminates the tearing effect since the contents of the write frame buffer are not shown in the display until the GFX
library is done drawing on it. When the GFX library is done drawing on the write frame buffer, it is swapped with the read frame buffer in order to
be shown on the display. The contents of the read frame buffer are transferred continuously by the Graphics LCD (GLCD) controller to the display
panel.

This configuration also takes advantage of the DDR by predecoding some of the images to DDR as 32-bit RAW image assets. This allows faster
image rendering since the images do not have to be decoded while rendering, and it uses the GPU to directly render or ‘blit’ the images to the
frame buffer at a faster rate.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 392

pic32mz_da_sk_extddr_meb2

This configurations works similar to the pic32mz_da_sk_intddr_meb2, except that the frame buffers and pre-decoded RAW images are now stored
in external DDR.

Demonstration Features

• Input System Service and Touch driver

• Timer System Service and driver

• DMA System Service

• Low-Cost Controllerless (LCC) Graphics Driver

• I2C Driver

• 16-bit RGB565 color depth support (65535 unique colors for PIC32MZ EF configurations)

• 32-bit RGBA8888 color depth support for PIC32MZ DA configurations

• JPEG and PNG images stored in internal Flash (see Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer
User’s Guide > Graphics Composer Window User Interface > Graphics Composer Asset Management >Image Assets))

• UTF-8 and UTF-16 character font support (see Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 393

User’s Guide > Graphics Composer Window User Interface >Graphics Composer Asset Management > Font Assets)

• Full multi-lingual font and localization (Chinese and English) (see Volume III: MPLAB Harmony Configurator (MHC) >MPLAB Harmony
Graphics Composer User’s Guide > Graphics Composer Window User Interface > Graphics Composer Asset Management > Widget Tool Box
Panel)

• Graphics Demo mode (see Enabling Demo Mode in MPLAB Harmony Graphics Application)

• GFX widgets: List wheel, Touch Test, Keypad, Slideshow (see Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics
Composer User’s Guide > Graphics Composer Window User Interface > Graphics Composer Asset Management >String Assets)

• Alpha-blending

• Pre-decoded images in DDR (for PIC32MZ DA configurations with DDR)

Tools Setup Differences

• “Use Graphics Stack” is selected in the MPLAB Harmony Configurator (MHC), which enables the Graphics and Touch libraries and drivers for
the Board Support Package (BSP).

• The heap size is set to 204800 bytes to ensure enough memory for dynamic allocations. This is done by setting the size in MHC through the
following menu selection: Device & Project Configuration >Project Configuration > XC32 (Global Options) >xc32-ld >General.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Showcase
demonstration.

Description

To build this project, you must open the aria_showcase.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_showcase.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_showcase.X <install-dir>/apps/gfx/aria_showcase/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit with the Multimedia
Expansion Board II (MEB II).

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit and the Multimedia Expansion Board II (MEB II).

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with External DRAM
(DA) and the Multimedia Expansion Board II (MEB II).

 Note:
This application contains custom code that is marked by the comments "// START OF CUSTOM CODE ..." and "// END OF
CUSTOM CODE". If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For All
Differences" merging strategy and do not remove or replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• The J9 Jumper on the MEB II board, located beneath the PIC32MZ EF Starter Kit, should be configured to support using internal SRAM for the
graphics frame buffer, as shown in the following figure.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 394

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit or PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit and
MEB II

Configurations: pic32_mz_da_sk_intddr_meb2, pic32_mz_da_sk_extddr_meb2

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the
exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board.

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides instructions on how to use the Aria Showcase demonstration.

Description

Upon boot-up, the application displays the animation Splash Screen, which shows an animated splash bar while blending in the MPLAB Harmony
and Microchip PIC32 logos, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 395

When power-on is successful, the application Home Screen will be displayed.

On the Home Screen, touching the large icons will open various screens that demonstrate the functionality of the widgets in the Aria graphics
library.

Touching the Help (?) button on the lower left corner of each screen will show help information similar to the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 396

The Settings Screen shows an option to switch the language between English and Simplified Chinese and demonstrates the Aria string library’s
capability to support multi-lingual fonts and symbols.

The List Wheel Widget Demo screen shows an example on how the list wheel widget can be used to provide UI controls for changing the time.
The following figures show the List Wheel Widget Demo screen on PIC32MZ DA and PIC32MZ EF, respectively. The List Wheel widget on the
PIC32MZ DA configurations makes use of the GPU to feature effects like zoom and auto-hide.

The Touch Test Widget Demo screen shows the touch screen functionality.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 397

When the white active area of the Touch Test Widget is touched, intersecting horizontal and vertical lines indicate the touch points.

The Keypad Widget Demo Screen shows how the keypad and text entry widgets can be used to provide an interface for obtaining user text input.

The Alpha Blending Demo screen shows the alpha blending capabilities of the Aria User Interface Library. The demonstration features two JPEG
images that are alpha blended on top of each other. The (+) and (-) buttons and the slider widget on the right side of the images provides a way to
change the alpha amounts.

Alpha blending at 50%

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 398

Alpha blending at 100%

Alpha blending at 0%

The Slide Show Demo Screen features the slide show widget being used to transition between several JPEG images using the available controls.

Touching the LEFT (<) and RIGHT (>) buttons manually transitions through the list of images. Touching the PLAY (|>) and FAST-FORWARD (|>>)

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 399

buttons will automatically transition the images at 2s and 500ms intervals, respectively. The transitions are triggered using events from the Timer
System Service.

The following figure shows Slide Show widget in Play mode.

The following figure shows the Slide Show widget in FAST-FORWARD mode.

Help information for the demonstration screens can be accessed by touching the (?) button on the lower left corner of each screen. Touching the
HOME button on the lower right corner takes the application back to the Home Screen.

aria_showcase_reloaded

This application showcases the circular (arc, circular slider, circular gauge), graphing (pie chart, bar graph, line graph) and radial menu widgets.
These widgets are ready-to-use within the Harmony Graphics Composer suite.

Description

This application showcases the circular (arc, circular slider, circular gauge), graphing (pie chart, bar graph, line graph) and radial menu widgets.

• Arc – a primitive drawing widget that can be used to draw filled arcs or circles

• Circular Slider – a circular widget that takes user input to set or show a value within a specified range

• Circular Gauge – a circular widget that shows a value within a range using a needle and tick marks

• Pie Chart – a graphing widget that shows data values as sectors in a circle

• Bar Graph – a graphing widget that shows data values in categories using rectangular bars

• Line Graph – a graphing widget that shows data values in categories using points and lines

• Radial Menu - a widget that shows revolving menu items. For optimum performance, this widget uses the 2D GPU and is only available on
PIC32MZ DA configurations.

Each widget is demonstrated on a separate application screen. Touching the screen or an applicable widget button will show each widget change
in form or value.

The application has Demo Mode enabled, and will run autonomously if no touch input is detected after 20 seconds.

Architecture

The following block diagrams show the various software and hardware blocks used in this application.

In all configurations, the graphics library renders the widgets to the frame buffer(s), which is periodically refreshed to the display. The graphics
library also processes user input via the touch screen and sends events to the application code which updates the widgets appropriately.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 400

pic32mz_da_sk_extddr_meb2

In this configuration, three pairs of 32-bit RGBA8888 frame buffers are stored in external DDR, one pair for each layer. The graphics library uses
double-buffering to eliminate tearing artifacts when rendering. The graphics library renders the widgets to the write frame buffers and uses the
GPU to speed up the rendering. Once the rendering is done, the write frame buffer is swapped with the read frame buffer, and the GLCD sends
the new frame data to the display.

pic32mz_da_sk_intddr_meb2

In this configuration, three pairs of 32-bit RGBA8888 frame buffers are stored in internal DDR, one pair for each layer. The graphics library uses
double-buffering to eliminate tearing of artifacts when rendering. The graphics library renders the widgets to the write frame buffers and uses the
GPU to speed up the rendering. Once the rendering is done, the write frame buffer is swapped with the read frame buffer and the GLCD sends the
new frame data to the display.

pic32mz_da_sk_noddr_meb2

This PIC32MZ DA configuration does not have DDR memory to store multiple 32-bit frame buffers. To support double buffering and eliminate
tearing effects, two 16-bit RGB565 frame buffers are stored in the internal SRAM, and only one layer is used. The graphics library renders the
widgets to the write frame buffer, and the GPU is used to speed up the rendering. Once the rendering is done, the write frame buffer is swapped
with the read frame buffer. and the GLCD sends the new frame data to the display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 401

pic32mz_ef_sk_meb2

In this configuration, the frame buffer is in the internal SRAM. Due to the limited size of the internal SRAM, only a single 16-bit RGB565 frame
buffer can be used. With single-buffering, tearing will be visible when the graphics library updates the widgets, and the LCC (low-cost
controllerless) driver pushes the frame buffer data to the display.

pic32mz_ef_sk_meb2_lut8

Since two 16-bit RGB565 buffers cannot fit into the internal device SRAM, this configuration supports uses two 8-bit buffers to support
double-buffering. The 8-bit buffers contain the indices of 16-bit colors in a palette lookup table (LUT). The graphics library renders the widgets by
writing the index of a pixel color into the buffer. During a display line refresh, the LCC (low-cost controllerless) driver performs a palette lookup to
convert the 8-bit indices to their 16-bit color equivalent for each line, and then writes the line data to the display via the DMA. Using the 8-bit
palletized buffers allows for double-buffering and eliminates tearing during rendering. However, the lookup table conversion requires extra
processing time and reduces performance.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 402

Demonstration Features

• Circular widgets – arc, circular slider, circular gauge

• Graphing widgets – pie chart, bar graph, line graph

• Radial Menu widget (PIC32MZ DA)

• Timer HW and Timer System Service

• Image compression techniques using Run-Length Encoding

• Double-buffering using LUT (lookup-table) based frame buffers

Tools Setup Differences

• Due to the small available memory in SRAM for the pic32mz_da_sk_noddr configuration, reduce the heap size to 48000. This is done by
setting the size in MHC through the following menu selection: Device & Project Configuration >Project Configuration > XC32 (Global Options)
>xc32-ld >General.

• For the pic32mz_ef_sk_meb2_lut8 configuration, the graphics library and the LCC driver need be configured to use the global palette LUT. In
the Harmony Graphics Composer, check Tools -> Global Palette -> Enable Global Palette. In MHC, set Harmony Framework Configuration >
Graphics Stack > Graphics Controller > Low Cost Controllerless > Frame Buffer Mode > Double Buffer, and check Palette Mode.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Showcase
Reloaded demonstration.

Description

The parent directory for this application is <install-dir>/apps/gfx/aria_showcase_reloaded. To build this application, open the
<install-dir>/apps/gfx/aria_showcase_reloaded /firmware/aria_showcase_reloaded.X project file in MPLABX IDE and then select the desired
configuration for your board.

The following table lists and describes the supported configurations.

Project Configuration Name BSP Used Description

pic32_mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Pic32MZ DA Starter Kit with external DDR, Expansion Board II (MEB II)
and 4.3” WQVGA (480x272) Display.

pic32_mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Pic32MZ DA Starter Kit with internal DDR, Expansion Board II (MEB II)
and 4.3” WQVGA (480x272) Display.

pic32_mz_da_sk_noddr_meb2 pic32mz_da_sk_noddr+meb2 PIC32MZ with Disabled DRAM (DA) Starter Kit, Multimedia Expansion
Board II (MEB II) and 4.3” WQVGA (480x272) Display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 403

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Pic32MZ EF Starter Kit with Expansion Board II (MEB II) and 4.3”
WQVGA (480x272) Display.

pic32mz_ef_sk_meb2_lut8 pic32mz_ef_sk+meb2 Pic32MZ EF Starter Kit with Expansion Board II (MEB II) and 4.3”
WQVGA (480x272) Display.

 Note:
This application may contain custom code that is marked by the comments "// START OF CUSTOM CODE ..." and "// END
OF CUSTOM CODE". If you use the MPLAB Harmony Configurator to regenerate the application code, use the "Prompt Merge For
All Differences" merging strategy and do not remove or replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ DA Starter Kit and MEB II

Configurations: pic32_mz_da_sk_intddr_meb2, pic32_mz_da_sk_intddr_meb2, pic32_mz_da_sk_noddr_meb2

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the
exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board.

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2, pic32mz_ef_sk_meb2_lut8

• The J9 Jumper on the MEB II board, located beneath the PIC32MZ EF Starter Kit, should be configured to support using internal SRAM for the
graphics frame buffer, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 404

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to the J3 power connector on the MEB II board or a powered USB cable to the USB
DEBUG port on the Starter Kit board

Running the Demonstration

This section provides information on how to run and use the application.

Description

On start-up, the application will display a splash screen.

After the splash screen completes, the Main Menu will display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 405

The Main Menu buttons operate as follows:

Button Description

Arc Demo Button – Opens the Arc Widget Demo Screen.

Circular Slider Demo Button – Opens the Circular Slider Demo Screen.

Circular Gauge Demo Button – Opens the Circular Gauge Demo Screen.

Pie Chart Demo Button – Opens the Pie Chart Demo Screen.

Bar Graph Demo Button – Opens the Bar Graph Demo Screen

Line Graph Demo Button – Opens the Line Graph Demo Screen

Radial Menu Demo Button - Opens the Radial Menu Demo Screen
(PIC32MZ DA only)

Touching one of the buttons above opens the corresponding widget demonstration screen. Each demonstration screen will have the following
buttons:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 406

Button Description

Home Button – Opens the Main Menu Screen

Next Button – Opens the Next Demo Screen

Touching the Arc Demo Button on the Main Menu Screen brings up the Arc Widget Demo Screen, as shown in the following figure. Touching the
screen will show animated, rotating concentric arcs and circles. This demonstrates the graphics library’s ability to draw arcs of varying thickness,
angles and colors.

Touching the Circular Slider Button on the Main Menu or the Next Button on the Arc Widget Demo Screen will open the Circular Slider Demo
Screen, as shown below. The screen contains a Circular Slider widget on the right, and Circular Progress Bar widget on the left. The Circular
Progress Bar widget is a form of the Circular Slider widget with no button and does not respond to touch input.

Touching and moving the button on the Circular Slider widget clockwise or counter-clockwise, will decrease or increase its value. This value is
assigned to the Circular Progress Bar widget, which updates based on the set value, and to a label widget inside it to show the numeric value.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 407

Touching the Circular Gauge button on the Main Menu screen or the Next button on the Circular Slider Demo screen opens the Circular Gauge
Demo Screen, as shown in the following figure. This simulates a vehicle dashboard using two Circular Gauge widgets as tachometer and
speedometer. Touching the screen increases the value of the two gauges.

Touching the Pie Chart button on the Main Menu or the Next button on the Circular Gauge Widget Demo screen opens the Pie Chart Demo
Screen, as shown in the following figure. Touching a slice on the Pie Chart widget will change the slice’s radius and offset from the center.

Touching the Bar Graph Button on the Main Menu, or the Next Button on the Pie Chart Demo Screen will open the Bar Graph Demo Screen, as
shown in the following figure. Touching the screen will plot the x and y coordinates of the touch point in the bar graph widget.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 408

Touching the Line Graph Button on the Main Menu or the Next Button on the Bar Graph Demo Screen will open the Line Graph Demo Screen, as
shown in the following figure. Touching the screen will plot the x and y coordinates of the touch points in the line graph widget.

On PIC32MZ DA configurations, touching the Radial Menu Button on the Main Menu or the Next Button on the Line Graph Demo Screen will open
the Radial Menu Demo Screen, as shown in the following figure. Touching and moving your finger on the screen will rotate the items on the menu.
Touching the focused item in the radial menu will open the corresponding demo screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 409

aria_splash_screen

The demonstration provides a splash screen. It is preconfigured with the graphics stack and touch and is intended to serve as a development
starting point.

Description

This application showcases how a splash screen involving cross-fades and simple motion can be achieved using the Aria User Interface Library.

A single-layered version is supported by the pic32mz_ef_sk_meb2 and the pic32mz_ef_sk_meb2_ext configurations.

A multi-layered version is supported by the pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_wvga, pic32mz_da_sk_intddr_meb2,
and pic32mz_da_sk_intddr_meb2_wvga versions.

Although not demonstrated explicitly, all configurations are preconfigured to support touch.

Architecture

The following diagrams show the various software and hardware components for each configuration.

pic32mz_da_sk_extddr_meb2

pic32mz_da_sk_extddr_meb2_wvga

For these configurations, the application uses the Graphics Library to render graphics to the display. The Graphics Library passes draw commands
into the GPU Library, which in turn draws the widgets and images to the frame buffer that is stored in an external DDR2. Through the DDR2
Memory Controller, the GLCD display controller peripheral continuously transfers frame data from the frame buffer onto to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

The core timer is used by the application and the Graphics Library to manage the movement of the splash screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 410

pic32mz_da_sk_intddr_meb2

pic32mz_da_sk_intddr_meb2_wvga

For these configurations, the application uses the Graphics Library to render graphics to the display. The Graphics library passes draw commands
into the GPU Library, which in turn draws the widgets and images to the three individual write frame buffers (one for each layer) that are stored in
an external DDR2. Via the DDR2 Memory Controller, the GLCD display controller peripheral continuously transfers frame data from all three read
buffers onto the LCD display. The write and read frame buffer pairs are swapped independently as required when the Graphics Library is done
rendering to the write frame buffer and GLCD driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Touch System Service acquires the touch input information from the touch and I2C drivers. The Touch System Service
sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

The core timer is used by the application and the Graphics library to manage the movement of the splash screen and the momentum decay of the
list wheel tumbler.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 411

pic32mz_ef_sk_meb2

For this configuration, the application uses the Graphics Library to render graphics to the display. The Graphics Library draws the widgets and
images to the frame buffer that is stored on the internal SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display driver continuously
transfers frame data from the frame buffer out to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 412

pic32mz_ef_sk_meb2_ext

For this configuration, the aria_splash_screen application uses the Graphics Library to render graphics to the display. The Graphics Library draws
the widgets and images to the write frame buffer that is stored in an external SRAM. Using the DMA, the Low-Cost Controllerless (LCC) display
driver continuously transfers frame data from the read frame buffer out to the LCD display. The write and read frame buffers are swapped when
the Graphics Library is done rendering to the write frame buffer and the LCC driver is done transferring the frame data from the read frame buffer.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 413

Important!

There are custom code blocks identified by // CUSTOM CODE – DO NOT DELETE … // END OF CUSTOM CODE comments that
represent modifications to the code outside of MHC. These code blocks are necessary for correct operation of the demonstration
under these configurations. When regenerating the project from within MHC, use the "Prompt Merge For All Differences" merging
strategy and do not change these custom code blocks.

Demonstration Features

• Integrated PCAP Touch Input (see mXT336T Touch Driver Library)

• Low-Cost Controllerless (LCC) Graphics driver on the PIC32MZ EF device

• 16-bit RGB565 color depth support (65536 unique colors) for PIC32MZ EF device (see Volume III: MPLAB Harmony Configurator (MHC)

• Three graphics layer supported via the GLCD peripheral on the PIC32MZ DA device

• GPU peripheral supported, can be enabled/disabled at run-time

• 32-bit RGBA8888 color depth support (16.7 million unique colors) (see Volume III: MPLAB Harmony Graphics Configurator (MHC) > MPLAB
Harmony Graphics Composer User's Guide > Graphics Composer Window User Interface > Options

• Per-layer frame double-buffering

• Image compression techniques using Run-Length Encoding and JPEG (see Enabling Demo Mode in a MPLAB Harmony Graphics Application)

Tools Setup Differences

For all configurations:

“Use Graphics Stack” is selected in MHC. This enables the graphics and touch libraries and drivers for the BSP

pic32mz_da_sk_intddr_meb2, and pic32mz_da_sk_intddr_meb2_wvga configurations

Pin Settings: External Interrupt 4 mapped to pin A14 (RB1).

pic32mz_ef_sk_meb2 Configuration

MHC changes:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 414

• Driver > I2C > I2C Clock Frequency is set to 10 kHz.

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Alpha Blending (Off)

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Color Conversion (Off)

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Image Clipping (Off)

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Orientation (Off)

• Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld > General > Heap Size (bytes) > 102400

Pin Settings: External Interrupt 1 mapped to pin 23 (RE8).

pic32mz_ef_sk_meb2_ext Configuration

MHC changes:

• Driver > I2C > I2C Clock Frequency is set to 10 kHz.

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Alpha Blending (Off)

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Color Conversion (Off)

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Image Clipping (Off)

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Orientation (Off)

• Graphics Stack > Graphics Controller > Low Cost Controllerless > Frame Buffer Mode > Double Buffer

• Graphics Stack > Graphics Controller > Low Cost Controllerless > Memory Interface > External Memory

• Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld > General > Heap Size (bytes) > 102400

Pin Settings: External Interrupt 1 mapped to pin 23 (RE8).

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Splash Screen
demonstration.

Description

To build this project, you must open the aria_splash_screen.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/gfx/aria_splash_screen.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_splash_screen.X <install-dir>/apps/gfx/aria_splash_screen/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit.

pic32mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit and High-Performance 5" WVGA Display
Module with maXTouch.

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit.

pic32mz_da_sk_intddr_meb2_wvga pic32mz_da_sk_intddr+meb2_wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit and High-Performance (5") WVGA Display Module
with maXTouch.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_meb2_ext pic32mz_ef_sk+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ EF Starter Kit (utilizing External
Memory).

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 415

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit connected to the Multimedia Expansion Board II (MEB II) (Internal SRAM Frame Buffer)

Configuration: pic32mz_ef_sk_meb2

• The J9 Jumper on the MEB II board, located beneath the PIC32MZ EF Starter Kit, should be configured to support using internal SRAM for the
graphics frame buffer, as shown in the following figure.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ EF Starter Kit connected to the Multimedia Expansion Board II (MEB II) (External SRAM Frame Buffer)

Configuration: pic32mz_ef_sk_meb2_ext

• The J9 Jumper on the MEB II board, located beneath the PIC32MZ EF Starter Kit, should be configured to support using external SRAM for the
graphics frame buffer, as shown in the following figure.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 416

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit and the Multimedia Expansion Board II (MEB II) with one of the following
displays:

• Standard 4.3" WQVGA Display Module with maxTouch

• High-Performance (5") WVGA Display Module with maxTouch

Configurations: pic32mz_da_sk_extddr_meb2, and pic32mz_da_sk_extddr_meb2_wvga

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be closed. A closed setting establishes the GLCD's pixel clock output timing. The jumper
(J9) is available on the bottom side of the MEB II board. See the following figure below for the jumper location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit and the Multimedia Expansion Board II (MEB II) with one of the following
displays:

• Standard 4.3" WQVGA Display Module with maxTouch

• High-Performance (5") WVGA Display Module with maxTouch

Configurations: pic32mz_da_sk_intddr_meb2, and pic32mz_da_sk_intddr_meb2_wvga

• These configuration require that the J9 jumper be set to provide the GLCD's pixel clock. Set the J9 jumper to connect EPIOE to LCD_PCLK.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 417

The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following
image for the exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides a brief description of what to expect once the demonstration is running.

Description

On power-up, the application will display an animated splash screen. There are two different versions of the splash screen.

With the multi-layer version, supported by the PIC32MZ DA configurations, the demonstration will fade to white.

Single-Layer Version

For the pic32mz_ef_sk_meb2 and pic32_ef_sk_meb2_ext configurations, the single-layer version is the displayed. The following images provide
an approximation of what to expect on-screen.

First, the PIC32 logo appears.

Then, at the bottom of the screen, a black bar will slide in from the right, stopping when it touches the left.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 418

Next, the PIC32 logo fades out as the MPLAB Harmony logo fades in.

Finally, the MPLAB Harmony logo appears at full opacity and the Microchip logo appears at the same time.

With the single-layer version, the demonstration holds steady at this image.

Multi-Layer Version

For the pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_wvga, pic32mz_da_sk_intddr_meb2, and
pic32mz_da_sk_intddr_meb2_wvga configurations, the multi-layer version is the displayed.

The following image provide an approximation of what to expect.

First, the PIC32 logo will appear.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 419

At the bottom of the screen, a black bar will slide in from the right, stopping when it touches the left. At the same time, the PIC32 logo fades out.

Next, the MPLAB Harmony logo and the Microchip logo fade in.

Once both the Harmony logo and the Microchip logo reaches full opacity, the entire screen will begin fade to white.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 420

With the multi-layer version, the demonstration fades to white and remains so.

aria_touchadc_calibrate

This application demonstrates a 4-point resistive touch calibration using the Aria Graphics Library. It also provides an example and method for
4-point calibration with initialization and persistent storage.

Description

This application is an example on how to calibrate a resistive touch overlay using the Aria Graphics Library and the Harmony drv_touchadc.c
driver on PIC32MZ EF and PIC32MX parts. Calibration flash storage is not available for pic32mx_usb_sk2_lcc_pictail_qvga,
pic32mx_usb_sk2_lcc_pictail_wqvga, and pic32mz_ef_sk_s1d_pictail_wqvga configurations.

Architecture

In all configurations, the application consists of the Aria Graphics Library, Input System Services, and application calibration logic. The Aria
Graphics Library is used to establish the UI presentation. Input System Services is used to interface with the resistive touch overlay and implement
a 4-point calibration method.

The graphic design layout consists of three screens. The TouchWidget screen has two buttons which provide a transition to the Calibration and
KeyPad. The KeyPad screen as an array of buttons used to verify touch response, and a TouchWidget button which transitions to the
TouchWidget screen. The Calibration screen renders four sequential touch points (crosshairs) to the display 10% from each corner of the display.
The user is guided to press and release a stylus at the center of each cross hair. On release, the cross-hair turns green and the coordinate
location is displayed for each image point touched. Once calibrated, the calibration data is used immediately by the application and saved to the
external SRAM.

This Demonstration uses the Harmony drv_touchadc.c driver coupled with a method to obtain, use, and store calibration data.

These are the key points:

• Two-touch Interrupt versus polling driver for PIC32MZ EF and PIC32MX

• MHC calibration settings for program flash storage persistence

• External SRAM storage example

• Calibration verification

• Input System Services

The following figure shows the various software and hardware components used by this application.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 421

pic32mx_usb_sk2_lcc_pictail_qvga, pic32mx_usb_sk2_lcc_pictail_wqvga

For this configuration, the aria_touchadc_calibrate application uses the Graphics Library to render graphics to the display. The Graphics Library
draws the widgets and images to the write frame buffer that is stored in the external SRAM. Using the DMA, the Low-Cost Controllerless
(LCC)display driver continuously transfers frame data from the read frame buffer out to the LCD display. The write and read frame buffers are
swapped when the Graphics Library is done rendering to the write frame buffer, and the LC driver is done transferring the frame data from the read
frame buffer. The display has a built-in SSD1289 TCON Driver, which is initiated by the LCC Driver.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 422

pic32mx_usb_sk2_meb

For this configuration, the display is driven by a SSD1926 display controller (located on the underside of the Multimedia Expansion Board II (MEB
II)) that interfaces to the PIC32MX MCU through the PMP. The MCU-SSD1926 interface consists of 16 PMP data pins (PMP0-15), these are the
Read Strobe pin, Write Strobe pin, Data/Command_Bar pin, and the Chip_Select_Bar pin. The PMP peripheral is driven by PMP PLIB calls. As the
Graphics Library draws the widgets and images, the graphics library uses the SSD19126 display controller driver APIs to command the pixel and
rectangle draws. The display has a built-in SSD1289 timing controller, which is managed by the SSD1289 Timing Controller (TCON) Driver
through GPIO pins. The SSD1289 TCON Driver is initiated by the SSD1926 display graphics controller driver.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 423

pic32mx_usb_sk2_s1d_pictail_wqvga, pic32mx_usbsk2_s1d_pictail_wvga

For this configuration, the display is driven by the EPSON SID13517 display controller (located on the Graphics Controller PICtail Plus Epson
S1D13517 Daughter Board) that interfaces to the PIC32MX MCU through the PMP. The MCU-S1D13517 interface consists of 16t PMP data pins
(PMP0-15), these are the Read Strobe pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by
PMP PLIB calls. As the Graphics Library draws the widgets and images, the graphics library uses the S1D13517display controller driver APIs to
command the pixel and rectangle draws.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

pic32mx_usb_sk2_ssd_pictail_qvga

For this configuration, the display is driven by a SSD1926 display controller (located on the underside of the Multimedia Expansion Board II (MEB
II)) that interfaces to the PIC32MX MCU through the PMP. The MCU-SSD1926 interface consists of 16 PMP data pins (PMP0-15), these are the

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 424

Read Strobe pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by PMP PLIB calls. As the
Graphics Library draws the widgets and images, the graphics library uses the SSD19126 display controller driver APIs to command the pixel and
rectangle draws. The display has a built-in SSD1289 timing controller, which is managed by the SSD1289 Timing Controller (TCON) Driver
through the GPIO pins. The SSD1289 TCON Driver is initiated by the SSD1926 display graphics controller driver.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

pic32mz_ef_sk_s1d_pictail_wqvga

For this configuration, the display is driven by the APSON SID13517 display controller (located on the Graphics Controller PICtail Plus Epson
S1D13517 Daughter Board) that interfaces to the PIC32MX MCU through the PMP. The MCU-S1D13517 interface cosists of 16t PMP data pins
(PMP0-15), these are the Read Strobe pin, Write Strobe pin, Data/Command_Bar pin, and Chip_Select_Bar pin. The PMP peripheral is driven by
PMP PLIB calls. As the Graphics Library draws the widgets and images, the graphics library uses the S1D13517display controller driver APIs to
command the pixel and rectangle draws.

The application also features user touch input by measuring the voltages from the display panel. The voltage signal is measured by the ADC and
interpreted by the touch driver, and the Input System Service acquires the touch input information from the touch driver. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 425

Demonstration Features

• RGB565 Color Mode (PIC32MZ EF)

• Internal Flash Asset Storage

• Single Display Layer

• User Interface Tree Hierarchy

• TouchTest Widget

• Keypad Widget

• Resistive Touch

Tools Differences

All configurations

• Use Graphics Stack is selected in MHC. This enables the graphics and touch libraries and drivers for the BSP.

• The Input System Service and Input Driver is selected. The touch driver used is the Touch ADC Driver, please refer to the ADC Touch Driver
Library and ADC Driver Library.

• The heap size is set to 100268 bytes to ensure enough memory for dynamic allocations. This is done in the MPLAB Harmony Configurator
(MHC) by setting the size in Device & Project Configuration > Project Configuration>XC32 (Global Options)>xc32-id>General.

pic32mx _usb_sk2_lcc_pictail_qvga

pic32mx_usb_sk2_lcc_pictail_wqvga

pic32mx_usb_sk2_meb

pic32mx_usb_sk2_s1d_pictal_wqvga

pic32mx_usb_sk2_s1d_pictal_wvga

pic32mx_usb_sk2_ssd_pictail_qvga

pic32mz_ef_sk_s1d_pictail_wqvga

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria TouchADC
Calibrate demonstration.

Description

To build this project, you must open the aria_touchadc_calibrate.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is <install-dir>/apps/gfx/
aria_touchadc_calibrate.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_touchadc_calibrate <install-dir>/apps/gfx/ aria_touchadc_calibrate /firmware

MPLAB X IDE Project Configuration

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_usb_sk2_lcc_pictal_qvga pic32mx_usb_sk2+lcc_pictail+qvga Demonstration for the PIC32MX USB Starter Kit II plus the LCC
Graphics PICtail Plus Daughter Board with the Graphics Display
Truly 3.2” 320x240 Board.

pic32mx_usb_sk2_lcc_pictal_wqvga pic32mx_usb_sk2+lcc_pictail+wqvga Demonstration for the PIC32MX USB Starter Kit II plus the LCC
Graphics PICtail Plus Daughter Board with the Graphics Display
Truly 4.3” 480x272 Board.

pic32mx_usb_sk2_meb pic32mx_usb_sk2+meb Demonstration for the PIC32 MX USB Starter Kit II plus
Multimedia Expansion Board (MEB).

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 426

pic32mx_usb_sk2_s1d_pictail_wqvga pic32mx_usb_sk2+s1d_pictail+wqvga Demonstration for the PIC32MX USB Starter Kit II plus the
Graphics PICtail Plus Epson S1D13517 Daughter board with a
Graphics Display Powertip 4.3” 480x272 Board.

pic32mx_usb_sk2_s1d_pictail_wvga pic32mx_usb_sk2+s1d_pictail+wvga Demonstration for the PIC32MX USB Starter Kit II plus the
Graphics PICtail Plus Epson S1D13517 Daughter board with a
Graphics Display Truly 7” 800x480 Board.

pic32mx_usb_sk2_ssd_pictail_qvga pic32mx_usb_sk2+ssd_pictail+qvga Demonstration for the PIC32MX USB Starter Kit II plus the
Graphics PICtail Plus SSD1926 board with a Graphics Display
Truly 3.2” 320x240 Board.

pic32mz_ef_sk_s1d_pictail_wqvga pic32mz_ef_sk+s1d_pictail+wqvga Demonstration for the PIC32MX USB Starter Kit II plus the
Graphics PICtail Plus Epson S1D13517 Daughter board with a
Graphics Display Powertip 4.3” 480x272 Board.

 Note:
This application contains custom code that is marked by the comments // START OF CUSTOM CODE … and // END OF
CUSTOM CODE. If you use the MPLAB Harmony Configurator (MHC) to regenerate the application code, do not remove or
replace the custom code.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II with the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board and Graphics Display Truly 3.2” 320x240
Board

Configurations: pic32mx_usb_sk2_lcc_pictail_qvga

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the Low-Cost Controllerless (LCC) Graphics PICtail Plus Daughter Board and Graphics Display Powertip 4.3”
480x272 Board

Configurations: pic32mx_usb_sk2_lcc_pictail_wqvga

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the Multimedia Expansion Board (MEB)

Configurations: pic32mx_usb_sk2_meb

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II with the Graphics Controller PICtail Plus Epson S1D13517 Daughter board

Configurations: pic32mx_usb_sk2_s1d_pictail_wqvga, pix32mx_usb_sk2_s1d_pictail_wvga

P2 on the S1D13517 Daughter board should be closed (16-bit PMP) for the WQVGA display, and open (8-bit PMP) for the WVGA display.

PIC32 USB Starter Kit II with the Graphics LCD Controller PICtail Plus SSD1926 Daughter Board

Configurations: pic32mx_usb_sk2_ssd_pictail_qvga

JP2 on the SSD1926 Daughter board should be set to select the 8-bit PMP interface.

PIC32MZ EF Starter Kit connected to the Graphics Controller PICtail Plus Epson S1D13517 Daughter Board

Configurations: pic32mz_ef_sk_s1d_pictail_wqvga

JP2 on the SSD1926 Daughter board should be set to select the 8-bit PMP interface.

Running the Demonstration

This section provides instructions on how to use the Aria TouchADC Calibrate demonstration.

Description

For this demonstration, the following configurations do not support calibration SRAM persistence:

• pic32mx_usb_sk2_lcc_pictal_qvga

• pic32mx_usb_sk2_lcc_pictal_wqvga

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 427

• pic32mz_ef_sk_s1d_pictail_wqvga

When power-on is successful, the demonstration will display a splash screen and then transition to the TouchADC Touch Widget Test screen if the
user has not held a touch point. If the user has held down a touch point, then the Calibration screen is shown.

Different configurations may have slight variation in the screen aspect ratio.

Splash Screen

Touch Widget Test

Keypad Test

Calibration Screen

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 428

Name Description

TouchWidget
Test

Renders the TouchWidget to allow the user to test the x and y crossing of touch coordination as a point is drag within the
widget.

KeyPad Test Renders the KeyPad Widget to allow the user to test button press at specific locations.

Calibration
Screen

Renders touch points at four cross-hair locations. Each location sequentially turns green when user releases the red cross-hair.

aria_video_player

This application demonstrates video playback with full UI controls using the Aria Graphics Library. It also showcases the capabilities of MPLAB
Harmony for reading data from external media like a USB drive or SD card.

Description

This application is an example on how to play video with user-interface controls using the Aria User Interface Library. The video is in RAW format
that is pre-generated using publicly available software like FFMPEG. The video file is then read by the application from external media like a USB
drive or SD card.

User interface controls are also shown simultaneously with the video playback. This allows the user to control the video playback properties, and
also shows useful information such as frame rates, bandwidth, etc.

Architecture

The following block diagrams show the various software and hardware blocks used in this application.

In all configurations, the application reads the video frame data from raw video files in a USB thumb drive or a microSD card. To optimize the video
frame rendering process, the application writes the frame data directly to the frame buffer. Thus the video frame format should match the format of
the frame buffer; in this case it is RGB565. A hardware timer and the Timer System Service send events to the application to update the frames
based on the user-selected frame update rate.

The user interface controls and widgets are rendered to the frame buffer by the Graphics Library. The Graphics library also processes the input
touch events and directs them to the application as needed.

pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_wvga

In these configurations, the frame buffers used for the video frames and the UI controls are located in the external DDR. The application takes
advantage of the multiple (3) layers supported by the Graphics LCD (GLCD) Controller. The application writes out the video frames to a dedicated
video layer and the Graphics Library renders the widgets and controls the other two layers. The GLCD continuously composites the video and UI
layers into a single frame and sends the final frame to the display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 429

pic32mz_da_sk_intddr_meb2, pic32mz_da_sk_intddr_meb2_wvga

In these configurations, the frame buffers used for the video frames and the UI controls are located in the internal DDR. The application takes
advantage of the multiple (3) layers supported by the GLCD controller. The application writes out the video frames to a dedicated video layer and
the Graphics Library renders the widgets and controls the other two layers. The GLCD continuously composites the video and UI layers into a
single frame and sends the final frame to the display.

pic32mz_da_sk_noddr_meb2

In this configuration, the video frame and UI widgets are drawn in a single frame buffer in the internal SRAM. Since only one layer is used, the
application must ensure that the video frames do not overwrite the controls on the screen. When showing the playback controls in full screen
playback mode, the controls are in the bottom area of the screen. Therefore, the bottom part of the video frame that would have overlapped with
the controls is not rendered. In non-full screen mode, the controls and video frames are positioned so that they do not overlap with each other.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 430

pic32mz_ef_sk_meb2

In this configuration, the video frame and UI widgets are drawn on a single frame buffer in the internal SRAM. Since only one layer is used, the
application must ensure that the video frames do not overwrite the controls on the screen. When showing the playback controls in full screen
playback mode, the controls are located at the bottom area of the screen, thus the bottom part of the video frame that would have overlapped with
the controls are not rendered. In non-full screen mode, the controls and video frames are positioned so that they do not overlap with each other.

Demonstration Features

• Video Playback (RAW video format)

• External Media Support (USB Drive, microSD Card)

• Three graphics layer supported via GLCD (PIC32MZ DA)

• Per layer run-time adjustable alpha blending (PIC32MZ DA)

• Hardware timer and Timer System Service

• Image compression techniques using Run-Length Encoding

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 431

Tools Setup Differences

• For the PIC32MZ EF configuration, SD Card Driver is enabled in Drivers in MHC

• For the PIC32MZ DA configurations, SD Host Controller Driver is enabled in Drivers in MHC

• File System Service is enabled in System Services in MHC

• Use File System Auto Mount Feature is enabled

• The Total Number Of Media is set to 2. For Media 0, set Media Type to SYS_FS_MEDIA_TYPE_MSD, Media Mount Name to /mnt/usb. For
Media 1, set Media Type to SYS_FS_MEDIA_TYPE_SD_CARD, Media Mount Name to /mnt/sdcard

• Use USB Stack is enabled in USB Library in MHC. USB Host and Use MSD Host Client Driver are enabled

• Select the ON and OE for REFCLK4 in the Clock Diagram tab in MHC

• The heap size is set to 102400 bytes to ensure enough memory for dynamic allocations. This is done by setting the size in MHC through the
following menu selection: Device & Project Configuration >Project Configuration > XC32 (Global Options)>xc32-ld >General

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Video Player
demonstration.

Description

To build this project, you must open the aria_video_player.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_video_player.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_video_player.X <install-dir>/apps/gfx/aria_video_player/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32_mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with Internal
DRAM (DA) Starter Kit, Multimedia Expansion Board II (MEB II)
and 4.3” WQVGA (480x272) Display.

pic32_mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the PIC32MZ DA Starter Kit with External DDR2
Memory plus the Multimedia Expansion Board II (MEB II) with a 5”
800x480 WVGA PCAP TFT display.

pic32_mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the PIC32MZ Embedded Graphics with Internal
DRAM (DA) Starter Kit, Multimedia Expansion Board II (MEB II)
and 4.3” WQVGA (480x272) Display.

pic32_mz_da_sk_intddr_meb2_wvga pic32mz_da_sk_intddr+meb2+wvga Demonstration for the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit plus the Multimedia Expansion Board II
(MEB II) with a 5” 800x480 WVGA PCAP TFT display.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the PIC32MZ EF Starter Kit plus the Multimedia
Expansion Board II (MEB II) (Internal SRAM Frame Buffer).

pic32mz_da_sk_noddr_meb2 pic32mz_da_sk_noddr+meb2 Demonstration for PIC32MZ Embedded Graphics with Disabled
DRAM (DA) Starter Kit, Multimedia Expansion Board II (MEB II)
and 4.3” WQVGA (480x272) Display.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit or PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit, or
PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit, and MEB II

Configurations: pic32_mz_da_sk_intddr_meb2, pic32_mz_da_sk_intddr_meb2_wvga, pic32_mz_da_sk_extddr_meb2,

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 432

pic32_mz_da_sk_extddr_meb2_wvga, pic32mz_da_sk_noddr_meb2

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the
exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board.

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

• Use the microSD slot and USB host port on Starter Kit for the media. Refer to the image below for the location of the ports.

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• The J9 Jumper on the MEB II board, located beneath the PIC32MZ EF Starter Kit, should be configured to support using internal SRAM for the
graphics frame buffer, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 433

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Use the microSD slot on the back of the MEB II and USB host port on the Starter Kit for the media. Refer to the image below for the location of
the ports.

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Generating Video Files

The application plays RAW video files only. To generate RAW video files from other video formats, use FFMPEG. FFMPEG can be downloaded
from https://ffmpeg.org.

To generate the video files, use the following command:

ffmpeg.exe –i <source video> -s <resolution> -r 15 –c:v rawvideo –vf “format=rgb565le” <video filename>

The application supports specific video resolutions. Use one of the following resolutions with the corresponding output video filename in FFMPEG.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 434

Resolution Output Video Filename

320x180 video0.rgb

320x240 video1.rgb

480x272 video2.rgb

800x480 (only in WVGA configurations) video3.rgb

Copy the video file to the parent root directory of a USB flash drive or microSD card.

For reference, a sample RAW video clip (video2.rgb.zip) is included in the application resources directory in the MPLAB Harmony library. The
clip is converted from the “Big Buck Bunny” video published by Blender Foundation, (c) copyright 2008, Blender Foundation,
www.bigbuckbunny.org. To play the video, unzip the file and copy video2.rgb to a supported media. Make sure to select 480x272 as the video
resolution on the Settings screen.

Running the Demonstration

This section provides information on how to run and use the application.

Description

On start-up, the application will display a splash screen.

After the splash-screen completes, the Main Menu screen shows. If there are no external media detected, the Main Menu will show a note to Insert
Media.

Insert media with video files to proceed. When a media is detected, it will show the USB Drive and/or SD Card buttons.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 435

The menu buttons operate as follows:

Button Description

Play video from USB Drive

Play video from microSD card

Go to the Settings Screen

Go to the Help Screen

Touching the USB or SD Card playback buttons will play videos from the selected media source. By default, it will play in full screen mode. Below
is a sample frame from the “Big Buck Bunny” video clip sample. The clip is converted from the “Big Buck Bunny” video published by Blender
Foundation, (c) copyright 2008, Blender Foundation, www.bigbuckbunny.org.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 436

Touching the screen will hide or show the control panel. The following buttons are available in the control panel to control the video playback:

Button Description

Restarts playback to first frame.

Skips frames to rewind. Pressing this button multiple times will increase the number of frames being skipped.

Pauses the video.

Starts/Resumes playback.

Skips frames to fast-forward. Pressing this button multiple times will increase the number of frames being skipped.

Stops playback and returns to Main Menu Screen.

A slider widget shows playback progress and provides a way to seek to a frame in the video.

If Show Frame Update Rate is enabled in the settings page, the control panel will also show the read throughput and frame update rate. These
metrics are captured at real-time and updates every second.

Touching the Settings button from the Main Menu screen opens the Settings Screen.

On the Settings Screen, the following settings can be configured:

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 437

Setting Description

Video Resolution Select the resolution of the video to play.

Frame Update
Rate

Select the max rate at which the video frames are rendered. (Normal = up to 15 fps, Slow = up to 8 fps, Fast = up to 25 fps,
Max = up to 80 fps)

Alignment Select the horizontal and vertical position of the video. If the video size is smaller than the display size, the video control pane
will be positioned opposite the horizontal position of the video.

Show Frame
Update Rate

Touching this button down will show the frame rate and read throughput on the control panel during video playback.

For help on how to generate the video files, touch the HELP (?) button to show the instructions.

aria_weather_forecast

This demonstration provides a practical single-layered single-buffered application using the Aria User Interface Library.

Description

This application showcases an example of how a graphics controller with single graphical layer support can be achieved using the Aria Graphics
Library. It also highlights how tightly integrated the MPLAB Harmony Graphics Composer Suite can be in supporting a rich feature set in an
application.

Various Aria Graphics Library features such as multi-language localization support and tree-based architecture are highlighted in this demo, which
is disguised as a user-interface for weather forecast application.

The demonstration launches with a splash screen highlighting basic motion capability supported by Aria Graphics Library. When running the
application, the user can interface with it via capacitive single-fingered touch.

Architecture

The following diagrams show the various software and hardware components for each configuration.

pic32mz_da_sk_extddr_meb2, and pic32mz_da_sk_extddr_meb2_wvga

For these configurations, the application uses the Graphics library to render graphics to the display. The Graphics library passes draw commands
into the GPU Library, which in-turn draws the widgets and images to the frame buffer that is stored in an external DDR2. Via the DDR2 Memory
Controller, the GLCD display controller peripheral continuously transfers frame data from the frame buffer onto to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

The core timer is used by the application and the Graphics library to manage the movement of the splash screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 438

pic32mz_ef_sk_meb2

For this configuration, the application uses the Graphics library to render graphics to the display. The Graphics library draws the widgets and
images to the frame buffer that is stored on the internal SRAM. Using the DMA, the Low-Cost Controller-less (LCC) display driver continuously
transfers frame data from the frame buffer out to the LCD display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
thru the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the GFX library which processes these events and updates the frame data accordingly.

pic32mz_da_sk_noddr_meb2

For this configuration, the aria_quickstart application uses the Graphics Library to render graphics to the display. The Graphics Library draws the
widgets and images to the write frame buffer that is stored on the internal SRAM.

Because the color format is set to RGB565 (16-bit), a frame buffer requires 261120 bytes of memory (480 wide x 272 height x 2 bytes per pixel). A
double-buffered configuration is possible with 640 kilobytes of internal SRAM in the MZ DA device, but in the case, the design is set to single
buffer.

Directly from the frame buffer on internal memory, the GLCD display controller peripheral continuously transfers frame data onto to the LCD
display.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 439

pic32mx_da_sk_intddr_meb2, and pic32mz_da_sk_intddr_meb2_wvga

For these configurations, the application uses the Graphics Library to render graphics to the display. The Graphics library passes draw commands
into the GPU Library, which in turn draws the widgets and images to the three individual write frame buffers (one for each layer) that are stored in
an internal DDR2. Via the DDR2 Memory Controller, the GLCD display controller peripheral continuously transfers frame data from all three read
buffers onto the LCD display. The write and read frame buffer pairs are swapped independently as required when the Graphics Library is done
rendering to the write frame buffer and GLCD driver signals the GLCD peripheral to change its read location.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller
travels through the I2C port, and the Input System Service acquires the touch input information from the touch and I2C drivers. The Input System
Service sends touch events to the Graphics library which processes these events and updates the frame data accordingly.

Demonstration Features

• Integrated PCAP Touch Input (see mXT336T Touch Driver Library

• Low-Cost Controllerless (LCC) Graphics driver on the PIC32MZ EF device

• Single graphic layer supported via the GLCD peripheral on the PIC32MZ DA device

• 16-bit RGB565 color depth support (65536 unique colors) for PIC32MZ EF device (see Volume III: MPLAB Harmony Configurator (MHC))

• 32-bit RGBA8888 color depth support (16.7 million unique colors) for PIC32MZ DA device (see Volume III: MPLAB Harmony Configurator
(MHC) > MPLAB Harmony Graphics Composer User’s Guide > Graphics Composer Window User Interface > Options)

• Language localization in English, Chinese Simplified, and Spanish[add link to (see Volume III: MPLAB Harmony Configurator (MHC) > MPLAB
Harmony Graphics Composer User’s Guide > Graphics Composer Window User Interface > Widget Tool Box Panel)

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 440

• Image compression techniques using Run-Length Encoding and JPEG (see Enabling Demo Mode in a MPLAB Harmony Graphics Application

• Run-time JPEG decoding

• UTF-8 character font support (see Volume III: MPLAB Harmony Configurator (MHC) > MPLAB Harmony Graphics Composer User’s Guide >
Graphics Composer Window User Interface > Font Assets)

• Button and Image Widgets

Tools Setup Differences

“Use Graphics Stack” is selected in MHC. This enables the graphics and touch libraries and drivers for the BSP.

pic32mz_ef_sk_meb2

• MHC changes: Driver > I2C > I2C Clock Frequency is set to 10 KHz.

• Graphics Stack > Graphics Display > Select Display Type > Custom Display

• Graphics Stack > Graphics Display > Horizontal Pulse Width > 41

• Graphics Stack > Graphics Display > Vertical Pulse Width > 9

• Graphics Stack > Graphics Controller > Low Cost Controllerless > V-Sync Refresh Strategy > Aggressive

• Graphics Stack > Graphics Options > Enable Draw Pipeline > Enable Alpha Blending (Off)

• Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld > General > Heap Size (bytes) > 152400

• Pin Settings: External Interrupt 1 mapped to pin 23 (RE8)

pic32mz_da_sk_extddr_meb2, and pic32mz_da_sk_intddr_meb2

• Device & Project Configuration > Project Configuration > XC32 (Global Options) > xc32-ld > General > Heap Size (bytes) > 204800

• Pin Settings: External Interrupt 4 mapped to pin A14 (RB1)

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Aria Weather
Forecast demonstration.

Description

To build this project, you must open the aria_weather_forecast.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/aria_weather_forecast.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

aria_weather_forecast.X <install-dir>/apps/gfx/aria_weather_forecast/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit.

pic32mz_da_sk_extddr_meb2_wvga pic32mz_da_sk_extddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with External
DRAM (DA) Starter Kit with High-Performance (5") WVGA Display
Module with maXTouch.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ EF Starter Kit.

pic32mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit.

pic32mz_da_sk_intddr_meb2_wvga pic32mz_da_sk_intddr+meb2+wvga Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit with High-Performance (5") WVGA Display Module
with maXTouch.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 441

pic32mz_da_sk_noddr_meb2 pic32mz_da_sk_noddr+meb2 Demonstration for the Multimedia Expansion Board II (MEB II)
connected to the PIC32MZ Embedded Graphics with Disabled
DRAM (DA) Starter Kit.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ Embedded Graphics with Disabled DRAM (DA) Starter Kit, PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit,
PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit, and MEB II (First and Second Generation)

Configurations: pic32mz_ef_sk_meb2

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following image for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit and First and Second Generation MEB II, plus displays.

Configurations: pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_extddr_meb2_wvga, pic32mz_da_sk_intddr_meb2,
pic32mz_da_sk_intddr_meb2_wvga, and pic32mz_da_sk_noddr_meb2

• These configurations require that the J9 jumper be set to provide the GLCD's pixel clock. Set the J9 jumper to connect EPIOE to LCD_PCLK.
The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following figure
for the exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 442

Running the Demonstration

This section provides instructions about how to build and run the Aria Weather Forecast demonstration.

Description

Splash Screen

When power-on is successful, the demonstration will display an animated splash screen:

Main Screen

Touch the Cloud to change the weather between Cloudy, Rainy, and Sunny.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 443

blank_quickstart

This application demonstrates how to run custom graphics applications or integrate third-party graphics libraries with the MPLAB Harmony
Hardware Abstraction Layer (HAL).

Description

This application demonstrates a simple way to create and run a custom graphics application that directly uses the MPLAB Harmony Hardware
Abstraction Layer (HAL) to show images on the screen. The same model can also be used to integrate third-party graphics libraries into MPLAB
Harmony. The Aria graphics library is disabled and not used in this application.

Architecture

The diagrams below show the various software and hardware blocks used in this application:

pic32mz_da_sk_extddr_meb2

In this configuration, the application calls HAL APIs to initialize the HAL data structures and set up the HAL graphics layers. These API calls
translate into Graphics LCD (GLCD) driver set up and initialization calls that configure the GLCD. After the initialization phase, the application
transitions into the paint phase where it draws an image to the frame buffer in external DDR. The application uses a HAL API to get the start
address of the frame buffer in the DDR and writes the pixel data directly to the frame buffer memory address.

The GLCD hardware peripheral continuously refreshes the display panel with data from the frame buffer and the images are shown on the display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 444

pic32mz_da_sk_extddr_meb2_freertos

In this configuration, the application is executed within an OS task context that is scheduled by the FreeRTOS scheduler. When the application
task is executed, it calls the HAL APIs to initialize the HAL data structures and setup the HAL graphics layers. These API calls translate into GLCD
driver setup and initialization calls that configure the GLCD. After the initialization phase, the application transitions into the paint phase where it
draws an image to the frame buffer in external DDR. The application uses a HAL API to get the start address of the frame buffer in the DDR and
writes the pixel data directly to the frame buffer memory address.

The GLCD hardware peripheral continuously refreshes the display panel with data from the frame buffer and the images are shown on the display.

pic32mz_da_sk_intddr_meb2

In this configuration, the application calls HAL APIs to initialize the HAL data structures and set up the HAL graphics layers. These API calls
translate into Graphics LCD (GLCD) driver set up and initialization calls that configure the GLCD. After the initialization phase, the application
transitions into the paint phase, where it draws an image to the frame buffer. The application uses a HAL API to get the start address of the frame
buffer in internal DDR and writes pixel data directly to the frame buffer memory address.

The GLCD hardware peripheral continuously refreshes the display panel with data from the frame buffer and the images are shown on the display.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 445

pic32mz_da_sk_intddr_meb2_freertos

In this configuration, the application is executed within an operating system task context that is scheduled by the FreeRTOS scheduler. When the
application task is executed, it calls the HAL APIs to initialize the HAL data structures and setup the HAL graphics layers. These API calls translate
into GLCD driver setup and initialization calls that configure the GLCD. After the initialization phase, the application transitions into the paint phase,
where it draws an image to the frame buffer. The application uses a HAL API to get the start address of the frame buffer in internal DDR and writes
pixel data directly to the frame buffer memory address.

The GLCD hardware peripheral continuously refreshes the display panel with data from the frame buffer and the images are shown on the display.

Demonstration Features

• Graphics Hardware Abstraction Layer (HAL)

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 446

• GLCD Driver

• RTOS support (FreeRTOS)

Tools Setup Differences

• Enable Use Graphics Stack in MPLAB Harmony Configurator (MHC)

• In MHC, under the Graphics Stack options

• Set Graphics Processor > Select Processor Type to None

• Uncheck Use Harmony Graphics Composer Suite to disable the Aria User Interface Library

• Uncheck Graphics Options > Enable Draw Pipeline

• For the FreeRTOS configuration (e.g., pic32mz_da_sk_intddr_meb2_freertos), set the following in MHC:

• Third Party Libraries > RTOS, enable Use RTOS. Set Select RTOS to FreeRTOS and set RTOS Configuration > Tick Rate (Hz) to “100”

• In Application Configuration > Application 0 Configuration > RTOS Configuration, set Task Priority to “2”, check Use Task Delay and set
Task Delay to “10”.

