
 Atmel QTouch

 SAM C20 Safety Library

 USER GUIDE

Introduction

Atmel® QTouch® Peripheral Touch Controller (PTC) offers built-in hardware
for buttons, sliders, and wheels. PTC supports both mutual and self
capacitance measurement without the need for any external component. It
offers superb sensitivity and noise tolerance, as well as self-calibration and
minimizes the sensitivity tuning effort by the user.

The PTC is intended for acquiring capacitive touch sensor signals. The
external capacitive touch sensor is typically formed on a PCB, and the
sensor electrodes are connected to the analog charge integrator of the PTC
using the device I/Opins. The PTC supports mutual capacitance sensors
organized as capacitive touch matrices in different X-Y configurations,
including Indium Tin Oxide (ITO) sensor grids. In mutual capacitance mode,
the PTC requires one pin per X line(drive line) and one pin per Y line (sense
line). In self capacitance mode, the PTC requires only one pin with a Y-line
driver for each self-capacitance sensor.

The PTC supports two sets of libraries, the QTouch Library and the QTouch
Safety Library. The QTouch Library supports both mutual and self
capacitance methods. The QTouch Safety Library is available for both GCC
and IAR. The QTouch Safety Library also supports both the mutual
capacitance method and self capacitance method along with the additional
safety features.

Features

• Implements low-power, high-sensitivity, environmentally robust
capacitive touch buttons, sliders, and wheels

• Supports mutual capacitance and self capacitance sensing
• Upto 256 channels in mutual-capacitance mode
• Upto 32 channels in self-capacitance mode
• Two pin per electrode in mutual capacitance mode - with no external

components
• One pin per electrode in self capacitance mode - with no external

components
• Load compensating charge sensing

Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

• Parasitic capacitance compensation for mutual capacitance mode
• Adjustable gain for superior sensitivity
• Zero drift over the temperature and VDD range
• No need for temperature or VDD compensation
• Hardware noise filtering and noise signal desynchronization for high conducted immunity
• Supports moisture tolerance
• Atmel provided QTouch Safety Library firmware
• Supports Sensor Enable and Disable at Runtime
• Supports Quick Reburst Feature for Faster Response Time
• Low Power Sensor Support

The following features are available only in the QTouch Safety Library:
• CRC protection
• Logical program flow sequence
• Memory protection using double inverse mechanism
• Library RAM relocation and
• Compile-time and Run-time check

For more information about the capacitance related technological concepts, Refer Chapter 4 in Atmel
QTouch LibraryPeripheral Touch Controller User Guide [42195] available at www.atmel.com.

Product Support

For assistance related to QTouch capacitive touch sensing software libraries and related issues, contact
your localAtmel sales representative or log on to myAtmel Design Support portal to submit a support
request or access acomprehensive knowledge base. If you don’t have a myAtmel account, please visit
http://www.atmel.com/design-support/ to create a new account byclicking on “Create Account” in the
myAtmel menu at the top of the page. Once logged in, you will be able to access the knowledge base,
submit new support cases from the myAtmel page orreview status of your ongoing cases.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

2

http://www.atmel.com
http://www.atmel.com/design-support/

Table of Contents

Introduction..1

Features.. 1

1. Development Tools.. 5
1.1. Device Variants Supported...5

2. QTouch Safety Library .. 6
2.1. API Overview..6
2.2. Sequence of Operation.. 8
2.3. Program Flow .. 9
2.4. Configuration Parameters...10
2.5. Touch Library Error Reporting Mechanism...25
2.6. Touch Library Program Counter Test..25
2.7. CRC on Touch Input Configuration...27
2.8. Double Inverse Memory Check.. 30
2.9. Application Burst Again Mechanism...35
2.10. Memory Requirement...35
2.11. API Execution Time.. 37
2.12. Error Intepretation...41
2.13. Data and Function Protection...44
2.14. Moisture Tolerance... 45
2.15. Quick Re-burst..47
2.16. Reading Sensor States...47
2.17. Touch Library Suspend Resume Operation... 48
2.18. Drifting On Disabled Sensors... 50
2.19. Capacitive Touch Low Power Sensor...51

3. QTouch Safety Library API.. 57
3.1. Typedefs...57
3.2. Macros..57
3.3. Enumerations... 58
3.4. Data Structures...66
3.5. Global Variables... 74
3.6. Functions..76

4. FMEA...86
4.1. Double Inverse Memory Check.. 86
4.2. Memory Requirement...86
4.3. API Execution Time.. 87
4.4. Error Interpretation... 89
4.5. Data and Function Protection...89
4.6. FMEA Considerations...90

5. FMEA API..91

5.1. Typedefs...91
5.2. Enumerations... 91
5.3. Data Structures...91
5.4. Global Variables... 97
5.5. Functions..97
5.6. Macros..104

6. System...105
6.1. Relocating Touch Library and FMEA RAM Area.. 105
6.2. API Rules..108
6.3. Safety Firmware Action Upon Fault Detection... 108
6.4. System Action Upon Fault Detection..108
6.5. Touch Library and FMEA Synchronization... 108
6.6. Safety Firmware Package...110
6.7. SAM Safety Firmware Certification Scope..110
6.8. Hazard Time..111
6.9. ASF Dependency..111
6.10. Robustness and Tuning.. 111
6.11. Standards compliance.. 112
6.12. Safety Certification..112

7. Known Issues...114

8. References...115

9. Revision History... 116

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

4

1. Development Tools
The following development tools are required for QTouch Safety Library development using Atmel
SMART™ | SAM C20 devices.

Development Environment:

• IAR Embedded Workbench for ARM® 7.40.5.9739 for IAR Compiler
• Atmel Software Framework 3.30.1
• Atmel Studio 7.0.1006 for GCC Compiler

1.1. Device Variants Supported
QTouch Safety Library for SAM Devices is available for the following device variants.

Series Variant

SAM C20 J Series ATSAMC20J18A, ATSAMC20J17A, ATSAMC20J16A

SAM C20 G Series ATSAMC20G18A, ATSAMC20G17A, ATSAMC20G16A, ATSAMC20G15A

SAM C20 E Series ATSAMC20E18A, ATSAMC20E17A, ATSAMC20E16A, ATSAMC20E15A

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

5

2. QTouch Safety Library
Atmel QTouch Safety Library makes it simple for developers to embed capacitive-touch button, slider,
wheel functionality into general-purpose Atmel SAM C20 microcontroller applications. The royalty-free
QTouch Safety Library provides library files for each device and supports different numbers of touch
channels, enabling both flexibility and efficiency in touch applications.

QTouch Safety Library can be used to develop single-chip solutions for many control applications, or to
reduce chip count in more complex applications. Developers have the latitude to implement buttons,
sliders, and wheels in a variety of combinations on a single interface.
Figure 2-1. Atmel QTouch Safety Library

2.1. API Overview
QTouch Safety Library API for PTC can be used for touch sensor pin configuration, acquisition parameter
setting as well as periodic sensor data capture and status update operations. The QTouch Safety Library
interfaces with the PTC module to perform the required actions. The PTC module interfaces with the
external capacitive touch sensors and is capable of performing mutual and self capacitance method
measurements.
Note:  From this section onwards, the program elements that are common to both mutual and self
capacitance technologies are represented using XXXXCAP or xxxxcap.

For normal operation, it is sufficient to use the Regular APIs. The Helper APIs provides additional
flexibility to the user application. The available APIs are listed in the following table.

Table 2-1. Regular and Helper APIs

Regular API Helper API

touch_xxxxcap_sensors_init touch_xxxxcap_sensor_get_delta

touch_xxxxcap_di_init touch_xxxxcap_sensor_update_config

touch_xxxxcap_sensor_config touch_xxxxcap_sensor_get_config

touch_xxxxcap_sensors_calibrate touch_xxxxcap_update_global_param

touch_xxxxcap_sensors_measure touch_xxxxcap_get_global_param

touch_xxxxcap_sensors_deinit touch_xxxxcap_update_acq_config

touch_xxxxcap_get_libinfo

touch_xxxxcap_calibrate_single_sensor

touch_xxxxcap_sensor_disable

touch_xxxxcap_sensor_reenable

touch_lib_pc_test_magic_no_1

touch_lib_pc_test_magic_no_2

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

6

Regular API Helper API

touch_lib_pc_test_magic_no_3

touch_lib_pc_test_magic_no_4

touch_calc_xxxcap_config_data_integrity

touch_test_xxxcap_config_data_integrity

touch_xxxxcap_cnfg_mois_mltchgrp

touch_xxxxcap_cnfg_mois_threshold

touch_xxxxcap_mois_tolrnce_enable

touch_xxxxcap_mois_tolrnce_disable

touch_library_get_version_info

touch_disable_ptc

touch_enable_ptc

touch_suspend_ptc

touch_resume_ptc

touch_mutual_lowpower_sensor_enable_event_measure

touch_self_lowpower_sensor_enable_event_measure

touch_xxxxcap_lowpower_sensor_stop

touch_xxxxcap_mois_tolrnce_quick_reburst_enable

touch_xxxxcap_mois_tolrnce_quick_reburst_disable

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

7

Figure 2-2. QTouch Safety library Overview

2.2. Sequence of Operation
The application periodically initiates a touch measurement on either mutual capacitance or self
capacitance sensors. At the end of each sensor measurement, the PTC module generates an end of
conversion (EOC) interrupt. The touch measurement is performed sequentially until all the sensors are
measured. Additional post-processing is performed on the measured sensor data to determine the touch
status of the sensors (keys/rotor/slider) position. The post processing determines the position value of the
sensors and the callback function is then triggered to indicate completion of measurement.

The recommended sequence of operation facilitates the CPU to either sleep or perform other functions
during touch sensor measurement.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

8

Figure 2-3. QTouch Application Sequence

2.3. Program Flow
Before using the QTouch Safety Library API, configure the PTC module clock generator source. The PTC
module clock can be generated using one of the eight generic clock generators (GCLK0-GCLK7).
Configure the corresponding generic clock multiplexer such that the PTC module clock is set between
400 kHz and 4 MHz.

The touch_xxxxcap_sensors_init API initializes the QTouch Safety Library as well as the PTC
module. Additionally, it initializes the capacitance method specific pin, register, and global sensor
configuration.

The touch_xxxxcap_di_init API initializes the memory for different pointers in the
touch_lib_xxxcap_param_safety structure.

The touch_xxxxcap_sensor_config API configures the individual sensor. The sensor specific
configuration parameters can be provided as input arguments to this API.

The touch_xxxxcap_sensors_calibrate API calibrates all the configured sensors and prepares the
sensors for normal operation. The auto tuning type parameter is provided as input argument to this API.

The touch_xxxxcap_sensors_measure API initiates a touch measurement on all the configured
sensors. The sequence of the mandatory APIs are depicted in the following illustration.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

9

Figure 2-4. API Usage

Yes

No

Call in
loop

time_to_measure_touch

Configure multiple Touch
sensors

touch_xxxxcap_di_init()

touch_xxxxcap_sensors_config()

touch_xxxxcap_sensors_calibrate()

PTC ISR
(Sensors

Calibration)
filter_callback(), if enabled

measure_complete_callback(),
measured data and Touch
Status

touch_xxxxcap_sensors_measure(NO
RMAL_ACQ_MODE)

Host Application code/ SLEEP

Is Calibration
completed?

PTC ISR
(Normal

measurement)
filter_callback(), if enabled

measure_complete_callback(),
measured data and Touch Status

touch_xxxxcap_sensors_measure(NO
RMAL_ACQ_MODE)

Host Application code/ SLEEP

Calibration starts when
first time call to measure
sensors API after
sensors calibrate API.

Subsequent calls to
measure sensors API
after calibration will
perform normal
measurement.

touch_xxxxcap_sensors_init()

Application wants
immediate

measurement

No

Yes

If Library Burst Again Flag set to 1 internally

For configuring multiple sensors, touch_xxxxcap_config_sensor must be called every time to
configure each sensor.

Note:  Maximum CPU clock frequency for SAMC20 device is 48MHz. In SAMC20 devices with Revision-
B, using OSC48M internal oscillator running at 48MHz is not recommended. Refer Errata reference:
14497 in [2] for more details. DPLL can be used in such conditions, but it is recommended to use the
SAMC20 devices of latest Revision. Also in SAMC20 devices with Revision-C DPLL has a large clock
jitter and it is not recommended to be used for PTC. OSC48M as main clock source and PTC clock
source can be used. For information on later revisions and more details product support can be contacted
at http://www.atmel.com/design-support/

2.4. Configuration Parameters
The following parameters are available in the QTouch Safety Library for configuring capacitance.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

10

http://www.atmel.com/design-support/

Parameter Parameter Macros Description

Pin Configuration DEF_MUTLCAP_NODES Number of Mutual Capacitance nodes.

DEF_SELFCAP_LINES Number of Self Capacitance lines.

Sensor
Configuration

DEF_XXXXCAP_NUM_CHANNELS Number of Channels.

DEF_XXXXCAP_NUM_SENSORS Number of Sensors.

DEF_XXXXCAP_NUM_ROTORS_SLIDERS Number of Rotor/Sliders.

Acquisition
Parameters

DEF_XXXXCAP_FILTER_LEVEL_PER_N
ODE

The filter level setting controls the
number of samples collected to resolve
each acquisition.This is applicable for
individual channel

DEF_XXXXCAP_GAIN_PER_NODE Gain is applied for an individual channel
to allowa scaling-up of the touch delta.

DEF_XXXXCAP_AUTO_OS_PER_NODE Auto oversample controls the
automaticoversampling of sensor
channels when unstable signals are
detected. This is applicable forindividual
channel

DEF_XXXXCAP_FREQ_MODE Frequency mode setting allows users
toconfigure the bursting waveform
characteristicsto get better noise
performance for the system.

DEF_XXXXCAP_CLK_PRESCALE_PER_N
ODE

This method is used to select the PTC
prescaler.This is applicable for individual
channel.

DEF_XXXXCAP_SENSE_RESISTOR_PER
_NODE

This method is used to select the sense
resistor value. This is applicable for
individual channel.

DEF_XXXXCAP_CC_CAL_CLK_PRESCAL
E_PER_NODE

This method is used to select the PTC
prescalar for CC calibration. This is
applicable for individual channel.

DEF_XXXXCAP_CC_CAL_SENSE_RESIS
TOR_PER_NODE

This method is used to select the sense
resistorfor CC calibration. This is
applicable for individual channel

DEF_XXXXCAP_HOP_FREQS Frequency hops to be performed.
Maximum three frequency hops is
possible.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

11

Parameter Parameter Macros Description

Sensor Global
Parameters

DEF_XXXXCAP_DI Capacitance sensor detect integration
(DI) limit.Range: 0u to 255u.

DEF_XXXXCAP_TCH_DRIFT_RATE Capacitance sensor towards touch drift
rate.Range: 1u to 127u.

DEF_XXXXCAP_ATCH_DRIFT_RATE Capacitance sensor away from touch
drift rate.Range: 1u to 127u

DEF_XXXXCAP_MAX_ON_DURATION Capacitance sensor maximum ON time
duration.Range: 0u to 255u.

DEF_XXXXCAP_DRIFT_HOLD_TIME Capacitance Sensor drift hold
time.Range: 1u to 255u

DEF_XXXXCAP_ATCH_RECAL_DELAY Capacitance sensor away from touch
recalibration delay.Range: 0u to 255u.
Specifying a value of 0u would disable
the away from touch recalibration
feature.

DEF_XXXXCAP_ATCH_RECAL_THRESHO
LD

Capacitance sensor away from touch
recalibration threshold

DEF_XXXXCAP_CAL_SEQ1_COUNT Software calibration sequence counter
1.

DEF_XXXXCAP_CAL_SEQ2_COUNT Software calibration sequence counter
2.

DEF_XXXXCAP_NOISE_MEAS_SIGNAL_
STABILITY_LIMIT

Defines the stability of the signals for
noise measurement.Range: 1u to
1000u.

DEF_XXXXCAP_NOISE_LIMIT This parameter is used to select the
noise limitvalue to trigger sensor lockout
functionality.Range: 1u to 255u

Sensor Global
Parameters

DEF_XXXXCAP_LOCKOUT_SEL This parameter is used to select the
lockout functionality method.Range: 0u
to 2u

DEF_XXXXCAP_LOCKOUT_CNTDOWN Defines the number of measurements
after which the sensor is unlocked for
touch detection.Range: 1u to 255u

DEF_XXXXCAP_AUTO_OS_SIGNAL_STA
BILITY_LIMIT

Defines the stability limit to trigger the
Auto-Oversamples.Range: 1u to 1000u.

DEF_XXXXCAP_FREQ_AUTO_TUNE_SIG
NAL_STABILITY_LIMIT

Defines the stability limit of signals for
frequency auto tune decision making.
Range: 1u to 1000u

DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_
CNT

This parameter is used to trigger the
frequency auto tune.Range: 1u to 255u.

DEF_XXXX_CAP_CSD_VALUE Charge Share Delay.Range: 0u to 250.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

12

Parameter Parameter Macros Description

Common
Parameters

DEF_TOUCH_MEASUREMENT_PERIOD_M
S

Used for Touch measurement
periodicity.

DEF_TOUCH_PTC_ISR_LVL PTC Module interrupt level.

DEF_XXXXCAP_NOISE_MEAS_ENABLE This parameter is used to enable or
disable the noise measurement.Range:
0 or 1.

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENA
BLE

This parameter is used to enable and
disable the frequency auto tune
functionality.Range: 0 or 1.

DEF_XXXXCAP_NOISE_MEAS_BUFFER_
CNT

This parameter is used to select the
buffer count for noise measurement
buffer.Range: 3 to 10.

Low Power
Parameters

DEF_LOWPOWER_SENSOR_EVENT_PERI
ODICITY

Periodicity of the generated Events.

DEF_LOWPOWER_SENSOR_DRIFT_PERI
ODICITY_MS

Low Power Drift Period in milliseconds.

DEF_LOWPOWER_SENSOR_ID Sensor ID of the Low Power Sensor.

MoistureTolerance
and Quick re-burst
Parameters

DEF_XXXXCAP_NUM_MOIS_GROUPS This parameter is used to configure the
number of moisture groups.

DEF_XXXXCAP_MOIS_TOLERANCE_ENA
BLE

This parameter is used to enable or
disable the Moisture tolerance feature.

DEF_XXXXCAP_QUICK_REBURST_ENAB
LE

This parameter id used to enable or
disable the Quick re-burst feature.

DEF_XXXXCAP_MOIS_QUICK_REBURST
_ENABLE

Enable or disable quick re-burst feature
within a given moisture group.

2.4.1. Pin Configuration

2.4.1.1. Mutual Capacitance
Mutual capacitance method uses a pair of sensing electrodes for each touch channel. These electrodes
are denoted as X and Y lines. Capacitance measurement is performed sequentially in the order in which
touch (X-Y) nodes are specified.

Mutual capacitance channel (X-Y channels)
• SAM C20 J (64 pin): up to 16(X) x 16(Y) channels
• SAM C20 G (48 pin): up to 12(X) x 10(Y) channels
• SAM C20 E (32 pin): up to 10(X) x 6(Y) channels

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

13

Figure 2-5. Mutual Capacitance Sensor Arrangement

To reduce noise issues due to EMC, use a series resistor with value of 1Kohm on X and Y lines.

2.4.1.2. Self Capacitance
Self capacitance method uses a single sense electrode for each touch channel, denoted by a Y line.
Capacitancemeasurement is performed sequentially in the order in which Y lines are specified in the
DEF_SELFCAP_LINES configuration parameter. Self capacitance touch button sensor is formed using a
single Y line channel, while a touch rotor or slider sensor can be formed using three Y line channels.

Self capacitance channel (Y sense lines)

• SAM C20 J (64 pin): up to 32 channels
• SAM C20 G (48 pin): up to 22 channels
• SAM C20 E (32 pin): up to 16 channels

Figure 2-6. Self Capacitance - Sensor Arrangement

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

14

Figure 2-7. Self Capacitance - Channel to Sensor Mapping

Y sense line can be specified using the configuration parameter DEF_SELFCAP_LINES in non-sequential
order. The touch sensors should be enabled in the sequential order of the channels specified using the
touch_xxxxcap_sensor_config() API.

For improved EMC performance, a series resistor with value of 1Kohm should be used on X and Y lines.
For more information about designing the touch sensor, refer to Buttons, Sliders and Wheels Touch
Sensor Design Guide available at www.atmel.com.

2.4.2. Sensor Configuration
A mutual capacitance button is formed using a single X-Y channel, while a rotor or slider can be formed
using three toeight X-Y channels.A self capacitance button is formed using a single Y channel, while a
rotor or slider can be formed using three Y channels.For more information about designing the touch
sensor, refer to Buttons, Sliders and Wheels Touch Sensor DesignGuide [QTAN0079] (www.atmel.com).

2.4.3. Acquisition Parameters
Filter Level Setting

The filter level setting controls the number of samples acquired to resolve each acquisition. A higher filter
level setting provides improved signal to noise ratio even under noisy conditions. However, it increases
the total time for measuring the signal, which results in increased power consumption. This is applicable
for individual channel.

Auto Oversample Setting

Auto oversample controls the automatic oversampling of sensor channels when unstable signals are
detected with the default Filter level setting. Enabling Auto oversample results in Filter level x Auto
Oversample number ofsamples measured on the corresponding sensor channel when an unstable signal
is observed. In a case where Filter level is set to FILTER_LEVEL_4 and Auto Oversample is set to
AUTO_OS_4, 4 oversamples are collected with stable signal values and 16 oversamples are collected
when unstable signal is detected. Auto Oversampling Signal Stability will be determined by the
auto_os_sig_stability_limit variable. A higher Auto oversample setting provides improved signal
to noise ratio under noisy conditions, while increasing the total time for measurement resulting in
increased power consumption and response time. Auto oversamples can be disabled to obtain best
power consumption. Auto oversamples should be configured for individual channel.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

15

http://www.atmel.com
http://www.atmel.com

Figure 2-8. Auto Oversamples

Auto Tuning Options

Auto tuning parameter passed to the calibration API allows users to trade-off between power
consumption and noise immunity. Following auto tuning options are available:

• AUTO_TUNE_NONE - Auto tuning disabled
• AUTO_TUNE_PRSC - Auto tuning of the PTC prescaler
• AUTO_TUNE_RSEL - Auto tuning of the series resistor

When Auto tuning of the series resistor is selected the PTC is optimized for fastest operation or lowest
power operation.The PTC runs at user defined speed and the series resistor is set to the optimum value
which still allows full charge transfer. Auto tuning will be performed on individual channel series resistor
settings. DEF_XXXXCAP_SENSE_RESISTOR_PER_NODE will be tuned by the QTouch Safety Library.

When Auto tuning of PTC prescaler is selected the performance is optimized for best noise immunity.
During calibration,the QTouch Safety Library carries out auto tuning to ensure full charge transfer for each
sensor, by adjusting either the internal series resistor or the PTC clock prescaler. The internal series
resistor is set to user defined value and the PTC prescaler is adjusted to slow down the PTC operation to
ensure full charge transfer. Auto tuning will be performed on individual channel PTC prescaler settings.
DEF_XXXXCAP_CLK_PRESCALE_PER_NODE will be tuned by the QTouch Safety Library.

