c\ MICROCHIP

Creating Your First Project

MPLAB Harmony Integrated Software Framework

© 2013-2018 Microchip Technology Inc. All rights reserved.

Volume I: Getting Started With MPLAB Harmony

Volume I: Getting Started With MPLAB Harmony Libraries and Applications

This volume introduces the MPLAB® Harmony Integrated Software Framework.

Description
0 MPLAB Harmony is a layered framework of modular libraries that provide flexible and interoperable software "building
MPLAB blocks" for developing embedded PIC32 applications. MPLAB Harmony is also part of a broad and expandable

e —— ecosystem, providing demonstration applications, third-party offerings, and convenient development tools, such as the
HARMONY \pLAB Harmony Configurator (MHC), which integrate with the MPLAB X IDE and MPLAB XC32 language tools.

-~

Legal Notices

Please review the Software License Agreement prior to using MPLAB Harmony. It is the responsibility of the end-user to know and understand the
software license agreement terms regarding the Microchip and third-party software that is provided in this installation. A copy of the agreement is
available in the <i nst al | - di r >/ doc folder of your MPLAB Harmony installation.

The OPENRTOS® demonstrations provided in MPLAB Harmony use the OPENRTOS evaluation license, which is meant for demonstration
purposes only. Customers desiring development and production on OPENRTOS must procure a suitable license. Please refer to one of the
following documents, which are located in the <i nstal | -di r>/t hi rd_party/rtos/ OPENRTOS/ Docurnent s folder of your MPLAB Harmony
installation, for information on obtaining an evaluation license for your device:

e penRTCS dick Thru Eval License Pl C32Mxxx. pdf

e penRTCS dick Thru Eval License Pl C32MZxx. pdf

u Throughout this documentation, occurrences of <i nst al | - di r > refer to the default MPLAB Harmony installation path:
TIP! e Windows: C: / mi cr ochi p/ har nony/ <ver si on>
e Mac OS/Linux: ~/ mi crochi p/ har mony/ <ver si on>

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part I: Creating Your First MPLAB Harmony

Creating Your First Project

This tutorial guides you through the process of using the MPLAB Harmony Configurator (MHC) and MPLAB Harmony libraries to develop your first
MPLAB Harmony project.

Part I: Creating Your First MPLAB Harmony Application in MHC

This section provides information on creating your first project in MPLAB Harmony.

Overview
Lists the basic steps necessary to create a MPLAB Harmony application using the MHC.

Description

MPLAB Harmony provides a convenient MPLAB X IDE plug-in configuration utility, the MPLAB Harmony Configurator (MHC), which you can use
to easily create MPLAB Harmony-based projects. This tutorial will show you how to use the MHC to quickly create your first project. It also shows
how to create a simple "heartbeat” LED application that flashes an LED. The project created can then serve as a test bed for understanding
additional features of MPLAB Harmony, including error handling, system console, and debugging services, and using MPLAB Harmony
Middleware and Drivers. You can also reuse the heartbeat LED application in future projects as a simple indicator of system health.

Getting Started
Provides information on getting started with creating your first project.

Description

Before beginning this tutorial, ensure that you have installed the MPLAB X IDE and necessary language tools as described in Volume I: Getting
Started With MPLAB Harmony > Prerequisites. In addition, ensure that you have installed MPLAB Harmony on your hard drive and that you have
the correct MHC plug-in installed in the MPLAB X IDE.

You may want to check out your development board by first loading and running a MPLAB Harmony example that uses your board. Follow the
instructions in Volume I: Getting Started With MPLAB Harmony > Applications Help > Examples for the demonstration you chose. Set up the board
as detailed in the related User’s Guide.

The example project in this tutorial can be used with any of the following boards:

¢ PIC32MZ Embedded Connectivity with Floating Point Unit (EF) Starter Kit (DM320007).

* PIC32 USB Starter Kit 11l (DM320003-3)

* Explorer 16 Development Board (DM240001-2) with PIC32MX795F512L PIM (MA320003)

The tutorial steps are equally valid on any other development board, but may be slightly different. In the event you do not have any of these
boards, refer to Volume Il: Supported Hardware > Supported Development Boards for a list of available development boards that you could use to
complete this tutorial. If you are using some other development board, you will need to know what processor is on the board to select the correct
Board Support Package.

Finally, this tutorial assumes that you have some familiarity with the following:
« MPLAB X IDE development and debugging fundamentals

* Clanguage programming

¢ PIC32 product family and supported development boards

What You Will Learn

* How to set up your hardware

* How to create a new MPLAB Harmony project from within MPLAB X IDE
* How to use System Services, in this case Timer System Services

* How to use the Board Support Package (BSP) to toggle an LED

* How to add new application states to the application task loop

* How to run and build your project

Tutorial Steps

Describes the necessary steps to create your project.

Step 1: Setting Up Your Hardware
Provides information for setting up your hardware.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 3

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part I: Creating Your First MPLAB Harmony

Description

PIC32MZ Embedded Connectivity (EF) Starter Kit

Connect the "USB Debug" port on the starter kit board to a USB port on your PC using a Mini-B to Type-A USB cable. See PIC32MZ Embedded
Connectivity with Floating Point Unit (EF) Starter Kit for additional information on this hardware.

PIC32 USB Starter Kit Il

Connect the debug port on the upper left side of the board to your PIC using a Mini-B to Type-A USB cable. Refer to the PIC32 USB Starter Kit |1l
for additional information on this hardware.

Explorer 16 Development Board with the PIC32MX795F512L Plug-in Module (PIM)

Mount the PIC32MX795F512L PIM to PIM socket. Set switch S2 to PIM. Power the board with 9V to 15V DC using the J12 connector. Attach a
REAL ICE In-circuit Emulator to the RJ12 jack on the board.

Other Boards

Consult the Information Sheet or User's Guide for your hardware. Refer to Volume II: Supported Hardware > Supported Development Boards for
the list of hardware supported by MPLAB Harmony.

Step 2: Create a New MPLAB X IDE Project

Provides the required steps to create a new MPLAB X IDE project.

Description

Prior to starting this tutorial, please ensure that the software requirements are met, as described in Volume |: Getting Started With
Note: MPLAB Harmony >Prerequisites.

1. Start MPLAB X IDE and select File > New Project. The New Project dialog appears.

2. In the New Project dialog, ensure that Microchip Embedded is selected, and that the project type is 32-bit MPLAB Harmony Project, and then

click Next.

If the option “32-Bit MPLAB Harmony Project” is not visible, you need to stop and download/install MPLAB Harmony before
Note: continuing with this tutorial.

Choose Project
Q, Filter:
Categories: Projects:
+~|Z) Microchip Embedded @ 32-bit MPLAB Harmony Project
i-[3) Other Embedded (& Standalone Project
@-0) Samples (& Existing MPLAB IDE v8 Project
@ Prebuilt (Hex, Loadable Image) Project
(G4 User Makefile Project
(&4 Library Project
Description:
MPLAB® Harmony Project Wizard
< Back Finish Cancel Help

4. In the updated New Project dialog, make the following changes:

« Harmony Path: Ensure that the path you enter is the path to your installation of MPLAB Harmony
« Project Name: Enter heartbeat (all lowercase)

« Device Family: Select the device family that includes your board’s processor.
« For the PIC32MZ EF Starter Kit board, select PIC32MZ

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part I: Creating Your First MPLAB Harmony

« For the PIC32 USB Starter Kit Il and the Explorer 16 Development Board with PIC32MX795F512L PIM, select PIC32MX

¢ Target Board: Select the board you are using (alternately, you can choose the Target Device first, and then look through a smaller list of
Target Boards):

« For the PIC32MZ EF Starter Kit board, select PIC32MZ (EF) Starter Kit. You will have to scroll down the list to find this board.
« For the PIC32 USB Starter Kit I, select PIC32MX USB Starter Kit 111

« For the Explorer 16 Development Board with PIC32MX795F512L Plug In Module, select PIC32MX795F512L PIM w/Explorer 16
Development Board.

5. The New Project dialog should appear, as follows. Descriptions of each field follow the image.

Name and Location

Harmony Path: 1 |C:\microchip\harmony\v2.04

2 C:\microchip\harmony\v2.04\apps

Project Location:
Project Name: 3 heartbeat|
e 4 |c:\microchip\harmony\v2.04\apps heartbeat\firmware \reartbeat. X

Configuration Name: 5 |default

Device Family: 6 PIC32MZ v Target Device: 7 PIC32MZ2048EFM144 v Help

Target Board: 8 |PIC32M7 (EF) Starter Kit o Help

: The path to your installation of MPLAB Harmony.
: The location of your MPLAB project.
: The name of the MPLAB project (the name must be all lowercase characters).

: The path to the MPLAB project file.

: The selected device family (PIC32MZ or PIC32MX).
: The selected target device.

: The selected target board (PIC32MZ EF Starter Kit, PIC32MZ USB Starter Kit Ill, or PIC32MX795F5123L with the Explorer 16 Development

1
2
3
4
5: The MPLAB project configuration name.
6
7
8
Board).

6. Click Finish when done. A new empty project named heartbeat will be created in MPLAB X IDE, which opens the MPLAB Harmony
Configurator (MHC) plug-in.