• In Harmony Framework Configuration > RTOS Configuration, set System Task Priority to “2”, check Use System Task Delay and set Task
Delay to “10”.

• In Harmony Framework Configuration > Graphics Stack > Use Graphics Stack > Graphics RTOS Configuration, set Run Library Tasks As to
Combine with System Tasks.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Blank Quick Start
demonstration.

Description

To build this project, you must open the blank_quickstart.X project in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/blank_quickstart.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

blank_quickstart.X <install-dir>/apps/gfx/blank_quickstart/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_da_sk_extddr_meb2 pic32mz_da_sk_extddr+meb2 Demonstration for PIC32MZ Embedded Graphics with External DRAM
(DA) Starter Kit, Multimedia Expansion Board II (MEB II) and 4.3”
WQVGA (480x272) Display.

pic32mz_da_sk_extddr_meb2_freertos pic32mz_da_sk_extddr+meb2 Demonstration for PIC32MZ Embedded Graphics with External DRAM
(DA) Starter Kit, Multimedia Expansion Board II (MEB II) and 4.3”
WQVGA (480x272) Display running FreeRTOS.

pic32_mz_da_sk_intddr_meb2 pic32mz_da_sk_intddr+meb2 Demonstration for PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit, Multimedia Expansion Board II (MEB II) and 4.3”
WQVGA (480x272) Display.

pic32_mz_da_sk_intddr_meb2_freertos pic32mz_da_sk_intddr+meb2 Demonstration for PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit, Multimedia Expansion Board II (MEB II) and 4.3”
WQVGA (480x272) Display running FreeRTOS.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit, PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit, and MEB
II

Configurations: pic32_mz_da_sk_intddr_meb2, pic32_mz_da_sk_intddr_meb2_freertos, pic32mz_da_sk_extddr_meb2,

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 447

pic32mz_da_sk_extddr_meb2_freertos

• On the MEB II, the EBIOE and LCD_PCLK (J9) must be jumpered. A connection establishes the GLCD's pixel clock output timing. The external
SRAM memory on the board is disabled. The jumper (J9) is available on the bottom side of the MEB II board under the starter kit. The J9
jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following image for the
exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board.

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides information on how to run and use the application.

Description

Once the board is powered on, the application will run and show the following image on the display panel.

emwin_multilanguage

This demonstration is a Graphical User Interface (GUI) application that uses the SEGGER emWin Graphics Library and demonstrates the
capability of emWin to render multiple languages (English and Chinese) on-screen by using the Font Generator tool provided by SEGGER.

Description

The application uses the third-party SEGGER emWin Graphics Library to render graphics to the display. emWin provides user interface tools like
GUIBuilder to create the graphic UI design, which is then imported into the project as C files. This UI design includes widget creation, placement
and look and feel. It does not include incorporated events such as touch, etc., supported by the MPLAB Harmony Aria User Interface Library.

The Graphics Library draws the widgets and images to the frame buffer that is stored in an internal SRAM. This demonstration we uses another

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 448

tool called the Font Converter tool that is provided by SEGGER but is not a part of the default emWin Pro package.

Using the DMA, the Display Driver continuously transfers frame data from the read frame buffer out to the LCD display. The application also
features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes through the I2C
port, and the Input System Service acquires the touch input information from the Touch and I2C drivers. The Input System Service sends touch
events to the Graphics Library, which processes these events and updates the frame data accordingly.

Another important part is the integration of the display controller. This demonstration has multiple configurations and each requires a suitable
display controller/driver strategy for driving the pixel information from the emWin Graphics Library to the display. These configurations require
appropriate APIs to be available to the SEGGER emWin Graphics Library to drive the pixel information to the display. Currently, this is handled by
the wrapper layer provided in MPLAB Harmony, which generates the suitable APIs in the LCDConf.c file. This file will be generated by the emWin
GUI Wrapper and will be added within the project logical folder system_config\third_party\gfx\emwin\config.

pic32mz_ef_sk_meb2

pic32mz_da_sk_extddr_meb2

pic32mz_da_sk_intddr_meb2

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 449

Demonstration Features

• SEGGER emWin Graphics Library

• SEGGER emWin tools usage

• Font Converter-generated font file added to the application for Chinese fonts

• Input System Service

• Touch Driver

• DMA System Service

• Low-Cost Controllerless (LCC) Graphics Driver for the pic32mz_ef_sk_meb2 configuration

• GLCD Display driver for pic32mz_da_sk_extddr_meb2

• S1D driver wrappers for SEGGER emWin

• I2C Driver

Tools Setup Differences

• SEGGER emWin graphic development GUI tool: GUIBuilder.exe

• SEGGER emWin font generator: FontCvt.exe

• The MPLAB Harmony Graphics Stack still provides the display configuration and the display driver for the project

pic32mz_ef_sk_meb2 Configuration

• Use Graphics Stack > Use Graphics Stack? with a Graphics Controller type of Low Cost Controllerless

• Use Third Party Libraries > Graphics > Use SEGGER emWin Graphics Library? with USE SEGGER emWin Touch Wrapper and Use SEGGER
emWin GUI Wrapper selected, and the emWin GUI Wrapper > Color Mode type of EMWIN_COLOR_MODE_RGB_565

pic32mz_da_sk_extddr_meb2 Configuration

• Use Graphics Stack > Use Graphics Stack? with a Graphics Controller type of GLCD

• Use Third Party Libraries > Graphics > Use SEGGER emWin Graphics Library? with USE SEGGER emWin Touch Wrapper and Use SEGGER
emWin GUI Wrapper selected, and the emWin GUI Wrapper > Color Mode type of EMWIN_COLOR_MODE_ARGB_888

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the emWin
Multi-language demonstration.

Description

To build this project, you must open the emwin_multilanguage.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/emwin_multilanguage.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 450

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

emwin_multilanguage.X <install-dir>/apps/gfx/emwin_multilanguage/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 SEGGER emWin GUI demonstration for the Multimedia Expansion Board II
(MEB II) connected to the PIC32MZ Embedded Connectivity with Floating Point
Unit (EF) Starter Kit.

pic32mz_da_extddr_sk_meb2 pic32mz_da_sk_extddr+meb2 SEGGER emWin GUI demonstration for the Multimedia Expansion Board II
(MEB II) connected to the PIC32MZ Embedded Graphics with External DRAM
(DA) Starter Kit.

pic32mz_da_intddr_sk_meb2 pic32mz_da_sk_intddr+meb2 SEGGER emWin GUI demonstration for the Multimedia Expansion Board II
(MEB II) connected to the PIC32MZ Embedded Graphics with Internal DRAM
(DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit connected to the Multimedia Expansion Board II (MEB II)

Configuration: pic32mz_ef_sk_meb2

The MEB II uses LCC as the display controller driver. LCC can be configured to use internal or external RAM for the frame buffer. This
demonstration uses the LCC driver with internal RAM as frame buffer. To configure the MEB II to use internal RAM, EBIWE and LCD_PCLK (J9)
must be closed.

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit or

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kitwith the Multimedia Expansion Board II (MEB II)

Configuration: pic32mz_da_sk_extddr_meb2, pic32mz_da_sk_intddr_meb2

• This configuration requires that the J9 jumper be set to provide the GLCD's pixel clock. Set the J9 jumpber to connect EPIOE to LCD_PCLK.
The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following figure
for the exact location.

• Connect the PIC32MZ DA Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 451

Adding a New Font File to the Application

Description

Before checking how the demonstration functions, the following instructions privde a quick walk-through of how the font file is incorporated into the
project. This font file is generated outside the project by a specific tool called Font Converter, which can be purchased from SEGGER (it is not a
part of the emWin Pro package that is included with your installation of MPLAB Harmony.) A trial version of the Font Converter tool is provided with
MPLAB Harmony.

1. To create a font file using FontCvtDemo, ensure that it is installed. The installer is located in: <install-dir>\utilities\segger\emwin.

2. Start FontCvtDemo and select File > New and choose Standard.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 452

3. Select a Chinese Font.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 453

4. Disable all characters.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 454

5. Enable all the characters needed by the Unicode.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 455

6. Add all ASCII characters.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 456

7. Add the Chinese characters one by one, for example, the Unicode for “???????” are “0x5fae,0x82af,0x5546,0x8d38,0x6b22,0x8fce,0x60a8”.

8. Save the font file.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 457

9. Add the font file to the MPLAB Harmony SEGGER project.

10. Copy the font extern definition from the font file (songti16.c) to GUI.h.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 458

11. Define a new font in GUI.h.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 459

12. Use the new font where a text string is displayed. Define a string buffer to which the Unicode of the text is initialed.

13. Set UTF8 encode and convert the string Unicode to UTF8, one Unicode will be covert to 3 Byte in UTF8.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 460

14. Use the new string and new font to display a Chinese string.

Result

Now you should be able to display a Chinese String, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 461

Running the Demonstration

This section provides instructions about how to build and run the emWin Multi-language demonstration.

Description

The demonstration consists of two language screens created using the SEGGER emWin GUIBuilder utility:

• English

• Chinese

Each screen uses different widgets from the SEGGER emWin Graphics Library.

The English language screen uses the following widgets:

• Framewin

• Image: MPLAB Harmony Logo and SEGGER logo

• Text: emWin Multi-language

• Button: Next

Touch Next to navigate from the English language screen to the Chinese language screen.

The Chinese language screen use the following widgets:

• Framewin

• Slider: Single Slider with 10 divisions. The Slider position is updated by touch input.

• Progress Bar : Values updated by the '+' and '-' buttons along the progress bar

• Button: Previous

• Text: Labels for the widgets on screen, as well as the button text

• Scroll Bar: Values updated by the '+' and '-' buttons along the scroll bar

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 462

emwin_quickstart

This demonstration is a Graphical User Interface (GUI) application that uses SEGGER emWin and integrates it with MPLAB Harmony on PIC32
development hardware.

Description

This is a simple graphics application with the basic building blocks – a widget, an image and some text, which demonstrates the use of the
third-party SEGGER emWin Graphics Library being used inside the MPLAB Harmony framework. The SEGGER emWin Graphics Library is
offered free for use on PIC32 devices with the MPLAB Harmony installation. The application has three screens that transition between each other
using buttons. Each screen demonstrates some basic features, different widgets, and image rendering available in the SEGGER emWin Graphics
Library

A step-by-step guide to how this application was developed is provided in Start-to-End Example of SEGGER emWin Graphics with MPLAB
Harmony under SEGGER emWin Graphics Library Help.

Architecture

The application uses the SEGGER emWin Graphics Library to render graphics to the display. SEGGER emWin provides user interface tools like
GUIBuilder to create the graphic UI design, which is then imported into the project as C files. This UI design includes widget creation, placement
and look and feel; however, it does not include incorporated events, such as touch, etc. supported by the MPLAB Harmony Aria User Interface
Library.

The MPLAB Harmony Graphics Library draws the widgets and images to the write frame buffer that is stored in an internal SRAM. Using the DMA,
the Display Driver continuously transfers frame data from the read frame buffer out to the LCD display. The write and read frame buffers are
swapped when the Graphics Library is done rendering to the write frame buffer and the display driver is done transferring the frame data from the
read frame buffer.

The application also features user touch input through the integrated touch screen on the display panel. Touch input from the touch controller goes
through the I2C port, and the Input System Service acquires the touch input information from the Touch and I2C drivers. The Input System Service
sends touch events to the Graphics Library, which processes these events and updates the frame data accordingly.

Another important part is the integration of the display controller.

This demonstration has multiple configurations and each requires a suitable display controller/driver strategy for driving the pixel information from
the emWin Graphics Library to the display. These configurations require appropriate APIs to be available to the emWin Graphics Library to drive
the pixel information to the display. Currently, this is handled by the wrapper layer provided in MPLAB Harmony, which generates the suitable APIs
in the LCDConf.c file. This file will be generated by the emWin GUI Wrapper and will be added within the project logical folder
system_config\third_party\gfx\emwin\config. We will discuss this in more detail within the individual configuration.

pic32mz_ef_sk_meb2

This configuration uses the Low-Cost Controllerless (LCC) graphics as its display driver. The LCC driver in MPLAB Harmony fetches the
framebuffer from internal or external memory and outputs it to the display. In our current configuration, we have the SEGGER emWin Graphics
Library configured to only have access to the internal on-chip memory. We need to pass the address of the framebuffer to the emWin Graphics
Library. This is handled by the APIs generated by the GUI Wrapper in the LCDConf.c file.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 463

pic32mz_da_sk_extddr_sk_meb2

This configuration uses the GLCD display controller. The GLCD also fetches the framebuffer from the DDR memory and outputs to the display.
The SEGGER emWin Graphics Library needs this framebuffer address to write the graphics libraries output to. The appropriate API to enable this
is generated by the GUI Wrapper in the LCDConf.c, which will be included in the project.

pic32mx_usb_sk2_s1d_pictail_wqvga

This configuration requires an external display controller such as the S1D13517 to drive the display. The memory in which the pixel information is
stored for the S1D13517 controller is on the controller itself. This memory is not directly accessible to the emWin Graphics Library for filling out
graphics output. Therefore, the S1D13517 Driver provided by the SEGGER emWin Graphics Library must be used and appropriately hook it into
the S1D13517 driver that comes with the MPLAB Harmony framework, which actually drives the display. The emWin GUI Wrapper generates the
appropriate APIs in the LCDConf.c file.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 464

SEGGER emWin and MPLAB Harmony Integration

C File Integration

The SEGGER emWin GUIBuilder utility has generated three C files with one file per screen. All files are added to the project within the logical
folder app\emwin_gui. To integrate the generated files with MPLAB Harmony, the application uses the emWin GUI Wrapper. On selection of the
emWin GUI Wrapper within MHC, the MHC code generation tool will generate the required wrapper library. Similarly, for Touch integration, an
emWin Touch Wrapper Library is also available. The appropriate emWin GUI Wrapper and emWin Touch Wrapper APIs need to be called under
the application code. Refer to GUI and Touch Wrapper Library for SEGGER emWIN for more information.

Demonstration Features

• Third Party SEGGER emWin Graphics Library

• Input System Service

• Touch Driver

• DMA System Service

• I2C Driver

• 16-bit RGB565 color depth support (65535 unique colors)

• Graphics UI generated using the GUIBuilder tools provided by the SEGGER emWin tool set, which is included with your installation of MPLAB
Harmony and is available for use under the license agreement

• Display Controller Integration

Tools Setup Differences

The MPLAB Harmony Graphics Stack still provides the display configuration and the display driver for the project.

The graphics library selected is the third-party SEGGER emWin Graphics Library. Also note the Color format needs to be specified depending on
the microcontroller used in the project and the display driver supported.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the emWin Quick Start
demonstration.

Description

To build this project, you must open the emwin_quickstart.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/emwin_quickstart.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 465

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

emwin_quickstart.X <install-dir>/apps/gfx/emwin_quickstart/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 SEGGER emWin GUI demonstration for the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit.

pic32mz_da_extddr_sk_meb2 pic32mz_da_sk_extddr_sk+meb2 SEGGER emWin GUI demonstration for the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ
Embedded Graphics with External DRAM (DA) Starter Kit.

pic32mx_usb_sk2_s1d_pictail_wqvga pic32mx_usb_sk2+s1d_pictail+wqvga SEGGER emWin GUI demonstration for the Graphics Controller
PICtail Plus Epson S1D13517 Daughter Board connected to the
PIC32 USB Starter Kit II (with on-board PIC32MX795F512L
MCU).

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

PIC32MZ Embedded Graphics with External DRAM (DA) Starter Kit and MEB II

Configuration: pic32mz_da_sk_extddr_sk+meb2

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 466

This configuration requires that the J9 jumper be set to provide the GLCD's pixel clock. Set the J9 jumpber to connect EPIOE to LCD_PCLK. The
J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to the following figure for the
exact location.

PIC32 USB Starter Kit II with On-board PIC32MX795F512L MCU, and Graphics Controller PICtail Plus Epson S1D13517 Daughter Board

Configuration: pic32mx_usb_sk2+s1d_pictail+wqvga

P2 on the S1D13517 Daughter Board should be closed (16-bit PMP) for the WQVGA Display.

Running the Demonstration

This section provides instructions about how to build and run the emWin Quick Start demonstration.

Description

Demonstration Screens

The demonstration consists of three screens created using the SEGGER emWin GUIBuilder utility:

• Home

• Number Churning

• Text Alignment

Each screen uses different widgets from the SEGGER emWin Graphics Library. The Home screen uses the following widgets:

• Framewin: Home Screen

• Image: MPLAB Harmony Logo and SEGGER logo

• Text: Powered by and emWin

• Button: Next

Demonstration Process

1. Touch the Next button to navigate from the Home screen to the Number Churning screen. The Number Churning screen uses the following
widgets:

• Framewin: Number Churning

• Slider: Single Slider with 10 divisions. The Slider position is updated by both touch input and spinbox.

• Spinbox : Three-digit spinbox with value updated by both arrow buttons and slider

• Button: Previous and Next

• Text: Move the slider or press up/down arrow button to change the number

2. Touch the Next button to navigate from Number Churning Screen to Text Alignment screen. Similarly, press the Previous button to navigate
from Number Churning Screen back to the Home screen. The Text Alignment screen consists of the following widgets:

• Framewin: Text Alignment

• Radio: Six radio buttons with each radio button affecting the alignment of the Alignment text

• Text: Horizontal Alignment, Vertical Alignment, center, left, top, right, bottom, and Change text alignment by pressing the radio button

3. Touch the Previous button to navigate from Text Alignment screen back to the Number Churning screen.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 467

emwin_showcase

This demonstration shows basic and advanced capabilities of the SEGGER emWin Graphics Library utilizing the software graphics controller on
an LCD display.

Description

The emwin_showcase demonstration provides the ability to display some of the many features supported by the SEGGER emWin Graphics
Library as a simple Graphical User Interface (GUI) demonstration.

SEGGER emWin is designed to provide an efficient, processor, and LCD controller-independent GUI for any application that operates with a
graphical LCD. Some of the features demonstrated in the application include GUIs that shows alpha blending, sprites, radial menu operations,
listing and tree widget features, multiple layer and drawing on the layers, use of different image formats, coloring features provided by the library,
and so on.

Currently, the demonstration includes the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit on a Multimedia Expansion
Board II (MEB II), which has controllerless graphics on a WQVGA LCD display.

This demonstration requires the use of internal memory (SRAM). The memory setting must be configured with a hardware jumper and
corresponding MHC setting must be selected.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 468

Important:

To set up the internal memory, a jumper setting on the board is required. Failure to configure this jumper setting will prevent the
display from working, though the software may still run. See Configuring the Hardware for details about the appropriate jumper
settings.

Architecture

The application uses the third-party SEGGER emWin Graphics Library to render graphics to the display. It essentially showcases different emWin
capabilities. The Graphics Library draws the widgets and images to the frame buffer that is stored in an internal SRAM. Using the DMA, the
Display Driver continuously transfers frame data from the frame buffer out to the LCD display.

The application does not have touch support.

The Display controller and the LCD display driver are selected within the Graphics Stack provided by MPLAB Harmony.

pic32mz_ef_sk_meb2

This configuration uses the Low Cost Controllerless (LCC) graphics as its display driver.

The LCC driver in MPLAB Harmony fetches the framebuffer from internal or external memory and outputs it to the display. In our current
configuration, we have the SEGGER emWin Graphics Library configured to only have access to the internal on-chip memory. We need to pass the
address of the framebuffer to the SEGGGER emWin Graphics Library. This is handled by the APIs generated by the GUI Wrapper in the
LCDConf.c file.

Demonstration Features

• Third-Party SEGGER emWin Graphics Library

• DMA System Service

• 16-bit RGB565 color depth support (65535 unique colors)

• Graphics UI generated using the GUIBuilder tools provided by the SEGGER emWin tool set, which are provided with MPLAB Harmony and are
available for use under the license agreement.

• Low-Cost Controllerless Graphics

Tools Setup Differences

• “Use Graphics Stack” is selected in MHC. This enables the graphics Low-Cost Controllerless Graphics and Select the NewHaven 4.3” display.

• The graphics library selected is the third-party SEGGER emWin Graphics Library

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER emWin
MEB II Demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 469

Description

To build this project, you must open the emwin_showcase.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/gfx/emwin_showcase.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

emwin_showcase.X <install-dir>/apps/gfx/emwin_showcase/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the Multimedia
Expansion Board II (MEB II) connected to the PIC32MZ EF Starter Kit.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit and MEB II

Configuration: pic32mz_ef_sk_meb2

• This configuration requires that the J9 jumper be set to enable internal SRAM for the frame buffer. Set the J9 jumper to connect the EBIOE and
LCD_PCLK pins. The J9 jumper is located on the bottom of the MEB II board, beneath where the starter kit is plugged into the board. Refer to
the following figure for the exact location.

• Connect the PIC32MZ EF Starter Kit board to the MEB II board

• Power up the board by connecting the power adapter to J3 power connector on the MEB II board or a powered USB cable to the USB DEBUG
port on the Starter Kit board

Running the Demonstration

This section provides instructions on how to build and run the emWin Showcase demonstration.

Description

This demonstration shows the Graphics Library interfacing with the Low-Cost Controllerless (LCC) software display controller. The demonstration
displays some of the many features supported by the SEGGER emWin graphics library as a simple GUI demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Graphics Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 470

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Build, Download, and Run the demonstration project on the target board.

 Note:
This is a GUI only demonstration; there is no touch input being processed.

Demonstration Screens

The following are the different screens that demonstrate the various graphics features:

• Radial menu - Select an icon from a radial menu. Changing the selection is done using emWin motion support.

• Bargraph demo - Shows a bar graph using alpha blending.

• Antialiased text - Shows anti-aliased text with different anti-aliasing qualities. Outputs anti-aliased text on different backgrounds (2 bpp, 4 bpp).

• Transparent dialog – Uses alpha blending for transparency effect on moving background.

• Washing machine - Shows a washing machine demonstration with blue dolphin sprites moving on top of the application.

• Iconview demo - Uses the ICONVIEW widget for showing an icon-based menu, which is often required in hand held devices. Shows the
change of selection and change of icon text alignment.

• Treeview widget - Shows a customized TREEVIEW widget. Demonstrates hierarchical view of items in a directory and some sprites,
show/hide lines, moving cursor, open/close nodes, change selection modes, setting images, show/hide lines.

• Listview widget - Shows the use of a LISTVIEW widget. Demonstrates changing order, enable sorting, using reverse/normal sorting order,
moving rows, coloring row/column individual elements in the list.

• Drawing a graph - Uses the GRAPH widget to visualize a function graph (e.g., heartbeat, sine waves).

• High speed – Demonstrates multi-layer clipping and highly optimized drivers.

• Pixels speed – Demonstrates pixel speed as pixels per seconds.

• Bitmaps - Demonstrates *.BMP files by displaying all bitmaps of the Windows directory. Palette-based bitmaps, changing the pallete, bmp, gif,
jpeg, 12, 16, 24 bpp formats, alpha bitmaps, changing color, grayscale bitmaps.

• Color bar - Shows a color bar with gradient bars (Black > Color, White > Color). Integrated color management, which finds the optimized color
for any logical color.

Motor Control Demonstrations

This section provides descriptions of the Motor Control demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 471

http://www.microchip.com/mplabharmony

Introduction

Motor Control Demonstration Applications Help.

Description

This installation of MPLAB Harmony consists of two broad categories of motor control demonstrations.

Stand-alone Sensorless Field Oriented Control of PMSM Motor Using a PLL-based Estimator

This demonstration is designed to work with PIC32MK 100-pin Motor Control PIM mounted on the dsPICDEM™ MCLV-2 Development Board for
Small Hurst Motor (DMB0224C10002), and has two variants:

• Dual Shunt PLL Estimator-based FOC demonstration on PIC32MK using an external Op amp configuration

• Dual Shunt PLL Estimator-based FOC demonstration on PIC32MK using an internal Op amp configuration

Please refer to the Microchip application note, AN2520 Sensorless Field Oriented Control (FOC) for a Permanent Magnet Synchronous Motor
(PMSM) Using a PLL Estimator and Flux Weakening (FW) for more details

Integrated Application of Average Current Mode Power Factor Correction and Sensorless Field Oriented
Control of a PMSM Motor

This demonstration is designed to work with PIC32MK 100-pin Motor Control PIM mounted on the dsPICDEM™ MCHV-3 Development Board
(High Voltage), and has two variants:

• Integrated PFC and FOC demonstration on PIC32MK using an external Op amp configuration

• Integrated PFC and FOC demonstration on PIC32MK using an internal Op amp configuration

Please refer to the Microchip application note, Integrated Power Factor Correction (PFC) and Sensorless Field Oriented Control (FOC) for
Microchip 32-bit Microcontrollers for more details.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Demonstrations

This topic provides information on how to run the Motor Control demonstration applications included in this release.

dualshunt_pll_foc_mclv2_ext_opamp

This section provides information on the supported demonstration boards, how to configure the hardware, and how to run the demonstration.

Description

This demonstration implements Sensorless Field Oriented Control (FOC) of a PMSM motor using a dual shunt configuration, and utilizes external
(off-chip) Op amps for current sensing.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the dualshunt_pll_foc_mclv2_ext_opamp.X project in MPLAB X IDE, and then select the desired
configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/motor_control/dualshunt_pll_foc_mclv2_ext_opamp.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

dualshunt_pll_foc_mclv2_ext_opamp.X <install-dir>/apps/motor_control/dualshunt_pll_foc_mclv2_ext_opamp/
firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 472

Project Configuration Name BSP(s) Used Description

small_hurst_motor_mclv2_ext_opamp Not applicable. Demonstrates dual shunt PLL estimator-based FOC of a Small Hurst Motor
(DMB0224C10002) using external op-amps.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MK 100-pin Motor Control Plug-in Module (PIM) with the dsPICDEM MCLV-2 Development Board

1. Mount the PIC32MK 100-pin Motor Control PIM on the dsPICDEM MCLV-2 Development Board, as shown in the following figure.

2. Connect the External Op amp Configuration Matrix Board to header J14.

3. Connect the three-phase wires coming from P1 header of the small Hurst motor (i.e., Red, White and Black to M1, M2 and M3 ports,
respectively). Leave the green wire from the motor unconnected.

4. Connect the programmer/debugger using the J11 connector.

5. Apply 24V DC at BP1-BP2/J2.

6. This application supports communication with the X2C-Scope plug-in to monitor or plot any variables used in the application. The
communication between the target and the X2C-Scope plug-in can be established using the RS-232 serial port (J10) or mini-USB port (J8). To
use the RS-232 serial port, connect JP4 and JP5 to the UART position. To use the mini USB port, connect JP4 and JP5 to the USB position.
Refer to Using the X2C Scope for details on how to use X2C Scope in this demonstration.

PIC32MK MC PIM with dsPICDEM™ MCLV-2 using the External OPAMP Configuration

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

Do the following to run the demonstration:

1. Compile and build the project.

2. Program the target device.

3. Press the ‘S2’ switch to start spinning the motor.

4. Vary the potentiometer, P1, to change the motor speed.

5. Press the 'S1’ switch to stop the motor.

Modifying the System Parameters

The system parameters, such as motor coefficients, maximum current, etc., can be modified in the header file mc_app.h, as shown in the

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 473

following code example.
//===
// Following parameters for MCLV-2 board
// Gain of op amp = 15
// Shunt resistor = 0.025 ohms
// DC offset = 1.65V
// Max current = x
// (x * 0.025 * 15) + 1.65V = 3.3V
// x = 4.4Amps
#define MAX_BOARD_CURRENT (float)(4.4)
#define MAX_MOTOR_CURRENT (float)(4.2)
#define MAX_MOTOR_CURRENT_SQUARED (float)((float)MAX_MOTOR_CURRENT*
 (float)MAX_MOTOR_CURRENT)
#define VREF_DAC_VALUE (int) 2048
#define ADC_CURRENT_SCALE (float)(MAX_BOARD_CURRENT/(float)2048)
#define CURRENT_LIMIT_CMP_REF (int)(((float)2048*
 (MAX_MOTOR_CURRENT/MAX_BOARD_CURRENT))
 +VREF_DAC_VALUE)
#define MOTOR_PER_PHASE_RESISTANCE ((float)2.10) // Resistance in Ohms
#define MOTOR_PER_PHASE_INDUCTANCE ((float)0.00192) // Inductance in Henrys
#define MOTOR_BACK_EMF_CONSTANT_Vpeak_Line_Line_KRPM_MECH (float)7.24
 // Back EMF Constant in Vpeak/KRPM
#define NOPOLESPAIRS 5
#define MAX_ADC_COUNT (float)4095 // for 12-bit ADC
#define MAX_ADC_INPUT_VOLTAGE (float)3.3 // volts

Application Parameters

Parameter Name Description Units

PWM_FREQ PWM frequency Hz

DEADTIME_SEC Dead time Seconds

MAX_BOARD_CURRENT Maximum inverter DC bus current through the
board that can be measured without saturating
the ADC

A

MAX_MOTOR_CURRENT Maximum motor phase current A

MOTOR_PER_PHASE_RESISTANCE Motor per phase resistance O

MOTOR_PER_PHASE_INDUCTANCE Motor per phase inductance H

MOTOR_BACK_EMF_CONSTANT_Vpeak_Line_Line_KRPM_MECH Motor Back EMF constant Vpeak(line-line)/KRP
M

NOPOLESPAIRS Number of motor pole pairs -

MAX_ADC_COUNT Full scale ADC count, 2n bit ADC -1 (For 12 bit
ADC, 212-1= 4095

-

MAX_ADC_INPUT_VOLTAGE ADC reference voltage V

DCBUS_SENSE_TOP_RESISTOR High-side resistance of DC BUS Sense voltage
divider

O

DCBUS_SENSE_BOTTOM_RESISTOR Low-side resistance of DC BUS Sense voltage
divider

O

LOCK_TIME_IN_SEC Rotor lock time to a forced rotor angle before
spinning the motor

Seconds

END_SPEED_RPM Motor speed in Open Loop mode at which the
algorithm switches to closed loop

RPM

RAMP_TIME_IN_SEC Time to reach open loop end speed
(END_SPEED_RPM) during open loop operation

Seconds

Q_CURRENT_REF_OPENLOOP Q-axis current during open loop operation A

NOMINAL_SPEED_RPM Maximum rated speed in constant torque mode
(without field weakening)

RPM

MOVING_AVG_WINDOW_SIZE Total number of current samples used to
calculate moving average of the current to obtain
ADC current offset =
2MOVING_AVG_WINDOW_SIZE

-

CURRENT_OFFSET_MAX Maximum limit of the ADC current offset -

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 474

CURRENT_OFFET_MIN Minimum limit of the ADC current offset -

CURRENT_OFFSET_INIT Initial value of the ADC current offset -

KFILTER_ESDQ First order low-pass filter coefficient for Ed, Eq
estimator parameters

-

KFILTER_VELESTIM First order low-pass filter coefficient for speed
estimation

-

FW_SPEED_RPM Maximum rated speed in Field Weakening mode RPM

MAX_FW_NEGATIVE_ID_REF Maximum applicable negative D-axis current A

D_CURRCNTR_PTERM D-axis current controller proportional gain -

D_CURRCNTR_ITERM D-axis current controller integral gain -

D_CURRCNTR_CTERM D-axis current controller anti-windup gain -

D_CURRCNTR_OUTMAX D-axis current controller saturation limit -

Q_CURRCNTR_PTERM Q-axis current controller proportional gain -

Q_CURRCNTR_ITERM Q-axis current controller integral gain -

Q_CURRCNTR_CTERM Q-axis current controller anti-windup gain -

Q_CURRCNTR_OUTMAX Q-axis current controller saturation limit -

SPEEDCNTR_PTERM Speed controller proportional gain -

SPEEDCNTR_ITERM Speed controller integral gain -

SPEEDCNTR_CTERM Speed current controller anti-windup gain -

SPEEDCNTR_OUTMAX Speed current controller saturation limit -

Class B Tests

This demonstration runs the following Class B tests during startup:

• Clock Test

• Program Counter Test

• CPU Registers Test

• Flash Test.

• Checkerboard RAM Test

• March B Test

• March C Test

All Class B memory tests in this demonstration are non-destructive.

Faults

In this demonstration, the ON state of LED D2 indicates a Fault detection. This demonstration is equipped to detect the Class B test fail and
overcurrent faults. Class B tests are run immediately after the device power-up. If any of the Class B tests fail, it will be indicated by LED D2
turning ON. Also, failure of Class B tests would inhibit the start of the motor.

Once the Class B tests have passed successfully, the motor can be started by pressing the switch ‘S2’. While the motor is spinning, if there is an
overcurrent condition detected, this will cause the MCPWM to shutdown and LED D2 will turn ON indicating a Fault.

dualshunt_pll_foc_mclv2_int_opamp

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

This demonstration implements Sensorless Field Oriented Control (FOC) of a PMSM motor using a dual shunt configuration, and utilizes internal
(on-chip) Op amps for current sensing.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the dualshunt_pll_foc_mclv2_int_opamp.X project in MPLAB X IDE, and then select the desired
configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 475

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/motor_control/dualshunt_pll_foc_mclv2_int_opamp.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

dualshunt_pll_foc_mclv2_int_opamp.X <install-dir>/apps/motor_control/dualshunt_pll_foc_mclv2_int_opamp/
firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration Name BSP(s) Used Description

small_hurst_motor_mclv2_int_opamp Not applicable. Demonstrates dual shunt PLL estimator-based FOC of a Small Hurst Motor
(DMB0224C10002) using internal op-amps.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MK 100-pin Motor Control Plug-in Module (PIM) with the dsPICDEM MCLV-2 Development Board

1. Mount the PIC32MK 100-pin Motor Control PIM on the dsPICDEM MCLV-2 Development Board, as shown in the following figure.

2. Connect the Internal Op amp Configuration Matrix Board to header J14.

3. Connect the three-phase wires coming from P1 header of the small Hurst motor (i.e., Red, White, and Black to M1, M2, and M3 ports,
respectively). Leave the green wire from the motor unconnected.

4. Connect the programmer/debugger using the J11 connector.

5. Apply 24V DC at BP1-BP2/J2.

6. This application supports communication with DMCI to monitor/plot any variables used in the application. The communication between the
target and the DMCI plug-in can be established using the RS-232 serial port (J10) or mini-USB port (J8). If using the RS-232 serial port,
connect JP4 and JP5 to the UART position. If using the mini-USB port, connect JP4 and JP5 to the USB position.

PIC32MK MC PIM with dsPICDEM™ MCLV-2 the Internal Op amp Configuration

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 476

Description

For instructions, refer to the Running the Demonstration section for the dualshunt_pll_foc_mclv2_ext_opamp demonstration.

integrated_pfc_foc_mhcv3_ext_opamp

This section provides information on the supported demonstration boards, how to configure the hardware, and how to run the demonstration.

Description

This demonstration implements integrated application of average current mode PFC and Sensorless Field Oriented Control (FOC) of a PMSM
motor using a dual shunt configuration, and utilizes external (off-chip) Op amps for current sensing.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the integrated_pfc_foc_mchv3_ext_opamp.X project in MPLAB X IDE, and then select the desired
configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is:

<install-dir>/apps/motor_control/integrated_pfc_foc_mchv3_ext_opamp.

MPLAB X IDE Project

The following table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

integrated_pfc_foc_mchv3_ext_opamp.X <install-dir>/apps/motor_control/integrated_pfc_foc_mchv3_ext_opamp
/firmware

MPLAB X IDE Project Configurations

The following table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration Name BSP(s)
Used

Description

motor_80_mchv3_ext_opamp N/A Demonstrates integrated application of average current mode PFC and sensorless FOC of
PMSM motor using external op-amps.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MK 100-pin Motor Control PIM with the dsPICDEM MCHV-3 Development Board

1. Mount the PIC32MK 100-pin Motor Control PIM on the dsPICDEM MCHV-3 Development Board, as shown in the following figure.

2. Connect the External Op amp Configuration Matrix Board to header J4.

3. Connect the three-phase wires of the PMSM motor to M1, M2 and M3 ports.

4. Connect the on board programmer and debugger to J20 using USB Mini B cable.

5. Connect the AC mains using J1.

6. This application supports communication with the X2C-Scope plug-in to monitor and plot any variables used in the application. The
communication between the target and the X2C-Scope plug-in can be established using the RS-232 serial port (J8) or mini-USB port (J6).
Refer to the jumper positions marked on the development board chassis to select between the RS-232 serial port (J8) and the mini-USB port
(J6). Refer to Using the X2C-Scope Plug-in for details on how to use the X2C-Scope in this demonstration.

Note:
Please refer to dsPICDEM MCHV-3 Development Board User’s Guide for safety and operating details of the development board.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 477

http://ww1.microchip.com/downloads/en/DeviceDoc/DS50002505a.pdf

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

Do the following to run the demonstration:

1. Compile and build the project.

2. Program the target device.

3. Press the ‘S1’ switch to start the PFC. Once the bus voltage has reached the set point, the motor will begin spinning.

4. Vary the potentiometer, POT1, to change the motor speed.

5. Press the ‘Reset’ switch to stop the motor.

Modifying the System Parameters

The system parameters, such as motor coefficients, maximum current, etc., can be modified in the header file mc_app.h, as shown in the
following code example
//===
// Following parameters for MCHV-3 board (External Opamp Configuration)
// Gain of opamp = 10.06
// shunt resistor = 0.01 ohms
// DC offset = 1.65V
// max current = x
// (x * 0.01 * 10.06) + 1.65V = 3.3V
// x = 16.4 Amps
#define MAX_BOARD_CURRENT (float)(16.4)
#define MAX_MOTOR_CURRENT (float)(8)
#define MAX_MOTOR_CURRENT_SQUARED
(float)((float)MAX_MOTOR_CURRENT*(float)MAX_MOTOR_CURRENT)

#define ADC_CURRENT_SCALE (float)(MAX_BOARD_CURRENT/(float)2048)

#define CURRENT_LIMIT_CMP_REF
(int)(((float)2048*(MAX_MOTOR_CURRENT/MAX_BOARD_CURRENT))+VREF_DAC_VALUE)

// Resistance in Ohms
#define MOTOR_PER_PHASE_RESISTANCE ((float)16)

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 478

// Inductance in Henrys
#define MOTOR_PER_PHASE_INDUCTANCE ((float)0.022)

#define MOTOR_PER_PHASE_INDUCTANCE_DIV_2_PI
((float)(MOTOR_PER_PHASE_INDUCTANCE/(2*M_PI)))

// Back EMF Constant in Vpeak/KRPM
#define MOTOR_BACK_EMF_CONSTANT_Vpeak_Line_Line_KRPM_MECH (float)75

#define NOPOLESPAIRS 2
#define MAX_ADC_COUNT (float)4095 // for 12-bit ADC
#define MAX_ADC_INPUT_VOLTAGE (float)3.3 // volts

Application Parameters

Parameter Name Description Units

PWM_FREQ PWM Frequency Hz

DEADTIME_SEC Dead Time Seconds

MAX_BOARD_CURRENT Maximum Inverter DC bus current through the
board that can be measured without saturating
the ADC

A

MAX_MOTOR_CURRENT Maximum Motor Phase Current A

MOTOR_PER_PHASE_RESISTANCE Motor per phase resistance O

MOTOR_PER_PHASE_INDUCTANCE Motor per phase inductance H

MOTOR_BACK_EMF_CONSTANT_Vpeak_Line_Line_KRPM_MECH Motor Back EMF constant Vpeak(line-line)/KRP
M

NOPOLESPAIRS Number of Motor Pole Pairs -

MAX_ADC_COUNT Full Scale ADC Count, 2n bit ADC -1 (For 12 bit
ADC, 212-1= 4095

-

MAX_ADC_INPUT_VOLTAGE ADC Reference voltage V

DCBUS_SENSE_TOP_RESISTOR High side resistance of DC BUS Sense voltage
divider

O

DCBUS_SENSE_BOTTOM_RESISTOR Low side resistance of DC BUS Sense voltage
divider

O

LOCK_TIME_IN_SEC Rotor lock time to a forced rotor angle before
spinning the motor

Seconds

END_SPEED_RPM Motor speed in Open Loop mode at which the
algorithm switches to closed loop

RPM

RAMP_TIME_IN_SEC Time to reach Open Loop End Speed
(END_SPEED_RPM) during open loop operation

Seconds

Q_CURRENT_REF_OPENLOOP Q axis current during Open Loop operation A

NOMINAL_SPEED_RPM Maximum rated speed in Constant Torque mode
(without field weakening)

RPM

MOVING_AVG_WINDOW_SIZE Total number of current samples used to
calculate moving average of the current to obtain
ADC Current Offset =
2MOVING_AVG_WINDOW_SIZE

-

CURRENT_OFFSET_MAX Maximum limit of the ADC Current Offset -

CURRENT_OFFSET_MIN Minimum limit of the ADC Current Offset -

CURRENT_OFFSET_INIT Initial value of the ADC Current Offset -

KFILTER_ESDQ First order low pass filter coefficient for Ed, Eq
estimator parameters

-

KFILTER_VELESTIM First order low pass filter coefficient for speed
estimation

-

FW_SPEED_RPM Maximum rated speed in Field Weakening mode RPM

MAX_FW_NEGATIVE_ID_REF Maximum applicable negative D-axis current A

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 479

D_CURRCNTR_PTERM D-axis Current Controller Proportional Gain -

D_CURRCNTR_ITERM D-axis Current Controller Integral Gain -

D_CURRCNTR_CTERM D-axis Current Controller Anti-Windup Gain -

D_CURRCNTR_OUTMAX D-axis Current Controller Saturation Limit -

Q_CURRCNTR_PTERM Q-axis Current Controller Proportional Gain -

Q_CURRCNTR_ITERM Q-axis Current Controller Integral Gain -

Q_CURRCNTR_CTERM Q-axis Current Controller Anti-Windup Gain -

Q_CURRCNTR_OUTMAX Q-axis Current Controller Saturation Limit -

SPEEDCNTR_PTERM Speed Controller Proportional Gain -

SPEEDCNTR_ITERM Speed Controller Integral Gain -

SPEEDCNTR_CTERM Speed Current Controller Anti-Windup Gain -

SPEEDCNTR_OUTMAX Speed Current Controller Saturation Limit -

Class B Tests

This demonstration runs the following Class B tests during startup:

• Clock Test

• Program Counter Test

• CPU Registers Test

• Flash Test

• Checkerboard RAM Test

• March B Test

• March C Test

All Class B memory tests in this demonstration are non-destructive.

Faults

In this demonstration, the ON state of LED D2 indicates a Fault detection. This demonstration is equipped to detect a Class B test fail, and PFC or
Motor Control faults. Class B tests are run immediately after the device power-up. If any of the Class B tests fail, it will be indicated by LED D2
turning ON. Also, the failure of Class B tests would inhibit the start of the PFC or motor. Once the Class B tests have passed successfully, the
motor can be started by pressing the switch ‘S1’. While the PFC and motor are operational, if there is an Overcurrent or over-voltage condition
detected on the PFC or Motor, this will cause the MCPWM to shutdown and the LED D2 will turn ON indicating a Fault.

integrated_pfc_foc_mchv3_int_opamp

This section provides information on the supported demonstration boards, how to configure the hardware, and how to run the demonstration.

Description

This demonstration implements integrated application of average current mode PFC and Sensorless Field Oriented Control (FOC) of a PMSM
using a dual shunt configuration, and utilizes internal (on-chip) Op amps for current sensing.

Building the Application

This section identifies the MPLAB X IDE project name and location. It also lists and describes the available configurations for the demonstration.

Description

To build this project, you must open the integrated_pfc_foc_mchv3_int_opamp.X project in MPLAB X IDE, and then select the desired
configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is:

<install-dir>/apps/motor_control/integrated_pfc_foc_mchv3_int_opamp

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

integrated_pfc_foc_mchv3_int_opamp.X <install-dir>/apps/motor_control/integrated_pfc_foc_mchv3_int_opamp
/firmware

MPLAB X IDE Project Configurations

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 480

This table lists and describes the supported configurations of the demonstration, which are within ./firmware/src/system_config

Project Configuration Name BSP (s)
Used

Description

motor_80_mchv3_int_opamp N/A Demonstrates integrated application of average current mode PFC and sensorless FOC of
PMSM motor using internal op-amps.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MK 100-pin Motor Control PIM with the dsPICDEM MCHV-3 Development Board

1. Mount the PIC32MK 100-pin Motor Control PIM on the dsPICDEM MCHV-3 Development Board, as shown in the following Figure.

2. Connect the Internal Op amp Configuration Matrix Board to header J4.

3. Connect the three-phase wires of the PMSM motor to M1, M2 and M3 ports.

4. Connect to the on board programmer and debugger to J20 using USB Mini B cable.

5. Connect the AC mains using J1.

6. This application supports communication with the X2C-Scope plug-in to monitor and plot any variables used in the application. The
communication between the target and the X2C-Scope plug-in can be established using the RS-232 serial port (J8) or mini-USB port (J6).
Refer to the jumper positions marked on the development board chassis to select between the RS-232 serial port (J8) and the mini-USB port
(J6). Refer to Using the X2C-Scope Plug-in for details on how to use the X2C-Scope in this demonstration.

Note:
Please refer to dsPICDEM MCHV-3 Development Board User’s Guide for safety and operating details of the development board.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For instructions, refer to the Running the Demonstration section for the integrated_pfc_foc_mchv3_int_opamp demonstration.

X2C-Scope Plug-in

This topic describe how to use the X2C-Scope MPLAB X IDE plug-in.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 481

http://ww1.microchip.com/downloads/en/DeviceDoc/DS50002505a.pdf

Description

The MPLAB X IDE enables use of the X2C-Scope plug-in to read, write, and plot global variables in real time. In this demonstration, the
X2C-Scope communicates with the target using UART Channel 2. The baud rate of the UART communication can be modified using the MPLAB
Harmony Configurator (MHC) (the default value is 38400 bps).

1. If not already installed, in MPLAB X IDE, select Tools > Plugins > Available Plugins > Select X2C-Scope> Install.

2. Restart MPLAB X IDE to complete the plug-in installation.

3. Open the X2C-Scope by selecting Tools > Embedded > X2C-Scope.

4. Ensure the symbols are loaded during the project build by selecting Project Properties > Selected Configuration > Loading, and ensure that the
check box for Load Symbols when programming or building for production (slows process) is selected. If this check box was not selected,
rebuild the project and reprogram the device.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 482

5. In the X2C-Scope Configuration tab, select the project.

6. In Connection Setup, set the Baud Rate to '38400', Data bits to '8', Parity to 'None', Stop Bits to '1', and then select the associated COM port.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 483

7. Connect to the target by clicking Connect (or Disconnect).

8. In Project Setup, Set the Scope Sampletime to '50 us.' In this demonstration, the X2CScope_Update function is called from the motor control
ISR, which executes every 50 µs. Set the Watch Sample time to a value at which you want to update the watch window variables (the default is
1000 ms). Click Set Values after setting the Scope Sampletime and Watch Sampletime.

9. In Data Views, select Open Scope View to plot any two global variables in run-time.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 484

Note:
The free version of X2C-Scope allows up to two global variables to be plotted simultaneously.

The professional Version of X2C-Scope allows up to seven global variables to be plotted simultaneously.

11. Under Data Views, select Open Watch View to read or write to any global variables in run time.

Volume I: Getting Started With MPLAB Harmony Applications Help Motor Control Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 485

RTOS Demonstrations

This section provides descriptions of the RTOS demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

RTOS Demonstration Applications Help

Description

This distribution package contains a variety of RTOS-based firmware projects that demonstrate the capabilities of the MPLAB Harmony services
and stacks integrated with RTOS running on PIC32 devices. This section describes the hardware requirement and procedures to run these
firmware projects on Microchip demonstration and development boards.

To learn more about MPLAB Harmony stacks and libraries refer to the related documentation in Volume V: MPLAB Harmony Framework
Reference.

Source Code Disclaimers

OPENRTOS

The OPENRTOS demonstrations provided in MPLAB Harmony use the OPENRTOS evaluation license, which is meant for demonstration
purposes only. Customers desiring development and production on OPENRTOS must procure a suitable license. Please refer to one of the
following documents, which are located in the third-party folder of the MPLAB Harmony installation, for information on obtaining an evaluation
license for your device:

• OpenRTOS Click Thru Eval License PIC32MXxx.pdf

• OpenRTOS Click Thru Eval License PIC32MZxx.pdf

Micriµm

All µC/OS-III demonstrations have added the crt0.S "C" run-time library start-up file to the project. The demonstration sets the linker option "do
not link startup code". This is necessary for µC/OS-III to work correctly with PIC32 devices as the general exception vector is located in crt0.S.
µC/OS-III overrides this interrupt source (general exception handler) to perform OS-specific functionality.

If the user wants to implement their own application using µC/OS-III and a PIC32 device, they must add the crt0.S file to their project and
override the general exception interrupt vector. See the current RTOS examples for this implementation.

A crt0.S template file can be found in the MPLAB XC32 C/C++ Compiler installation directory:
..\Microchip\xc32\<version>\pic32-libs\libpic32.

 Important!
The Micriµm µC/OS-II and µC/OS-III source code that is distributed with MPLAB Harmony is for FREE short-term
evaluation, for educational use, or peaceful research. If you plan or intend to use µC/OS-II and µC/OS-III in a commercial
application/product, you need to contact Micriµm to properly license µC/OS-II and µC/OS-III for its use in your
application/product. The source code is provided for your convenience and to help you experience µC/OS-II and µC/OS-III.
The fact the source is provided does NOT mean that you can use it commercially without paying a licensing fee.
Knowledge of the source code may NOT be used to develop a similar product. If you are unsure about whether you need
to obtain a license for your application, please contact Micriµm and discuss the intended use with a sales representative
(www.micrium.com).

Express Logic ThreadX

The source code for the ThreadX RTOS is not freely distributed. To obtain source code and the proper licensing agreement go to the Express
Logic ThreadX website: http://rtos.com/products/threadx/.

SEGGER embOS

The SEGGER embOS libraries provided with MPLAB Harmony use the SEGGER evaluation license, which is meant for demonstration purposes

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 486

http://www.microchip.com/mplabharmony
http://www.micrium.com
http://rtos.com/products/threadx

only. Customers desiring development must procure a suitable license from SEGGER. To obtain source code and the proper licensing agreement
visit the SEGGER embOS website: https://www.segger.com/license-models.html.

Express Logic ThreadX Demonstrations

This section provides descriptions of the Express Logic ThreadX RTOS demonstrations.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Source Code Disclaimer

The source code for this ThreadX RTOS demonstration is not freely distributed. To obtain source code and the proper licensing agreement go to
the Express Logic ThreadX website: http://rtos.com/products/threadx/. So that ThreadX can work with the applicable MPLAB Harmony
demonstrations, install the source in the following location: <install-dir>/third_party/rtos/ThreadX/.

The demonstrations will not compile unless the source code is provided and installed in the correct location.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the ThreadX Basic
Demonstration.

Description

To build this project, you must open the basic_threadx.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/threadx/basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_threadx.X <install-dir>/apps/rtos/threadx/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in
microMIPS mode.

pic32mx_sk_mips16 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

pic32mx_sk pic32mx_usb_sk2, pic32mx_usb_sk3,
pic32mx_eth_sk, and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits: PIC32
Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB
Starter Kit II, PIC32 USB Starter Kit III.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB Starter Kit II, and PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 487

http://rtos.com/products/threadx

Running the Demonstration

Provides instructions on how to build and run the Express Logic ThreadX basic demonstration.

Description

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Source Code Disclaimer

The source code for this ThreadX RTOS demonstration is not freely distributed. To obtain source code and the proper licensing agreement go to
the Express Logic ThreadX website: http://rtos.com/products/threadx/. So that ThreadX can work with the applicable MPLAB Harmony
demonstrations, install the source in the following location: <install-dir>/third_party/rtos/ThreadX/.

The demonstrations will not compile unless the source code is provided and installed in the correct location.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Express Logic
ThreadX and MPLAB Harmony Graphics plus USB Library Demonstration.

Description

To build this project, you must open the usb_threadx.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/threadx/usb.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_threadx.X <install-dir>/apps/rtos/threadx/usb

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the ThreadX and MPLAB Harmony USB Library demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 488

http://rtos.com/products/threadx

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged into J4 on the PIC32MZ EC Starter Kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed.
The user LED, D3, will toggle every 500 ms.

There are three tasks and four interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED, D3, every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all
USB data queued up by the application and physically writes it out to the USB hardware. The SYSCALL general exception is invoked by the RTOS
and is used to process the task context switch routine.

FreeRTOS Demonstrations

This section provides descriptions of the FreeRTOS RTOS demonstrations.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks the three user LEDs on a starter kit to show the RTOS threads that are running and to indicate status.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the FreeRTOS Basic
Demonstration.

Description

To build this project, you must open the basic_freertos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_freertos.X <install-dir>/apps/rtos/freertos/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32mx_sk pic32mx_usb_sk2, pic32mx_usb_sk3,
pic32mx_eth_sk, and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits: PIC32
Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB
Starter Kit II, PIC32 USB Starter Kit III.

pic32mx_sk_mips16 pic32mx_usb_sk2, pic32mx_usb_sk3,
pic32mx_eth_sk, and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits in
MIPS16 mode: PIC32 Ethernet Starter Kit, PIC32 Ethernet
Starter Kit II, PIC32 USB Starter Kit II, PIC32 USB Starter Kit
III.

pic32mz_sk pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in
microMIPS mode.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 489

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB Starter Kit II, and PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the FreeRTOS basic demonstration.

Description

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the debug USB port of the target board to a USB port on the development computer using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the target board.

The demonstration application features the following:

• Application creates one queue and four tasks. One task that sends the data using the FreeRTOS queue to the two tasks that wait for the data
in the queue. (QueueReceiveTask2 priority is higher than the QueueReceiveTask1 priority.)

• QueueReceiveTask2 receives the data first, toggles the LED, and then sleeps for the specified time

• QueueReceiveTask1 receives the next data since QueueReceiveTask2 is not in running state

• QueueReceiveTask1 receives the data, toggles the LED and waits for the data arrival

cdc_com_port_dual

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

This RTOS based demonstration application creates a USB CDC Device that enumerates as two serial ports on the USB Host personal computer.
This application demonstrates the ability of the MPLAB Harmony USB Stack to operate in an Real-Time Operating System (this example uses
FreeRTOS) and to support multiple instances of the same device class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Description

To build this project, you must open the cdc_com_port_dual.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos/cdc_com_port_dual.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_dual.X <install-dir>/apps/rtos/freertos/cdc_com_port_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
in Interrupt mode and dynamic operation.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 490

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit in Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

Remove jumper JP1.

Running the Demonstration

Provides instructions on how to build and run the cdc_com_port_dual demonstration.

Description

Refer to the Running the Demonstration topic for the bare-metal (non RTOS) version of the cdc_com_port_dual demonstration applications for
running the demonstration.

The demonstration application contains six tasks. A description of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Device Layer Tasks function (USB_DEVICE_Tasks).
The priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks
are either in blocked state or not ready to run.

• The APP_USB_DEVICE_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed
for the application. It creates 4 tasks which implement the application logic. It attempts to open the Device Layer and then blocks on the
xSemaphoreBlockUsbConfigure semaphore. The xSemaphoreBlockUsbConfigure is given in the USB Device Layer Event Handler when the
device is configured by the Host. The tasks then resumes the 4 application logic tasks and suspends itself.

• The APP_CDC1Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC1 instance and then blocks on the
CDC1 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC2Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC2 instance and then blocks on the
CDC2 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC1Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 2 message queue. When APP_CDC2Read
Task posts a message to this queue, the APP_CDC1Write gets ready to run and the writes the data (received on the queue) to the CDC 1. This
data is then transferred to the Host.