Manual tuning can also be performed by passing AUTO_TUNE_NONE as parameter to the calibration
function. When manual tuning option is selected, the user defined values of PTC prescaler and series
resistor on individual channels areused for PTC operation.

Frequency Mode Setting

Frequency mode allows users to configure the bursting waveform characteristics for better noise
performance in the system. Following frequency modes are available:

• FREQ_MODE_NONE - Frequency mode is disabled

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

16

• FREQ_MODE_HOP - Frequency mode hopping
• FREQ_MODE_SPREAD - Frequency mode spread
• FREQ_MODE_SPREAD_MEDIAN - Frequency mode spread median

When frequency mode none option is selected, the PTC runs at constant speed selected by the user (in
manual tuning mode) or auto tuned frequency (in PTC rescale tune mode). In this case, the median filter
is not applied.

When frequency mode hopping option is selected, the PTC runs at a frequency hopping cycle selected by
the user (in manual tuning mode) or auto tuned frequency cycle (in PTC prescaler tune mode). In this
case, the median filter is applied.

When frequency mode spread spectrum option is selected, the PTC runs with spread spectrum enabled
on frequency selected by the user (in manual tuning mode) or auto tuned frequency (in PTC prescaler
tune mode). In this case, the median filter is not applied.

When frequency mode spread spectrum median option is selected, the PTC runs with spread spectrum
enabled on frequency selected by the user (in manual tuning mode) or auto tuned frequency (in PTC
prescaler tune mode). In this case, the median filter is applied.

Gain Setting

Gain setting is applied for an individual channel to allow a scaling-up of the touch delta upon contact.

2.4.4. Sensor Global Parameters
For an overview of the sensor global and sensor specific parameters, refer Section 4.2.2 and Section 4.3
of the QTouch General Library User Guide (www.atmel.com)

QTouch Safety Library Name Conventional QTouch Library Name

DEF_XXXXCAP_TCH_DRIFT_RATE
Towards Touch Drift Negative Drift

DEF_XXXXCAP_ATCH_DRIFT_RATE
Away From Touch Drift Positive Drift

DEF_XXXXCAP_ATCH_RECAL_THRESHOLD
Away From Touch Recalibration Threshold Recalibration Threshold

DEF_XXXXCAP_ATCH_RECAL_DELAY
Away From Touch Recalibration delay Positive Recalibration Delay

DEF_XXXXCAP_CAL_SEQ1_COUNT
Calibration Sequence Counter 1 Software Calibration Counter 1

DEF_XXXXCAP_CAL_SEQ2_COUNT
Calibration Sequence Counter 2 Software Calibration Counter 2

Note:  Ensure that the value of DEF_XXXXCAP_CAL_SEQ2_COUNT is always less than the value
specified in DEF_XXXXCAP_CAL_SEQ1_COUNT.

Refer Noise Immunity Global Parameters for more information about noise immunity global parameter.

2.4.5. Common Parameters
Interrupt Priority Level Setting

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

17

http://www.atmel.com

The Nested Vectored Interrupt Controller (NVIC) in the SAM C20 has four different priority levels. The
priority level of the PTC end of conversion ISR can be selected based on application requirements to
accommodate time critical operations.

To avoid stack overflow, ensure that adequate stack size has been set in the user application.

Measurement Period Setting

The measurement period setting is used to configure the periodic interval for touch measurement.

Low power Sensor Event Periodicity

When the CPU returns to standby mode from active, the sensor configured as the low power sensor is
scanned at this interval. A high value for this parameter will reduce power consumption but increase
response time for the low power sensor.

The following macros are used for configuring the low power sensor event periodicity:
• The macro LOWPOWER_PER0_SCAN_3_P_9_MS sets the scan rate at 3.9ms
• The macro LOWPOWER_PER1_SCAN_7_P_8_MS sets the scan rate at 7.8ms
• The macro LOWPOWER_PER2_SCAN_15_P_625_MS sets the scan rate at 15.625ms
• The macro LOWPOWER_PER3_SCAN_31_P_25_MS sets the scan rate at 31.25ms
• The macro LOWPOWER_PER4_SCAN_62_P_5_MS sets the scan rate at 62.5ms
• The macro LOWPOWER_PER5_SCAN_125_MS sets the scan rate at 125ms
• The macro LOWPOWER_PER6_SCAN_250_MS sets the scan rate at 250ms
• The macro LOWPOWER_PER7_SCAN_500_MS sets the scan rate at 500ms

Low power Sensor Drift Periodicity

This parameter configures the scan interval for a single active measurement during low power mode. This
active measurement is required for reference tracking of low power sensor and all enabled sensors.

Setting Configuration Name Data Type Unit Min Max Typic
al

Low power sensor drift rate DEF_LOWPOWER_SENSOR_DRIF
T_PERIODICITY_MS

uint16_t milliseconds 0 65535 2000

Low power sensor ID

The macro DEF_LOWPOWER_SENSOR_ID is used to configure a sensor as low power sensor. Only one
sensor can be configured as low power sensor. Only a key sensor can be used as a Low power sensor.

2.4.6. Noise Immunity Global Parameters

2.4.6.1. Noise Measurement Parameters

Noise Measurement Enable Disable

The DEF_XXXXCAP_NOISE_MEAS_ENABLE parameter is used to enable or disable the noise
measurement.

• 1 - Noise measurement will be enabled.
• 0 - Noise measurement will be disabled and lockout functionality will not be available.

Noise Measurement Signal Stability Limit

The parameter DEF_XXXXAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT defines the stability of the
signals for noise measurement.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

18

Signal values can change from sample to sample during a window buffer period. The difference between
adjacent buffer value is compared to the user configured stability limit.

Noise is reported only when two changes occur within the specified window period and only if both of
which exceed the stability limit.

Range: 1 to 1000

Noise Measurement Limit

The DEF_XXXXCAP_NOISE_LIMIT parameter is used to select the noise limit value to trigger sensor
lockout functionality.

There are two purposes for this parameter:
• If the noise level calculated during a running window exceeds DEF_XXXXCAP_NOISE_LIMIT, then

the corresponding sensors are declared noisy and sensor global noisy bit is set as ‘1’.
• If the lockout is enabled, and the noise level calculated during a running window exceeds

DEF_XXXXCAP_NOISE_LIMIT, then system triggers the sensor lockout functionality.
Range: 1 to 255

Noise Measurement Buffer Count

The DEF_XXXXCAP_NOISE_MEAS_BUFFER_CNT parameter is used to select the buffer count for noise
measurement buffer.

Range: 3 to 10 (If N number of samples differences have to be checked, define this parameter as “N +
1”).

If N = 4 then set DEF_XXXXCAP_NOISE_MEAS_BUFFER_CNT 5u

2.4.6.2. Sensor LockOut Parameters
Sensor Lockout Selection

The DEF_XXXXCAP_LOCKOUT_SEL parameter is used to select the lockout functionality method.
• If DEF_XXXXCAP_LOCKOUT_SEL is set to SINGLE_SENSOR_LOCKOUT and a sensor’s noise level is

greater than DEF_XXXXCAP_NOISE_LIMIT, then corresponding sensor is locked out from touch
detection and drifting is disabled.

• If DEF_XXXXCAP_LOCKOUT_SEL is set to GLOBAL_SENSOR_LOCKOUT and any sensor’s noise
level is greater than DEF_XXXXCAP_NOISE_LIMIT, then all sensors are locked out from touch
detection and drifting is disabled.

• If DEF_XXXXCAP_LOCKOUT_SEL is set to NO_LOCKOUT, then lockout feature is disabled.
Note: 

1. Global sensors noisy bit will be available for SINGLE_SENSOR_LOCKOUT and
GLOBAL_SENSOR_LOCKOUT.

2. Global sensors noisy bit will not be available for NO_LOCK_OUT.

Range: 0 to 2

Sensor Lockout Countdown

If the sensor signal moves from noisy to a good condition and stays there for a
DEF_XXXXCAP_LOCKOUT_CNTDOWN number of measurements, the sensor is unlocked and sensors are
ready for touch detection and drifting is enabled.
Note:  This parameter is valid only for global lockout.
Range: 1 to 255

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

19

2.4.6.3. Frequency Auto Tune Parameters

Frequency Auto Tune Enable Disable

The DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE parameter will enable and disable the frequency auto
tune functionality.

This feature is applicable only for FREQ_MODE_HOP.
• 1 - Frequency auto tune will be enabled
• 0 - Frequency auto tune will be disabled

Frequency Auto Tune Signal Stability

The DEF_XXXXCAP_FREQ_AUTO_TUNE_SIGNAL_STABILITY_LIMIT parameter defines the stability
limit of signals for deciding the Frequency auto tune.

Range: 1 to 1000

Frequency Auto Tune In Counter

The DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT parameter is used to trigger the frequency auto tune.If
sensor signal change at each frequency exceeds the value specified as
DEF_XXXXCAP_FREQ_AUTO_TUNE_SIGNAL_STABILITY_LIMIT for
DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT, then frequency auto tune will be triggered at this frequency.

Range: 1 to 255.
Note:  The Frequency Auto Tune feature and related parameters are available only in FREQ_MODE_HOP
mode.

2.4.7. Noise Immunity Feature

Noise Measurement

Noise is measured on a per-channel basis after each channel acquisition, using historical data on a rolling
window of successive measurements. Reported noise to exclude the instance of an applied or removed
touch contact, but the noise indication must react sufficiently fast that false touch detection before noise
lockout is prevented.

Signal change from sample to sample during the window buffer is compared to the stability limit. Noise is
reported only when two changes occur within the window period and both of which exceed the
DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT limit.

Noise is calculated using the following algorithm:

 if (swing count > 2){Nk = ((|Sn – Sn-1| > DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY))? (0):
 (|Sn-Sn-1|- DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY)).}
 else
 {Nk = 0}

The swing count is number of signal changes that exceed
DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT limit during buffer window period.

When the measured noise exceeds DEF_XXXXCAP_NOISE_LIMIT, the touch library locks out sensors,
reports notouch detection and drifting is stopped. Noise measurement is provided for all the channels.
Each byte in p_xxxxcap_measure_data-> p_nm_ch_noise_val provides the noise level
associated with that channel. Noise indication is provided for all the sensors configured by the application.
A bit is available in p_xxxxcap_measure_data-> p_sensor_noise_status for each sensor to
determine whether the sensor is noisy or not.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

20

The following code snippet provides the sample code to read the noise status of a particular sensor.

 If (Double_Inverse_Check is passed on p_xxxxcap_measure_data->p_sensor_noise_status)
 {
 If((GET_XXXXCAP_SENSOR_NOISE_STATUS(SENSOR_NUMBER) == 0)
 {
 /* Sensor is stable */
 }
 Else
 {
 /* Sensor is Unstable */
 }
 else
 {
 /* Take fault action on Double inverse check failure */
 }

Note:  Double inverse check must be performed on p_xxxxcap_measure_data->
p_sensor_noise_status variable before using those variables.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

21

Figure 2-9. Noise Calculation

2.4.8. Sensor Lockout
This feature locks out the sensors when the measured noise exceeds DEF_XXXXCAP_NOISE_LIMIT and
does not report a touch. This prevents post-processing. So, the high level of noise cannot cause the
channel to drift or recalibrate incorrectly.

Safety library presents two types of lockout features:

Global sensor lockout When the noise level of a sensor is greater than DEF_XXXXCAP_NOISE_LIMIT,
all the sensors are locked out from touch detection and drifting is disabled. Sensor signal changes from
noisy to a good condition and stays there for a DEF_XXXXCAP_LOCKOUT_CNTDOWN number of
measurements, the sensor is unlocked for touch detection and alsoavailable for post processing.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

22

Single sensor lockout When the noise level of a sensor is greater than DEF_XXXXCAP_NOISE_LIMIT,
corresponding sensor is locked out from touch detection and drifting is disabled. Sensor’s signal moves
from noisy to a good condition and the noise value itself becomes the count-down to clear lockout. The
count-out time after a noise spike is proportional to the size of the spike.

2.4.9. Frequency Auto Tune
The frequency auto tune feature provides the best quality of signal data for touch detection by
automatically selecting acquisition frequencies showing the best SNR in FREQ_MODE_HOP mode. During
each measurement cycle, the signal change since the last acquisition at the same frequency is recorded
for each sensor. After the cycle, when all sensors have been measured at the present acquisition
frequency, the largest signal variation of all sensors is stored as the variance for that frequency stage.

The variance for each frequency stage is compared to the
DEF_XXXXCAP_FREQ_AUTO_TUNE_SIGNAL_STABILITY_LIMIT limit, and if the limit is exceeded, a
per-stage counter is incremented. If the measured variance is lower than the limit, the counter is
decremented, if it has not been set as zero. If all frequencies display noise exceeding the stability limit,
only the counter for the specific frequency stage with the highest variance is incremented after its cycle.

When a frequency counter reaches the DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT (auto-tune count in
variable), that frequency stage is selected for auto-tuning. A new frequency selection is applied and the
counters and variances for all frequencies are reset. After a frequency has been selected for auto-tuning,
the count-in for that frequency stage is set to half the original count-in and the process is repeated until
either all frequencies have been measured or a frequency is selected which does not re-trigger auto-
tuning is determined.

If all frequencies have been tested, and the variation exceeds the
DEF_XXXXCAP_FREQ_AUTO_TUNE_SIGNAL_STABILITY_LIMIT limit then the frequency with the
lowest variance is selected for the frequency stage currently under tuning. The auto-tune process is re-
initialized and further tuning does not take place until a frequency stage’s high variance counter again
reaches the count in limit.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

23

Figure 2-10. Frequency Auto-Tune

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

24

2.5. Touch Library Error Reporting Mechanism
The application reports the Touch library errors using one of the two mechanisms:

• Touch Library Error Application Callback mechanism
• API Return Type mechanism

Touch Library Error Application Callback

If any touch library error is generated due to failure in the logical program counter flow or internal library
checks, the touch library calls the error callback function registered by the application. If error callback is
not registered by the application, the touch library will lock the system in an infinite loop.

The following sample code block registers the touch library error callback:

 /* registering the callback */
touch_error_app_cb = touch_lib_error_callback;

Note:  Before calling any touch library API, register the touch library error callback.

For the list of APIs that calls the error call back function, see Error Codes Returned Through Callback

API Return Type Mechanism

Few Touch library APIs can return the error synchronously through function call return. For the list of APIs
that return the error synchronously, see Error Codes Returned Synchronously.

2.6. Touch Library Program Counter Test
The touch library implements two types of tests to verify if the program counter is functioning properly.

The logical program tests verifies that the logical sequence of the APIs and processes are appropriate.
The program counter test ensures that the program counter is working as expected.

2.6.1. Logical Program Flow Test
There are two sub tests. One test ensures that the mandatory sequence of APIs is followed as illustrated
in the following figure. The second test tracks various internal processes by maintaining a unique counter
for each process. Any error in the logical sequence causes error callback function to be called with error
status as TOUCH_LOGICAL_PROGRAM_CNTR_FLOW_ERR.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

25

Figure 2-11. Example Sequence for Logical Program Flow Error

Lock the system

Application and touch library initialization

Is application error
callback registered?

Application needs
to handle error

condition

YES

NO

Touch library API call

Program flow as
expected?

Continue with normal
sequence

≈

YES

NO

≈

APPLICATION QTOUCH LIBRARY

Figure 2-12. Example of a Wrong API Sequence

touch_xxxxcap_sensors_measure

Application needs
to handle error

condition

Is application error
callback registered?

Lock the system

YES

NO

Application Initialization

Program flow
as expected?

YES

Continue with normal
sequence

≈

NO

≈

APPLICATION QTOUCH LIBRARY

2.6.2. Program Counter Test
This is another mechanism using which Program Counter can tested. To test the branching, the following
program counter API are provided within the touch library at different flash locations:

• touch_lib_pc_test_magic_no_1

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

26

• touch_lib_pc_test_magic_no_2
• touch_lib_pc_test_magic_no_3
• touch_lib_pc_test_magic_no_4

The application calls these API and check the returned value. Each of these API returns a unique value.
Hence it is possible to check if the program counter has jumped to the correct address within the touch
library by verifying the unique value it returns. If the expected return value is not returned the application
must handle error condition.

Note:  Ensure that the program counter can branch throughout the touch library. This program counter
test is applicable only for checking the program counter validity within the touch library.

The following figure illustrates the implementation of the program counter APIs.

Figure 2-13. Program Counter Test Using Program Counter APIs

Application and Touch library initialization

QTouch library APIcall

API return

Return Value
check

passed?

Continue with
normal sequence

Application needs
to handle error

condition

NO

YES

≈ ≈

APPLICATION QTOUCH LIBRARY

touch_lib_pc_test_magic_no_1

Return TOUCH_PC_FUNC_MAGIC_NO_1

2.7. CRC on Touch Input Configuration
The data integrity check is performed on the input configuration variables from application to Touch
Library.The application calls the touch_calc_xxxxcap_config_data_integrity API, if the input
configuration variables has been modified. The touch_test_xxxxcap_config_data_integrity
API must be called to test the input configuration data integrity. The periodicity of calling this API can be
decided by the application.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

27

Note:  The touch_calc_xxxxcap_config_data_integrity API must be called after initialization
sequence. The following illustration depicts the sequence for verifying the data integrity.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

28

Figure 2-14. Data Integrity Check Sequence

Application needs
to handle error

condition

Continue with
normal

sequence

YES

NO

Data Integrity Check Sequence

touch_mutlcap_sensors_init

touch_mutlcap_sensor_config

touch_mutlcap_di_init

touch_mutlcap_sensors_calibrate

touch_calc_config_data_integrity

touch_mutlcap_sensors_measure

touch_mutlcap_sensors_measure

touch_test_config_data_integrity

Data integrity
test passed ?

≈
touch _mutlcap_update_global_param

touch_calc_config_data_integrity

touch_mutlcap_sensors_measure

touch_mutlcap_sensors_measure

touch_test_config_data_integrity

≈

Data integrity
test passed ?

Continue with
normal

sequence

Application needs
to handle error

condition

NO

YES

≈ ≈

APPLICATION QTOUCH LIBRARY

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

29

The following APIs modifies the input configuration and hence
touch_calc_xxxxcap_config_data_integrity must be called only after calling these APIs.

• touch_xxxxcap_update_global_param
• touch_xxxxcap_sensor_update_acq_config
• touch_xxxxcap_sensor_update_config
• touch_xxxxcap_cnfg_mois_threshold
• touch_xxxxcap_cnfg_mois_mltchgrp
• touch_xxxxcap_mois_tolrnce_enable
• touch_xxxxcap_mois_tolrnce_disable
• touch_xxxxcap_mois_tolrnce_quick_reburst_enable
• touch_xxxxcap_mois_tolrnce_quick_reburst_disable

Note: 
1. touch_calc_xxxxcap_config_data_integrity and

touch_test_xxxxcap_config_data_integrity should be called only when touch library
state is TOUCH_STATE_INIT or TOUCH_STATE_READY.

2. If calibration of all channels is requested by application with AUTO_TUNE_PRSC or
AUTO_TUNE_RSEL option, QTouch Safety Library will automatically recalculate the CRC at the end
of auto tuning calibration process. If there is any fault, library will report error as
TOUCH_LIB_CRC_FAIL through errror callback, even before application calls
touch_test_xxxxcap_config_data_integrity API.

2.8. Double Inverse Memory Check
It is important to check the critical safety data before the application uses such data. Checking each
critical data before using it prevents any system malfunction.

Double inverse memory check is a mechanism that stores and retrieve data with additional redundancy.
Reading and writing redundant data requires some processing and additional memory requirement.
Hence, this mechanism is suggested only for the most important safety critical data in the FMEA and
QTouch Safety Library.

The inverse of all the critical data interface variables used among the application and touch library is
stored in the structure variable touch_lib_xxxxcap_param_safety. The mechanism stores the
inverse of the critical data in this structure. Before reading and writing the critical data, the authenticity of
the critical data is verified.

All double inverse variables are part of the touch_lib_param_safety_t structure. These double
inverse variables are inverse value of various variables selected from different structure variables. The
application must perform the double inverse check whenever it attempts to read or write a critical data
interface variables.

2.8.1. Application To Touch Library
The application must calculate the inverse for all the variables listed in the column Variable and store it as
the corresponding inverse variable listed in the column Inverse Variable.

Touch library checks for double inversion between the variables listed in the Inverse Variable column and
Variablecolumn. If the verification is successful, touch library operation continues as expected.

If the verification is unsuccessful, the touch library calls the error callback function
touch_error_app_cb indicating the reason TOUCH_LIB_DI_CHECK_FAIL.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

30

The following table provides the list of variables and the corresponding inverse variable for which the
application must add double inverse protection.

Table 2-2. Inverse Variable Details - Application to Touch Library

Variable Inverse Variable Description

p_channel_signals p_inv_channel_sign
als

Refer Touch Library Measurement Data Typefor
variable and Touch Library Safety Type for
corresponding inverse variable.

current_time_ms inv_current_time_m
s

Refer Touch Library Time Type for variable and
Touch Library Safety Type for corresponding
inverse variable.

burst_again inv_burst_again Refer Application Burst Again Mechanism for
variable and Touch Library Safety Type for
corresponding inverse variable.

acq_mode inv_acq_mode Refer Touch Library Acquisition Mode
(tag_touch_acq_mode_t) for variable and Touch
Library Safety Type for corresponding inverse
variable.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

31

Figure 2-15. Example Sequence for Processing Double Inverse Variable (Application to QTouch Safety
Library)

Application computes the
inverse of safety critical data

and stores them

Touch library performs a
double inverse check on
the safety critical data

API call or return from filter callback function

Double inverse
check passed

Continue with the
normal sequence

YES

NO

Application needs to
handle error
condition

Application and Touch library initialization

Is Application
error callback
registered?

YES

Lock the
system

NO

≈ ≈

QTOUCH LIBRARYAPPLICATION

2.8.2. Touch Library To Application
The touch library must calculate the inverse for all the variables listed in the column Variable and store it
as the corresponding inverse variable listed in the column Inverse Variable.

Application must check for double inversion between the variables listed in the Inverse Variable column
and Variable column. Appropriate action must be performed by the application if double inversion check
fails.