The selected Board Support Package (BSP) assigns device pins to various board functions and sets up the device’s clock tree
Note: based on the board’s clock source.

You can review the pin assignments using the Pin Diagram or Pin Settings tabs in MHC. The Clock Diagram tab shows the board and application
clock setup.

StartPage x |'# MPLAB X Store x| MPLAB® Harmony Configurator® x
B B |20 | %

Options® Clock Diagram X PinDiagram X Pin Settings X

MPLAB Harmony & Application Configuration
+-Application Configuration

#)-Harmony Framework Configuration
+-BSP Configuration

#)-Third Party Libraries

#-Device & Project Configuration

Step 3: Configure MPLAB Harmony and the Application

Describes how to configure MPLAB Harmony and the application.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 5

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part I: Creating Your First MPLAB Harmony

Description

Within the MPLAB Harmony Configurator window, change the Application Name from “app” to “heartbeat”. Be sure to make the new application
name all lowercase. The name is reused in source code for function and data type definitions and using lowercase will stay consistent with the
naming conventions used in MPLAB Harmony code.

StartPage 8| MPLAB® Harmony Configurator™ se|
N-EDIE =i =0k

Options™ [Clod(Diagram x IPin Diagram X IPin Settings X

MPLAB Harmony & Application Configuration
[=-Application Configuration
+-Number of Applications |1
[=+-Application 0 Configuration
Use Application Configuration?
i--Application Name heartbeatI
Application name must be valid CHanguage identifiers and should be short and lowercase.

[] Generate Application Code For Selected Harmony Components

Step 4: Generate the Configured Source Code
Describes how to generate the configured source code.
Description
1. In MHC, click Generate Code to generate the application’s code for the first time.

‘ StartPage x [‘# MPLAB X Store x ‘ MPLAB® Harmony Configurator® x L

O =
| H s e 4

2. In the Modified Configuration dialog, click Save to save the project’s configuration. The Generate Project dialog appears.

2. Modified Configuration

Current configuration has been modified. Do you want to save it before file generation?

C:\gfxdev\apps'\Heartbeat\firmware\src\system_config\default\default.mhc

Don't Save] [Sav%_] [

3. Next, in the Generate Project dialog, click Generate.

2 Generate Project X
Merging Strategy
Generated code merging strategy: | Prompt Merge For All User Changes v

Description: The user will always be prompted with a merge window for all generated files that

contain user modifications.

Create a backup of the current project state (recommended)
Enable recommended compiler optimizations (if not set)

Copy framework files to local configuration directory.

Cancel

At this point, the project’s initial software has been configured. Let's examine the software just created in the Projects panel of MPLAB X IDE, by
expanding the Header Files and Source Files folders. Note the icons used in this image of the project’s organization make it seem like the files of
the project are organized this way. Actually, this is a virtual organization of these files, not an actual one.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 6

Volume I: Getting Started With MPLAB Harmony

Creating Your First Project

Projects XI Files [Classes l

= (Egheartbeat

(g8 Header Files

2@ app
@ heartbeat.h
E}» system_config
Ev@ default
@ bse
E framework
B system_config.h
H - system_definitions.h
) framework

[}ﬁ Important Files
G-({F Linker Files
(g Source Files

2-@ app

@ heartbeat.c

@ main.c

B system_config

Ev@ default

@ bse
E framework
; @ system_exceptions.c
E] system_init.c
i @ system_interrupt.c
E] system_tasks.c

If you click the Files tab you will see the actual organization of these files on your drive.

Projects | Files XI Classes ‘

[
£

= \[jaheartbeat - C:\Users\C11\harmony'sc
-2 gsystem_config

- D gdefault
G- Dgbsp
- [gframework
- %] configuration.xml
- [B) default.mhc
; fE] system_config.h
o E] system_definitions.h
B system_exceptions.c
- E] system_init.c
@ system_interrupt.c
- E] system_tasks.c
@] heartbeat.c
fE“] heartbeat.h

@ main.c

=-[D)gheartbeat

i) debug

- \[fjanbproject

E] Makefile

Step 5: Use a Delay Timer to Toggle an LED on the Target Board

Describes how to use a delay timer to toggle an LED.

Description

Part I: Creating Your First MPLAB Harmony

In this project we will use a delay timer to toggle an LED on the board using a delay of 500 milliseconds and LED1 on the PIC32MZ EF Starter Kit.

1. Double click syst em confi g. h to open the file in an editor.
2. Add the following code to the end of the file, immediately after the line / *** Application |Instance 0 Configuration ***/.

© 2013-2017 Microchip Technology Inc.

MPLAB Harmony v2.06

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part I: Creating Your First MPLAB Harmony

Projects I Files | Services
=-(&J heartbeat

=] E] Header Files
= E app
- [® heartbeat.h
= Gi] system_config

-8 default

[ﬁ bsp

[@ framework

@
E] system_‘Befinitions.h

ﬁ framework

/1 CUSTOM CODE - DO NOT DELETE

#def i ne HEARTBEAT_LED BSP_LED 1

#def i ne HEARTBEAT_DELAY 500 // nilliseconds
/1 END OF CUSTOM CODE

2. Inthe system confi g. h file within the editor, hold down the CTRL key and click BSP_LED_1. The editor will locate where this token is
defined in the Board Support Package bsp. h file for the PIC32MZ EF Starter Kit.

...torlv E] system_config.h x ‘ 'E] bsp.h x

Source | History | B-EB-qS5 S
154
155 Remarks:
156 None.

BSP, LED 1 157| | =

505{ } mseconds 158 typedef enum
159| [¢
160 BSP LED 1 = O,
161 BSP_LED 2 = 1,
162 BSP_LED 3 = 2
163| - } BSP_LED;

Step 6: Add the Timer System Service to Your Project
Describes how to add the Timer System Service to your project.

Description

Next, the Timer System Service needs to be selected in MHC.
1. Select the MHC tab, expand Harmony Framework Configuration > System Services > Timer, and then select Use Timer System Service?

(J-Timer
= Use Timer System Service?
Power State |SYS_MODULE_POWER_RUN_FULL
Timer Driver Instance to Use DRV_TMR_INDEX_0
Maximum Timer Clients |5
~Timer Running Frequency | 1000
Frequency Error Tolerance (%) |10
Internal Time Units (Hz) | 10000
Client Frequency Error Tolerance (%) |10
[[] Interrupt Notification Enabled

2. As observed in the Help window, the documentation for the Timer System Service is displayed. Using the Help, we can explore what this library
provides and choose how to implement the timer delay we need to blink LED1. Click Library Interface and scroll down to Timed Delay
Functions.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 8

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part I: Creating Your First MPLAB Harmony

MPLAB® Harmony Configurator* =
Help
Volume V: MPLAB Harmony Framework Reference > System Service Libraries Help > Timer System
Service Library
Documentation
MPLAB Harmony Help Contents | Home Previous | Up | Next Feedback
Microchip Support
Timer System Service Library
Topics

Name Description

Introduction This library provides interfaces to manage alarms and/or
delays.

Using the Library This topic describes the basic architecture of the Timer System
Service Library and provides information and examples on its
use,

Configuring the Library The configuration of the Timer System Service is based on the
file sy=tem config.h.

This header file contains the configuration selection for the
Timer System Service build. Based on the selections made, the
Timer System Service may support the selected features.
These configuration settings will apply to all instances of the
Timer System Service.

This header can be placed anywhere, the path of this header
needs to be present in the include search path for a successful
build. Refer to the Applications Help section for more details.

Building the Library This section lists the files that are available in the Timer
System Service Library.

Library Interface This section describes the APIs of the Timer System Service
Library.

Refer to each section for a detailed description.
Files This section lists the source and header files used by the
library.
c) Timed Delay Functions
Name Description
& SYS TMR DelayStatusGet Checks the status of the previously requested delay
timer object.
@ SYS TMR DelayMS Creates a timer object that times out after the specified
delay.

The SYS_TMR_DelayMS function can be used to create a one-shot delay timer, and then poll that timer status using SYS_TMR_DElayStatusGet.
When the timer times out, we can then toggle the LED.

3. Click SYS_TMR_DelayMS to open the related Help for this function.
Example

S5YS_TMR HANDLE tmrHandle;

case APP_ADD DELAY:
tmrHandle = SYS_TMR DelayMS (50)
state = APP_CHECK_DELAY;
break;
case APP_CHECK_DELAY:
if (SYS_TMR_DelayStatusGet (tmrHandle) == true)
{

}

break;

state = APP_DELAY COMPLETE;

The code example in the documentation provides all that is needed to create the delay. First, the SYS_TMR_HANDLE variable is needed, which is
assigned when the timer is created. Then, use SYS_TMR_DelayStatusGet to poll whether the timer has timed out using this handle. So now, we
know what to do.

Step 7: Add the Timer System Service Source Code to Your Project
Describes how to add the source code for the Timer System Service to your project.