• The APP_CDC2Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 1 message queue. When APP_CDC1Read
Task posts a message to this queue, the APP_CDC2Write gets ready to run and the writes the data (received on the queue) to the CDC 2. This
data is then transferred to the Host.

cdc_msd_basic

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Description

To build this project, you must open the cdc_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos/cdc_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_msd_basic.X <install-dir>/apps/rtos/freertos/cdc_msd_basic/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 491

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
in Interrupt mode and dynamic operation.

pic32mz_ec_sk_int_dyn pic32mz_ec_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity (EC) Starter Kit configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place if the attached USB device is bus-powered. It should be removed if the attached USB device is self-powered.

PIC32MZ Embedded Connectivity (EC) Starter Kit

Remove jumper JP1.

Running the Demonstration

Provides instructions on how to build and run the cdc_msd_basic demonstration.

Description

This USB Host demonstration application exercises the CDC and MSD interfaces on the attached composite USB device.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Follow the directions for setting up and running the cdc_serial_emulator_msd USB device demonstration.

4. Connect the UART (P1) port on the Explorer 16 Development Board (running the cdc_serial_emulator_msd demonstration) to a USB Host
personal computer via a commercially available Serial-to-USB Dongle.

5. Start a terminal program on the USB Host personal computer and select the Serial-to-USB Dongle as the communication port. Select the baud
rate as 9600, no parity, 1 Stop bit and no flow control.

6. Connect the mini – B connector on the USB PICtail Plus Daughter Board, of the cdc_serial_emulator_msd demonstration setup, to the Type-A
USB host connector on the starter kit.

7. A prompt (DATA :) will be displayed immediately on the terminal emulation program.

8. Type a string less than 12 characters and press the <Enter> key. The string entered here will be stored in the MSD device in a file named
file.txt.

9. Step 8 can be repeated. Data entered in the prompt will be appended to the file.

10. Unplug the USB Device from the Host and_connect_it a personal computer host to examine the contents of the Mass Storage Device. This
should contain a file named file.txt and this should contain the data that was entered at the terminal program prompt.

Tasks

This USB Host demonstration application contains four tasks. Descriptions of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Host Layer Tasks function (USB_HOST_Tasks). The
priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks are
either in blocked state or not ready to run.

• The APP_USB_HOST_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed for
the application. It creates two tasks that implement the application logic. It attempts to open the Host Layer and then enable USB Host
Operation. The task then resumes the two application logic tasks and suspends itself.

• The APP_USBHostCDCTask Task is created in the APP_USB_HOST_Open task. It blocks on xSemaphoreUSBCDCAttach semaphore. This
semaphore is given in the Application CDC Class Driver event handler when a CDC device is enumerated. The task then prints a prompt and
schedules a read from the CDC interface of the attached USB device. When data is available, it posts the xSemaphoreCDCReadComplete
semaphore.

• The APP_USBHostMSDTask Task is created in the APP_USB_HOST_Open task. It blocks on the xSemaphoreUSBMSDAttach semaphore.
This semaphore is given in the Application MSD event Handler when a MSD device is enumerated. The task then mounts the attached storage
media and then blocks on the xSemaphoreCDCReadComplete semaphore. The xSemaphoreCDCReadComplete semaphore is given by the
APP_USBHostCDCTask task when the CDC Host has received data. The APP_USBHostMSDTask Task will then open a file on the mounted
drive and will append the data (received from CDC) in the file. It closes the file, and then appends on xSemaphoreCDCReadComplete
semaphore again.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 492

tcpip_client_server

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The TCP/IP Client Server application, tcpip_client_server, demonstrates how to run multiple TCP and UDP servers and clients using the TCP/IP
Stack in an RTOS environment. The demonstration also has the HTTP Web server running using the Non-Volatile Memory (NVM) Microchip
Proprietary File System (MPFS) to store the web pages in the internal PIC32 Flash.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the FreeRTOS and
MPLAB Harmony TCP/IP Demonstration.

Description

To build this project, you must open the tcpip_client_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/freertos.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_client_server.X <install-dir>/apps/rtos/freertos/tcpip_client_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit and the Starter Kit I/O
Expansion Board.

pic32mx_eth_sk pic32mx_eth_sk This configuration runs on the PIC32 Ethernet Starter Kit and the Starter Kit I/O
Expansion Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit connected to the Starter Kit I/O Expansion Board

No jumper settings are required for this configuration.

The demonstration makes extensive use of the UART. To use the UART output, you will need to connect an RS-232 level-shifter to UART2 on the
Starter Kit I/O Expansion Board. From J11, connect U2TX (48) to the level-shifter TX and connect U2RX (46) to the level-shifter RX. Use any +5V
and GND to complete the wiring of the RS-232 level-shifter. The baud rate is 115200 Baud, N, 8, 1.

PIC32 Ethernet Starter Kit connected to the Starter Kit I/O Expansion Board

No jumper settings are required for this configuration.

The demonstration makes extensive use of the UART. To use the UART output, you will need to connect an RS-232 level-shifter to UART2 on the
Starter Kit I/O Expansion Board. From J11, connect U2TX (48) to the level-shifter TX and connect U2RX (46) to the level-shifter RX. Use any +5V
and GND to complete the wiring of the RS-232 level-shifter. The baud rate is 115200 Baud, N, 8, 1.

Running the Demonstration

Provides instructions on how to build and run the FreeRTOS RTOS with TCP/IP demonstration.

Description

The run the demonstration application, apply power to the board, open the demonstration with MPLAB X IDE, and then build and load the

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 493

demonstration.

This demonstration runs IPv4 only on the Ethernet interface. To view the Web page hosted by the demonstration application, open a Web browser
and direct it to the board running the HTTP server by typing the URL in the address bar (for example, http://mchpboard_e or http://mchpboard_c),
and then pressing Enter.

 Notes:
1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the

hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries (the NetBIOS service is enabled by default for this
demo). Alternatively, you can use the IPv4 of the board directly, for example, http://192.168.1.131.

2. The IPv4 address can be obtained from running the TCP/IP Discovery application on the PC side. It requires that the TCP/IP
Announce module is enabled when building the stack (the Announce module is enabled by default in this application).

Advanced Features

To use the advanced features of this demonstration, a system console must be enabled for the application. A serial console is preferred and is
enabled by default for the demonstration. Alternatively, the application can be reconfigured using MHC to use the USB console.

The PIC32MZ configurations have Telnet enabled by default. A Telnet connection could be also used for delivering the commands needed by the
application. On the PIC32MX configuration, the Telnet module is not enabled due to limited memory resources.

The PIC32MZ configuration is preferred for running this demonstration as the PIC32MX version may run out of memory at run-time.

TCP/IP Tasks

There are four TCP/IP tasks in the application that demonstrate the use of IPv4 TCP and UDP sockets in a multi-threaded system. Each of these
tasks implements (and registers with the system command processor) specific commands. The commands allow the corresponding sockets to be
opened and to start the communication with the remote hosts. On all hosts, the server sockets must first be opened, and then have the client
sockets connect to them. There are also commands for configuring each socket/communication channel.

Following the model in this application, extra commands could be added for any of the tasks to achieve desired operation.

Each of these communication channels can be exercised simultaneously or in turn. For the purposes of the demonstration, at least two different
communication channels should be opened simultaneously to put in evidence the multi-threaded behavior.

A common scenario listing the console commands and steps needed for running this demonstration would be:

1. Start app1 – TCP server:

• Start the PIC32 TCP server socket that listens on port 9760 by issuing the console command: topen_s1<CR>

• On the client side (PC, etc.) open a client that connects over TCP to the PIC32 server using port 9760. Use any network tools (netcat, etc.)
or special applications, scripts (TCL, Python, etc.) to transmit and receive data files.

2. Start app2 – TCP client:

• On the remote host side (PC, etc.) open a TCP server that listens for incoming connections on port 9761. Use any network tools (netcat,
etc.) or special applications, scripts (TCL, Python, etc.) to receive (and transmit) data files.

• Set the PIC32 client side address and port for the server to connect to, for example: tsrv4_c1 192.168.100.101 9761<CR>

• Start the PIC32 TCP client socket by issuing the console command: topen_c1<CR>

3. Start app3 – UDP server:

• Start the PIC32 UDP server socket that listens on port 32323 by issuing the console command: uopen_s1<CR>

• On the client side (PC, etc.) open a client that connects over UDP to the PIC32 server using port 32323. Use any network tools (netcat, etc.)
or special applications, scripts (TCL, Python, etc.) to transmit and receive data files.

4. Start app4 – UDP client:

• On the remote host side (PC, etc.) open a UDP server that listens for incoming connections on port 32324. Use any network tools (netcat,
etc.) or special applications, scripts (TCL, Python, etc.) to receive (and transmit) data files.

• Set the PIC32 client side address and port for the server to connect to, for example: usrv4_c1 192.168.100.101 32324<CR>

• Start the PIC32 UDP client socket by issuing the console command: uopen_c1<CR>

5. Now that you have the TCP/IP tasks running you can check the progress at run time. These commands give the RX and TX statistics showing
the amount of data transferred by each task:

• tstat_s1<CR>

• tstat_c1<CR>

• ustat_s1<CR>

• ustat_c1<CR>

6. Once the data transfer is completed, close the TCP/IP sockets (if not already closed by the remote party):

• tclose_s1<CR>

• tclose_c1<CR>

• uclose_s1<CR>

• uclose_c1<CR>

TCP/IP Task Descriptions and Commands

app1.c::TCP server

This task uses a TCP server socket that listens by default on port 9760 to implement a simple relay server. Any message that is received on that
TCP port will be relayed back to the originating socket. The following table lists and describes the available commands

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 494

Command Description

topen_s1 Opens the listening TCP server socket.

tmsg_s1 Sends a short message using this socket to the remote client.

tabort_s1 Sends an abort/RST to the remote client and stops the communication.

tclose_s1 Closes the socket and stops the communication.

ttxsize_s1 Sets the TX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 2048 bytes.

trxsize_s1 Sets the RX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 2048 bytes.

tdisplay_s1 Enables displaying of the received messages locally to the system console.

tstat_s1 Displays/clears the current TX and RX statistics for the current connection.

app2.c::TCP client

This task uses a TCP client socket to connect to a remote server that listens by default on port 9761. Any message that is received by the socket
can be optionally displayed locally. The client has the possibility of sending messages to the server. The following table lists and describes the
available commands.

Command Description

topen_c1 Opens the TCP client socket.

tmsg_c1 Sends a message to the remote server.

tabort_c1 Sends an abort/RST to the server and stops the communication.

tclose_c1 Closes the socket and stops the communication.

tsrv4_c1 Sets the server IPv4 address and port. The default values are 192.168.100.101 and 9761.

tasync_c1 Enables the continuous transmission of messages to the server.

tdisplay_c1 Enables displaying of the received messages locally to the system console.

tstat_c1 Displays/clears the current TX and RX statistics for the current connection.

app3.c::UDP server

This task uses a UDP server socket that listens by default on port 32323 to implement a simple relay server. Any message that is received on that
UDP port will be relayed back to the originating socket. The following table lists and describes the available commands.

Command Description

uopen_s1 Opens the listening UDP server socket.

uclose_s1 Closes the socket and stops the communication.

ustnet_s1 Selects the strict network option for the UDP socket (incoming connections from any network are allowed or only
from the network that initiated the first connection).

ustport_s1 Selects the strict port option for the UDP socket (incoming connections from any host port are allowed or only from
the port that was used when the connection was first initiated).

ustadd_s1 Selects the strict address option for the UDP socket (incoming connections from any host address are allowed or
only from the address that was used when the connection was first initiated).

udisplay_s1 Enables displaying of the received messages locally to the system console.

ustat_s1 Displays/clears the current TX and RX statistics for the current connection.

utxsize_s1 Sets the TX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 1024 bytes. Note that this value should not be made larger than 1460
for an Ethernet network (to avoid packets larger than the link MTU).

app4.c::UDP client

This task uses a UDP client socket to connect to a remote server that listens by default on port 32324. Any message that is received by the socket
can be optionally displayed locally. The client has the possibility of sending messages to the server. The following table lists and describes the
available commands.

Command Description

uopen_c1 Opens the UDP client socket.

umsg_c1 Sends a message to the remote server.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 495

uclose_c Closes the socket and stops the communication.

usrv4_c1 Sets the server IPv4 address and port. The default values are 192.168.100.101 and 32324.

uasync_c1 Enables the continuous transmission of messages to the server.

udisplay_c1 Enables displaying of the received messages locally to the system console.

ustat_c1 Displays/clears the current TX and RX statistics for the current connection.

utxsize_c1 Sets the TX buffer size of the server socket. The larger the buffer the more memory is used by the socket and the
more efficient is the transfer. Default value is 1024 bytes. Note that this value should not be made larger than 1460
for an Ethernet network (to avoid packets larger than the link MTU).

Micrium uC_OS_II Demonstrations

This section provides descriptions of the Micriµm µC/OS-II RTOS demonstrations.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks a user LED on a starter kit to show the RTOS threads that are running and to indicate status.

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-II source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-II
Basic Demonstration.

Description

To build this project, you must open the basic_ucos_II.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_II.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_ucos_II.X <install-dir>/apps/rtos/uC_OS_II/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_sk pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

pic32mz_sk pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in microMIPS
mode.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 496

http://www.micrium.com

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-II basic demonstration.

Description

In this demonstration, there is one user task and one hardware interrupt. The one user task, LEDBlinkTask, is responsible for toggling the user
LED to show that the RTOS and the application are up and running. The hardware interrupt is used by the RTOS to run the RTOS Tick. The
internal core timer is used as the source for the hardware interrupt.

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

Micrium uC/OS-III Demonstrations

This section provides descriptions of the Micriµm µC/OS-III RTOS demonstrations.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks a user LED on a starter kit to show the RTOS threads that are running and to indicate status.

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-III source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSIII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-III
Basic Demonstration.

Description

To build this project, you must open the basic_ucos_III.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_III.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_ucos_III.X <install-dir>/apps/rtos/uC_OS_III/basic

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 497

http://www.micrium.com

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_sk pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

pic32mz_sk pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mx_sk_mips16 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II in MIPS16
mode.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in microMIPS
mode

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-III basic demonstration.

Description

In this demonstration, there is one user task and one hardware interrupt. The one user task, LEDBlinkTask, is responsible for toggling the user
LED to show that the RTOS and the application are up and running. The hardware interrupt is used by the RTOS to run the RTOS Tick. The
internal core timer is used as the source for the hardware interrupt.

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this demonstration is not freely distributed. To obtain the proper licensing agreement go to the Micriµm website:
http://www.micrium.com. The Micriµm µC/OS-III source has been installed in the following location,
<install_dir>/third_party/rtos/MicriumOSIII/Software, so that the applicable MPLAB Harmony demonstrations can work.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Micriµm µC/OS-III
and MPLAB Harmony Graphics plus USB Library Demonstration.

Description

To build this project, you must open the usb_ucos_III.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 498

http://www.micrium.com

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/uC_OS_III/usb.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_ucos_III.X <install-dir>/apps/rtos/uC_OS_III/usb

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the Micriµm µC/OS-III and MPLAB Harmony USB Library demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged in to the starter kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed. The user LED, D3,
will toggle every 500 ms.

There are three tasks and four interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED, D3, every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all
USB data queued up by the application and physically writes it out to the USB hardware. The SYSCALL general exception is invoked by the RTOS
and is used to process the task context switch routine.

OPENRTOS Demonstrations

This section provides descriptions of the OPENRTOS RTOS demonstrations.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks the three user LEDs on a starter kit to show the RTOS threads that are running and to indicate status.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 499

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the OPENRTOS Basic
Demonstration.

Description

To build this project, you must open the basic_openrtos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/openrtos/basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_openrtos.X <install-dir>/apps/rtos/openrtos/basic

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_sk pic32mz_ec_sk This configuration runs on the PIC32MZ EC Starter Kit.

pic32mx_sk pic32mx_usb_sk2, pic32mx_usb_sk3, pic32mx_eth_sk,
and pic32mx_eth_sk2

This configuration runs on PIC32MX-based starter kits: PIC32
Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB
Starter Kit II, and PIC32 USB Starter Kit III.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit, PIC32 Ethernet Starter Kit II, PIC32 USB Starter Kit II, and PIC32 USB Starter Kit III

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the OPENRTOS basic demonstration.

Description

Once the demonstration is up and running an LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware. The demonstration blinks the three user LEDs on a starter kit to show the RTOS threads that are running and to indicate status.

cdc_com_port_dual

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

This RTOS based demonstration application creates a USB CDC Device that enumerates as two serial ports on the USB Host personal computer.
This application demonstrates the ability of the MPLAB Harmony USB Stack to operate in an Real-Time Operating System (this example uses
OPENRTOS) and to support multiple instances of the same device class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 500

Description

To build this project, you must open the cdc_com_port_dual.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/openrtos/cdc_com_port_dual.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_dual.X <install-dir>/apps/rtos/openrtos/cdc_com_port_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
in Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit in Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

Remove jumper JP1.

Running the Demonstration

Provides instructions on how to build and run the cdc_com_port_dual demonstration.

Description

Refer to the Running the Demonstration topic for the bare-metal (non RTOS) version of the cdc_com_port_dual demonstration applications for
running the demonstration.

The demonstration application contains six tasks. A description of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Device Layer Tasks function (USB_DEVICE_Tasks).
The priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks
are either in blocked state or not ready to run.

• The APP_USB_DEVICE_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed
for the application. It creates 4 tasks which implement the application logic. It attempts to open the Device Layer and then blocks on the
xSemaphoreBlockUsbConfigure semaphore. The xSemaphoreBlockUsbConfigure is given in the USB Device Layer Event Handler when the
device is configured by the Host. The tasks then resumes the 4 application logic tasks and suspends itself.

• The APP_CDC1Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC1 instance and then blocks on the
CDC1 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC2Read Task is created in the APP_USB_DEVICE_Open task. It schedules a read on the CDC2 instance and then blocks on the
CDC2 instance xSemaphoreCDCReadComplete semaphore. This semaphore is given in the Read Complete event in the CDC Application
Event Handler. The tasks will then post the data that it has received from the Host to the CDC 1 instance Message Queue.

• The APP_CDC1Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 2 message queue. When APP_CDC2Read
Task posts a message to this queue, the APP_CDC1Write gets ready to run and the writes the data (received on the queue) to the CDC 1. This
data is then transferred to the Host.

• The APP_CDC2Write Task is created in the APP_USB_DEVICE_Open task. It blocks on the CDC 1 message queue. When APP_CDC1Read
Task posts a message to this queue, the APP_CDC2Write gets ready to run and the writes the data (received on the queue) to the CDC 2. This
data is then transferred to the Host.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 501

cdc_msd_basic

Demonstrates host support for a composite USB Device in a RTOS application.

Description

This demonstration application creates a USB Host application that demonstrates operation of composite USB Device. The Host application
enumerates the CDC and MSD interfaces on the attached composite devices and then operates these in one application. The demonstration
application uses a RTOS to create thread that manage the CDC and MSD aspects of the Host application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this demonstration
application.

Description

To build this project, you must open the cdc_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/openrtos/cdc_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_msd_basic.X <install-dir>/apps/rtos/openrtos/cdc_msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB
Starter Kit II in Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place if the attached USB device is bus-powered. It should be removed if the attached USB device is self-powered.

Running the Demonstration

Provides instructions on how to build and run the cdc_msd_basic demonstration.

Description

This USB Host demonstration application exercises the CDC and MSD interfaces on the attached composite USB device.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Follow the directions for setting up and running the cdc_serial_emulator_msd USB device demonstration.

4. Connect the UART (P1) port on the Explorer 16 Development Board (running the cdc_serial_emulator_msd demonstration) to a USB Host
personal computer via a commercially available Serial-to-USB Dongle.

5. Start a terminal program on the USB Host personal computer and select the Serial-to-USB Dongle as the communication port. Select the baud
rate as 9600, no parity, 1 Stop bit and no flow control.

6. Connect the mini – B connector on the USB PICtail Plus Daughter Board, of the cdc_serial_emulator_msd demonstration setup, to the Type-A
USB host connector on the starter kit.

7. A prompt (DATA :) will be displayed immediately on the terminal emulation program.

8. Type a string less than 12 characters and press the <Enter> key. The string entered here will be stored in the MSD device in a file named
file.txt.

9. Step 8 can be repeated. Data entered in the prompt will be appended to the file.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 502

10. Unplug the USB Device from the Host and_connect_it a personal computer host to examine the contents of the Mass Storage Device. This
should contain a file named file.txt and this should contain the data that was entered at the terminal program prompt.

Tasks

This USB Host demonstration application contains four tasks. Descriptions of these tasks is as follows:

• The FrameworkTasks task is created in the SYS_Tasks function. This task calls the USB Host Layer Tasks function (USB_HOST_Tasks). The
priority of this task is designed to be the lowest when compared to the priorities of other tasks. Hence this tasks runs when all other tasks are
either in blocked state or not ready to run.

• The APP_USB_HOST_Open task is created in the APP_Tasks function. This task creates all the semaphores and message queues needed for
the application. It creates two tasks that implement the application logic. It attempts to open the Host Layer and then enable USB Host
Operation. The task then resumes the two application logic tasks and suspends itself.

• The APP_USBHostCDCTask Task is created in the APP_USB_HOST_Open task. It blocks on xSemaphoreUSBCDCAttach semaphore. This
semaphore is given in the Application CDC Class Driver event handler when a CDC device is enumerated. The task then prints a prompt and
schedules a read from the CDC interface of the attached USB device. When data is available, it posts the xSemaphoreCDCReadComplete
semaphore.

• The APP_USBHostMSDTask Task is created in the APP_USB_HOST_Open task. It blocks on the xSemaphoreUSBMSDAttach semaphore.
This semaphore is given in the Application MSD event Handler when a MSD device is enumerated. The task then mounts the attached storage
media and then blocks on the xSemaphoreCDCReadComplete semaphore. The xSemaphoreCDCReadComplete semaphore is given by the
APP_USBHostCDCTask task when the CDC Host has received data. The APP_USBHostMSDTask Task will then open a file on the mounted
drive and will append the data (received from CDC) in the file. It closes the file, and then appends on xSemaphoreCDCReadComplete
semaphore again.

SEGGER embOS Demonstrations

This section provides descriptions of the SEGGER embOS RTOS demonstrations.

basic

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

The demonstration blinks the LED1 on a starter kit to show the RTOS threads are running and to indicate status.

Legal Disclaimer

The source code for this SEGGER embOS RTOS demonstration is not freely distributed. To obtain source code and the proper licensing
agreement visit the SEGGER embOS website: https://www.segger.com/license-models.html.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER embOS
Basic Demonstration.

Description

To build this project, you must open the basic_embos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/embos/basic.

 Note:
The floating point options used may depend on the libraries shared by SEGGER. The default libraries shared with MPLAB
Harmony uses the soft floating point (mfloat-abi=softfp) option.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

basic_embos.X <install-dir>/apps/rtos/embos/basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 503

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

pic32mx_usb_sk2_mips16 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II in MIPS16
mode.

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_microMIPS pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit in microMIPS
mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SEGGER embOS basic demonstration.

Description

In this demonstration, there is one user task and one hardware interrupt. A user task is responsible for toggling the user LEDs to show that the
RTOS and the application are up and running. The hardware interrupt is used by the RTOS to run the RTOS Tick. The internal core timer is used
as the source for the hardware interrupt.

Once the demonstration is up and running a LED will toggle every 500 ms. This demonstration will show the RTOS running with the selected
hardware.

usb

This section provides information on the supported demonstration boards, how to configure the hardware (if needed), and how to run the
demonstration.

Description

Legal Disclaimer

The source code for this SEGGER embOS RTOS demonstration is not freely distributed. To obtain source code and the proper licensing
agreement visit the SEGGER embOS website: https://www.segger.com/license-models.html.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SEGGER embOS
and MPLAB Harmony Graphics plus USB Library Demonstration.

Description

To build this project, you must open the usb_embos.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/rtos/embos/usb.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

usb_embos.X <install-dir>/apps/rtos/embos/usb/firmware

MPLAB X IDE Project Configurations

Volume I: Getting Started With MPLAB Harmony Applications Help RTOS Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 504

This table lists and describes the supported configurations of the demonstration, which are located within ./src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_sk pic32mz_ef_sk This configuration runs on the PIC32MZ EF Starter Kit.

pic32mx_usb_sk2 pic32mx_usb_sk2 This configuration runs on the PIC32 USB Starter Kit II.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the SEGGER embOS and MPLAB Harmony USB Library demonstration.

Description

Power the board, open the demonstration with MPLAB X IDE, and then build and load the demonstration. A USB keyboard will be emulated when
a micro USB cable is plugged in to the starter kit. Keystrokes, a-z and 1-9, will be sent when the push button SW3 is pressed. A user LED will
toggle every 500 ms.

There are three tasks and four interrupts used in this application/system.

SystemUSBDeviceTask is the highest priority task and is responsible for getting all USB data queued up by the application ready for sending over
the USB by calling the appropriate MPLAB Harmony USB stack function. ApplicationUSBDeviceTask is the next highest priority task.
ApplicationUSBDeviceTask emulates the keyboard key presses when it detects that the push button SW3 is being pressed.
ApplicationLEDblinkTask is the lowest priority task and toggles the user LED every 500 ms.

CPU core timer hardware interrupt is used by the RTOS to source the RTOS Tick. The Timer2 hardware interrupt is used to call the MPLAB
Harmony Timer Driver function. USB general event interrupt is used to call the appropriate MPLAB Harmony USB driver function, which takes all
USB data queued up by the application and physically writes it out to the USB hardware. The SYSCALL general exception is invoked by the RTOS
and is used to process the task context switch routine.

TCP/IP Demonstrations

This section provides descriptions of the TCP/IP demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

TCP/IP and Wi-Fi® Demonstration Applications Help

Description

Important!

1. The TCP/IP demonstration applications assume that IPv4 is enabled. If IPv4 is disabled in MHC, the app.c code will no
longer build and needs to be updated to remove the IPv4 dependencies.

2. The Ethernet Controller requires a minimum clock frequency to be able to keep up with 100 Mbps traffic. Currently, this
frequency must be at least 40 MHz for PIC32MX/PIC3MZ platforms. This is a minimum value, and depending on the system
bus load, the actual running frequency may need to be higher than this.

TCP/IP Demonstrations

This section describes Microchip's TCP/IP Demonstration projects, including information about demonstration-hardware compatibility and also
provides the information about how to configure and run the demonstrations.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 505

http://www.microchip.com/mplabharmony

Wi-Fi Demonstrations

This distribution package contains a variety of Wi-Fi-based firmware projects that demonstrate the capabilities of the MPLAB Harmony Wi-Fi
services and TCP/IP Stack running on PIC32 devices. This section describes the hardware requirements and procedures to run these firmware
projects on Microchip demonstration and development boards.

Wi-Fi Console Commands

This section describes the demonstration support commands available for the Wi-Fi Web Server and EasyConfig demonstrations.

Description

Both the Web Server and the EasyConfig demonstrations support Wi-FI Console commands, which enable control over the Wi-Fi settings.

Command: eraseconf

Parameters Description

None. Wi-Fi console command to erase saved Wi-Fi configuration in memory.

Command: iwconfig

Parameters Description

[ssid <name>] name: Specifies the name of the SSID (1-32 ASCII characters).

[mode <idle |
managed>]

idle: Disconnected from the current configuration.

managed: Connects in infrastructure mode to the currently set SSID.

[power <enable |
disable>]

enable: Enables all Power-Saving features (PS_POLL). Will wake up to check for all types of traffic (unicast, multicast, and
broadcast).

disable: Disables any Power-Saving features. Will always be in an active power state.

[security <mode>] mode: open/wep40/wep104/wpa/wpa2/pin/pbc. For example:
iwconfig security open

iwconfig security wep40 <key>

iwconfig security wep104 <key>

iwconfig security wpa <key>

iwconfig security wpa2 <key>

iwconfig security pin <pin>

iwconfig security pbc

[scan] Starts a Wi-Fi scan.

[scanget
<scan_index>]

scan_index: Retrieves the scan result after the scan completes (1 - n).

Command: mac

Parameters Description

None. Wi-Fi console command to retrieve the MAC address of the Wi-Fi module.

Command: readconf

Parameters Description

None. Wi-Fi console command to read saved Wi-Fi configuration in memory.

Command: saveconf

Parameters Description

None. Wi-Fi console command to save Wi-Fi configuration to memory.

Demonstrations

Description of TCP/IP Stack Library Demonstration Application.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 506

Description

PHY Driver Support

All of the PIC32MX and PIC32MZ projects that are part of the distribution and use the Microchip reference development boards are preconfigured
with specific PHY Drivers. Where the board supports different PHY daughter boards, the default PHY could be changed. To use a different PHY
for a specific board the following must be done:

1. Use the MHC to configure your project to use the correct PHY and make sure that both the correct PHY address and configuration flags are
used for the particular PHY daughter board. The MII/RMII and I/O configuration flags for the PHY board should match the project configuration
fuses.

2. Regenerate the project and make sure that the new PHY driver is selected for the configuration that you're using.

Alternatively, you can manually set up your project, as follows:

• The project should select the PHY driver that corresponds to the PHY Daughter Board (i.e, LAN8720, LAN8740, LAN9303, etc.) in use for the
selected configuration

• Modify for the TCPIP_EMAC_PHY_ADDRESS and TCPIP_EMAC_PHY_CONFIG_FLAGS to have the correct PHY address (the PHY address
for both the SMSC PHY Daughter Boards is usually zero, for example) and the configuration flags (MII/RMII, I/O pin configuration, etc.)

• Or update directly the tcpip_stack_init.c:: tcpipMACPIC32INTInitData structure to have the correct PHY address and the configuration flags

• Make sure that the configuration fuses are properly selected to match your hardware and PHY board

• Rebuild the project

berkeley_tcp_client

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet client that uses the Berkeley API to create a TCP/IP connection to a web server.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley TCP Client
Demonstration.

Description

To build this project, you must open the berkeley_tcp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_tcp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_tcp_client.X <install-dir>/apps/tcpip/berkeley_tcp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley TCP Client on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley TCP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley TCP Client on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley TCP Client on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 507

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

For all hardware, ensure the router or switch is connected to the Internet.

There is only one command available in the demonstration from the serial port:

openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

After that one command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port.

berkeley_tcp_server

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet server that uses the Berkeley API to create a TCP/IP echo server on port 9764.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley TCP
Server Demonstration.

Description

To build this project, you must open the berkeley_tcp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_tcp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_tcp_server.X <install-dir>/apps/tcpip/berkeley_tcp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 508

http://www.microchip.com

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley TCP Server on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley TCP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley TCP Server on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley TCP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a TCP/IP connection on 9760. The demonstration will echo back
everything it receives along the connection.

berkeley_udp_client

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet client that uses the Berkeley API to create a UDP/IP connection to a specified port.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley UDP Client
Demonstration.

Description

To build this project, you must open the berkeley_udp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_udp_client.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 509

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_udp_client.X <install-dir>/apps/tcpip/berkeley_udp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley UDP Client on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley UDP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley UDP Client on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley UDP Client on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

There are three sequential commands that can be used from the console:

• setudppacketoptions <hostname> <port> <message> - This command specifies where to send the UDP packet and what to have in
the message

• getudppacketoptions - This command displays the current options

• sendudppacket - This command sends a UDP packet

After the sendudppacket command is input, the demonstration will make a DNS query to look up the host name and send a UDP packet to that
host.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 510

The output message will be received by the UDP server and by the UDP port that is configured by the command setudppacketoptions.

berkeley_udp_relay

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This application demonstrates the use of multiple sockets for both sending and receiving. There are three different sub-functions of this application:

• UDP Relay, which accepts UDP packets on one socket, and sends the packets out on a different socket

• UDP Relay Client, which generates UDP traffic that is compatible with the UDP Relay Server

• UDP Relay Server, which receives and checks traffic for a packet count and reports is any packets are dropped

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley UDP Relay
Demonstration.

Description

To build this project, you must open the berkeley_udp_relay.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_udp_relay.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_udp_relay.X <install-dir>/apps/tcpip/berkeley_udp_relay/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley UDP Relay on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley UDP Relay on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley UDP Relay on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley UDP Relay on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 511

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

This application demonstrates a simple UDP packet relay. Functionality has also been put in place to generate packets and to receive packets on
the same device. IPv6 has not been tested.

Demonstration Commands

There is are several different commands available in the demonstration from the console port:

General Application Commands:

• current - Displays the current configuration

• start - Starts the packet relay service

• stop - Stops the packet relay service

• reportinterval <seconds> - Sets the interval between reports to the console

Relay Service Configuration:

• relayhost <host name> - Sets the host to which packets are to be relayed

• relayport <port number> - Sets the port to which packets are to be relayed

• ipv4port <port number> - Sets the IPv4 port that the relay server will listen to for packets to relay

• ipv6port <port number> - Sets the IPv6 port that the relay server will listen to for packets to relay

Relay Client Configuration and Commands:

• relayclienthost <host name> - Sets the host to which packets are to be sent

• relayclientport <port number> - Sets the port to which packets are to be sent

• relayclientiter <number> - The number of packets to generate

• relayclientstart - Starts the relay client. This command must be used after the general application start. After a start is called, and the first
packet is received by either the relay or the relay server, periodic updates will be sent to the console with information about the number of
packets and bytes received.

berkeley_udp_server

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet server that uses the Berkeley API to create a UDP/IP echo server on port 9764.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Berkeley UDP
Server Demonstration.

Description

To build this project, you must open the berkeley_udp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/berkeley_udp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

berkeley_udp_server.X <install-dir>/apps/tcpip/berkeley_udp_server/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 512

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the Berkeley UDP Server on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the Berkeley UDP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the Berkeley UDP Server on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the Berkeley UDP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a UDP/IP connection on 9760. The demonstration will echo back
everything it receives along the connection.

snmpv3_nvm_mpfs

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

SNMPv3 NVM MPFS demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SNMPv3 NVM
MPFS Demonstration.

Description

To build this project, you must open the snmpv2_nvm_mpfs.X project in MPLAB X IDE, and then select the desired configuration.

The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) has the snmp.bib file along with other web page files stored in

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 513

internal Flash and are accessed through the MPFS API.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/snmpv3_nvm_mpfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

snmpv3_nvm_mpfs.X <install-dir>/apps/tcpip/snmpv3_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk2 Demonstrates the SNMPv3 NVM MPFS on the PIC32 Ethernet Starter Kit II in Interrupt
mode and dynamic operation.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the SNMPv3 NVM MPFS on the PIC32MZ EF Starter Kit in Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-board the starter kit in use to a USB port on the development computer using the USB cable provided in
the kit.

3. Connect the RJ-45 Ethernet port on the starter kit board to a network hub or an Ethernet port on the development computer using the Ethernet
patch cord provided in the kit.

4. Build, download, and run the demonstration project on the target board.

5. A SNMP and SNMPv3 server is hosted by the demonstration application.

6. Run tcpip_discoverer to get the IPv4 and IPv6 address for the board.

7. Open a SNMP manager (iREASONING SNMP manager is recommended) and configure the IPv4 or IPv6 address.

 Notes:
1. Refer to the iREASONING Networks MIB Browser section in the Third-Party help for complete details on using and

configuring the application using the iREASONING SNMP Manager.

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 514

SNMP MIB Browser

Several SNMP MIB browsers are available. Users can also install a customized MIB browser specific to their application.

SNMP Get, GetNext, GetBulk, Set request and response are working as expected for SNMP v1/v2/v3 versions.

• For SNMP v2c , the Agent is configured with three Read communities ("public", "read", " ") and three Write communities
("private","write","public").

• For SNMP v3, the Agent is configured as per the following table:

Type USER 1 USER 2 USER 3

USM User microchip SnmpAdmin root

Security Level auth, priv auth, no priv no auth, no priv

Auth Algorithm MD5 SHA1 N/A

Auth Password auth12345 ChandlerUS N/A

Privacy Algorithm AES N/A N/A

Privacy Password priv12345 N/A N/A

The Microchip SNMP Stack supports both TRAP version 1 and TRAP version 2. This demonstration trap output is a multi-varbind SNMPv3 TRAP
version 2. Users may be required to configure the Trap receiver as per the SNMP browser selection.

HTTP Configuration for SNMPv2c Community

It is possible to dynamically configure the Read and Write community names through the SNMP Configuration web page. Access the web page
using http://mchpboard_e/mpfsupload or http://<Board IP address>(for IPv6 it should be http://<Ipv6 address>:80/index.html), and then access the
SNMP Configuration web page through the navigation bar. Use "admin" for the username and "microchip" for the password.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

snmpv3_sdcard_fatfs

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

SNMPv3 SD Card FAT File System demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 515

http://mchpboard_e/mpfsupload

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the SNMPv3 SD Card
FAT FS Demonstration.

Description

To build this project, you must open the snmpv3_sdcard_fatfs.X project in MPLAB X IDE, and then select the desired configuration.

The SD Card FAT FS has the snmp.bib file with other web pages stored in an external SD card and is accessed through a FAT FS API.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/snmpv3_sdcard_fatfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

snmpv3_sdcard_fatfs.X <install-dir>/apps/tcpip/snmpv3_sdcard_fatfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk2_sd_mmc_pictail pic32mx_eth_sk2 Demonstrates the access of a SNMP file on a microSD card through the FAT file
system on the PIC32 Ethernet Starter Kit using the Starter Kit I/O Expansion Board
with the PICtail daughter board for SD and MMC cards. The demonstration runs in
Interrupt mode and dynamic operation.

pic32mz_ef_sk pic32mz_ef_sk+meb2 Demonstrates the access of a SNMP file on a microSD card through the FAT file
system on the PIC32MZ EF Starter Kit and the MEB II board combination. The
demonstration runs in Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit with the MEB II

1. Connect the starter kit to the application board connector on the MEB II.

2. Make sure a microSD card is formatted and loaded with the snmp.bib file along with the web pages provided in the
<install-dir>/apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages folder.

3. Insert the microSD card with the web pages into the microSD card slot (J8) on the MEB II.

PIC32 Ethernet Starter Kit II with the Starter Kit Expansion Board

1. Connect the PIC32 Ethernet Starter Kit II to the I/O expansion board.

2. Make sure a SD card is formatted and loaded with the snmp.bib file along with the web pages provided within the
<install-dir>apps/tcpip/snmpv3_sdcard_fatfs/firmware/src/web_pages folder.

3. Insert the SD card into the PICtail Daughter Board for SD and MMC cards with the snmp.bib file along with web pages into the SPI1 slot (J4 -
starts slot count from 1) of the PIC32 I/O Expansion Board.

 Note:
The SD card on the PICtail daughter board should face the PIC32 Ethernet Starter Kit II.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

Please refer to the Running the Demonstration section for the snmpv3_nvm_mpfs configuration, as the process is the same for this configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 516

 Note:
Ensure that the SD card with the snmp.bib file and the Web pages is inserted as detailed in Configuring the Hardware.

tcpip_tcp_client

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet client that uses the MPLAB Harmony TCP API to create a TCP/IP connection to a web server.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP TCP Client
Demonstration.

Description

To build this project, you must open the tcpip_tcp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_tcp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_tcp_client.X <install-dir>/apps/tcpip/tcpip_tcp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP TCP Client on the PIC32MZ EF Starter Kit.

pic32mx_eth_sk2_enc28j60 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client on the PIC32 Ethernet Starter Kit II connected
to the 10 Mbps Ethernet PICtail Plus Daughter Board and Starter Kit I/O Expansion
Board using the ENC28J60 Driver Library.

pic32mx_eth_sk2_encx24j600 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client on the PIC32 Ethernet Starter Kit II connected
to the Fast 100Mbps Ethernet PICtail Plus Daughter Board and Starter Kit I/O
Expansion Board using the ENCx24J600 Driver Library.

pic32mz_da_sk_intddr pic32mz_da_sk_intddr Demonstrates the TCP/IP TCP Client on the PIC32MZ Embedded Graphics with
Internal DRAM (DA) Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II, Fast 100Mbps Ethernet PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 517

The Fast 100Mbps Ethernet PICtail Plus Daughter Board is connected to J4 on the Starter Kit I/O Expansion Board board by sliding the J2 PICtail
Plus (SPI) card edge into the top of the connector so that the white arrows on the two boards line up. The PICtail daughter board is inserted so that
it uses SPI1. Pins 26 and 47 on J11 need to be jumpered to allow the CS line to be controlled by the PIC32. ThePIC32 Ethernet Starter Kit II is
connected to J1 on the Starter Kit I/O Expansion board. Please refer to the following figure for more detail.

PIC32 Ethernet Starter Kit II, Ethernet PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board

The 10 Mbps Ethernet PICtail Plus Daughter Board is connected to J4 on the Starter Kit I/O Expansion Board board by sliding the J2 PICtail Plus
(SPI) card edge into the top of the connector. The PICtail daughter board is inserted so that it uses SPI1. Pins 26 and 47 on J11 need to be
jumpered to allow the CS line to be controlled by the PIC32. The PIC32 Ethernet Starter kit II is connected to J1 on the Starter Kit I/O Expansion
board.

Using the previous figures as a reference, replace the Fast 100 Mbps Ethernet PICtail Plus Daughter Board with the Ethernet PICtail Plus
Daughter Board for this configuration. The RJ45 of the PICtail should be towards the edge connectors of the Starter Kit I/O Expansion Board.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

For all hardware, ensure that the router or switch is connected to the Internet.

There is only one command available in the demonstration from the serial port:

openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/.

After that one command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port.

tcpip_tcp_client_server

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet client and an Internet server that uses the MPLAB Harmony TCP API. This demonstration is a
combination of the TCP/IP Client and TCP/IP Server application.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 518

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP TCP Client
Server Demonstration.

Description

To build this project, you must open the tcpip_tcp_client_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_tcp_client_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_tcp_client_server.X <install-dir>/apps/tcpip/tcpip_tcp_client_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Client Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP TCP Client Server on the PIC32MZ EF Starter Kit.

pic32mz_ef_curiosity pic32mz_ef_curiosity Demonstrates the TCP/IP TCP Client Server on the PIC32MZ EF Curiosity Development
Board, with the PIC32MZ2048EFM100 microcontroller. This configuration is generated for
standalone mode. All necessary files are copied under its configuration folder, and so it can be
built and run without the MPLAB Harmony framework.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Curiosity Development Board

1. Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

2. Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro-B USB cable connected to micro-B port
(J3).

3. Ensure that jumper is not present in the J13 header to use the Curiosity board in device mode.

4. Plug in a USB cable with a micro-B type connector to Micro-B port (J12), and plug the other end into your computer.

5. Ensure that you have a LAN8740 Ethernet PHY DB installed on the PIC32MZ EF Curiosity Development Board (header J18).

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 519

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For the purpose of this demo, both the Target board and the Host PC should be in the same network. The host PC can be connected to a router
via an Ethernet cable or Wi-Fi. The target board should be connected to the router via an Ethernet cable. Please refer to the following connection
diagram.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 520

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

For all hardware, ensure that the router or switch is connected to the Internet.

There is only one command available in the demonstration from the serial port:

openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

After that one command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 521

To test the Server part of the demo, we require a program that acts as a TCP/IP client. In this demonstration, we use the program, SocketTest
(http://sockettest.sourceforge.net/). This demonstration has been tested with SocketTest v3.0.

1. Open the SocketTest software and set the configuration as shown in the following figure.

2. Press the Connect button on the SocketTest software after setting the configuration. The serial terminal indicates that the connection has been
established.

3. Type any message in the message box of the SocketTest program, and press the Send button. The Server running on the Curiosity
development board will echo back the message to the SocketTest program.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 522

tcpip_tcp_server

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet server that uses the MPLAB Harmony TCP API to create a TCP/IP echo server on port 9764.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP TCP Server
Demonstration.

Description

To build this project, you must open the tcpip_tcp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_tcp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_tcp_server.X <install-dir>/apps/tcpip/tcpip_tcp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP TCP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP TCP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 523

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a TCP/IP connection on 9764. The demonstration will echo back
everything it receives along the connection.

tcpip_udp_client

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet client that uses the MPLAB Harmony UDP API to create a UDP/IP connection to a specified
port.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP UDP Client
Demonstration.

Description

To build this project, you must open the tcpip_udp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_udp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_udp_client.X <install-dir>/apps/tcpip/tcpip_udp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP UDP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP UDP Client on the PIC32MZ EF Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 524

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

Ensure a UDP Server is running on the network that can respond to client requests.

There are three commands that can be used from the console:

• setudppacketoptions <hostname> <port> <message> - This command specifies where to send the UDP packet and what to have in
the message

• getudppacketoptions - This command displays the current options

• sendudppacket - This command sends a UDP packet

After the sendudppacket command is input, the demonstration will make a DNS query to look up the host name and send a UDP packet to that
host.

tcpip_udp_client_server

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet client and an Internet server that uses the MPLAB Harmony UDP API. This demonstration
shows how the UDP/IP loopback works, and is a combination of the TCP/IP UDP Client and TCP/IP UDP Server application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP UDP Client
Server Demonstration.

Description

To build this project, you must open the tcpip_udp_client_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_udp_client_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_udp_client_server.X <install-dir>/apps/tcpip/tcpip_udp_client_server/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 525

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP UDP Client Server on the PIC32 Ethernet Starter Kit
II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP UDP Client Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

There are three commands that can be used from the console:

• setudppacketoptions <hostname> <port> <message> - This command specifies where to send the UDP packet and what to have in
the message

• getudppacketoptions - This command displays the current options

• sendudppacket - This command sends a UDP packet

After the sendudppacket command is input, the demonstration will make a DNS query to look up the host name and send a UDP packet to that
host.

The UDP Client can be configured to send UDP data to the host, configured using the commands previously described.

The UDP server in this demonstration waits for the client connection and data at port 9760.

As the server receives the data from the external UDP client, the data is shared to the UDP Client to transmit back to the external UDP Server.

The data received over UDP by the server is looped backed using the UDP Client.

tcpip_udp_server

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This configuration demonstrates creating an Internet server that uses the MPLAB Harmony UDP API to create a UDP/IP echo server on port 9760.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP UDP Server
Demonstration.

Description

To build this project, you must open the tcpip_udp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/tcpip_udp_server.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 526

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

tcpip_udp_server.X <install-dir>/apps/tcpip/tcpip_udp_server/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the TCP/IP UDP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the TCP/IP UDP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is then ready to accept a UDP/IP connection on 9760. The demonstration will echo back
everything it receives along the connection.

web_net_server_nvm_mpfs

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

Web Net Server Non-volatile Memory (NVM) MPFS TCP/IP demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP Web Net
Server Demonstration.

Description

To build this project, you must open the pic32_eth_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_net_server_nvm_mpfs.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 527

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/tcpip/web_net_server_nvm_mpfs/firmware

pic32_eth_wifi_web_server.X <install-dir>/apps/tcpip/web_net_server_nvm_mpfs/firmware

pic32_wifi_web_server.X <install-dir>/apps/tcpip/web_net_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the web server hosted on internal Flash through the Microchip
Proprietary File System (MPFS) on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the web server hosted on internal Flash through the MPFS on
the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the web net server hosted on internal Flash through the MPFS
on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_ioexp_winc_freertos pic32mz_ef_sk Demonstrates the web server hosted on internal Flash through the MPFS on
the PIC32MZ EF Starter Kit and the WINC1500 PICtail/PICtail Plus Daughter
Board.

pic32mx795_pim_e16_winc_freertos pic32mx795_pim+e16 Demonstrates the web net server hosted on internal Flash through the MPFS
on the PIC32MX795F512L CAN-USB PIM with the Explorer 16/32
Development Board and the WINC1500 PICtail/PICtail Plus Daughter Board.

pic32mx795_pim_e16_wincclick_freertos pic32mx795_pim+e16 Demonstrates the web net server hosted on internal Flash through the MPFS
on the PIC32MX795F512L CAN-USB PIM with the Explorer 16/32
Development Board and the MIKROE-2046 Wi-Fi 7 Click Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit with the Starter Kit I/O Expansion Board, WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board, and PIC32MZ Starter Kit
Adapter Board

The following figures show the necessary configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 528

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM and the MikroElektronika WiFi 7 Click Board (with on-board
WINC1500 Wi-Fi module

The following figure shows the necessary configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 529

Explorer 16 Development Board with the PIC32MX795F512L CAN-USB PIM and WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board

The following figure shows the necessary configuration.

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and WINC1500 Wi-Fi
PICtail/PICtail Plus Daughter Board

• Connect the WINC1500 Wi-FI PICtail/PICtail Daughter Board into the PICtail Plus slot (J63). The module should face into the main board and

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 530

be placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control.

The following figure shows the hardware configuration.

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and the MikroElektronika WiFi 7
Click Board (with on-board WINC1500 Wi-Fi module).

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 531

Configuring the MHC

Provides information on the MHC configuration for the demonstration.

Description

MHC Configuration:

1. From Harmony Framework Configuration > TCPIP Stack select HTTP NET Server.

2. Leave the default settings. The HTTP server listening port should be already set to 443 for encrypted connections, as shown in the following
figure; however, change this value to 80 if unencrypted connection is required:

3. Enable the MPLAB Harmony Networking Presentation Layer, as follows:

• Ensure that the TCP/IP stack is used as transport layer

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 532

• Select Support Stream Connections? (for TCP support)

• Select Support Server Connections? (for HTTPS support)

• Select Support Client Connections? (for encrypted SMTP support)

• Select Support Client Certificate? and Support Server Certificate? (as appropriate)

4. Enable Third Party Libraries > TCPIP > wolfSSL > Use wolfSSL. Ensure that the wolfSSL client and wolfSSL server are enabled depending on
your HTTP and SMTP selection, as shown in the following figure:

5. As shown in the following figure, select HTTP Net Server from Harmony Framework Configuration >TCPIP Stack. Ensure that the “Enable the
Processing SSI Commands” is enabled. Leave the default settings or expand the item and adjust to your application needs.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 533

6. This version of the HTTP Net MHC configuration allows for the explicit selection of the dynamic variables processing. Ensure that this option is
also selected.

 Note:
For demonstrations that use SSI, the file inclusion is now done in a standard way using .htm files.

For example, <!--#include virtual="header.htm">. These files may contain dynamic variables, other SSI commands, or
include other files. As shown in the following figure, ensure that when using the mpfs2.jar image generation tool that *.htm is
added using Advanced Settings > Do Not Compress.

7. Set the following MHC configuration to enable Wi-Fi network connection.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 534

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Ethernet Web Net Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e or http://mchpboard_c), and then pressing Enter.

 Notes:
1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the

hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

3. With Wi-Fi network connection, the HTTP NET Server demonstration is accessible in duo-port mode (i.e., Ethernet and
Wi-Fi). To access the HTTP NET Server pages on a web browser through the Wi-Fi connection, use the IPv4/IPv6 address
assigned to the Wi-Fi connection.

Demonstration Process

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the USB debugger port on-board the starter kit in use to a USB port on the Development computer using the USB cable provided in
the kit.

3. Connect the RJ-45 Ethernet port on the starter kit board to a network hub or an Ethernet port on the development computer using the Ethernet
patch cord provided in the kit.

4. Build, download, and run the demonstration project on the target board.

5. A HTTP server is hosted by the demonstration application. Open_a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e or http://mchpboard_c), and then pressing Enter.

The demonstration application features following:

• Real-time Hardware Control and Dynamic Variables - On the Overview page the LEDs can be clicked to toggle the LEDs on the PIC32
Ethernet Starter Kit. The buttons on the PIC32 Ethernet Starter Kit can be pressed to toggle the Buttons on the web page. The dynamic
variables can be updated in real-time on the HTTP server.

 Note:
The LED functionality portion of the demonstration is somewhat limited due to issue related to the functional multiplexing on GPIO
and Ethernet pins on different supported hardware.

• Form Processing - Input can be handled from the client by using GET and POST methods (this functionality controls the on-board LEDs and
will be operational only on Explorer 16 Development Board)

• Authentication - Shows an example of the commonly used restricted access feature

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 535

• Cookies - Shows an example of storing small text stings on the client side

• File Uploads - Shows an example of file upload using the POST method. The HTTP server can_accept_a user-defined MPFS/MPFS2 image
file for web pages.

• Send E-mail - Shows simple SMTP POST methods

• Dynamic DNS - Exercises Dynamic DNS capabilities

• Network Configuration - The MAC address, host name, and IP address of the PIC32 Ethernet Starter Kit can be viewed in the Network
Configuration page and some configurations can be updated

• MPFS Upload - A new set of web pages can be uploaded to the web server using this feature, which is accessed through
http://mchpboard_e/mpfsupload.

 Notes:
1. The location of the MPFS image is fixed at the beginning of the Flash page (aligned to the page boundary). The size of the

MPFS upload is limited to 64K in the demonstration, which it can be expanded by changing NVM_MEDIA_SIZE to the
desired size (restricted based on the available size) and overriding the EBASE address using the following linker command:

• --defsym=_ebase_address=0x9D0xxxx (where, xxxx = 9D000000+NVM_MEDIA_SIZE)

2. The MPFS UPLOAD functionality has to be enabled when the project is built.

web_photoframe_demo

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

The demonstration application creates a Web Photoframe that displays images, in the form of a slideshow on a web browser by connecting to a
web server hosted on PIC32 Development board, over Ethernet or Wi-Fi interface. The images are stored on a micro SDCARD connected to the
PIC32 development board.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 536

http://mchpboard_e/mpfsupload

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Web
Photoframe Demonstration.

Description

To build this project, you must open the pic32_eth_wifi_photoframe.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_photoframe.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/tcpip/web_photoframe/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ef_curiosity pic32mz_ef_curiosity FreeRTOS version of the demonstration running on the PIC32MZ EF Curiosity
Development board with the on-board MRF24WN module.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Curiosity Development Board with on-board MRF24WN0MA module

• Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

• Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro-B USB cable connected to Micro-B port
(J3)

• Ensure that a jumper is not present in the J13 header to use the PIC32MZ EF Curiosity Board in Device mode

• Connect a USB cable with a micro-B type connector to Micro-B port (J12), and connect the other end to your computer

• Ensure that you have a LAN8740 Ethernet PHY DB installed on the PIC32MZ EF Curiosity Development Board (header J18)

• Ensure that you have a microSD click board on the microBUS1 (J5) connector of the PIC32MZ EF Curiosity Development Board

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 537

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For the purpose of this demo, both the Target board and the Host PC should be in the same network.

The host PC can be connected to a router via an Ethernet cable or WiFi. The Target board should be connected to the router via an Ethernet
cable. Please refer to the connection diagram shown below.

The SDCARD should be loaded with index.htm and the images folder with .jpg images. The index.htm and the images folder can be found
at the following location: <install-dir>/apps/tcpip/web_photoframe/firmware/src/web_pages.

1. Load the demonstration project into MPLAB X IDE.

2. Connect the USB debugger port on-board the starter kit to a USB port on the development computer using the USB cable provided in the kit.

3. A USB cable needs to be connected to the micro-B USB connector on the bottom of the starter kit in use. When the demonstration runs, it will
create a USB CDC device on the USB bus. The demonstration can be executed once you have connected to this device through a standard
terminal program, set the baud rate to 921,600 baud, and a valid IP address has been received by the device.

4. Copy the files index.htm.

5. Build, download, and run the demonstration project on the board.

6. Connect to the board through a standard terminal program.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 538

7. In the previous image we can see that the board scans for local Access Points and outputs the results to the serial console. After the scan
results, the MRF24WN goes into SoftAP mode.

8. To run the demonstration on an Ethernet Interface, open a web browser on the host PC and type the IP address for the Ethernet Interface
(PIC32INT IPv4 Address) obtained from the output of the serial terminal.

9. The web browser will load the application web page hosted by the SDCARD. And the .jpg images stored in the SDCARD will be displayed on
the web page in a scrolling fashion. Press the “Pause” button to pause the slideshow.

10. From the host PC, connect to the MCHPSoftAP access point, which is the SoftAP network started by the demonstration. Then, bring up a web
page by entering the IP address of the SoftAP network into the browser. This is the IP address displayed in step 6 (e.g., 192.168.1.1). The
application web page will be displayed with the slideshow of the images.

web_server_nvm_mpfs

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

Web Server Non-volatile Memory (NVM) MPFS TCP/IP demonstrations.

pic32_eth_web_server

This section describes the steps necessary to begin using the PIC32 Ethernet Web Server Demonstration Application.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 539

Description

This demonstration exercises the HTTP web server running on PIC32 devices. The Non-Volatile Memory (NVM) Microchip Proprietary File System
(MPFS) web server demonstration has the web pages stored in internal Flash and are accessed through the MPFS API.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the TCP/IP Web Server
Demonstration.