The following table lists the variables and the corresponding inverse variable for which the touch library
will add double inverse protection.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

32

Table 2-3. Inverse Variable Details Touch Library to Application

Variable Inverse Variable Description

p_channel_signals p_inv_channel_sign
als

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

acq_status inv_acq_status Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

num_channel_signal
s

inv_num_channel_si
gnals

Refer Touch Library Measurement Data Type for
variable andTouch Library Safety Type for
corresponding inverse variable.

num_sensor_states p_inv_sensor_state
s

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

p_sensor_states inv_num_sensor_sta
tes

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

num_rotor_slider_v
alues

inv_num_rotor_slid
er_values

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

p_rotor_slider_val
ues

p_inv_rotor_slider
_values

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

lib_state inv_lib_state Refer Touch Library Info TypeSection 3.4.8 for
variable and Touch Library Safety Type for
corresponding inverse variable

delta inv_delta Refer Touch Library Info Type for variable and
Touch Library Safety Type for corresponding
inverse variable

sf_ptc_error_flag inv_sf_ptc_error_f
lag

This variable is used by FMEA and should not be
used by the application.

cc_cal_open_calibr
ation_vals

inv_cc_cal_open_ca
libration_vals

This variable is used by FMEA and should not be
used by the application.

p_sensor_noise_sta
tus

p_inv_sensor_noise
status

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

p_sensor_mois_stat
us

p_inv_sensor_mois_
status

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

p_auto_os_status p_inv_chan_auto_os
_status

Refer Touch Library Measurement Data Type for
variable and Touch Library Safety Type for
corresponding inverse variable.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

33

Variable Inverse Variable Description

low_power_mode inv_low_power_mode Refer Touch Library Safety Type for inverse
variable.

wake_up_touch inv_wake_up_touch Refer Touch Library Safety Type for inverse
variable.

Note:  The p_channel_signals variable must be double inversed by both the application and the
touch library. The application can apply filtering mechanism on the channel signals in the filter callback
function. The application must check for the double inversion before modifying the channel signals. After
modifying the channel signals, the application would store the value of the channel signals into the
p_inv_channel_signals variable. The Touch Library after returning from the filter callback function,
would re-check for double inversion on the channel signals.

Figure 2-16. Example Sequence for Processing Double Inverse Variable
Example sequence for processing double inverse variable (QTouch library to Application)

Application and Touch library initialization

Qtouch library api call

Library computes inverse of
safety critical data and

stores them

API return or filter callback

Application performs double
inverse check on safety

critical data

Double
inverse check

passed?

Continue with
normal sequence

Application needs
to handle error

condition

NO

YES

≈ ≈

APPLICATION QTOUCH LIBRARY

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

34

2.9. Application Burst Again Mechanism
The completion of a touch measurement is indicated by the touch library by calling the function
touch_xxxxcap_measure_complete_callback(). The complete callback function will be called on
completion ofthe previously initiated touch measurement.

The application can call the touch measurement again based on touch measurement periodicity or initiate
the nextmeasurement immediately by returning a value 1 in the
touch_xxxxcap_measure_complete_callback() function. The touch library will initiate the next
measurement immediately if application returns a value 1 when the complete callback function is called
and the internal burst again flag is set by the library.

If the application returns 0, the touch library waits for another touch measurement to be initiated by the
application by calling touch_xxxxcap_sensors_measure() to perform another touch measurement.

Refer Figure 2-4 for more information.

2.10. Memory Requirement
The table provided in this section provides the typical code and data memory required for QTouch Safety
Library.

Mutual and self capacitance measurement method requires additional data memory for the application to
store the signals, references, sensor configuration information, and touch status. This data memory is
provided by the application as data block array. The size of this data block depends on the number of
Channels, sensors and rotor sliders configured.

Default Configuration Used For Memory Requirement Calculations:

Apart from the various combinations mentioned in Memory Requirement For IAR LibraryThe default
configuration details used in all the cases applicable for memory calculation in Memory Requirement For
IAR Library are mentioned in the following table.

Table 2-4. Default Configuration

Configuration Mutlcap Selfcap

DEF_XXXXCAP_NOISE_MEAS_ENABLE 1 1

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE 1 1

DEF_XXXCAP_NOISE_MEAS_BUFFER_CNT 5 5

DEF_XXXCAP_MOIS_TOLERANCE_ENABLE 1 1

DEF_XXXCAP_NUM_MOIS_GROUPS 8 8

2.10.1. Memory Requirement For IAR Library

Table 2-5. Memory Requirement for Mutual Capacitance

Total No of Channels No Of Keys No of rotor/slider Total Code
Memory

Total Data
Memory

1 1 0 24539 1724

10 10 0 25264 2224

10 2 2 26892 2216

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

35

Total No of Channels No Of Keys No of rotor/slider Total Code
Memory

Total Data
Memory

20 20 0 25263 2664

20 10 2 26889 2724

40 40 0 25235 3828

40 20 5 26861 3784

256 256 0 25125 15600

256 200 14 26776 15432

Table 2-6. Memory Requirement for Self Capacitance

Total No of Channels No Of Keys No of rotor/
slider

Total Code
Memory

Total Data
Memory

1 1 0 24734 1720

2 2 0 24734 1768

1 11 0 24736 2228

11 2 3 26296 2272

16 16 0 24730 2464

16 4 4 26289 2520

32 32 0 24724 3268

32 20 4 26283 3324

Table 2-7. Memory Requirement for (Self + Mutual) Capacitance

Total No of
Mutual
Cap
Channels

Total No
of Self
Cap
Channels

Total No
of
Mutual
Cap
Keys

Total No
of Self
Cap Keys

Total No of
Mutual Cap
Rotor/Sliders

Total No of
Self Cap
Rotor/Sliders

Total
Code
Memory

Total
Data
Memory

1 1 1 1 0 0 30488 2092

40 8 40 8 0 0 30391 4536

40 8 40 2 0 2 31951 4572

40 8 24 8 3 0 32019 4480

40 8 8 2 3 2 33579 4516

80 11 80 11 0 0 30390 6892

80 11 80 2 0 3 31951 6936

80 11 48 11 6 0 32020 6756

80 11 48 2 6 3 33578 6800

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

36

2.11. API Execution Time

2.11.1. Mutual Capacitance API Execution Time
This section provides the time required for various mutual capacitance APIs. The values provided are
based on thefollowing system configuration:

• CPU Frequency: 48MHz
• PTC Frequency: 4MHz
• No of Channels: 20
• No of Sensors: 10
• No of Keys: 8
• No of Rotor/sliders: 2

Table 2-8. Default Configuration - Mutual Capacitance

CONFIGURATION MUTLCAP

DEF_XXXXCAP_NOISE_MEAS_ENABLE 1

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE 1

DEF_XXXCAP_NOISE_MEAS_BUFFER_CNT 5

DEF_XXXCAP_MOIS_TOLERANCE_ENABLE 1

DEF_XXXCAP_NUM_MOIS_GROUPS 8

Table 2-9. Execution Time for Various QTouch Safety Library APIs - Mutual Capacitance

API Time Units

touch_mutlcap_sensors_init 443 us

touch_mutlcap_di_init 16 us

touch_mutlcap_sensor_config 20 us

touch_mutlcap_sensors_calibrate 223* ms

touch_mutlcap_calibrate_single_sensor 26* ms

touch_mutlcap_sensors_measure 18* ms

touch_calc_mutlcap_config_data_integrity 1239 us

touch_test_mutlcap_config_data_integrity 1239 us

touch_mutlcap_sensor_get_delta 11 us

touch_mutlcap_sensor_update_config 9 us

touch_mutlcap_sensor_get_config 7 us

touch_mutlcap_sensor_update_acq_config 60 us

touch_mutlcap_sensor_get_acq_config 35 us

touch_mutlcap_update_global_param 10 us

touch_mutlcap_get_global_param 7 us

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

37

API Time Units

touch_mutlcap_get_libinfo 7 us

touch_lib_pc_test_magic_no_1 4 us

touch_lib_pc_test_magic_no_2 4 us

touch_lib_pc_test_magic_no_3 4 us

touch_lib_pc_test_magic_no_4 4 us

touch_mutlcap_cnfg_mois_mltchgrp 6.06 us

touch_mutlcap_cnfg_mois_threshold 6.19 us

touch_mutlcap_mois_tolrnce_enable 4.56 us

touch_mutlcap_mois_tolrnce_disable 7.72 us

touch_mutlcap_mois_tolrnce_quick_reburst_enable 5 us

touch_mutlcap_mois_tolrnce_quick_reburst_disable 5 us

touch_mutlcap_sensor_reenable 24.17 us

touch_mutlcap_sensor_disable 14.67 us

touch_library_get_version_info 4.35 us

touch_suspend_ptc 2 ms

touch_resume_ptc 8 us

touch_disable_ptc 5 us

touch_enable_ptc 5 us

touch_mutlcap_sensors_deinit 226 us

touch_mutual_lowpower_sensor_enable_event_measure 66 us

touch_mutlcap_lowpower_sensor_stop 760 us

Note: 
1. The the following table provides the maximum time required for the

touch_mutlcap_sensors_calibrate, touch_mutlcap_calibrate_single_sensor,
touch_mutlcap_sensors_measure, and touch_suspend_ptc API to complete the
procedure. The time required for the API to return control to the application will be much shorter
than the time specified in the following table. After the control is returned back to the application,
the application can execute other non-touch related tasks.

2. API Execution time marked as * are calculated for sensors mentioned in Mutual Capacitance API
Execution Time with typical sensor capacitance values.

Table 2-10. Timings for APIs to Return Control to the Application

API Time Units

touch_mutlcap_sensors_calibrate 153 us

touch_mutlcap_calibrate_single_sensor 13 us

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

38

API Time Units

touch_mutlcap_sensors_measure 160 us

touch_suspend_ptc 5 us

touch_mutlcap_lowpower_sensor_stop 23 us

2.11.2. Self Capacitance API Execution Time
This section provides the time required for various self capacitance APIs. The values provided are based
on the following system configuration:

• CPU Frequency: 48MHz
• PTC Frequency: 4MHz
• No of Channels: 16
• No of Sensors: 8
• No of Keys: 4
• No of Rotor/sliders: 4

Table 2-11. Default Configuration - Self Capacitance

CONFIGURATION SELFCAP

DEF_XXXXCAP_NOISE_MEAS_ENABLE 1

DEF_XXXXCAP_FREQ_AUTO_TUNE_ENABLE 1

DEF_XXXCAP_NOISE_MEAS_BUFFER_CNT 5

DEF_XXXCAP_MOIS_TOLERANCE_ENABLE 1

DEF_XXXCAP_NUM_MOIS_GROUPS 8

Table 2-12. Execution Time for Various QTouch Safety Library APIs - Self Capacitance

API Time Units

touch_selfcap_sensors_init 317 us

touch_selfcap_di_init 15 us

touch_selfcap_sensor_config 18.35 us

touch_selfcap_sensors_calibrate 535* ms

touch_selfcap_calibrate_single_sensor 73* ms

touch_selfcap_sensors_measure 46* ms

touch_calc_selfcap_config_data_integrity 1028 us

touch_test_selfcap_config_data_integrity 1028 us

touch_selfcap_sensor_get_delta 10.54 us

touch_selfcap_sensor_update_config 7.47 us

touch_selfcap_sensor_get_config 6.1 us

touch_selfcap_sensor_update_acq_config 19.62 us

touch_selfcap_sensor_get_acq_config 29.54 us

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

39

API Time Units

touch_selfcap_update_global_param 9.6 us

touch_selfcap_get_global_param 6.8 us

touch_selfcap_get_libinfo 6.1 us

touch_lib_pc_test_magic_no_1 4 us

touch_lib_pc_test_magic_no_2 4 us

touch_lib_pc_test_magic_no_3 4 us

touch_lib_pc_test_magic_no_4 4 us

touch_selfcap_cnfg_mois_mltchgrp 5.6 us

touch_selfcap_cnfg_mois_threshold 6.1 us

touch_selfcap_mois_tolrnce_enable 4.75 us

touch_selfcap_mois_tolrnce_disable 7.28 us

touch_selfcap_mois_tolrnce_quick_reburst_enable 5 us

touch_selfcap_mois_tolrnce_quick_reburst_disable 5 us

touch_selfcap_sensor_reenable 24.17 us

touch_selfcap_sensor_disable 14.63 us

touch_library_get_version_info 6.1 us

touch_selfcap_sensors_deinit 204 us

touch_self_lowpower_sensor_enable_event_measure 65 us

touch_selfcap_lowpower_sensor_stop 2200 us

Note: 
1. The following table provides the maximum time required for the

touch_selfcap_sensors_calibrate, touch_selfcap_calibrate_single_sensor, and
touch_selfcap_sensors_measure API to complete the procedure. The time required for the
API to return control to the application will be muchshorter than the time specified in the following
table. After the control is returned back to the application, theapplication can execute other non-
touch related tasks.

2. API Execution Time marked as * are calculated for sensors mentioned in Self Capacitance API
Execution Time with typical sensor capacitance values.

Table 2-13. Timings for APIs to Return Control to the Application

API Time Units

touch_selfcap_sensors_calibrate 132 us

touch_selfcap_calibrate_per_sensor 13 us

touch_selfcap_sensors_measure 136 us

touch_selfcap_lowpower_sensor_stop 25 us

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

40

2.12. Error Intepretation
This section provides information about the error bits that indicate the errors and the specific reason that
causes the errors.

2.12.1. Error Codes Returned Synchronously
The following table provides the error codes returned by various touch APIs synchronously through
function call return.

Table 2-14. Error Codes Returned Synchronously

API Error Bit Reason

touch_xxxxcap_sensors_in
it

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_XXXXCAP_CO
NFIG_PARAM

Configuration parameters are
invalid

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_RECAL_THRE
SHOLD

Recalibration threshold is invalid.

touch_xxxxcap_di_init TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

touch_xxxxcap_sensor_con
fig

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_SENSOR_TYP
E

Sensor type is invalid.

TOUCH_INVALID_CHANNEL_NU
M

Channel number is invalid.

TOUCH_INVALID_RS_NUM Invalid rotor slider number.

touch_xxxxcap_sensors_ca
librate

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error.

touch_xxxxcap_calibrate_
single_sensor

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_SENSOR_ID Sensor ID is invalid.

touch_xxxxcap_sensors_me
asure

TOUCH_ACQ_INCOMPLETE Acquisition is in progress.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_ALL_SENSORS_DISABL
ED

All sensors are disabled.

touch_xxxxcap_sensor_get
_delta

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

41

API Error Bit Reason

touch_xxxxcap_sensor_upd
ate_config

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_get
_config

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_INVALID_SENSOR_ID Sensor ID is invalid.

touch_xxxxcap_update_glo
bal_param

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_RECAL_THRE
SHOLD

Recalibration threshold is invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_get_global
_param

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_upd
ate_acq_config

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_get
_acq_config

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_get_libinf
o

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

touch_xxxxcap_sensor_ree
nable

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensor_dis
able

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_cnfg_mois_
mltchgrp

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

touch_xxxxcap_cnfg_mois_
threshold

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

touch_xxxxcap_mois_tolrn
ce_enable

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

42

API Error Bit Reason

touch_xxxxcap_mois_tolrn
ce_disable

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error.

touch_library_get_versio
n_info

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

touch_suspend_ptc TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_resume_ptc TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_calc_xxxxcap_confi
g_data_integrity

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_test_xxxxcap_confi
g_data_integrity

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_sensors_de
init

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_lowpower_s
ensor_enable_event_measu
re

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_ACQ_INCOMPLETE Acquisition is in progress.

TOUCH_INVALID_SENSOR_ID Sensor ID is invalid.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_lowpower_s
ensor_stop

TOUCH_ACQ_INCOMPLETE Acquisition is in progress.

TOUCH_INVALID_LIB_STATE Library state is invalid.

TOUCH_WAIT_FOR_CB Low Power Stop Operation is not
completed

touch_xxxxcap_mois_tolrn
ce_quick_reburst_enable

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error.

TOUCH_INVALID_LIB_STATE Library state is invalid.

touch_xxxxcap_mois_tolrn
ce_quick_reburst_disable

TOUCH_INVALID_INPUT_PARA
M

Input parameters are invalid.

TOUCH_CNFG_MISMATCH Configuration mismatch error.

TOUCH_INVALID_LIB_STATE Library state is invalid.

2.12.2. Error Codes Returned Through Callback
The following table provides the list of APIs and the associated error codes that results in
touch_library_error_callback being called.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

43

Table 2-15. API Error Codes Returned through Callback

API Error Bit Reason

touch_xxxxcap_sensors_in
it

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error.

TOUCH_PINS_VALIDATION_FA
IL

Touch library Pins Invalid.

touch_xxxxcap_sensor_con
fig

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_di_init TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_sensors_ca
librate

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_calibrate_
single_sensor

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error.

touch_xxxxcap_sensors_me
asure

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error.

TOUCH_LIB_DI_CHECK_FAIL Double inverse check failed.

TOUCH_LIB_CRC_FAIL CRC check failed

touch_test_xxxxcap_confi
g_data_integrity

TOUCH_LIB_CRC_FAIL CRC check failed

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error.

touch_calc_xxxxcap_confi
g_data_integrity

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error. Low power mode is in
progress

touch_suspend_ptc TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error. Low power mode is in
progress

touch_disable_ptc TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error. Low power mode is in
progress

touch_enable_ptc TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error. Low power mode is in
progress

touch_xxxxcap_sensors_de
init

TOUCH_LOGICAL_PROGRAM_CN
TR_FLOW_ERR

Logical program counter flow
error. Low power mode is in
progress

2.13. Data and Function Protection
The functions and global variables that are used only by Touch Library are marked as static. The user /
application mustnot change these variable to non-static.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

44

The header file touch_fmea_api_ptc.h file is used only by FMEA. Hence, the application should not
include thesame in any file.

Table 2-16. API Header File Details

Header File Availability for Application

touch_safety_api_ptc.h Yes

touch_fmea_api_ptc.h Yes

2.14. Moisture Tolerance
Moisture tolerance check executes at the end of each measurement cycle and compares the sum of delta
of all sensorsin a moisture tolerance group against pre-configured threshold. If delta sum is greater than
sensor moisture lock threshold and less than system moisture lock threshold, then the ON-state sensors
within moisture tolerance group will be considered as moisture affected.

If delta sum is greater than system moisture lock threshold, all sensors within the moisture tolerance
group will be considered as moisture affected. This condition is referred as moisture global lock out. The
safety library will come out of the moisture global lock out state when delta sum is less than threshold for
5 consecutive measurements. Self cap and mutual cap sensors cannot be configured in a single moisture
group, Self cap moisture tolerance and mutual cap moisture tolerance features can be enabled or
disabled separately.

2.14.1. Moisture Tolerance Group
This feature enables the customer application to group a set of sensors in to single moisture tolerance
group. If moisture on one sensor might affect other sensors due to physical proximity, they must be
grouped together into one Moisture tolerance group.

Using this feature the application can disable moisture tolerance detection for a set of sensors, Multiple
Moisture tolerance groups can be formed by the customer application. The library supports up to a
maximum of 8 moisture groups.
Note:  Changing the moisture tolerance group configuration during runtime is not recommended.
However, muti-touchgroup configuration can be changed during runtime.

2.14.2. Multi Touch Group
If the user wants to touch multiple sensors within the moisture tolerance group simultaneously to indicate
a specific request, then the application should configure those sensors into single multi-touch group.
Multiple multi-touch group scan be formed by the customer application. The library supports a maximum
of 8 multi-touch groups within a single moisture tolerance group.

Moisture tolerance feature improves a system’s performance under the following scenarios:
• Droplets of water sprayed on the front panel surface
• Heavy water poured on the front panel surface
• Large water puddle on multiple sensors
• Trickling water on multiple sensors

Moisture tolerance feature is not expected to offer any significant performance improvement under the
following scenarios:

• Large isolated puddle on single sensor
• Direct water pour on single sensor

Within the same moisture group, user should not configure all the sensors to the single multi-touch group.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

45

Figure 2-17. Moisture Tolerance Algorithm

2.14.3. Moisture Quick Re-burst
The macro DEF_XXXXCAP_MOIS_QUICK_REBURST_ENABLE is used to enable or disable quick re-burst
feature within a given moisture group. When enabled, if within a given moisture group, when any sensor
is touched, repeated measurements are done only on that sensor to resolve detect integration or de-
bounce. When disabled, if within a given moisture group, when any sensor is touched, repeated
measurements are done on all sensors within the moisture group to resolve detect integration or de-
bounce. It is recommended to enable this feature for best touch response time.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

46

2.15. Quick Re-burst
This feature allows faster resolution of a sensor’s state during DI filtering. If Sensor-N is touched by the
user, then anyother sensor that meets one of the following criteria is selected for the measurement in the
next cycle:

• Same AKS group as Sensor-N
• Same Moisture tolerance group Sensor-N

If quick re-burst feature is disabled, then all sensors would be measured in every measurement cycle.

2.15.1. Synchronizing Quick Re-burst ,Moisture Quick Re-burst and Application Burst Again
Table 2-17. Quick Re-burst - Triggers and Sensors

Quick Re-burst Moisture Quick Re-burst Measurement Trigger List of Sensors
Measured

Enabled Enabled touch_xxxxcap_sensors
_measure()

All

Disabled touch_xxxxcap_sensors
_measure()

All

Enabled Enabled Application Burst Again Sensors that are
touched and their AKS
group sensors

Disabled Application Burst Again Sensors that are
touched and their AKS
and moisture tolerance
group sensors

Disabled Enabled touch_xxxxcap_sensors
_measure()

All

Disabled touch_xxxxcap_sensors
_measure()

All

Disabled Enabled Application Burst Again All

Disabled Application Burst Again All

2.16. Reading Sensor States
When noise immunity and moisture tolerance features are enabled the validity of the sensor sate is based
on the moisture status and noise status. Refer to Figure 2-9 and Moisture Tolerance for information on
noise immunity and moisture tolerance status of sensors. The state of a sensor is valid only when the
sensor is not affected by noise and moisture. If a sensor is noisy or affected by moisture, then the state of
sensor must be considered as OFF. The code snippet below depicts the same for mutual-cap sensors.

When a sensor is touched or released during DI, library will burst on channels corresponding to sensors
whose state is other than OFF or DISABLED. If any sensor in an AKS group is in a state other than OFF
or DISABLED, the library will burst channels corresponding sensors belong to that AKS group. If a sensor

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

47

in any moisture group is in a state otherthan OFF or DISABLED, the library will burst on channels
corresponding to sensors belonging to that moisture group.

 If(! (GET_MUTLCAP_SENSOR_NOISE_STATUS(SENSOR_NUMBER)))
 {
 If(! (GET_MUTLCAP_SENSOR_MOIS_STATUS (SENSOR_NUMBER)))
 {
 /*Sensor state is valid Read sensor state */
 }
 else
 {
 /* Sensor is Moisture affected*/
 }
 }
 else
 {
 /* Sensor is noisy */
 }

2.17. Touch Library Suspend Resume Operation
The touch library provides touch_suspend_ptc,touch_resume_ptc API to suspend and resume the
PTC.

When suspend API is called, the touch library initiates the suspend operation and return to the
application.After completing the current PTC conversion, the touch library will initiate suspend operation
and call the application touch suspend callback function pointer. The suspend complete callback function
pointer has to be registered by the application (Refer Section 3.5.3 for more details).