Description

1. Before adding the Timer to the application, we need to regenerate the application to add the Timer System Service library to our code, using
the same process as described in Generate the Configured Source Code. The merge will open a difference window for syst em confi g. h
that was modified, as described in Add the Timer System Service to Your Project. Accept all the changes using the icon shown in the following

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 9

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part I: Creating Your First MPLAB Harmony

figure.
2 Merging: system_config.h
Pending Merge Actions: 4 & Next ﬁ}Previous
Generated Code 3/4

fdefine SYS_PORT_K_ODC 0x0000 172 | ® |163 |tdefi

#define SYS PORT_X CNPU 0x0000 173 164 $defi

#define S5YS_PORT_X _CNPD 0x0000 174 165 $defi

#define SYS PORT_X CNEN 0x0000 175 166 $defi
176 167 |#defi
177 168

/*** Interrupt System Service Configuration ***/ 178 169 |#defi

#define SYS INT true L 179 170 $defi

/*** Timer System Service Configuration ***/ Q:'@J.SO 171 |#defi

#define SYS TMR POWER STATE S5YS_MODULE POWER_RUN_FULL 181 172 |#defi

#define SYS TMR DRIVER INDEX DRV _TMR INDEX 0 182 173 |#defi

#define SYS TMR MAX CLIENT OBJECTS 5 183 174 |#defi

#define SYS TMR FREQUENCY 1000 184 175 |#defi

* The next figure shows the customer code that was added previously, which we want to retain. Therefore, do not click the icon for this merge.

257 233

258 234 e ¥ K ation ***
259 235 | CUSTO -

260 236 #define HEARTBEAT LED BSP_LED 1

261 237 #define HEARTBEAT DELAY 500 // milliseconds

=»i62 238 // END OF CUSTOM CODE

Do not click this icon.

Step 8: Use the Timer System Service in Your Application
Describes how to use the Timer System Service in your application.

Description
1. Next, from the Project tab in MPLAB X IDE, double-click the heartbeat.h file to open it in the editor.

| Projects x| Files | Classes |
=) [Egheartbeat
(g Header Files
2@ e
s
i -' system_config
{® framework
ﬁ Important Files
Linker Files

2. Then, add the new state, HEARTBEAT_RESTART_TIMER, to the application's state enumeration, as shown in the following figure. We will
show how that state is used later in the tutorial.

87 J] typedef enum

g8 [{
g9 * Application's state machine initial state. *
30 HEARTBEAT STATE_ INIT=0,
91 HEARTBEAT STATE_SERVICE_TASKS,
92
93 * TODO: Define states used by the application state machine. *
94
35
%8

w

/| HEARTBEAT_STATES:
HEARTBEAT_RESTART_TI MER

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 10

Volume I: Getting Started With MPLAB Harmony

3. Now, add the delay timer handle, SYS_TVMR_HANDLE hDel ayTi ner ;

as shown in the following figure.

113
114

Creating Your First Project

112 J] typedef struct

115 HEARTBEAT STATES state;

116
117

118 SYS TMR HAD

119

120| } HERRTBEAT DAT

/| HEARTBEAT_DATA

SYS TMR_ HANDLE hDel ayTiner; // Handle for delay tiner

4. Close and save heart beat . h by clicking the 'x', and then clicking Save.

fig.h x| [E] bsp.h x| [E] heartbeat.'

.;6].

— File heartbeat.h is modified. Save?

‘ ' Discard Cancel
S —— -

¥4 Question X

Part I: Creating Your First MPLAB Harmony

/1 Handl e for delay tiner,tothe application's data structure,

5. Next, from the Projects tab in MPLAB X IDE, double-click hear t beat . ¢ from the Source Fi |l es > app folder to open it in the editor. We
need to update hear t beat . ¢ to add the first timer delay, execute the time-out wait, and restart timer code. Refer to the following figure for the

locations to insert the different code blocks.

« Insert the following code to start the first delay timer
heart beat Dat a. hDel ayTi mer = SYS_TMR_Del ay MS(HEARTBEAT_DELAY) ;

i f (heartbeat Dat a. hDel ayTi ner
{ /1 Valid handl e returned
BSP_LEDON(HEARTBEAT_LED) ;

I = SYS_TMR_HANDLE_| NVALI D)

heart beat Dat a. st at e = HEARTBEAT_STATE_SERVI CE_TASKS;

* Insert the following code to wait for a time-out

if (SYS_TMR Del aySt at usCet (heart beat Dat a. hDel ayTi mer))
{ /1 Single shot tinmer has now tined out.

BSP_LEDToggl e(HEARTBEAT LED)

heart beat Dat a. st at e = HEARTBEAT_RESTART_TI MER,

« Finally, insert the following code to add the state to the restart timer.

case HEARTBEAT_RESTART_TI MER:
{ /] Create a new tiner

heart beat Dat a. hDel ayTi mer = SYS_TMR_Del ay MS(HEARTBEAT_DELAY) ;
i f (heartbeat Dat a. hDel ayTi ner
{ // Valid handl e returned

heartbeat Data. state =

}

br eak;

© 2013-2017 Microchip Technology Inc.

I = SYS_TMR_HANDLE | NVALI D)

HEARTBEAT_STATE_SERVI CE_TASKS;

MPLAB Harmony v2.06

11

Volume I: Getting Started With MPLAB Harmony

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
1539
160
161
162
183
164
185
166
187
168
169
170
171

void HEARTBEAT Tasks (void)
[EI

Creating Your First Project

switch (heartbeatData
{

case HEARTBEAT_STATE_INIT:
{

bool applnitialized = true;

if (appInitialized)
{

*_ Insert the start of the first timer delay code here

heartbeatData.state =

}
break:

}

HEARTBEAT_STATE_SERVICE_TASKS:

case HERRTBEAT_ STATE_SERVICE_TASKS:

{

Insert wait for time-out code here

<+

break:

Insert add state to restart timer code here

6. Once you have finished inserting the code blocks, the hear t beat

© 2013-2017 Microchip Technology Inc.

. ¢ file should appear like the following figure.

MPLAB Harmony v2.06

Part I: Creating Your First MPLAB Harmony

12

Volume I: Getting Started With MPLAB Harmony Creating Your First Project

AW N

w o

{

o
(S
{1

w

o
LU Y
',
11}

N

o
] o
0
11}

W o~

W o wN PO
{1}
1]

o
T

A S
T

w o

1y b WM PO
{1]
Lk T

OV B B B B B B B B B B 0 W W W W W W W W W NN NRNNNN
w oW oy in
m i

oomwmmm
W N O

] oy
{1]
i,

w0 o
T

oo !;mn
o
T

(SI=
-

EVARAA AR AR e e e e R e R R R

Functiecn:

void HEARTBEAT Tasks (veid)

Remarks:

See protetype in heartbeat.h.

oid HEARTBEAT Tasks (veid)

/* Check the application's current state. */
switch (heartbeatData.state)

{

/* Rpplicaticn's initial state. */
case HEARTBEAT STATE_ INIT:

{
boel zpplnitizlized = true;
if (appInitialized)
{
heartbeatData.hDelayTimer = SYS_TMR DelayMS (HEARTBEAT_ DELRY);
if (heartbeatData.hDelayTimer != SYS_TMR HANDLE INVALID)
{ // Valid handle returned
BSP_LEDOn (HEARTBEAT_LED) ;
heartbeatData.state = HEARTBEAT STATE_SERVICE_TASKS;
}
heartbeatData.state = HEARTBEAT STATE_SERVICE_TASKS;
}
break;
}
case HEARTBEAT STATE_SERVICE_TASKS:
{
if (SYS_TMR_DelayStatusGet (heartbeatData.hDelayTimer))
{ // Single shet timer has now timed out.
BSP_LEDToggle (HEARTBEAT_LED);
heartbeatData.state = HEARTBEAT RESTART TIMER;
}
break;
}

/* TODO: implement ycur application state machine.*/
case HEARTBEAT RESTART TIMER:
{ // Create 2 new timer
heartbeatData.hDelayTimer = SYS_TMR_DelayMS (HEARTBEAT DELRY);
if (heartbeatData.hDelayTimer != SYS_TMR_HANDLE_INVALID)
{ // Valid handle returned
heartbeatData.state = HEARTBEAT STATE SERVICE_TASKS;
}
}

/* The defzult state should never be executed. */

default:

{
/* TODO: Handle errcr in application's state machine. */
break;

7. After updating the code, close and save heart beat . c.

Step 9: Build and Run Your Project

Describes how to build and run your project.

Description

Part I: Creating Your First MPLAB Harmony

1. For the PIC32MZ EF Starter Kit, click the Run Main Project icon to build and run your project in MPLAB X IDE. If prompted, select the on-board

debugger to load the project.

« For the PIC32 USB Starter Kit Ill, select the PICkit On Board (PKOB) debugger
« For the Explorer 16 Development Board, select REAL ICE

© 2013-2017 Microchip Technology Inc.

i @ @ . |2k Miodip Starter its
D . -0 Starter Kits (PKOB)

R — N ¥ 1C32MZ EC Fami...

Run Main Project r i [Legacy Starter Kits

MPLAB Harmony v2.06

13

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part 1l: Debugging With Your Project

3. After making these selections click OK and close the Properties window.
4. Run the project using the Run Main Project button.
For both boards, the LED should flash with a one second period.