Description

To build this project, you must open the pic32_eth_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_nvm_mpfs.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/tcpip/web_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the web server hosted on internal Flash through Microchip proprietary file
system on the PIC32 Ethernet Starter Kit II.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the web server hosted on internal Flash through Microchip proprietary file
system on the PIC32MZ EF Starter Kit.

pic32mz_ef_sk_16b pic32mz_ef_sk Demonstrates the web server hosted on internal Flash through the MPFS on the PIC32MZ
EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Ethernet Web Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e or http://mchpboard_c), and then pressing Enter.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 540

 Notes:
1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the

hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Demonstration Process

Please use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the USB debugger port on-board the starter kit in use to a USB port on the Development computer using the USB cable provided in
the kit.

3. Connect the RJ-45 Ethernet port on the starter kit board to a network hub or an Ethernet port on the development computer using the Ethernet
patch cord provided in the kit.

4. Build, download, and run the demonstration project on the target board.

5. A HTTP server is hosted by the demonstration application. Open_a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e or http://mchpboard_c), and then pressing Enter.

The demonstration application features following:

• Real-time Hardware Control and Dynamic Variables - On the Overview page the LEDs can be clicked to toggle the LEDs on the PIC32
Ethernet Starter Kit. The buttons on the PIC32 Ethernet Starter Kit can be pressed to toggle the Buttons on the web page. The dynamic
variables can be updated in real-time on the HTTP server.

 Note:
The LED functionality portion of the demonstration is somewhat limited due to issue related to the functional multiplexing on GPIO
and Ethernet pins on different supported hardware.

• Form Processing - Input can be handled from the client by using GET and POST methods (this functionality controls the on-board LEDs and
will be operational only on Explorer 16 Development Board)

• Authentication - Shows an example of the commonly used restricted access feature

• Cookies - Shows an example of storing small text stings on the client side

• File Uploads - Shows an example of file upload using the POST method. The HTTP server can_accept_a user-defined MPFS/MPFS2 image
file for web pages.

• Send E-mail - Shows simple SMTP POST methods

• Dynamic DNS - Exercises Dynamic DNS capabilities

• Network Configuration - The MAC address, host name, and IP address of the PIC32 Ethernet Starter Kit can be viewed in the Network
Configuration page and some configurations can be updated

• MPFS Upload - A new set of web pages can be uploaded to the web server using this feature, which is accessed through
http://mchpboard_e/mpfsupload.

 Notes:
1. The location of the MPFS image is fixed at the beginning of the Flash page (aligned to the page boundary). The size of the

MPFS upload is limited to 64K in the demonstration, which it can be expanded by changing NVM_MEDIA_SIZE to the
desired size (restricted based on the available size) and overriding the EBASE address using the following linker command:

• --defsym=_ebase_address=0x9D0xxxx (where, xxxx = 9D000000+NVM_MEDIA_SIZE)

2. The MPFS UPLOAD functionality has to be enabled when the project is built.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 541

http://mchpboard_e/mpfsupload

pic32_eth_wifi_web_server

This section describes the steps necessary to begin using the PIC32 Ethernet Wi-Fi Web Server Demonstration Application.

Description

The Wi-Fi Web Server demonstration (apps\tcpip\web_server_nvm_mpfs\firmware) exercises the HTTP web server running on PIC32
devices. The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) web server demonstration has the web pages stored in
internal Flash and are accessed through the MPFS API.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Ethernet
Wi-Fi Web Server Demonstration.

Description

To build this project, you must open the pic32_eth_wifi_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_nvm_mpfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 542

Project Name Location

pic32_eth_wifi_web_server.X <install-dir>/apps/tcpip/web_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk_ioexp_11n_freertos pic32mx_eth_sk Demonstrates the web server hosted on internal Flash through the MPFS on the
PIC32 Ethernet Starter Kit and the MRF24WN0MA PICtail/PICtail Plus Daughter
Board.

pic32mx_eth_sk_ioexp_winc_freertos pic32mx_eth_sk Demonstrates the web server hosted on internal Flash through the MPFS on the
PIC32 Ethernet Starter Kit and the WINC1500 PICtail/PICtail Plus Daughter Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit with PIC32MX795F512L, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

(shown in the following figure below)

 Note:
For use with the WINC1500 module, replace the MRF24WN module shown in the following figure with the WINC1500 Wi-Fi
PICtail/PICtail Plus Daughter Board.

Configure the Starter Kit I/O Expansion Board jumper modifications, as described in the following figure:

On-board Jumpers: J10/pin 12 to J11/pin 8 (red jumper cable), and J10/pin 56 to J10/pin 37 (orange jumper cable).

PIC32MZ EF Starter Kit with PIC32MX2048EFM144, WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion Board.

Configure the hardware, as shown in the following figure.

On-board jumpers: JP10/pin 12 to JP11/pin 8 (red jumper cable), and JP1 between pin PMD11 and pin EBID11 (blue jumper cable)

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 543

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Ethernet Wi-Fi Web Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_w), and then pressing Enter.

This demonstration runs on two interfaces, Ethernet and Wi-Fi. A second web browser tab could be opened pointing to the other interface
(http://mchpboard_e) to have both interfaces running simultaneously.

 Notes:
1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the

hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Please refer to the Demonstration Process in the Running the Demonstration section for the pic32_eth_web_server configuration, as the process
is the same for this configuration.

 Note:
Refer to Wi-Fi Console Commands for information on the commands that enable control over the Wi-Fi settings.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 544

pic32_wifi_web_server

This section describes the steps necessary to begin using the PIC32 Wi-Fi Web Server Demonstration Application.

Description

The Wi-Fi Web Server demonstration (<install-dir>\apps\tcpip\web_server_nvm_mpfs\firmware) exercises the HTTP Web Server
running on PIC32 devices. The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) Web Server demonstration has the Web
pages stored in internal Flash and are accessed through the MPFS API.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Wi-Fi Web
Server Demonstration.

Description

To build this project, you must open the pic32_wifi_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_nvm_mpfs.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 545

Project Name Location

pic32_wifi_web_server.X <install-dir>/apps/tcpip/web_server_nvm_mpfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_11n_freertos pic32mx795_pim+e16 Demonstrates the web server hosted on internal Flash through the MPFS on
the PIC32MX795F512L CAN-USB PIM with the Explorer 16/32 Development
Board and the MRF24WN0MA PICtail/PICtail Plus Daughter Board.

pic32mx795_pim_e16_winc_freertos pic32mx795_pim+e16 Demonstrates the web server hosted on internal Flash through the MPFS on
the PIC32MX795F512L CAN-USB PIM with the Explorer 16/32 Development
Board and the WINC1500 PICtail/PICtail Plus Daughter Board.

pic32mx795_pim_e16_wincclick_freertos pic32mx795_pim+e16 Demonstrates the web server hosted on internal Flash through the MPFS on
the PIC32MX795F512L CAN-USB PIM with the Explorer 16/32 Development
Board and the MIKROE-2046 Wi-Fi 7 Click Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L PIM with the Explorer 16 Development Board and MRF24WN PICtail Daughter Board

• Connect the MRF24WN PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

PIC32MX795F512L PIM with the Explorer 16 Development Board and WINC1500 PICtail/PICtail Plus Daughter Board

• Connect the WINC1500 PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 546

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and WINC1500 Wi-Fi
PICtail/PICtail Plus Daughter Board

• Connect the WINC1500 Wi-FI PICtail/PICtail Plus Daughter Board into the PICtail Plus slot (J63) . The module should face into the main board
and be placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control.

The following figure shows the hardware configuration.

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and the MikroElektronika WiFi 7
Click Board (with on-board WINC1500 Wi-Fi module).

• Connect the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board into the PICtail Plus slot (J63) . The module should face into the main board
and be placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 547

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM and the MikroElektronika WiFi 7 Click Board (with on-board
WINC1500 Wi-Fi module).

• Connect the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board into the PICtail Plus slot. The module should face into the main board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 548

Running the Demonstration

This section provides instructions on how to build and run the PIC32 Wi-Fi Web Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_w), and then pressing Enter.

 Notes:
1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the

hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Please refer to the Demonstration Process in the Running the Demonstration section for the pic32_eth_web_server configuration, as the process
is the same for this configuration.

 Note:
Refer to Wi-Fi Console Commands for information on the commands that enable control over the Wi-Fi settings.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 549

web_server_sdcard_fatfs

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

Web Server SD Card FAT File System TCP/IP demonstration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Web Server SD
Card FAT FS Demonstration.

Description

To build this project, you must open the pic32_eth_web_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/web_server_sdcard_fatfs.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 550

Project Name Location

pic32_eth_web_server.X <install-dir>/apps/tcpip/web_server_sdcard_fatfs/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx_eth_sk2_sd_mmc_pictail pic32mx_eth_sk2 Demonstrates the Web Server hosted on a microSD card through the FAT file
system on the PIC32 Ethernet Starter Kit II and the PICtail Daughter Board for SD
and MMC.

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Demonstrates the Web Server hosted on a microSD card through the FAT file
system on the PIC32MZ EF Starter Kit and the MEB II combination.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit with the Starter Kit I/O Expansion Board and PICtail Daughter Board for SD and MMC

• Plug the PIC32 Ethernet Starter Kit into application board connector (J1) on the Starter Kit I/O Expansion Board

• Plug the PICtail Daughter Board for SD and MMC into the PICtail connector (J4) on the Starter Kit I/O Expansion Board

• Make sure a SD card is formatted and loaded with the web pages provided within the
apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages2_sdcard folder

• Insert the SD card with the web pages into the SD card slot (J1) on the PICtail Daughter Board for SD and MMC into the PICtail connector

• Connect a USB cable to the micro-B USB connector on the bottom of the PIC32 Ethernet Starter Kit. When the demonstration runs, it will
create a USB CDC device on the USB bus. Connect to this device though a standard terminal program, and set the baud rate to 921,600 baud.
You can observe the IP address details and query the stack using the console interface.

PIC32 Ethernet Starter Kit II with the Starter Kit I/O Expansion Board and PICtail Daughter Board for SD and MMC

• Plug the PIC32 Ethernet Starter Kit II into application board connector (J1) on the Starter Kit I/O Expansion Board

• Plug the PICtail Daughter Board for SD and MMC into the PICtail connector (J4) on the Starter Kit I/O Expansion Board

• Make sure a SD card is formatted and loaded with the web pages provided within the
apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages2_sdcard folder

• Insert the SD card with the web pages into the SD card slot (J1) on the PICtail Daughter Board for SD and MMC into the PICtail connector

• Connect a USB cable to the micro-B USB connector on the bottom of the PIC32 Ethernet Starter Kit II. When the demonstration runs, it will
create a USB CDC device on the USB bus. Connect to this device though a standard terminal program, and set the baud rate to 921,600 baud.
You can observe the IP address details and query the stack using the console interface.

PIC32MZ EC Starter Kit or PIC32MZ EF Starter Kit with the MEB II

• Plug the desired starter kit into the application board connector on the MEB II

• Ensure a microSD card is formatted and loaded with the web pages provided within the
apps/tcpip/web_server_sdcard_fatfs/firmware/src/web_pages2_sdcard directory.

• Insert the microSD card with the web pages into the microSD card slot (J8) on the MEB II

• Connect a USB cable to the micro-B USB connector on the bottom of the PIC32MZ EC Starter Kit

• When the demonstration runs, it will create a USB CDC device on the USB bus. Connect to this device though a standard terminal program,
and set the baud rate to 921600 baud. You can observe the IP address details and query the stack using the console interface.

Running the Demonstration

This section provides instructions on how to build and run the TCP/IP SD Card FAT FS Web Server demonstration.

Description

To view the web page hosted by the demonstration application, open a web browser and direct it to the board running the HTTP server by typing
the URL in the address bar (for example, http://mchpboard_e or http://mchpboard_e), and then pressing Enter.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 551

 Notes:
1. The NetBIOS name of the TCP/IP application is specified at the time the TCP/IP stack is initialized, which is usually in the

hostName member of the tcpip_stack_init.c:: TCPIP_HOSTS_CONFIGURATION structure. The NetBIOS service must be
enabled for the PIC32 demonstration to respond to NetBIOS queries. Alternatively, you can use the IPv4 or IPv6 address (if
IPv6 is enabled) of the board directly, for example, http://192.168.1.131 or http://[fdfe:dcba:9876:1:204:a3ff:fe12:128e].

2. The IPv4 and IPv6 addresses can be obtained from running the TCP/IP Discovery application on the PC side. It requires that
the TCP/IP Announce module is enabled when building the stack.

Please refer to the Demonstration Process in the Running the Demonstration section for the pic32_eth_web_server configuration of the
web_server_nvm_mpfs demonstration, as the process is the same for this configuration.

wifi_ap_demo

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

The Wi-Fi AP mode demonstration showcases how to start a PIC32WK Wi-Fi module in AP mode and connect with a third-party STA.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32WK Wi-Fi AP
mode demonstration.

Description

To build this project, you must open the wifi_ap_demo.X project in MPLAB X IDE, and then select the desired configuration. The following tables
list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_ap_demo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_ap_demo.X <install-dir>/apps/tcpip/wifi_ap_demo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within

./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32wk_ap pic32wk_gpb_gpd_sk+module Demonstrates the AP functionality with WM32 Wi-Fi Starter Kit.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

The following is the PIC32WK Wi-Fi Starter Kit mounted with Wi-Fi module (WM32S2057GXEAS-I/RM)

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 552

The Starter Kit has a UART to USB converter (MCP2200) that enables communication between a host PC and the Wi-Fi module. This is done by
connecting a mini-B USB cable from the host PC to the USB port (J306) in the Starter Kit.

The console output uses the UART to USB converter on the board at 230400 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

Running the Demonstration

This section provides instructions about how to build and run the PIC32WK Wi-Fi AP mode demonstration with the WM32 module.

Description

The demonstration does the following:

• Starts the device in AP mode, with the configuration stored in flash memory.

• PIC32WK Wi-Fi AP accepts connections from another third-party STA and accepts up to eight connections.

• The AP can be started in different modes: Open and Security (WPA and WPA2)

• The default configuration of the AP is stored in flash memory, and this configuration can be updated with console commands.

• The connected STA can verify the connection status by using PING process.

• In the connected STA, you can access the AP IP-address in any browser that serves the Web pages.

• That web page will display the Welcome screen along with a random seed number on the page.

• From the connected STA, you can scan for the wireless networks to see the list of APs in the BSS.

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-the starter kit to a USB port on the development computer by using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

• The demonstration starts an AP, sends beacons in the given channel, and responds with the Probe Response for the Probe Request received
from other STA devices.

4. Run netinfo to display the following network details.

---------- Interface <wlan0/PIC32WK> ----------

Host Name: MCHPBOARD_WK - NBNS disabled

IPv4 Address: 192.168.3.1

Mask: 255.255.255.0

Gateway: 192.168.3.1

DNS: 192.168.3.1

MAC Address: 54:8c:a0:00:f3:4e

dhcps is ON

dhcp is disabled

Link is UP

5. Run wlan open to open the access to give Wi-Fi commands, and then run wlan macinfo to see the Wi-Fi module status.

----WIFI MAC configuration----

BootMode: AP

HTTP: Enable

OTA: Enable

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 553

SSID: AP_PINGDEMO

Security: NONE

The above Configuration is Saved in Flash

**

----MAC Started as AP with following Details----

SSID from MAC: AP_PINGDEMO

Security: NONE

• The AP starts with IP address as 192.168.3.1

6. Use console commands to update the AP details.

7. After connecting the third-party personal computer/laptop to the DUT AP, run ping to verify the simple data connection process between the
DUT and the computer/laptop.

8. Enter the IP-address of the AP in the browser to get served with Web pages.

• The default Web-page as shown below gives firmware build details and a random number.

• The Network Configuration page gives the option to trigger the scan in the Wi-Fi module. After a successful scan, the page updates with the
scan results.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 554

wifi_easy_configuration

Wi-Fi Easy Configuration TCP/IP demonstration.

Description

This demonstration shows how to connect a MRF24WN or WINC1500 Wi-Fi device with no keyboard or display to a wireless network.

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Wi-Fi Easy
Configuration Demonstration.

Description

To build this project, you must open the wifi_easy_configuration.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_easy_configuration.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_easy_configuration.X <install-dir>/apps/tcpip/wifi_easy_configuration/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_11n_freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the Explorer 16
Development Board with PIC32MX795F512L CAN-USB PIM and the
MRF24WN PICtail Daughter Board.

pic32mx795_pim__e16__winc__freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the Explorer 16 or
Explorer 16/32 Development Board, or the Explorer 16/32 Development
Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion
Board, and the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 555

pic32mz_ef_sk_winc_freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF
Starter Kit connected to the I/O Expansion board with the WINC1500
PICtail Daughter Board.

pic32mz_ef_sk_ioexp_11n_freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF
Starter Kit connected to the I/O Expansion board with the MRF24WN
PICtail Daughter Board.

pic32mz_ef_curiosity pic32mz_ef_curiosity FreeRTOS version of the demonstration running on the PIC32MZ EF
Curiosity Development board, with on-board MRF24WN module. This
configuration is generated for standalone mode. All necessary files are
copied under its configuration folder, and so it can be built and run without
the MPLAB Harmony framework.

pic32mx795_pim__e16__wincclick__freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the Explorer 16 or
Explorer 16/32 Development Board, or the Explorer 16/32 Development,
PIC32MX795F512L CAN-USB PIM, and PICtail Plus Expansion Board
with the MikroElektronica WiFi 7 Click Board (with on-board WINC1500
Wi-Fi module).

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM with the Explorer 16 Development Board and MRF24WN PICtail Daughter Board

• Connect the MRF24WN PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

PIC32MX795F512L CAN-USB PIM with theExplorer 16 Development Board and WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board

• Connect the WINC1500 PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 556

PIC32MZ EF Starter Kit with PIC32MZ2048ECH144, MRF24WN0MA Wi-Fi PICtail/PICtail Plus Daughter Board, and Starter Kit I/O Expansion
Board

Configure the hardware, as shown in the following figure:

PIC32MZ EF Curiosity Development Board with on-board MRF24WN0MA module.

• Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

• Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro-B USB cable connected to Micro-B port
(J3).

• Ensure that jumper is not present in the J13 header to use the Curiosity board in device mode.

• Plug in a USB cable with a micro-B type connector to Micro-B port (J12), and plug the other end into your computer.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 557

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and WINC1500 Wi-Fi
PICtail/PICtail Plus Daughter Board

• Connect the WINC1500 Wi-FI PICtail/PICtail Plus Daughter Board into the PICtail Plus slot (J63) . The module should face into the main board
and be placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control.

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 558

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and the MikroElektronika WiFi 7
Click Board (with on-board WINC1500 Wi-Fi module).

• Connect the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board into the PICtail Plus slot (J63) . The module should face into the main board
and be placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 559

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM and the MikroElektronika WiFi 7 Click Board (with on-board
WINC1500 Wi-Fi module).

• Connect the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board into the PICtail Plus slot. The module should face into the main board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 560

Running the Demonstration

This section provides instructions on how to build and run the Wi-Fi Easy Configuration demonstration with the MRF24WN or WINC1500 Wi-Fi
module.

Description

 Notes:
1. Refer to Wi-Fi Console Commands for information on the commands that enable control over the Wi-Fi settings.

2. WINC1500 SoftAP mode can support only one Station client connection.

The demonstration does the following:

• Scans the area and stores the list of Access Points in memory

• Switches to SoftAP mode allowing another device to_connect_to it (smartphone or personal computer)

• After a smartphone or personal computer wirelessly connects to the MRF24WN or WINC1500, a web page is served to it

• That web page will display the access point (AP) list (from step 1).

• From the smartphone you can select the desired AP and command the MRF24WN or WINC1500 to_connect_to that AP

• The MRF24WN or WINC1500 will_connect_to the selected AP and store the configuration information in non-volatile memory

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B/micro B debugger port on-board the starter kit to a USB port on the development computer by using the USB cable provided
in the kit.

3. Build, download, and run the demonstration project on the board.

4. When the demonstration runs, it scans for local access points and outputs the results to the serial console. After the scan results, the
MRF24WN or WINC1500 goes into SoftAP mode (it behaves like an access point) and outputs the following to the serial console:

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 561

The output of the serial console for the MRF24WN module is shown as follows:

5. From a smartphone or personal computer,_connect_to the ’MCHPSoftAP’ network, which is the SoftAP network started by the demonstration.
Then, bring up a web page by entering the IP address of the SoftAP network into the smartphone browser. This is the IP address displayed in step
4 (e.g., 192.168.1.1). When the web page is displayed, on the right top corner of the page, there are three widgets to verify connectivity with the
board.

• LED - This is in blinking mode.

• Button - This changes position when the buttons on the target board is pressed.

• Random Number - This displays random numbers generated by the target board.

On the web page:

a. Select Network Configuration, and then Scan for Wireless Networks. The MRF24WN or WINC1500 will display the list of wireless networks
on the web page.

b. Select the desired AP to which the MRF24WN or WINC1500 should_connect_by clicking the name of the AP.

c. The MRF24WN or WINC1500 will then_connect_to that Access Point and write the configuration information to non-volatile memory.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 562

d. The console output will show the new connection taking place.

6. If you rerun the demonstration, it will automatically connect the selected AP, as the configuration data stored in non-volatile memory will be used
to reconnect to the desired AP.

a. Connect the PC to the same AP to which the board is connected.

b. Open the serial terminal as described in step 2, and get the IP address that the board had gotten from the newly selected AP.

c. Type this IP address into the browser and the demo web page should come up on the browser.

d. Try monitoring the LED and Switch through the newly established connection.

7. To reset and run the demonstration from the beginning:

a. Erase the stored configuration by bringing up the demonstration.

b. At the command line type deleteconf

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 563

wifi_rgb_easy_configuration

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

The WiFi RGB Easy Configuration demo showcases how to configure an embedded WiFi device that does not have a natural keyboard and
screen. By using the internal Web server that accompanies the Microchip TCP/IP stack, end-users can use their browser as a conduit for
programming the WiFi device with the correct network parameters.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 Wi-Fi RGB

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 564

Easy Configuration Demonstration.

Description

To build this project, you must open the wifi_rgb_easy_configuration.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_rgb_easy_configuration.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_rgb_easy_configuration.X <install-dir>/apps/tcpip/wifi_rgb_easy_configuration/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mz_ef_curiosity pic32mz_ef_curiosity FreeRTOS version of the demonstration running on the PIC32MZ EF Curiosity Development board,
with on-board MRF24WN module. This configuration is generated for standalone mode. All
necessary files are copied under its configuration folder, and so it can be built and run without the
MPLAB Harmony framework.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Curiosity Development Board with on-board MRF24WN0MA module.

• Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

• Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro-B USB cable connected to Micro-B port
(J3).

• Ensure that jumper is not present in the J13 header to use the Curiosity board in device mode.

• Plug in a USB cable with a micro-B type connector to Micro-B port (J12), and plug the other end into your computer.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 565

Running the Demonstration

This section provides instructions on how to build and run the Wi-Fi RGB Easy Configuration demonstration with the MRF24WN Wi-Fi module.

Description

1. Load the demonstration project into MPLAB X IDE.

2. Connect the USB debugger port on-board the starter kit to a USB port on the development computer using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

4. When the demonstration runs, it scans for local access points and outputs the results to the serial console. After the scan results, the
MRF24WN goes into SoftAP mode (it behaves as an access point) and outputs the following to the serial console:

5. From a smartphone or personal computer, connect to the Curiosity_RGBLED_AP network, which is the SoftAP network started by the
demonstration. Then, bring up a web page by entering the IP address of the SoftAP network into the smartphone browser. This is the IP address
displayed in step 2 (e.g., 192.168.1.1). When the web page is displayed:

a. On the right top corner of the page, there is a widget through which we can change the color of the RGB LED which is on the Curiosity board.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 566

 Note:
Click the text box to display a pop-up for selecting the color of the RGB LED. Click the Submit button to set the color of the RGB
LED on the Curiosity board.

b. Select Network Configuration, and then Scan for Wireless Networks. The MRF24WN will display the list of wireless networks on the web
page.

c. Select the desired access point (AP) to which the MRF24WN should connect by clicking the name of the AP. The MRF24WN will then connect
to that AP and write the configuration information to non-volatile memory.

 Note:
This demo does not support connection to Secured APs. Make sure that the AP that you want to connect is unsecured.

d. The console output will show the new connection taking place.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 567

wifi_sta_demo

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

The Wi-Fi Station (STA) mode demonstration showcases how to connect a PIC32WK Wi-Fi module with Home AP, checking connection status
using PING process and discovering PIC32WK Wi-Fi module.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32WK Wi-Fi
STA mode configuration demonstration.

Description

To build this project, you must open the wifi_sta_demo.X project in MPLAB X IDE, and then select the desired configuration. The following tables
list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_sta_demo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_sta_demo.X <install-dir>/apps/tcpip/wifi_sta_demo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within

./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32wk_sta pic32wk_gpb_gpd_sk+module Demonstrates basic STA functionality.

pic32wk_sta_freertos pic32wk_gpb_gpd_sk+module FreeRTOS version of the demonstration with basic STA functionality.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

The following is the PIC32WK Wi-Fi Starter Kit mounted with Wi-Fi module (WM32S2057GXEAS-I/RM)

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 568

The Starter Kit has a UART to USB converter (MCP2200) that enables communication between a host PC and the Wi-Fi module. This is done by
connecting a mini-B USB cable from the host PC to the USB port (J306) in the Starter Kit.

The console output uses the UART to USB converter on the board at 230400 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

Running the Demonstration

This section provides instructions about how to build and run the PIC32WK Wi-Fi STA mode demonstration with the WM32 module.

Description

The demonstration does the following:

• Scans the area and triggers the connection with the Home AP.

• The default configuration of the home AP is stored in the Flash and this can be updated with console commands or by using the Web page.

• After connecting with the Home AP, connection status can be verified by running ping.

• After connecting the DUT and the third-party personal computer/laptop to the Home AP, the DUT can ping the third-party computer/laptop, and
the computer/laptop can ping the DUT.

• The DUT also supports TCP/IP discovery, in which the WM32 module can be discovered by the Microchip TCPIP Discoverer tool on the
third-party personal computer/laptop.

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on the starter kit to a USB port on the development computer by using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

• When the demonstration runs, it scans for APs and connects with the Home AP saved configuration. If the configured AP is not available in the
scan list, the device will be in the scanning phase only.

• After connecting with the Home AP, the DUT (PIC32WK Wi-Fi) gets the IP-address from AP (if DHCP is enabled) or default IP-address,
192.168.1.150

4. Use console commands to get the connection status details. Run netinfo to display these connection details.

---------- Interface <wlan0/PIC32WK> ----------

Host Name: MCHPBOARD_WK - NBNS disabled

IPv4 Address: 192.168.1.101

Mask: 255.255.255.0

Gateway: 192.168.1.1

DNS: 192.168.1.1

MAC Address: 54:8c:a0:00:f3:82

dhcp is ON

Link is UP

5. Run wlan open to open the access to give Wi-Fi commands, and then run wlan macinfo to see the Wi-Fi module status.

----WIFI MAC configuration----

BootMode: STA

HTTP: Disable

OTA: Disable

SSID: PINGD

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 569

Security: NONE

The above Configuration is Saved in Flash

**

----MAC Connected to AP with following Details----

SSID from MAC:PINGD

Security: NONE

6. After connecting the third-party computer/laptop to the same Home AP, run ping to verify the simple data connection process between the DUT
and the computer/laptop.

7. To discover the DUT from the third-party computer/laptop, run the Microchip TCPIP Discoverer tool before the DUT connects to the Home AP.
This tool is located in the MPLAB Harmony code base path on the computer/laptop:
<install-dir>/utilities/tcpip_discoverer/tcpip_discoverer.jar.

8. After the DUT connects to the Home AP, Click Discover Devices on the Microchip TCPIP Discoverer tool to discover the DUT. The third-party
computer/laptop shows above result for discovered DUT.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 570

wifi_staap_demo

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

The WiFi AP mode (Out Of Box) and STA mode support demonstration helps to perform the out-of-box configuration of the Home AP using the
DUT as the out-of-box access point (OOBAP). On reboot, the DUT switches to station mode and automatically connects to the configured Home
AP.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32WK Wi-Fi
OOBAP and STA mode demonstration.

Description

To build this project, you must open the wifi_staap_demo.X project in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files
is:<install-dir>/apps/tcpip/wifi_staap_demo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_staap_demo.X <install-dir>/apps/tcpip/wifi_staap_demo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within

./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 571

Project Configuration
Name

BSP(s) Used Description

pic32wk_staap pic32wk_gpb_gpd_sk+module Demonstrates OOBAP and STA functionality with WM32 Wi-Fi Starter Kit.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

The following is the PIC32WK Wi-Fi Starter Kit mounted with Wi-Fi module (WM32S2057GXEAS-I/RM)

The Starter Kit has a UART to USB converter (MCP2200) that enables communication between a host PC and the Wi-Fi module. This is done by
connecting a mini-B USB cable from the host PC to the USB port (J306) in the Starter Kit.

The console output uses the UART to USB converter on the board at 230400 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

Running the Demonstration

This section provides instructions about how to build and run the PIC32WK Wi-Fi OOBAP and STA mode demonstration with the WM32 module.

Description

The demonstration does the following:

The PIC32WK Wi-Fi DUT starts as OOBAP (out-of-box Access Point) for configuring the Home AP credentials (such as SSID and password), and
then switches to STA mode for automatically connecting to the configured Home Access Point (AP) without any user trigger.

AP (OOBAP) mode

• Starts the device in OOBAP mode, with the configuration stored in flash memory, or with the default configuration if the flash configuration is
not available.

• The PIC32WK Wi-Fi OOBAP accepts connections from another third-party STA and accepts only one connection.

• The OOBAP can be started only in Open mode.

• The default configuration of the AP is stored in flash memory, and this configuration can also be updated with console commands.

• The connection status can be verified by the connected STA by running ping.

• In connected STA, the user can access the OOBAP IP address in any browser that will serve the Web pages.

• From the Web pages, the user can configure the Home AP credentials.

• The configuration details are stored in in-package flash (IPF).

STA mode

• Scans the area and triggers the connection with the Home AP stored in flash memory.

• The default configuration of the Home AP is stored in flash memory, and this configuration can be updated with console commands or by using
the Web page.

• After connecting with the Home AP, connection status can be verified by running ping.

• After connecting the DUT (PIC32WK) and the third-party personal computer/laptop to the Home AP, the demonstration can be verified.

• The third-party personal computer/laptop can access the DUT IP-address in any browser that will serve the Web pages. That Web page will

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 572

display the Welcome screen along with a random seed number on the page.

• From the third-party personal computer/laptop, you can scan for the wireless networks and select the desired AP, or directly give the desired
AP configuration and request the Wi-Fi module to connect to that AP. The DUT will connect to that AP and store the configuration information in
flash memory.

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-the starter kit to a USB port on the development computer by using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

• When the demonstration runs, the DUT boots-up in OOBAP mode for configuring the Home AP credential.

4. Run netinfo to display the network details as shown below

---------- Interface <wlan0/PIC32WK> ----------

Host Name: MCHPBOARD_WK - NBNS disabled

IPv4 Address: 192.168.3.1

Mask: 255.255.255.0

Gateway: 192.168.3.1

DNS: 192.168.3.1

MAC Address: 54:8c:a0:00:f3:4e

dhcps is ON

dhcp is disabled

Link is UP

5. Run wlan open to open the access to give Wi-Fi commands, and then run wlan macinfo to see the Wi-Fi module status.

----WIFI MAC configuration----

BootMode: AP

HTTP: Enable

OTA: Enable

SSID: AP_PINGDEMO

Security: NONE

The above Configuration is Saved in Flash

**

----MAC Started as AP with following Details----

SSID from MAC: AP_PINGDEMO

Security: NONE

• OOBAP default SSID is “microchip” and IP address is “192.168.3.1”.

6. Connect the third-party personal computer/laptop (STA) to the PIC32WK OOBAP.

7. In the third-party personal computer/laptop, enter the IP-address of the OOBAP in the browser to get served with Web pages.

• The following default web-page displays firmware build details and a random number.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 573

• The Network Configuration page, shown in the following, gives the option to configure the OOBAP manually.

8. Enter the Home AP Wi-Fi configuration details (SSID and Security) and click OK to save the details in in-package flash(IPF). The DUT OOBAP
will automatically trigger a soft reboot.

9. If the user wants to scan to get the Home AP availability in the vicinity of the DUT, trigger the scan from Scan for Wireless Networks. After a
successful scan, the Web page updates the scan results. In the scan results list, click the Home AP. This will send the configuration details (SSID
and Security) and save the details in in-package flash (IPF). The DUT OOBAP will automatically trigger a soft reboot.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 574

• After the reboot, the DUT starts in STA mode and starts the connection procedure to the above configured Home AP. The DUT scans for the
configured Home AP. If the Home AP is available in the scan results, the DUT will then connect to it. Otherwise the device will be in scanning
phase only.

• After connecting with the Home AP, the DUT will get the IP address from the AP (if DHCP is enabled) or the default IP address, 192.168.1.150.

10. Use console commands to get the connection status details. Run netinfo to show these connection details.

---------- Interface <wlan0/PIC32WK> ----------

Host Name: MCHPBOARD_WK - NBNS disabled

IPv4 Address: 192.168.1.101

Mask: 255.255.255.0

Gateway: 192.168.1.1

DNS: 192.168.1.1

MAC Address: 54:8c:a0:00:f3:82

dhcp is ON

Link is UP

11. Run wlan open to open the access to give Wi-Fi commands, and then run wlan macinfo to see the Wi-Fi module status.

----WIFI MAC configuration----

BootMode: STA

HTTP: Enable

OTA: Enable

SSID: PINGD

Security: NONE

The above Configuration is Saved in Flash

**

----MAC Connected to AP with following Details----

SSID from MAC:PINGD

Security: NONE

12. After connecting the third-party personal computer/laptop to the same Home AP, run ping to verify the simple data connection process
between the DUT and the computer/laptop.

13. Enter the IP-address of the DUT in the browser to get served with Web pages.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 575

• The following default web-page displays firmware build details and a random number.

• The Network Configuration page gives the option to trigger the scan in the Wi-Fi module. After a successful scan, the page updates with scan
results.

14. On the Network Configuration page, click Scan for Wireless Networks to start the scan. After a successful scan, the Web page updates the
scan results. You can choose the desired AP from the scan list to connect the DUT, or click Other Network to enter the AP configuration manually.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 576

• The DUT will connect with the given configuration and save the configuration information in flash memory.

 Note:
When rerunning the demonstration, the Wi-Fi module connects with the last saved configuration.

wifi_sta_http_demo

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

The WiFi STA mode with HTTP support demonstration shows how to connect a PIC32WK Wi-Fi module with Home AP and also to open the Web
page using HTTP for accessing Wi-Fi module for Scan and updating configuration.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32WK Wi-Fi
STA mode with HTTP configuration demonstration.

Description

To build this project, you must open the wifi_sta_http_demo.X project in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_sta_http_demo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_sta_http_demo.X <install-dir>/apps/tcpip/wifi_sta_http_demo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within

./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32wk_sta_http pic32wk_gpb_gpd_sk+module Demonstrates STA functionality and Web page support for Scan and Connect with
Home AP with WM32 Wi-Fi Starter Kit.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 577

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

The following is the PIC32WK Wi-Fi Starter Kit mounted with Wi-Fi module (WM32S2057GXEAS-I/RM)

The Starter Kit has a UART to USB converter (MCP2200) that enables communication between a host PC and the Wi-Fi module. This is done by
connecting a mini-B USB cable from the host PC to the USB port (J306) in the Starter Kit.

The console output uses the UART to USB converter on the board at 230400 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

Running the Demonstration

This section provides instructions about how to build and run the PIC32WK Wi-Fi STA mode with HTTP demonstration with the WM32 module.

Description

The demonstration does the following:

• Scans the area and triggers the connection with the Home Access Point (AP).

• The default configuration of the Home AP is stored in flash memory. This configuration can be updated through console commands or the Web
page.

• After connecting with the Home AP, the connection status can be verified by running ping.

• After connecting the DUT and the third-party personal computer/laptop to the Home AP, the demonstration can be verified.

• In the third-party personal computer/laptop, you can access the DUT IP-address in any browser that serves the Web pages.

• That web page will display the Welcome screen along with a random seed number on the page.

• From the third-party personal computer/laptop, you can scan for the wireless networks and select the desired AP, or directly give the desired
AP configuration and command the Wi-Fi module to connect to that AP. The WM32 module will connect to that AP and store the configuration
information in flash memory.

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on the starter kit to a USB port on the development computer by using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

• When demonstration runs, it scans for APs and connects with the saved configuration of the Home AP. If the configured AP is not available in
the scan list, the device will be in scanning phase only.

• After connecting with the Home AP, the DUT (PIC32WK Wi-Fi) gets the IP-address from the AP (if DHCP is enabled) or the default IP-address,
192.168.1.150

4. Use console commands to get the connection status details. Run netinfo to display these connection details.

---------- Interface <wlan0/PIC32WK> ----------

Host Name: MCHPBOARD_WK - NBNS disabled

IPv4 Address: 192.168.1.101

Mask: 255.255.255.0

Gateway: 192.168.1.1

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 578

DNS: 192.168.1.1

MAC Address: 54:8c:a0:00:f3:82

dhcp is ON

Link is UP

5. Run wlan open to open the access to give Wi-Fi commands, and then run wlan macinfo to see the Wi-Fi module status.

----WIFI MAC configuration----

BootMode: STA

HTTP: Enable

OTA: Enable

SSID: PINGD

PSK: 12345678

Mode: 0x79

The above Configuration is Saved in Flash

**

----MAC Connected to AP with following Details----

SSID from MAC:PINGD

PSK: 12345678

Mode: 0x79

6. After connecting the third-party personal computer/laptop to the same Home AP, run ping to verify the simple data connection process between
the DUT and the computer/laptop.

7. Enter the IP-address of the DUT in the browser to get served with web pages.

• The following default web-page gives firmware build details and a random number.

• The “Network Configuration” page gives the option to trigger the scan in the Wi-Fi module. After a successful scan, the page updates with scan
results.

8. On the Network Configuration page, click Scan for Wireless Networks to start the scan. After a successful scan, the Web page updates the
scan results. You can choose the desired AP from the scan list to connect the DUT, or click Other Network to enter the AP configuration manually.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 579

• The DUT will connect with the given configuration and save the configuration information in flash memory.

 Note:
When rerunning the demonstration, the Wi-Fi module connects with the last saved configuration.

wifi_sta_ota_demo

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

The WiFi STA mode with OTA support demonstration shows how to connect a PIC32WK Wi-Fi module with Home AP and also open the Web
page by using HTTP for OTA (Over the Air) update.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32WK Wi-Fi
STA mode with OTA support demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 580

Description

To build this project, you must open the wifi_sta_ota_demo.X project in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_sta_ota_demo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_sta_ota_demo.X <install-dir>/apps/tcpip/wifi_sta_ota_demo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within

./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32wk_sta_http_ota pic32wk_gpb_gpd_sk+module Demonstrates STA functionality and Web page support for demonstration of how to
update the device over OTA using HTTP.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

The following is the PIC32WK Wi-Fi Starter Kit mounted with Wi-Fi module (WM32S2057GXEAS-I/RM)

The Starter Kit has a UART to USB converter (MCP2200) that enables communication between a host PC and the Wi-Fi module. This is done by
connecting a mini-B USB cable from the host PC to the USB port (J306) in the Starter Kit.

The console output uses the UART to USB converter on the board at 230400 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

Running the Demonstration

This section provides instructions about how to build and run the PIC32WK Wi-Fi STA mode with OTA demonstration with the WM32 module.

Description

The demonstration does the following:

• Scans the area and triggers the connection with the Home Access Point (AP) stored in flash memory.

• The default configuration of the Home AP is stored in flash memory, and this configuration can be updated through console commands or the
Web page.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 581

• After connecting with the Home AP, connection status can be verified by running ping.

• After connecting the DUT and the third-party personal computer/laptop to the Home AP, the OTA demonstration can be verified.

• In the third-party personal computer/laptop, the DUT IP-address for starting OTA procedure can be accessed in any browser that serves the
Web pages.

• That web page gives the option to upload the file.

• OTA updates through the HTTP server.

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on-the starter kit to a USB port on the development computer by using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

• When demonstration runs, it scans for APs and connects with the saved configuration of the Home AP. If the configured AP is not available in
the scan list, the device will be in scanning phase only.

• After connecting with the Home AP, the DUT (PIC32WK Wi-Fi) will get the IP-address from the AP (if DHCP is enabled) or the default
IP-address, 192.168.1.150

4. Use console commands to get the connection status details. Run netinfo to display these connection details.

---------- Interface <wlan0/PIC32WK> ----------

Host Name: MCHPBOARD_WK - NBNS disabled

IPv4 Address: 192.168.1.101

Mask: 255.255.255.0

Gateway: 192.168.1.1

DNS: 192.168.1.1

MAC Address: 54:8c:a0:00:f3:82

dhcp is ON

Link is UP

5. Run wlan open to open the access to give Wi-Fi commands, and then run wlan macinfo to see the Wi-Fi module status.

----WIFI MAC configuration----

BootMode: STA

HTTP: Enable

OTA: Enable

SSID: PINGD

PSK: 12345678

Mode: 0x79

The above Configuration is Saved in Flash

**

----MAC Connected to AP with following Details----

SSID from MAC:PINGD

PSK: 12345678

Mode: 0x79

6. After connecting the third-party personal computer/laptop to the same Home AP, run ping to verify the simple data connection process between
the DUT and the computer/laptop.

7. Enter the IP-address of the DUT in the browser to get served with web pages.

• The default web-page as shown below gives firmware build details and a random number.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 582

8. In the browser, type the IP address appended with "/mpfsupload" to get the upload page. Refer to the following.

9. In local storage, browse to and select the hex file to be uploaded, and then click Upload.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 583

• When the upload starts, you can observe the progress in the command console. After upload is complete, the command console outputs
“Done” followed by “OTA Completed”.

• The browser displays a message that the OTA completion is successful.

10. Click the Site main page link to be redirected to the home page. After successful upload of the firmware image, you can see the new build
details on the home page.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 584

wifi_sta_wolfssl_demo

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This Wi-Fi STA and wolfSSL TCP/IP Client demonstration.showcases how to connect a PIC32WK Wi-Fi module with Home AP and access a
secure Web site using wolfSSL.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32WK Wi-Fi
STA mode with SSL demonstration.

Description

To build this project, you must open the wifi_sta_wolfssl_demo.Xproject in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_sta_wolfssl_demo.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_sta_wolfssl_demo.X <install-dir>/apps/tcpip/wifi_sta_wolfssl_demo/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within

./firmware/src/system_config.

Project Configuration
Name

BSP(s) Used Description

pic32wk_sta_wolfssl pic32wk_gpb_gpd_sk+module Demonstrates STA with SSL functionality with WM32 Wi-Fi Starter Kit.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

The following is the PIC32WK Wi-Fi Starter Kit mounted with Wi-Fi module (WM32S2057GXEAS-I/RM)

The Starter Kit has a UART to USB converter (MCP2200) that enables communication between a host PC and the Wi-Fi module. This is done by
connecting a mini-B USB cable from the host PC to the USB port (J306) in the Starter Kit.

The console output uses the UART to USB converter on the board at 230400 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 585

Running the Demonstration

This section provides instructions about how to build and run the PIC32WK Wi-Fi STA mode SSL demonstration with the WM32 module.

Description

The demonstration does the following:

• Scans the area and triggers the connection with the Home AP stored in flash memory.

• The default configuration of the Home AP is stored in flash memory, and this configuration can be updated with console commands.

• After connecting with the Home AP, the connection status can be verified by running ping.

• Opens the secure web page by running the wolfSSL command.

Use the following procedure to run the demonstration:

1. Load the demonstration project into MPLAB X IDE.

2. Connect the mini-B debugger port on- the starter kit to a USB port on the development computer using the USB cable provided in the kit.

3. Build, download, and run the demonstration project on the board.

• When the demonstration runs, it scans for APs and connects with the saved configuration of the Home AP. If the configured AP is not available
in the scan list, the device will be in scanning phase only.

• After connecting with the Home AP, the DUT (PIC32WK Wi-Fi) will get the IP address from the AP (if DHCP is enabled) or the default
IP-address, 192.168.1.150.

4. Use console commands to get the connection status details. Run netinfo to display these connection details.

---------- Interface <wlan0/PIC32WK> ----------

Host Name: MCHPBOARD_WK - NBNS disabled

IPv4 Address: 192.168.1.101

Mask: 255.255.255.0

Gateway: 192.168.1.1

DNS: 192.168.1.1

MAC Address: 54:8c:a0:00:f3:82

dhcp is ON

Link is UP

5. Run wlan open to open the access to give Wi-Fi commands, and then run wlan macinfo to see the Wi-Fi module status.

----WIFI MAC configuration----

BootMode: STA

HTTP: Enable

OTA: Enable

SSID: PINGD

PSK: 12345678

Mode: 0x79

The above Configuration is Saved in Flash

**

----MAC Connected to AP with following Details----

SSID from MAC:PINGD

PSK: 12345678

Mode: 0x79

6. After connecting the third-party personal computer/laptop to the same Home AP, run ping to verify the simple data connection process between
the DUT and the computer/laptop.

7. To access the content of the Web page, run openurl <url>, where <url> must be a fully formed URL.

• Example: openurl http://google.com/ or openurl https://google.com/

• The following shows an example of accessing a secure and a non-secure Web page by running the openurl command.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 586

8. Run stats to retrieve the statistics from running the previous openurl command. Examples of statistics are how long each phase of the
connection took, and how many bytes were transferred.

9. After running the openurl command, the demonstration makes a DNS query. Open a connection to the requested URL and run an http PUT
command.

• The results are sent to the serial port. If an https URL is specified, the connection will first undergo SSL negotiation before running the http PUT
command.

wifi_wilc1000

This section describes how to use a simple Wi-Fi application using the WILC1000 firmware.

Description

This application demonstrates a simple Wi-Fi Application using the WILC1000 firmware on the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter
Board, with different configurations; STA mode, AP mode, and the wolfSSL Client. The ping from DUT to Home AP works in STA mode, and ping
from DUT to a connected Station works in AP mode.

Libraries Used

Other than the common libraries used, following are the libraries have been used for the demonstration:

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 587

• MPLAB Harmony TCP/IP Stack

• FreeRTOS

• WILC1000 Wi-Fi Driver Library

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the wifi_wilc1000
Demonstration.

Description

To build this project, you must open the wifi_wilc1000.X project in MPLAB X IDE, and then select the desired configuration. The following
tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wifi_wilc1000.

MPLAB X IDE Project

The following table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_wilc1000.X <install-dir>/apps/tcpip/wifi_wilc1000/firmware

MPLAB X IDE Project Configurations

The following table describes the supported configurations of the demonstration, which are within ./firmware/src/system_config.

Project Configuration Name BSP(s) Used Description

pic32mx795_pim_e16_wilc_freertos_sta pic32mx795_pim
+ e16

FreeRTOS version of demonstration running STA Mode
with on WILC1000 firmware running on the WINC1500
Wi-Fi PICtail/PICtail Plus Daughter Board on the Explorer
16 Development Board with PIC32MX795F512L
CAN-USB Plug-in Module (PIM).

pic32mx795_pim_e16_wilc_freertos_ap pic32mx795_pim
+ e16

FreeRTOS version of demonstration running AP Mode
with on WILC1000 firmware running on WINC1500 Wi-Fi
PICtail/PICtail Plus Daughter Board on the Explorer 16
Development Board with PIC32MX795F512L CAN-USB
Plug-in Module (PIM).

pic32mz_ef_sk__ioexp__wilc__freertos_wolfssl_client pic32mz_ef_sk FreeRTOS version of demonstration running the wolfSSL
Client with the WILC1000 firmware running on WINC1500
Wi-Fi PICtail/PICtail Plus Daughter Board on the
PIC32MZ EF Starter Kit with a PIC32MZ2048 device.

pic32mx795_pim__e16__wilc__sta pic32mx795_pim
+ e16

Non-OS version of demonstration running STA Mode on
PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board. This demo is similar
to the demo pic32mx795_pim__e16__wilc__freertos_sta
in terms of running it.

pic32mx795_pim__e16__wilc__freertos_ap_scan pic32mx795_pim
+ e16

FreeRTOS version of Demonstration Scanning APs on
PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board.The demo scans for
the APs and prints the list of scanned APs, on the console.

pic32mx795_pim__e16__wilc__freertos_mac_address_chip_info pic32mx795_pim
+ e16

FreeRTOS version of demonstration for getting MAC
Address and Chip Info on PIC32 PIM with WILC1000
firmware running on the WINC1500 Wi-Fi PICtail/PICtail
Plus Daughter Board on the Explorer 16 Development
Board. The demo prints the MAC Address and Chip Info,
on the console.

pic32mx795_pim__e16__wilc__freertos_p2p_client pic32mx795_pim
+ e16

FreeRTOS version of Demonstration running P2P Client
on PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board.

pic32mx795_pim__e16__wilc__freertos_mode_change pic32mx795_pim
+ e16

FreeRTOS version of demonstration Changing Mode from
AP to P2P Client on PIC32 PIM with WILC1000 firmware
running on the WINC1500 Wi-Fi PICtail/PICtail Plus
Daughter Board on the Explorer 16 Development Board.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 588

pic32mx795_pim__e16__wilc__freertos_tcp_client pic32mx795_pim
+ e16

FreeRTOS version of demonstration running TCP Client
on PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board.

pic32mx795_pim__e16__wilc__freertos_tcp_server pic32mx795_pim
+ e16

FreeRTOS version of demonstration running TCP Server
on PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board.

pic32mx795_pim__e16__wilc__freertos_udp_server pic32mx795_pim
+ e16

FreeRTOS version of Demonstration running UDP Server
on PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board.

pic32mz_ef_sk__ioexp__wilc__freertos_wolfmqtt_client pic32mz_ef_sk FreeRTOS version of demonstration running WolfMqtt
Client on PIC32 EF Starter Kit with WILC1000 firmware
running on the WINC1500 Wi-Fi PICtail/PICtail Plus
Daughter Board.

pic32mx795_pim__e16__wilc__freertos_wps pic32mx795_pim
+ e16

FreeRTOS version of Demonstration running WPS on
PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board. The Demo runs
WPS Push Button Mode by default, and if one needs to
run WPS PIN, he needs to make
MAIN_WPS_PUSH_BUTTON_FEATURE as ‘false’ in
wifi_wilc1000\firmware\src\wps.c file

pic32mx795_pim__e16__wilc__freertos_udp_client pic32mx795_pim
+ e16

FreeRTOS version of Demonstration UDP Client on
PIC32 PIM with WILC1000 firmware running on the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board on
the Explorer 16 Development Board.

Configuring the Hardware

This section describes how to configure the hardware using the WINC1500 PICtail Daughter Board and the PICtail Plus slot.

Description

The hardware is configured with the following steps:

1. Connect the WINC1500 PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

2. The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

The following figure shows the hardware configuration.

Explorer 16 Development Board with PIC32MX795512L PIM

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 589

WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board

Running the Demonstration

This section provides instructions on how to run the wifi_wilc1000 demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 590

Description

This demonstration exercises various encryption, decryption, hashing, and random number functions.

1. After compiling and programming the target device, select the configuration as pic32mx795_pim_e16_wilc_freertos_sta.

2. When the UART is connected by the serial to the USB cable, configure the Home AP configuration using the iwconfig console command.
Refer to DRV WILC1000 WIFI Library Interface for additional information.

3. When receiving the IP from the Home AP, ping the Home AP.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 591

4. When creating the device to act as the AP, to compile and program the target device, select the configuration as
pic32mx795_pim_e16_wilc_freertos_ap.

5. When the device appears as Soft AP, the AP can be found in the scan with SSID as ‘MCHPSoftAP.'

6. The SSID ‘MCHPSoftAP’ can be found in the scan list.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 592

7. Any station can connect, and ping on the AP IP address, 192.168.1.1.

8. When the device serves as a wolfSSL client, to compile and program the target device, select the configuration
pic32mz_ef_sk__ioexp__wilc__freertos_wolfssl_client.

9. For this configuration, the hardware is different. In this case, use the WINC1500 PICtail with the starter kit containing PIC32MZ2048. The
highlighted red box is the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board. The highlighted blue box is the PIC32MZ2048 Processor.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 593

10. For serial communication and console output connect a mini-USB cable between the PIC32MZ Embedded Connectivity with Floating Point
Unit (EF) Family Starter Kit and laptop. The serial connection is configured for 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control. Configure the home AP using the iwconfig console command. Refer to DRV WILC1000 WIFI Library Interface for additional
information.

11. When receiving the IP from the home AP, the device makes a DNS query to resolve the IP address for the host, “https://www.google.com."

12. The device then proceeds with SSL negotiations as the URL is secured (https).

13. The UART displays the contents of the web page.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 594

Running the Demonstration Using Various Configurations

This section demonstrates how to run the wifi_wilc1000 Demonstrations using other configurations.

Description

pic32mx795_pim__e16__wilc__freertos_wps

1. The demonstration comes as WPS in Push Button Mode.

2. The user needs to push the WPS Button on the AP for the device to connect to it.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 595

3. In case the user wants to use the WPS PIN Mode, changes need to be made in the wifi_wilc1000\firmware\src\wps.c file

• Macro MAIN_WPS_PUSH_BUTTON_FEATURE should be changed to false

• Macro MAIN_WPS_PIN_NUMBER needs to be set

pic32mx795_pim__e16__wilc__freertos_p2p_client

1. The P2P client comes up with the device name as WILC1000_P2P.

2. The other device can scan and find the same in its list.

3. The other device needs to initiate the connection.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 596

4. The Logs on the device will be as follows:

pic32mx795_pim__e16__wilc__freertos_mode_change

1. The device comes up in AP Mode with SSID WILC1000_AP.

2. The device remains in AP Mode for around a minute, and then changes the mode to P2P Client.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 597

pic32mx795_pim__e16__wilc__freertos_tcp_client

1. When the device comes up, connect it to the AP using the command iwconfig mode managed.

2. Once connected, the demonstration will make a DNS query, and then open a TCP connection to microchip.com, and perform a simple HTTP
GET command.

pic32mx795_pim__e16__wilc__freertos_tcp_server

1. When the device comes up, connect it to the AP using the command iwconfig mode managed.

2. Once connected, the demonstration starts a TCP Server on port 9760 with the IP assigned by the AP.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 598

3. Start a TCP Client on another device (SocketTest3 in this example), and connect to this TCP Server.

4. The TCP server running on the device shall send back the string received from the Client in CAPS. Therefore, if the TCP Client sends the
Server “Hello”, the Server shall send “HELLO” back to the Client.

pic32mx795_pim__e16__wilc__freertos_udp_server

1. When the device comes up, connect it to the AP using the command iwconfig mode managed.

2. Once connected, the demonstration starts a UDP Server on port 9760 with the IP assigned by the AP.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 599

3. Start a UDP Client on another device (SocketTest3 in this example), and connect to this UDP Server.

4. The UDP server running on the device shall send back the string received from the Client in CAPS. Therefore, if the UDP Client sends the
Server “Hello," the Server shall send “HELLO” back to the Client.

pic32mx795_pim__e16__wilc__freertos_udp_client

1. When the device comes up, connect it to the AP using the command iwconfig mode managed.

2. Start a UDP Server on another device (SocketTest3 in this example).

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 600

3. This demonstration has three commands:

• setudppacketoptions - Sets the current hostname, port, and message

• getudppacketoptions - Gets the hostname, port and message

• sendudppacket - Sends the UDP Packet

4. Use “setudppacketoptions” to set the IP, port of the UDP Server and the message to be sent to the UDP Server. In this example,
setudppacketoptions 192.168.1.101 1212 hello.