Note:  The application then should disable the corresponding PTC clock to reduce the power
consumption.APP_TOUCH_BUSY and APP_FMEA_OPEN_IN_PROGRESS needs to be maintained by the
application. The APP_TOUCH_BUSY will be set to 1 until the completion of following APIs as mentioned in
Table 2-13 . The APP_FMEA_OPEN_IN_PROGRESS will be set to 1 until the completion of API mentioned
in Table 4-3.

The following flowchart depicts the suspend sequence

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

48

Figure 2-18. Suspension Sequence

Is Callback Received?

Wait for touch_suspend_callback
or perform some other

application code without calling
any Touch_lib APIs or FMEA APIs

Yes

disable PTC GCLK
disable APBCMASK
disable GCLK generator
disable GCLK source

SUSPENSION_COMPLETE

SUPENSION_START

APP_TOUCH_BUSY==1 or
APP_FMEA_OPEN_IN_PROGRESS==1

NoNo

Disable Interrupts

Enable Interrupts

Enable Interrupts

Touch_suspend_ptc()

Yes

The following flowchart depicts the resume sequence

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

49

Figure 2-19. Resumption Sequence

RESUMPTION_START

Touch_resume_ptc()Touch_resume_ptc()

re-enable GLCK source
re-enable GCLK generator
re-enable APBCMASK
reenable the PTC GCLK

RESUMPTION_COMPLETERESUMPTION_COMPLETE

Note: 
1. The suspend and resume operation must be followed as specified in Touch Library Suspend

Resume Operation, otherwise the touch library may not behave as expected.
2. Once the suspend API is called, the touch library resumption should happen before calling any

other API's.

2.18. Drifting On Disabled Sensors
Touch Safety library performs drifting on disabled sensors. Drifting for disabled sensors would function in
a same way,as drifting happens on a sensor which is in 'OFF' state. Hence, drift configuration settings
which are applicable for 'OFF'state sensors would be applicable for disabled sensors also.

When a sensor is touched, it goes to 'ON' state and if it is disabled in this condition, drifting will adjust the
reference to unintentional signal value. Hence for drifting on disabled sensor to function properly,
following conditions has to be ensured before that sensor is disabled.

• The state of that particular sensor should be 'OFF'.
• TOUCH_BURST_AGAIN' bit field in 'p_xxxxcap_measure_data->acq_status' should be '0'. Refer

Touch Library Enable Disable Sensor”.

Note: 
1. It is recomended to re-enable the sensors periodically so that drifting could be done with respect to

latestsignal values and reference would be adjusted with respect to latest signal values. In other
case, if sensorsare re-enabled after a long duration, they can be re-enabled with calibration
option(no_calib = 0).

2. Drifting on Disabled sensors functionality would be applicable if sensors are re-enabled without
calibration.If sensors are re-enabled with calibration, then reference would be adjusted as part of
calibration process itself.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

50

2.19. Capacitive Touch Low Power Sensor
The QTouch Safety Library may be configured to operate PTC touch sensing autonomously using the
Event System. In this mode, a single sensor is designated as the ‘Low Power’ key and may be
periodically measured for touch detection without any CPU action. Here, CPU is free from touch actions,
so application can either use the CPU for other actions or the CPU may be held in deep sleep mode
throughout the Low power operation, minimizing power consumption.The low power key may be a
discrete electrode with one Y (Sense) line for Self-capacitance or one X (Drive) plus one Y (Sense) for
mutual capacitance. Typically power consumption in low power mode varies based on sleep mode, filter
level, PTC clock settings, Charge share delay, event generation periodicity and other settings as
configured by the application.

In this arrangement,the PTC is configured to receive the events generated from the Event System. The
RTC as an event generator will generate the events and provide it to the Event System and the Event
System will provide this event to event receiver. Application arrangement should configure PTC Start
conversion as the event user. Event generator(RTC events) settings and other Event System settings has
to be configured by the application. Only after calling the API
touch_xxxxcap_lowpower_sensor_enable_event_measure, the application has to attach PTC as
event user in the Event System settings. PTC(Event user) is configured by the library to accept only start
conversion event input. When an event is detected, a conversion is started by the PTC, signal value
obtained at the end of conversion will be compared against threshold by PTC without using CPU.
Interrupt(which can wake up system from sleep) will be triggered if that signal value lies outside of the
preconfigured thresholds.The 'Detect threshold' configuration of the sensor is used as the threshold for
this low power measurement.

Active Measurement Mode:

In the active measurement mode all configured sensors are measured at
DEF_TOUCH_MEASUREMENT_PERIOD_MS millisecond scan interval. The user application arrangement
could be designed such that when no touch activity is detected on the configured sensors for
NO_ACTIVITY_TRIGGER_TIME milliseconds, then the application switches to low power measurement
mode. Active measurement mode here indicates, the way application handles the touch measurements.
For low power feature to be used, Active measurement has to be performed using NORMAL_ACQ mode
and not using RAW_ACQ mode. The reference value of low power sensor is required by the library to use
the low power feature.

Low Power Measurement Mode:

In the low power measurement mode, any key which is enabled in the system can be scanned as a low
power sensor. Application has to call touch_xxxxcap_lowpower_sensor_enable_event_measure
API with the sensor id of the low power sensor to use the low power feature. After calling this API
low_power_mode variable will be set to '1' by the library using which application can check whether low
power is in progress or not. In this mode, the system is in standby sleep mode, the CPU and other
peripherals are in sleep, excepting for the Event System, the RTC and the PTC module. A user touch on
the designated low power sensor, will cause the signal from PTC to move outside of the preconfigured
thresholds. In this case, PTC will wakeup up the system (if system was in sleep mode) and
wake_up_touch variable will be set to '1' by the library. The variable wake_up_touch is used for notifying
the application only. This variable is not used for checking any status by the library. This variable will be
set to '1' upon touch detection during low power operation and cleared when next time low power
measurement is started by using touch_xxxxcap_lowpower_sensor_enable_event_measure
API. Application can be designed in such a way to monitor this variable during low power mode. In case
of touch detection, wake_up_touch will be set to '1' by the library and application can stop the low power

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

51

operation and perform active measurement in order to resolve the touch. To keep reference tracking, the
RTC is configured to periodically wake up the CPU every
DEF_LOWPOWER_SENSOR_DRIFT_PERIODICITY_MS millisecond and then to stop the low power
operation and perform one active measurement. Signals obtained during this measurement is used for
reference tracking. Low power stop operation is discussed briefly at the end of this section.

FMEA during Low power measurement mode:

If FMEA tests are to be conducted when low power mode is in progress, low power mode has to be
stopped. Once low power stop operation is completed, then FMEA tests can be conducted. After FMEA
tests completion, low power measurement mode can be re-started using appropriate APIs.

Reference tracking during low power measurement mode:

It is possible to do reference tracking in between low power measurement either for low power sensor
alone or for all sensors, by disabling other sensors. In case of touch detection in low power mode the
disabled sensors should be re-enabled and measurement has to be initiated on the sensors to discern the
touch. In case of no touch activity, if the sensors are disabled and the device is in low power mode very
long during sleep, it is recommended to force calibration on the sensors to ensure proper reference
values on these sensors. More details on drifting(reference tracking), disabling, re-enabling sensors with
calibration are mentioned in the sections Drifting On Disabled Sensors and Touch Library Enable Disable
Sensor.

Suspend Operation during low power measurement mode:

Low power Operation has to be stopped before using the touch suspension functionalities. This is
discussed in Touch Library Suspend Resume Operation.

Low power Usage in Application:

For illustration, usage of low power feature by the application is depicted in the following Figure 2-20. The
touch_inactivity_trigger_time and NO_ACTIVITY_TRIGGER_TIME, app_low_power_mode,
are not used by library and they are only application variables and macros. The variable
touch_inactivity_trigger_time is time tracker variable, and the macro
NO_ACTIVITY_TRIGGER_TIME is the threshold available in the application to enable low power mode
when there is no touch activity for a particular period of time, as configured by the application. The
variable app_low_power_mode in application tracks the low power status. The function
app_enable_events() in the application indicates that PTC start Conversion is attached as event user
by the application. The flowchart indicates the usage of FMEA tests and reference tracking along with low
power feature.

In case of a system which uses both Mutual Capacitance Technology and Self Capacitance Technology
from QTouch Safety Library, low power feature can be used only for one technology at a time. This means
if the Low power feature is used for a Mutual Capacitance sensor, low power feature cannot be used
simlutaneously for another Self Capacitance sensor. Exclusitivity has to be maintained as mentioned in
section Touch Library and FMEA Synchronization.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

52

Figure 2-20. Low Power Start Flow
Application, Touch, FMEA, Events Initialization

PTC ISR WAKE_UP_TOUCH=1

Host Application Code/SLEEP

WAKE_UP_TOUCH=1
or

drift pending =1

Is
measurement
_done_touch

=1
and

touch_inactivity_time
>=

NO_ACTIVITY_TRIGGER
_TIME ?

PTC ISR
(Sensors Calibration) measurement_complete_callback()

,measured data and Touch Status

touch_xxxx_sensors_measure
(NORMAL_ACQ_MODE)

Calibration starts when
first time call to measure

sensors API after sensors
calibrate API.

Host Application Code/SLEEP

Is Calibration
Completed?

touch_xxxx_sensors_measure
(NORMAL_ACQ_MODE)

touch_xxxxcap_lowpower_sensor_enable
_event_measure()

No

Yes

PTC ISR filter_callback(),if enabled

measurement_complete_callback()
,measured data and Touch Status

whether
app_low_

power_mode
= 1 and

(WAKE_UP_TOUCH=1
or

fmea_pending=1
or

drift pending=1)?

Whether
fmea

pending=1?

Yes

app_low_power_mode=1

app_enable_events()

touch_xxxxcap_lowpower_sensor_stop()

Perform fmea tests

No

Yes

No

Yes

No

app_disable_events()

Disable interrupts

app_low_power_mode=0

Enable interrupts

Low power stop Operation:

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

53

When low power operation is in progress, before performing any other touch actions or calling any other
APIs, Low power operation should be stopped. For example the touch actions may include performing
FMEA tests or to do reference tracking, to perform calibration, to perform active measurement, to
suspend PTC, to de initialize the system, and so on.

When Low power operation is in progress, no other APIs should be called before low power operation is
stopped. Event system user or, event generator arrangement has to stopped by the application before
calling touch_xxxxcap_lowpower_sensor_stop API. In case of touch wakeup and wake_up_touch
variable being set to '1', application should immediately stop the events system arrangement, so that
additional PTC interrupts are not triggered. The function app_disable_events() mentioned in the
Figure 2-21 indicates does the functionality of detaching PTC user from the Event System before and this
function is called before calling the touch_xxxxcap_lowpower_sensor_stop API. After the calling
this API, the variable low_power_mode will be set to '0' by the library which indicates the low power
operation is not in progress or in other words, it has been stopped.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

54

Figure 2-21. Low Power Stop Operation

Yes

begin_low_power_stop_operation

app_disable_events()

touch_ret=touch_xxxxcap_lowpower
_sensor_stop()

Is touch_ret=
TOUCH_SUCCESS?

app_low_power_mode=0

No

low_power_stop_operation_complete

No

Is touch_ret=
TOUCH_WAIT_

FOR_CB?

Handle error condition

Wait for
touch_low_power_stop_complete_app_cb
or perform other application code without
calling any Touch_lib APIs or FMEA APIs

Yes

Disable Interrupts

Enable interrupts

app_low_power_callback_pending=1

Enable interrupts

app_low_power_callback_pending=0

PTC ISR
(low power stop)

touch_low_power_stop_
complete_app_cb()

If a PTC measurement is already in progress, when application calls the
touch_xxxxcap_lowpower_sensor_stop API, this API will return TOUCH_WAIT_FOR_CB and
low_power_mode variable will retain the value of ‘1’. This means, that low power operation is not
stopped yet and it will be completed only when low power stop complete callback function is invoked by
the library. Once ongoing measurement is completed, PTC ISR will wakeup the system and Touch library
will invoke touch_low_power_stop_complete_app_cb function from the PTC ISR. The variable
low_power_mode will be cleared to ‘0’ by library, when this call back function is being invoked.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

55

Application has to register a callback function during the initialization or before calling
touch_xxxxcap_lowpower_sensor_enable_event_measure API. This application callback
function should be assigned to void (* volatile touch_low_power_stop_complete_app_cb)
(void) function pointer. If the call back function is not registered by application, error will reported by the
library when the application tries to use low power feature.

If PTC Measurement is not in progress when application calls the
touch_xxxxcap_lowpower_sensor_stop API, and if no other error conditions are applicable, library
will stop PTC for the low power operation and this API will return TOUCH_SUCCESS and clears the
low_power_mode variable to value of ‘0’, which indicates the low power mode is not in progress or in
other words, low power stop operation is completed. In the Figure 2-21 the variable
app_low_power_mode and the function app_disable_events() are not used by the library and are
used only by the application. The variable app_low_power_mode is used by application for tracking low
power status and app_disable_events() function is used to detach the PTC user from the Event
system.

Interrupt Lock recommendation during low power stop operation:

It is recommended to call the touch_xxxxcap_lowpower_sensor_stop API in interrupt lock, similar
to arrangement in Figure 2-21. This means, that interrupts has to be disabled before
touch_xxxxcap_lowpower_sensor_stop API is being called. If this API returns TOUCH_SUCCESS,
interrupts can be enabled immediately after the API return. If API returns TOUCH_WAIT_FOR_CB, then
interrupts has to be enabled only after application has completed processing of the application low-power
synchronization variables like app_low_power_callback_pending=1 or any other application
synchronization variables.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

56

3. QTouch Safety Library API

3.1. Typedefs

Keyword Type Desription

threshold_t uint8_t An unsigned 8-bit number setting a sensor detection threshold.

sensor_id_t uint8_t Sensor number type.

touch_current_time_t uint16_t Current time type.

touch_delta_t int16_t Touch sensor delta value type.

touch_acq_status_t uint16_t Status of touch measurement.

3.2. Macros

3.2.1. Touch Library Acquisition Status Bit Fields

Keyword Type Desription

TOUCH_NO_ACTIVITY 0x0000u No touch activity

TOUCH_IN_DETECT 0x0001u At least one touch channel is in detect.

TOUCH_STATUS_CHANGE 0x0002u Change in touch status of at least one Touch
channel.

TOUCH_ROTOR_SLIDER_POS_C
HANGE

0x0004u Change in the position of at least one rotor or
slider

TOUCH_CHANNEL_REF_CHANGE 0x0008u Change in the reference value of at least one
touch channel

TOUCH_BURST_AGAIN 0x0100u Indicates that re-burst is required to resolve
filtering or calibration state.

TOUCH_RESOLVE_CAL 0x0200u Indicates that re-burst is required to resolve
calibration process.

TOUCH_RESOLVE_FILTERIN 0x0400u Indicates that re-burst is required to resolve
Filtering.

TOUCH_RESOLVE_DI 0x0800u Indicates that re-burst is needed to resolve
Detect Integration.

TOUCH_RESOLVE_POS_RECAL 0x1000u Indicates that re-burst is needed to resolve away
from touch recalibration.

TOUCH_CC_CALIB_ERROR 0x2000u Indicates that CC Calibration error has occurred.

TOUCH_AUTO_OS_IN_PROGRES
S

0x4000u Indicates that Auto Oversample process is going
on.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

57

DEF_TOUCH_MUTLCAP must be set to 1 in the application to enable the Mutual Capacitance touch
technology.

DEF_TOUCH_SELFCAP must be set to 1 in the application to enable the Self Capacitance touch
technology.

TOUCH_SAFETY_COMPILE_CHECK must be set to 1 to enable the compile time check feature.

3.2.2. Sensor State Configurations
GET_SENSOR_STATE (SENSOR_NUMBER)

To get the sensor state (whether detect or not). These values are valid for parameter that corresponds to
the sensorspecified using the SENSOR_NUMBER. The macro returns either 0 or 1. If the bit value is 0,
the sensor is not in detect. If the bit value is 1, the sensor is in detect.

#define GET_XXXXCAP_SENSOR_STATE(SENSOR_NUMBER) p_xxxxcap_measure_data->p_sensor_states
[(SENSOR_NUMBER / 8)] & (1 <<
(SENSOR_NUMBER % 8))) >>(SENSOR_NUMBER % 8)

GET_ROTOR_SLIDER_POSITION (ROTOR_SLIDER_NUMBER)

To get the rotor angle or slider position. These values are valid only when the sensor state for
corresponding rotor orslider state is in detect. ROTOR_SLIDER_NUMBER is the parameter for which the
position is being obtained. The macro returns rotor angle or sensor position.

#define GET_XXXXCAP_ROTOR_SLIDER_POSITION(ROTOR_SLIDER_NUMBER)p_xxxxcap_measure_data-
>p_rotor_slider_values
[ROTOR_SLIDER_NUMBER]

GET_XXXXCAP_SENSOR_NOISE_STATUS (SENSOR_NUMBER)

To get the noise status of a particular sensor. The return value is 1 in case of sensor is noisy and returns
0 if sensor isn ot noisy.

#define GET_XXXXCAP_SENSOR_NOISE_STATUS (SENSOR_NUMBER)(p_xxxxcap_measure_data-
>p_sensor_noise_status [(SENSOR_NUMBER /
8)] & (1 <<(SENSOR_NUMBER % 8))) >> (SENSOR_NUMBER % 8)

GET_XXXXCAP_SENSOR_MOIS_STATUS (SENSOR_NUMBER)

To get the moisture status of a particular sensor. The return value is 1 in case of sensor is moisture
affected and returns0 if sensor is not moisture affected.

#define GET_XXXXCAP_SENSOR_MOIS_STATUS (SENSOR_NUMBER)(p_xxxxcap_measure_data->
\p_sensor_mois_status [(SENSOR_NUMBER /
8)] & (1 <<(SENSOR_NUMBER % 8))) >> (SENSOR_NUMBER % 8))

GET_XXXXCAP_AUTO_OS_CHAN_STATUS(CHAN_NUM)

To get the auto oversample status of a particular channel. The return value is 1 in case of channel auto
oversample isgoing on and returns 0 if channel auto oversample process is not going on.

#define GET_XXXXCAP_AUTO_OS_CHAN_STATUS (CHAN_NUM)(p_xxxxcap_measure_data->p_auto_os_status
[(CHAN_NUM / 8)] & (1
<<(CHAN_NUM % 8))) >> (CHAN_NUM % 8))

3.3. Enumerations

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

58

3.3.1. Touch Library GAIN Setting(tag_gain_t)
Detailed Description

Gain per touch channel. Gain is applied for an individual channel to allow a scaling-up of the touch delta.
Delta on touch contact is measured on each sensor. The resting signal is ignored.Range: GAIN_1 (no
scaling) to GAIN_32 (scale-up by 32).

Data Fields
• GAIN_1
• GAIN_2
• GAIN_4
• GAIN_8
• GAIN_16
• GAIN_32

3.3.2. Filter Level Setting(tag_filter_level_t)
Detailed Description

Touch library FILTER LEVEL setting.

The filter level setting controls the number of samples acquired to resolve each acquisition. A higher filter
level settingprovides improved signal to noise ratio under noisy conditions, while increasing the total time
for measurement whichresults in increased power consumption. The filter level should be configured for
each channel.

Refer filter_level_t in touch_safety_api_samd.h

Range: FILTER_LEVEL_1 (one sample) to FILTER_LEVEL_64 (64 samples).

Data Fields
• FILTER_LEVEL_1
• FILTER_LEVEL_2
• FILTER_LEVEL_4
• FILTER_LEVEL_8
• FILTER_LEVEL_16
• FILTER_LEVEL_32
• FILTER_LEVEL_64

3.3.3. Touch_Library_AUTO_OS_Setting_(tag_auto_os_t)

Detailed Description

Auto oversample controls the automatic oversampling of sensor channels when unstable signals are
detected with the default setting of filter level. Each increment of Auto Oversample doubles the number of
samples acquired from the corresponding sensor channel when an unstable signal is observed. The auto
oversample should be configured for each channel.

For example, when filter level is set to FILTER_LEVEL_4 and Auto Oversample is set to AUTO_OS_4, 4
oversamples are collected with stable signal values and 16 oversamples are collected when unstable
signal is detected.

Refer auto_os_t in touch_safety_api_samd.h

Range: AUTO_OS_DISABLE (oversample disabled) to AUTO_OS_128 (128 oversamples).

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

59

Data Fields
• AUTO_OS_DISABLE
• AUTO_OS_2
• AUTO_OS_4
• AUTO_OS_8
• AUTO_OS_16
• AUTO_OS_32
• AUTO_OS_64
• AUTO_OS_128

3.3.4. Library Error Code (tag_touch_ret_t)
Detailed Description

Touch Library error codes.

Data Fields
• TOUCH_SUCCESS Successful completion of touch operation.
• TOUCH_ACQ_INCOMPLETE Library is busy with pending previous touch measurement.
• TOUCH_INVALID_INPUT_PARAM Invalid input parameter.
• TOUCH_INVALID_LIB_STATE Operation not allowed in the current touch library state.
• TOUCH_INVALID_SELFCAP_CONFIG_PARAM Invalid self capacitance configuration input

parameter.
• TOUCH_INVALID_MUTLCAP_CONFIG_PARAM Invalid mutual capacitance configuration input

parameter.
• TOUCH_INVALID_RECAL_THRESHOLD Invalid recalibration threshold input value.
• TOUCH_INVALID_CHANNEL_NUM Channel number parameter exceeded total number of channels

configured.
• TOUCH_INVALID_SENSOR_TYPE Invalid sensor type. Sensor type must NOT be

SENSOR_TYPE_UNASSIGNED.
• TOUCH_INVALID_SENSOR_ID Invalid sensor number parameter.
• TOUCH_INVALID_RS_NUM Number of rotor/sliders set as 0, while trying to configure a rotor/slider.
• TOUCH_INTERNAL_TOUCH_LIB_ERR Touch internal library error.
• TOUCH_LOGICAL_PROGRAM_CNTR_FLOW_ERR Touch logical flow error.
• TOUCH_LIB_CRC_FAIL Touch library data CRC error.
• TOUCH_LIB_DI_CHECK_FAIL Touch library double inverse check field.
• TOUCH_PC_FUNC_MAGIC_NO_1 Program counter magic number 1
• TOUCH_PC_FUNC_MAGIC_NO_2 Program counter magic number 2
• TOUCH_PC_FUNC_MAGIC_NO_3 Program counter magic number 3
• TOUCH_PC_FUNC_MAGIC_NO_4 Program counter magic number 4
• TOUCH_PINS_VALIDATION_FAIL Touch pins are not valid
• TOUCH_ALL_SENSORS_DISABLED All sensors are disabled
• TOUCH_CNFG_MISMATCH Number of sensors defined in DEF_XXXXCAP_NUM_SENSORS are not

equal to the number of sensors configured using touch_xxxcap_sensor_config() or Number of
moisture groups defined In DEF_XXXXCAP_NUM_MOIS_GROUPS are not equal to the number of
groups configured using touch_xxxxcap_cnfg_mois_mltchgrp or If moisture group threshold is not
configured for all moisture groups or mismatch in the Moisture Quick Reburst Configuration.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

60

• TOUCH_WAIT_FOR_CB The Low Power Stop API would return this error which means that Stop
Low Power functionality is not completed and application has to wait for the callback.