Part 1l: Debugging With Your Project

This section discusses how to debug problems in your project from within MPLAB’s debugger

Overview

This section discusses how to debug problems in your project from within the MPLAB X IDE debugger. Part Ill: Debugging While Running
Stand-alone discusses how to debug problems when running without the debugger, including using diagnostic messages to a HyperTerminal
equivalent application on your computer.

Description

Two important tools in debugging any embedded software application are asserts and exception handling. By default, asserts in the PIC32 code
write out an error message to USART2, and then jump into a whi | e(1) {} loop. However, if you have not set up USART2 you have no
information. Even with USART2 set up, you can miss the message if your HyperTerminal isn’t set up correctly. By default, exceptions (e.g., divide
by zero) cause the application to jump into a whi | e(1) {} loop, preventing the application from continuing, but providing no additional
information. Therefore, in both cases your application stops working and you have no idea why.

As a first step in developing any new application, you will be writing code and debugging it using the MPLAB debugger. This lesson shows you
how to enable asserts and exception handling while running the debugger, so that you don’t have to setup USART2. The next tutorial will show
how to support asserts and exception handling outside of the debugger. It will also show how to add other diagnostic messages to aid in
debugging.

Getting Started
Provides information on getting started with project debugging.

Description

The following steps can be applied to any MPLAB Harmony-based project, but for the sake of clarity it is assumed that you have completed Part I:
Creating Your First MPLAB Harmony Application in MHC. The project created in Part | will be used as the basis for this lesson, s it will be
necessary to set up your board using the instructions from that tutorial.

What You Will Learn

* How to enable asserts from the debugger
* How to enable Harmony'’s built-in exception handler

* How to decode the information reported by the exception handler to find where exception occurred in your code and what type of exception it
was

* How to test asserts and the exception handler

Tutorial Steps

This part of the tutorial explores how to use the debugger with your project.

Asserts Under the Debugger
This section explores how to use the debugger with asserts.

Description

1. Launch MPLAB X IDE and load the project you created in Part I: Creating Your First MPLAB Harmony Application in MHC.
2. Open heartbeat . c.

Projects & I Files
-G heartbeat
+ ﬁ Header Files
+} ﬁ Important Files
4} ﬁ Linker Files
=} Gf] Source Files

- app
H ? i - &c

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 14

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part 1l: Debugging With Your Project

3. Add assert (0); tothe start of the HEARTBEAT _Initialize function, as shown in red in the following code example.
voi d HEARTBEAT Initialize (void)
{

assert (0);

/* Place the App state machine in its initial state. */
heart beat Dat a. state = HEARTBEAT_STATE_INIT;
4. Build and run the application. You will see that the LED no longer flashes. This is because the assert(0) fired, and the application is now in an

infinite loop within the compiler’s built-in assert function. However, if we hadn't installed an assert(0) in the code in the first place, how would we
know what happened? This is where the debugger can help.

5. As shown in the following figure, if you press and hold the Ctrl key and hover your cursor over the assert call, the Macro assert appears.
However, where is this #def i ne located?

Macro assert
Zdefine assert(expr) \ ((void)((expr) ?0: (_assert (_LINE__ _FILE__ #expr, __ASSERT_FUNC), 0)))

void HEAR
11 Ctri+Alt+Click to open Macro Expansion View

asseic (0):

6. Press and hold the Ctrl key and click the assert call. This will open the assert . h file that provides the definition of the assert. As shown in the
next example, in the header file you can see how the assert is defined.
extern void __attribute_ ((noreturn)) _fassert(int, const char *, const char *, const char*);
#define __assert(line,file, expression,func) \
_fassert(line, file, expression,func)
#define assert (expr) \
((void)((expr) ? 0 : (__assert (__LINE_, _ FILE , #expr, _ ASSERT_FUNC), 0)))

7. The function _fassert is the built-in assert handler provided by the compiler. Modify the file to allow the debugger to fire a breakpoint when
running the debugger (when defined(__DEBUG) is true) by adding the code shown in red in the following example.
#if defined(NDEBUG) || !defined(__DEBUG

define __conditional _software_breakpoint(X) ((void)O)

#el se

define __conditional _software_breakpoint(X) \
((X) 2\

(void) 0 : \

__builtin_software_breakpoint())

/1 Added to support debugger:

undef assert

define assert(expr) __conditional _software_breakpoi nt (expr)
/1 End of addition

#endi f

8. Save your edits to asser t . h by pressing Ctrl+S and closing the window.

9. Build and run the project under the debugger by clicking Debug Project.

Team Tool!
503 &ebug Project

10. The debugger should now stop at the assert(0) call. So by a slight modification to the compiler's assert . h file, the debugger now stops with a
breakpoint at the location of the failing assert.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 15

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part 1l: Debugging With Your Project

115 void HEARTBEAT Initialize (void)
116 [¢
o assert (0)

120 heartbeatData.state = HEARTBEAT STATE_INIT;

123| [

125
126 - 1}

For more information on how to use the built-in debugger in the MPLAB X IDE, refer to the IDE’s built-in help (Help Menu > Tool Help Contents >

MPLAB X IDE >)for these topics:

e Tutorial > Running and Debugging Code

« Basic Tasks > Debug Run code

» Basic Tasks > Control Program Execution with Breakpoints

» Basic Tasks > Step Through Code

« Basic Tasks > Watch Symbol Value Change

e Basic Tasks > Watch Local Variable Values Change

SYS_ASSERT Macro

MPLAB Harmony uses a SYS_ASSERT macro in many places. Other libraries may have a localized assert. For example, the Graphics Library has
its own macro GFX_ASSERT, which can help with debugging graphics development. By default, these macros are not defined. You can turn
SYS_ASSERT on by the simply including the following code in your syst em confi g. h file, which is located in Header Files > app >
system config > defaul t).

/*** Application Instance O Configuration ***/

// CUSTOM CODE - DO NOT DELETE

#def i ne HEARTBEAT_LED BSP_LED 1

#defi ne HEARTBEAT_DELAY 500 // mlliseconds

#if defined(SYS_ASSERT)

#undef SYS_ASSERT

#endi f

#defi ne SYS_ASSERT(test, message) assert(test)

/1 END OF CUSTOM CODE

This code converts all of the MPLAB Harmony SYS_ASSERTSs found into simple assert calls. However, this can greatly affect how the code works,
depending on where the SYS_ASSERTS are located. Therefore, this method is best used sparingly.

For more information on the SYS_ASSERT macro, refer to Volume V: MPLAB Harmony Framework > System Services Library Help > System
Service Overview > Using the SYS_ASSERT Macro. By default, SYS_ASSERT is not defined. There are two alternatives provided in the MPLAB
Harmony documentation, one for the debugger and a second for running outside of the debugger (stand-alone). Combining these two yields:

#i ncl ude "systeni debug/ sys_debug. h"

#i f ! defi ned(NDEBUG
[*** SYS_DEBUG Breakpoint Definition ***/
#i f defi ned(__DEBUG
#define SYS _DEBUG Breakpoint() __asm__ volatile (" sdbbp 0")
#el se
#defi ne SYS_DEBUG Br eakPoi nt ()
#endi f/ / def i ned(__DEBUG)

[*** SYS_ASSERT Definition ***/
#i f defined(SYS_ASSERT)
/I Remove prior definition — necessary to prevent ugly builds
#undef SYS_ASSERT
#endi f
#i f defi ned(__DEBUG
/| SYS_ASSERT for the debugger
#defi ne SYS_ASSERT(test, message) \
do{ if(!(test)) SYS DEBUG Breakpoint(); }while(false)
#el se
/| SYS_ASSERT for Standal one:
#define SYS _ASSERT(test, nessage) \
do{ if(!(test)){ \
SYS_MESSAGE((nmessage)) ; \
SYS_MESSAGE("\r\n"); \
while(1);} \

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 16

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part 1l: Debugging With Your Project

}whil e(fal se)

#endi f// def i ned(__DEBUG)

#endi f/ /! def i ned(NDEBUG)

The details of how to enable SYS_MESSAGE to allow output to a HyperTerminal are discussed in Part II: Debugging With Your First Project >
Part Ill: Debugging While Running Stand-alone.

Exception Handling in the Debugger

This section explores how the debugger can be used in exception handling.

Description

1.

The first step in exploring how MPLAB Harmony handles exceptions is to verify that the exception handler is enabled. Before launching MHC,
the project must be the Main Project within the MPLAB X IDE. To set the project as the Main Project, right click the project name, and select
Set as Main Project.

eh |

. Start MHC by clicking the MPLAB Harmony icon ('%). If this icon is not visible, this indicates the MHC plug-in is not installed (refer to

Volume lll: MPLAB harmony Configurator (MHC) > MPLAB Harmony Configurator User's Guide > Installing MHC to install MHC).

. Verify that the MPLAB Harmony Exception Handler will be used. If correctly configured, the project should have the file syst em exception. c

within Source Files > app > system_config > default in the MPLAB X IDE Project tab. If this file is missing, go to MHC and select Use MPLAB
Harmony Exception Handler Template? to enable MPLAB Harmony's exception handler. Then, regenerate the application’s code to add
Harmony's exception handler.