5. After setting the options, send the packet to the server using the command sendudppacket.

pic32mz_ef_sk__ioexp__wilc__freertos_wolfmqtt_client

1. Connect the device to the Access Point using the command iwconfig mode managed.

2. After connecting to the AP, the MQTT Protocol gets triggered automatically and Client connects to the Server.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 601

wifi_winc1500_socket

This section provides information on the WINC1500 Socket Mode Driver demonstrations.

Description

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

This demonstration has many examples that can be configured and run individually and demonstrate the features support by the WINC1500 Wi-Fi
module. The examples are defined in the file app.h, and the detail for each example is described in their related .c files.

Demo Example Configurations (app.h) Description .c file

#define AP_SCAN_EXAMPLE Scans APs around you and displays the results, and then connects to
the target AP.

ap_scan.c

#define CHIP_INFO_GET_EXAMPLE Gets the chip information of WINC1500. chip_info_get.c

#define EMAIL_SEND_EXAMPLE Demonstrates email sending. email_send.c

#define HTTP_DOWNLOAD_EXAMPLE Demonstrates file downloading by HTTP client. http_download.c

#define IP_ADDR_LOCATE_EXAMPLE Gets current location where my IP is used. ip_addr_locate.c

#define MAC_ADDRESS_GET_EXAMPLE Gets the MAC address of WINC150. mac_address_get.c

#define MDNS_EXAMPLE Demonstrates mDNS server with service discovery support. mdns.c

#define MODE_AP_EXAMPLE Demonstrates starting SoftAP with WPA, WEP or open security. mode_ap.c

#define MODE_CLIENT_STA_EXAMPLE Demonstrates client mode connection with WPA. mode_client_sta.c

#define MULTI_SOCKET_EXAMPLE Demonstrates running multiple TCP clients at the same time. multi_socket_example.c

#define P2P_EXAMPLE Demonstrates Wi-Fi Direct GC function. p2p.c

#define POWER_SAVE_EXAMPLE Demonstrates power save features. power_save.c

#define PROVISION_AP_EXAMPLE Demonstrates provisioning using SoftAP function through Android
application.

provision_ap.c

#define PROVISION_HTTP_EXAMPLE Demonstrates provisioning using SoftAP function through webpage. provision_http.c

#define PUBNUB_CLOUD_EXAMPLE Demonstrates publishing and subscribing using PubNub. pubnub_cloud.c

#define SECURITY_WEP_WPA_EXAMPLE Demonstrates infrastructure network connection with WPA, WEP or
open security.

security_wep_wpa.c

#define SIMPLE_GROWL_EXAMPLE Demonstrates notification transmitting among WINC1500, public
remote server and smartphone application.

simple_growl.c

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 602

#define SSL_CLIENT_EXAMPLE Demonstrates SSL client. ssl_client.c

#define SSL_SERVER_EXAMPLE Demonstrates SSL server. ssl_server.c

#define TCP_CLIENT_EXAMPLE Demonstrates TCP client. tcp_client.c

#define TCP_SERVER_EXAMPLE Demonstrates TCP server. tcp_server.c

#define TIME_CLIENT_EXAMPLE Demonstrates SNTP client. time_client.c

#define UDP_EXAMPLE Demonstrates UDP server and client. udp.c

#define UDP_CLIENT_EXAMPLE Demonstrates UDP client. udp_client.c

#define UDP_SERVER_EXAMPLE Demonstrates UDP server. udp_server.c

#define WEATHER_CLIENT_EXAMPLE Weather client retrieves weather information of the target location
using HTTP query.

weather_client.c

#define WPS_CONNECT_EXAMPLE Demonstrates WPS security in client mode. wps_connect.c

#define FW_UPDATE_OTA Supports FW update over the air (OTA). fw_update_ota.c

#define FW_UPDATE_OVER_SERIAL Supports FW update over serial port. fw_update_over_serial.c

WINC1500 Socket Examples Guide

This section introduces the WINC1500 Socket examples and describes how to run each example on the Explorer 16 Development Board.

Organization of WINC1500 Socket Examples

Provides information on the organization of the socket examples for the WINC1500 Wi-Fi Demonstration.

Description

Basic Examples

These examples describe basic Wi-Fi operation in a ‘how-to’ manner:

• How to read chip ID (to identify WINC1500 H/W revision)

• How to get MAC address of the Wi-Fi module

• How to start Wi-Fi in specific operation mode, such as:

• STA Mode (Station mode, known as a Wi-Fi client)

• AP mode (Access Point mode)

• P2P mode (Peer-to-Peer mode, also known as Wi-Fi Direct®)

• How to switch mode among STA, AP, and P2P modes during the runtime

• How to scan APs that are nearby

• How to set deep sleep mode

• How to connect to secure Wi-Fi using WEP or WPA/WPA2 personal security

• How to connect to WPA/WPA2 enterprise security network

• How to connect to security WPS

• How to get RF signal status by reading RSSI value

• How to set AP provision

• How to set HTTP provision

Protocol Examples

After basic code examples, user may want to explore how to send and receive network packets. Here are protocol examples that can be extended
for IoT application.

• UDP protocol example

• Server and Client

• Client

• Server

• TCP protocol example

• Client

• Server

• NTP Time client – retrieve network time for IoT application

• Send email – send an email through SMTP server

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 603

Advanced Examples

These examples demonstrate more complex functions like:

• Weather client – get the current weather information of the network provider and utilize the IO1 sensor device

• SSL connection - Set up an SSL connection

• Multi-Socket - Use Ethernet and Wi-Fi sockets

• PubNub cloud – Access cloud device

• Zeroconfig or mDNS – Service or Device discovery

MPLAB Harmony WINC1500 Socket Examples

Provides information on the socket examples provided in your installation of MPLAB Harmony.

Description

The MPLAB Harmony WINC1500 socket demonstration project provides many example configurations, but only one example at a time can be
configured and run. The following table lists the available examples in MPLAB Harmony, which can be located in the file, app.h.

WINC1500 Demonstration Examples

Example Configuration Description

AP_SCAN_EXAMPLE Scans APs around you and displays the results, and then connects to the target AP

CHIP_INFO_GET_EXAMPLE Gets the chip information of WINC1500

EMAIL_SEND_EXAMPLE Demonstrates email sending

HTTP_DOWNLOAD_EXAMPLE Demonstrates file downloading by HTTP client

IP_ADDR_LOCATE_EXAMPLE Gets current location where my IP is used

MAC_ADDRESS_GET_EXAMPLE Gets the MAC address of WINC1500

MDNS_EXAMPLE Demonstrates mDNS server with service discovery support

MODE_AP_EXAMPLE Demonstrates starting SoftAP with WPA, WEP or open security

MODE_CLIENT_STA_EXAMPLE Demonstrates client mode connection with WPA

MULTI_SOCKET_EXAMPLE Demonstrates running multiple TCP clients at the same time

P2P_EXAMPLE Demonstrates Wi-Fi Direct GC function

POWER_SAVE_EXAMPLE Demonstrates power save features

PROVISION_AP_EXAMPLE Demonstrates provisioning using SoftAP function

PUBNUB_CLOUD_EXAMPLE Demonstrates publish and subscribe using PubNub

SECURITY_WEP_WPA_EXAMPLE Demonstrates client mode connection with WPA

SSL_CLIENT_EXAMPLE Demonstrates SSL client

SSL_SERVER_EXAMPLE Demonstrates SSL server

TCP_CLIENT_EXAMPLE Demonstrates TCP client

TCP_SERVER_EXAMPLE Demonstrates TCP server

TIME_CLIENT_EXAMPLE Demonstrates SNTP client

UDP_EXAMPLE Demonstrates UDP server and client

UDP_CLIENT_EXAMPLE Demonstrates UDP client

UDP_SERVER_EXAMPLE Demonstrates UDP server

WEATHER_CLIENT_EXAMPLE Weather clients retrieves weather information of the target location using HTTP query

WPS_CONNECT_EXAMPLE Demonstrates WPS security in client mode

IOT_SUPPORT Enables additional IOT supporting features, for instance, HTTP client

Prerequisites

Provides information on the WINC1500 socket example prerequisites.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 604

Description

Development Platform

Development Platforms MCU WINC1500 Comment

Option 1:

• Microchip Explorer 16 Development Board (DM240001)

• MPLAB ICD3 In-Circuit Debugger (DV164035)

• 9V Power supply (AC002014)

• DB9 Serial Cable or USB/Serial Cable

• Windows7 PC or laptop

• Wi-Fi Access Point (AP)

• Android 5.0 or later smart device

• Internet Access

PIC32MX795F512L
USB/CAN Plug-in
Module (MA320003)

WINC1500
PICtail
Plus
module

Hardware
Platform
support in
MPLAB
Harmony
v2.03b for
Windows.

MPLAB Harmony WINC1500 Development Platform with a Laptop Running Windows

WINC1500 Wi-Fi PICtail Module Connected to the Explorer 16 Development Board

Software Prerequisites for Windows

• WINC1500 MPLAB Harmony v2.0.4b or later

• MPLAB X IDE v4.0 or later

• MPLAB XC32 C/C++ Compiler v1.43 or later

• A Terminal console, such as TeraTerm

Internet Services

• Cloud Service

• Weather Server

• NDP Server

Assigning the IDC and XC32 Compilers

Provides information on assigning the IDC and compiler.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 605

Description

Refer to the following diagram to assign the IDC and XC32 compiler to the active demonstration project, wifi_winc1500_socket. The MPLAB X IDE
detects your IDC automatically.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the PIC32 WINC1500
Socket demonstration.

Description

The WINC1500 socket demonstration contains many examples and only one example can be built and run at a time. The example can be selected
from the app.h file. For example, to run the demonstration with the AP_SCAN_EXAMPLE, edit the app.h file and set:
 #define AP_SCAN_EXAMPLE 1

To build this project, you must open the wifi_winc1500_socket.X project in MPLAB X IDE, and then select the desired configuration. The
following tables list and describe the project and supported configurations. The parent folder for these files is

<install-dir>/apps/tcpip/wifi_winc1500_socket.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wifi_winc1500_socket.X <install-dir>/apps/tcpip/wifi_winc1500_socket/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are within

./firmware/src/system_config.

Project Configuration Name BSP(s) Used Description

pic32mx795_pim_e16_winc_freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the Explorer 16 or Explorer
16/32 Development Board, or the Explorer 16/32 Development Board with the
PICtail Plus Expansion Board, PIC32MX795F512L CAN-USB PIM and the
WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board.

pic32mz_ef_sk_ioexp_winc_freertos pic32mz_ef_sk FreeRTOS version of the demonstration running on the PIC32MZ EF Starter
Kit connected to an I/O Expansion board with the WINC1500 PICtail Daughter
Board.

pic32mx795_pin_e16_wincclick_freertos pic32mx795_pim+e16 FreeRTOS version of the demonstration running on the Explorer 16/32
Development Board, or the Explorer 16/32 Development board with the
PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and the
MikroElektronika WiFi 7 Click Board (with on-board WINC1500 Wi-Fi module).

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 606

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM with the Explorer 16 Development Board and WINC1500 Wi-Fi PICtail Daughter Board

• Connect the WINC1500 PICtail Daughter Board into the PICtail Plus slot closest to the MCU. The module should face into the board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the DB9 connector on the board at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control

The following figure shows the hardware configuration.

PIC32MZ EF Starter Kit connected to an Starter Kit I/O Expansion Board with the WINC1500 Wi-Fi PICtail Daughter Board

• Connect the WINC1500 PICtail Daughter Board into the J2 PICtail Plus slot on the IO Expansion board. The module should face into the board
and be placed all the way to the end on the pin 1 side of the connector.

• Connect a jump cable (yellow cable in the picture below) between J10/Pin12 to J11/Pin8 on the I/O Expansion board. This jumper is required
for reset of the WINC1500 module.

• Connect the AC adapter to the I/O Expansion board. This external power is required as power supply from USB host connection may not be
efficient.

• Remove the JP1 jump on the PIC32MZ EF Starter Kit board.

• For serial communication and console output connect a mini-USB cable between the PIC32MZ EF Starter Kit board and laptop. The serial
connection is configured for 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow Control.

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 607

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and WINC1500 Wi-Fi
PICtail/PICtail Plus Daughter Board

• Connect the WINC1500 Wi-FI PICtail/PICtail Plus Daughter Board into the PICtail Plus slot (J63). The module should face into the main board
and be placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control.

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 608

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM, PICtail Plus Expansion Board, and the MikroElektronika WiFi 7
Click Board (with on-board WINC1500 Wi-Fi module).

• Connect the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board into the PICtail Plus slot (J63) . The module should face into the main board
and be placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 609

Explorer 16/32 Development Board with the PIC32MX795F512L CAN-USB PIM and the MikroElektronika WiFi 7 Click Board (with on-board
WINC1500 Wi-Fi module).

• Connect the WINC1500 Wi-Fi PICtail/PICtail Plus Daughter Board into the PICtail Plus slot. The module should face into the main board and be
placed all the way to the end on the pin 1 side of the connector.

• The console output uses the mini_USB/Serial connector on the board (J40) at 115200 baud, 8-bit data, No parity, 1 Stop bit, with No Flow
Control

The following figure shows the hardware configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 610

Running the Demonstration

This section provides instructions on how to build and run the WINC1500 Socket demonstration with AP-SCAN-EXAMPLE. Other examples can
be run by following the similar procedure steps describe below. Detailed instructions for the example can be found in the comments in the example
.c file.

Description

To run the AP-SCAN-EXAMPLE demonstration follows these steps:

1. In MPLAB X IDE, load the project file wifi_winc1500_socket.X.

2. Select the project configuration BSP.

3. Edit the file app.h and set:
#define AP_SCAN_EXAMPLE 1

4. Edit the file ap_scan.c and set the configuration for the example:
#if AP_SCAN_EXAMPLE
#define WLAN_SSID "DEMO_AP" /* Target AP */
#define WLAN_AUTH M2M_WIFI_SEC_WPA_PSK /* AP Security */
#define WLAN_PSK "12345678" /* Security Passphrase (If WPA Security Used) */
#define WLAN_WEP_KEY "1234567890" /* Security Key (If WEP Security Used) */
#define WLAN_WEP_KEY_INDEX 1 /* Security Key Index (If WEP Security Used) */

#define PING_ADDRESS "192.168.1.1" /* Address to Ping after Connection */
#define PING_COUNT 3 /* Number of Times to Ping */
#define PING_INTERVAL 100 /* Wait 100ms between Pings */

5. Build and run the demonstration.

6. The example console outputs can be captured with TeraTerm, as shown in the following figure.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 611

wolfssl_tcp_server

wolfSSL TCP Server demonstration.

Description

This configuration demonstrates creating a simple Internet Web server, that operates with clear text (TCP Port 80), and with encrypted text (TCP
Port 443). If IPv6 is enabled than the demonstration also serves both types of connections on IPv6. The Web server only serves one page with the
text 'Nothing Here' to all Web clients.

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the wolfSSL TCP Client
Demonstration.

Description

To build this project, you must open the wolfssl_tcp_server.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wolfssl_tcp_server.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wolfssl_tcp_server.X <install-dir>/apps/tcpip/wolfssl_tcp_server/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 612

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the wolfSSL TCP Server on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the wolfSSL TCP Server on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the wolfSSL TCP Server on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the wolfSSL TCP Server on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

The demonstration does not offer any additional functionality through the serial port; however, the current IP can be checked. As soon as a valid IP
has been assigned through DHCP to the demonstration, it is ready to serve Web pages. Use any Web browser (i.e., Chrome, Internet Explorer,
Firefox, etc.) to connect to the Web server with either http:// or https://.

wolfssl_tcp_client

wolfSSL TCP Client demonstration.

Description

This configuration demonstrates creating an Internet client that uses the MPLAB Harmony TCP API to create a TCP/IP connection to a Web
server. The connection can either be clear text, or it can use SSL to encrypt the connection with wolfSSL. The demonstration can use either IPv4
or IPv6.

Before using this demonstration, please see the important notes in the TCP/IP Demonstrations > Introduction.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the wolfSSL TCP Client
Demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 613

Description

To build this project, you must open the wolfssl_tcp_client.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/tcpip/wolfssl_tcp_client.

Warning

When using the Microchip Harmony Configurator (MHC), care must be taken when generating the code to not erase the USB
descriptors in the system_init.c file.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

wolfssl_tcp_client.X <install-dir>/apps/tcpip/wolfssl_tcp_client/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration
Name

BSP Used Description

pic32mx_eth_sk pic32mx_eth_sk Demonstrates the wolfSSL TCP Client on the PIC32 Ethernet Starter Kit.

pic32mx_eth_sk2 pic32mx_eth_sk2 Demonstrates the wolfSSL TCP Client on the PIC32 Ethernet Starter Kit II.

pic32mz_ec_sk pic32mz_ec_sk Demonstrates the wolfSSL TCP Client on the PIC32MZ EC Starter Kit.

pic32mz_ef_sk pic32mz_ef_sk Demonstrates the wolfSSL TCP Client on the PIC32MZ EF Starter Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Ethernet Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 Ethernet Starter Kit II

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

This section provides instructions on how to build and run the demonstration.

Description

For PIC32M-based Starter Kits

1. Connect a USB cable from the computer to the micro-B USB connector on the bottom of the starter kit in use.

2. When the demonstration runs, it will create a virtual com with USB CDC device on the USB bus.

3. Open a standard terminal application on the computer (such as HyperTerminal or Tera Term).

4. Set the baud rate to 921600 baud in the terminal application.

5. Establish a connection between the router or switch with the PIC32M Starter Kit using the RJ45 connector.

There are three commands available in the demonstration from the serial port:

• openurl <url> - The <url> argument must be a fully formed URL; for instance, http://www.microchip.com/

• ipmode <mode> - The <mode> argument selects the IP version. 0 - Any IP version, 4 - IPv4 only, 6 - IPv6 only

Volume I: Getting Started With MPLAB Harmony Applications Help TCP/IP Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 614

• stats - Output the statistics of the previous openurl run. Statistics such as how long each phase of the connection took, and how many
bytes were transferred.

After the openurl command is input, the demonstration will make a DNS query, and then open a connection to the requested URL and perform a
simple HTTP PUT command. The results will be sent to the serial port. If a https URL is specified, the connection will first undergo SSL negotiation
before sending the HTTP PUT command.

If ipmode is set to '0' (Any), the demonstration will favor IPv6 over IPv4, which means it will look for the IPv6 address before the IPv4 address.

USB Demonstrations

This section provides descriptions of the USB demonstrations.

MPLAB Harmony is available for download from the Microchip website by visiting: http://www.microchip.com/mplabharmony. Once you are on the
site, click the Downloads tab to access the appropriate download for your operating system. For additional information on this demonstration, refer
to the “Applications Help” section in the MPLAB Harmony Help.

Introduction

USB Library Demonstration Applications Help

Description

This distribution package contains a variety of USB-related firmware projects that demonstrate the capabilities of the MPLAB Harmony USB stack.
This section describes the hardware requirement and procedures to run these firmware projects on Microchip demonstration and development
boards.

To know more about the MPLAB Harmony USB stack and configuring the USB stack and the APIs provided by the USB stack, refer to the USB
Library documentation.

Program, Data Memory, and Stack Component Memory

Refer to USB Device Stack Demonstration Application Program and Data Memory Requirements and USB Device Stack Component Memory
Requirements for important memory information.

Pen Drive Tests

Refer to USB MSD Host USB Pen Drive Tests for information on the tests conducted on USB Flash devices.

USB Device Stack Demonstration Application Program and Data Memory Requirements

Provides information on program and data memory requirements, as well as pen drive test specifications.

Description

Program Memory and Data Memory Requirements with -O1 Optimization

The following table shows the program memory and data memory requirements of the USB Device Stack demonstration applications. All size
figures are in bytes. Demonstration applications were compiled with the MPLAB XC32 C/C++ Compiler, v1.40, with –O1 optimization.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 615

http://www.microchip.com/mplabharmony

 Note:
The msd_basic, cdc_msd_basic, and the hid_msd_basic demonstrations use the PIC32 program Flash memory as the MSD
storage media. The difference in Data Memory requirements between the PIC32MX and PIC32MZ microcontrollers for these
demonstration examples, is due to an application demonstration buffer whose size is equal to the erase page size of the PIC32
microcontroller. On the PIC32MX795F512L, this size is 4096 bytes. On the PIC32MZ2048ECH144, the erase page size is 16 KB.

Program Memory and Data Memory Requirements with -Os Optimization

The following table shows the program memory and data memory requirements of the USB Device Stack demonstration applications. All size
figures are in bytes. Demonstration applications were compiled with the MPLAB XC32 C/C++ Compiler, v1.40, with –Os optimization.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 616

USB Device Stack Component Memory Requirements

Provides memory requirements.

Description

The following table shows the Program and Data Memory requirements for individual components in the MPLAB Harmony USB Device Stack.

Device Stack Component Program
Memory

Data Memory

Device Layer 5688 184

CDC Function Driver 2420 64 + (36 * Queue Size)

MSD Function Driver 5352 217

HID Function Driver 2376 40 + (36 * Queue Size)

Vendor 912 8 + (36 * Queue Size)

PIC32MX USB Driver 5636 144 + (32 * Number of Endpoints)

PIC32MZ USB Driver 10244 192 + (32 * Number of Endpoints)

 Notes:
1. Memory requirements (in bytes) for a single instance.

2. Size measured for USB Device Stack Components in MPLAB Harmony.

3. Data Memory does not include function call stack memory size.

USB MSD Host USB Pen Drive Tests

Provides pen drive test specifications.

Description

USB MSD Host USB Pen Drive Tests

The following table lists the commercially available USB pen drives, which have been tested to successfully enumerate with the MSD Host Driver

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 617

in the MPLAB Harmony USB Host. Note that if the USB pen drive you are using in not included in the table, this indicates that this USB pen drive
has not been tested with the MSD Host Driver. However, the USB pen drive could still potentially work with MSD Host Driver. Some USB pen
drives in this table did not have their manufacturer or model data available. The USB Pen drives were tested with the msd_basic USB Host
demonstration in the latest version of the MPLAB Harmony USB Host Stack.

VID PID Manufacturer Model/Drive Capacity

0x1B1C 0x1A0F Corsair Components Flash Voyager Go 8 GB

0x03F0 0x0AB7 Hewlett-Packard 64 GB

0xABCD 0x1234 Microchip Technology Inc. 4 GB

0x125F 0xCB10 Adata Dashdrive UV100 8 GB

0x8644 0x8003 Verico T Series 16 GB

0x8564 0x1000 Transcend USB 3.0 32 GB

0x0951 0x16A7 Dell Kingston Technology 16 GB

0x0718 0x0704 Imation 16 GB Pen Drive

0x048D 0x1168 iBall Jaldi 16 GB Pen Drive

0x058F 0x6366 Alcor Micro AXL 32 GB

0x154B 0x005B PNY Cube 16 GB

0x0930 0x6544 Toshiba Hatabusa Pen Drive 8 GB

0x058F 0x6387 Alcor ZipMem 16 GB

0x090C 0x1000 Silicon Motion Inc. Axl 8GB

0x18A5 0x0245 Verbatim Store N Go Audio USB 8 GB

0x05DC 0xC75C Lexar USB Pen Drive 8 GB

0x1005 0xb113 Apacer 8 GB (AH233)

0x054C 0x06B0 Sony 8 GB

0x054C 0x0862 Sony Micro Vault USM-V 8 GB

0x0781 0x557c SanDisk 8 GB

0x1E4E 0x3257 Etron iBall 16 GB

0x1EC9 0x0101 Moserbaer Swivel 16 GB Pen Drive

0x0BDA 0x0109 SanDisk Standard A and Mini-B connector 16 GB

0x1908 0x1320 ZBEL Wrist Band Flash Drive 4 GB

0x0951 0x1665 Kingston Data Traveler SE9 16 GB

USB HID Host Keyboard and Mouse Tests

Provides information on tested USB keyboard and mouse devices.

Description

The following table lists the commercially available USB keyboard and mouse devices, which have been tested to successfully enumerate with the
HID Host Driver in the MPLAB Harmony USB Host. Note that if the USB HID device you are using in not included in the table, this indicates that
this USB HID device has not been tested, but could still potentially work with the HID Host Driver.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 618

 Note:
The above tests have been performed only on the PIC32M family of devices.

Demonstration Application Configurations

This topic provides information on the available USB demonstration project configurations.

Description

The available USB Demonstration application MPLAB X IDE projects feature support for multiple configurations. Selecting these configurations
allow for the demonstration projects to run across different PIC32 microcontrollers and development boards. The following project configurations
are available:

Configuration name Description

pic32mx_usb_sk2_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 USB Starter Kit II
development board, with the PIC32MX795F512L microcontroller. The USB Stack will be configured for Interrupt
mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mx_usb_sk2_poll_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 USB Starter Kit II
development board, with the PIC32MX795F512L microcontroller. The USB Stack will be configured for Polled
mode operation and the USB driver will be configured for Dynamic operation mode.

pic32mx_usb_sk3_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 USB Starter Kit III
development board, with the PIC32MX470F512L microcontroller. The USB Stack will be configured for Interrupt
mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mx_bt_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32 Bluetooth Starter Kit
development board, with the PIC32MX270F256D microcontroller. The USB Stack will be configured for Interrupt
mode operation and the USB Driver will be configured for dynamic operation mode.

pic32mz_da_sk_intddr_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ Embedded
Graphics with Internal DRAM (DA) Starter Kit development board, with the PIC32MZ2064DAH169
microcontroller. The USB Stack will be configured for Interrupt mode operation and the USB Driver will be
configured for Dynamic operation mode.

pic32mz_ec_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EC Starter Kit
development board, with the PIC32MZ2048ECH144 microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ec_sk_poll_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EC Starter Kit
development board, with the PIC32MC2048ECH144 microcontroller. The USB Stack will be configured for
Polled mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ec_sk_meb2_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EC Starter Kit, with
the PIC32MZ2048ECH144 microcontroller board attached to the MEB II. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ef_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EF Starter Kit, with
the PIC32MZ2048EFM144 microcontroller. The USB Stack will be configured for Interrupt mode operation and
the USB Driver will be configured for Dynamic operation mode.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 619

pic32mz_ef_sk_poll_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MZ EF Starter Kit
development board, with the PIC32MZ2048EFM144 microcontroller. The USB Stack will be configured for
Polled mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mx795_pim_e16_int_dyn Selecting this configuration will set up the demonstration application to run on the Explorer 16 Development
Board along with the PIC32MX795F512L microcontroller Plug In Module and USB PICtail Plus Daughter Board.
The USB Stack will be configured for Interrupt mode operation and the USB Driver will be configured for
Dynamic operation mode.

pic32mx460_pim_e16_int_dyn Selecting this configuration will set up the demonstration application to run on the Explorer 16 Development
Board along with the PIC32MX460F512L microcontroller Plug In Module and USB PICtail Plus Daughter Board.
The USB Stack will be configured for Interrupt mode operation and the USB Driver will be configured for
Dynamic operation mode.

pic32mx470_curiosity Selecting this configuration will set up the demonstration application to run on the PIC32MX470 Curiosity
Development Board, with the PIC32MX470F512H microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mz_ef_curiosity Selecting this configuration will set up the demonstration application to run on the PIC32MZ EF Curiosity
Development Board, with the PIC32MZ2048EFM100 microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

pic32mk_evk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MK GP Development
Board, with the PIC32MK1024GPE100 microcontroller. The USB Stack will be configured for Interrupt mode
operation and the USB Driver will be configured for Dynamic operation mode.

pic32mx_xlp_sk_int_dyn Selecting this configuration will set up the demonstration application to run on the PIC32MX XLP Starter Kit, with
the PIC32MX274F256D microcontroller. The USB Stack will be configured for Interrupt mode operation and the
USB Driver will be configured for Dynamic operation mode.

chipkit_wf32 Selecting this configuration will set up the demonstration application to run on the chipKIT WF32 Wi-Fi
Development Board, with the PIC32MZ2048EFG100 microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

chipkit_wifire Selecting this configuration will set up the demonstration application to run on the chipKIT Wi-FIRE
Development Board, with the PIC32MX275F256D microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic operation mode.

The following figure shows how a configuration can be selected in MPLAB X IDE.

Alternatively, the active configuration can be selected in the Project Properties.

USB Device Demonstrations Matrix

The following table shows the availability of a configuration across available USB Device demonstration applications. Green indicates support.
Red indicates no support.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 620

USB Host Demonstration Matrix

The following table shows the availability of a configuration across available USB Host demonstration applications. Green indicates support. Red
indicates no support.

USB Multiple Controller Demonstration Matrix

The following table shows the availability of a configuration across available USB Multiple Controller Demonstration applications. Green indicates
support. Red indicates no support.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 621

Demonstrations

The USB Demonstrations are grouped into USB Device Stack, USB Host Stack, USB Dual Role, and USB demonstrations that make use of
multiple USB controllers on certain PIC32 family devices.

Device

This section describes the USB Device demonstrations.

Description

The MPLAB Harmony USB Device Stack demonstration applications uses LEDs on the development board to indicate the USB state of the device.
The following table provides details on the development board specific LEDs and the USB Device State these indicate when active. This indication
scheme is implemented by all USB Device Stack Demonstration applications.

USB Device State and LED Indication

Demonstration Board Reset State Configured
State

Suspended
State

Explorer 16 Development Board and PIM D3, D4 D5 D4, D5

PIC32 USB Starter Kit II LED1, LED2 LED3 LED2, LED3

PIC32MZ Embedded Connectivity (EC) Starter Kit LED1, LED2 LED3 LED2, LED3

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit LED1, LED2 LED3 LED2, LED3

PIC32 USB Starter Kit III LED1, LED2 LED3 LED2, LED3

PIC32 Bluetooth Starter Kit Red LED,
Green LED

Blue LED Green LED,
Blue LED

PIC32MX470 Curiosity Development Board LED1, LED2 LED3 LED2, LED3

PIC32MZ EF Curiosity Development Board LED1, LED2 LED3 LED2, LED3

cdc_com_port_dual

Demonstrates a USB CDC device, emulating dual serial COM ports - one looping back into the other.

Description

This demonstration application creates a USB CDC Device that enumerates as two serial ports on the USB Host personal computer. This
application demonstrates the ability of the MPLAB Harmony USB Device Stack to support multiple instances of the same Device class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Device
Dual COM Port Demonstration.

Description

To build this project, you must open the cdc_com_port_dual.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 622

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_com_port_dual.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_dual.X <install-dir>/apps/usb/device/cdc_com_port_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_bt_sk_int_dyn pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Starter Kit configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mx_xlp_sk_int_dyn pic32mx_xlp_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MX
XLP Starter Kit configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

pic32mx470_curiosity pic32mx470_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to
run on the PIC32MX470 Curiosity Development Board, with the PIC32MX470F512H
microcontroller. The USB Stack will be configured for Interrupt mode operation and the
USB Driver will be configured for Dynamic operation mode.

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration application to
run on the PIC32MZ EF Curiosity Development Board, with the PIC32MZ2048EFM100
microcontroller. The USB Stack will be configured for Interrupt mode operation and the
USB Driver will be configured for Dynamic operation mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EC Starter Kit

Remove jumper JP1.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX XLP Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 623

PIC32 Bluetooth Starter Kit

Jumper J8 should either be shorted between pins 2 and 3 or should be completely open.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

PIC32MX470 Curiosity Development Board

• Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

• Power the PIC32MX470 Curiosity Development Board from a Host PC through a Type-A male to mini-B USB cable connected to Mini-B port
(J3).

• Ensure that jumper is not present in the J13 header to use the Curiosity board in device mode.

• Plug in a USB cable with a micro-B type connector to Micro-B port (J12), and plug the other end into your computer.

PIC32MZ EF Curiosity Development Board

• Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

• Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro-B USB cable connected to Micro-B port
(J3).

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 624

• Ensure that jumper is not present in the J13 header to use the Curiosity board in device mode.

• Plug in a USB cable with a micro-B type connector to Micro-B port (J12), and plug the other end into your computer.

Running the Demonstration

Provides instructions on how to build and run the CDC Dual COM Port demonstration.

Description

This demonstration allows the device to appear like dual serial (COM) ports to the host. Do the following to run this demonstration:

1. First compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. Attach the device to the host. If the host is a personal computer and this is the first time you have plugged this device into the computer you
may be prompted for a .inf file.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 625

3. Select the "Install from a list or specific location (Advanced)" option. Specify the
<install-dir>/apps/usb/device/cdc_com_port_dual/inf directory.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 626

 Note:
As an option, to specify the driver, you may open the device manager and expand the Ports (COM & LPT) tab, and right click on
“Update Driver Software…”

Verify that the enumerated USB device is seen as a virtual USB serial comport in Device Manager.

4. Once the device is successfully installed, open up two instances of a terminal program, such as HyperTerminal. Select the appropriate COM
port for each of these terminal instances. The following screen shot shows the COM port selection for the Tera Term terminal program.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 627

5. The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication
Table in the Device section.

6. To run the demonstration, turn on local echo on both the terminals. For Tera Term terminal application, navigate to Setup->Terminal to turn on
local echo. Type a character or string in one terminal window. The same character or string appears on the second terminal window. Similarly,
any character typed in the second window appears in the first window. The following screen shot shows two instances of Tera Term.

 Note:
Some terminal programs, like HyperTerminal, require users to click the disconnect button before removing the device from the
computer. Failing to do so may result in having to close and open the program again to reconnect to the device.

cdc_com_port_single

Demonstrates a USB CDC device, emulating a serial COM port.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 628

Description

This demonstration application creates a USB CDC Device that enumerates as a single COM port on the host personal computer. The application
demonstrates two-way communication between the USB device and the personal computer host.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Device
Single COM Port Demonstration.

Description

To build this project, you must open the cdc_com_port_single.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_com_port_single.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_single.X <install-dir>/apps/usb/device/cdc_com_port_single/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the
Explorer 16 Development Board configured for Interrupt mode and dynamic
operation. This configuration also requires PIC32MX460F512L Plug-In Module
(PIM) and the USB PICtail Plus Daughter Board.

pic32mx_usb_sk2_poll_dyn pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit II with the USB Device Stack configured for Polled mode and
dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_da_sk_intddr_int_dyn pic32mz_da_sk_intddr Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit configured for
Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn_micromips pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit
configured in microMIPS mode for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit with the
USB Device Stack configured for Polled mode and dynamic operation.

pic32mx_125_sk_int_dyn pic32mx_125_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MX1/2/5 Starter Kit with the USB Device Stack configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 629

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

PIC32WK Wi-Fi Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the CDC Single COM Port demonstration.

Description

This demonstration allows the device to appear like a serial (COM) port to the host. Do the following to run this demonstration:

1. First compile and program the target device. While compiling, select the appropriate MPLAB X IDE project configuration based on the
demonstration board. Refer to Building the Application for details.

2. Attach the device to the host. If the host is a personal computer and this is the first time you have plugged this device into the computer, you
may be prompted for a .inf file.

3. Select the "Install from a list or specific location (Advanced)" option. Specify the
<install-dir>/apps/usb/device/cdc_com_port_single/inf directory.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 630

4. Once the device is successfully installed, open up a terminal program, such as HyperTerminal and select the appropriate COM port. On most
machines this will be COM5 or higher. Set the communication properties to 9600 baud, 1 Stop bit and No parity, with Flow Control set to None.

5. The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication
Table in the Device section.

6. Once connected to the device, there are two ways to run this example project:

• a) Typing a key in the terminal window will result in the attached device echoing the next letter. Therefore, if the letter 'b' is pressed, the
device will echo 'c'.

• b) If the push button is pressed, the device will echo "PUSH BUTTON PRESSED" to the terminal window.

The following table shows the switch buttons to be pressed for different demonstration boards.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

PIC32WK Wi-Fi Starter Kit

SW1

Explorer 16 Development Board S3

 Note:
Some terminal programs, like HyperTerminal, require users to click the disconnect button before removing the device from the
computer. Failing to do so may result in having to close and open the program again to reconnect to the device.

cdc_msd_basic

Demonstrates a composite USB device emulating a COM port and Flash drive.

Description

This demonstration application creates a composite USB Device that enumerates as a COM port and as Flash drive simultaneously.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC MSD
Composite Device Demonstration.

Description

To build this project, you must open the cdc_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 631

Project Name Location

cdc_msd_basic.X <install-dir>/apps/usb/device/cdc_msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB CDC MSD Composite Device demonstration.

Description

This demonstration application creates a composite USB Device that works simultaneously as a CDC and as a MSD device. This application
combines the functionality of the cdc_com_port_single and msd_basic demonstration applications into one device.

Refer to Running the Demonstration section of the cdc_com_port_single demonstration and the Running the Demonstration section of the
msd_basic demonstration for details on exercising the CDC and MSD device features, respectively.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

cdc_serial_emulator

This application demonstrates the use of the CDC device class in implementing a USB-to-Serial Dongle.

Description

This application demonstrates the use of the CDC device class in implementing a USB-to-Serial Dongle. The application enumerates a COM port
on the personal computer. Data received through the CDC USB interface is forwarded to a UART. Data received on the UART is forwarded to the
CDC USB interface. This emulates a USB-to-Serial Dongle.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Device
USB-to-Serial Demonstration.

Description

To build this project, you must open the cdc_serial_emulator.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/cdc_serial_emulator.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 632

Project Name Location

cdc_serial_emulator.X <install-dir>/apps/usb/device/cdc_serial_emulator/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX795F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
EF Starter Kit configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32MX795F512L CAN-USB PIM

Jumper J10 should be removed. Jumper J1 and J2 should_connect_to positions 1 and 2. This PIM should be used along with the Explorer 16
Development Board and the USB PICtail Plus daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The
USB PICtail Plus daughter board should be connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX795F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

• Jumper J1 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM
(MA320003), and not the PIC32MX795F512L USB PIM (MA320002).

• Jumper J2 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM
(MA320003) and not the PIC32MX795F512L USB PIM (MA320002).

Running the Demonstration

Provides instructions on how to build and run the CDC Serial Emulator Demonstration.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

Description

This application demonstrates the use of the CDC Device class in implementing a USB-to-Serial Dongle. The application enumerates a COM port
on the personal computer. Data received through the CDC USB interface is forwarded to a UART. Data received on the UART is forwarded to the
CDC USB interface. This emulates a USB-to-Serial Dongle.

1. Open_the project in MPLAB X IDE and select the desired configuration.

2. Build the code and program the device.

3. Depending on the hardware in use, do one of the following:

• If you are using the Explorer 16 board, connect the mini-B device connector on the USB PICtail Plus Daughter Board to the personal computer

• If you a are using the PIC32MZ EF starter kit, connect the micro-USB device connector to the personal computer

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 633

7. Select the "Install from a list or specific location (Advanced)" option. Specify the
<install-dir>/apps/usb/device/cdc_serial_emulator/inf directory.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

8. Open_a terminal emulation program of your choice and select the enumerated USB COM port.

9. Connect the USB-to-Serial Dongle to the same personal computer.

10. Open_another instance of the terminal emulation program and select the USB-to-Serial Dongle.

11. Connect the serial connector of the USB-to-Serial Dongle to the UART connector (P1) on the Explorer 16 Development Board.

12. Choose a baud rate of 9600, 1 Stop bit and no parity while opening both of the terminal emulation programs.

The setup should be similar to the following diagram.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 634

Any text entered into the terminal 1 program will be echoed on terminal 2 and vice versa.

cdc_serial_emulator_msd

Demonstrates a USB to Serial Dongle combined with a MSD class.

Description

This demonstration application creates a USB Device that combines the functionality of the cdc_serial_emulator and msd_basic demonstration
applications.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the this demonstration
application.

Description

To build this project, you must open the cdc_serial_emulator_msd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/cdc_serial_emulator_msd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_serial_emulator_msd.X <install-dir>/apps/usb/device/cdc_serial_emulator_msd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX795F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MX795F512L CAN-USB PIM

Jumper J10 should be removed. Jumper J1 and J2 should_connect_to positions 1 and 2. This PIM should be used along with the Explorer 16
Development Board and the USB PICtail Plus daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The
USB PICtail Plus daughter board should be connected to the edge connector J9.

On the Explorer 16 Development Board:

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 635

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX795F512L PIM:

• Keep jumper J10 open.

• Keep all jumpers in J9 open

• Jumper J1 should be shorted between positions 1 and 2

• Jumper J2 should be shorted between positions 1 and 2

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Description

This demonstration functions as a composite USB Device that combines the features of the devices created by the cdc_serial_emulator and the
msd_basic demonstration applications. Refer to Running the Demonstration section of the cdc_serial_emulator demonstration and Running the
Demonstration section of the msd_basic demonstration for details on exercising the CDC and MSD functions, respectively.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

hid_basic

This demonstration application creates a custom HID device that can be controlled by a personal computer-based utility.

Description

This application creates a custom HID device that can be controlled by a personal computer-based utility. The device allows the USB Host utility to
control the LEDs on the board and query the status of a switch.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Basic
Demonstration.

Description

To build this project, you must open the hid_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_basic.X <install-dir>/apps/usb/device/hid_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 636

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the HID Basic demonstration.

Description

This demonstration uses the selected hardware platform as a HID class USB device, but uses the HID class for general purpose I/O operations.
While compiling, select the appropriate MPLAB X IDE project configuration based on the demonstration board. Refer to Building the Application for
details.

Typically, the HID class is used to implement human interface products, such as mice and keyboards. The HID protocol, is however, quite flexible,
and can be adapted and used to send/receive general purpose data to/from a USB device. Using the HID class for general purpose I/O operations
is quite advantageous, in that it does not require any kind of custom driver installation process. HID class drivers are already provided by and are
distributed with common operating systems. Therefore, upon plugging in a HID class device into a typical computer system, no user installation of
drivers is required, the installation is fully automatic.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

HID devices primarily communicate through one interrupt IN endpoint and one interrupt OUT endpoint. In most applications, this effectively limits
the maximum achievable bandwidth for full speed HID devices to 64 kBytes/s of IN traffic, and 64 kBytes/s of OUT traffic (64 kB/s, but effectively
"full duplex").

The GenericHIDSimpleDemo.exe program, and the associated firmware demonstrate how to use the HID protocol for basic general purpose
USB data transfer.

Before you can run the GenericHIDSimpleDemo.exe executable, you will need to have the Microsoft® .NET Framework Version 2.0
Redistributable Package (later versions are probably acceptable, but have not been tested) installed on your computer. Programs that were built in
the Visual Studio® .NET languages require the .NET redistributable package. The redistributable package can be freely downloaded from
Microsoft’s website. Users of Windows Vista® operating systems will not need to install the .NET framework, as it comes preinstalled as part of the
operating system.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 637

Launching the Application

To launch the application, simply double click the executable GenericHIDSimpleDemo.exe in the
<install-dir>\apps\usb\device\hid_basic\bin directory. A property sheet similar to the following should appear:

 Note:
If instead of this window, an error message appears while trying to launch the application, it is likely the Microsoft .NET Framework
Version 2.0 Redistributable Package has not yet been installed. Please install it and try again.

Send/Receive Packets

To begin sending/receiving packets to the device, you must first find and_connect_ to the device. As configured by default, the application is
looking for HID class USB devices with VID = 0x04D8 and PID = 0x003F. The device descriptor in the firmware project meant to be used with this
demonstration uses the same VID/PID. If you plug in a USB device programmed with the correct precompiled .hex file, and click Connect, the
other push buttons should become enabled. If clicking Connect has no effect, it is likely the USB device is either not connected, or has not been
programmed with the correct firmware.

Clicking Toggle LED(s) should send a single packet of general purpose generic data to the HID class USB peripheral device. The data will arrive
on the interrupt OUT endpoint. The firmware has been configured to receive this generic data packet, parse the packet looking for the Toggle
LED(s) command, and should respond appropriately by controlling the LED(s) on the demonstration board.

The Get Pushbutton State option will send one packet of data over the USB to the peripheral device (to the interrupt OUT endpoint) requesting the
current push button state. The firmware will process the received Get Pushbutton State command, and will prepare an appropriate response
packet depending upon the pushbutton state.

The following table shows the button that has to be pressed on the demonstration board to see the change in the push button state.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

hid_joystick

Demonstrates a USB HID device emulating a joystick.

Description

This demonstration application creates a custom HID joystick. This application is only intended to demonstrate creation of Joystick HID Report
descriptors and may not be a definite end solution. The end application requirements may need the report descriptor to be modified.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Joystick
Demonstration.

Description

To build this project, you must open the hid_joystick.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_joystick.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_joystick.X <install-dir>/apps/usb/device/hid_joystick/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 638

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the USB HID Joystick demonstration.

Description

This demonstration uses the selected hardware platform as a USB Joystick. Select the appropriate MPLAB X IDE project configuration based on
the demonstration board. Refer to Building the Application for details.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

To test the joystick feature, navigate to the <install-dir>/apps/usb/device/hid_joystick/bin directory and open
JoystickTester.exe:

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 639

Pressing the button will cause the device to:

• Indicate that the "x" button is pressed, but no others

• Move the hat switch to the "east" position

• Move the X and Y coordinates to their extreme values

The Following table shows the button that has to be pressed on the demonstration board to emulate the joystick.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 640

hid_keyboard

Demonstrates a USB HID device, emulating a keyboard.

Description

This demonstration application creates a Generic HID keyboard. Pressing a key on the board emulates a keyboard key press.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Keyboard
Demonstration.

Description

To build this project, you must open the hid_keyboard.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_keyboard.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_keyboard.X <install-dir>/apps/usb/device/hid_keyboard/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 641

connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the USB HID Keyboard demonstration.

Description

This demonstration uses the selected hardware platform as a USB keyboard. While compiling, select the appropriate MPLAB X IDE project
configuration based on the demonstration board. Refer to Building the Application for details.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

Before pressing the button, select a window in which it is safe to type text freely. Pressing the button on the demonstration board will cause the
device to print a character on the screen.

The following table shows the button that has to be pressed on the demonstration board to print a character.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

hid_mouse

Demonstrates a USB HID device, emulating a mouse pointing device.

Description

This demonstration application creates a USB HID based two-button mouse device. When connected, the device emulates mouse operation by
moving the cursor in a circular pattern.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Mouse
Demonstration.

Description

To build this project, you must open the hid_mouse.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_mouse.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_mouse.X <install-dir>/apps/usb/device/hid_mouse/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 642

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the HID Mouse Demonstration.

Description

This demonstration uses the selected hardware platform as a USB mouse. While compiling, select the appropriate MPLAB X IDE project
configuration based on the demonstration board. Refer to Building the Application for details.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

Before connecting the board to the computer through the USB cable please be aware that the device will begin moving the mouse cursor on the
computer. There are two ways to stop the device from allowing the cursor to continue to move. The first way is to disconnect the device from the
computer. The second is to press the correct button on the hardware platform. Pressing the button again will cause the mouse cursor to start
moving in a circle again.

The following table shows the button that has to be pressed on the demonstration board to stop the circular motion:

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 643

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

hid_msd_basic

Demonstrates a HID Device Class and MSD class composite USB Device.

Description

This demonstration application creates a USB Device that combines the functionality of the hid_basic and msd_basic demonstration applications.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the this demonstration
application.

Description

To build this project, you must open the hid_msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/hid_msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_msd_basic.X <install-dir>/apps/usb/device/hid_msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this configuration to run the demonstration application on the PIC32 USB Starter Kit II
configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this configuration to run the demonstration application on the PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 644

Description

This demonstration functions as composite USB Device that combines the features of the devices created by the hid_basic and the msd_basic
demonstration applications. Refer to Running the Demonstration section of the hid_basic demonstration and Running the Demonstration section of
the msd_basic demonstration for details on exercising the HID and MSD functions, respectively.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

msd_basic

Demonstrates a USB MSD Device emulating a Flash Drive.

Description

This demonstration application creates a Flash drive using the Mass Storage Device Class.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB MSD Basic
Demonstration.

Description

To build this project, you must open the msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_basic.X <install-dir>/apps/usb/device/msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_bt_sk_int_dyn pic32mx_bt_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Starter Kit configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II with the USB Device Stack configured for Polled mode and dynamic operation..

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

pic32mz_ef_sk_poll_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Polled mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 645

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32 Bluetooth Starter Kit

No hardware related configuration or jumper settings required.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

• Jumper JP2 and JP4 should be removed

Running the Demonstration

Provides instructions on how to build and run the USB MSD Basic demonstration.

Description

This demonstration uses the selected hardware platform as a logical drive on the computer using the internal Flash of the device as the drive
storage media. Connect the hardware platform to a computer through a USB cable. The device should appear as a new drive on the computer
named "Drive Name". The drive can used to store files.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

 Note:
Reprogramming the development board will cause any stored files to be erased.

msd_fs_spiflash

This application demonstrates accessing the SPI Flash connected to the PIC32 device as a media by multiple clients.

Description

This application demonstrates accessing the SPI Flash connected to the PIC32 device as a media by multiple clients. When connected via USB to
the Host Computer, the SPI Flash is shown as the storage media. The Host writes files to the media, which is later accessed by the application
running on the PIC32 device using the File System.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB MSD File
System SPI Flash Demonstration.

Description

To build this project, you must open the msd_fs_spiflash.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/msd_fs_spiflash.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_fs_spiflash.X <install-dir>/apps/usb/device/msd_fs_spiflash/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 646

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

bt_audio_dk_int_dyn bt_audio_dk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
Bluetooth Audio Development Kit.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 Bluetooth Audio Develoment Kit

Ensure that switch S1 is set to PIC32_MCLR.

Running the Demonstration

Provides instructions on how to build and run the USB MSD File System SPI Flash demonstration.

Description

This demonstration shows an example of:

• Accessing the media attached to PIC32 by multiple clients

• Application running on the PIC32 firmware accesses the media using the MPLAB Harmony File System

When connected to the USB Host the very first time, the user is expected to format the media and create a file named FILE.TXT in the root
directory of the media. The user can update the file to provide input for the application to glow the LEDs present on the development kit. The
application running on the PIC32 reads and interprets the data present in the file and accordingly turns ON or OFF the LEDs LED8 and LED9 of
the development kit. The format of input in the file FILE.TXT should be as follows:

• For turning ON an LED:

• LED8:1

• LED9:1

• For turning OFF an LED:

• LED8:0

• LED9:0

After having set the appropriate values in the file, the user can then press and release the wwitch SW1 located on the development kit for the
MPLAB Harmony File System running on the PIC32 to act upon the contents of the file.

The FS state machine of the demonstration is only triggered by the switch SW1. When the user presses and releases SW1 the following occurs:

• LED5 is turned ON to indicate that the FS state machine is running

• The USB is detached

• The file system on the SPI Flash is mounted

• The contents of FILE.TXT is read and acted upon. Depending on the values set in the file, the LEDs are either turned ON or OFF.

• Next, the file system is unmounted and the USB is reattached

• LED5 is turned OFF to indicate that FS state machine is no longer running

• If LED6 is turned ON during any part of the demonstration, this indicates the demonstration has failed

msd_multiple_luns

This topic demonstrates data transfer between two storage media - SD card and non-volatile memory (NVM) - and a computer through USB Mass
Storage Device (MSD).

Description

This application demonstrates the creation of a USB device with multiple logical units. The storage media, SD Card, acts as one logical unit, and
the NVM acts as the second logical unit. Data transfer between a computer and the logical units (SD Card / NVM) takes place through USB MSD.

Building the Application

This section identifies the MPLAB X IDE project name and location, and then lists and describes the available configurations for the USB MSD
multiple LUNs demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 647

Description

To build this project, you must open the msd_multiple_luns.X project in MPLAB X IDE, and then select the desired configuration. The
following tables lists and describes the project and the supported configurations. The parent folder for these files is

<install-dir>/apps/usb/device/msd_multiple_luns

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_multiple_luns.X <install-dir>/apps/usb/device/msd_multiple_luns/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mx470_curiosity pic32mx470_curiosity Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MX470
Curiosity board with the USB device stack configured for Interrupt mode and full speed operation.
The LUN0 media type is configured as SD Card and LUN1 media type is configured as NVM.

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ EF
Curiosity board with the USB device stack configured for Interrupt mode and high speed
operation. The LUN0 media type is configured as SD Card and LUN1 media type is configured as
NVM.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

PIC32MX470 Curiosity Development Board

1. Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

2. Mount the SD Click board, "microSD click" from MikroElektronika (http://www.mikroe.com/click/microsd/) on the mikro bus interface J10.

3. Plug a micro SD card into the microSD click board card slot.

4. Power the PIC32MX470 Curiosity Development Board from a Host PC through a Type-A male to mini-B USB cable connected to Mini-B port
(J3).

5. Connect a Type-A male to micro USB cable to the micro USB port (J12) on PIC32MX470 Curiosity Development Board.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 648

PIC32MZ EF Curiosity Development Board

1. Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

2. Mount the SD Click board, "microSD click" from MikroElektronika (http://www.mikroe.com/click/microsd/) on the mikro bus interface J10.

3. Plug a micro SD card into the microSD click board card slot.

4. Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro USB cable connected to micro USB port
(J3).

5. Connect a Type-A male to micro USB cable to the micro USB port (J12) on PIC32MZ EF Curiosity Development Board.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 649

http://www.mikroe.com/click/microsd

Running the Demonstration

This section provides instructions about how to build and run the USB MSD Multiple LUNs demonstration.

Description

This demonstration uses SD card and NVM as drive storage media and shows them as two logical drives on the computer.

• Connect the hardware platform to a computer through a USB cable.

• The device should appear as two new drives on the computer.

• The NVM media should appear as "Drive Name" and should have a sample “FILE.txt” file. The drive name for the SD card media depends
on the micro SD card vendor. The drives can then be used to store files.

• The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication
Table in the Device section.

 Note:
Reprogramming the development board will cause any stored files in the NVM media to be erased.

msd_sdcard

Demonstrates data transfer from a SD card and a computer through USB MSD.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 650

Description

This application demonstrates the usage of a SD card reader through the USB Mass Storage Device (MSD) class to transfer data between a
computer and SD card. High-Speed USB is used for communication between the Host computer and the PIC32 device, while a SD card is used as
the storage medium.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB MSD SD Card
Demonstration.

Description

To build this project, you must open the msd_sdcard.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/msd_sdcard.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_sdcard.X <install-dir>/apps/usb/device/msd_sdcard/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mz_ec_sk_int_dyn pic32mz_ec_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ EC
Starter Kit connected to the MEB II. The media drivers are configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity (EC) Starter Kit and Multimedia Expansion Board II (MEB II)

No hardware related configuration or jumper settings required.

Running the Demonstration

Provides instructions on how to build and run the USB MSD SD Card demonstration.

Description

This demonstration uses the selected hardware platform as a logical drive on the computer using the SD card as the drive storage media. Connect
the hardware platform to a computer through a USB cable. The device should appear as a new drive on the computer named "Drive Name". The
drive can then be used to store files.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

vendor

Demonstrates a custom USB Device created by using the USB Device Layer Endpoint functions.

Description

This demonstration application creates a custom USB device using the USB Device Layer Endpoint functions.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 651

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Vendor USB Device
Demonstration.

Description

To build this project, you must open the vendor.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/device/vendor.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

vendor.X <install-dir>/apps/usb/device/vendor/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx460_pim_e16_int_dyn pic32mx460_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration on the Explorer
16 Development Board configured for Interrupt mode and dynamic operation. This
configuration also requires the PIC32MX460F512L Plug-In Module (PIM) and the USB
PICtail Plus Daughter Board.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit III configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32
USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

Remove jumper JP2.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

PIC32 USB Starter Kit III

Remove jumper JP1.

PIC32MX460F512L PIM

Jumper J10 should be removed. This plug-in module should be used along with the Explorer 16 Development Board and the USB PICtail Plus
daughter board. The microcontroller PIM should be plugged into the PIM_socket_on the board. The USB PICtail Plus daughter board should be
connected to the edge connector J9.