3.3.5. Sensor Channel (tag_channel_t)
Detailed Description

Sensor start and end channel type of a Sensor. Channel number starts with value 0.

Data Fields

CHANNEL_0 to CHANNEL_255

3.3.6. Touch Library State (tag_touch_lib_state_t)
Detailed Description

Touch library state.

Data Fields
• TOUCH_STATE_NULL Touch library is un-initialized. All sensors are disabled.
• TOUCH_STATE_INIT Touch library has been initialized.
• TOUCH_STATE_READY Touch library is ready to start a new capacitance measurement on enabled

sensors.
• TOUCH_STATE_CALIBRATE Touch library is performing calibration on all sensors.
• TOUCH_STATE_BUSY Touch library is busy with on-going capacitance measurement.

3.3.7. Sensor Type (tag_sensor_type_t)
Detailed Description

Sensor types available.

Data Fields
• SENSOR_TYPE_UNASSIGNED Sensor is not configured yet.
• SENSOR_TYPE_KEY Sensor type key.
• SENSOR_TYPE_ROTOR Sensor type rotor.
• SENSOR_TYPE_SLIDER Sensor type slider.
• MAX_SENSOR_TYPE Max value of enum type for testing.

3.3.8. Touch Library Acquisition Mode (tag_touch_acq_mode_t)
Detailed Description

Touch library acquisition mode.

Data Fields

RAW_ACQ_MODE
When raw acquisition mode is used, the measure_complete_callback function is called immediately once
a freshvalue of signals are available. In this mode, the Touch Library does not perform any post
processing. So, the references,sensor states or rotor/slider position values are not updated in this mode.

NORMAL_ACQ_MODE
When normal acquisition mode is used, the measure_complete_callback function is called only after the
TouchLibrary completes processing of the signal values obtained. The references, sensor states and
rotor/slider position values are updated in this mode.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

61

3.3.9. AKS Group (tag_aks_group_t)
Detailed Description

It provides information about the sensors that belong to specific AKS group.

NO_AKS_GROUP indicates that the sensor does not belong to any AKS group and cannot be suppressed.

AKS_GROUP_x indicates that the sensor belongs to the AKS group x.

Data Fields
• NO_AKS_GROUP
• AKS_GROUP_1
• AKS_GROUP_2
• AKS_GROUP_3
• AKS_GROUP_4
• AKS_GROUP_5
• AKS_GROUP_6
• AKS_GROUP_7
• MAX_AKS_GROUP Max value of enum type for testing

3.3.10. Channel Hysterisis Setting (tag_hyst_t)
Detailed Description

A sensor detection hysteresis value. This is expressed as a percentage of the sensor detection threshold.

HYST_x = hysteresis value is x% of detection threshold value (rounded down).

Note: A minimum threshold value of 2 is used.

Example: If detection threshold = 20,

HYST_50= 10 (50% of 20)

HYST_25 = 5 (25% of 20)

HYST_12_5 = 2 (12.5% of 20)

HYST_6_25= 2 (6.25% of 20 = 1, but value is hard limited to 2)

Data Fields
• HYST_50
• HYST_25
• HYST_12_5
• HYST_6_25
• MAX_HYST Maximum value of enum type for testing

3.3.11. Sensor Recalibration Threshold (tag_recal_threshold_t)
Detailed Description

This is expressed as a percentage of the sensor detection threshold.

RECAL_x = recalibration threshold is x% of detection threshold value (rounded down).

Note: A minimum value of 4 is used.

Example: If detection threshold = 40,

RECAL_100 = 40 (100% of 40)

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

62

RECAL_50 = 20 (50% of 40)

RECAL_25 = 10 (25% of 40)

RECAL_12_5 = 5 (12.5% of 40)

RECAL_6_25 = 4 (6.25% of 40 = 2, but value is hard limited to 4).

Data Fields
• RECAL_100
• RECAL_50
• RECAL_25
• RECAL_12_5
• RECAL_6_25
• MAX_RECAL Maximum value of enum type for testing.

3.3.12. Rotor Slider Resolution (tag_resolution_t)
Detailed Description

For rotors and sliders, the resolution of the reported angle or position. RES_x_BIT = rotor/slider reports x-
bit values.

Example: If slider resolution is RES_7_BIT, then reported positions are in the range 0..127.

Data Fields
• RES_1_BIT
• RES_2_BIT
• RES_3_BIT
• RES_4_BIT
• RES_5_BIT
• RES_6_BIT
• RES_7_BIT
• RES_8_BIT
• MAX_RES Maximum value of enum type for testing

3.3.13. Auto Tune Setting (tag_auto_tune_type_t)
Detailed Description

Touch library PTC prescaler clock and series resistor auto tuning setting.

Data Fields
• AUTO_TUNE_NONE Auto tuning mode disabled. This mode uses the user defined PTC prescaler

and seriesresistor values.
• AUTO_TUNE_PRSC Auto tune PTC prescaler for best noise performance. This mode uses the

user definedseries resistor value.
• AUTO_TUNE_RSEL Auto tune series resistor for least power consumption. This mode uses the

user defined PTCprescaler value.

3.3.14. PTC Clock Prescale Setting (tag_prsc_div_sel_t)
Detailed Description

Refer touch_configure_ptc_clock() API in touch.c. PTC Clock Prescale setting is available for each
channel.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

63

Example:

If generic clock input to PTC = 4 MHz,

PRSC_DIV_SEL_1 sets PTC Clock to 4 MHz.

PRSC_DIV_SEL_2 sets PTC Clock to 2 MHz.

PRSC_DIV_SEL_4 sets PTC Clock to 1 MHz.

PRSC_DIV_SEL_8 sets PTC Clock to 500 KHz.

Data Fields
• PRSC_DIV_SEL_1
• PRSC_DIV_SEL_2
• PRSC_DIV_SEL_4
• PRSC_DIV_SEL_8

3.3.15. PTC Series Resistor Setting (tag_rsel_val_t)
Detailed Description

For mutual capacitance mode, this series resistor is switched internally on the Y-pin. For self capacitance
mode, theseries resistor is switched internally on the sensor pin. PTC Series Resistance setting is
available for individual channel.

Example:

RSEL_VAL_0 sets internal series resistor to 0 Ohms.

RSEL_VAL_20 sets internal series resistor to 20 Kohms.

RSEL_VAL_50 sets internal series resistor to 50 Kohms.

RSEL_VAL_100 sets internal series resistor to 100 Kohms.

Data Fields
• RSEL_VAL_0
• RSEL_VAL_20
• RSEL_VAL_50
• RSEL_VAL_100

3.3.16. PTC Acquisition Frequency Delay Setting (freq_hop_sel_t)
Detailed Description

The PTC acquisition frequency is dependent on the generic clock input to PTC and PTC clock prescaler
setting. Thisdelay setting inserts n PTC clock cycles between consecutive measurements on a given
sensor, thereby changing thePTC acquisition frequency. FREQ_HOP_SEL_1 setting inserts 0 PTC clock
cycle between consecutive measurements.FREQ_HOP_SEL_16 setting inserts 15 PTC clock cycles.
Hence, higher delay setting will increase the total time requiredfor capacitance measurement on a given
sensor as compared to a lower delay setting.An optimal setting avoids noise in the same frequency as the
acquisition frequency.

Data Fields
• FREQ_HOP_SEL_1
• FREQ_HOP_SEL_2
• FREQ_HOP_SEL_3

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

64

• FREQ_HOP_SEL_4
• FREQ_HOP_SEL_5
• FREQ_HOP_SEL_6
• FREQ_HOP_SEL_7
• FREQ_HOP_SEL_8
• FREQ_HOP_SEL_9
• FREQ_HOP_SEL_10
• FREQ_HOP_SEL_11
• FREQ_HOP_SEL_12
• FREQ_HOP_SEL_13
• FREQ_HOP_SEL_14
• FREQ_HOP_SEL_15
• FREQ_HOP_SEL_16

3.3.17. PTC Acquisition Frequency Mode Setting (tag_freq_mode_sel_t)
Detailed Description

The frequency mode setting option enables the PTC acquisition to be configured for the following modes.
• Frequency hopping and spread spectrum disabled.
• Frequency hopping enabled with median filter.
• Frequency spread spectrum enabled without median filter.
• Frequency spread spectrum enabled with median filter.

Range: FREQ_MODE_NONE (no frequency hopping & spread spectrum) to FREQ_MODE_SPREAD_MEDIAN
(spreadspectrum with median filter).

Data Fields

• FREQ_MODE_NONE 0u
• FREQ_MODE_HOP 1u
• FREQ_MODE_SPREAD 2u
• FREQ_MODE_SPREAD_MEDIAN 3u

3.3.18. PTC Sensor Lockout Setting (nm_sensor_lockout_t)
Detailed Description

The sensor lockout setting option allows the system to be configured in the following modes.
• SINGLE_SENSOR_LOCKOUT Single sensor can be locked out.
• GLOBAL_SENSOR_LOCKOUT All the sensors are locked out for touch detection.
• NO_LOCK_OUT All the sensors are available for touch detection.

Range: SINGLE_SENSOR_LOCKOUT to NO_LOCK_OUT.

Data Fields
• SINGLE_SENSOR_LOCKOUT 0u
• GLOBAL_SENSOR_LOCKOUT 1u
• NO_LOCK_OUT 2u

3.3.19. Moisture Group Setting (moisture_grp_t)
Detailed Description

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

65

Sensor can be configured in the moisture group using this type.
• MOIS_DISABLED Indicates that the sensor does not belong to any moisture group.
• MOIS_GROUP_X Indicates that the sensor belongs to the moisture group x.

Range: MOIS_DISABLED=0 to MOIS_GROUP_7.

Data Fields
• MOIS_DISABLED=0
• MOIS_GROUP_0
• MOIS_GROUP_1
• MOIS_GROUP_2
• MOIS_GROUP_3
• MOIS_GROUP_4
• MOIS_GROUP_5
• MOIS_GROUP_6
• MOIS_GROUP_7
• MOIS_GROUPN

3.3.20. Multi Touch Group Setting (mltch_grp_t)
Detailed Description

Sensor can be configured in the multi-touch group using this type.
• MLTCH_NONE Indicates that the sensor does not belong to any multi-touch group.
• MLTCH_GROUP_X Indicates that the sensor belongs to the multi-touch group x.

Range: MLTCH_NONE=0 to MOIS_GROUP_7.

Data Fields
• MLTCH_NONE=0
• MLTCH_GROUP_0
• MLTCH_GROUP_1
• MLTCH_GROUP_2
• MLTCH_GROUP_3
• MLTCH_GROUP_4
• MLTCH_GROUP_5
• MLTCH_GROUP_6
• MLTCH_GROUP_7
• MLTCH_GROUPN

3.4. Data Structures

3.4.1. Touch Library Configuration Type
touch_config_t Struct Reference

Touch library Input Configuration Structure.

Data Fields

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

66

Field Unit Desription

p_mutlcap_config touch_mutlcap_config_t Pointer to mutual capacitance configuration structure.

p_selfcap_config touch_selfcap_config_t Pointer to self capacitance configuration structure.

ptc_isr_lvl uint8_t PTC ISR priority level

touch_mutlcap_config_t Struct Reference

Touch Library mutual capacitance configuration input type.

Data Fields

Field Unit Desription

num_channels uint16_t Number of channels.

num_sensors uint16_t Number of sensors

num_rotors_and_sliders uint8_t Number of rotors/sliders.

global_param touch_global_param_t Global Parameters

touch_xxxxcap_acq_param touch_xxxxcap_acq_param_t Sensor acquisition
parameter info.

* p_data_blk uint8_t Pointer to data block
buffer.

buffer_size uint16_t Size of data block buffer.

* p_mutlcap_xy_nodes uint16_t Pointer to xy nodes

mutl_quick_reburst_enable uint8_t Quick re-burst enable

(touch_filter_data_t
*p_filter_data)

void(* filter_callback) Mutual capacitance filter
callback

enable_freq_auto_tune uint8_t Frequency auto tune
enable

enable_noise_measurement uint8_t Noise measurement
enable

nm_buffer_cnt uint8_t Memory allocation buffer

mutl_mois_tlrnce_enable uint8_t Mutual capacitance
moisture tolerance enable
flag

mutl_mois_groups uint8_t Number of mutual
capacitance moisture
groups

mutl_mois_quick_reburst_enable uint8_t Mutal Cap Moisture Quick
Reburst Feature enable/
disable

touch_selfcap_config_t Struct Reference

Touch Library self capacitance configuration input type.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

67

Data Fields

Field Unit Desription

num_channels uint16_t Number of channels.

num_sensors uint16_t Number of sensors

num_rotors_and_sliders uint8_t Number of rotors/sliders.

global_param touch_global_param_t Global sensor
configuration information

touch_xxxxcap_acq_param touch_xxxxcap_acq_param_t Sensor acquisition
parameter info.

* p_data_blk uint8_t Pointer to data block
buffer.

buffer_size uint16_t Size of data block buffer.

* p_selfcap_xy_nodes uint16_t Pointer to xy nodes

self_quick_reburst_enable uint8_t Quick re-burst enable

(touch_filter_data_t
*p_filter_data)

void(* filter_callback) Self capacitance filter
callback

enable_freq_auto_tune uint8_t Frequency auto tune
enable

enable_noise_measurement uint8_t Noise measurement
enable

nm_buffer_cnt uint8_t Memory allocation buffer

self_mois_tlrnce_enable uint8_t Self capacitance moisture
tolerance enable flag

self_mois_groups uint8_t Number of mutual
capacitance moisture
groups

self_mois_quick_reburst_enable uint8_t Self Cap Moisture Quick
Reburst Feature enable/
disable

3.4.2. Touch Library Safety Type
touch_lib_fault_t Struct Reference

Detailed Description

This structure holds the inverse values of various touch library parameters.

Data Fields

Field Unit Desription

inv_touch_ret_status touch_ret_t Holds the inverse value of the touch return status.

touch_lib_param_safety_t Struct Reference

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

68

Detailed Description

This structure holds the pointer to the data block for double inverse safety variables.

Data Fields

Field Unit Desription

*p_inv_channel_signals touch_ret_t Pointer to the channel signals which
hold the inverse value of different
channel signals.

inv_acq_status touch_acq_status_t Holds the inverse value of the touch
acquisition status.

inv_num_channel_signals uint8_t Holds the inverse value of the total
number of channel signals.

inv_num_sensor_states uint8_t Holds the inverse value of the number
of sensor states bytes.

*p_inv_sensor_states uint8_t Pointer to the sensor states that holds
the inverse value of different sensor
states.

inv_num_rotor_slider_values uint8_t Holds the inverse value of the number
of rotor slider.

*p_inv_rotor_slider_values uint8_t Pointer to the rotor slider values that
holds the inverse value of different
rotor slider values

inv_lib_state uint8_t Holds the inverse value of the touch
library state.

p_inv_delta int16_t Holds the inverse value of the touch
delta.

inv_current_time_ms uint16_t Holds the inverse value of current
time millisecond variable.

inv_burst_again uint8_t Holds the inverse value of the burst
again flag.

inv_acq_mode touch_acq_mode_t Holds the inverse value of the touch
acquisition mode.

inv_sf_ptc_error_flag uint8_t Holds the inverse value of the PTC
error flag.

inv_cc_cal_open_calibration_vals uint16_t Holds the inverse value of the CC
calibration value.

*p_inv_sensor_noise_status uint8_t Holds the inverse value of the sensor
noise status

*p_inv_sensor_mois_status uint8_t Holds the inverse value of the Sensor
moisture status.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

69

Field Unit Desription

*p_inv_chan_auto_os_status uint8_t Holds the inverse value of the
channel auto os status.

inv_low_power_mode uint8_t Holds the inverse value of the low
power mode status flag.

inv_wake_up_touch uint8_t Holds the inverse value of the wake
up touch status flag.

3.4.3. Touch Library Double Inverse Type
touch_lib_di_data_block_t Struct Reference

Detailed Description

This structure holds the pointer to the data block for the double inverse safety variables.

Data Fields

Field Unit Desription

p_di_data_block uint8_t Holds the pointer to the data block allocated by the application for
double inverse check for the safety variables.

di_data_block_size uint16_t Holds the size of the data block allocated by the application of safety
variables.

3.4.4. Touch Library Parameter Type
tag_touch_global_param_t Struct Reference

Detailed Description

Touch library global parameter type.

Data Fields

Field Unit Desription

di uint8_t Detect Integration (DI) limit.

atch_drift_rate uint8_t Sensor away from touch drift rate.

tch_drift_rate uint8_t Sensor towards touch drift rate.

max_on_duration uint8_t Maximum ON time duration.

drift_hold_time uint8_t Sensor drift hold time.

atch_recal_delay uint8_t Sensor away from touch recalibration
delay.

recal_threshold recal_threshold_t Sensor away from touch recalibration
threshold.

cal_seq_1_count uint8_t Sensor calibration dummy burst count.

cal_seq_2_count uint8_t Sensor calibration settling burst count.

auto_os_sig_stability_limit uint16_t Stability limit for the auto oversamples
to trigger.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

70

Field Unit Desription

auto_tune_sig_stability_limit uint16_t Stability limit for frequency auto tune
feature.

auto_freq_tune_in_cnt uint8_t Frequency auto tune In counter.

nm_sig_stability_limit uint16_t Stability limit for noise measurement.

nm_noise_limit uint8_t Noise limit.

nm_enable_sensor_lock_out nm_sensor_lockout_t Sensor lockout feature variable.

nm_lockout_countdown uint8_t Lockout countdown for noise
measurement.

charge_share_delay uint8_t charge_share_delay parameter for the
PTC

tag_touch_xxxxcap_param_t Struct Reference

Detailed Description

Touch library capacitance sensor parameter type.

Data Fields

Field Unit Desription

aks_group aks_group_t Which AKS group, the sensor belongs to.

detect_threshold threshold_t An unsigned 8-bit number setting a sensor detection threshold.

detect_hysteresis hysteresis_t A sensor detection hysteresis value. This is expressed as a
percentage of the sensor detection threshold.

• HYST_x = hysteresis value is x% of detection threshold
value (rounded down). A minimum value of 2 is used.

• Example: If detection threshold = 20
• HYST_50 = 10 (50% of 20)
• HYST_25 = 5 (25% of 20)
• HYST_12_5 = 2 (12.5% of 20)
• HYST_6_25 = 2 (6.25% of 20 = 1, but value is hard

limited to 2)

position_resolution resolution_t For rotors and sliders, the resolution of the reported angle or
position. RES_x_BIT = rotor/slider reports x-bit values.
Example: If slider resolution is RES_7_BIT, then reported
positions are in the range 0..127

position_hysteresis uint8_t Sensor position hysteresis. This is valid only for a rotor or
slider. bits 1..0: hysteresis. This parameter is valid only for
mutual cap.

tag_touch_xxxxcap_acq_param_t Struct Reference

Detailed Description

Capacitance sensor acquisition parameter type.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

71

Data Fields

Field Unit Desription

p_xxxxcap_gain_per_node gain_t Pointer to gain per node.

touch_xxxxcap_freq_mode uint8_t Setup acquisition frequency mode.

p_xxxxcap_ptc_prsc prsc_div_sel_t Pointer to PTC clock prescaler value per
node.

p_xxxxcap_resistor_value rsel_val_t Pointer to PTC series resistor value per
node.

p_xxxxcap_hop_freqs freq_hop_sel_t Pointer to acquisition frequency settings.

p_xxxxcap_filter_level filter_level_t Pointer to Filter level per node..

p_xxxxcap_auto_os auto_os_t Pointer to Auto oversampling per node.

p_xxxxcap_ptc_prsc_cc_cal prsc_div_sel_t Pointer to PTC clock prescale value during
CC cal.

p_xxxxcap_resistor_value_cc_cal rsel_val_t Pointer to PTC series resistor value during
CC cal.

3.4.5. Touch Library Measurement Data Type
tag_touch_measure_data_t Struct Reference

Detailed Description

Touch library measurement parameter type.

Data Fields

Field Unit Desription

measurement_done_touch volatile uint8_t Flag set by
touch_xxxxcap_measure_complete_callback()
function when a latest Touch status is available

acq_status touch_acq_status_t Status of touch measurement.

num_channel_signals uint16_t Length of the measured signal values list.

*p_channel_signals uint16_t Pointer to measured signal values for each
channel.

num_channel_references uint16_t Length of the measured reference values list.

* p_channel_references uint16_t Pointer to measured reference values for each
channel.

num_sensor_states uint8_t Number of sensor state bytes.

num_rotor_slider_values uint8_t Length of the rotor and slider position values list.

*p_rotor_slider_values uint8_t Pointer to rotor and slider position values.

num_sensors uint16_t Length of the sensors data list.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

72

Field Unit Desription

* p_cc_calibration_vals uint16_t Pointer to calibrated compensation values for a
given sensor channel.

p_sensors sensor_t Pointer to sensor data

*p_sensor_noise_status uint8_t Pointer to noise status of the sensors

*p_nm_ch_noise_val uint16_t Pointer to noise level value of each channel.

p_sensor_mois_status uint8_t Pointer to moisture status.

* p_auto_os_status uint8_t Pointer to Per channel Auto Oversample status.

3.4.6. Touch Library Filter Data Type
tag_touch_filter_data_t Struct Reference

Detailed Description

Touch library filter data parameter type.

Data Fields

Field Unit Desription

num_channel_signals uint16_t Length of the measured signal values list.

p_channel_signals uint16_t Pointer to measured signal values for each channel.

3.4.7. Touch Library Time Type
tag_touch_time_t Struct Reference

Detailed Description

Touch library time parameter type.

Data Fields

Field Unit Desription

measurement_period_ms uint16_t Touch measurement period in milliseconds. This
variable determines how often a new touch
measurement must be done.

current_time_ms volatile
uint16_t

Current time, set by timer ISR.

mutl_time_to_measure_touch volatile uint8_t Flag set by timer ISR when it is time to measure
touch - Mutual capacitance method.

self_time_to_measure_touch volatile uint8_t Flag set by timer ISR when it is time to measure
touch - Self capacitance method.

3.4.8. Touch Library Info Type
tag_touch_info_t Struct Reference

Detailed Description

Touch library Info type.

Data Fields

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

73

Field Unit Desription

tlib_state touch_lib_state_t Touch library state.

num_channels_in_use uint16_t Number of channels currently in use.

num_sensors_in_use uint16_t Number of sensors in use irrespective of the

num_rotors_sliders_in_use uint8_t sensor is enable or disableNumber of rotor
sliders in use, irrespective of the rotor/slider
being disabled or enabled.

max_channels_per_rotor_slider uint8_t Max possible number of channels per rotor
or slider.