MPLAB Harmony & Application Configuration
[=-Application Configuration
-Number of Applications |1
[+-Application 0 Configuration
[=Exception Handling
| ® 'J_tg.lse MPLAB Harmony Exception Handler Template?

. Next, we need to create an exception in the code to observe how exceptions are handled. Replace the assert (0) ; in HEARTBEAT Initialize

with the following code. However, if we jump to trying out this code in the debugger, nothing will happen. Under the default optimization level
(-01) the compiler will recognize that this code does not do anything useful, and will not include it in the build. Therefore, we will have to change
the optimization level for the file to zero before proceeding.

Test out error handling under Optimnization Level Zero for systeminit.c

uint8_t x, vy, z;
= 1;

= 0;

= xly;

N < X

. Right click hear t beat . ¢ and choose Properties from the resulting menu and make the following selections:

[rLgOverride build options

« In File Properties, select Override build options ()
e @ xc32rgcc
Next, select the compiler (... o xdﬁﬁ)
Option categories: ;General v;

Within the Optimization category (

After making the selections, click OK to close the window

6.

Next, build and run the application under the debugger. The application should stop at the debugger breakpoint in syst em excepti ons. c.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 17

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part 1l: Debugging With Your Project

124 void _general exception handler (void)
125 {
126 g
128 _excep_code = (_CPO_GET_CAUSE() & 0x0000007C) >> 2;
129 _excep_addr = _CPO_GET_EPC():
130 _cause_str = cause[_excep_code];
1l
132 S5YS_DEBUG_PRINT (5YS_ERROR_ERROR, "\n\rGeneral Exception %= cause=%d, addr=%x).\n\r",
133 _cause_str, _excep code, _excep addr);
134
135 while (1)
136 {
= S5YS_DEBUG_ BreakPoint():
138 }
139 -

Hovering your cursor above the variable, _excep_code, will reveal the exception code.

[Address = 0x800003AC, _excep_code = 0x0000000D |
excep [ﬁode = (_CPO_GET_CAUSE() & 0x0000007C) >> 2;

In this case, 0xD or 13, corresponds to an arithmetic trap (see the following table for a list of PIC32 Exception Codes. Hovering your cursor over
the variable, _excep_addr, will reveal where in the code the exception occurred.

excep colAddress = 0xB00003A8, _excep_addr = 0:9D002508],

excep _a\]\m?gl = CPO_GET EPC();

Now we need to find out where 0x9D00_25D8 is located in the code (this address may be different for your appliation). Before going to the next

step, stop the debugger session by pressing Shift+F5 or by clicking the Finish Debugger Session icon (@).
Exception Codes for PIC32

typedef enum {

EXCEP_IRQ = 1, // interrupt (coded as zero)
EXCEP_AdEL = 4, // address error exception (load or ifetch)
EXCEP_AdES = 5, // address error exception (store)
EXCEP_IBE = 6, // bus error (ifetch)

EXCEP_DBE = 7, // bus error (load/store)

EXCEP_Sys = 8, // syscall

EXCEP_Bp = 9, // breakpoint

EXCEP_RI = 10, // reserved instruction

EXCEP_CpU = 11, // coprocessor unusable
EXCEP_Overflow = 12, // arithmetic overflow
EXCEP_Trap = 13, // trap (possible divide by zero)
EXCEP_I S1 = 16, // inplenentation specfic 1
EXCEP_CEU = 17, // CorExtend Unuseabl e

EXCEP_C2E = 18, // coprocessor 2

} EXCEPTI ON_CCDES;

7. If the debugger is inside of a function, you can look at a disassembly of the code, but this is impractical when you don’t know where to look for
the cause of the exception. Instead, you can build a list of all the application’s assembly code at build time. (Of course, this step can cause the
build to take longer, so only use it when trying to debug an exception.)

* Right click the project name and select Properties
« Within the Building properties, enable Excecute this line after build, and enter the following text (Windows):
e ${MP_CC DI R}\ xc32-0bj dunp -S ${I mageDir}\ ${ PROJECTNAME} . ${| MAGE_TYPE}. el f > di sassenbl y. | st
e For Linux: ${ MP_CC_DI R}/ xc32-obj dunp -S ${1 mageDi r}/ ${ PROJECTNAME} . ${ | MAGE_TYPE}. el f > di sassenbly. | st
« Atthe end, the window should show:
[V] Execute this line after build
${MP_CC_DIR}\xc32-objdump -S ${ImageDir}\${PROJECTNAME}. ${IMAGE_TYPE}.elf > disassembly.Ist

¢ Click OK to finish.
8. Run the project under the debugger again. When the breakpoint fires verify that the address is the same as before.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 18

9. Now we need to examine the di sassenbl y. | st file that was just generated. This file is located in the
./ heartbeat/firnware/heart beat . Xfolder. Load the file with your favorite text editor and search for 9D0025D8 (or the address you
found) in the listing. The following example illustrates what you should see:

voi d HEARTBEAT Initialize (void)

{

9d0025b4: 27bdf ff0 addi u sp, sp, - 16
9d0025b8 <. LCFI 0>:

9d0025hb8: af be000c sw s8, 12(sp)
9d0025bc: 03a0f 021 nove s8, sp

9d0025c0 <. LBB2>:
/'l Test out error handling under Optimization Level Zero for systeminit.c

{
uint8_t x, vy, z;
x = 1;
9d0025c¢0: 24020001 li vO, 1
9d0025c4: a3c20000 sb v0, 0(s8)

9d0025¢c8 <. LVLO>:
y =0
9d0025c8: a3c00001 sb zero, 1(s8)

9d0025cc <. LVL1>:

z =xly;
9d0025cc: 93c¢30000 | bu vl, 0(s8)
9d0025d0: 93c20001 | bu v0, 1(s8)

9d0025d4 <. LVL2>:

9d0025d4: 0062001b di vu zero, vl, vO0

9d0025d8: 004001f 4 teq vO0, zero, OX7 <----- Exception Address
9d0025dc: 00001010 nf hi vO

9d0025e0: 00001012 nflo vO0

9d0025e4: a3c20002 sh v0, 2(s8)

9d0025e8 <. LBE2>:
}

So the exception occurred during the assembly execution of the C instruction z = x/y, as expected.

10. Before proceeding, comment out the exception code in the hear t beat . c¢ file. You could delete it from the file, but leaving it in as a comment

provides a convenient way to validate that the exception handler is working; just uncomment and run to verify it still works as expected.

11. You should also remove the Override build options from hear t beat . c, returning it back to the projects default of Optimization Level One

(-01).

You might expect from the code in syst em except i ons. c that it would also print out a message reporting the exception, but
Note: pressing and holding the Ctrl key while hovering your cursor reveals that SYS_DEBUG_PRINT is not defined, so nothing really

happens in the code.
Enabling this feature is discussed in the next tutorial.

void _general exception handler (void)

1 ¢
]
excep[Macro SYS_DEBUG_PRINT 00007C) >> 2;
excep|[#define SYS_DEBUG_PRINT
cause|
Ctri+Alt+Click to open Macro Expansion View

SNS DE..% G PBENT (SYS_ERROR ERROR, "\n\rGeneral Exception %s (cause=3%d, addr=%x).\n\r",
_cause_str, _excep code, _excep_addr);

while (1)
{
SYS_DEBUG_BreakPoint():

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

19

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

Part Ill: Debugging While Running Stand-alone

This section discusses how to debug problems when running without the debugger, including using diagnostic messages to a HyperTerminal or
equivalent application on your computer.

Description

While the debugger in the MPLAB X IDE can help identify many bugs, there are cases where running the application outside of the debugger (i.e.,
Stand-alone mode), is necessary. The ability to dump error messages from failing asserts or from the exception handler is key to debugging an
application outside of the debugger. Transmitting diagnostic or debug messages can also be key, both with and without the debugger.

Getting Started
Provides information on getting started with project debugging while running stand-alone.

Description

The steps outlined in this section can be applied to any MPLAB Harmony-based project, but for the sake of clarity we assume you have completed
Part I: Creating Your First MPLAB Harmony Application in MHC. We will use the project from the this tutorial as the basis for this lesson. Board
setup will be different than in the prior tutorials, primarily because of the need to support a USART connection to a COM port on your PC.

Setting Up the Hardware

PIC32MZ Embedded Connectivity (EF) Starter Kit

Setting up this board is easy, since it has an on-board MCP2221A USART-to-USB Bridge. Therefore, all that is required to connect the device to a
COM port is to plug in a mini-B to Type-A cable from the mini-B port beneath the Ethernet PHY to a USB port on your PC.

' Y4

"*p32_vOD
. "

R13

------ »e
S .o
©e
s y, Zo L MICRDCHIP |60 ®
'E ,|'mEmbed':gggglmt.-_thivnyw;FPu (EF) ‘& l(_REbPol) t :
ol [N . Starter Kit _ | 13 R48 (RB12 '_n
- 'N'1 'R“g =it |0 ®
33 o®
(O
OR
O
L 3
-
~
- - [- : B) m .
Mini-B to | gty 3 55, B8 I -
USB Debug Port | e 8 200 &3 ‘5-32""- R55 e
Ra1 uzzcz F e
~
-

PIC32 USB Starter Kit Il

As an older board design, there is no MCP2221A on this board, so you will need the following additional hardware:
*« MCP2221 Breakout Module (ADM00559)

* Mini-B to Type-A USB cable for the Breakout Module

« Starter Kit /O Expansion Board (DM320002)

* Jumper Wires

« 0.1” Pitch Header Pins to connect jumpers between the breakout module and I/O expansion board.