On the Explorer 16 Development Board:

• Switch S2 should be set to PIM

• Jumper JP2 should be in place

On the USB PICtail Plus Daughter Board:

• Jumper JP1 should be in place

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 652

• Jumper JP2 and JP4 should be removed

On the PIC32MX460F512L PIM:

• Keep jumper J10 open

• Keep all jumpers in J9 open

Running the Demonstration

Provides instructions on how to build and run the Vendor USB Device demonstration.

Description

The Vendor device can be exercised by using the WinUSB PnP Demonstration application, which is provided in your installation of MPLAB
Harmony.

The LEDs on the demonstration board will indicate the USB state of the device, as described in the USB Device State and LED Indication Table in
the Device section.

This application allows the state of the LEDs on the board to be toggled and indicates the state of a switch (pressed/released) on the board.

To launch the application, double click WinUSB PnP Demo.exe located in <install dir>/apps/usb/device/vendor/bin. A dialog box
similar to the following should appear:

The appropriate device family that is under testing should be selected in the utility. Pressing the Toggle LED button will cause the LED on the
board to toggle. The Pushbutton State field in the application indicates the state of a button on connected USB Device. Pressing the switch on the
development board will update the Pressed/Not Pressed status of the Pushbutton State field.

Demonstration Board Button

PIC32 USB Starter Kit II

PIC32 USB Starter Kit III

PIC32MZ Embedded Connectivity (EC) Starter Kit

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

SW1

Explorer 16 Development Board S3

 Note:
The device family under test should be selected appropriately. An incorrect selection will result in an invalid push button status.

Host

This section describes the USB Host demonstrations.

audio_speaker

This application demonstrates the use of the Audio v1.0 Host Class Driver to enumerate and operate an audio speaker device.

Description

This application demonstrates the use of the Audio v1.0 Host Class Driver to enumerate and an audio speaker device. The application uses the
USB Host Layer and Audio 1.0 class driver to enumerate an Audio v1.0 USB device. The demonstration host application then operates and uses
the functionality of the attached audio speaker device.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 653

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Host Audio
Speaker Demonstration.

Description

To build this project, you must open the audio_speaker.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/audio_speaker.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

audio_speaker.X <install-dir>/apps/usb/host/audio_speaker/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host Audio v1.0 Basic Demo.

Description

This application demonstrates the use of the Audio v1.0 Host Class Driver to enumerate and operate an Audio v1.0 Device. The application uses
the USB Host layer and Audio v1.0 class driver to enumerate a Audio v1.0 USB device. The demonstration host application then operates and
uses the functionality of the attached Audio v1.0 Device.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Attach a commercially available USB speaker to the board.

4. LED1 is turned ON if the attached device is accepted by the Audio 1.0 class driver.

5. The speaker should produce a 1 kHz sine wave.

6. LED2 will continue blinking if the demonstration application cannot accept the device.

7. Press switch SW1 to mute the audio.

8. Press switch SW2 to unmute the audio

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 654

cdc_basic

This application demonstrates the use of the CDC Host Class Driver to enumerate and operate a CDC Device.

Description

This application demonstrates the use of the CDC Host Class Driver to enumerate and operate a CDC Device. The application uses the USB
Host_layer and CDC class driver to enumerate a CDC USB device. The demonstration host application then operates and uses the functionality of
the attached CDC Device.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB CDC Host
Basic Demonstration.

Description

To build this project, you must open the cdc_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/cdc_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_basic.X <install-dir>/apps/usb/host/cdc_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk2_poll_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Polled mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host CDC Basic Demo.

Description

This application demonstrates the use of the CDC Host Class Driver to enumerate and operate a CDC Device. The application uses the USB
Host_layer and CDC class driver to enumerate a CDC USB device. The demonstration host application then operates and uses the functionality of
the attached CDC Device.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 655

release notes is provided in the <install-dir>/doc folder of your installation.

1. Open_the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Follow the directions for setting up and running the cdc_serial_emulator USB device demonstration.

4. Connect the UART (P1) port on the Explorer 16 Development Board (running the cdc_serial_emulator demonstration) to a USB Host personal
computer via a commercially available Serial-to-USB Dongle.

5. Start a terminal program on the USB Host personal computer and select the Serial-to-USB Dongle as the communication port. Select the baud
rate as 9600, no parity, 1 Stop bit and no flow control.

6. Connect the mini – B connector on the USB PICtail Plus Daughter Board, of the cdc_serial_emulator demonstration setup, to the USB host
connector on the starter kit. For PIC32M-based starter kits, connect to the on-board Type-A connector.

7. A prompt (LED :) will be displayed immediately on the terminal emulation program.

8. Pressing either the 1, 2, or 3 key on the USB Host keyboard will cause LEDs on the PIC32 starter kit (running the USB CDC Host application)
to switch on, respectively. On PIC32M-based starter kits, the LEDs are LED1, LED2, and LED3.

9. The prompt will again be displayed on terminal emulation program, and step 8 can be repeated.

The setup should be similar to the following diagram.

The cdc_serial_emulator demonstration emulates a USB-to-Serial Dongle. The CDC Host (running the cdc_basic demonstration application)
sends the prompt message to the CDC device. The CDC device forwards the prompt to the UART port from where it is transmitted to the personal
computer USB Host through the USB-to-Serial Dongle. A key press on the personal computer USB Host is transmitted to the CDC device, which in
turn presents the key press data to the CDC host. The cdc_basic demonstration then analyzes the key press data and switches on the respective
LED.

cdc_msd

Demonstrates host support for multiple device classes.

Description

This demonstration application creates a USB Host that can support different device classes in one application.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for this USB CDC MSD
Host Demonstration.

Description

To build this project, you must open the cdc_msd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/cdc_msd.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 656

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_msd.X <install-dir>/apps/usb/host/cdc_msd/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB CDC MSD demonstration.

Description

This demonstration application creates a USB Host application that enumerates a CDC and a MSD device. This application combines the
functionality of the Host cdc_basic and msd_basic demonstration applications into one application. If a CDC device is connected, the
demonstration application behaves like the cdc_basic host application. If a MSD device is connected, the demonstration application behaves like
the msd_basic host application.

Refer to Running the Demonstration section of the host cdc_basic demonstration and the Running the Demonstration section of the host
msd_basic demonstration for details on exercising the CDC and MSD host aspects of the demonstration.

hid_basic_keyboard

Demonstrates using the USB HID Host Client driver with the Keyboard Usage driver to facilitate the use of a USB HID Keyboard with a PIC32 USB
Host.

Description

This application demonstrates the use of the USB HID Host Client Driver to enumerate and operate a HID keyboard device. The application uses
the USB Host layer, HID Client driver and HID Keyboard Usage driver to enumerates a USB keyboard and understand keyboard press release
events.

The keyboard events are displayed using a terminal emulator on a personal computer.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB HID Basic
Keyboard Demonstration.

Description

To build this project, you must open the hid_basic_keyboard.X project in MPLAB X IDE, and then select the desired configuration.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 657

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hid_basic_keyboard.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_basic_keyboard.X <install-dir>/apps/usb/host/hid_basic_keyboard/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

pic32mx795_pim_e16_int_dyn pic32mx795_pim+e16 Select this MPLAB X IDE project configuration to run the demonstration configured for
Interrupt mode and dynamic operation on the PIC32MX795F512L PIM connected to the
Explorer 16 Development Board with the USB PICtail Plus Daughter Board attached.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt
mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Explorer 16 Development Board

• Switch S2 should be set to PIM

USB PICtail Plus Daughter Board

• Jumper the Host Enable pins

• Device Enable and OTG Enable should be open

PIC32MX795F512L CAN-USB PIM

• Keep jumper J10 open

• Keep all jumpers in J9 open

• Jumper J1 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM
(MA320003), and not the PIC32MX795F512L USB PIM (MA320002).

• Jumper J2 should be shorted between positions 1 and 2. This configuration is only applicable for the PIC32MX795F512L USB CAN PIM
(MA320003) and not the PIC32MX795F512L USB PIM (MA320002).

For the pic32mx795_pim_e16_int_dyn configuration:

1. Ensure that the PIC32MX795F512L PIM is connected properly to the PIM socket on the Explorer 16 Development Board.

2. Connect the Serial Port connector on the Explorer 16 Development Board to a PC using a Serial-to-USB converter cable.

3. Connect the USB PICtail Plus Daughter Board to the horizontal edge connector (J9) of the Explorer 16 Development Board.

For the pic32mz_ef_sk_int_dyn configuration:

Connect the USB to the UART connector (J11) on the PIC32MZ EF Starter Kit to a PC using a USB micro cable.

Running the Demonstration

Provides instructions on how to build and run the USB HID Basic Keyboard demonstration.

Description

1. Open the project in MPLAB X IDE and select the project configuration.

2. Build the code and program the device.

3. Launch a terminal emulator, such as Tera Term, and select the appropriate COM port and set the serial port settings to 115200-N-1.

4. If a USB keyboard is not connected to the PIC32 USB Host, the terminal emulator window will show the Connect Keyboard prompt.

5. Attach a USB keyboard to the Host connector of the target hardware. The message, Keyboard Connected, will appear in the terminal emulator
window.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 658

6. Begin typing on the keyboard and the appropriate keys should be displayed on the serial terminal. Subsequent press and release of modifier
keys (i.e., CAPS LOCK, NUM LOCK, etc.) will result in the appropriate keyboard LEDs to turning ON and OFF.

7. Disconnecting the keyboard will result in the message, Connect Keyboard.

hid_basic_mouse_usart

This topic demonstrates USB Host support for a USB HID Mouse.

Description

This application demonstrates the use of the USB HID Host Client Driver to enumerate and operate a HID mouse device. The application uses the
USB Host layer, HID Client driver and HID Mouse Usage driver to enumerate USB mouse and decode mouse-generated data.

Mouse-specific movements events are demonstrated by displaying relative coordinate changes using a serial terminal emulator on a personal
computer. Mouse button clicks are indicated by LEDs.

Building the Application

This section does the following:

• Identifies the MPLAB X IDE project name and location.

• Lists and describes the available configurations for the USB HID Basic Mouse USART demonstration.

Description

To build this project, you must open the hid_basic_mouse_usart.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hid_basic_mouse_usart.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hid_basic_mouse_usart.X <install-dir>/apps/usb/host/hid_basic_mouse_usart/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_meb2 pic32mz_ef_sk+meb2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit attached to Multimedia
Expansion Board II (MEB II) board.

Configuring the Hardware

This section describes how to configure the supported hardware.

Description

1. Ensure that the PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit is securely fastened into the MEB II expansion board.

2. Connect the USB to the UART connector (J11) on the PIC32MZ EF Starter Kit to a PC using a USB micro cable.

 Note:
No hardware related configuration or jumper setting changes are necessary.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 659

Running the Demonstration

This section provides instructions about how to build and run the USB HID Mouse USART demonstration.

Description

1. Open the project in MPLAB X IDE and select the project configuration.

2. Build the code and program the device.

3. Launch a terminal emulator, such as Tera Term. Select the appropriate COM port and set the serial port settings to 115200-N-1.

• If a USB mouse is not connected to the Host connector by using J5 on the PIC32 MZ EF Starter Kit, the serial terminal emulator window will
show the "Connect Mouse" prompt.

4. Attach a USB mouse to the Host connector of the target hardware. The message, "Mouse Connected", will display in the serial terminal
emulator window.

5. Begin moving the mouse and the appropriate relative coordinate changes for X,Y, and Z axes should be displayed in the serial terminal window.

6. Click the mouse button to toggle LEDs on the MEB II board as shown in the following table.

Mouse Click MEB II LED

Left D3

Right D4

Middle D5

Lower Left D6

Lower Right D7

• Disconnecting the mouse will result in the message, "Connect Mouse", to reappear on the serial console.

hub_cdc_hid

Demonstrates the enumeration of a HID mouse and CDC emulator device via an external hub.

Description

This application demonstrates the capability of the USB Host Stack to access and manage multiple USB Devices through a Hub. The
demonstration application enumerates a HID mouse and CDC emulator device via an external hub. The host will demonstrate the communication
from the CDC emulator device and the HID mouse.

Building the Application

This topic identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Host HUB CDC
HID Demonstration.

Description

To build this project, you must open the hub_cdc_hid.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hub_cdc_hid.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hub_cdc_hid.X <install-dir>/apps/usb/host/hub_cdc_hid/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 660

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
EF Starter Kit configured for Interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host HUB CDC HID demonstration.

Description

This application demonstrates the capability of the USB Host Stack to access and manage multiple USB Devices through a Hub. The
demonstration application enumerates a HID mouse and CDC emulator device via an external hub. The host will demonstrate the communication
from the CDC emulator device and the HID mouse.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Connect a hub to the Type A Host connector on the desired board.

4. Connect a mouse to a spare port on the hub.

5. Connect the CDC emulator device to another spare port on the hub.

6. Click the mouse to toggle LEDs on the starter kit.

7. On the personal computer, open a terminal emulator. At the prompt, (LED:), enter 1, 2, or 3 to toggle the LEDs on the starter kit.

hub_msd

This application demonstrates the capability of the USB Host stack to support multiple MSD device through a hub.

Description

This application demonstrates the use of the Hub Driver and the MSD Host Client Driver, with File System, to support multiple MSD devices and
Hub. The demonstration application copies a file from one pen driver into another pen drive.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Host Hub MSD
Demonstration.

Description

To build this project, you must open the hub_msd.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/hub_msd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

hub_msd.X <install-dir>/apps/usb/host/hub_msd/firmware

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 661

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the PIC32 USB
Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode
and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host Hub MSD demonstration.

Description

This application demonstrates the capability of the USB Host Stack to access and manage multiple USB Devices through a Hub. The
demonstration application copies a file from one USB pen drive (i.e., a USB Flash storage device) to another USB pen drive, where these pen
drives are attached to a hub.

 Note:
The demonstration will search for a file named file.txt on any of the connected pen drives. Such a file should be created on
one of the pen drives through any suitable method.

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. Connect a hub to the Type A Host connector on the desired board.

4. Connect a USB Pen drive containing an arbitrary file named file.txt to a spare port on the hub.

5. Connect another USB pen drive to another spare port on the hub.

6. The application will copy the file file.txt from the drive containing this file to the other drive. The copied file will be renamed as
newfile.txt. LED 2 on the demonstration board will illuminate to indicate completion of the file transfer.

7. Disconnect the drives and confirm demonstration success by inserting them into a personal computer and verifying the file transfer completed
as expected.

The demonstration application will always be in state where it waits for two pen drives to be connected to the hub and at least one of these pen
drives contains a file named file.txt.

msd_basic

This application demonstrates the use of the MSD Host Class Driver to write a file to USB Flash Drive.

Description

This application demonstrates the use of the MSD Host Class Driver to write a file to a USB Flash drive. The application uses the USB Host_layer ,
MSD class driver and the MPLAB Harmony File System Framework to enumerate a USB Flash drive and to write a file to it.

Building the Application

This section identifies the MPLAB X IDE project name and location, and lists and describes the available configurations for the USB MSD Host
Class Driver Demonstration.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 662

Description

To build this project, you must open the msd_basic.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/host/msd_basic.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_basic.X <install-dir>/apps/usb/host/msd_basic/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration Name BSP Used Description

chipkit_wf32 chipkit_wf32 Demonstration running on the chipKIT WF32 Development Board.

chipkit_wifire chipkit_wifire Demonstration running on the chipKIT Wi-FIRE Development Board.

pic32mx_usb_sk2_int_dyn pic32mx_usb_sk2 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit II configured for Interrupt mode and dynamic operation.

pic32mx_usb_sk3_int_dyn pic32mx_usb_sk3 Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32 USB Starter Kit III with the PIC32MX470F512L microcontroller
configured for Interrupt mode and dynamic operation.

pic32mz_da_sk_intddr_int_dyn pic32mz_da_sk_intddr Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit configured
for Interrupt mode and dynamic operation.

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit
configured for Interrupt mode and dynamic operation.

pic32mx_xlp_sk_int_dyn pic32mx_xlp_sk Select this MPLAB X IDE project configuration to run the demonstration on the
PIC32MX XLP Starter Kit configured for Interrupt mode and dynamic operation.

pic32wk_sk_int_dyn pic32wk_gbp_gpd_sk+module Select this MPLAB X IDE project configuration to run the demonstration
application to run on the PIC32WK Wi-Fi Starter Kit, with the WM32 Wi-Fi
module. The USB Stack will be configured for Interrupt mode operation and the
USB Driver will be configured for Dynamic operation mode.

pic32mx470_curiosity pic32mx470_curiosity Select this MPLAB X IDE project configuration to run the demonstration
application to run on the PIC32MX470 Curiosity Development Board, with the
PIC32MX470F512H microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic
operation mode.

pic32mz_ef_curiosity pic32mz_ef_curiosity Select this MPLAB X IDE project configuration to run the demonstration
application to run on the PIC32MZ EF Curiosity Development Board, with the
PIC32MZ2048EFM100 microcontroller. The USB Stack will be configured for
Interrupt mode operation and the USB Driver will be configured for Dynamic
operation mode.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32 USB Starter Kit II

JP2 should be in place.

PIC32 USB Starter Kit III

JP1 should be in place.

PIC32MZ Embedded Graphics with Internal DRAM (DA) Starter Kit

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 663

No hardware related configuration or jumper setting changes are necessary.

PIC32MZ EC Starter Kit

JP1 should be in place and the Ethernet plug-in board should be removed.

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

chipKIT WF32 Wi-Fi Development Board

No hardware related configuration or jumper setting changes are necessary.

chipKIT Wi-FIRE Development Board

No hardware related configuration or jumper setting changes are necessary.

PIC32MX470 Curiosity Development Board

• Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

• Power the PIC32MX470 Curiosity Development Board from a Host PC through a Type-A male to mini-B USB cable connected to Mini-B port
(J3)

• Place a jumper on J13 to drive VBUS in Host mode

• Plug in a USB peripheral with a micro-A USB connector, or use a micro USB OTG to USB adapter.

PIC32MZ EF Curiosity Development Board

• Ensure that a jumper is placed at 4-3 on J8, to select supply from debug USB connector.

• Power the PIC32MZ EF Curiosity Development Board from a Host PC through a Type-A male to micro-B USB cable connected to Micro-B port

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 664

(J3).

• Place a jumper on J13 to drive VBUS in Host mode.

• Plug in a USB peripheral with a micro-A USB connector, or use a micro USB OTG to USB adapter.

PIC32WK Wi-Fi Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions on how to build and run the USB Host MSD Basic demonstration.

Description

This application demonstrates the use of the MSD Host Class Driver to write a file to USB Flash drive. The application uses the USB Host_layer,
MSD class driver and the MPLAB Harmony File System Framework to enumerate a USB Flash drive and to write a file to it.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

1. Open_the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. With the code running, attach a USB Flash drive to the Host connector on the desired starter kit.

4. The demonstration application will then create a file named file.txt. It will then write the text "Hello World" to this file, and then close the file.

5. The demonstration will then move to Idle mode, which is indicated when the LED on the starter kit illuminates. On PIC32M-based starter kits
the LED is LED2.

6. The USB Flash drive can then be attached to a USB Host personal computer to verify the demonstration application operation.

7. Steps 3 through 6 can be repeated.

8. If the USB Flash drive already contains a file with the name file.txt, the demonstration application will append the text "Hello World" to the
end of the file contents.

9. The LED on the starter kit illuminates if the file creation or write failed. On PIC32M-based starter kits, the LED is LED1.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 665

Multiple USB Controller

This section describes the demonstrations that make use of multiple USB controllers on certain PIC32 microcontrollers.

cdc_com_port_dual

This application demonstrates dual USB Device operation on a PIC32 microcontroller with two USB Controllers.

Description

This application demonstrates dual USB Device operation on a PIC32 microcontroller with Two USB Controllers. In this demonstration both of the
USB controllers act as CDC devices.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Multiple USB CDC
Device Dual COM Port Demonstration.

Description

To build this project, you must open the cdc_com_port_dual.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/multi_usb/cdc_com_port_dual.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

cdc_com_port_dual.X <install-dir>/apps/usb/multi_usb/cdc_com_port_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mk_gp_db_int_dyn pic32mk_gp_db Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MK
Evaluation Kit configured for interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MK General Purpose (GP) Development Board

Switch S4 should be set to the Device position.

Running the Demonstration

This section provides instructions on how to build and run the USB Multiple Controller CDC Com Port Dual demonstration.

Description

This application demonstrates dual USB Device operation on a PIC32 microcontroller with two USB Controllers. The MPLAB Harmony USB Stack
is capable of handling multiple USB controllers. In this demonstration, both of the USB controllers act as CDC devices.

This demonstration allows the each controller on the PIC32 to appear like a serial (COM) port to the host. Do the following to run this
demonstration:

1. First compile and program the target device. Refer to Building the Application for details.

2. Attach both USB connectors J15 and J13 to the host.

3. Refer to the Running the Demonstration section of the USB Device cdc_com_port_single demonstration for details on exercising the CDC
device features.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 666

msd_dual

This application demonstrates the capability of a PIC32 microcontroller and MPLAB Harmony USB Host stack to work with two USB Controllers in
an application.

Description

This application demonstrates the capability of a PIC32 microcontroller and the MPLAB Harmony USB Host stack to work with two USB
Controllers in an application. The MPLAB Harmony USB Stack is capable of handling multiple USB controllers.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the Dual MSD
demonstration.

Description

To build this project, you must open the msd_dual.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/multi_usb/dual_msd.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

msd_dual.X <install-dir>/apps/usb/multi_usb/msd_dual/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project Configuration
Name

BSP Used Description

pic32mk_gp_deb_int_dyn pic32mk_gp_db Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MK
Evaluation Kit configured for interrupt mode and dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MK General Purpose (GP) Development Board

• Switch S4 should be set to Host position

• Jumper J28 must be installed

• USB Connector J12 must be connected to a USB Host for powering the board

• USB Flash drive should be attached to Connector J15 and J14 after programming the microcontroller

Running the Demonstration

This section provides instructions on how to build and run the USB Multiple Controller Dual MSD demonstration.

Description

This application demonstrates the capability of a PIC32 microcontroller and the MPLAB Harmony USB Host stack to work with two USB
Controllers in an application. The MPLAB Harmony USB Stack is capable of handling multiple USB controllers. The application uses the USB
Host_layer, MSD class driver, and the MPLAB Harmony File System Framework to enumerate a USB Flash drive and to write a file to it.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation. Do the following to run this demonstration:

1. Open the project in MPLAB X IDE and select the desired project configuration.

2. Build the code and program the device.

3. With the code running, attach a USB Flash drive with a file “file.txt” in it to one of the Host connector on the board.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 667

4. Connect another USB Flash drive to other Host connector on the board. Ensure this flash drive does not contain any file named newfile.txt.

5. The application will copy the file file.txt from the drive containing this file to the other drive. The copied file will be renamed as newfile.txt.
LED2 on the demonstration board will illuminate to indicate completion of the file transfer.

6. Disconnect the drives and confirm demonstration success by inserting them into a personal computer and verifying the file transfer completed
as expected.

Dual Role

This section describes the USB Dual Role Demonstrations. These demonstrations project demonstrate operation of the USB Host and the USB
Device stack in the same project.

host_msd_device_hid

This application demonstrates role switching between USB Host MSD Stack and USB Device HID function. The role switch is trigger by a switch
press.

Description

This application demonstrates role switching between USB Host MSD Stack and USB Device HID function. The role switch is trigger by a switch
press. In the USB Host mode, the application performs read and write operations to a USB pen drive. In the USB Device mode, the application
emulates a HID mouse.

Building the Application

This section identifies the MPLAB X IDE project name and location and lists and describes the available configurations for the USB Host MSD and
USB HID Mouse Device Dual Role application.

Description

To build this project, you must open the host_msd_device_hid.X project in MPLAB X IDE, and then select the desired configuration.

The following tables list and describe the project and supported configurations. The parent folder for these files is
<install-dir>/apps/usb/dual_role/host_msd_device_hid.

MPLAB X IDE Project

This table lists the name and location of the MPLAB X IDE project folder for the demonstration.

Project Name Location

host_msd_device_hid.X <install-dir>/apps/usb/dual_role/host_msd_device_hid/firmware

MPLAB X IDE Project Configurations

This table lists and describes the supported configurations of the demonstration, which are located within ./firmware/src/system_config.

Project
Configuration Name

BSP Used Description

pic32mz_ef_sk_int_dyn pic32mz_ef_sk Select this MPLAB X IDE project configuration to run the demonstration on the PIC32MZ
Embedded Connectivity with Floating Point Unit (EF) Starter Kit configured for Interrupt mode and
dynamic operation.

Configuring the Hardware

Describes how to configure the supported hardware.

Description

PIC32MZ EF Starter Kit

No hardware related configuration or jumper setting changes are necessary.

Running the Demonstration

Provides instructions no how to build and run the USB Host MSD and USB HID Mouse Device Dual Role application.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 668

Description

This application demonstrates the Dual Role capability of the MPLAB Harmony USB Stack. The application project includes both, the USB Host
and Device Stacks. Both the stacks are initialized during application initialization. During operation, the application polls the switch SW2 on the
starter kit to trigger a USB role switch. Note that the application cannot simultaneously operate as a host and device. The one USB role is
exclusive of the other.

Prior to using this demonstration, it is recommended to review the MPLAB Harmony Release Notes for any known issues. A PDF copy of the
release notes is provided in the <install-dir>/doc folder of your installation.

1. Open the project and in MPLAB X IDE and select the desired project operation

2. Build the code and program the device. The application initially will not operate in any USB role.

3. Press SW2 on the starter kit. This places the application in a USB Device mode.

4. Connect a USB cable between micro USB connector (J4) on the starter kit and a PC USB host. The application will emulate a USB HID mouse
function. The cursor on the PC will rotate. Pressing SW1 will enable and disable the cursor movements. Exercise device plug-n-play operation
to confirm USB Device operation

5. Now try switching the USB role. Disconnect the USB cable between micro USB connector (J4) on the starter kit and a PC USB host. Press
SW2 on the starter kit.

6. The application now will be in USB Host role. Connect a USB pen drive to the Type-A USB Host connector (J5) on the starter kit. The
application will create a file (file.txt) on the pen drive. The completion of the operation is indicated by LED2 on the starter kit. Disconnect
the pen driver and connect it to a PC to verify the contents of the file.

7. Repeat steps 3 through 6 to exercise the role switching capability.

Volume I: Getting Started With MPLAB Harmony Applications Help USB Demonstrations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 669

Volume IV: MPLAB Harmony Development
This volume provides information about how to develop MPLAB Harmony-compatible libraries and applications and how to best distribute and
integrate them into an existing installation. Information on porting and updating is also included.

Description

Information on the tools, techniques, and knowledge required to develop, distribute, and integrate MPLAB
Harmony-compatible libraries and applications into existing installations, as well as updating existing MPLAB Harmony
projects to a newer version of MPLAB Harmony is provided throughout the help documentation. This section also
introduces key topics and provides a starting point for new developers.

Volume IV: MPLAB Harmony Development

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 670

MPLAB Harmony Driver Development Guide

This guide provides information on developing MPLAB Harmony device drivers.

Introduction

Describes how to develop MPLAB Harmony device drivers.

Description

This development guide describes how to develop device drivers for MPLAB Harmony. MPLAB Harmony device drivers, or simply "drivers",
typically utilize MPLAB Harmony Peripheral Libraries (PLIBS) to access and control built-in peripheral hardware. A driver is the glue logic between
an application and the peripheral library. The peripheral library provides a low-level interface to a specific peripheral, but use of that interface would
place a lot of responsibility on the application for maintaining the state of the device and ensuring that other (usually unrelated) modules do not
interfere with its operation. Instead, these functions become the responsibility of the driver, freeing the application from managing devices and
considerably simplifying the interface to the peripheral.

Drivers provide simple C-language interfaces (see Note). A driver’s interface should be highly abstracted and provide file system style "open" and
"close", and "read" and "write" functions (for data transfer peripherals) that allow applications (or other client modules) to easily interact with them
in a consistent manner. Most drivers also provide additional functions that are unique to a particular type of driver or peripheral, but are
independent of the details of how that peripheral is implemented on any specific hardware or how many instances of that driver or peripheral exist
in a given system.

 Note:
MPLAB Harmony has not been tested with C++; therefore, support for this programming language is not supported.

Drivers can also indirectly support external peripheral hardware, which has no peripheral library, by accessing another driver. For example, a SD
Card driver may use a SPI driver to access an external Flash device. Or, a driver may be completely abstracted, utilizing no peripheral hardware at
all and simply providing some device-like service to higher layers of software.

Regardless of the type or lack of hardware a MPLAB Harmony driver manages, it has the following fundamental responsibilities:

• Providing a common system-level interface to a peripheral

• Providing a highly-abstracted file system style client interface to a peripheral

• Controlling access to a peripheral

• Managing the state of a peripheral

Information on how a driver can fulfill these responsibilities and other key concepts and requirements for design and development of MPLAB
Harmony device drivers is provided in the following sections.

Using This Document

Describes how to best use this document, depending upon your experience level and familiarity with MPLAB Harmony.

Description

Experienced MPLAB Harmony Driver Developer

If you are an experienced MPLAB Harmony driver developer, you can skip to the Checklist and Information section at the end of this document for
a list of the tasks necessary to develop a MPLAB Harmony driver and a handy reminder of the file and folder naming and organization conventions.

Experienced Embedded Software Developer

If you are an experienced embedded software developer who is familiar with modular design and state-machine based development, but are not
familiar with MPLAB Harmony driver development, you can briefly scan the Key Design Concepts section and jump to the System Interface and
Client Interface sections. Also, be sure to review the Interrupt and Thread Safety section for examples of recommended methods to use in MPLAB
Harmony drivers and read the remaining sections in detail.

MPLAB Harmony User Who Has Yet to Develop a Driver

If you are a MPLAB Harmony user who would like to start developing MPLAB Harmony drivers, please read this entire document.

New to MPLAB Harmony

If you are new to MPLAB Harmony, please read the What is MPLAB Harmony? section first.

System Interface

Describes the system interface requirements for driver design.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 671

Description

In MPLAB Harmony, almost everything running in the system is considered a module. A module usually has an internal state machine that runs
when the system runs. Exactly what it means to run in the system depends on the configuration that is selected. In the simplest polled bare metal
configuration a MPLAB Harmony system runs modules in a single polled super loop, implemented in the main function, as shown in the following
example.

The Main Function
int main (void)
{
 SYS_Initialize(NULL);

 while(true)
 {
 SYS_Tasks();

 }

 return(EXIT_FAILURE);
}

The SYS_Initialize and SYS_Tasks functions are implemented in system configuration-specific files, normally generated by the MPLAB Harmony
Configurator (MHC). The SYS_Initialize function calls the initialization functions of all modules in the system. The initialization function of a module
must (at a minimum) initialize the state machine of that module so that its tasks function can be safely called. Then, the SYS_Tasks function calls
the tasks functions of all modules in the system. This continues indefinitely, keeping all of the modules in the system running. Effectively, the main
loop and the SYS_Initialize and SYS_Tasks functions implement a simple system kernel scheduler as a round-robin polled super loop.

The signatures of these functions are always consistent, using the same parameters and return values. Only the names change from module to
module. This provides a consistent execution model for polled, interrupt-driven, and RTOS-based environments and supports the ability to
implement system executives, power mangers, and test harnesses that initialize, deinitialize and maintain multiple modules.

In any module, the system interface should be thought of as conceptually separate from the application or client Interface (what is commonly
referred to as the API), as shown in the following diagram.

These two interfaces serve completely separate purposes. The system interface allows system kernel or scheduler to initialize and run the module
(as described previously) and the client interface allows the application or other client module to interact with the driver or module. The system
code does not normally interact with the client-level API of the module and the application or any other client should not call the system interface
functions or have access to the object handle (explained in the following sections). Once the system has been initialized, client or application code
can call the driver’s client interface functions (such as open, read, and write functions). The client interface is described in detail in the Client
Interface section.

Once a driver module has been initialized, its state machine must be placed into its initial state and it can be considered ready to use. Although its
internal state machine may have still several initial transitions to complete, its other system and client interface routines may be called.

The initial power state of the module can be defined by build-time configuration parameters or be dependent upon the hardware initialization data
passed into the initialize operation. Driver modules can be initialized in a power-on, full running state or a power-off or low-power state and
reinitialized later under system control to a power-on state when they are needed. Drivers may also be reinitialized to refresh the hardware state.

A driver can be deinitialized if it does not need to be used any longer, after which none of its other interface functions may be called without first
calling the initialize function again. The initialize function must not be called more than once without first calling the deinitialize function. The
reinitialize operation can be called any time the module is in a ready state.

A driver’s system interface consists of the following functions, where <module> matches the module abbreviation for the driver or peripheral.

Driver’s System Interface Functions

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 672

Function Description

DRV_<module>_Initialize Place the driver in its initial state.

DRV_<module>_Tasks Manage the running state of the driver.

DRV_<module>_Reinitialize Change a running driver’s initial parameters.

DRV_<module>_Deinitialize Disable the driver and stop it from running.

DRV_<module>_Status Provide the current status of the driver

A driver can have only one of each of these functions, except for the DRV_<module>_Tasks function. It is possible for a driver to have multiple
different tasks functions, each maintaining a different state machine within the driver. The naming format for device-driver system module routines
adds the DRV_ prefix to identify that the function belongs to a device driver module and to be consistent with the driver’s other interface routines.

Full descriptions of the driver-module interface routines that implement these operations are provided in the following sections.

Module Initialization

Describes the details of the module initialization function.

Description

The function signature of a module’s initialize function is defined by a pointer data type that is defined by the system module interface header, in
the <install-dir>/framework/system/common/sys_module.h file, as shown in the following example.

Example: Module Initialization Function Signature
/***
 System Module Initialization Function Pointer

 Function Pointer:
 SYS_MODULE_OBJ (* SYS_MODULE_INITIALIZE_ROUTINE) (
 const SYS_MODULE_INDEX index,
 const SYS_MODULE_INIT * const init)

 Description:
 This data type is a pointer to a function that initializes a system module
 (driver, library, or system-maintained application).

 Preconditions:
 The low-level processor and board initialization must be completed before the
 system can call the initialization functions for any modules.

 Parameters:
 index - Zero-based index of the module instance to be initialized.

 init - Pointer to the data structure containing any data
 necessary to initialize the module. This pointer may
 be null if no data is required.

 Returns:
 A handle to the instance of the module that was initialized. This handle is
 a necessary parameter to all of the other system level routines for that
 module.

 Remarks:
 This function will normally only be called once during system initialization.
*/

typedef SYS_MODULE_OBJ (* SYS_MODULE_INITIALIZE_ROUTINE) (
 const SYS_MODULE_INDEX index,
 const SYS_MODULE_INIT * const init);

An implementation of a module’s initialization function might look like the following example.

Example: Sample Module Initialization Function
SYS_MODULE_OBJ SAMPLE_Initialize (const SYS_MODULE_INDEX index,
 const SYS_MODULE_INIT * const init)
{
 SAMPLE_MODULE_DATA *pObj = (SAMPLE_MODULE_DATA *)&gObj[index];
 SAMPLE_MODULE_INIT_DATA *pInit = (SAMPLE_MODULE_INIT_DATA *)init;

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 673

 /* Initialize module object. */

 pObj->state = SAMPLE_STATE_INITALIZE;
 pObj->status = SYS_STATUS_BUSY;
 pObj->dataNewIsValid = false;
 pObj->dataProcessedIsValid = false;

 if (null != init)
 {
 pObj->dataNew = pInit->dataSome;
 pObj->dataNewIsValid = true;
 }

 return (SYS_MODULE_OBJ)pObj;
}

Ignoring the index parameter and the return value for now, you can see from the sample code above that a module’s initialization function accepts
a pointer to an initial data (init) structure, casts the pointer to a new type, and then stores data from the init structure into an internal module
object structure. Because of the requirement for consistency in function signature, the initialize function for any module must use a common data
type for the init data pointer parameter. This data type, shown in the following example, is also defined in the sys_module.h header file.

SYS_MODULE_INIT Structure
typedef union
{
 uint8_t value;

 struct
 {
 uint8_t powerState : 4;

 uint8_t reserved : 4;
 }sys;

} SYS_MODULE_INIT;

The SYS_MODULE_INIT structure allows the system to pass in a pass in a parameter (the powerState member) to identify the requested initial
power state of the module. The following values and labels are predefined (in system_module.h) to provide a common set of power states for all
modules.

Predefined Power States

Volume Label Description

0 SYS_MODULE_POWER_OFF Module Power-off state code.

1 SYS_MODULE_POWER_SLEEP Module Sleep state code.

2 SYS_MODULE_POWER_IDLE_STOP Module Idle-Stop state code.

3 SYS_MODULE_POWER_IDLE_RUN Module Idle-Run state code.

4 through 14 <Module-specific Definition> Module-specific meaning.

15 SYS_MODULE_POWER_RUN_FULL Module Run-Full state code.

Note:

 Note:
Refer to the Help documentation for each individual label for a more detailed description of what each value indicates. See
Framework Help > System Service Libraries Help > System Service Overview.

Using a pointer to this structure as the init parameter allows system code to treat all modules in a consistent way. However, any specific module
or implementation of a module may have its own unique init data requirements and may define its own unique structure type. Unfortunately, the
C language does not provide a syntactical mechanism for managing this sort of polymorphism. Polymorphism is an object oriented programming
(OOP) concept that allows different types (or classes) of data (or other objects) to support multiple forms. To achieve this flexibility in the C
language, the module must cast the pointer to an internally defined data type. But, it is reasonable to think of the SYS_MODULE_INIT structure as
a base class, extended as necessary by any individual module class or implementation to contain the specific additional initialization data it
requires. While this is a slight abuse of the C language, it works as required as long as the first member of any module’s extended init structure
is a SYS_MODULE_INIT structure, which is (of course) a requirement of any MPLAB Harmony module.

Whether or not a module requires any initialization data, the primary purpose of its initialization function is to place the module’s state machine into
its initial state. In the sample module initialization function above, the following line of code does this.
pObj->state = SAMPLE_STATE_INITALIZE;

In this line, state is simply a structure member variable used to keep track of the current state of the module’s state machine and the
SAMPLE_STATE_INITIALIZE value is its initial state. This variable is contained within in a structure and accessed using the pObj pointer along
with all other variables that are specific to a single instance of the driver module. This allows an instance of a driver to be referenced by a single

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 674

driver object pointer, which is cast to the SYS_MODULE_OBJ data type and returned from the driver’s initialize function to be used by the system
to identify an instance of the driver and passed into the driver’s other system interface functions to access its instance-specific data.

 Note:
Any module that has a state machine must implement an initialize function.

Module Tasks

Describes the details of the module "Tasks" function.

Description

The function signature of a module’s tasks function is defined by a pointer data type that is defined by the system module interface header, in the
<install-dir>/framework/system/common/sys_module.h file, as shown in the following example.

Example: Module Tasks Function Signature
// ***
/* System Module Tasks Routine Pointer

 Function:
 void (* SYS_MODULE_TASKS_ROUTINE) (SYS_MODULE_OBJ object)

 Summary:
 Pointer to a routine that performs the tasks necessary to maintain a state
 machine in a module.

 Description:
 This data type is a pointer to a routine that performs the tasks necessary
 to maintain a state machine in a module (driver, library, or application).

 Preconditions:
 The low-level board initialization must have been completed and the module's
 initialization function must have been called before the system can call the
 tasks routine for any module.

 Parameters:
 object - Handle to the module instance

 Returns:
 None.

 Remarks:
 If the module is interrupt driven, the system will call this routine from
 an interrupt context.
*/

typedef void (* SYS_MODULE_TASKS_ROUTINE) (SYS_MODULE_OBJ object);

An implementation of a module’s tasks function might look like the following example.

Example: Sample Module Tasks Function
void SAMPLE_Tasks(SYS_MODULE_OBJ object)
{
 SAMPLE_MODULE_DATA *pObj = (SAMPLE_MODULE_DATA *)object;

 // Sample Module State Machine
 switch (pObj->state)
 {
 case SAMPLE_STATE_INITIALIZE:
 {
 pObj->status = SYS_STATUS_READY;
 pObj->state = SAMPLE_STATE_PROCESS;
 break;
 }

 case SAMPLE_STATE_PROCESS:
 {
 if (pObj->dataNewIsValid && !pObj->dataProcessedIsValid)
 {
 pObj->dataProcessed = pObj->dataNew;

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 675

 pObj->dataNewIsValid = false;
 pObj->dataProcessedIsValid = true;
 }
 break;
 }

 default:
 {
 pObj->status = SYS_STATUS_ERROR;
 break;
 }
 }

 return;
}

As shown by the previous sample code, the object handle returned from the initialize function is passed into the tasks function and cast back into a
pointer to the module’s internal data structure type. This allows the function to access the instance-specific data it contains. The module may then
utilize the data to determine what its next appropriate action may be. This is often implemented using a state variable (pObj->state) and a
switch statement with different states defined by an enumeration.

Each case in the switch statement corresponds to a different state transition that the module’s state machine can make. The module’s initialize
function placed the state machine in its initial state (SAMPLE_STATE_INITIALIZE). The initialize state transitions to the next state
(SAMPLE_STATE_PROCESS) automatically and, as a side effect, changes the module’s status to ready (SYS_STATUS_READY). Therefore, the
next time the tasks function is called, it is in the process state and is ready to process data.

In the process state, the sample module checks to see if it has any valid new data (using the Boolean flag pObj->dataNewIsValid) and if it is
able to process that new data. It can only process one data item at a time. So, if it does not currently have any processed data (as indicated by the
pObj->dataProcessedIsValid Boolean flag being false), it can then it processes the new data item and update the Boolean flags.

In this sample module, the initialize state transition is not really necessary and could have been eliminated by appropriately setting the module’s
status variable in the initialize function. Also, the default case is unnecessary and should never occur, although it can be used for error handling.
The only active state transition occurs in the process state and it never transitions out of that state to a new one.

It is important to notice that the state machine checks status flags before taking any action. This prevents it from taking action until some change
has occurred, which allows it to be polled from the main super loop. The flags in the sample module are modified by the module’s API functions,
when a client calls them. However, these flags could just as easily have been hardware interrupt flags. If that were the case, this state machine
could just as easily be called from an ISR, which is exactly how it would be called in an interrupt-driven configuration. In that configuration, testing
the interrupt flag could be redundant. But, doing so is safer as it avoids taking inappropriate actions if spurious interrupts occur or if the interrupt
vector is shared between multiple interrupt sources.

 Note:
Use of the switch-case technique is not a requirement, but it is a convenient way to explain the purpose of the tasks function.
Simpler and more sophisticated techniques are possible. Any method that correctly implements the necessary state machine logic
is acceptable.

For a complete working example, refer to the sample module library, located in the <install-dir>/framework/sample folder.

A module’s tasks function may assume that the initialize function has been called once (and only once) before the tasks function is called. But, it
must not associate any meaning to when or how often the tasks function is called. It cannot assume that it is called before or after any other tasks
has been called and it cannot assume it has been called once for every time any other tasks function has been called. It is entirely possible
(particularly in a RTOS-based system) that the module’s tasks function is running at a different priority level and is called more frequently or less
frequently than other tasks functions in the system. It is also possible that it may be called from within an ISR, but only if it was designed to support
an ISR. It is possible to design a tasks function that has no associated interrupt. Every time it is called, a module’s tasks function must use current
state or status to determine the appropriate state transition to make or if it needs to make any transition at all.

 Note:
Any module that has a state machine must implement a tasks function.

Module Status

Describes the details of the module "Status" function.

Description

The function signature of a module’s status function is defined by a pointer data type that is defined by the system module interface header, in the
<install-dir>/framework/system/common/sys_module.h file, as shown in the following example.

Example: Module Status Function Signature
// ***
/* System Module Status Routine Pointer

 Function:
 SYS_STATUS (* SYS_MODULE_STATUS_ROUTINE) (SYS_MODULE_OBJ object)

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 676

 Summary:
 Pointer to a function that gets the current status of a module.

 Description:
 This data type is a pointer to a function that gets the current status of a
 system module (driver, library, or application).

 Preconditions:
 The low-level board initialization must have been completed and the module's
 initialization function must have been called before the system can call the
 status function for any module.

 Parameters:
 object - Handle to the module instance

 Returns:
 One of the possible status codes from SYS_STATUS

 Remarks:
 A module's status function can be used to determine when any of the
 other system level operations has completed as well as to obtain general
 status of the module.
 If the status function returns SYS_STATUS_BUSY, a previous operation
 has not yet completed. Once the status function returns SYS_STATUS_READY,
 any previous operations have completed.
 The value of SYS_STATUS_ERROR is negative (-1). A module may define
 module-specific error values of less or equal SYS_STATUS_ERROR_EXTENDED
 (-10).
 The status function must NEVER block.
 If the status function returns an error value, the error may be cleared by
 calling the reinitialize function. If that fails, the deinitialize
 function will need to be called, followed by the initialize function to
 return to normal operations.
*/

typedef SYS_STATUS (* SYS_MODULE_STATUS_ROUTINE) (SYS_MODULE_OBJ object);

An implementation of a module’s status function might look like the following example.

Example: Sample Module Status Function
SYS_STATUS SAMPLE_Status (SYS_MODULE_OBJ object)
{
 SAMPLE_MODULE_DATA *pObj = (SAMPLE_MODULE_DATA *)object;

 return pObj->status;
}

In most cases, a module’s status function will just return the current value of the status variable in the module-instance data structure referred to by
the object handle. However, it is possible to deduce the module instance’s current status using more complex logic. But, be aware of potential race
conditions that could be caused by checking multiple individual variables and/or hardware status flags.

A module’s status function must return a value from the SYS_STATUS enumeration (or an extension of it), as shown in the following example.

SYS_STATUS Enumeration
// ***
/* System Module Status

 Summary:
 Identifies the current status/state of a system module

 Description:
 This enumeration identifies the current status/state of a system module
 (driver, library, or application).

 Remarks:
 This enumeration is the return type for the system-level status routine
 defined by each driver, library, or application (for example, DRV_I2C_Status).
*/

typedef enum
{

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 677

 /* Indicates that a non-system defined error has occurred. The caller
 must call an extended status routine for the module in question to
 identify the error. */
 SYS_STATUS_ERROR_EXTENDED = -10,

 /* An unspecified error has occurred. */
 SYS_STATUS_ERROR = -1,

 /* The module has not yet been initialized. */
 SYS_STATUS_UNINITIALIZED = 0,

 /* An operation is currently in progress. */
 SYS_STATUS_BUSY = 1,

 /* Any previous operations have completed and the module is ready for
 additional operations. */
 SYS_STATUS_READY = 2,

 /* Indicates that the module is in a non-system defined ready/run state.
 The caller must call an extended status routine for the module in
 question to identify the state. */
 SYS_STATUS_READY_EXTENDED = 10

} SYS_STATUS;

However, a module may define its own module-specific status enumerations that extend the system status enumeration by equating their values
and defining new values in the extended error and ready ranges, as shown in the following example.

Example: Sample Module Specific Status Enumeration
typedef enum
{
 SAMPLE_STATUS_ERROR_PARITY = SYS_STATUS_ERROR_EXTENDED - 2,
 SAMPLE_STATUS_ERROR_UNDERRUN = SYS_STATUS_ERROR_EXTENDED - 1,
 SAMPLE_STATUS_ERROR_OVERFLOW = SYS_STATUS_ERROR_EXTENDED,
 SAMPLE_STATUS_ERROR = SYS_STATUS_ERROR,
 SAMPLE_STATUS_UNINITIALIZED = SYS_STATUS_UNINITIALIZED,
 SAMPLE_STATUS_BUSY = SYS_STATUS_BUSY,
 SAMPLE_STATUS_READY = SYS_STATUS_READY,
 SAMPLE_STATUS_READY_BUS_IDLE = SYS_STATUS_READY_EXTENDED,
 SAMPLE_STATUS_READY_RECEIVING = SYS_STATUS_READY_EXTENDED + 1,
 SAMPLE_STATUS_READY_SENDING = SYS_STATUS_READY_EXTENDED + 2

} SAMPLE_STATUS;

This allows the module to utilize its own status labels internally in its implementation code and allows its clients to do the same when using the
module’s API while still allowing the system to utilize the standard values or to check for error ranges below SYS_STATUS_ERROR or ready
ranges above SYS_STATUS_READY.

 Note:
Any module that has a state machine must implement a status function.

Module Deinitialize

Describes the details of the module "Deinitialize" function.

Description

The function signature of a module’s deinitialize function is defined by a pointer data type that is defined by the system module interface header, in
the <install-dir>/framework/system/common/sys_module.h file, as shown in the following example.

Example: Module Deinitialize Function Signature
/***
 Function:
 void (* SYS_MODULE_DEINITIALIZE_ROUTINE) (SYS_MODULE_OBJ object)

 Summary:
 Pointer to a routine that deinitializes a system module.

 Description:
 This data type is a pointer to a routine that deinitializes a system
 module (driver, library, or application).

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 678

 Preconditions:
 The low-level board initialization must have (and will be) completed
 and the module's initialization function will have been called before
 the system will call the deinitialization function for any module.

 Parameters:
 object - Handle to the module instance

 Returns:
 None.

 Remarks:
 If the module instance has to be used again, the module's "initialize"
 function must first be called.
*/

typedef void (* SYS_MODULE_DEINITIALIZE_ROUTINE) (SYS_MODULE_OBJ object);

An implementation of a module’s deinitialize function might look like the following example.

Example: Sample Module Deinitialize Function
void SAMPLE_Deinitialize (SYS_MODULE_OBJ object)
{
 SAMPLE_MODULE_DATA *pObj = (SAMPLE_MODULE_DATA *)object;

 pObj->dataNewIsValid = false;
 pObj->dataProcessedIsValid = false;
 pObj->status = SYS_STATUS_UNINITIALIZED;

 return;
}

In the previous example, the deinitialize function for the sample module simply clears a few key flags and returns. For a simple module, where its
other system and client interface routines take no action and return appropriate values when uninitialized, this may be all that is necessary. Other,
more complex modules may need their state machines to go through a deinitialize sequence before the modules can be safely considered
deinitialized. Such modules must return SYS_STATUS_BUSY from their status functions until the sequence has completed to signal to the system
that it must continue calling the module’s tasks function(s). Once the system has called a module’s deinitialize function and received a
SYS_STATUS_UNINITIALIZED status from its status function, it may stop calling the module’s state machine. However, it is safer to not make that
assumption and place the module in an uninitialized state in which its state machine does nothing. See the Module Tasks section for details.

 Note:
This function is optional. If a module is not intended to be deinitialized in normal operation (i.e., only initialized after a reset and
always running thereafter) it does not need to implement the deinitialize function.

Module Reinitialize

Describes the details of the module "Reinitialize" function.

Description

The function signature of a module’s reinitialize function is defined by a pointer data type that is defined by the system module interface header, in
the <install-dir>/framework/system/common/sys_module.h file, as shown in the following example.

Example: Module Reinitialize Function Signature
// ***
/* System Module Reinitialization Function Pointer

 Function:
 void (* SYS_MODULE_REINITIALIZE_ROUTINE) (SYS_MODULE_OBJ object,
 const SYS_MODULE_INIT * const init)

 Summary:
 Pointer to a routine that reinitializes a module.

 Description:
 This data type is a pointer to a routine that reinitializes a system
 module (driver, library, or application).

 Preconditions:
 The low-level board initialization must have been completed and the
 module's initialization function must have been called before the system

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide System Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 679

 will call the reinitialization function for any module.

 Parameters:
 object - Handle to the module instance

 init - Pointer to the data structure containing any data
 necessary to initialize the module. This pointer may
 be null if no data is required and default initialization
 is to be used.

 Returns:
 None.

 Remarks:
 This function uses the same initialization data structure as the Initialize
 function.
 This function can be used to change the power state of a module by passing
 in a different set of initial data values to reconfigure the module to a
 different power level.
 This function can also be used to refresh the hardware state as defined
 by the initialization data by passing in initial data values that match the
 previously given initial data values. Thus, this function should guarantee
 that all hardware state is refreshed.
 This function can be called multiple times to reinitialize the module.
*/

typedef void (* SYS_MODULE_REINITIALIZE_ROUTINE) (SYS_MODULE_OBJ object,
 const SYS_MODULE_INIT * const init);

An implementation of a module’s reinitialize function might look like the following example.

Example: Sample Module Reinitialize Function
void SAMPLE_Reinitialize (SYS_MODULE_OBJ object,
 const SYS_MODULE_INIT * const init)
{
 SAMPLE_MODULE_DATA *pObj = (SAMPLE_MODULE_DATA *)object;
 SAMPLE_MODULE_INIT_DATA *pInit = (SAMPLE_MODULE_INIT_DATA *)init;

 if (NULL == pInit)
 {
 pObj->status = SYS_STATUS_READY;
 pObj->dataNewIsValid = false;
 }
 else
 {
 pObj->status = SYS_STATUS_BUSY;
 pObj->dataNew = pInit->dataSome;
 pObj->dataNewIsValid = true;
 }

 return;
}

The previous example initialize function for the sample module simulates resetting the hardware by resetting the dataNew value. If no init data
is provided, it simply invalidates the current value by clearing the dataNewIsValid flag to false. However, if init data is provided, it stores the
value and sets the library into a busy status that will be cleared once the library’s tasks function has processed the data.

This may not be a particularly useful example, because it is possible to lose data given by the client if the dataNew value was currently valid.
However, it does illustrate that the decision of what is preserved and what is not preserved when a module is reinitialized is a module-specific
design decision that will depend on the type of module and how it operates safely.

 Note:
This function is optional. Any module that does not support power management or the ability to dynamically change initial settings
while it is running does not need to implement this function.

Client Interface

Describes the client interface requirements for driver design.

Description

A driver’s client interface is what is commonly thought of as its Application Program Interface (API). It is the interface through which any application

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Client Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 680

or other client interacts with the driver. It should be considered conceptually separate from the system interface (see the System Interface section).
It represents the highest-level of abstraction at which an application or other module directly interacts with a specific peripheral device.

Middleware layers may implement protocol modules that simplify usage of specific types of peripherals (such as network interfaces or storage
devices), but the driver interface is the highest level at which a client will interact directly with a peripheral. As such, a device driver should have a
very simple usage model, especially for the most common uses of the device. The basic driver operations should allow an application to access
the device, read and write data as if it were a simple file. In some cases, this will be all that is required. However, in most cases, device-type
specific operations will also be required.

Driver-Client Usage Model

MPLAB Harmony drivers are required to provide a consistent "open/close" driver-client usage model.

Description

MPLAB Harmony device drivers follow a file system style device driver model, similar to that of POSIX-based operating systems, with a few
primary differences. First, clients can directly access the drivers, through their own driver-specific functions instead of (or in addition to) indirectly
through file system functions. Second, instead of having a single read/write data transfer model, there are multiple common data transfer models
and some drivers may provide their own unique data transfer models. Third, instead of grouping all other input/output control operations into a
single I/O control or IOCTL function, MPLAB Harmony drivers each provide a set of functions used to control the device.

In fact, the primary distinguishing feature of a MPLAB Harmony driver is that it uses a consistent driver-client usage model. This means that it has
an open function and (optionally) a close function, and that before a client may use a device driver, it must call the driver’s open function to obtain
a driver handle. The handle is then passed into all other client-level interface functions as a parameter to identify the instance of the client that is
calling and the instance of the driver (and, by implication the instance of the peripheral device) it is using, as shown in the following example.

Example: Driver-Client Usage Model
DRV_HANDLE myUsart;
char *message = “Hello World\n”;

/* Obtain an open handle to the USART driver. */
myUsart = DRV_USART_Open(MY_UART_INDEX, DRV_IO_INTENT_READWRITE);

/* Interact with the USART driver. */
DRV_USART_Write(myUsart, message, sizeof(message));

/* Continue using other USART driver client-interface functions as needed. */

/* Close USART driver if no longer needed. */
DRV_USART_Close(myUsart);

This example is somewhat simplified for the purpose of explanation. In normal usage, a client should test the value of the handle returned from the
open function to ensure that it is not invalid (equal to DRV_HANDLE_INVALID). If the value of the handle returned is invalid, the caller should retry
the open function later as it is possible that the driver is not yet ready for client usage. A client that requires the usage of a driver will normally
prevent its state machine from advancing until a valid open handle has been obtained or it may eventually time-out and go into an error handling
state.