3.4.9. Touch Library Version
touch_libver_info_t Struct Reference

Detailed Description

Touch library version information.Product id for Safety Library is 202. Firmware version is formed of major,
minor and patch version as given below:

TLIB_MAJOR_VERSION = 5

TLIB_MINOR_VERSION = 1

TLIB_PATCH_VERSION = 14

fw_version = (TLIB_MAJOR_VERSION << 8) | (TLIB_MINOR_VERSION << 4) |
(TLIB_PATCH_VERSION)

Data Fields

Field Unit Desription

chip_id uint32_t Chip identification number.

product_id uint16_t Product identification number.

fw_version uint16_t Library version number.

3.5. Global Variables.

3.5.1. touch_lib_fault_test_status
Type

touch_lib_fault_t
Detailed Description

This structure holds the inverse value of the touch return status.

3.5.2. touch_error_app_cb
Type

void (*)(touch_ret_t lib_error)
Detailed Description

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

74

Callback function pointer that must be initialized by the application before a touch library API is called.
Touch library would call the function pointed by this variable under certain error conditions.

3.5.3. touch_suspend_app_cb
Type

void (* volatile touch_suspend_app_cb) (void)
Detailed Description

Callback function pointer that must be initialized by the application before a touch library API is
called.Touch library would call the function pointed by this function when suspension operation has to be
carry on by the application.

If suspend operation is requested by application and touch library is not in TOUCH_STATE_BUSY state,
then applicationwill not receive suspend callback from the library. The application should continue the
suspend operation in that case without waiting for the suspend callback.

3.5.4. low_power_mode
Type

uint8_t
Detailed Description

Low power mode status from Library to Application. The variable low_power_mode holds a value of '1'
when the QTouch Safety library is currently in low power mode and '0' when QTouch Safety library is
currently not in low power mode.

3.5.5. wake_up_touch
Type

uint8_t
Detailed Description

Wake up touch status from Library to Application. The variable wake_up_touch will be set to '0' when
low power mode is started by application while calling
touch_xxxxcap_lowpower_sensor_enable_event_measure API. The variable wake_up_touch
holds a value of '1' in case of touch detection when low power mode is progress. Customer application
can check the wake_up_touch variable in case of wake up from sleep during low power mode (when
low_power_mode=1), to identify whether user has touched the low power sensor.

3.5.6. touch_low_power_stop_complete_app_cb
Type

void (* volatile touch_low_power_stop_complete_app_cb) (void)
Detailed Description

Callback function pointer that must be initialized by the application before a low power feature is used.
Touch library would call the function pointed by this function if application requests low power stop
operation, when low power measurement is in progress. If low power measurement is in progress, when
application calls touch_xxxxcap_lowpower_sensor_stop API, TOUCH_WAIT_FOR_CB will be
returned. Application has to expect low power stop complete callback from the library if error code
returned bytouch_xxxxcap_lowpower_sensor_stop API is TOUCH_WAIT_FOR_CB.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

75

Before invoking this callback function, the variable low_power_mode will be set to '0' by the library. This
indicates that low power stop operation is completed.

3.6. Functions

3.6.1. Touch Library Initialization
The following API is used to initialize the Touch Library with capacitance method pin, register and sensor
configuration provided by the user.

touch_ret_t touch_xxxxcap_sensors_init (touch_config_t * p_touch_config)

Field Desription

p_touch_config Pointer to touch configuration structure.

Returns:

touch_ret_t: Touch Library status.

3.6.2. Touch Library Sensor Configuration
The following API configures a capacitance sensor of type key, rotor or slider.

touch_ret_t touch_xxxxcap_sensor_config (sensor_type_t sensor_type,
channel_tfrom_channel, channel_t to_channel, aks_group_t aks_group,
threshold_t detect_threshold,hysteresis_t detect_hysteresis, resolution_t
position_resolution, uint8_tposition_hysteresis, sensor_id_t * p_sensor_id)

Field Desription

sensor_type Sensor type key, rotor or slider.

from_channel First channel in the slider sensor.

to_channel Last channel in the slider sensor.

aks_group AKS group (if any) the sensor belongs to.

detect_threshold Sensor detection threshold.

detect_hysteresis Sensor detection hysteresis value.

position_resolution Resolution of the reported position value.

position_hysteresis Hysteresis level of the reported position value.

p_sensor_id Sensor id value of the configured sensor is updated by the Touch Library.

Returns:

touch_ret_t: Touch Library status.

3.6.3. Touch Library Sensor Calibration
The following API is used to calibrate the capacitance sensors for the first time before starting a touch
measurement.

This API can also be used to force calibration of capacitance sensors during runtime.

touch_ret_t touch_xxxxcap_sensors_calibrate (auto_tune_type_t
auto_tune_type)

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

76

Field Desription

auto_tune_type Specify auto tuning parameter mode.

Returns:

touch_ret_t: Touch Library status.

Note: Call touch_xxxxcap_sensors_measure API after executing this API.

The following API calibrates the single sensor.

touch_ret_t touch_xxxxcap_calibrate_single_sensor(sensor_id_t sensor_id)

Field Desription

sensor_id Sensor number to calibrate.

Returns:

touch_ret_t: Touch Library status.

Note: 

Call touch_xxxxcap_sensors_measure API after executing this API. If calibration of a disabled sensor is
required, touch_xxxxcap_sensor_reenable API should be used with calibration option.

touch_xxxxcap_calibrate_single_sensor API should not be used for calibrating a disabled sensor.
Otherwise it may lead to TOUCH_LOGICAL_PROGRAM_CNTR_FLOW_ERR.

3.6.4. Touch Library Sensor Measurement
The following API starts a touch measurement on capacitance sensors.

touch_ret_t touch_xxxxcap_sensors_measure
(touch_current_time_tcurrent_time_ms,touch_acq_mode_t xxxxcap_acq_mode,
uint8_t(*measure_complete_callback)(void))

Field Desription

current_time_ms Current time in millisecond.

xxxxcap_acq_mode Normal or raw acquisition mode.

measure_complete_callback Callback function to indicate that a single touch measurement is
completed.

Returns:

touch_ret_t: Touch Library status.

3.6.5. Touch Library Sensor Specific Touch Delta Read
The following API can be used retrieve the delta value corresponding to a given sensor for capacitance
sensors respectively.

touch_ret_t touch_xxxxcap_sensor_get_delta (sensor_id_t sensor_id,
touch_delta_t * p_delta)

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

77

Field Desription

sensor_id The sensor id for which delta value is being seeked.

p_delta Pointer to the delta variable to be updated by the touch library

Returns:

touch_ret_t: Touch Library status

3.6.6. Touch Library Sensor Specific Parameter Configuration Read-write
The following API sets the individual sensor specific configuration parameters for capacitance sensors.

touch_ret_t touch_xxxxcap_sensor_update_config (sensor_id_t
sensor_id,touch_xxxxcap_param_t * p_touch_sensor_param)

Field Desription

sensor_id The sensor id for which configuration parameter information is being set.

p_touch_sensor_param The touch sensor parameter structure that will be used by the touch library
to update.

Returns:

touch_ret_t: Touch Library status.

The following API reads the sensor configuration parameters for capacitance sensors.

touch_ret_t touch_xxxxcap_sensor_get_config (sensor_id_t
sensor_id,touch_xxxxcap_param_t * p_touch_sensor_param)

Field Desription

sensor_id The sensor id for which configuration parameter information is being set.

p_touch_sensor_param The touch sensor parameter structure that will be used by the touch library
to update.

Returns:

touch_ret_t: Touch Library status.

3.6.7. Touch Library Sensor Specific Acquisition Configuration Read-write
The following API sets the sensor specific acquisition configuration parameters for capacitance sensors
respectively.

touch_ret_t touch_xxxxcap_sensor_update_acq_config (touch_xxxxcap_acq_param_t
*p_touch_xxxxcap_acq_param)

Field Desription

p_touch_xxxxcap_acq_param The touch sensor acquisition parameter structure that will be used
by the touch library to update.

Returns:

touch_ret_t: Touch Library status.

Note: 

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

78

touch_xxxxcap_sensor_update_acq_config API if needed to be called , should be called only after the
touch_xxxxcap_sensors_init API.

The following API gets the sensor specific acquisition configuration parameters for cap sensors
respectively

touch_ret_ttouch_xxxxcap_sensor_get_acq_config (touch_xxxxcap_acq_param_t
*p_touch_xxxxcap_acq_param)

Field Desription

p_touch_xxxxcap_acq_param The touch sensor acquisition parameter structure that will be used
by the touch library to update.

Returns:

touch_ret_t: Touch Library status.

3.6.8. Touch Library Sensor Global Parameter Configuration Read-write
The following API updates the global parameter for cap sensors respectively.

touch_ret_t touch_xxxxcap_update_global_param (touch_global_param_t *
p_global_param)

Field Desription

p_global_param The pointer to global sensor configuration.

Returns:

touch_ret_t: Touch Library status.

Note: 
touch_xxxxcap_update_global_param API if needed to be called, should be called after the
touch_xxxxcap_sensors_init API.

The following API reads back the global parameter for cap sensors respectively.

touch_ret_t touch_xxxxcap_get_global_param (touch_global_param_t *
p_global_param)

Field Desription

p_global_param The pointer to global sensor configuration.

Returns:

touch_ret_t: Touch Library status.

3.6.9. Touch Library Info Read
The following API gets the Touch Library status information for cap sensors respectively.

touch_ret_t touch_xxxxcap_get_libinfo (touch_info_t * p_touch_info)

Field Desription

p_touch_info Pointer to the touch info data structure that will be updated by the touch library.

Returns:

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

79

touch_ret_t: Touch library status

3.6.10. Touch Library Program Counter
The following API tests the program counter inside the touch library. This function returns the unique
magic number TOUCH_PC_FUNC_MAGIC_NO_1 to the application.

touch_ret_t touch_lib_pc_test_magic_no_1 (void)
Returns: touch_ret_t

The following API tests the program counter inside the touch library. This function returns the unique
magic number TOUCH_PC_FUNC_MAGIC_NO_2 to the application.

touch_ret_t touch_lib_pc_test_magic_no_2 (void)
Returns: touch_ret_t

The following API tests the program counter inside the touch library. This function returns the unique
magic number TOUCH_PC_FUNC_MAGIC_NO_3 to the application.

touch_ret_t touch_lib_pc_test_magic_no_3 (void)
Returns: touch_ret_t

The following API tests the program counter inside the touch library. This function returns the unique
magic number TOUCH_PC_FUNC_MAGIC_NO_4 to the application.

touch_ret_t touch_lib_pc_test_magic_no_4 (void)
Returns: touch_ret_t

3.6.11. Touch Library CRC Configuration Check
touch_ret_t touch_calc_xxxxcap_config_data_integrity(void)
This function computes 16 bit CRC for the touch configuration data and stores it in a global variable
internal to the library.

Returns: touch_ret_t.

touch_ret_t touch_test_xxxxcap_config_data_integrity(void)
This function performs a test to verify the integrity of the touch configuration data. It computes the CRC
value and tests it against the previously stored CRC value. The result of the comparison is passed back
to the application.

Returns: Returns the result of the test integrity check. If CRC check passes, it returns TOUCH_SUCCESS,

else it returns TOUCH_LIB_CRC_FAIL.

3.6.12. Touch Library Double Inverse check
touch_ret touch_xxxxcap_di_init (touch_lib_di_data_block_t *p_dblk)
This function initializes the memory from inverse data block allocated by the application for different
pointers in the touch_lib_param_safety_t.

Data Fields

Field Desription

* p_dblk Pointer to the starting address of the data block allocated by the application for double
inverse check.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

80

Returns: touch_ret_t

This API must be called after the touch_xxxxcap_sensors_init API and before any other API is
called.

3.6.13. Touch Library Enable Disable Sensor
touch_ret touch_xxxxcap_sensor_disable (sensor_id_t sensor_id)
This function disable the sensor.

Data Fields

Field Desription

sensor_id Sensor which needs to be disabled.

Returns : touch_ret_t

touch_ret touch_xxxxcap_sensor_reenable (sensor_id_t sensor_id, uint8_t
no_calib)
This function will enable the sensor.

Data Fields

Field Desription

sensor_id Sensor which needs to be re-enabled.

no_calib Re-enable of sensor would be done with calibration or not. If value is 1, sensor would be
re-enable without calibration else if value is 0, sensor would be re-enable with calibration.

Returns : touch_ret_t

Note: 
1. Call touch_xxxxcap_sensors_measure API after executing this API.

2. It is recommended to re-enable the sensors with calibration (no_calib = 0), if sensors are re-enabled
after a long duration. Refer Drifting On Disabled Sensors for more information.

3.6.14. Touch Library Version Information
touch_ret_t touch_library_get_version_info(touch_libver_info_t
*p_touch_libver_info)
This function will provide the library version information.

Data Fields

Field Desription

p_touch_libver_info Pointer to touch library version information structure.

Returns : touch_ret_t

3.6.15. Touch Library Moisture Tolerance
touch_ret_t touch_xxxxcap_cnfg_mois_mltchgrp (sensor_id_t
snsr_id,moisture_grp_t mois_grpid,mltch_grp_t mltch_grpid);
This function can be used to Configure sensor in the moisture group and multi touch group.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

81

Data Fields

Field Desription

snsr_id Sensor to configure.

mois_grpid Sensor to be configured in this moisture group.

mltch_grpid Sensor to be configured in this multi touch group.

Returns : touch_ret_t

touch_ret_t touch_xxxxcap_cnfg_mois_threshold
(moisture_grp_t,mois_snsr_threshold_t snsr_threshold,mois_system_threshold_t
system_threshold);
This function can be used to configure moisture group sensor moisture lock and system moisture lock
threshold.

Data Fields

Field Desription

mois_grpid Moisture group id.

snsr_threshold Sensor moisture lock threshold.

system_threshold System moisture lock threshold.

Returns : touch_ret_t

touch_ret_t touch_xxxxcap_mois_tolrnce_enable (void);
This function can be used to enable the moisture tolerance feature.

Data Fields

None

Returns : touch_ret_t

touch_ret_t touch_xxxxcap_mois_tolrnce_disable (void);
This function can be used to disable the moisture tolerance feature.

Data Fields

None

Returns : touch_ret_t

touch_xxxxcap_mois_tolrnce_quick_reburst_enable (void);
This function can be used to enable the moisture quick re-burst feature during runtime. Both moisture and
quick re-burst should be in enabled state, before this function is being called. If moisture tolerance feature
or quick re-burst feature is disabled and if this API is called, then TOUCH_CNFG_MISMATCH error will be
returned

Data Fields

None

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

82

Returns : touch_ret_t

touch_xxxxcap_mois_tolrnce_quick_reburst_disable (void);
This function can be used to disable the moisture quick re-burst feature during runtime. Both moisture
and quick re-burst should be in enabled state, before this function is being called. If moisture tolerance
feature or quick re-burst feature is disabled and if this API is called, then TOUCH_CNFG_MISMATCH error
will be returned

Data Fields

None

Returns : touch_ret_t

3.6.16. Touch PTC Peripheral Enable Disable
touch_ret_t touch_disable_ptc(void)
This function disable the PTC module

Data Fields

None

Returns : touch_ret_t

Note: Refer Touch Library Suspend Resume Operation and FMEA Considerations for use cases
associated with touch_disable_ptc
touch_ret_t touch_enable_ptc(void)
This function enable the PTC module.

Data Fields

None

Returns : touch_ret_t

Note: Refer Touch Library Suspend Resume Operation for use cases associated with
touch_enable_ptc.

3.6.17. Touch Library Suspend Resume
touch_ret_t touch_suspend_ptc(void)
This function suspends the PTC library’s current measurement cycle. The completion of the operation is
indicatedthrough callback pointer that must be initialized by the application. Refer touch_suspend_app_cb
and Touch Library Suspend Resume Operation.

Data Fields

None

Returns : touch_ret_t

touch_ret_t touch_resume_ptc(void)
This function resumes the PTC library’s current measurement which was suspended using
touch_suspend_ptc. After the touch_resume_ptc is called by the application, the
touch_xxxxcap_sensors_measure API should be called only after the measurement complete
callback function is received. Refer touch_suspend_app_cb and Touch Library Suspend Resume
Operation.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

83

Data Fields

None

Returns : touch_ret_t

Note: The APIs related to touch suspend operation must be used in accordance with the safety
requirements of the product and must be taken care by the customer application.

3.6.18. Touch Library Re-Initialization
touch_ret_t touch_xxxxcap_sensors_deinit(void)
This function deinitializes the touch library. This API should be called only when the library state is in
TOUCH_STATE_INIT or TOUCH_STATE_READY state. After calling deinit API,no other API should be
called apart from touch_xxxxcap_sensors_init to reinitialize the touch library.

Data Fields

None

Returns : touch_ret_t
Note: 

1. If one module(self-cap or mutual-cap touch library) is de-initialized, then all other modules should
be deinitialized as well. For eg., if mutual-cap touch library is de-initialized, then mutual-cap FMEA,
self-cap touch library and self-cap FMEA should be de-initialized or stopped.

2. When touch library or FMEA has to be re-initialized, the application has to follow the initialization
sequence as done during power-up.

3.6.19. Touch Library Low Power
touch_ret_t touch_mutual_lowpower_sensor_enable_event_measure (sensor_id_t
sensor_id);
touch_ret_t touch_self_lowpower_sensor_enable_event_measure (sensor_id_t
sensor_id);
These functions can be used to start the low power measurement. This function can be called only when
library is in ready state and when low power sensor (sensor whose id is passed as an argument in this
API) is not in disabled state.
Note: 

Only a key can be used as low power sensor, a rotor or slider cannot be used as low power sensor.
TOUCH_INVALID_INPUT_PARAM error will be returned if the
touch_low_power_stop_complete_app_cb () callback function is not registered by the
application.

Field Description

sensor_id Sensor which needs to be configured as Low Power Sensor

Return : touch_ret_t

touch_ret_t touch_xxxxcap_lowpower_sensor_stop ();
This function can be used to stop the low power measurement. This API returns TOUCH_SUCCESS if stop
operation is completed. If this API returns TOUCH_WAIT_FOR_CB, stop operation will be completed only
when touch_low_power_stop_complete_app_cb() callback function is invoked by the library.

Data Fields

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

84

None

Return :touch_ret_t

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

85

4. FMEA
This section provides information about the FMEA component. The FMEA library supports the rotor/slider
built with spatially interpolated design. FMEA component is further categorized into mutual and self
capacitance FMEA component. FMEA will be performed on all the touch pins including sensor disabled
pins.

For more information about designing the touch sensor, refer to Buttons, Sliders and Wheels Touch
Sensor DesignGuide (www.atmel.com).

4.1. Double Inverse Memory Check

4.1.1. Application to FMEA
No variable is interfaced from the application to FMEA. Hence, Double Inverse mechanism need not be
used for protection.

4.1.2. FMEA to Application
The following variable must be protected using the specified inverse variable.

Variable Inverse Variable

faults_to_report faults_to_report_inv (Refer sf_mutlcap_fmea_fault_report_t)

4.2. Memory Requirement
The following table provides the Flash and the RAM memory required for various configurations using
different numberof channels.

Default Configuration:

The following Macros are defined for all the cases mentioned for the Memory Calculation in Memory
Requirement for IAR Library.

• SELFCAP_FMEA_MAP_FAULT_TO_CHANNEL
• MUTLCAP_FMEA_MAP_FAULT_TO_CHANNEL

4.2.1. Memory Requirement for IAR Library

4.2.1.1. Memory Requirement for Mutual Capacitance

Total No of Mutual Cap
Channels

Total Code Memory Total Data Memory

1 2682 104

10 2710 124

20 2710 140

40 2710 180

256 2738 608

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

86

http://www.atmel.com

4.2.1.2. Memory Requirement Self Capacitance

Total No of Self Cap Channels Total Code Memory Total Data Memory

1 2482 88

2 2546 92

11 2546 128

16 2602 148

32 2594 212

4.2.1.3. Memory Requirement Self Capacitance + Mutual Capacitance
.

Total No of Mutual Cap
Channels

Total No of Self Cap
Channels

Total Code
Memory

Total Data Memory

1 1 5534 192

40 8 5677 296

80 11 5685 384

4.3. API Execution Time

4.3.1. Mutual Capacitance API Execution Time
The following table provides information about the execution time required for various FMEA APIs.

System Clock Frequency: 48MHz

PTC Clock Frequency: 4MHz

Table 4-1. Mutual Capacitance FMEA API Execution Time

API Input Value Time (in us)

1 Channel (PORT A) 20 Channels (PORT A & B)
(5 x4)

sf_mutlcap_fmea_init Any value 62 85

sf_mutlcap_fmea_test 0x01 (short to Vcc) 106 257

0x02 (short to Vss) 107 258

0x04 (short between pins) 922 4302

0x08 (PTC register test) 189 337

0x10 (input configuration data integrity
check)

105 219

0x1F (all test) 1197 4710

sf_mutlcap_fmea_test_open_pin
s_per_channel

Any value 13200* 12830*

Note: 

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

87

1. For the sf_mutlcap_fmea_test_open_pins_per_channel API, the preceding table provides
the maximum time required to complete the procedure. After the control is returned back to the
application, the application can execute any other tasks.

2. API Execution Time marked as * are calculated for sensors with typical sensor capacitance values.

The time for the Mutual capacitance FMEA API to return the control to the application is as follows:

API Input Value Time (in us)

1 Channel
(PORT A)

20 Channels
(PORT A & B) (5
x4)

sf_mutlcap_fmea_test_open_pins_per_channel Any value 46 46

4.3.2. Self Capacitance API Execution Time
The following table provides information about the APIs and their corresponding execution time.

Table 4-2. Self Capacitance FMEA API Execution Time

API Input Value Time (in us)

1 Channel (PORT
A)

16 Channels
(PORT A & B)

sf_selfcap_fmea_init Any value 62 147

sf_selfcap_fmea_test 0x01 (short to Vcc) 93 263

0x02 (short to Vss) 94 266

0x04 (short between pins) 783 3925

0x08 (PTC register test) 214 320

0x10 (input configuration data
integrity check)

105 272

0x1F (all test) 1037 4372

sf_selfcap_fmea_test_open_pins_per_channel Any value 10800* 10700*

Note: 
1. For the sf_selfcap_fmea_test_open_pins_per_channel API, the preceding table provides

the maximum time required to complete the procedure. After the control is returned back to the
application, theapplication can execute any other tasks.