The hardware is set up as follows:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 20

Volume I: Getting Started With MPLAB Harmony Creating Your First Project

" MCP2221 Breakout Module [l
(ADM00559)

Pin Out same for
MCP2221 Breakout
Module

PIC32 USB Starter Kit lll
(DM320003-3)

s

{ - .
PIC32

&
Etfrarnet Starter Kt T2

Starter KitI0
Expansion Board

Part Ill: Debugging While Running Stand-alone

|

(DM320002)

Explorer 16 Development Board with the PIC32MX795F512L Plug-in Module (PIM)

As an older board design, there is no MCP2221A on this board, so you will need the following additional hardware:

* MCP2221 Breakout Module (ADM00559)

» Mini-B to Type-A USB cable for the Breakout Module

* Prototype PICTail Plus Daughter Board (AC164126 for a three pack)

* Jumper Wires

« 0.1” Pitch Header Pins to connect jumpers between the breakout module and I/O expansion board.
The hardware is set up as follows:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

21

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

MCP2221 Breakout Module
REAL ICE (ADM00559)

Explorer 16
Development
Board

(DM240001) Remove all Jumpers

from the Module

= Prototype PICtail Plus
i Daughter Board

What You Will Learn

e How the MPLAB Harmony Configurator (MHC) configures USARTSs and device pins for USARTS

* How MHC configures the Console System Service and the Debug System Service to support output via a USART
* How to output diagnostic and debug messages via these system services

* How to customize the assert handler and exception handler used in the application

Tutorial Steps

This part of the tutorial explores how to debug when running without the debugger (i.e., stand-alone).

Enabling USART Output Using System Console and Debug System Services
This section describes how to set up the System Console and Debug System Services using a USART port.

Description

1. Launch the MPLAB X IDE and load the project you created in the Part I: Creating Your First MPLAB Harmony Application in MHC.
2. Set the project as the IDE’s Main Project and launch the MPLAB Harmony Configurator (MHC).

3. If you are using a board with a built-in MCP2221A USART-to-USB Bridge, in the BSP Configuration enable the USART-to-USB Bridge. This will
assign device pins for use by the USART connected to the bridge.

=)-BSP Configuration
= Use BSP?
: @ Select BSP To Use For PIC32MZ2048EFM 144 Device
[)-Select BSP Features
B %Use USART to USB Bridge
“SUSART Driver Instance Index |0

4. Within Harmony Framework Configuration > Drivers > USART, configure USART 2.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 22

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

=) USART
= [V] Use USART Driver?
Driver Implementation STATIC v

=) [V] Byte Model Support
4 [V] Use Blocking Operation?
| Use Calback Operation?
Number of USART Driver Instances 1
=== Each instance can have only one dient in STATIC driver mode ****

- [V] USART Driver Instance 0

USART Module ID USART_ID_2 +

Baud Rate 115200

Operation Mode DRV_USART_OPERATION_MODE_NORMAL v
| Wake On Start
| Auto Baud
| Stop In Idie

Line Control DRV_USART_LINE_CONTROL_SNONE1 +

Handshake Mode DRV_USART_HANDSHAKE_NONE -

a There are many options on how the USART driver is configured, but the simplest is always the best in this situation, since the
Note: USART must work after an assert has failed or an exception has fired. Therefore, the simplest set up is best.

5. Within Harmony Framework Configuration > System Services, configure the application to use the Console System Service. (The STATIC
configuration is hard-wired to use USART Diriver Instance O (the first one defined), which we set up in the previous step. To use another
USART Driver Instance you must use the DYNAMIC service mode.) Again, the simplest setup is the best approach to handle asserts and
exceptions.

=J-Console
-}~ [¥] Use Console System Service?
+Select Service Mode STATIC v
(V] Override STDIO?
Select Peripheral For Console Instance | JEGYlEe So

6. Also under System Services, configure the application to use the Debug System Service. Set the System Error Level to SYS_ERROR_DEBUG

to support SYS_DEBUG_PRINT. The pull-down menu for System Error Level has the options shown in the second figure.
-)-Debug
=}~ (V] Use Debug System Service?
i System Error Level JEN= 10 00 = e v

Debug Print Buffer Size 8192

SYS_ERROR_FATAL =0 Errors that have the potential to cause a system crash.

SYS_ERROR_ERROR = 1 Errors that have the potential to cause beh

SYS_ERROR_WARNING = 2 gs about It d behavior or side
effacts.

SYS_ERROR_INFO = 3 Information helpful to understanding potential errors and
warmnings.

SYS_ERROR_DEBUG =4 Verbose information helpful during debugging and testing.

D The System Error Level determines which SYS_DEBUG_PRINT messages are actually printed on the USART port. Set to
Note: SYS_ERROR_DEBUG, all levels are printed.

7. Open the Pin Settings Tab in MHC. For boards with a MCP2221A, verify that the BSP has correctly set the USART pins. For boards without a
MCP2221A, set the USART pins as shown. (Click the Function column to select the correct pin function.)

* PIC32 USB Starter Kit IlI:

Pin Number Pin ID Voltagea Tolerance Name Function
49 RF4 5V U2RX U2RX
50 RF5 5V u2TXx u2TXx

¢ PIC32MZ EF Starter Kit:

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 23

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

Pin Number Pin ID Voltagea Tolerance Name Function
14 RG6 N/A USART-to-USB Bridge (USB) U2RX
61 RB14 N/A USART-to-USB Bridge (BSP) u2TXx

» Explorer 16 Development Board with PIC32MX795F512L Plug In Module:

Pin Number Pin ID Voltagea Tolerance Name Function
49 RF4 5V U2RX U2RX
50 RF5 5V u2TXx u2TXx

8. Generate this new code configuration. For syst em confi g. h, accept the changes, but do not discard the // CUSTOM CODE segment that
you added in Part I: Creating Your First MPLAB Harmony Application in MHC.

9. Open heart beat . ¢ and add the following code shown in red to HEARTBEAT _Initialize.
voi d HEARTBEAT I nitialize (void)

{

SYS_MESSAGE(

"\r\nApplication created " __DATE _ " " __TIME__ " initialized!'\r\n");
/| Test out error handling

/'l assert(0);

11 {

/[l uint8_t x, y, z;

/]l x = 1;

/l'y =0;

Il z =xly;

/1 SYS_DEBUG PRI NT(SYS_ERROR DEBUG, "x: %, y: %, z: %\r\n", X,vy,2z);
/1 }

/* Place the App state machine in its initial state. */
hear t beat Dat a. st ate = HEARTBEAT_STATE_INIT;

/* TODO Initialize your application's state nmachi ne and ot her
* paraneters.

*/

}

10. Save the file by pressing Ctrl+S, and then close the window.

The portion of this addition that is commented can be uncommented to support testing that asserts and exceptions are correctly
Note: reported. Since we have enabled the Debug System Service, SYS_DEBUG_PRINT here actually works. Therefore, the compiler
will not drop this this code when it is enabled, thereby eliminating the need to modify the code’s optimization level as before.

11. Set up your PC’s HyperTerminal to 115200 baud, 8 bits, 1 Stop Bit, No Parity.

12. Run the project.

If you have correctly setup you HyperTerminal application you should see something similar to the following on its display:
Application created Aug 8 2017 12:14:04 initialized!

Getting the HyperTerminal to correctly identify the COM port belonging to the MCP2221A (either on-board or in a Breakout Module) can be a fussy
and frustrating process. There will be times when you can't find the COM port. In those cases, at least on a Windows PC, try the following:

* In the Control Panel, select System > Device Manager

* Within Ports (COM & LPT), identify the COM port belonging to the MCP2221A. Double click on this port to open its Properties window.
* Select the Driver tab and disable, and then enable the driver

* Close the window.

This should allow your HyperTerminal to see the port.

If all else fails, you may need to put the SYS_DEBUG_PRINT statement in a whi | e(1) loop and, worst case, use an
Note: oscilloscope to make sure the USART TX signal is getting to the MCP2221A and that the USB data lines are working as well.

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 24

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

If your board has a built-in MCP2221A but does not have an independent power supply, as with the PIC32MZ EF Starter Kit, where power is
supplied by the debug port, you will not see the initial startup message when power cycling the application by unplugging and plugging in the
debug port. When power is supplied to the board, the application starts, but the MCP2221A has to enumerate as a USB device with your PC
before COM port output is accepted. So, the initial message has long since passed on the port before the COM port is working.

If your board has a Master Clear (MCLR) button, you can simply press the button to reset the application after the MCP2221A enumerates. Then,
the initial message will be seen on your HyperTerminal application. If your board does not have a MCLR button, you can still assert a Master Clear
by grounding pin 1 of the ICSP header. The following figure show how this is done on the PIC32MZ EF Starter Kit.

Asserting Master Clear on
the PIC32MZ EF Starter Kit

ICSP Port
Pin1

Adding Customized Assert and Exception Handling
This section describes how to add customized assert and exception handling without a debugger.