The requirements of the open and close functions are described in the following section. The need for this model and the driver’s internal usage of
the handle are described in the Single Client vs. Multiple Client section.

Driver Client Interface Functions

Describes the format and naming convention for the interface functions of a driver client.

Description

The interface functions for the client of a driver follow a consistent format and naming convention, where <module> matches the module
abbreviation for the driver or peripheral and <operation> is the name of the driver-specific operation to be performed.

Function Description

DRV_<module>_Open Open a link to the driver and start using it.

DRV_<module>_<operation> Perform some driver-specific operation.

DRV_<module>_Close Close link to the driver and stop using it.

The usage of the open and close functions is described previously in the Driver-Client Usage Model section and example implementations and key
concepts are described in the Single Client vs. Multiple Client section. The details of the interface requirements (parameter data types, return
values, etc.) are described in the following section. Requirements of data transfer operations are described in the Common Data Transfer Models
section and general client interface requirements are described in the General Guidelines section.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Client Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 681

Open

Describes the interface requirements for driver open functions.

Description

The purpose of a driver’s open function is described in the Single Client vs. Multiple Client section. Driver open functions must meet the following
interface requirements.

Function:

DRV_HANDLE DRV_<module>_Open (const SYS_MODULE_INDEX index, const DRV_IO_INTENT intent)

Summary:

Opens a driver for use and provides an open-instance handle.

Descriptions:

This function opens a driver for use by a client module and provides an open-instance handle that must be provided to all of the other
client-interface operations to identify the caller and the instance of the driver module.

Required or Optional:

Required.

Preconditions:

The driver module’s initialize operation must have been called.

Parameters:

index A zero-based index, identifying the instance of the driver to be opened. This value matches the index
passed to the driver’s initialize function.

intent Flags parameter identifying the intended use of the driver:

One of:

• DRV_IO_INTENT_READ – Driver opened in read-only mode

• DRV_IO_INTENT_WRITE – Driver opened in write-only mode

• DRV_IO_INTENT_READWRITE – Driver opened in read-write mode

One of:

• DRV_IO_INTENT_NON_BLOCKING – Routines return immediately

• DRV_IO_INTENT_BLOCKING – Routines return after operation is complete

One of:

• DRV_IO_INTENT_EXCLUSIVE – Will support only a single client.

• DRV_IO_INTENT_SHARED – Can be used by multiple clients concurrently

One flag from each group may be ORed together to fully define the intended use. However, the zero
values and thus the default for each group is: DRV_IO_INTENT_READ, DRV_IO_INTENT_BLOCKING,
and DRV_IO_INTENT_SHARED.

Returns:

If successful, the function returns a valid open-instance handle (an opaque value identifying both the caller and the driver instance). If an error
occurs, the value returned is DRV_HANDLE_INVALID.

Example:
#define MY_I2C 0

handle = DRV_I2C_Open(MY_I2C, DRV_IO_BLOCKING|DRV_IO_RW|DRV_IO_NON_BUFFERED);
if (DRV_HANDLE_INVALID == handle)
{
 // Handle error
}

Blocking Behavior:

This function (and other client interface functions) may block on IO operations in an OS environment if DRV_IO_INTENT_BLOCKING (the default)
is passed in the intent parameter. However, it (and other client interface functions) should never block waiting on I/O in a non-OS environment
or it will block the entire system.

Remarks:

To support blocking behavior, the driver must be appropriately configured and built.

Drivers that are opened with a mode that is not supported must fail the open call by returning DRV_HANDLE_INVALID.

The default mode (if no flags are set, i.e., zero (0) is passed in the intent parameter), is blocking, read access only, and shared access.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Client Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 682

Close

Describes the interface requirements for driver close functions.

Description

The purpose of a driver’s close function is described in the Single Client vs. Multiple Client section. Driver close functions must meet the following
interface requirements.

Function:

void DRV_<module>_Close (DRV_HANDLE handle)

Summary:

Closes an opened-instance of a driver.

Descriptions:

This routine closes an opened-instance of a driver, invalidating the handle provided.

Required or Optional:

Optional – Not required if the driver is designed to never be closed.

Preconditions:

The driver’s initialize function must have been called and the driver’s open function must have returned a valid open-instance handle.

Parameters:

handle A valid open-instance handle, returned from the driver’s open function.

Returns:

None.

However, the driver’s system-level status function will return SYS_STATUS_BUSY until the close operation has completed.

Example:
// Close the driver
DRV_I2C_Close(handle);

Blocking Behavior:

This function (and other client interface functions) may block on I/O operations in an OS environment if DRV_IO_INTENT_BLOCKING (the default)
is passed in the intent parameter of the open function. However, it (and other client interface functions) should never block waiting on I/O in a
non-OS environment or it will block the entire system.

Remarks:

Once this routine has been called, the handle provided will become invalid.

Common Data Transfer Models

Describes common data transfer usage models used by MPLAB Harmony drivers.

Description

MPLAB Harmony drivers for data transfer (or data source or data sink) peripherals normally follow one or more consistent data transfer usage
models, described in this section. Each data transfer model has its own advantages and disadvantages, depending on the type of usage required
and the execution environment. A single MPLAB Harmony driver may provide multiple data transfer models, depending upon the needs of the
peripheral device. Usually, one particular model is the base or normal model, and others can be selected as optional features for broader
compatibility.

Byte-by-Byte (Single Client)

Describes the byte-by-byte (single client) data transfer model.

Description

The byte-by-byte data transfer model provides a very simple mechanism for transferring data to and receiving data from a driver. It is very similar
to the method commonly used by simple serial devices such as a USART that have transmitter and receiver FIFO buffers. This method transfers
data one byte (or word) at a time until the driver’s FIFO is either full (if transmitting data) or empty (if receiving data), as shown in the following
examples.

Example: Reading Data Using the Byte-by-Byte Model
char buffer[MY_BUFFER_SIZE];
int count;

for (count=0; count < MY_BUFFER_SIZE; count++)

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Client Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 683

{
 if (DRV_USART_ReceiverBufferIsEmpty(myUsart))
 {
 break;
 }
 else
 {
 buffer[count] = DRV_USART_ByteRead(myUsart);
 }
}

The previous example code assumes the USART driver has been successfully opened and the handle was stored in the myUsart variable. The
for loop counts from 0 through MY_BUFFER_SIZE, unless the driver runs out of data. Each time through the loop, the code calls the
DRV_USART_ReceiverBufferIsEmpty function to see if there is any data available. If there is no data available in the driver’s receiver buffer FIFO
(indicated by DRV_USART_ReceiverBufferIsEmpty returning true), the loop is aborted and the count is not incremented. If data is available in the
driver’s FIFO (indicated by DRV_USART_ReceiverBufferIsEmpty returning false), the example calls the driver’s DRV_USART_ByteRead function
and stores the data returned into the current position in the buffer, indexed by the count variable. Then, the for loop increments count before
checking the loop exit condition and potentially starting over. When this loop exits, either because count reached MY_BUFFER_SIZE or because
the driver had no more data available, the buffer contains count bytes of data received from the driver.

A very similar method is used to transmit data to the driver.

Example: Writing Data Using the Byte-by-Byte Model
char *buffer = “Hello World\n”;
int count;

for (count=0; count < strlen(buffer); count++)
{
 if (DRV_USART_TransmitBufferIsFull(myUsart))
 {
 break;
 }
 else
 {
 DRV_USART_ByteWrite(myUsart, buffer[count]);
 }
}

Again, it is assumed that the USART driver was previously opened and a valid myUsart handle obtained. The for loop counts from 0 through
strlen(buffer), unless it fills the driver’s transmitter buffer FIFO first. Each time through the loop, it checks to see if the driver’s transmitter
FIFO is full. If it is (as indicated by DRV_USART_TransmitBufferIsFull returning true), it aborts the loop and does not increment the count
variable. If the driver’s transmitter FIFO buffer is not full, it will then call DRV_USART_ByteWrite to send the byte of data in buffer currently
indexed by the count variable. It will then increment the count variable, check the loop exit condition and potentially start over. When the loop
exits, count bytes of data from buffer have been sent from buffer to the driver’s transmitter FIFO.

This data transfer model has the advantage that it is usually very lightweight and simple to implement, resulting in very little RAM and Flash
required by the driver. However, this data transfer model is only safe for usage with single client drivers or with multiple client drivers that have
been successfully opened in DRV_IO_INTENT_EXCLUSIVE mode. It is not safe for use with multiple clients or in a preemptive multi-tasking
environment because it requires calling multiple functions to completely read or write a buffer of data. Refer to the Interrupt and Thread Safety
section for an explanation on the types of issues that could occur in that environment.

Also, this data transfer model is not particularly easy to use, as it requires the caller to manage and adjust its current buffer pointer each time the
loop exits. A synchronous file system style read/write data transfer model, described in the next section, may be simpler and safer from a caller’s
point of view, especially when used in a RTOS environment.

File System Read/Write

Describes the "file system style" read/write data transfer model.

Description

The synchronous, file system style, read/write data transfer model is intended to be similar to the POSIX read and write (and fread and fwrite)
operations, as shown in the following example.

Example: Reading Data Using the File System Style Model
char buffer[MY_BUFFER_SIZE];
size_t count;

count = DRV_USART_Read(myUsart, buffer, MY_BUFFER_SIZE);

In the previous data read example, the single DRV_USART_Read function is called to transfer the entire contents of the buffer array. In a RTOS
or file system model environment (described as follows), this function should not return until all data has been transferred or some form of error or
time-out occurs. The success of this operation will be indicated by the return value stored in the count variable. If it is equal to the value of
MY_BUFFER_SIZE, the operation completed successfully.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Client Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 684

Example: Writing Data Using the File System Style Model
char buffer = “Hello World\n”;
size_t count;

count = DRV_USART_Write(myUsart, buffer, strlen(buffer));

In the previous data write example, the single DRV_USART_Write function is called to transfer the entire contents of the buffer string. Like the data
reading example, in a RTOS or file system model environment, this function should not return until all data has been transferred or some form of
error or time-out occurs. The success of this operation is indicated by the return value stored in the count variable. If its value is equal to
strlen(buffer), the operation completed successfully.

For simple data stream peripherals, such as UART, SPI, I2S, etc., this is normally the most basic data transfer model that a driver should support.
It has the advantage that it provides a simple single-function interface and, depending on the configuration and execution environment, it manages
advancing through the caller’s buffer automatically and does not return until all data has been transferred.

If an error occurs, most drivers will return ((size_t)-1) (equivalent to a maximum unsigned integer value) from these functions. Or, in a
non-blocking environment, they will only transfer the amount of data that can be buffered by the driver or hardware. So, this data transfer model
has the disadvantage that the caller should always check the return count and may need to call a driver-specific status function to identify if an
error has occurred. If no error has occurred, the caller may need to call the function again (potentially several times) to complete the desired
transfer. So, this model is most suitable for configurations that provide sufficient buffering or that support a RTOS or where blocking behavior is
acceptable, such as a file system model environment where operation of other modules is not required.

Buffer Queuing

Describes the buffer queuing data transfer model.

Description

The buffer queuing data transfer model is an asynchronous transfer mode. It is always non-blocking, so it allows the client to call the buffer add
function multiple times, without waiting for each transfer to complete. This allows the caller to queue up more than one buffer at a time, potentially
before the first buffer has finished (depending on buffer size and data transfer speed). The following examples show how this is done.

Example: Reading Data Using the Buffer Queuing Model
DRV_USART_BUFFER_HANDLE handle1;
DRV_USART_BUFFER_HANDLE handle2;
char buffer1[BUFFER_1_SIZE];
char buffer2[BUFFER_2_SIZE];

DRV_USART_BufferAddRead(myUsart, &handle1, buffer1, BUFFER_1_SIZE);
DRV_USART_BufferAddRead(myUsart, &handle2, buffer2, BUFFER_2_SIZE);

The previous example shows the caller queuing up two buffers to read data from the USART driver. When the first call to
DRV_USART_BufferAddRead occurs, the driver will place the address and size of buffer1 into its queue. Then, it will store a unique handle,
identifying the data transfer request, into the handle1 variable and begin copying data into the buffer (unless the driver was already busy placing
data into a different buffer). Then the call will return. When the second call to DRV_USART_BufferAddRead occurs, the process repeats. If the
driver has not yet finished filling buffer1, it will add the address and size of buffer2 into its queue, provide a handle to it, and return.

Example: Writing Data Using the Buffer Queuing Model
DRV_USART_BUFFER_HANDLE handle1;
DRV_USART_BUFFER_HANDLE handle2;
char buffer1 = “Hello World\n”;
char buffer2 = “Hello Again\n”;

DRV_USART_BufferAddWrite(myUsart, &handle1, buffer1, strlen(buffer1));
DRV_USART_BufferAddWrite(myUsart, &handle2, buffer2, strlen(buffer2));

Similarly, the previous example shows the caller queuing up two buffers to write data to the USART driver. When the first call to
DRV_USART_BufferAddWrite occurs, the driver will place the address and size of buffer1 into its queue. Then, it will store a unique handle,
identifying the data transfer request, into the handle1 variable and begin copying data from the buffer (unless the driver was already busy copying
data from a different buffer). Then, the call will return. When the second call to DRV_USART_BufferAddWrite occurs, the process repeats. If the
driver has not yet finished copying all data from buffer1, it will add the address and size of buffer2 into its queue, provide a handle to it, and
return.

A driver that supports the buffer queuing model usually provides either a callback notification function or a status function (or both) so that a client
can determine when the data transfer request has completed, as shown by the following examples.

Example: Using Callback Notification
DRV_USART_BUFFER_HANDLE handle1;
char buffer1 = “Hello World\n”;

DRV_USART_BufferEventHandlerSet(myUsart, MyUsartCallback, NULL);

DRV_USART_BufferAddWrite(myUsart, &handle1, buffer1, strlen(buffer1));

In the previous example, the client registers a callback function called MyUsartCallback with the USART driver before calling the
DRV_USART_BufferAddWrite function to transmit of the contents of buffer1 on the USART. When the driver has completely transferred all data

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Client Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 685

from buffer1 by the USART, it will call the MyUsartCallback function, as shown in the following example.

Example: Callback Implementation
void MyUsartCallback (DRV_USART_BUFFER_EVENT event,
 DRV_USART_BUFFER_HANDLE bufferHandle,
 uintptr_t context)
{
 switch (event)
 {
 case DRV_USART_BUFFER_EVENT_COMPLETE:
 {
 if (bufferHandle == handle1)
 {
 /* buffer1 data transfer complete */
 }
 break;
 }

 /* Handle other possible transfer events. */
 }
}

The MyUsartCallback function (described previously) is an example of how the client might handle the callback from the USART driver. In this
example, the USART driver passes the DRV_USART_BUFFER_EVENT_COMPLETE ID in the event parameter to indicate that the data from
buffer1 has been completely transmitted by the USART. The value of the bufferHandle parameter will match the value assigned into the
handle1 parameter of the DRV_USART_BufferAddWrite function call so that the client can verify which buffer transfer has completed. (Recall
that the driver can queue multiple transfers. It may, in fact, have multiple read and multiple write transfers queued at the same time.) For now,
ignore the context parameter, which is explained in the Single Client vs. Multiple Client section.

The callback mechanism allows a client to synchronize to the timing of when the data transfers have completed. However, this adds some
additional complexity to the interface and has a few potential subtle concerns. For one, a very short transfer may actually complete and the
callback may occur before the DRV_USART_BufferAddWrite function actually returns. This is a potential race condition and it is why the transfer
handle value is given as an output parameter and not as a return value. It allows the driver to ensure that the client has a valid handle before it
starts the transfer so that the handle value is valid when the callback occurs. Also, in an interrupt-configuration, the callback may occur in an ISR
context. Therefore, the client should be careful to not call anything that may block. In particular, the client should be careful to not call any of the
driver’s own API functions as they are not normally designed to be called from within the driver’s own ISR.

Alternately, client may not require hard real time notification of the completion of the transfer of the buffer data. It may just need to know when it
can safely reuse the buffer. If that is the case, the driver may also provide an interface function that will allow the client to poll the driver at its
convenience to determine if the buffer has completed, as shown by the following example.

Example: Checking for Buffer Status
DRV_USART_TRANSFER_STATUS status;

status = DRV_USART_BufferStatusGet(myUsart, handle1);
if (status == DRV_USART_BUFFER_COMPLETE)
{
 /* Buffer Transfer Has Completed */
}

The previous example shows how the client can call the driver, passing in the handle1 value given by the DRV_USART_BufferAddWrite function,
to poll at its leisure to find out when the driver has completed using buffer1 and has transferred all the data it contained. Most drivers will provide
both the buffer status function and the callback mechanisms so that the client can choose the most appropriate one.

Using the buffer queuing model, a client can keep a driver at 100% throughput utilization by queuing up at least two buffers. When the first buffer
completes, the client has until the second buffer completes to queue another buffer. Using either the byte-by-byte or file system style models
requires the client to respond within the time it takes to fill or empty the driver’s built-in FIFO buffer to keep a continuous stream of data transfers.
This can be a very short period, potentially as short as the time it takes to transfer a single byte on the peripheral. However, the buffer queuing
method is somewhat more complex to use and usually requires more RAM and Flash to implement. Therefore, a driver may not offer it or may only
offer it as an optional feature, unless the normal operation of the peripheral requires continuous, uninterrupted data transfer.

General Guidelines

Provides general guidelines for device driver client interface design.

Description

In addition to the open, close, and data transfer functions, most device drivers will require a number of device type-specific interface functions.
What these functions do will depend on exactly what type of device is being controlled. It is generally best to provide a solution for the most basic
usage of a given type of peripheral first. It is easy to add unique optional capabilities later, but it is hard to fix a bad interface without breaking
existing client code. Keep in mind that the driver should manage the state of the device so the client does not have to. Intermediate steps that are
part of normal operation should be hidden by the interface as much as possible. The following list provides more general guidelines that may help
when defining a driver’s interface.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Client Interface

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 686

1. A driver that supports only a single type of peripheral is easier to maintain and more flexible to use. Only integrate drivers for different types of
peripherals together when the merged driver serves another purpose and cannot expose any of the underlying functionality. For example, if the
merged driver is a touch screen driver that fully utilizes the underlying Timer and ADC resources, leaving neither available for other uses.
Otherwise, the merged driver will need to expose multiple driver interfaces so as to be transparent to clients.

2. Define the interface based on the client’s point of view of an idealized and abstracted version of the peripheral, not on a detailed understanding
of the device. Any details that may be different from one implementation of a device to another should be hidden from the client. Features that
exist on one piece of hardware and not on another that need to be exposed to the interface can be added or removed as configuration
selections. Operations related to features that do not exist on one part can be grouped together and removed from the interface when not
supported.

3. Although it may be appropriate for a driver to maintain its own buffer(s) in which to collect data, it is generally preferable to use the caller’s
buffer. This places decisions about buffer size and allocation with the caller, who has better knowledge of exactly how the data is to be used.
Ownership of the buffer is passed to the driver when a data transfer function is called and released from the driver either when the call returns
or when the transfer completion status has been given to the client.

4. Many driver functions will perform operations that require some time to complete (usually waiting for some status to change). These functions
should report status to indicate whether an operation is complete or not and provide a handle or identifier with which the client can identify the
operation later when it completes.

5. An interface should be appropriately sized (i.e., it should not contain too many operations or too few operations). A smaller interface is
generally better, if it can support all of the required features. However, performance, ease of use, and compatibility are more important. Do not
sacrifice any of these considerations to eliminate interface functions.

6. Try to use data types that can be easily ported to an appropriate size (8-, 16-, 32-bit) if the data value range or processor changes for
parameters or return types, unless the usage model of the driver requires a specific bit width. When a specific data size is required, use the
C99 data types defined in stdint.h, stdbool.h, and stddef.h.

7. If DMA is supported (for peripherals that would benefit from it), it should be hidden behind the same data transfer operations used when it is not
available and either enabled as a build-time configuration option or enabled and disabled by a setup function at run-time, as appropriate.

8. Drivers must use system services for memory allocation, interrupt control, system clocks and timers, power management, physical/virtual
address conversion, etc. They must also use the OSAL for thread safety and synchronization. Generally, these facts should be hidden from the
client interface. (Refer to the System Services and OSAL help for information on what services are available and how to use them.)

9. Interrupt specifics, such as the interrupt ID and vector numbers, should be abstracted away as build-time configuration options (for static
implementations) or instance-specific initialization options (for dynamic implementations) unless there is a need to change them dynamically at
run-time.

As always, it is best to follow generally accepted programming practices and a consistent programming style. Remember that source code
frequently outlives its original purpose and well-designed and easily readable and maintainable code will be a joy to work with long after the
original project is completed.

Interrupt and Thread Safety

Describes key concepts and concerns related to safe driver operation when using interrupts or RTOS threads.

Description

MPLAB Harmony allows libraries to be configured for any one of several different environments. This is accomplished by designing libraries that
comprehend the restrictions of all supported environments and that are configurable for each.

The basic concept is to always consider the context in which a function can be called. Since a driver has both system and client interface
functions, the developer must consider both of these interfaces. In particular a driver’s tasks function(s) may be called from any one of the
following three contexts (but only from one of them in any given configuration).

• The main polling loop

• An ISR, if an appropriate one is available

• A loop in a RTOS thread or task function

It is also important to keep in mind that a driver’s client interface functions are normally called from an application’s tasks function (or some other
client module’s tasks function), which is called from a potentially different one of the previous three contexts. And, if a driver supports callback
functions, the developer must consider from what context it will call the client’s function (again, from a potentially different one of the previous three
contexts).

Supporting (and testing) the capability to configure a driver for any of these environments, while potentially challenging, helps to produce robust
and flexible drivers that can be used and reused in the widest range applications and that are easily portable to future projects. It also helps to
ensure that they are reliable in the project for which they were originally developed by helping to find corner cases and ensure reliable operation.

Of the three contexts listed previously, most developers consider the polled environment is first when designing and implementing libraries. This
environment is the easiest to understand, but it is also the most restrictive and limiting in terms of system capabilities and real-time
responsiveness. So, most systems will utilize at least some interrupt-driven code or use a RTOS, requiring the developer to consider the issues
described in this section.

Atomicity

Describes atomic code sequences and data types at a fundamental level.

Description

The English word atomic derives from a Greek word meaning indivisible. A sequence of instructions that is indivisible once started and cannot be

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 687

interrupted until it has completed is called atomic. A data item is considered atomic if it cannot be subdivided as it is read or written. These are
critical concepts for all software, including real-time embedded systems, because interrupts and context switches can occur at particularly
inopportune times and potentially cause data corruption or incorrect behavior or even complete system failure. Such possibilities must be
prevented to guarantee correct and robust functioning of the system.

When a processor is reset, interrupts are disabled and the processor executes instructions one after the next and will continue to do so until
powered off or reset. Therefore, all code is effectively atomic in a polled environment where interrupts are globally disabled. In such a strictly polled
configuration, conflicts due to non-atomic accesses to resources shared between clients and drivers do not occur.

Polled Configuration

Even though different clients may call the same driver function and access, the same resources that are also accessed by the driver’s tasks
function, all functions are called from the context of the main system loop and only one such access will occur at a time and it will complete without
interruption.

However, once interrupts are enabled, there is a very limited set of situations where atomicity can be guaranteed. The execution of a single
instruction is atomic. When an interrupt occurs, an instruction will either execute completely or it will not be started. Interrupts are synchronized to
the instruction flow and they effectively occur between the instructions. Or, more accurately, the CPU can only respond to an interrupt after
completing the instruction it is currently decoding and executing. That may seem to be obvious, but it is the basis for all atomicity of both data
items and sequences of instructions in a computing system.

Atomicity is also guaranteed when reading or writing a single data word with a single instruction. A data word contains the same number of bits as
the data bus width. In a correctly functioning system, a data value that is the width of the processor’s data bus (or less if half word or smaller
values are supported, as they are on PIC32 microcontrollers) will be read or written in its entirety. The data word will never be partially read or
partially written.

However, if a variable, data structure, or array is larger than a single data word (for example, a 64-bit value on a 32-bit processor), it will take more
than one instruction to read or write the entire value and interrupts could occur in between those instructions. If that happens, it is possible that part
of the data value could be changed by the interrupt and may not be consistent with the part that was read before the interrupt (or written after the
interrupt) when the sequence of instructions completes. Such data types should not be considered atomic. Instruction sequences that access them
should be protected to guarantee that there is no possibility of corruption.

Even if a data type is atomic (only one word or less in size), it may still be necessary to protect a code sequence that performs a read-modify-write
operation on it because almost all read-modify-write operations require execution of multiple instructions, which could be interrupted. This concern
applies to both data stored in memory (in variables, structures, arrays, and buffers) as well as registers (or SFRs). If non-atomic accesses are
made to these resources from both an ISR and the main loop or from more than a single thread context when using a RTOS, that resource is
considered shared and access to it must be made atomic by guarding or protecting it as described in the following sections.

Interrupt Safety

Describes how to guard against the potential conflicts that interrupts can cause.

Description

If a sequence of code must be atomic (indivisible and uninterruptible), the relevant interrupts must be disabled before entering the sequence. In
MPLAB Harmony, interrupts can be disabled globally by using the interrupt system service or by using a high-priority mutex. However, MPLAB
Harmony libraries are modular and by convention they respect the abstractions of other libraries, never attempting to directly access their internal
resources. Because of this convention, the only code in the system that should ever attempt to access the internal resources owned by a driver is
the driver code itself, as shown in the following diagram.

Interrupt-Driven (No RTOS)

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 688

This means that it is not necessary to globally disable interrupts in most cases to guarantee correct and reliable operation of a MPLAB Harmony
driver. It is usually sufficient for a driver to temporarily mask just the interrupt(s) of the peripheral it owns while performing non-atomic accesses to
its own data structures or peripheral hardware. Doing so will prevent the driver’s own interrupt-driven tasks function(s) from potentially corrupting
data that is also accessed by the driver’s interface function(s).

This can be done using the interrupt system service and it is more efficient than globally disabling all interrupts because it allows higher priority
interrupts (which do not affect the driver in question) to occur, protecting their response time latency. This can be done using the Interrupt System
Service, as shown in the following example.

Example: Temporarily Disabling an Interrupt Source
#define MY_INTERRUPT_SOURCE INT_SOURCE_TIMER_2

bool enabled;

enabled = SYS_INT_SourceDisable(MY_INTERRUPT_SOURCE);

/* Access resource shared with interrupt-driven tasks function. */

if (enabled)
{
 SYS_INT_SourceEnable(MY_INTERRUPT_SOURCE);
}

This method is safe to use, even if the driver in question is not running in an interrupt-driven mode because it only re-enables the interrupt source if
it was enabled before the sequence was entered. However, when a driver is not configured for interrupt-driven operation, it must not enable its
own interrupt and the code that is necessary to disable the interrupt and restore its previous state is not necessary and could be removed to save
code space. Fortunately, this can be accomplished fairly easily by abstracting the interrupt management code behind functions that switch
implementations depending upon the configuration of the driver, as shown in the following example.

Example: Interrupt Management Functions
#if (SAMPLE_MODULE_INTERRUPT_MODE == true)

 #define _SAMPLE_InterruptDisable(s) SYS_INT_SourceDisable(s)

#else

 #define _SAMPLE_InterruptDisable(s) false

#endif

#if (SAMPLE_MODULE_INTERRUPT_MODE == true)

 static inline void _SAMPLE_InterruptRestore (INT_SOURCE source, bool enabled)
 {
 if (enabled)
 {
 SYS_INT_SourceEnable(source);
 }

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 689

 }

#else

 #define _SAMPLE_InterruptRestore(s,e)

#endif

This method effectively compiles away the interrupt management code, adding little or no object code when used in a polled configuration (when
SAMPLE_MODULE_INTERRUPT_MODE is false). But, when used in an interrupt-driven configuration (when
SAMPLE_MODULE_INTERRUPT_MODE is true), these functions use the system interrupt service to manage the driver’s interrupt source(s).
These functions can then be used to guard non-atomic accesses by the driver’s interface functions to resources that are shared with the driver’s
ISR, as shown in the following code example.

Example: Interrupt Management
bool SAMPLE_DataGet (const SYS_MODULE_INDEX index, int *data)
{
 SAMPLE_MODULE_DATA *pObj;
 bool intState;
 bool result = false;

 pObj = (SAMPLE_MODULE_DATA *)&gObj[index];

 // Guard against interrupts
 intState = _SAMPLE_InterruptDisable(pObj->interrupt);

 if (pObj->dataProcessedIsValid)
 {
 // Provide data
 *data = pObj->dataProcessed;
 pObj->dataProcessedIsValid = false;
 result = true;
 }

 // Restore interrupt state.
 _SAMPLE_InterruptRestore(pObj->interrupt, intState);

 return result;
}

In this code example, the driver interface function SAMPLE_DataGet calls _SAMPLE_InterruptDisable before checking a flag and potentially
updating an internal data structure, which is a non-atomic process that will take multiple instructions. When
SAMPLE_MODULE_INTERRUPT_MODE is true, the _SAMPLE_InterruptDisable function will call the SYS_INT_SourceDisable system service
function to atomically disable the interrupt source and capture its current state (whether it was enabled or disabled before being disabled). Once it
is done accessing the data structure, it calls the _SAMPLE_InterruptRestore function to restore the interrupt to its previous state. This ensures that
the ISR cannot fire and call the tasks function to modify this data until the interface function has finished with the data. However, if
SAMPLE_MODULE_INTERRUPT_MODE is false, the _SAMPLE_InterruptDisable function will be replaced with a constant false value (to avoid a
syntax error in the assignment of the function return value) and the _SAMPLE_InterruptRestore function will be completely removed.

This method works to ensure safe access to shared resources without disabling interrupts globally when using a bare-metal configuration. Of
course, if a section of code must be truly atomic (uninterruptible), interrupts can be globally disabled for a short period of time using either the
Interrupt System Service functions or a high-priority critical section.

RTOS Thread Safety

Describes how to protect accesses to shared resources and critical sections of code from corruption by simultaneous access by multiple RTOS
threads (tasks) and interrupts.

Description

When utilizing a RTOS, it is possible that a driver and its clients may each run in its own RTOS thread. If the RTOS is preemptive, it is possible
that the scheduler may interrupt any of these threads at any time and switch to another. If the other thread happens to also non-atomically access
the same shared resource or execute the same critical section of code (as shown by the following diagram), that section of code must be guarded
and made atomic using the methods provided by the MPLAB Harmony Operating System Abstraction Layer (OSAL).

RTOS Polled

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 690

In a RTOS configuration, where the MPLAB Harmony driver and all of its clients are running strictly polled in their own threads, a mutex or
low-priority critical section is sufficient to protect non-atomic accesses to shared resources or critical sections of code. Both of these mechanisms
will instruct the RTOS scheduler to only allow a single thread to access to the resource or execute the critical code sequence at a time and will
block all other threads, making them idle until the first thread has released the mutex or exited the critical section.

However, MPLAB Harmony drivers normally run most efficiently when interrupt driven. So, even when utilizing a RTOS, it is common for a driver’s
tasks function to be called from an interrupt context, as shown in the following diagram.

RTOS Interrupt-Driven

In this situation, a mutex or a low-priority critical section can still be used to guard against simultaneous access to shared resources by different
threads (for example client A's thread and client B's thread, as shown previously). However, neither will prevent an ISR from accessing the shared
resource or critical code section right in the middle of the thread’s attempt to access it. So, if either of these methods is used, they must be
augmented by also temporarily disabling (masking) the associated interrupt source, exactly the same way it is done in a bare metal environment
as described in the Interrupt Safety topic. It is also possible to simply disable interrupts globally and prevent context switches by using a
high-priority critical section. But, this is a brute force solution that is not recommended unless the timing of the code sequence is absolutely critical,
and then only for very brief periods (see the Blocking Guidelines section for recommendations on what is an acceptably brief period).

The following example uses the _SAMPLE_InterruptDisable and _SAMPLE_InterruptRestore functions from the previous (Interrupt Safety) topic in
conjunction with the OSAL mutex functions to effectively guard non-atomic accesses to shared resources from within client interface function code.

Example: Guarding Shared Resources
result = false;

if (OSAL_MUTEX_Lock(&pObj->mutex, SAMPLE_MODULE_TIMEOUT) == OSAL_RESULT_TRUE)
{
 /* Guard against interrupts */
 intState = _SAMPLE_InterruptDisable(pObj->interrupt);

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 691

 /* Check for storage space */
 if (!pObj->dataNewIsValid)
 {
 /* Store data */
 pObj->dataNew = data;
 pObj->dataNewIsValid = true;
 pObj->status = SYS_STATUS_BUSY;
 result = true;
 }

 /* Restore interrupt state and unlock module object. */
 _SAMPLE_InterruptRestore(pObj->interrupt, intState);
 OSAL_MUTEX_Unlock(&pObj->mutex);
}

In the previous code example, the OSAL_MUTEX_lock function is called first to lock the mutex. When using a RTOS, this is the point at which it
will block any subsequent thread entering the sequence before the first exits. So, the locked mutex protects the current thread against accesses by
multiple clients. However, the non-atomic access sequence still needs to be guarded against ill-timed interrupts by calling the local
_SAMPLE_InterruptDisable function and passing in the appropriate interrupt flag ID. When interrupt-driven, this will disable the interrupt and
(atomically) capture the previous status of the interrupt sourced passed in. Then, once finished accessing the shared resource, this example calls
the inverse functions (_SAMPLE_InterruptRestore and OSAL_MUTEX_Unlock) in reverse order to restore the previous state, unlock the mutex
and continue safely.

In a bare metal configuration, if the mutex is already locked, the OSAL_MUTEX_lock function will return OSAL_RESULT_FALSE and the if will fail
the result variable will stay false, allowing the interface function that contains this code to provide a negative result to the caller. If the mutex is not
locked, it will become locked and the if clause will be taken, emulating the behavior of a RTOS. Of course, as described in the Interrupt Safety
section, the interrupt enable and disable functions also change implementation depending on whether the driver is configured for interrupt-driven
or polling operation. So, this method works for client interface functions in all possible execution environments (bare metal polled, bare metal
interrupt-driven, RTOS polled and RTOS interrupt-driven). It has full flexibility and configurability when implementing client-interface functions.
However, a driver’s tasks function requires a slightly different set of behavior, as described in the following paragraph.

When interrupt-driven, the driver’s tasks function is called from within the ISR. In an ISR, the associated interrupt source is already masked and it
will be automatically unmasked when the ISR returns. This means that the driver’s tasks function does not need to disable and restore its own
interrupt source, only the driver’s other functions need to do that. However, driver’s tasks function can only call potentially blocking OSAL functions
when in a polled configuration (RTOS-based or bare metal). When built in an interrupt-driven configuration, any interrupt-driven tasks functions
must not call OSAL functions that might block. This means that any OSAL functions called from a tasks function must switch implementations and
compile away to nothing when the driver is built in an interrupt-driven configuration. The following example shows a simple way to do this based on
the interrupt configuration option.

Example: OSAL Use in Interrupt Tasks Functions
#if (SAMPLE_MODULE_INTERRUPT_MODE == false)

 static inline bool _SAMPLE_TasksMutexLock (SAMPLE_MODULE_DATA *pObj)
 {
 if (OSAL_MUTEX_Lock(&pObj->mutex, SAMPLE_MODULE_TIMEOUT) == OSAL_RESULT_TRUE)
 {
 return true;
 }

 return false;
 }

#else

 #define _SAMPLE_TasksMutexLock(p) true

#endif

#if (SAMPLE_MODULE_INTERRUPT_MODE == false)

 static inline void _SAMPLE_TasksMutexUnlock (SAMPLE_MODULE_DATA *pObj)
 {
 OSAL_MUTEX_Unlock(&pObj->mutex);
 }

#else

 #define _SAMPLE_TasksMutexUnlock(p)

#endif

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 692

These functions effectively compile away when used in an interrupt-driven configuration (when SAMPLE_MODULE_INTERRUPT_MODE is true),
adding little or no object code. But, when used in an interrupt-driven configuration (when SAMPLE_MODULE_INTERRUPT_MODE is false), these
functions translate to the desired OSAL mutex functions and can be used to guard non-atomic accesses in the tasks function, as shown in the
following example.

 Note:
The OSAL functions themselves map to the appropriate RTOS-specific or bare metal implementation, so no additional steps need
be taken to ensure flexibility to use or not use a RTOS. Only the interrupt and non-interrupt behavior needs to be mapped by
functions defined in the driver’s source code.

Example: Guarding Shared Resources in Interrupt-Driven Tasks
void SAMPLE_Tasks(SYS_MODULE_OBJ object)
{
 SAMPLE_MODULE_DATA *pObj = (SAMPLE_MODULE_DATA *)object;

 SYS_ASSERT(_ObjectIsValid(object), "Invalid object handle");

 if (!_SAMPLE_TasksMutexLock(pObj))
 {
 return;
 }

 // Process data when ready.
 if (pObj->dataNewIsValid && !pObj->dataProcessedIsValid)
 {
 pObj->dataProcessed = pObj->dataNew;
 pObj->dataNewIsValid = false;
 pObj->dataProcessedIsValid = true;
 pObj->status = SYS_STATUS_READY;
 }

 _SAMPLE_TasksMutexUnlock(pObj);

 return;
}

This previous example shows how to use the mapped mutex lock functions within an ISR-driven tasks function. Note that if the
_SAMPLE_TasksMutexLock function returns false, it is potentially an error condition and the tasks function will be unable to perform its task
because the resources are unavailable. So, be sure to perform appropriate error recovery or management if necessary.

A task function that manages an interrupt is, by nature, interrupt safe because it is either called from the appropriate ISR or it is polled and the
associated interrupt source is disabled. And, the previous method can be used to also make them thread safe. So, it provides all four combinations
of ISR and thread safety and can be used to make fully configurable drivers for all four combinations of interrupt versus polled and RTOS versus
non-RTOS configurations.

 Note:
Tasks functions that do not manage an interrupt (such as tasks functions for applications or second-level tasks function) and that
can only be polled should be treated like client interface functions. Non-atomic accesses to resources that can be accessed from
other thread contexts and/or interrupts must be protected using the same methods as used by client interface functions.

Callback Functions

Describes callback functions and the potential interrupt and thread-safety concerns they may cause.

Description

Normally, a client calls the driver’s interface functions to interact with it. But, a callback function is a client function called by the driver back to the
client, instead of the other way around, as shown in the following diagram.

Callback Functions

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 693

Callback functions are usually dynamically registered with a driver (or other server library). To do this, the driver provides an interface function that
the client can call and pass in a pointer to the function it wants the driver to call back (the MyCallback function in the following example).

Example: Registering a Callback Function
#define PERIOD 1000
#define NO_REPEAT false

if (DRV_TMR_AlarmRegister(pObj->tmrHandle, PERIOD, NO_REPEAT, pObj, MyCallback))
{
 /* Successfully registered “MyCallback” function */
}

A callback is different from functions that are statically linked and called from the driver by name. Statically linked functions are considered
dependencies. Dependencies are requirements of the driver. It will not build without an implementation of the dependency. Dependencies should
be limited to only the things that the driver needs to use to do its job. They should not be part of the client interface. If they are, they force the driver
to be static and single client. Dynamically registering a callback function (by a function pointer) instead of statically linking it to the driver allows the
driver to be static or dynamic, or single client or multiple client.

 Note:
Sometimes two libraries may be mutually dependent on each other or a library may have dependencies upon functions defined in
configuration files that are implemented as part of the system configuration. But, a library should not be dependent upon a client.

The callback function whose address is passed to the callback registration function probably needs to do something when it is called back. Likely it
will need to set a flag (or semaphore) or capture some status value (see the following example).

Example: Callback Function
void MyCallback (uintptr_t context, uint32_t alarmCount)
{
 MY_DATA_OBJECT *pObj = (MY_DATA_OBJECT *)context;

 pObj->alarmCount += alarmCount;
}

Caution should be taken when designing the usage model of a driver callback. This is because in an interrupt-driven configuration the callback
function might be called from the driver’s ISR or in a RTOS configuration the callback might be called from a different thread context. This places
additional complexity on the client and on the driver, especially if the client then needs to call the driver’s interface functions from the callback
function.

Also, it is important to carefully document the context in which a callback function can be called because a client cannot disable an interrupt owned
by a driver, or any other module, because each module manages its own interrupts. It would be a violation of the driver’s abstraction. The client
should not know what interrupts the driver uses or if it uses any interrupts at all. In this situation, a client may not be able to make non-atomic
accesses to its own internal data structures if they are accessed by the callback and its own state machine or interface functions without globally
disabling interrupts. For example, the pObj->alarmCount += alarmCount line in the previous example is a non-atomic (read-modify-write)
access so the client using this driver would need to stop the timer callbacks from happening before it attempted to perform a non-atomic access to
the alarmCount variable in its MY_DATA_OBJECT structure from any of its other functions, as shown in the following example.

Example: Temporarily Disabling a Callback
bool previousAlarmEnable;

alarmWasDisabled = DRV_TMR_AlarmDisable(pObj->myTimer);

if (pObj->alarmCount > MY_MAX_ALARM_COUNT)
{
 /* Reset my alarm count. */
 pObj->alarmCount = 0;
}

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 694

DRV_TMR_AlarmEnable(pObj->myTimer, previousAlarmEnable);

In the previous example, the if statement reads the alarmCount member of the current module’s structure and, depending on its value, the
assignment inside the if statement modifies and writes it. Since this takes more than one instruction, the caller cannot allow alarm callbacks to
occur in this time. So, the Timer Driver provides client interface functions to conveniently disable and restore the callback functionality. If the driver
did not provide these functions the client would have to deregister the callback and/or stop the timer to ensure that the alarmCount variable
would not be corrupted by a simultaneous access by its own interface or tasks functions.

Another concern that the driver developer must take care to avoid when providing a callback function is a common race condition that can occur.
Most callback functions are used as synchronization methods. (See Synchronization for details.) An interface call-in function will usually start some
process that takes time and a callback function will notify the client when the process has completed. The danger is that, if the process completes
too quickly, it may cause an interrupt to occur immediately and call the callback function before the call-in function returns. That can be a serious
problem if the client needs to use the return value of the interface call-in function from within the callback function. Unfortunately, that is exactly
what would happen when a transfer handle is returned from a data transfer function, as shown in the following example.

Example: Transfer Synchronization Callback
void MyBufferEventHandler (DRV_USART_BUFFER_EVENT event,
 DRV_USART_BUFFER_HANDLE bufferHandle,
 uintptr_t context)
{
 MY_OBJ *pObj = (MY_OBJ *)context;

 if (pObj->myBufferHandle == bufferHandle)
 {
 switch(event)
 {
 case DRV_USART_BUFFER_EVENT_COMPLETE:
 {
 /* Clean up after my buffer transfer is complete. */
 }

 /* Handle other events for my buffer */
 }
 }
}

Example: Interface With an Intrinsic Race Condition
char buffer[] = “Hello World\n”;

pObj->bufferHandle = DRV_USART_BufferAddWrite(pObj->myUsart, buffer, strlen(buffer));

In the previous example, the DRV_USART_BufferAddWrite function adds the buffer containing the Hello World\n string to the USART driver’s
write buffer queue and returns a handle identifying the request to write that buffer. When the transfer completes, the driver will call the
MyBufferEventHandler function and pass in the DRV_USART_BUFFER_EVENT_COMPLETE event, the buffer handle returned from the
DRV_USART_BufferAddWrite function, and the context value passed in when the callback was registered. (The context is used to identify the
instance of the caller that registered the callback. In most cases, a caller will pass in a pointer to its instance data structure so the callback can
recover it, as shown in this example.)

In this example, as long as the DRV_USART_BufferAddWrite function returns the buffer handle before transfer finishes and the
MyBufferEventHandler function is called back, this will work just fine. But, what happens if the write queue is empty, the buffer is only one byte in
size and the baud rate really is high? It is possible that the transfer will finish and the callback will happen when the interrupt occurs before the
DRV_USART_BufferAddWrite function has had time to return and the buffer handle value has been assigned to the pObj->bufferHandle
variable. If that should happen, the value of the bufferHandle parameter passed into the MyBufferEventHandler callback function will not match
the value in the value stored in the pObj->bufferHandle variable because it has not yet been stored there. When that occurs, the
MyBufferEventHandler function will incorrectly decide that the event was not for buffer it was looking for and it will not correctly perform whatever
clean-up logic it was designed to perform. So, whether or not this callback works correctly depends on who wins the race, the client or the driver.

To avoid this common race condition, it is necessary to put the timing of the assignment of the buffer handle into the hands of the driver where it
can be managed successfully. A better driver interface design would make the transfer handle an output parameter instead of a return value by
passing the address of the variable to receive the value of the buffer handle as a parameter, as shown in the following example.

Example: Interface Without an Intrinsic Race Condition
char buffer[] = “Hello World\n”;

DRV_USART_BufferAddWrite(pObj->myUsart, buffer, strlen(buffer), &pObj->bufferHandle);

In this example, the USART driver can now eliminate the potential race condition that was intrinsic in the previous DRV_USART_BufferAddWrite
and callback interface. By passing the address of the pObj->bufferHandle variable into the DRV_USART_BufferAddWrite function, the driver
can ensure that it assigns the correct buffer handle value to the variable before it starts transferring the buffer. This guarantees that, no matter
how quickly the buffer transfer finishes and how quickly the callback occurs, the client’s variable has the correct value so it will match the value
passed in by the driver.

Callback functions can be a very useful mechanism for synchronizing between a driver and its client, but care must be taken make sure the client
has a working usage model or the driver may not be useful in some configurations.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Interrupt and Thread Safety

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 695

Synchronization

Describes how to use the OS Abstraction Layer (OSAL) to synchronize between threads and ISRs to manage blocking behavior.

Description

Some driver interface functions have an intrinsically blocking usage model. For example, most developers would expect the file system style read
and write functions to block and not return until the entire transfer had completed. While this cannot be accomplished in a bare-metal environment,
it can be accomplished in a RTOS configuration in a way that still allows usage in a non-RTOS environment by using the OSAL semaphore
support.

Example: Blocking Function
size_t DRV_MYDEV_Write(DRV_HANDLE handle, void *buffer, size_t size)
{
 size_t count;
 DRV_MYDEV_OBJ pObj = (DRV_MYDEV_OBJ *)handle;

 count = 0;
 while(count < size)
 {
 count += PLIB_MYDEV_Transmit(pObj->devIndex, buffer, size-count);
 if (count < size)
 {
 if (OSAL_SEM_Pend(pObj->txSemaphore) == OSAL_RESULT_TRUE)
 {
 /* Exit loop if semaphore fails or if no RTOS */
 break;
 }
 }
 }

 return count;
}

In the previous example, the DRV_MYDEV_Write function attempts to loop, repeatedly filling the fictitious MYDEV device’s transmit FIFO until it
has sent all size bytes of data pointed to by the buffer parameter by calling the PLIB_MYDEV_Transmit function (assuming that is what this
function does and that it returns the actual number of bytes copied to the transmitter FIFO). If the buffer passed in contains more data bytes than
will fit into the device’s FIFO, count will be less than size and the code will call the OSAL_SEM_Pend function. In a RTOS configuration,
assuming that no other code has previously posted the txSemaphore, this will cause the thread that called the DRV_MYDEV_Write to block (be
suspended by the OS scheduler) until some other thread or ISR posts the semaphore.

Presumably, this fictitious device will set an interrupt flag when its transmitter FIFO is empty (or as shown in a following section, a given watermark
level). If that is the case, the driver’s tasks function will need to call either the OSAL_SEM_Post or OSAL_SEM_PostISR function (depending upon
whether or not it is configured for polled or interrupt-driven operation), passing in the txSemaphore, to signal that the transmitter is ready to
accept more data. When that happens, the previous call to OSAL_SEM_Pend will return with an OSAL_RESULT_TRUE value. This causes the
loop to continue until it has successfully transmitted all data (when count equals size) or until OSAL_SEM_Pend returns some other value.

If this code is built in a non-RTOS configuration, the OSAL_SEM_Pend function will instead return OSAL_RESULT_FALSE. When that occurs, the
example will break out of the loop and the DRV_MYDEV_Write function will return the current count of how much data was successfully written to
the device’s transmitter FIFO. While not ideal (after all, the caller was hoping all of its data would be written), this behavior is still consistent with
the expected behavior of the DRV_MYDEV_Write function and is completely safe so long as the caller appropriately checks the return value and
adjusts accordingly.

When using a technique like this, blocking behavior becomes an optimization that is available when a RTOS is used, which is why the naturally
blocking file system style read and write functions operate best in a RTOS environment and they are a bit inefficient (but still work) in a bare metal
environment. Similar techniques can be used to synchronize between any interface functions and the associated tasks function(s) in any driver (or
other library). Using this technique also illustrates that a driver is best designed to block in its interface functions and not in its tasks function(s).
Using this technique best synchronizes clients, calling a driver’s interface routines, with the operation of the driver’s state machine.

Configuration and Implementations

Describes the different configuration capabilities that a MPLAB Harmony device driver developer must comprehend.

Description

MPLAB Harmony is very flexible and can support a number of ways in which a device driver (or other library) may be configured and customized to
suit the individual needs of a specific system. These usually methods fall into one of the following categories.

• Optional Feature Sets

• Configuration Options

• Multiple Implementations

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Configuration and Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 696

These different methods are described in the following sections. However, there are two important overriding concerns that the driver (or other
library) developer must keep in mind when utilizing this flexibility.

First, all options should be managed and presented to the user for selection by the MPLAB Harmony Configurator (MHC). The MHC is the utility
that manages MPLAB Harmony libraries and integrates them into the MPLAB X IDE development environment. While it is certainly possible to
develop MPLAB Harmony-compatible drivers and add them to an application directly (in source code) with no MHC integration, doing so is missing
out on the power and convenience of the MHC and will quickly and inevitably result in a need to manage changes in less effective ways. Adding
MHC support for the libraries and their configuration options will dramatically simplify the tasks necessary to manage the addition, removal, and
configuration of a driver (or any library) to one or more MPLAB Harmony projects and is will worth the effort.

 Note:
Please refer to the MPLAB Harmony Configurator Developer’s Guide for information on how to support the MHC.

Second, the most important thing about any configuration or implementation of a MPLAB Harmony driver (or other library) is that its interface must
stay consistent with the interface of all other configurations and implementations of the same driver (or library). This does not mean that every
implementation of a driver must support every function defined in the driver’s interface (see optional features). But, it does mean that if an
implementation supports a feature then it must provide the same interface to that feature that all other implementations or configurations provide to
that feature. An implementation of a driver that does not follow the interface defined in the help and by the driver’s interface header is not an
alternate implementation or configuration of the same driver. It is an entirely different driver or library.

These two considerations are important to all driver development. If they are not properly comprehended, the end result cannot be easily managed
in the same way as other MPLAB Harmony drivers. The user will not be able to treat the driver as a building block module and he will likely need to
either modify his application to reuse the driver or directly modify the driver itself. Properly managing these concerns is vital to developing highly
reusable MPLAB Harmony drivers.

Optional Feature Sets

Describes how to group MPLAB Harmony driver features into sets and manage them as build configuration options.

Description

Any MPLAB Harmony library or driver should have a core feature set and interface to that feature set. This is the simplest and most basic
functionality that is always provided by that driver, without which, there is no reason to use the driver in a system. All other features that may be
provided by the driver can be considered optional and should be broken into sets, as shown in the following diagram.

Library Feature Sets

These feature sets should be identified and described in the Configuring the Library section of the driver’s Help documentation, along with a
description of how to select and configure each feature set. Any implementation of a driver that supports a feature set should support all features
that are part of the set. Configuration options may affect how that feature set is supported (for example, buffer sizes used or minimums and
maximums supported), but the inclusion or exclusion of that feature must happen as a single unit. Either all features in a set are included in the
project when support for the feature is selected or they are all excluded from the project, based on a single MHC selection. Driver implementations
that support rogue features that are undocumented or are not part of any defined feature set dramatically complicate the usage of the driver, make
it difficult to represent its configuration in the MHC and prevent the user from treating different implementations of the driver as a simple building
blocks.

In general, it is best to develop a driver so that it builds upon the core feature set in a clean and modular way. A good way to do this is to think of a
feature set as a sub-module of its own and implement all code for that one feature set in a common source file. The source file for the core feature
set will always be included in the project whenever the driver is included. The source file for an optional feature can then be included or excluded
from the project, depending on whether or not the user selects the feature, as shown by the following examples.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Configuration and Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 697

Example: Core Feature (drv_mydev.c)
MY_RETVAL DRV_MYDEV_CoreFunction1 (DRV_MYDEV_HANDLE handle, DRV_MYDEV_A *data)
{
 /* Implementation of core interface function 1 */
}

MY_RETVAL DRV_MYDEV_CoreFunction2 (DRV_MYDEV_HANDLE handle, DRV_MYDEV_B *data)
{
 /* Implementation of core interface function 2 */
}

/* Additional core interface and internal functions... */

void __attribute__((weak)) _DRV_MYDEV_TasksOpt1 (DRV_MYDEV_OBJ obj)
{
 return;
}

void DRV_MYDEV_Tasks (DRV_MYDEV_OBJ obj)
{
 /* Implementation of core tasks state machine. */

 _DRV_MYDEV_TasksOpt1(obj);
}

Example: Optional Feature (drv_mydev_opt1.c)
MY_RETVAL DRV_MYDEV_Option1Function1 (DRV_MYDEV_HANDLE handle, DRV_MYDEV_A *data)
{
 /* Implementation of option 1 interface function 1 */
}

MY_RETVAL DRV_MYDEV_InterfaceFunction2 (DRV_MYDEV_HANDLE handle, DRV_MYDEV_B *data)
{
 /* Implementation of option 1 interface function 2 */
}

/* Additional option 1 interface and internal functions... */

void _DRV_MYDEV_TasksOpt1 (DRV_MYDEV_OBJ obj)
{
 /* Implementation of optional feature set 1 state machine. */
}

In the previous examples, the any interface or internal functions that are specific to the optional feature are implemented in a separate source file
(drv_mydev_opt1.c) from the core feature set functions implemented in the driver’s primary source file (drv_mydev.c). The core driver
implementation file is always included in a project if the mydev driver is used. If the optional feature set is selected, the optional source file is also
included. This provides implementations of the optional interface functions (DRV_MYDEV_InterfaceFunction1 and
DRV_MYDEV_InterfaceFunction1, for example) as well as any internal and tasks or sub-tasks functions.

The _DRV_MYDEV_TasksOpt1 function shows the technique of using a weak function in the core feature set’s implementation file to implement a
sub-tasks state machine function. This can then be called from within the main state machine’s tasks function. If the optional feature file
(drv_mydev_opt1.c) is not included in the build, the weak implementation of the function will be called (and likely removed from the build,
depending on the level of optimization chosen). However, if the optional feature set is selected and the implementation of the
_DRV_MYDEV_TasksOpt1 function is built, the linker will override the weak definition in drv_mydev.c and link the call to the full non-weak
implementation in the drv_mydev_opt1.c file calling the optional feature’s state machine when the driver’s core state machine is called.

This is the preferred method for implementing optional features (in separate files), but if this method is not feasible or if it adds more complexity
than it saves, it is acceptable to use preprocessor macros to switch implementations of a function or short sequence of code based upon the
selection of a configuration option, using the mapping method shown in the following example.

Example: Macro Mapping Function Implementations
#if defined(DRV_MYDEV_USE_OPT1)

 #define _DRV_MYDEV_TasksOpt1(obj) _DRV_MYDEV_TasksOpt1Implementation(obj)

#else

 #define _DRV_MYDEV_TasksOpt1(obj)

#endif

This method allows the optional function’s code to be removed even in builds with no optimizations, but it is more confusing and can be harder to
debug. It is most useful an optional feature requires one or two short code sequences, when the first method is too much. This method can also be

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Configuration and Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 698

used to wrap data allocations (see the OSAL_MUTEX_DECLARE and OSAL_SEM_DECLARE macros for examples).