2. API Execution Time marked as * are calculated for sensors with typical sensor capacitance values.

The time for the Self capacitance FMEA API to return the control to the application is as follows:

Table 4-3. Self Capacitance FMEA Asynchronous API Execution Time

API Input Value Time (in us)

1 Channel (PORT
A)

16 Channels (PORT A
& B)

sf_selfcap_fmea_test_open_pins_per_channel Any value 46 46

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

88

4.4. Error Interpretation
Table 4-4. Error Interpretation

List of API Error Bit Reason Error Coverage

sf_xxxxcap_fmea_init FMEA_ERR_INIT CRC value computed by touch
library has failed double inverse
check

Not applicable

FMEA_ERR_INIT Input pointer is NULL Not applicable

FMEA_ERR_INIT Input values are not within limit Not applicable

sf_xxxxcap_fmea_test FMEA_ERR_PRE_TEST Undefined test bits are set Not applicable

FMEA_ERR_PRE_TEST This function is called before
calling
sf_xxxxcap_fmea_init()

Not applicable

FMEA_ERR_SHORT_TO_VCC Any one touch pin is short to Vcc XXXXCAP enabled pins

FMEA_ERR_CONFIG_CHECK_CRC CRC check has failed Not applicable

FMEA_ERR_SHORT_TO_VSS Any one touch pin is short to Vss XXXXCAP enabled pins

FMEA_ERR_SHORT_TO_PINS Any two touch pins are shorted to
each other

XXXXCAP enabled pins

FMEA_ERR_PTC_REG PTC register test failed or the
PTC test status returned by touch
library failed double inverse
check

Not applicable

sf_xxxxcap_fmea_test_open_pi
ns_per_channel

FMEA_ERR_PRE_TEST This function is called before
calling
sf_xxxxcap_fmea_init()

Not applicable

FMEA_ERR_PRE_TEST Channel number passed is more
than the maximum possible

Not applicable

FMEA_ERR_OPEN_PINS There is a disconnect between
sensor electrode and device pin
for the given channel number

One channel per call

4.5. Data and Function Protection
The functions and global variables which are used only by FMEA are marked as static. The user /
application should not change the same to non-static.

The header file sf_fmea_ptc_int.h file is used only by FMEA. The user/application should not
include this header file in any other files.

Table 4-5. Header File Availability for Application

Header File Availability for Application Configurable Fields

sf_fmea_ptc_int.h No Not applicable

sf_fmea_ptc_api.h Yes • FMEA_VAR_LOCATION
• MUTLCAP_FMEA_MAP_FAUL

T_TO_CHANNEL
• SELFCAP_FMEA_MAP_FAUL

T_TO_CHANNEL

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

89

4.6. FMEA Considerations
FMEA Short Between Pins, Short to VSS, Short to VCC can be detected on the MCU pins. The
periodicity of Short to VSS test should be much lesser than the Short between Pins test. The
touch_disable_ptc could be called after sf_xxxxcap_fmea_test API and also after the open pin
test callback is received for each channel.

This should be done to reduce the power consumption.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

90

5. FMEA API

5.1. Typedefs
None

5.2. Enumerations

5.2.1. sf_fmea_faults_t
This enumeration describes the types of FMEA faults or errors such as short to Vcc, short to Vss, and
short between pins that occur in a system. The test results of FMEA tests are stored in global fault report
structure. The generic test result of FMEA test is stored in faults_to_report field of
sf_xxxxcap_fmea_fault_report_var. Each bit of the field faults_to_report field represents
the test status for each FMEA test.
Table 5-1. FMEA Fault Details

Values Description

FMEA_ERR_SHORT_TO_VCC Short to Vcc

FMEA_ERR_SHORT_TO_VSS Short to Vss

FMEA_ERR_SHORT_TO_PINS Short between pins

FMEA_ERR_PTC_REG PTC register test

FMEA_ERROR_CONFIG_CHECK Checks the input configuration integrity

FMEA_ERR_OPEN_PINS Open connection between device pin and sensor

FMEA_ERROR_PRE_TEST Pre-test failure

FMEA_ERR_INIT Initialization

For example, FMEA_ERR_SHORT_TO_VCC bit represents short to Vcc test status, the
FMEA_ERR_SHORT_TO_VSS bit represents short to Vss test status.

Note: 
If multiple FMEA tests are conducted in a single API call, sf_xxxxcap_fmea_fault_report_var will
hold the consolidated results of all the requested tests.

In other case, when FMEA tests are conducted one after other by the
application,sf_xxxxcap_fmea_fault_report_var will hold only the latest test results (previous
results will be cleared each timeby FMEA component). In such cases, it is recommenced that application
should keep track of fault report variable.

5.3. Data Structures

5.3.1. sf_xxxxcap_fmea_open_test_config_t
The configuration parameters required for FMEA open pin test are passed through this structure.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

91

Field Type Desription

cc_cal_valid_min_val For Mutual
capacitance
cc_cal_valid_min_val[DEF_SELFCAP
_NUM_CHANNELS] For Self capacitance

uint16_t CC value should be provided for each selfcap channel. In case of
mutual cap, single cc calibration value needs to be provided.
Maximum value: 16000

cc_cal_val_min_no_error uint8_t Open errors are declared only if CC calibration values of a
particular channel is out of range in N1 samples out of N2
samples. For example, if N2 is set to 4 and N1 is set to 2, then CC
calibration values are compared with the
cc_cal_valid_min_val low and high limits, for continuous 4
samples. The channels whose CC calibration values are in error
for more than 2 samples are declared error. Whenever an open
pin test function is called, a sample counter corresponding to the
channel is incremented. If an error is found among the samples,
the error count for the channel is incremented. If the error count
reaches N1, the error is reported and the error count and sample
count are reset. If sample count reaches N2 value (it indicates that
the error count has not reached N1) the error count and sample
count is reset. In the previous example,
cc_cal_val_min_no_error represents N1. Maximum value:
cc_cal_val_no_of_samples Minimum value: 1

cc_cal_val_no_of_samples uint8_t In the previous example, cc_cal_val_no_of_samples
represents N2. Maximum value: 15 Minimum value: 1

sf_xxxxcap_open_pin_test_callbac
k

void (*)
(uint16_t)

After completing the open pin test, the open pin test function calls
the xxxxcap_open_pin_test_callback function and
indicates the completion of the open pin test. The application can
pick the test status in this complete callback functions.

Note: 
The open pin test is performed indirectly by measuring the capacitance of the sensor electrode. If the
sensor electrode is disconnected from the device pin, the measured capacitance value will be less when
compared to that of the sensor electrode connected to the device pin

During design stage, the application developer must monitor the equivalent capacitance value for all the
channels under normal (all the sensors are connected and un-touched) condition. User can read the
equivalent capacitance value as shown in the following example:

/* channel 0’s equivalent capacitance */
p_xxxxcap_measure_data->p_cc_calibration_vals[0]
/* channel 1’s equivalent capacitance */
p_xxxxcap_measure_data->p_cc_calibration_vals[1]
Although not mandatory, it is recommended to set cc_cal_valid_min_val as 30% of the lowest value
observed in p_cc_calibration_vals array array.

For example, if 415 is the lowest value observed in the p_cc_calibration_vals array, set
cc_cal_valid_min_val as 124.

Note: 
The CC values would differ based on the value of series resistance (internal or external) connected to the
touch pins.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

92

5.3.2. sf_xxxxcap_fmea_input_config_t
The Open CC values will change based on the resistance added on the touch lines. Proper value of CC
has to given as input to the sf_xxxxcap_fmea_test_open_pins_per_channel function. The FMEA
test input configuration data are passed through this structure.

typedef struct
tag_sf_xxxxcap_fmea_input_config_t
{
sf_xxxxcap_fmea_open_test_config_t *xxxxcap_open_test_config;
}s f_xxxxcap_fmea_input_config_t;

Values Description

sf_xxxxcap_open_test_config Refer sf_xxxxcap_fmea_open_test_config_t description in
sf_xxxxcap_fmea_open_test_config_t

5.3.3. sf_mutlcap_fmea_fault_report_t
The Mutual capacitance FMEA test API status is updated in this structure.

 typedef struct tag_sf_mutlcap_fmea_fault_report_t
{
uint16_t faults_to_report;
uint16_t faults_to_report_inv;
uint32_t x_lines_fault_vcc;
uint32_t y_lines_fault_vcc;
uint32_t x_lines_fault_vss;
uint32_t y_lines_fault_vss;
uint32_t x_lines_fault_short;
uint32_t y_lines_fault_short;
#ifdef MUTLCAP_FMEA_MAP_FAULT_TO_CHANNEL
uint8_t fmea_channel_status[DEF_MUTLCAP_NUM_CHANNELS];
#endif
}sf_mutlcap_fmea_fault_report_t;

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

93

Table 5-2. Mutlcap FMEA Fault Report

Values Description

faults_to_report If a bit is set to 1 in fault_to_report, then corresponding fault has occurred.
If a bit is set to 0 in fault_to_report, then the corresponding fault has not
occurred.

The X/Y lines and channels that are affected are provided in other fields. FMEA fault
status.

• Bit 0 represents the short to Vcc.
• Bit 1 represents the short to Vss.
• Bit 2 represents the short to PINS.
• Bit 3 represents the PTC register test.
• Bit 4 represents the Configuration data integrity.
• Bit 5 represents the Open pin fault.
• Bit 6 represents the fault pre-test failure condition.
• Bit 7 represents the fault init failed condition.

The bit 0 is set if at least one of the touch pin (X or Y) is short to Vcc.
The bit 1 is set if at least one of the touch pin (X or Y) is short to Vss.

The bit 2 is set if at least two touch pins are shorted to each other.
The bit 3 is set if,

• a fault is found in PTC register test
• the test result passed by touch library fails double inversion check

The bit 4 is set if,
• a fault is found in the input configuration data integrity
• the CRC value computed by touch library fails double inversion check

The bit 5 is set if at least one touch pin is not connected with the sensor electrode.
The bit 6 is set if,

• the sf_mutlcap_fmea_test() function is called before executing the
initialization function

• if the channel number passed to
sf_mutlcap_fmea_test_open_pins_per_channel() function is greater
than DEF_MUTLCAP_NUM_CHANNELS.

The bit 7 is set if,
• invalid parameters are passed to the FMEA initialization function
• when the CRC value computed by the touch library for the input configuration

data fails the double inverse check
• the input pointer is NULL.

faults_to_report_inv Compliment value of field faults_to_report

x_lines_fault_vcc If bit n is set, then Xn pin is short to Vcc

y_lines_fault_vcc If bit n is set, then Yn pin is short to Vcc

x_lines_fault_vss If bit n is set, then Xn pin is short to Vss

y_lines_fault_vss If bit n is set, then Yn pin is short to Vss

y_lines_fault_short If bit n is set, then Yn pin is short to other touch pin

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

94

Values Description

x_lines_fault_short If bit n is set, then Xn pin is short to other touch pin

fmea_channel_status[DEF_MUTLCAP
_NUM_CHANNELS]

This array maps FMEA faults to individual channel numbers. This variable is
applicable only if MUTLCAP_FMEA_MAP_FAULT_TO_CHANNEL macro is defined in
sf_fmea_samd_api.h file. This is used to map FMEA faults to individual channel
numbers. Each byte in the array corresponds to the FMEA faults in the particular
channel number.
Example: FMEA_CHANNEL_STATUS[0] represents the fault of the channel number 0.

Each bit in the byte represents the FMEA test status.
• Example: l Bit 0 represents the short to Vcc.
• Bit 1 represents the short to Vss
• Bit 2 represents the short to PINS
• Bit 5 represents the open pin fault

If X or Y pin corresponding to a channel is shorted to Vcc then the Bit 0 position of
that specific byte will be set to 1.

If X or Y pin corresponding to the channel is shorted to Vss then the Bit 1 position of
that specific byte will be set to 1.
If X or Y pin corresponding to the channel is shorted to other X or Y pins, the Bit 2 of
all the channel which uses the faulty X or Y will be set to 1.

Bit 5 of all the channels whose sensor electrode is not connected to the device pin is
set to 1.
Since PTC register test, configuration data integrity, pre-test failure and initialization
failure are common for all the channels, fmea_channel_status will not contain
those information.

5.3.4. sf_selfcap_fmea_fault_report_t
The Self capacitance FMEA test API status is updated in this structure.
 typedef struct tag_sf_selfcap_fmea_fault_report_t
{
uint16_t faults_to_report;
uint16_t faults_to_report_inv;
uint32_t y_lines_fault_vcc;
uint32_t y_lines_fault_vss;
uint32_t y_lines_fault_short;
#ifdef SELFCAP_FMEA_MAP_FAULT_TO_CHANNEL
uint8_t fmea_channel_status[DEF_SELFCAP_NUM_CHANNELS];
#endif
}sf_selfcap_fmea_fault_report_t;

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

95

Table 5-3. Selfcap FMEA Fault Report

Values Description

faults_to_report If a bit is set to 1 in fault_to_report, then corresponding fault has occurred.
If a bit is set to 0 in fault_to_report, then the corresponding fault has not occurred.

The Y lines and channels that are affected are provided in other fields.
FMEA fault status.

• Bit 0 represents the short to Vcc.
• Bit 1 represents the short to Vss.
• Bit 2 represents the short to PINS.
• Bit 3 represents the PTC register test.
• Bit 4 represents the Configuration data integrity.
• Bit 5 represents the Open pin fault.
• Bit 6 represents the fault pre-test failure condition.
• Bit 7 represents the fault init failed condition.

The bit 0 is set if at least one of the touch pin (Y) is short to Vcc.
The bit 1 is set if at least one of the touch pin (Y) is short to Vss.

The bit 2 is set if at least two touch pins are shorted to each other.
The bit 3 is set if,

• a fault is found in PTC register test
• the test result passed by touch library fails double inversion check

The bit 4 is set if,
• a fault is found in the input configuration data integrity
• the CRC value computed by touch library fails double inversion check

The bit 5 is set if at least one touch pin is not connected with the sensor electrode.
The bit 6 is set if,

• the sf_selfcap_fmea_test() function is called before executing the initialization
function

• if the channel number passed to
sf_selfcap_fmea_test_open_pins_per_channel() function is greater than
DEF_SELFCAP_NUM_CHANNELS.

The bit 7 is set if,
• invalid parameters are passed to the FMEA initialization function
• when the CRC value computed by the touch library for the input configuration data

fails the double inverse check
• the input pointer is NULL.

faults_to_report_inv Compliment value of field faults_to_report

y_lines_fault_vcc If bit n is set, then Yn pin is short to Vcc

y_lines_fault_vss If bit n is set, then Yn pin is short to Vss

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

96

Values Description

y_lines_fault_short If bit n is set, then Yn pin is short to other touch pin

fmea_channel_status[DEF_SELFCAP_NU
M_CHANNELS]

This array maps FMEA faults to individual channel numbers. Thisvariable is applicable only if
SELFCAP_FMEA_MAP_FAULT_TO_CHANNEL macro is defined in sf_fmea_samd_api.h file.
This is used to map FMEA faults toindividual channel numbers. Each byte in the array
corresponds to theFMEA faults in the particular channel number.

Example: FMEA_CHANNEL_STATUS[0] represents the fault of thechannel number 0.
Each bit in the byte represents the FMEA test status.Example:

• Bit 0 represents the short to Vcc.
• Bit 1 represents the short to Vss.
• Bit 2 represents the short to PINS.
• Bit 5 represents the open pin fault.

If Y pin corresponding to a channel is shorted to Vcc then the Bit 0 position of that specific
byte will be set to 1.
If Y pin corresponding to the channel is shorted to Vss then the Bit 1 position of that specific
byte will be set to 1.

If Y pin corresponding to the channel is shorted to other Y pins, the Bit 2 of all the channel
which uses the faulty Y will be set to 1.
Bit 5 of all the channels whose sensor electrode is not connected to the device pin is set to 1.

Since PTC register test, configuration data integrity, pre-test failure and initialization failure are
common for all the channels, fmea_channel_status will not contain those information.

Note: 
The application must validate the field faults_to_report by performing the double inversion check on
faults_to_report variable using the faults_to_report_inv variables.

5.4. Global Variables

5.4.1. sf_xxxxcap_fmea_fault_report_var

Type Desription

sf_xxxxcap_fmea_fault_re
port_t

Holds the test status from the latest sf_xxxxcap_fmea_test()
call. Refer sf_mutlcap_fmea_fault_report_t for mutual capacitance
and sf_selfcap_fmea_fault_report_t for self capacitance related
information.
The members, faults_to_report and
faults_to_report_inv of
sf_xxxxcap_fmea_fault_report_var variable must be verified
for double inversion before using any other member of this variable.

5.5. Functions

5.5.1. sf_xxxxcap_fmea_init
This function initializes all the FMEA related variables and verifies if the input parameters are within
predefined range. If the values are outside the predefined range, the faults_to_report field of
sf_xxxxcap_fmea_fault_report_var global structure is updated with an FMEA_ERROR_INIT error.
If the values are within the range, the touch library computes the CRC for the input configuration data.
The FMEA validates the CRC value passed by the touch library by performing double inverse check. If

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

97

the double inverse check fails, the FMEA_ERROR_INIT is reported in the variable
sf_xxxxcap_fmea_fault_report_var. This function must be called after performing the touch
initialization. The application should check the variable sf_xxxxcap_fmea_fault_report_var after
calling this function and ensure that the initialization has not failed.

void sf_xxxxcap_fmea_init(sf_xxxxcap_fmea_config_t
sf_xxxxcap_fmea_input_config)

Fields Type Description

sf_xxxxcap_fmea_input_co
nfig

sf_xxxxcap_fmea_input_co
nfig_t

The input parameters are passed
through this structure

Return: None.

5.5.2. sf_xxxxcap_fmea_test
This function performs various FMEA tests based on the input parameter and updates the global structure
sf_xxxxcap_fmea_fault_report_var which contains the FMEA fault status.

void sf_xxxxcap_fmea_test(uint16_t select_checks)

Fields Type Description

select_checks uint16_t Bit masks of the tests that must
be performed.

• If bit 0 is set as 1, Short to
Vcc test is performed.

• If bit 1 is set as 1, Short to
Vss test is performed.

• If bit 2 is set as 1, Short to
Pins test is performed.

• If bit 3 is set as 1, PTC
register test is performed.

• If bit 4 is set as 1, input
configuration data integrity
test is performed.

• If any bit is set to 0, the
corresponding FMEA test
is not performed.

• Bit 5 to 15 are reserved in
this field. The application
should not call this function
by setting them.

Return: None.

5.5.3. sf_xxxcap_fmea_test_open_pins_per_channel
Open pin test is performed by receiving the CC value for the current channel number from touch library. If
the CC valuer eceived from the touch library is less than or equal to the configured minimum value, then
the error counter for that channel is incremented. Error counter will also be incremented if double inverse
check of the CC value is failed. If the error counter reaches the configured minimum number of error
count, then the FMEA_ERR_OPEN_PINS error is updated in sf_xxxxcap_fmea_fault_report_var

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

98

and the sample and error counter of that channel is reset to zero. If the sample counter reaches the
configured maximum number of channels, then the error counter and sample counter arereset to zero.

Figure 5-1. Working Mechanism of the Error and Sample Counter

This API can be called using one of the three modes.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

99

Figure 5-2. Mode 1: Application Tracking the Next Channel Number

If the channel number passed as parameter is less than DEF_XXXXCAP_NUM_CHANNELS, this function
performs openpin test for the specified channel number. In this mode, the application can decide the
channel number to be tested during each run.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

100

Figure 5-3. Mode 2: FMEA Tracking the Next Channel Number

The application can let the FMEA to track the channel number by passing
DEF_XXXXCAP_NUM_CHANNELS as the input value. For each call to
sf_xxxxcap_fmea_open_pins_per_channel with DEF_XXXXCAP_NUM_CHANNELS as the input
value, open pin test will be performed on one channel (referred as
sf_xxxxcap_fmea_open_test_ch_track).

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

101

At FMEA initialization, sf_xxxxcap_fmea_open_test_ch_track is initialized to 0. After each test,
sf_xxxxcap_fmea_open_test_ch_track is incremented by 1. When
sf_xxxxcap_fmea_open_test_ch_track reaches DEF_XXXXCAP_NUM_CHANNELS, it is reset to 0.

Figure 5-4. Mode 3: Both FMEA and Application tracking the channel number

In mode 3, sf_xxxxcap_fmea_test_open_pins_per_channel() can be called with input
parameter value in the range of 0 to DEF_XXXXCAP_NUM_CHANNELS. Whenever the input parameter
value is in the range of 0 to DEF_XXXXCAP_NUM_CHANNELS-1, this function performs open pin test for
the specified channel number.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

102

Whenever the input parameter value is equal to DEF_XXXXCAP_NUM_CHANNELS, open pin test will be
performed on one channel number sf_xxxxcap_fmea_open_test_ch_track.
sf_xxxxcap_fmea_open_test_ch_track is incremented by after performing the test. If the
sf_xxxxcap_fmea_open_test_ch_track is equal to or greater than
DEF_XXXXCAP_NUM_CHANNELS, then sf_xxxxcap_fmea_open_test_ch_track reset to 0. In all
these modes, the application should initiate the next open pin test only after receiving the callback
function for the previously initiated open pin test.

void sf_xxxxcap_fmea_test_open_pins_per_channel (uint16_t ch_num)
If the channel number passed is greater than DEF_XXXXCAP_NUM_CHANNELS, then the
sf_xxxxcap_fmea_fault_report_var is updated with FMEA_ERR_PRE_TEST error.

Return:

None.

The sf_xxxxcap_fmea_test_open_pins_per_channel() calls the open pin test complete callback
function after performing open pin test for the specified channel. The application should check the open
pintest status only after the open pin test complete callback function is called.

void sf_xxxxcap_fmea_test_open_pins_per_channel (uint16_t ch_num)
Data Fields

Arguments Type Description

ch_num unint16_t Channel number for which the open pin test must be
performed

Return: None.

The sf_xxxxcap_fmea_test_open_pins_per_channel() calls the open pin test complete callback
function after performing open pin test for the specified channels. The application should check the open
pin test status only after the open pin test complete callback function is being called for the respective
touch acquisition technology.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

103

5.5.4. sf_xxxxcap_fmea_stop
Figure 5-5. FMEA Stop API Usage

This function stops the FMEA component operation and change the FMEA init status to uninitialized
state. The global variables used by the FMEA are reset to default value. The application cannot execute
further FMEA tests without reinitializing the FMEA component.

void sf_xxxxcap_fmea_stop (void)

Arguments Type Description

None None None

Return: None.

5.6. Macros
DEF_TOUCH_FMEA_MUTLCAP_ENABLE and DEF_TOUCH_FMEA_SELFCAP_ENABLE must be set to 1 to
enable mutual cap and self cap FMEA respectively.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

104

6. System

6.1. Relocating Touch Library and FMEA RAM Area
The data corresponding to the touch library and FMEA are placed at specific sections in the RAM.

This is done so that the customer application can perform the static memory analysis test on the touch
and FMEA RAM area as per the Class B safety requirements.

To create these two RAM sections (Touch and FMEA), the linker file must be modified as per the
description in the following sections.

Note: 
1. All the variables related to touch sensing (filter callback, touch input configuration, gain variables

and others) in touch.c application file must be re-located to touch library RAM section.
2. Following warning may be displayed in IAR IDE:

Warning[Be006]: possible conflict for segment/section.

This warning is thrown due to relocation of configuration variables in touch.c and FMEA variables
which contains both initialized and zero initialized data to the TOUCH_SAFETY_DATA_LOCATION
and TOUCH_FMEA_DATA_LOCATION sections, respectively.