Description

The default assert function provided by the PIC32 compiler is called _fassert. It is “weakly” defined, meaning that you can provide a customized
replacement for it in your project. You may want to replace the default (compiler) assert for two reasons:

e The default function is hardwired to use USART2 and you want to use another USART

¢ You have a lot of asserts in your code, but do not need them to report out the line number, file name, failed expression, and function name in
the message, because storing all of these string constants for every assert uses too much memory. Instead, you can invent a customized
_fassert that only reports out, for example, only the line number and function name to save memory.

The default exception handler is hardwired to USART2, so using MPLAB Harmony'’s replacement handler, as we did in Part I: Creating Your First

MPLAB Harmony Application in MHC, will at least give you the flexibility to control which USART is used. However, both handlers only report out

the cause and program address of the exception, nothing more. Please note that there will be cases where this information is not sufficient to

locate what went wrong. MHC provides two additional, advanced exception handlers that can be used instead.

1. The MHC menu Advanced Exception and Error Handling shows the options available.

Options | Clock Diagram | Pin Diagram x| Pin Settings x
MPLAB Harmony & Application Configuration
-J-Application Configuration
Number of Applications 1
+) Application 0 Configuration
+)-Exception Handling
= Advanced Exception and Error Handling
-} Exception Handling (Pick One)
Use MPLAB Harmony Exception Handler
/| Use Advanced Harmony Exception Handler - Select Advanced Harmony Handler
Use Advanced Handler with Filtering Support
-} Assert Handling (Pick One)
Use Compiler's Built-In Assert Handler
/ Use MPLAB Harmony Assert Handler ~ Select Harmony Assert Handler
| Hit breakpoint when an assert occurs?
Exception Handling and Assert Output (Pick One)
No diagnostic output
Use SYS_DEBUG_PRINT for output
/! Use SYS_CONSOLE_Write for output -~ Use SYS_CONSOLE_Write
IMPORTANT: Console System Service and Debug System Service *must™ be enabled for a dean buid.
Enable USART to USB Bridge if available. (Check under Select BSP Features).

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 25

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

2. Select the Advanced Harmony Exception Handler. (The other advanced handler shown supports filtering by saturating rather than overflowing
integer arithmetic.) Select the MPLAB Harmony Assert Handler to replace the compiler’s built-in assert handler. By default, output uses
SYS_DEBUG_PRINT, but using SYS_CONSOLE_Write can be chosen instead since it is a more robust way of reporting exceptions and errors.

3. Generate this configuration by clicking Generate Code. After completing this, your default project folder should contain the files shown in the
following figure. Note the assembly (. S) file is required to report out extra information via the new exception handler.

5@
#-(EF bsp
@ fassert.c
+ framework
&] general-exception-context.S
eneral_exception_handler.c

ystem_init.c

S
/S

B

g
system_interrupt.c

E‘] system_tasks.c
4. Double click the new exception handler, gener al _excepti on_handl er. c, to see what it reports.

void __attribute__ ((nom psl6)) _general _exception_handl er (XCPT_FRAVE* const pXFrane)
{

regi ster uint32_t _local StackPointerVal ue asn{"sp");

_excep_addr = pXFrane- >epc;
_excep_code = pXFrane->cause; /| capture exception type
_excep_code = (_excep_code & 0x0000007C) >> 2;

_CPO_St at usVal ue = _CPO_GET_STATUS() ;
_StackPoi nterVal ue = _| ocal St ackPoi nt er Val ue;
_BadVi rtual Addr ess _CPO_GET_BADVADDR() ;
_ReturnAddress = pXFrane- >ra;

sprintf(msgBuffer,"**EXCEPTI ON: *\r\n"
" ECode: %, EAddr: Ox%©8X, CPO Status: 0x%08X\r\n"
" Stack Ptr: 0x%8X, Bad Addr: O0x%98X, Return Addr: 0x%©8X\ r\n"
"** EXCEPTI ON: *\r\n",
_excep_code, _excep_addr, _CPO_St at usVal ue,
_St ackPoi nt er Val ue, _BadVi rt ual Addr ess, _Ret ur nAddr ess) ;
SYS_CONSOLE_W it e(SYS_CONSOLE_| NDEX_0, STDOUT_FI LENO, nsgBuffer, strl en(nmsgBuffer));

SYS_DEBUG BreakPoint(); // Stop here if in debugger.

while(l) {
/1 Do Not hi ng

}
}

So, in addition to the cause (ECode) and address (EAddr) of the exception, this exception handler also reports the Core Register CP0 value (CPO
Status), the Stack Pointer value (Stack Ptr), Bad Address value (Bad Addr), and the Return Address value (Return Addr).

For more information on the bit fields in the CPO register refer to one of these PIC32 Family Reference Manual sections:
* PIC32MX: Section 02. "CPU for Devices with M4K Core" (DS6000113)
* PIC32MK and PIC32MZ: Section 50. "CPU for Devices with microAptiv Core" (DS60001192)
Both of these documents are available for download from the Microchip website at: www.microchip.com.
5. Add post processing to the project’s configuration to produce a disassembly listing.

« Right click the project name and selecting Properties

« Within the Building (') properties, enable Execute this line after build and enter the following text:

e ${MP_CC DI R}\ xc32-0bj dunp -S ${I mageDir}\ ${ PROAJECTNAME} . ${| MAGE_TYPE}. el f > di sassenbl y. | st
« At the end the window should show:
[¥] Execute this line after build

${MP_CC_DIR}\xc32-objdump -S ${ImageDir}\${PROJECTNAME}. ${IMAGE_TYPE}.elf > disassembly.Ist

¢ Click OK to close the window

6. To explore how we can use the extra information reported by the new exception handler, make the following modifications shown in red text to
heart beat . c:

voi d Di vi deByZer o(voi d)

{

uint8_t x, vy, z;
x = 1;

y = 0;

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 26

http://www.microchip.com

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

z = xly;
SYS_DEBUG PRI NT(SYS_ERROR DEBUG, "x: %, y: %, z: %\r\n",Xx,y,z);
}

voi d Dereference_Bad_Address(void)
{

uint32_t * pointer;

uint32_t val ue;

pointer = (uint32_t *)OxDEADBEEF;

val ue = *pointer;

SYS_DEBUG PRI NT(SYS_ERROR DEBUG, " Val ue: %\ r\n", val ue);
}

voi d HEARTBEAT Initialize (void)

{

SYS_MESSAGE(

"\r\nApplication created " __DATE _ " " __TIME__ " initialized!\r\n");
/] Test out error handling

/1 assert(0);

11 {

/1 uint8_t x, vy, z;

/Il x = 1;

/1y =0;

Il z =xly;

/1 SYS_DEBUG PRI NT(SYS_ERROR DEBUG, "x: %, y: %, z: %\r\n", X,vy,2z);
/1}

/lassert (0);
/1 Di vi deByZero();
/| Der ef erence_Bad_Address();

/* Place the App state machine in its initial state. */
heart beat Dat a. st at e = HEARTBEAT_STATE_INIT;

/* TODO Initialize your application's state nachine and ot her
* paraneters.

*/

}

7. Uncomment the / / assert (0); , abd then build and run the application. In your HyperTerminal application, you should see something similar
to the following:

Application created Aug 8 2017 16:51:05 initialized!

ASSERTION ' 0' FAILED File: ../srcl/heartbeat.c, Line: 148, Function: HEARTBEAT Initialize

8. Now comment out the assert and uncomment the call to DivideByZero, and then build and run. In your HyperTerminal application, you should
see something similar to the following:

Application created Aug 8 2017 16:37:51 initialized!

** EXCEPTI ON: *

ECode: 13, EAddr: 0x9DO06CAC, CPO Status: 0x25000003

Stack Ptr: Ox8007FED8, Bad Addr: 0x25651D53, Return Addr: 0x9D007020

** EXCEPTI ON: *

In the disassembly listing you will see:
voi d Divi deByZero(voi d)

{
uint8_t x, vy, z;
x = 1;
y =0;
z = xly;
9d006ca0: 24070001 li a3, 1

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 27

9d006ca4: 00001021 nove v0, zero
9d006ca8: 00e2001b di vu zero, a3, vo0
9d006cac: 004001f 4 teq v0,zero, 0X7 <<----------oooooon EAddr
9d006ch0: 00003812 nflo a3
SYS_DEBUG PRI NT(SYS_ERROR DEBUG, "x: %, y: %, z: %\r\n",Xx,y, 2)

9d006¢ch4: 3c049d00 I ui a0, 0x9d00

9d006¢h8: 24846968 addi u a0, a0, 26984

9d006¢hc: 24050001 li al,1

9d006¢ccO: 00003021 nove a2, zero

9d006cc4: 0f 4015fd jal 9d0057f4 <SYS _DEBUG Pri nt >
9d006¢cc8: 30e700f f andi a3, a3, Oxff

9d006¢ccc <. LVL2>:
}

|l assert (0);

Di vi deByZero();
9d007018: 0f 401b22 jal 9d006c88 <.LFE1152>
9d00701c: 00000000 nop

9d007020 <.LVL9>: R L Ret urn Address
/ | Der ef erence_Bad_Address();

/* Place the App state machine in its initial state. */
hear t beat Dat a. st at e = HEARTBEAT_STATE_INIT;
9d007020: af 808054 sw zero,-32684(gp) <<---- Return Address

In this example we see, as before, that the exception address correctly identifies the instruction that caused the exception. Note also that the
return address points to the instruction after the call to the DivideByZero function.