In general, it is best to work to minimize the use of preprocessor #if directives as much as possible as they tend complicate the code and
obfuscate the logic. If they must be used (as shown previously), it is best to group them into a single local mapping header included (for example
the previous macros might be defined in a drv_mydev_local_mapping.h file). If they must be used directly in source code, it is best to indent
them and the contents as if they were normal if statements. Do not force them to align at column 0. That is an old C-language standard that is no
longer required and only serves to render code harder to read.

Configuration Options

Describes how to create and manage static build-time configuration options for MPLAB Harmony drivers.

Description

One of the primary ways in which MPLAB Harmony libraries are configured is by the definition and utilization of static configuration options defined
at build-time. In most cases, these configuration options take the form of name-value pairs, defined in the system-wide system_config.h
header using C preprocessor #define statements, as shown in the following example.

Example: Static Configuration Option Definitions
/* DRV USART Configuration Options */
#define DRV_USART_QUEUE_DEPTH_COMBINED 20
#define DRV_USART_CLIENTS_NUMBER 6
#define DRV_USART_INSTANCES_NUMBER 2

/* DRV USART 0 Initialization */
#define DRV_USART_PERIPHERAL_ID_IDX0 USART_ID_2
#define DRV_USART_BRG_CLOCK_IDX0 80000000
#define DRV_USART_BAUD_RATE_IDX0 9600

/* DRV USART 1 Initialization */
#define DRV_USART_PERIPHERAL_ID_IDX0 USART_ID_2
#define DRV_USART_BRG_CLOCK_IDX0 80000000
#define DRV_USART_BAUD_RATE_IDX0 9600

These macros are utilized in one of two ways.

• To define implementation-specific options

• To define instance-specific options

Implementation-specific macros are often used to control allocation of internal arrays or buffers and to control logic that manages them, as shown
by the following example.

Example: Using Implementation-Specific Options
DRV_USART_BUFFER_OBJ gDrvUSARTBufferObj[DRV_USART_QUEUE_DEPTH_COMBINED];
unsigned int i;

/* Search the buffer pool for a free buffer object */
for(i = 0; i < DRV_USART_QUEUE_DEPTH_COMBINED; i++)
{
 if(!gDrvUSARTBufferObj[i].inUse)
 {
 /* Initialize buffer object. */
 gDrvUSARTBufferObj[i].inUse = true;
 break;
 }
}

if(i >= DRV_USART_QUEUE_DEPTH_COMBINED)
{
 /* Could not find a buffer. */
}

In the previous example, the USART driver keeps a common pool of buffer objects in an array, the size of which is determined by the
DRV_USART_QUEUE_DEPTH_COMBINED configuration option. When a buffer object is needed, the driver logic searches through the array,
looking for one that has not been allocated by checking its inUse flag. This option affects both the amount of RAM statically allocated by this
driver and the code generated when it is built.

 Note:
This sequence of code is simplified for explanation. A real implementation would need to perform additional initializations and be
protected for interrupt and thread safety.

Instance specific macros are used in system_init.c to initialize a dynamic driver’s init data structure, as shown in the following example, or
are built directly into instance-specific static driver implementation, using the same method shown previously.

Example: Using Instance-Specific Options

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Configuration and Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 699

const DRV_USART_INIT drvUsart0InitData =
{
 .usartID = DRV_USART_PERIPHERAL_ID_IDX0,
 .brgClock = DRV_USART_BRG_CLOCK_IDX0,
 .baud = DRV_USART_BAUD_RATE_IDX0,

 /* Initialize other “init” data members. */
};

sysObj.drvUsart0 = DRV_USART_Initialize(DRV_USART_INDEX_0,
 (SYS_MODULE_INIT *)&drvUsart0InitData);

Since the user must provide the values of these options, the MHC must be made aware of them To make the MHC aware of an option, you must
provide the appropriate config definitions in the Hconfig file hierarchy. And, to enable code generation based on these options, you must develop
the necessary FreeMarker templates as described in the MPLAB Harmony Configurator Developer’s Guide. Please refer to that document for
details on developing Hconfig and FreeMarker template files.

Additionally, since static configuration options are defined in the system_config.h header, there are a few key guidelines governing this file to
keep in mind.

Key system_config.h Guidelines:

• Any driver (or other source file) that uses any build-time configuration options supported by the MHC must include this header. The MHC
always adds the path to this header to the compiler’s include file search path. So, it is included without any path information (e.g., #include
"system_config.h").

• The system_config.h header must not contain any data type or function prototypes definitions. It must only define pre-processor
name-value macros or header file include file dependency loops that cannot be resolved may occur.

• It is acceptable for configuration options to utilize symbol names that have not yet been defined because the macros it defines are not
instantiated until used in a source file

 Note:
Type definitions used by system configuration code are defined in the system_definitions.h header file. This file should only
be used by the system configuration code as it defines data types and external references for system configuration code.

While it is possible to define callable macros that emulate functions (or that map function call names and parameters to different selectable
functions) in the system_config.h, it is best to implement such macros in the library code and select their implementations based upon
name-value macro definition(s) defined by MHC, as shown in the following example. This simplifies the configuration files and template code and
keeps the knowledge and complexity of the macro’s implementation encapsulated in the library.

Example: Defining “Callable” Macros
#if (SAMPLE_MODULE_INTERRUPT_MODE == true)

 #define _InterruptDisable(s) SYS_INT_SourceDisable(s)

#else

 #define _InterruptDisable(s) false

#endif

The previous example shows how to map a local function used to disable the sample module’s interrupt source to the appropriate system service
when the library is configured for interrupt-driven operation (SAMPLE_MODULE_INTERRUPT_MODE == true) or to an implementation that
provides an appropriate return constant when it is not. This technique allows the driver developer to capture the knowledge of the necessary
implementation variants while providing the higher-level choice (of interrupt-driven or polled, in this example) to the user.

Multiple Implementations

Describes how to define multiple implementations of MPLAB Harmony drivers.

Description

As described in Interface vs. Implementation, the features and functionality provided by a driver are defined by its interface, not by any specific
implementation of that driver. And, due to the flexibility and configurability provided by MPLAB Harmony and the MHC, it is possible to provide
multiple implementations of the driver that are optimized for different hardware or different purposes. To support the selection and management of
such implementations, the MHC provides the ability to select different source files, based upon configuration choices made by the user. (Refer to
the MPLAB Harmony Configurator Developer’s Guide for instructions on how to develop the Hconfig files to support this capability.)

Because different implementation variants provided the same interface (and thus, define the same interface functions), they are mutually
exclusive. Only one implementation of a specific diver (or other library) can be included in the system at a time. Variant implementations of a
MPLAB Harmony driver (or other library) are usually defined for one of three reasons:

• Targeted/optimized usage

• Integration of dependencies

• Static implementations

A targeted implementation is optimized for a specific usage or hardware selection. It can make use of hardware acceleration (for example built-in

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Configuration and Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 700

DMA support) or simply eliminate functionality that is not required for a specific usage.

Integrated implementations may combine multiple libraries or driver stacks into a single driver, improving efficiency and reducing code size at the
cost of the flexibility provided by a stack. For example, a SPI Codec driver would normally utilize the SPI driver to access its Codec over the SPI
bus so that it can switch SPI bus drivers, if necessary. However, a integrated SPI Codec driver may directly utilize the SPI peripheral itself,
integrating the SPI driver functionality to save code size and achieve better performance at the cost of being able to switch to a different type of
SPI peripheral.

Refer to Static Implementations for details.

Implementing Multiple Client Drivers

Describes how to implement multiple client drivers.

Description

When the concept of managing multiple clients is combined with the concept of managing multiple instances, the full picture of a MPLAB Harmony
driver emerges, as shown in the following diagram. See Single Client vs. Multiple Client and Implementation vs. Instances for more information.

One method of implementing the ability to manage multiple instances of the peripheral hardware and multiple independent clients within the same
driver is described in the following diagram, using the familiar USART as an example. Other methods may be possible, but this example illustrates
the requirement.

The diagram shows the definitions of two data structures. The DRV_USART_OBJ structure is used to store all of the data required to manage a
single instance of the peripheral hardware. (This structure is described in the Implementation vs. Instances section.) The
DRV_USART_CLIENT_OBJ structure stores all of the data required to keep track of an individual client.

Since the driver manages multiple instances of the peripheral, there will be one instance of the DRV_USART_OBJ structure per peripheral
instance, as defined by the DRV_USART_INSTANCES_NUMBER configuration parameter and allocated by the drvUsart array shown
previously. Since the driver manages multiple clients, there will also be a number of client data structures, as defined by the
DRV_USART_CLIENTS_NUMBER configuration parameter and allocated by the drvUsartClient array. One structure form the array will be
assigned to each client that calls the driver’s open function until they are all allocated.

One item of particular importance in the client object structure is the pointer that associates a client with the driver instance. This pointer (and
usually other data) will be initialized when a client calls the driver’s open function. The following example shows a possible implementation of this
function (assuming the previous structure definitions).

Example: Driver Open Function
DRV_HANDLE DRV_USART_Open(const SYS_MODULE_INDEX index,
 const DRV_IO_INTENT ioIntent)
{
 int i;
 DRV_USART_CLIENT_OBJ pClient = (DRV_USART_CLIENT_OBJ *)DRV_HANDLE_INVALID;

 for (i=0; i < DRV_USART_CLIENTS_NUMBER; i++)
 {
 if (drvUsartClient[i].driver == NULL)

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Implementing Multiple Client Drivers

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 701

 {
 pClient = &drvUsartClient[i];
 pClient->driver = &drvUsart[index];
 break;
 }
 }

 return (DRV_HANDLE)pClient;
}

This implementation of the DRV_USART_Open function does a linear search through the array of client objects. The first one it finds with a NULL
driver pointer is assumed to be unallocated and available for use. It then assigns the address of the driver object structure in the drvUsart array
that is identified by the function’s index parameter. Doing this simultaneously allocates that client object and associates it with the specified driver
instance. An open function would normally store some additional data and maybe do some other preparation to get ready to service the client, but
this simple example shows how a unique opened driver handle can be created that identifies a client, how a client object structure might provide a
storage location for client-specific data, and how the driver can associate the handle with a specific instance of the driver and peripheral.

 Note:
This example is not RTOS safe. A RTOS safe implementation would protect the for loop with a mutex. Refer to the Interrupt and
Thread Safety section for more in formation on RTOS safety.

Once the driver has been opened and the association between the client and the driver instance has been made, the driver handle can be
returned to the client and then later be used by other client interface functions to interact with the peripheral safely, as shown in the following
example.

Example: Client API Function Implementation
void DRV_USART_BufferAddRead (const DRV_HANDLE handle,
 DRV_USART_BUFFER_HANDLE * const bufferHandle,
 void * buffer, const size_t size)
{
 DRV_USART_CLIENT_OBJ *client = (DRV_USART_CLIENT_OBJ *)handle;
 DRV_USART_OBJ *driver = (DRV_USART_OBJ *)client->driver;

 if (driver->buffer == NULL)
 {
 driver->buffer = buffer;
 driver->bufferSize = size;
 bufferHandle = buffer;

 /* Start the data transfer process. */

 }
 else
 {
 *bufferHandle = DRV_USART_BUFFER_HANDLE_INVALID;
 }

 return;
}

This example shows how a buffer queuing read might work. However, it is somewhat oversimplified because it only maintains a queue size of one.
This is because the driver structure only keeps a single buffer pointer and bufferSize variable (instead of a queue of several of them). So, in this
example, the driver checks to see if its buffer pointer is NULL (which, presumably, that is how it was initialized during the driver’s initialize function
and how it is reset whenever a transfer completes). However, if the buffer pointer is not NULL, it means that the driver is currently busy transferring
a previous request. This causes the driver to return an invalid buffer handle value (DRV_USART_BUFFER_HANDLE_INVALID) to the caller.
When this happens, the client calling will have to try again later because the queue (of one entry) is full. If the buffer pointer is NULL, it is not in use
(i.e., the queue is not full) and the function will save the caller’s buffer pointer and size information and do whatever is necessary to start the data
transfer, likely interacting with the hardware through the peripheral library at that point.

While this example is incomplete and somewhat limited, it does demonstrate how a client API function might use the opened driver handle to
identify the link to the peripheral instance and prevent conflicts between peripherals. In this case, a rather brute force method of only allowing a
single transfer to occur at a time is used; but, that method is completely valid as regardless of how big the queue is, it can always become full.
However, more sophisticated methods (such as implementing an actual transfer queue) would let the driver provide better throughput.

Static Implementations

Describes how to develop static MPLAB Harmony driver implementations.

Description

As described in Static vs. Dynamic, a dynamic driver implementation manages multiple instances of a particular type of peripheral and a static
driver implementation only manages one. This allows a single static implementation of a driver to be smaller than the equivalent dynamic

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Static Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 702

implementation, saving code space by hard coding values that can be made constant. The following examples show the basic differences between
the two types of implementations.

Example: Dynamic Implementation
SYS_MODULE_OBJ DRV_USART_Initialize (const SYS_MODULE_INDEX index,
 const SYS_MODULE_INIT * const init)
{
 DRV_USART_OBJ *pObj = (DRV_USART_OBJ *)&gDrvUsartObj[index];
 DRV_USART_INIT *pInit = (DRV_USART_INIT *)init;

 /* Initialize data for this instance */
 pObj->usartId = pInit->usartId;
 pObj->interruptSourceTx = pInit->interruptSourceTx;
 pObj->interruptSourceRx = pInit->interruptSourceRx;
 pObj->interruptSourceErr = pInit->interruptSourceErr;
 pObj->queueSizeCurrentRead = 0;
 pObj->queueSizeCurrentWrite = 0;
 pObj->queueRead = NULL;
 pObj->queueWrite = NULL;

 /* Initialize USART Hardware */
 PLIB_USART_Disable(pObj->usartId);
 PLIB_USART_HandshakeModeSelect(pObj->usartId, pInit->handshake);
 PLIB_USART_BaudSetAndEnable(pObj->usartId, pInit->brgClock, pInit->baud);
 PLIB_USART_LineControlModeSelect(pObj->usartId, pInit->lineControl);

 /* Clear and enable the interrupts */
 SYS_INT_SourceStatusClear(pObj->interruptSourceTx);
 SYS_INT_SourceStatusClear(pObj->interruptSourceRx);
 SYS_INT_SourceStatusClear(pObj->interruptSourceErr);
 _InterruptSourceEnable(pObj->interruptSourceErr);

 /* Ready! */
 pObj->status = SYS_STATUS_READY;
 PLIB_USART_Enable(pObj->usartId);
 return (SYS_MODULE_OBJ)pObj;
}

The previous dynamic example shows that the driver’s initialization function must capture any initialization data that could be different from one
instance to another and that it must use a pointer (pObj) to the desired instance of its global data object/structure (gDrvUsartObj[index]) and
clear the references that point to access of any global data in the object. It must also clear the reference to the init pointer (cast to pInit) to
access any initialization data, whether or not it is stored in the global data object.

 Note:
The _InterruptSourceEnable function is a locally mapped function that switches implementations depending upon whether or not
the driver was built in Interrupt-driven mode or Polled mode, as shown in Interrupt Safety.

The following equivalent static example shows how a static implementation saves both code and data space.

Example: Static Implementation
void DRV_USART0_Initialize (void)
{
 /* Initialize data for this instance */
 gDrvUsart0Obj.queueSizeCurrentRead = 0;
 gDrvUsart0Obj.queueSizeCurrentWrite = 0;
 gDrvUsart0Obj.queueRead = NULL;
 gDrvUsart0Obj.queueWrite = NULL;

 /* Initialize USART Hardware */
 PLIB_USART_Disable(DRV_USART_ID_IDX0);
 PLIB_USART_HandshakeModeSelect(DRV_USART_ID_IDX0,
 DRV_USART_HANDSHAKE_MODE_IDX0);
 PLIB_USART_BaudSetAndEnable(DRV_USART_ID_IDX0,
 DRV_USART_BRG_CLOCK_IDX0,
 DRV_USART_BAUD_RATE_IDX0);
 PLIB_USART_LineControlModeSelect(DRV_USART_ID_IDX0,
 DRV_USART_LINE_CNTRL_IDX0);

 /* Clear and enable the interrupts */
 SYS_INT_SourceStatusClear(DRV_USART_INT_SRC_TX_IDX0);
 SYS_INT_SourceStatusClear(DRV_USART_INT_SRC_RX_IDX0);
 SYS_INT_SourceStatusClear(DRV_USART_INT_SRC_ERR_IDX0);

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Static Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 703

 _InterruptSourceEnable(DRV_USART_INT_SRC_ERR_IDX0);

 /* Ready! */
 gDrvUsart0Obj.status = SYS_STATUS_READY;
 PLIB_USART_Enable(DRV_USART_ID_IDX0);
}

In the previous static example, the function would be implemented differently for different driver instances (DRV_USART0_Initialize,
DRV_USART1_Initialize, etc.). So, any initialization data that is different from one instance to another can be defined by different configuration
macros (such as DRV_USART_ID_IDX0) and hard-coded directly into the function’s implementation. This reduces code and data size because it
eliminates the need to store these items in the driver’s global data structure instance and it eliminates the need to clear the reference to a pointer
and access a variable when using these values.

And, using a constant instead of a variable greatly reduces the amount of code generated by PLIB functions because PLIB functions are
implemented as C-language inline functions. When a constant is passed to an inline function, the compiler can optimize them by performing
calculations before generating the object code instead of generating object code instructions to do the calculations. This eliminates a significant
amount of object code, especially when each PLIB function would otherwise index to the appropriate SFRs for the instance of the peripheral
passed in as a variable.

 Note:
The mapping functions shown in Static vs. Dynamic shows how the parameters are dropped and the return value is provided.
Refer to this section for an explanation and example of mapping the dynamic driver interface functions to the static implementation
functions.

Creating a static driver implementation requires development of a FreeMarker template. (Note that it does not require any additional Hconfig file
development, since the dynamic and static implementations both utilize the same configuration options.) Creating a static implementation from a
dynamic implementation is primarily a matter of removing the unnecessary code and marking up the dynamic implementation using FreeMarker
syntax to parameterize the driver’s source code and insert the appropriate values where necessary, as shown by the following example.

Example: FreeMarker Code for Static Implementation
<#macro make_drv_usart_initialize_function DRV_INSTANCE>
void DRV_USART${DRV_INSTANCE}_Initialize (void)
{
 /* Initialize data for this instance */
 gDrvUsart${CONFIG_DRV_INSTANCE}Obj.queueSizeCurrentRead = 0;
 gDrvUsart${DRV_INSTANCE}Obj.queueSizeCurrentWrite = 0;
 gDrvUsart${DRV_INSTANCE}Obj.queueRead = NULL;
 gDrvUsart${DRV_INSTANCE}Obj.queueWrite = NULL;

 /* Initialize USART Hardware */
 PLIB_USART_Disable(DRV_USART_ID_IDX${DRV_INSTANCE});
 PLIB_USART_HandshakeModeSelect(DRV_USART_ID_IDX${DRV_INSTANCE},
 DRV_USART_HANDSHAKE_MODE_IDX${DRV_INSTANCE});
 PLIB_USART_BaudSetAndEnable(DRV_USART_ID_IDX${DRV_INSTANCE},
 DRV_USART_BRG_CLOCK_IDX${DRV_INSTANCE},
 DRV_USART_BAUD_RATE_IDX${DRV_INSTANCE});
 PLIB_USART_LineControlModeSelect(DRV_USART_ID_IDX${DRV_INSTANCE},
 DRV_USART_LINE_CNTRL_IDX${DRV_INSTANCE});

 /* Clear and enable the interrupts */
 SYS_INT_SourceStatusClear(DRV_USART_INT_SRC_TX_IDX${DRV_INSTANCE});
 SYS_INT_SourceStatusClear(DRV_USART_INT_SRC_RX_IDX${DRV_INSTANCE});
 SYS_INT_SourceStatusClear(DRV_USART_INT_SRC_ERR_IDX${DRV_INSTANCE});
 _InterruptSourceEnable(DRV_USART_INT_SRC_ERR_IDX${DRV_INSTANCE});

 /* Ready! */
 gDrvUsart${DRV_INSTANCE}Obj.status = SYS_STATUS_READY;
 PLIB_USART_Enable(DRV_USART_ID_IDX${DRV_INSTANCE});
}

</#macro>
<#list index = 0..CONFIG_DRV_USART_INSTANCES_NUMBER>
 <@make_drv_usart_initialize_function DRV_INSTANCE=index/>
</#list>

The previous example defines a FreeMarker macro called make_drv_usart_initialize_function to define the static (instance specific) USART driver
initialization functions. Within that function, it uses a local FreeMarker macro variable (DRV_INSTANCE) to indicate the driver’s instance index. It
places this variable within the function’s source code wherever an instance index number is required. Then, it defines a list that increments from 0
to less than the CONFIG_DRV_USART_INSTANCES_NUMBER value defined by the MHC when the user selected how many USART driver
instances he wanted. From within that list, it calls the macro, passing in the index value iterated by the list, generating as many static
implementations of the USART driver’s initialize function as desired.

The previous examples are simplified to aid understanding. Implementing an entire static driver may become more complicated, requiring some

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Static Implementations

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 704

skill with the FreeMarker language. However, the principles remain the same. All configuration variables defined by the MHC are available to the
FreeMarker code and may be used as needed. Refer to MPLAB Harmony Configurator Developer’s Guide for details on the Hconfig and
FreeMarker languages necessary to develop static driver implementations.

Multiple Client Static Drivers

Describes multiple client static drivers.

Description

Supporting multiple clients also has an affect on how static drivers are implemented, particularly if mapping functions are used (see the Static vs.
Dynamic section for a description of a static implementation). Other than the open function, all client interface functions require the use of an
opened driver. For static implementations, this can be done the same way it is done in a dynamic implementation. The main difference is that the
driver object instance is identified in the driver structure name, so the index parameter is ignored, as shown in the following example.

Example: Static Multiple Client Open Function
DRV_USART_OBJ drvUsart0;
DRV_USART_CLIENT_OBJ drvUsartClient[DRV_USART_CLIENTS_NUMBER];

DRV_HANDLE DRV_USART0_Open(const SYS_MODULE_INDEX index,
 const DRV_IO_INTENT ioIntent)
{
 int i;
 DRV_USART_CLIENT_OBJ pClient = (DRV_USART_CLIENT_OBJ *)DRV_HANDLE_INVALID;

 for (i=0; i < DRV_USART_CLIENTS_NUMBER; i++)
 {
 if (drvUsartClient[i].driver == NULL)
 {
 pClient = &drvUsartClient[i];
 pClient->driver = &drvUsart0;
 break;
 }
 }

 return (DRV_HANDLE)pClient;
}

If multiple static implementations are defined, the static driver’s client API mapping functions can use the driver object pointer in the client object
structure to identify driver instance. The following example shows how this can be done.

Example: Multiple Client Dynamic-to-Static Mapping Function
inline void DRV_USART_BufferAddRead (const DRV_HANDLE handle,
 DRV_USART_BUFFER_HANDLE * const bufferHandle,
 void * buffer, const size_t size)
{
 DRV_USART_CLIENT_OBJ *client = (DRV_USART_CLIENT_OBJ *)handle;

 switch (client->driver)
 {
 case &drvUsart0:
 {
 DRV_USART0_BufferAddRead(handle, bufferHandle, buffer, size);
 break;
 }

 case &drvUsart1:
 {
 DRV_USART1_BufferAddRead(handle, bufferHandle, buffer, size);
 break;
 }

 default:
 /* invalid instance. */
 }

 return;
}

However, as stated in the Static vs. Dynamic section, it normally does not make sense to implement multiple static driver instances for the same
system. (If you need multiple instances of a driver, using a dynamic implementation would be more efficient.) So, if only a single instance of a

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Multiple Client Static Drivers

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 705

static driver is implemented and if static and dynamic driver implementations are never used together in the same system (which they should not
be because nothing is gained), the open function can be simplified by removing the driver object pointer altogether, as shown in the following
example.

Example: Simplified Static Multiple Client Open Function
DRV_USART_OBJ drvUsart0;
DRV_USART_CLIENT_OBJ drvUsartClient[DRV_USART_CLIENTS_NUMBER];

DRV_HANDLE DRV_USART_Open(const SYS_MODULE_INDEX index,
 const DRV_IO_INTENT ioIntent)
{
 int i;
 DRV_USART_CLIENT_OBJ pClient = (DRV_USART_CLIENT_OBJ *)DRV_HANDLE_INVALID;

 for (i=0; i < DRV_USART_CLIENTS_NUMBER; i++)
 {
 if (drvUsartClient[i].driver == NULL)
 {
 pClient = &drvUsartClient[i];
 break;
 }
 }

 return (DRV_HANDLE)pClient;
}

 Note:
If this method is used, some method of marking a client object structure as assigned to a client, like an "in use" Boolean flag, must
be used because you cannot rely on a NULL value for the driver pointer as the indicator.

Also, the mapping function is unnecessary because there is only one mapping. Instead, the client API functions can utilize the exact same names
as the dynamic driver’s client API functions (meaning both cannot be used together in the same system), as shown by the following example.

Example: Simplified Static Client API Function Implementation
void DRV_USART_BufferAddRead (const DRV_HANDLE handle,
 DRV_USART_BUFFER_HANDLE * const bufferHandle,
 void * buffer, const size_t size)
{
 DRV_USART_CLIENT_OBJ *client = (DRV_USART_CLIENT_OBJ *)handle;

 if (drvUsart0.buffer == NULL)
 {
 drvUsart0.buffer = buffer;
 drvUsart0.bufferSize = size;
 bufferHandle = buffer;

 /* Start the data transfer process. */

 }
 else
 {
 *bufferHandle = DRV_USART_BUFFER_HANDLE_INVALID;
 }

 return;
}

Notice that in this example, the client API function does not need to retrieve the driver instance structure pointer from the client object. Since there
is only one driver object structure (drvUsart0), it is always used. No other driver object instance is possible. When used throughout the client
interface routines in a static implementation of the driver, the elimination of repeated cleared pointer references will reduce the size of the
generated object code.

Review and Testing

Describes how to test MPLAB Harmony drivers and references the resources available to help.

Description

The MPLAB Harmony Driver Development Guide (this document) describes how to develop a MPLAB Harmony device driver. To do so, it explains
specific the requirements of a MPLAB Harmony driver, including support for the system and client interfaces as well as key design concepts,
interrupt and thread safety concerns, and support for multiple configurations and implementations. In addition to this guide, the MPLAB Harmony

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Review and Testing

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 706

Compatibility Guide describes general modularity and flexibility guidelines and provides a compatibility checklist worksheet, available in a separate
fillable PDF form in the following documentation folder in the MPAB Harmony installation.

MPLAB Harmony Compatibility Checklist Worksheet Location

<install-dir>/doc/harmony_compatibility_worksheet.pdf

Any MPLAB Harmony driver developed should be reviewed, tested and evaluated against the rules described in this guide and checklist. Providing
a completed copy of this worksheet along with the documentation of any MPLAB Harmony compatible library will help the user to determine the
environments and configuration limits supported by the library.

Additionally, each driver implementation and superset configuration should be thoroughly tested in all supported execution environments (bare
metal polled, bare metal interrupt-driven, RTOS multi-threaded polled, RTOS multi-threaded interrupt-driven) to ensure correct and robust
operation in all supported usages. To facilitate such testing, MPLAB Harmony provides a Test Harness that is a useful tool for developing and
iterating through test in a controlled way that allows easy capturing of failures using MPLAB Harmony debug capabilities. The Test Harness is a
library that is included in the MPLAB Harmony installation.

MPLAB Harmony Test Harness Library Location

<install-dir>/framework/test

Refer to the MPLAB Harmony Test Harness User’s Guide for information on how to utilize the test harness to validate your drivers and libraries.

A good way to provide transparency to the customer is to provide the test applications and test results generated by them with the driver
implementation. If a customer can reproduce the test results, it provides great confidence in your libraries and improves the customer’s
understanding of how the library works and how to use it.

Checklist and Information

Provides a quick reference checklist and important reference information for developing MPLAB Harmony drivers.

Description

At a high-level, the process of developing a MPLAB Harmony device driver is fairly simple. The following checklist describes the basic work flow.
The individual steps are described in detail in other sections in this guide.

MPLAB Harmony Development Checklist

Done Step Description

1 Define (and document) System interface functions.

2 Define (and document) Client interface functions.

2a Define data transfer functions (following common models if appropriate).

2b Define driver-specific functions.

3 Develop Hconfig and FreeMarker template support for initialization, tasks, and other system functions as needed to test and
develop.

4 Develop and test initialize, tasks, and core functions.

4a Start in a polled environment.

4b Update & test for interrupt-driven environment (retest polled).

4c Update & test OS support (retest polled & interrupt-driven).

5 Define (and document) MHC support for static configuration options.

6 Define (and document) optional feature sets and functions (one at a time).

6a Implement & test in all three environments (polled, interrupt-driven, & OS-driven).

6b Define MHC support for optional feature sets.

7 Develop alternate implementations (particularly static/optimized implementations).

When Implementing a MPLAB Harmony driver, adhere to the following folder layout and file/folder naming conventions.

MPLAB Harmony Drier File and Folder Layout Conventions

Path Description

<library> Root folder of the MPLAB Harmony driver library. Contains all library header, source files,
configuration, and template files.

<library>/<library>.h Library interface header file.

<library>/<library>_mapping.h Library interface level (dynamic-to-static) mapping file.

<library>/src Library C-language source code folder.

<library>/src/*.c, *.h Library implementation files and headers.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Checklist and Information

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 707

<library>/config Library configuration folder.

<library>/config/*.h C-language configuration header example (primarily for documentation purposes).

<library>/config/*.hconfig MHC Hconfig files defining all library configuration options.

<library>/config/*.hconfig.ftl MHC Hconfig files that are preprocessed by FreeMarker before being integrated into the Hconfig tree
of MHC.

<library>/templates/*.ftl MHC FreeMarker template files for MHC code generation of static implementations and system
configuration code necessary integrate the library into a MPLAB Harmony system.

Volume IV: MPLAB Harmony Development MPLAB Harmony Driver Development Guide Checklist and Information

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 708

Index

1

12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Examples 215

A

a2dp_avrcp 160

ADC Peripheral Library Examples 213

adc_pot 213

adc_pot_dma 214

adchs_3ch_dma 215

adchs_oversample 217

adchs_pot 218

adchs_sensor 220

adchs_touchsense 221

adcp_cal 223

Adding a New Font File to the Application 452

Additional Bluetooth Resources 104

Applications Help 3

aria_adventure 303

aria_basic_motion 307

aria_benchmark 311

aria_coffee_maker 317

aria_counter 324

aria_external_resources 329

aria_flash 337

aria_image_viewer 344

aria_oven_controller 350

aria_quickstart 354

aria_radial_menu 378

aria_scrolling 385

aria_showcase 391

aria_showcase_reloaded 400

aria_splash_screen 410

aria_touchadc_calibrate 421

aria_video_player 429

aria_weather_forecast 438

Assigning the IDC and XC32 Compilers 605

Atomicity 687

Audio Demonstrations 3

audio_microphone_loopback 3

audio_speaker 653

audio_tone 7

B

basic 162, 487, 489, 496, 497, 499, 503

berkeley_tcp_client 507

berkeley_tcp_server 508

berkeley_udp_client 509

berkeley_udp_relay 511

berkeley_udp_server 512

blank_quickstart 444

ble_rn4871_comm 135

blinky_leds 250

Bluetooth Demonstrations 103

BM64 Driver Demonstrations 104

BM64_a2dp_hfp 104

BM64_ble_comm 109

BM64_bootloader 119

BMX Peripheral Library Examples 224

Bootloader Demonstrations 162

bt_data_voice_control 153

Buffer Queuing 685

Building the Application 6, 12, 21, 26, 31, 35, 42, 48, 56, 63, 69, 75, 81,
86, 93, 100, 106, 111, 121, 135, 141, 146, 153, 160, 162, 168, 170, 171,
172, 174, 179, 186, 192, 193, 195, 197, 198, 203, 206, 207, 208, 209,
214, 216, 217, 219, 220, 221, 223, 225, 226, 229, 235, 236, 238, 239,
240, 241, 243, 244, 246, 247, 249, 250, 251, 252, 254, 255, 257, 258,
259, 260, 262, 263, 265, 267, 274, 278, 280, 281, 282, 284, 285, 286,
288, 290, 292, 294, 297, 299, 301, 304, 308, 313, 320, 326, 333, 341,
346, 352, 368, 380, 389, 394, 403, 415, 426, 432, 441, 447, 450, 465,
469, 472, 475, 477, 480, 487, 488, 489, 490, 491, 493, 496, 497, 498,
500, 502, 503, 504, 507, 508, 509, 511, 512, 513, 516, 517, 519, 523,
524, 525, 526, 527, 537, 540, 542, 545, 550, 552, 555, 564, 568, 571,
577, 580, 585, 588, 606, 612, 613, 622, 629, 631, 632, 635, 636, 638,
641, 642, 644, 645, 646, 647, 651, 652, 654, 655, 656, 657, 659, 660,
661, 662, 666, 667, 668

Byte-by-Byte (Single Client) 683

C

Callback Functions 693

CAN Peripheral Library Examples 225

can_display 228

cdc_basic 655

cdc_com_port_dual 490, 500, 622, 666

cdc_com_port_single 628

cdc_msd 656

cdc_msd_basic 491, 502, 631

cdc_serial_emulator 632

cdc_serial_emulator_msd 635

Checklist and Information 707

Class B Library Demonstrations 170

ClassBDemo 171

Client Interface 680

Close 683

cn_interrupt 251

Command Processor System Service Examples 265

command_appio 265

Common Data Transfer Models 683

Comparator Peripheral Library Examples 234

Configuration and Implementations 696

Configuration Options 699

Configuring the Hardware 6, 13, 21, 26, 31, 36, 42, 48, 57, 63, 70, 75,
82, 86, 94, 100, 107, 112, 122, 136, 142, 146, 154, 161, 163, 169, 170,
171, 173, 174, 180, 187, 192, 194, 196, 198, 199, 203, 206, 207, 209,
210, 214, 215, 216, 217, 219, 220, 222, 223, 225, 226, 230, 235, 237,
238, 239, 241, 242, 244, 245, 246, 248, 249, 250, 251, 253, 254, 256,
257, 258, 259, 261, 262, 264, 266, 267, 275, 278, 281, 282, 283, 284,
285, 286, 289, 291, 293, 295, 297, 299, 301, 302, 305, 309, 314, 321,
326, 334, 341, 346, 353, 369, 381, 389, 394, 404, 416, 427, 432, 442,
447, 451, 466, 470, 473, 476, 477, 481, 487, 488, 490, 491, 492, 493,
497, 498, 499, 500, 501, 502, 504, 505, 507, 509, 510, 511, 513, 514,
516, 517, 519, 523, 525, 526, 527, 528, 537, 540, 543, 546, 551, 552,
556, 565, 568, 572, 578, 581, 585, 589, 607, 613, 614, 623, 629, 632,
633, 635, 637, 639, 641, 643, 644, 645, 647, 648, 651, 652, 654, 655,
657, 658, 659, 661, 662, 663, 666, 667, 668

USB Device Demonstration (hid_msd_basic) 644

Configuring the MHC 532

Console System Service Examples 266

Crypto Demonstrations 172

CVREF Peripheral Library Examples 236

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 709

D

Data Demonstrations 135

Data EEPROM Driver Demonstration 191

data_basic 140

data_temp_sens_rgb 144

DDR Peripheral Library Examples 237

Debug System Service Examples 274

debug_uart 274

debug_usb_cdc_2 277

Demonstration Application Configurations 619

Demonstration Functionality 103

Demonstrations 3, 103, 162, 171, 172, 192, 193, 195, 197, 207, 208,
213, 215, 223, 225, 226, 235, 236, 237, 239, 240, 241, 243, 244, 246,
247, 248, 249, 252, 253, 255, 257, 260, 262, 263, 265, 267, 274, 280,
283, 286, 288, 303, 472, 506, 622

ADC Peripheral Library 213

ADCHS Peripheral Library 215

Audio Demonstrations (audio_microphone_loopback) 3

BMX Peripheral Library 225

Bootloader 162

CAN Library 226

Class B Library 171

Command Processor System Service Library 265

Comparator Peripheral Library 235

Console System Service Library 267

Crypto Library 172

CVREF Peripheral Library 236

Data EEPROM Driver 192

DDR Peripheral Library 237

Debug System Service Library 274

Device Control System Service Library 280

DMA Peripheral Library 239

DMA System Service Library 283

EBI Peripheral Library 240

File System 288

Graphics Library 303

I2C Driver 193

I2C Peripheral Library 241

Input Capture Peripheral Library 243

Motor Control 472

NVM Driver 195

NVM Peripheral Library 244

OSC Peripheral Library 247

Output Compare Peripheral Library 246

PIC32 Bluetooth Stack Library 135

Pipelined ADC Peripheral Library 223

PMP Peripheral Library 248

Ports Peripheral Library 249

Power Peripheral Library 252

Reset Peripheral Library 253

RTCC System Service Library 286

SPI Driver 197

SPI Flash Driver 207

SPI Peripheral Library 255

SQI Peripheral Library 257

TCPIP 506

TMR Peripheral Library 260

USART Driver 208

USART Peripheral Library 262

USB 622

WDT Peripheral Library 263

devcon_cache_clean 280

devcon_cache_invalidate 281

devcon_sys_config_perf 282

Device 622

Device Control System Service Examples 279

DMA Peripheral Library Examples 238

DMA System Service Examples 283

dma_crc 283

dma_led_pattern 239

dma_mem2mem 285

Driver Client Interface Functions 681

Driver Demonstrations 191

Driver-Client Usage Model 681

Dual Role 668

dualshunt_pll_foc_mclv2_ext_opamp 472

dualshunt_pll_foc_mclv2_int_opamp 475

E

EBI Peripheral Library Examples 240

ecc_asymmetric 177

ecc_symmetric 185

echo_send 226

eeprom_read_write 192

emwin_media_player 19

emwin_multilanguage 448

emwin_quickstart 463

emwin_showcase 468

encrypt_decrypt 172

Examples 213

Express Logic ThreadX Demonstrations 487

F

File System Demonstrations 287

File System Read/Write 684

Flash/NVM Peripheral Library Examples 244

flash_modify 244

flash_read_dma_mode 257

flash_read_pio_mode 258

flash_read_xip_mode 259

FreeRTOS Demonstrations 489

G

General Guidelines 686

Graphics Demonstrations 302

H

hid_basic 636

hid_basic_keyboard 657

hid_basic_mouse_usart 659

hid_joystick 638

hid_keyboard 641

hid_mouse 642

hid_msd_basic 644

Host 653

host_msd_device_hid 668

hub_cdc_hid 660

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 710

hub_msd 661

I

I2C Driver Demonstrations 193

I2C Peripheral Library Examples 241

i2c_interrupt 241

i2c_rtcc 193

ic_basic 243

Implementing Multiple Client Drivers 701

Input Capture Peripheral Library Examples 243

integrated_pfc_foc_mchv3_int_opamp 480

integrated_pfc_foc_mhcv3_ext_opamp 477

Interrupt and Thread Safety 687

Interrupt Safety 688

Introduction 3, 103, 162, 170, 172, 191, 193, 195, 197, 207, 208, 213,
215, 223, 224, 225, 235, 236, 237, 238, 240, 241, 243, 244, 246, 247,
248, 249, 252, 253, 255, 256, 260, 261, 263, 265, 266, 274, 280, 283,
286, 287, 302, 472, 486, 505, 615, 671

Crypto Library Demonstrations 172

Peripheral Library Example Applications 213

PIC32 Bluetooth Stack Library Demonstrations 103

USART Driver Demonstration 208

L

large_hash 173

LiveUpdate_App 168

LiveUpdate_Switcher 169

M

mac_audio_hi_res 23

mem_partition 225

Micrium uC/OS-III Demonstrations 497

Micrium uC_OS_II Demonstrations 496

Module Deinitialize 678

Module Initialization 673

Module Reinitialize 679

Module Status 676

Module Tasks 675

Motor Control Demonstrations 471

MPLAB Harmony Driver Development Guide 671

MPLAB Harmony WINC1500 Socket Examples 604

msd_basic 645, 662

msd_dual 667

msd_fs_spiflash 646

msd_multiple_luns 647

msd_sdcard 650

multi_instance_console 267

Multiple Client Static Drivers 705

Multiple Implementations 700

Multiple USB Controller 666

my_first_app 213

N

NVM Driver Demonstration 195

nvm_fat_single_disk 288

nvm_mpfs_single_disk 290

nvm_read_write 195

nvm_sdcard_fat_mpfs_multi_disk 292

nvm_sdcard_fat_multi_disk 294

O

oc_pwm 246

Open 682

OPENRTOS Demonstrations 499

Optional Feature Sets 697

Organization of WINC1500 Socket Examples 603

osc_config 247

Oscillator Peripheral Library Examples 247

Output Compare Peripheral Library Examples 246

P

Peripheral Library Examples 213

pic32_eth_web_server 539

pic32_eth_wifi_web_server 542

pic32_wifi_web_server 545

Pipelined ADC (ADCP) Peripheral Library Examples 223

PMP Peripheral Library Examples 248

pmp_lcd 248

Ports Peripheral Library Examples 249

Power Peripheral Library Examples 252

Premium Demonstrations 159

Prerequisites 604

R

real_time_fft 29

Reset Peripheral Library Examples 253

reset_handler 254

Review and Testing 706

RTCC System Service Examples 286

rtcc_timestamps 286

RTOS Demonstrations 486

RTOS Thread Safety 690

Running the Application 101

Running the Demonstration 7, 14, 22, 27, 32, 40, 43, 51, 58, 63, 71, 76,
82, 87, 95, 108, 113, 122, 137, 142, 146, 154, 161, 164, 169, 170, 172,
173, 176, 180, 187, 192, 194, 196, 198, 202, 205, 206, 207, 209, 212,
214, 215, 216, 218, 219, 221, 222, 224, 225, 227, 233, 235, 237, 238,
240, 241, 242, 244, 245, 247, 248, 249, 251, 252, 253, 254, 256, 258,
259, 261, 263, 264, 266, 268, 275, 278, 281, 282, 283, 284, 285, 287,
289, 291, 293, 295, 298, 300, 301, 302, 305, 309, 315, 321, 327, 335,
343, 347, 353, 377, 382, 390, 395, 405, 418, 427, 435, 443, 448, 462,
467, 470, 473, 476, 478, 481, 488, 490, 491, 492, 493, 497, 498, 499,
500, 501, 502, 504, 505, 508, 509, 510, 512, 513, 514, 516, 518, 520,
524, 525, 526, 527, 535, 538, 540, 544, 549, 551, 553, 561, 566, 569,
572, 578, 581, 586, 590, 611, 613, 614, 625, 630, 632, 633, 636, 637,
639, 642, 643, 644, 646, 647, 650, 651, 653, 654, 655, 657, 658, 660,
661, 662, 665, 666, 667, 668

Audio Demonstrations (audio_microphone_loopback) 7

Motor Control Demonstration (encrypt_decrypt) 473

USB Device Demonstration (hid_keyboard) 641

USB Device Demonstrations (audio_speaker) 654

USB Device Demonstrations (hid_keyboard) 642

Running the Demonstration Using Various Configurations 595

S

sdcard_fat_single_disk 296

sdcard_msd_fat_multi_disk 299

sdcard_player 34

sdcard_usb_audio 40

SEGGER embOS Demonstrations 503

Selecting the Decoders Using MHC 50

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 711

serial_eeprom 197

simple_comparator 235

sleep_mode 252

snmpv3_nvm_mpfs 513

snmpv3_sdcard_fatfs 515

SPI Driver Demonstrations 196

SPI Flash Driver Demonstrations 206

SPI Peripheral Library Examples 255

spi_loopback 198, 255

spi_multislave 203

spi_self_loopback 205

SQI Peripheral Library Examples 256

sqi_fat 300

sram_read_write 240

sst25_fat 301

sst25vf020b 207

Static Implementations 702

Synchronization 696

System Interface 671

System Service Library Examples 265

T

TCP/IP Demonstrations 505

tcpip_client_server 493

tcpip_tcp_client 517

tcpip_tcp_client_server 518

tcpip_tcp_server 523

tcpip_udp_client 524

tcpip_udp_client_server 525

tcpip_udp_server 526

Timer Peripheral Library Examples 260

timer3_interrupt 260

triangle_wave 236

U

uart_basic 262

universal_audio_decoders 45

universal_audio_encoders 54

USART Driver Demonstrations 208

USART Peripheral Library Examples 261

usart_echo 208

usart_loopback 209

usb 488, 498, 504

USB Demonstrations 615

USB Device Stack Component Memory Requirements 617

USB Device Stack Demonstration Application Program and Data
Memory Requirements 615

USB HID Host Keyboard and Mouse Tests 618

USB MSD Host USB Pen Drive Tests 617

usb_headset 59

usb_host_headset 66

usb_microphone 72

usb_microphone_multirate 78

usb_smart_speaker 85

usb_speaker 90

usb_speaker_hi_res 97

Using This Document 671

V

vendor 651

Volume I: Getting Started With MPLAB Harmony Libraries and
Applications 2

Volume IV: MPLAB Harmony Development 670

W

WDT Peripheral Library examples 263

wdt_timeout 263

web_net_server_nvm_mpfs 527

web_photoframe_demo 536

web_server_nvm_mpfs 539

web_server_sdcard_fatfs 550

Wi-Fi Console Commands 506

wifi_ap_demo 552

wifi_easy_configuration 555

wifi_rgb_easy_configuration 564

wifi_sta_demo 568

wifi_sta_http_demo 577

wifi_sta_ota_demo 580

wifi_sta_wolfssl_demo 585

wifi_staap_demo 571

wifi_wilc1000 587

wifi_winc1500_socket 602

WINC1500 Socket Examples Guide 603

wolfssl_tcp_client 613

wolfssl_tcp_server 612

write_read_ddr2 237

X

X2C-Scope Plug-in 481

Index

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 712

	MPLAB Harmony Help
	Volume I: Getting Started With MPLAB Harmony Libraries and Applications
	Applications Help
	Audio Demonstrations
	Introduction
	Demonstrations
	audio_microphone_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	audio_tone
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	emwin_media_player
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	mac_audio_hi_res
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	real_time_fft
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sdcard_player
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sdcard_usb_audio
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	universal_audio_decoders
	Building the Application
	Configuring the Hardware
	Selecting the Decoders Using MHC
	Running the Demonstration

	universal_audio_encoders
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_headset
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_host_headset
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_microphone
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_microphone_multirate
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_smart_speaker
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_speaker
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb_speaker_hi_res
	Building the Application
	Configuring the Hardware
	Running the Application

	Bluetooth Demonstrations
	Introduction
	Demonstrations
	Demonstration Functionality
	Additional Bluetooth Resources
	BM64 Driver Demonstrations
	BM64_a2dp_hfp
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	BM64_ble_comm
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	BM64_bootloader
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Data Demonstrations
	ble_rn4871_comm
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	data_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	data_temp_sens_rgb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	bt_data_voice_control
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Premium Demonstrations
	a2dp_avrcp
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Bootloader Demonstrations
	Introduction
	Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	LiveUpdate_App
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	LiveUpdate_Switcher
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Class B Library Demonstrations
	Introduction
	Demonstrations
	ClassBDemo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Crypto Demonstrations
	Introduction
	Demonstrations
	encrypt_decrypt
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	large_hash
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	ecc_asymmetric
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	ecc_symmetric
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Driver Demonstrations
	Data EEPROM Driver Demonstration
	Introduction
	Demonstrations
	eeprom_read_write
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	I2C Driver Demonstrations
	Introduction
	Demonstrations
	i2c_rtcc
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	NVM Driver Demonstration
	Introduction
	Demonstrations
	nvm_read_write
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SPI Driver Demonstrations
	Introduction
	Demonstrations
	serial_eeprom
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	spi_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	spi_multislave
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	spi_self_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SPI Flash Driver Demonstrations
	Introduction
	Demonstrations
	sst25vf020b
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	USART Driver Demonstrations
	Introduction
	Demonstrations
	usart_echo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usart_loopback
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Examples
	my_first_app
	Peripheral Library Examples
	Introduction
	ADC Peripheral Library Examples
	Introduction
	Demonstrations
	adc_pot
	adc_pot_dma

	12-bit High-Speed SAR ADC (ADCHS) Peripheral Library Examples
	Introduction
	Demonstrations
	adchs_3ch_dma
	adchs_oversample
	adchs_pot
	adchs_sensor
	adchs_touchsense

	Pipelined ADC (ADCP) Peripheral Library Examples
	Introduction
	Demonstrations
	adcp_cal

	BMX Peripheral Library Examples
	Introduction
	Demonstrations
	mem_partition

	CAN Peripheral Library Examples
	Introduction
	Demonstrations
	echo_send
	can_display

	Comparator Peripheral Library Examples
	Introduction
	Demonstrations
	simple_comparator

	CVREF Peripheral Library Examples
	Introduction
	Demonstrations
	triangle_wave

	DDR Peripheral Library Examples
	Introduction
	Demonstrations
	write_read_ddr2

	DMA Peripheral Library Examples
	Introduction
	Demonstrations
	dma_led_pattern

	EBI Peripheral Library Examples
	Introduction
	Demonstrations
	sram_read_write

	I2C Peripheral Library Examples
	Introduction
	Demonstrations
	i2c_interrupt

	Input Capture Peripheral Library Examples
	Introduction
	Demonstrations
	ic_basic

	Flash/NVM Peripheral Library Examples
	Introduction
	Demonstrations
	flash_modify

	Output Compare Peripheral Library Examples
	Introduction
	Demonstrations
	oc_pwm

	Oscillator Peripheral Library Examples
	Introduction
	Demonstrations
	osc_config

	PMP Peripheral Library Examples
	Introduction
	Demonstrations
	pmp_lcd

	Ports Peripheral Library Examples
	Introduction
	Demonstrations
	blinky_leds
	cn_interrupt

	Power Peripheral Library Examples
	Introduction
	Demonstrations
	sleep_mode

	Reset Peripheral Library Examples
	Introduction
	Demonstrations
	reset_handler

	SPI Peripheral Library Examples
	Introduction
	Demonstrations
	spi_loopback

	SQI Peripheral Library Examples
	Introduction
	Demonstrations
	flash_read_dma_mode
	flash_read_pio_mode
	flash_read_xip_mode

	Timer Peripheral Library Examples
	Introduction
	Demonstrations
	timer3_interrupt

	USART Peripheral Library Examples
	Introduction
	Demonstrations
	uart_basic

	WDT Peripheral Library examples
	Introduction
	Demonstrations
	wdt_timeout

	System Service Library Examples
	Introduction
	Command Processor System Service Examples
	Introduction
	Demonstrations
	command_appio

	Console System Service Examples
	Introduction
	Demonstrations
	multi_instance_console

	Debug System Service Examples
	Introduction
	Demonstrations
	debug_uart
	debug_usb_cdc_2

	Device Control System Service Examples
	Introduction
	Demonstrations
	devcon_cache_clean
	devcon_cache_invalidate
	devcon_sys_config_perf

	DMA System Service Examples
	Introduction
	Demonstrations
	dma_crc
	dma_mem2mem

	RTCC System Service Examples
	Introduction
	Demonstrations
	rtcc_timestamps

	File System Demonstrations
	Introduction
	Demonstrations
	nvm_fat_single_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	nvm_mpfs_single_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	nvm_sdcard_fat_mpfs_multi_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	nvm_sdcard_fat_multi_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sdcard_fat_single_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sdcard_msd_fat_multi_disk
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sqi_fat
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	sst25_fat
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Graphics Demonstrations
	Introduction
	Demonstrations
	aria_adventure
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_basic_motion
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_benchmark
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_coffee_maker
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_counter
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_external_resources
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_flash
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_image_viewer
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_oven_controller
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_quickstart
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_radial_menu
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_scrolling
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_showcase
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_showcase_reloaded
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_splash_screen
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_touchadc_calibrate
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_video_player
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	aria_weather_forecast
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	blank_quickstart
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	emwin_multilanguage
	Building the Application
	Configuring the Hardware
	Adding a New Font File to the Application
	Running the Demonstration

	emwin_quickstart
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	emwin_showcase
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Motor Control Demonstrations
	Introduction
	Demonstrations
	dualshunt_pll_foc_mclv2_ext_opamp
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	dualshunt_pll_foc_mclv2_int_opamp
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	integrated_pfc_foc_mhcv3_ext_opamp
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	integrated_pfc_foc_mchv3_int_opamp
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	X2C-Scope Plug-in

	RTOS Demonstrations
	Introduction
	Express Logic ThreadX Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	FreeRTOS Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_com_port_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_client_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Micrium uC_OS_II Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Micrium uC/OS-III Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	OPENRTOS Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_com_port_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	SEGGER embOS Demonstrations
	basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	usb
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	TCP/IP Demonstrations
	Introduction
	Wi-Fi Console Commands
	Demonstrations
	berkeley_tcp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_tcp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_udp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_udp_relay
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	berkeley_udp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	snmpv3_nvm_mpfs
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	snmpv3_sdcard_fatfs
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_tcp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_tcp_client_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_tcp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_udp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_udp_client_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	tcpip_udp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	web_net_server_nvm_mpfs
	Building the Application
	Configuring the Hardware
	Configuring the MHC
	Running the Demonstration

	web_photoframe_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	web_server_nvm_mpfs
	pic32_eth_web_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	pic32_eth_wifi_web_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	pic32_wifi_web_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	web_server_sdcard_fatfs
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_ap_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_easy_configuration
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_rgb_easy_configuration
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_sta_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_staap_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_sta_http_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_sta_ota_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_sta_wolfssl_demo
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wifi_wilc1000
	Building the Application
	Configuring the Hardware
	Running the Demonstration
	Running the Demonstration Using Various Configurations

	wifi_winc1500_socket
	WINC1500 Socket Examples Guide
	Organization of WINC1500 Socket Examples
	MPLAB Harmony WINC1500 Socket Examples
	Prerequisites
	Assigning the IDC and XC32 Compilers

	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wolfssl_tcp_server
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	wolfssl_tcp_client
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	USB Demonstrations
	Introduction
	USB Device Stack Demonstration Application Program and Data Memory Requirements
	USB Device Stack Component Memory Requirements
	USB MSD Host USB Pen Drive Tests
	USB HID Host Keyboard and Mouse Tests
	Demonstration Application Configurations
	Demonstrations
	Device
	cdc_com_port_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_com_port_single
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_serial_emulator
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_serial_emulator_msd
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_joystick
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_keyboard
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_mouse
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_fs_spiflash
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_multiple_luns
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_sdcard
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	vendor
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Host
	audio_speaker
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	cdc_msd
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_basic_keyboard
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hid_basic_mouse_usart
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hub_cdc_hid
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	hub_msd
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_basic
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Multiple USB Controller
	cdc_com_port_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	msd_dual
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Dual Role
	host_msd_device_hid
	Building the Application
	Configuring the Hardware
	Running the Demonstration

	Volume IV: MPLAB Harmony Development
	MPLAB Harmony Driver Development Guide
	Introduction
	Using This Document
	System Interface
	Module Initialization
	Module Tasks
	Module Status
	Module Deinitialize
	Module Reinitialize

	Client Interface
	Driver-Client Usage Model
	Driver Client Interface Functions
	Open
	Close
	Common Data Transfer Models
	Byte-by-Byte (Single Client)
	File System Read/Write
	Buffer Queuing

	General Guidelines

	Interrupt and Thread Safety
	Atomicity
	Interrupt Safety
	RTOS Thread Safety
	Callback Functions
	Synchronization

	Configuration and Implementations
	Optional Feature Sets
	Configuration Options
	Multiple Implementations

	Implementing Multiple Client Drivers
	Static Implementations
	Multiple Client Static Drivers
	Review and Testing
	Checklist and Information

	Index