The actual addresses may vary depending on the target device.
Note:

9. Now comment out the DivideByZero and uncomment the call to Dereference_Bad_Address, and then build and run. In your HyperTerminal
application you should see something similar to the following:
Application created Aug 8 2017 16:43:01 initialized!
** EXCEPTI ON: *
ECode: 4, EAddr: 0x9D006F38, CPO Status: 0x25000003
Stack Ptr: O0x8007FED8, Bad Addr: OxDEADBEEF, Return Addr: 0x9D006F40
** EXCEPTI ON: *
In the disassembly listing you will see:
voi d Dereference_Bad_Address(voi d)
{
9d006f 24: 27bdf fe8 addiu sp, sp, -24
9d006f 28: af bf 0014 sw ra, 20(sp)
9d006f 2c: af b00010 sw sO0, 16(sp)
uint32_t * pointer;
ui nt32_t val ue;

pointer = (uint32_t *)OxDEADBEEF;
val ue = *pointer;

9d006f 30: 3c02dead | ui vO0, Oxdead
9d006f 34: 3442beef ori vO0, v0, Oxbeef

9d006f 38 <. LVL4>: <<------------ EAddr

SYS_DEBUG PRI NT(SYS_ERROR DEBUG, " Val ue: %l\r\n", val ue);
9d006f 38: 0f40003e jal 9d0000f 8 <.LFE1164>

9d006f 3c: 8c500000 | w s0, 0(vO0)

9d006f 40 <.LVL5>: <<----- Ret urn Address

9d006f 40: 10400006 beqz vO0, 9d006f5¢c <. LVL6+0x4> <<--
9d006f 44: 8f bf 0014 |l w ra, 20(sp)

9d006f 48: 3c049d00 | ui a0, 0x9d00

9d006f 4c: 24846980 addi u a0, a0, 27008

9d006f 50: 0f 4015fd jal 9d0057f4 <SYS_DEBUG Print >
9d006f 54: 02002821 nove al, sO

9d006f 58 <. LVL6>:
}

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Part Ill: Debugging While Running Stand-alone

28

Volume I: Getting Started With MPLAB Harmony Creating Your First Project Next Steps

The exception code reported, 4, corresponds to an “address error exception (load or ifetch)”.

In this example, the return address didn’t provide much information but we see that the bad address used in the pointer dereference was correctly
reported.

As an additional step, replace val ue = *poi nt er with *poi nter = val ue in the code and verify that an exception code of 5, “address error
exception (store)”, is reported instead.

Tips
Provides tips for effective use.

Description

Warnings All Compiler Switch

It is recommended that you enable the compiler switch, —Wall (Warnings-All), for your project. This will warn you of potential problems that may
turn into bugs. In the configuration’s properties, select the compiler compiler and select Additional Warnings.

B4 Project Properties - aria_scrolling L_Ji:h
Categories:
= @ Conf: [pic3-2mz da_sk_extddr_m * Option categories: Preprocessing and messages i)
© RealICE Preprocessor macros B
@ Loading
o Libraries Include directories ..Jsrc;.. fsrc/system_config/fpic32mz_c B
@ Building — || Make warnings into errors m
= @ XC32 (Global Options) Additional warnings m\
@ xc32-as
o Xca2ge Enable address-attribute warning mf
O xc32-g++ support-ansi [
@ xc324d strict-ansi o
e @ XC32-ar
=l @ Conf: pic32mz_da_sk_extddr_meb2_le Mse CCI syntax =
@ Real ICE Use IAR syntax A
@ Loading
@ Libraries

Project Locations on Your Hard Drive

In the first tutorial of this series, the project was created in the following folder (for Windows): C: \ mi cr ochi p\ har nony\ <Ver si on>\ apps.

In reality, you can create a MPLAB Harmony project anywhere on the same hard drive that contains the MPLAB Harmony installation you are
using. For MAC OS and Linux, that is the only limitation. For Windows, there is an operating system limitation that all paths in the project must be
less than 256 characters in length. Therefore, you may run into trouble on Windows if the project is created too deep into the drive’s directory tree.

Moving and Copying Projects

All of files in your project are referenced by their relative path from the “. X" directory (heart beat \ f i r mnar e\ hear t beat . X), which contains the
Makef i | e make file and nbpr oj ect sub-directory. This provides flexibility in relocating and copying projects, since as long as the relative paths
to files in the MPLAB Harmony installation (typically C: \ mi cr ochi p\ har mony\ <ver si on>) still work the project can be anywhere.

Example

You can move/copy a project:

e Old Location: C: \ M\yWor k\ MyPr oj ect \ heart beat

* New Location: C: \ MyWor k\ MyNewPr oj ect \ hear t beat (Good)

However, neither of these new locations work, since it breaks the project’s relative paths:
e Old Location: C: \ MyWor k\ MyPr oj ect \ hear t beat

* New Location: C:\MyProject\heartbeat (Not Good), or

* New Location: C: \ MyWor k \ MyNewPr oj ect\ Rev2\ hear t beat (Not Good)

Next Steps
Provides information on where to find additional resources.

Description

To learn more about MPLAB Harmony, refer to Volume |: Getting Started With MPLAB Harmony > What is MPLAB Harmony?
Revisit Volume [: Getting Started With MPLAB Harmony > Guided Tour for suggestions on where to begin learning more.

Try an existing MPLAB Harmony demonstration that runs on a PIC32MZ EF Starter Kit:

Peripheral Examples (<install-dir>/apps/examples/):

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06 29

Volume I: Getting Started With MPLAB Harmony Creating Your First Project

peripheral

Basic Bootloader (<install-dir>/apps/bootloader/):
basic

Graphics with MEB Il Display (<install-dir>/apps/gfx/):
e aria_quickstart

e aria_showcase

* aria_weather_forecast

TCP/IP Stack (<install-dir>/apps/tcpip/):
» tcpip_client_server

e tcpip_tcp_server

e tcpip_udp_client

» tcpip_udp_client_server

e tcpip_udp_server

USB Device (<install-dir>/apps/usb/device/):
¢ cdc_msd_basic

e cdc_serial_emulator

* hid_basic

« hid_joystick

* hid_msd_basic

e msd_basic

e hid_mouse

USB Host (<install-dir>/apps/usb/host):
* audio_speaker

e cdc_basic

e cdc_msd

* hid_basic_keyboard

* hid_basic_mouse_usart

e hub_msd

e msd_basic

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

Next Steps

30

Index

Index

A

Adding Customized Assert and Exception Handling 25
Asserts Under the Debugger 14

C

Creating Your First Project 3
Overview 3

E

Enabling USART Output Using System Console and Debug System
Services 22

Exception Handling in the Debugger 17
G

Getting Started 3, 14, 20

N

Next Steps 29

@)

Overview 3, 14

P

Part I: Creating Your First MPLAB Harmony Application in MHC 3
Part II: Debugging With Your Project 14
Part Ill: Debugging While Running Stand-alone 20

S

Step 1: Setting Up Your Hardware 3

Step 2: Create a New MPLAB X IDE Project 4

Step 3: Configure MPLAB Harmony and the Application 5

Step 4: Generate the Configured Source Code 6

Step 5: Use a Delay Timer to Toggle an LED on the Target Board 7
Step 6: Add the Timer System Service to Your Project 8

Step 7: Add the Timer System Service Source Code to Your Project 9
Step 8: Use the Timer System Service in Your Application 10

Step 9: Build and Run Your Project 13

T

Tips 29
Tutorial Steps 3, 14, 22

\Y,

Volume [: Getting Started With MPLAB Harmony Libraries and
Applications 2

© 2013-2017 Microchip Technology Inc. MPLAB Harmony v2.06

31

	MPLAB Harmony Help
	Volume I: Getting Started With MPLAB Harmony Libraries and Applications
	Creating Your First Project
	Part I: Creating Your First MPLAB Harmony Application in MHC
	Overview
	Getting Started
	Tutorial Steps
	Step 1: Setting Up Your Hardware
	Step 2: Create a New MPLAB X IDE Project
	Step 3: Configure MPLAB Harmony and the Application
	Step 4: Generate the Configured Source Code
	Step 5: Use a Delay Timer to Toggle an LED on the Target Board
	Step 6: Add the Timer System Service to Your Project
	Step 7: Add the Timer System Service Source Code to Your Project
	Step 8: Use the Timer System Service in Your Application
	Step 9: Build and Run Your Project

	Part II: Debugging With Your Project
	Overview
	Getting Started
	Tutorial Steps
	Asserts Under the Debugger
	Exception Handling in the Debugger

	Part III: Debugging While Running Stand-alone
	Getting Started
	Tutorial Steps
	Enabling USART Output Using System Console and Debug System Services
	Adding Customized Assert and Exception Handling

	Tips
	Next Steps

	Index