This warning will not affect the safe operation of the system. This warning can be safely discarded
or if required the same can be suppressed using diagnostic tab in IAR project options.

6.1.1. Modifying the IAR Linker File
Touch Library RAM Section

The changes should be done in <devicevariant>_flash.icf file as follows:

Linker symbols should be added in linker file to denote the start and size of the touch library RAM section.
The size of touch RAM section (SIZE_OF_TOUCH_SAFETY_DATA_LOCATION) should be calculated as
per Memory Requirement.

Table 6-1. IAR Linker Symbols for Touch RAM Data

Symbol in Linker File Description

TOUCH_SAFETY_DATA_LOCATION_region Touch Library Data Memory Region to be created in
linker file.

TOUCH_SAFETY_DATA_LOCATION Touch library Data Section to be created in linker file

SIZE_OF_TOUCH_SAFETY_DATA_LOCATION Size of Touch Library RAM data

TOUCH_SAFETY_DATA_LOCATION_START The absolute address of RAM from where touch library
RAM variables would be placed in
TOUCH_SAFETY_DATA_LOCATION section

TOUCH_SAFETY_DATA_LOCATION_END End location of the TOUCH_SAFETY_DATA_LOCATION
section

An example setting is as follows:

define symbol TOUCH_SAFETY_DATA_LOCATION_START = 0x20004000;
define symbol SIZE_OF_TOUCH_SAFETY_DATA_LOCATION = 0x05DC;

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

105

define symbol TOUCH_SAFETY_DATA_LOCATION_END =
(TOUCH_SAFETY_DATA_LOCATION_START + SIZE_OF_TOUCH_SAFETY_DATA_LOCATION -1);
FMEA RAM Section

Linker symbols should be added in linker file to denote the start and size of the FMEA library RAM
section. The size of FMEA RAM section (SIZE_OF_FMEA_SAFETY_DATA_LOCATION) should be
calculated as per section Memory Requirement.

Table 6-2. IAR Linker Symbols for FMEA RAM Data

Symbol in Linker File Description

FMEA_SAFETY_DATA_LOCATION_region FMEA Library Data Memory Region to be created in
linker file

FMEA_SAFETY_DATA_LOCATION FMEA library Data Section to be created in linker file

SIZE_OF_FMEA_SAFETY_DATA_LOCATION Size of FMEA Library RAM data

FMEA_SAFETY_DATA_LOCATION_START The absolute address of RAM from where FMEA library
RAM variables would be placed in
FMEA_SAFETY_DATA_LOCATION section

FMEA_SAFETY_DATA_LOCATION_END End location of the FMEA_SAFETY_DATA_LOCATION
section

An example setting is as follows:

define symbol FMEA_SAFETY_DATA_LOCATION_START = 0x20004000;
define symbol SIZE_OF_FMEA_SAFETY_DATA_LOCATION = 0x05DC;
define symbol FMEA_SAFETY_DATA_LOCATION_END =
(FMEA_SAFETY_DATA_LOCATION_START + SIZE_OF_FMEA_SAFETY_DATA_LOCATION -1);
Note: 
More information can be found at page 85, Linking Your Application in [3]. Refer [4] for the version of IAR
toolchain used.

6.1.2. Modifying GCC Linker File
The changes should be done in <devicevariant>_flash.ld file as follows:

Table 6-3. Touch Library RAM Section

Symbol in Linker File Description

TOUCH_SAFETY_DATA_LOCATION_region Touch Library Data Memory Region to be created in
linker file. The ORIGIN field in the memory region should
be the starting address of the touch library RAM data
and LENGTH field should be the size of the touch library
RAM data.

TOUCH_SAFETY_DATA_LOCATION Touch library Data Section to be created in linker file

SIZE_OF_TOUCH_SAFETY_DATA_LOCATION Size of Touch Library RAM data

TOUCH_SAFETY_DATA_LOCATION_START The absolute address of RAM from where Touch library
RAM variables would be placed in
TOUCH_SAFETY_DATA_LOCATION section

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

106

Symbol in Linker File Description

TOUCH_SAFETY_DATA_LOCATION_END End location of the TOUCH_SAFETY_DATA_LOCATION
section

_sTOUCH_SAFETY_DATA_LOCATION It holds the start address of the
TOUCH_SAFETY_DATA_LOCATION in FLASH

_eTOUCH_SAFETY_DATA_LOCATION It holds the end address of the
TOUCH_SAFETY_DATA_LOCATION in FLASH

The TOUCH_SAFETY_DATA_LOCATION_START,
_sTOUCH_SAFETY_DATA_LOCATION,TOUCH_SAFETY_DATA_LOCATION_END and
_eTOUCH_SAFETY_DATA_LOCATION variables would be used in the startup_samc20.c file to
initialize the Touch library RAM section from FLASH.

The above thing can also be done at the start of main function to copy the data from FLASH to RAM as
mentioned in touch.c application file.

Table 6-4. FMEA Library RAM Section

Symbol in Linker File Description

FMEA_SAFETY_DATA_LOCATION_region FMEA Library Data Memory Region to be created in
linker file. The ORIGIN field in the memory region should
be the starting address of the FMEA library RAM data
and LENGTH field should be the size of the FMEA library
RAM data.

FMEA_SAFETY_DATA_LOCATION FMEA library Data Section to be created in linker file

SIZE_OF_FMEA_SAFETY_DATA_LOCATION Size of FMEA Library RAM data

FMEA_SAFETY_DATA_LOCATION_START The absolute address of RAM from where Touch library
RAM variables would be placed in
FMEA_SAFETY_DATA_LOCATION section

FMEA_SAFETY_DATA_LOCATION_END End location of the FMEA_SAFETY_DATA_LOCATION
section

_sFMEASAFETY_DATA_LOCATION It holds the start address of the
FMEA_SAFETY_DATA_LOCATION in FLASH

_eFMEA_SAFETY_DATA_LOCATION It holds the end address of the
FMEA_SAFETY_DATA_LOCATION in FLASH

The FMEA_SAFETY_DATA_LOCATION_START,
_sFMEA_SAFETY_DATA_LOCATION,FMEA_SAFETY_DATA_LOCATION_END and
_eFMEA_SAFETY_DATA_LOCATION variables would be used in the startup_samc20.c file to initialize
the FMEA library RAM section from FLASH.

The above thing can also be done at the start of main function to copy the data from FLASH to RAM as
mentioned in touch.c application file.

Note:  More information can be found on linker script at page 37 in [6].

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

107

6.2. API Rules
All safety APIs must be incorporated in to a system as per the following rules:

1. Both FMEA and Touch library must be initialized at least once after power-up. FMEA can be
initialized again after stopping the FMEA.

2. The periodicity for calling safety test APIs is controlled by the application.
3. Few safety test APIs will lock interrupts during the test period since interrupts could potentially

disrupt the safety functionality. Refer API Execution Time for information about Touch Library.

FMEA component is functionally dependent on Atmel touch library. Hence FMEA test must be performed
only after the touch library is initialized. Touch library is a pre-requisite for FMEA firmware, Include the
FMEA firmware, only when the Touch library is included in the system.

6.3. Safety Firmware Action Upon Fault Detection
On detection of a fault within an IEC safety test API, the safety firmware can perform the corrective
action.

1. Touch library action upon fault detection.
2. FMEA library action upon fault detection. If a fault is detected by the FMEA library, it will update

the fault in the global structure sf_xxxxcap_fmea_fault_report_var.

6.4. System Action Upon Fault Detection
The fault action routine must be designed by the user and will be system dependent. The following
options can be considered for the fault actions routines:

1. Application may inform the host about the failure, provided the failure does not impact the
communication with the host controller.

2. Lock the system by disabling interrupt. Perform other possible clean-up actions and lock the
system.

3. The system can clean-up and shutdown other safety systems and reset the system.

6.5. Touch Library and FMEA Synchronization
The following entities are mutually exclusive and cannot be executing an activity (touch measurement or
FMEA test) simultaneously.

• Self-cap touch library
• Mutual-cap touch library
• Self-cap FMEA
• Mutual-cap FMEA

The customer application should establish a synchronization mechanism to manage the exclusivity of the
entities.

The following tables provides the information about the FMEA APIs, Touch library APIs and their
corresponding action to indicate completion.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

108

Table 6-5. FMEA API Execution Completion Indicators

API Name Completion Indication

sf_xxxxcap_fmea_init Function call return

sf_xxxxcap_fmea_test Function call return

sf_xxxxcap_fmea_test_open_pin_per_channel Open pin test complete callback function call

sf_xxxxcap_fmea_stop Function call return

Table 6-6. Touch Library API Execution Completion Indicators

API Name Completion Indication

touch_xxxxcap_sensors_init Function call return

touch_xxxxcap_di_init Function call return

touch_xxxxcap_sensor_config Function call return

touch_xxxxcap_sensors_calibrate Measure complete callback function call

touch_xxxxcap_calibrate_single_sensor Measure complete callback function call

touch_xxxxcap_sensors_measure Measure complete callback function call with
Application burst again set to zero

touch_xxxxcap_sensor_get_delta Function call return

touch_xxxxcap_sensor_update_config Function call return

touch_xxxxcap_sensor_get_config Function call return

touch_xxxxcap_sensor_update_acq_confi
g

Function call return

touch_xxxxcap_sensor_get_acq_config Function call return

touch_xxxxcap_update_global_param Function call return

touch_xxxxcap_get_global_param Function call return

touch_xxxxcap_get_libinfo Function call return

touch_lib_pc_test_magic_no_1 Function call return

touch_lib_pc_test_magic_no_2 Function call return

touch_lib_pc_test_magic_no_3 Function call return

touch_lib_pc_test_magic_no_4 Function call return

touch_xxxxcap_sensor_disable Function call return

touch_xxxxcap_sensor_reenable Function call return

touch_library_get_version_info Function call return

touch_xxxxcap_cnfg_mois_mltchgrp Function call return

touch_xxxxcap_cnfg_mois_threshold Function call return

touch_xxxxcap_mois_tolrnce_enable Function call return

touch_xxxxcap_mois_tolrnce_disable Function call return

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

109

API Name Completion Indication

touch_calc_xxxxcap_config_data_integr
ity

Function call return

touch_test_xxxxcap_config_data_integr
ity

Function call return

touch_suspend_ptc Suspend Callback function call

touch_resume_ptc Function call return

touch_mutual_lowpower_sensor_enable_e
vent_measure

Function call return

touch_self_lowpower_sensor_enable_eve
nt_measure

Function call return

touch_xxxxcap_lowpower_sensor_stop If TOUCH_WAIT_FOR_CB is returned, Low power
stop callback function call would indicate
completion.
For all other API returns, Function call return would
indicate API completion.

touch_xxxxcap_mois_tolrnce_quick_rebu
rst_enable

Function call return

touch_xxxxcap_mois_tolrnce_quick_rebu
rst_disable

Function call return

6.6. Safety Firmware Package
The following files corresponding to the safety component.

Safety Component Files

FMEA sf_mutlcap_fmea_ptc.c
sf_selfcap_fmea_ptc.c
touch_fmea_api_ptc.h
sf_fmea_ptc_api.h
sf_fmea_ptc_int.h

Touch Library libsamc20_safety_iar.a
libsamc20_safety_gcc.a
touch_safety_api_ptc.h

6.7. SAM Safety Firmware Certification Scope
The Class-B IEC certification of the following modules are supported and compiled by FMEA and Safety
Touch Library.

The following activities must be performed by the user to achieve IEC certification for the overall system:

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

110

• Risk analysis for the system
• IEC certification for the critical and supervisory sections of the system

Figure 6-1. Safety Compliant SAM Touch System Model

6.8. Hazard Time
It is the responsibility of the application to ensure that the optimal configuration is selected for the
individual test components (FMEA) to achieve the hazard time requirement of the end user system as per
the [1] and [2].
Note:  The hazard time for various types of failure is not defined by Atmel. It is based on the test
configuration and periodicity selected by the user designing the end user system or application.

6.9. ASF Dependency
The Atmel Software Framework (ASF) is a MCU software library providing a large collection of embedded
software for different Atmel MCUs. It simplifies the usage of microcontrollers, providing an abstraction to
the hardware and high value middle wares. The Touch Library and FMEA is dependent on the ASF.

ASF is available as standalone package for IAR compilers and can be downloaded from Atmel website.
For more information and an overview about ASF visit: http://www.atmel.com/tools/
AVRSOFTWAREFRAMEWORK.aspx.

The latest ASF standalone package is available for download in the download page in the Software
Category in www.atmel.com.

.

6.10. Robustness and Tuning
Please refer AT08578: SAM D20 QTouch Robustness Demo User Guide and AT09363: PTC Robustness
Design Guide.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

111

http://www.atmel.com/tools/%20AVRSOFTWAREFRAMEWORK.aspx
http://www.atmel.com/tools/%20AVRSOFTWAREFRAMEWORK.aspx
http://www.atmel.com

6.11. Standards compliance
Atmel Safety Library is compliant with the following list of IEC, EN and UL standards.

UL Compliance
• UL 60730-1, IEC 60730-1 and CSA E60730-1, Automatic electrical controls
• UL 60335-1 and IEC 60335-1, Household and similar electrical appliances
• UL 60730-2-11 and IEC 60730-2-11, Energy Regulators
• UL 1017 and IEC 60335-2-2, Vacuum Cleaners and Water-Suction Cleaning Appliances
• UL 749, UL 921, and IEC 60335-2-5, Dishwashers
• UL 858 and IEC 60335-2-6, Stationary Cooking Ranges, Hobs, Ovens, and Similar Appliances
• UL 1206, UL 2157, and IEC 60335-2-7, Washing Machines
• UL 1240, UL 2158, and IEC 60335-2-11, Tumble Dryers
• UL 1083 and IEC 60335-2-13, Deep Fat Fryers, Frying Pans, and Similar Appliances
• UL 982 and IEC 60335-2-14, Kitchen Machines
• UL 1082 and IEC 60335-2-15, Appliances for Heating Liquids
• UL 923 and IEC 60335-2-25, Microwave Ovens, Including Combination Microwave Ovens
• UL 197 and IEC 60335-2-36, Commercial Electric Cooking Ranges, Ovens, Hobs, and Hob

Elements
• UL 197 and IEC 60335-2-37, Commercial Electric Dough nut Fryers and Deep Fat Fryers
• UL 73, UL 499, and IEC 60335-2-54, Surface-Cleaning Appliances for Household Use Employing

Liquids or Steam
• UL 499, UL 1776, and IEC 60335-2-79, High Pressure Cleaners and Steam Cleaners
• UL 507 and IEC 60335-2-80, Fans

VDE Compliance

• IEC/EN 60730-1, Automatic electrical controls
• IEC/EN 60335-2-11, Energy regulators
• IEC/EN 60335-1, Safety of household appliances
• IEC/EN 60335-2-5, Dishwashers
• IEC/EN 60335-2-6, Hobs, ovens and cooking ranges
• IEC/EN 60335-2-7, Washing machines
• IEC/EN 60335-2-9, Grills, toasters and similar portable cooking appliances
• IEC/EN 60335-2-14, Kitchen machines
• IEC/EN 60335-2-15, Heating liquids
• IEC 60335-2-25, Microwave ovens including combination micro wave ovens
• IEC 60335-2-33, Coffee mills and coffee
• IEC 60335-2-36, Commercial electric cooking ranges, ovens, hobs and hob elements
• IEC 60730-2-11, Energy regulators

6.12. Safety Certification
A Safety Certification "mark" on a product indicates that it has been tested against the applicable safety in
a certain region and found to be in compliance. A National Certification Body (NCB) is an organization
that grants nationally recognized conformity certificates and marks to products such as VDE and UL are
NCBs in Germany and USA,respectively.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

112

The IECEE CB Scheme is an international system for mutual acceptance of test reports and certificates
dealing with the safety of electrical and electronic components, equipment and products. The tests
performed by one national NCB andthe resulting CB-certificates / test reports are the basis for obtaining
the national certification of other participating NCBs,subject to any National Differences being met.

The following diagram illustrates the typical CB scheme flow.

Figure 6-2. CB Certification

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

113

7. Known Issues
Touch acquisition may fail and stop working

The following errata is applicable for the QTouch Safety Library versions up to 5.1.14.

Description:

In QTouch applications, where either a single interrupt or a chain of nested non-PTC interrupts has
duration longer than the total touch measurement time, the touch acquisition may fail and stop working.
This issue occurs most likely in applications with few touch channels (2-3 channels) and a low level of
noise handling (filter level 16 or lower and no frequency hopping).

Fix/workaround:

1. Always ensure that the duration of a single interrupt or a chain of nested non-PTC interrupts does
not exceed the total touch measurement time. (or)

2. Add a critical section by disabling interrupts for the touch_xxxxcap_sensors_measure()
function as shown in the following code snippet.
Disable_global_interrupt();
touch_ret = touch_xxxxcap_sensors_measure(current_time, NORMAL_ACQ_MODE,
touch_xxxxcap_measure_complete_callback);
Enable_global_interrupt();

The Interrupt Blocking Time while executing touch_xxxxcap_sensors_measure API for various CPU
frequencies are as follows.

CPU Frequency (in MHz) Interrupt Blocking Time (in μs)

48 ~96

24 ~162

16 ~229

12 ~295

The Interrupt Blocking Time varies based on the PTC_GCLK frequency, CPU frequency, and the library
version. The actual blocking time can be measured by toggling a GPIO pin before and after calling the
touch_xxxxcap_sensors_measure function.

If you are using an IAR compiler, use system_interrupt_enable_global() and
system_interrupt_disable_global() functions to enable and disable the global interrupts,
respectively.

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

114

8. References
For more information and knowledge about the safety component for SAM devices, refer the following:

• [1]: IEC 60730-1: IEC60730-1 Standard for Safety for Software in Programmable Components
• [2]: SAM C20 device data sheet (http://www.atmel.com/Images/Atmel-42364-

SAMC20_Datasheet.pdf)
• [3]: IAR C/C++ Compiler Guide (http://supp.iar.com/FilesPublic/UPDINFO/004916/arm/doc/

EWARM_DevelopmentGuide.ENU.pdf)
• [4]: IAR Embedded Workbench for ARM – Version 7.40
• [5]: Buttons, Sliders and Wheels Touch Sensor Design Guide(http://www.atmel.com/Images/

doc10752.pdf)
• [6]: GCC Linker pdf (https://sourceware.org/binutils/docs/ld/)

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

115

http://www.atmel.com/Images/Atmel-42364-SAMC20_Datasheet.pdf
http://www.atmel.com/Images/Atmel-42364-SAMC20_Datasheet.pdf
http://supp.iar.com/FilesPublic/UPDINFO/004916/arm/doc/EWARM_DevelopmentGuide.ENU.pdf
http://supp.iar.com/FilesPublic/UPDINFO/004916/arm/doc/EWARM_DevelopmentGuide.ENU.pdf
http://www.atmel.com/Images/doc10752.pdf
http://www.atmel.com/Images/doc10752.pdf
https://sourceware.org/binutils/docs/ld/

9. Revision History
Doc.Rev. Date Comments

42679C 07/2016 Added Section Known Issues

42679B 04/2016 Updated few sections related to low power feature

42679A 02/2016 Initial document release

Atmel SAM C20 Safety Library [USER GUIDE]
Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

116

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42679C-SAM-C20-QTouch-Safety-Library_User Guide-07/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, QTouch® and others are registered trademarks or trademarks of Atmel Corporation in
U.S. and other countries. ARM®, ARM Connected® logo and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may
be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Development Tools
	1.1. Device Variants Supported

	2. QTouch Safety Library
	2.1. API Overview
	2.2. Sequence of Operation
	2.3. Program Flow
	2.4. Configuration Parameters
	2.4.1. Pin Configuration
	2.4.1.1. Mutual Capacitance
	2.4.1.2. Self Capacitance

	2.4.2. Sensor Configuration
	2.4.3. Acquisition Parameters
	2.4.4. Sensor Global Parameters
	2.4.5. Common Parameters
	2.4.6. Noise Immunity Global Parameters
	2.4.6.1. Noise Measurement Parameters
	2.4.6.2. Sensor LockOut Parameters
	2.4.6.3. Frequency Auto Tune Parameters

	2.4.7. Noise Immunity Feature
	2.4.8. Sensor Lockout
	2.4.9. Frequency Auto Tune

	2.5. Touch Library Error Reporting Mechanism
	2.6. Touch Library Program Counter Test
	2.6.1. Logical Program Flow Test
	2.6.2. Program Counter Test

	2.7. CRC on Touch Input Configuration
	2.8. Double Inverse Memory Check
	2.8.1. Application To Touch Library
	2.8.2. Touch Library To Application

	2.9. Application Burst Again Mechanism
	2.10. Memory Requirement
	2.10.1. Memory Requirement For IAR Library

	2.11. API Execution Time
	2.11.1. Mutual Capacitance API Execution Time
	2.11.2. Self Capacitance API Execution Time

	2.12. Error Intepretation
	2.12.1. Error Codes Returned Synchronously
	2.12.2. Error Codes Returned Through Callback

	2.13. Data and Function Protection
	2.14. Moisture Tolerance
	2.14.1. Moisture Tolerance Group
	2.14.2. Multi Touch Group
	2.14.3. Moisture Quick Re-burst

	2.15. Quick Re-burst
	2.15.1. Synchronizing Quick Re-burst ,Moisture Quick Re-burst and Application Burst Again

	2.16. Reading Sensor States
	2.17. Touch Library Suspend Resume Operation
	2.18. Drifting On Disabled Sensors
	2.19. Capacitive Touch Low Power Sensor

	3. QTouch Safety Library API
	3.1. Typedefs
	3.2. Macros
	3.2.1. Touch Library Acquisition Status Bit Fields
	3.2.2. Sensor State Configurations

	3.3. Enumerations
	3.3.1. Touch Library GAIN Setting(tag_gain_t)
	3.3.2. Filter Level Setting(tag_filter_level_t)
	3.3.3. Touch_Library_AUTO_OS_Setting_(tag_auto_os_t)
	3.3.4. Library Error Code (tag_touch_ret_t)
	3.3.5. Sensor Channel (tag_channel_t)
	3.3.6. Touch Library State (tag_touch_lib_state_t)
	3.3.7. Sensor Type (tag_sensor_type_t)
	3.3.8. Touch Library Acquisition Mode (tag_touch_acq_mode_t)
	3.3.9. AKS Group (tag_aks_group_t)
	3.3.10. Channel Hysterisis Setting (tag_hyst_t)
	3.3.11. Sensor Recalibration Threshold (tag_recal_threshold_t)
	3.3.12. Rotor Slider Resolution (tag_resolution_t)
	3.3.13. Auto Tune Setting (tag_auto_tune_type_t)
	3.3.14. PTC Clock Prescale Setting (tag_prsc_div_sel_t)
	3.3.15. PTC Series Resistor Setting (tag_rsel_val_t)
	3.3.16. PTC Acquisition Frequency Delay Setting (freq_hop_sel_t)
	3.3.17. PTC Acquisition Frequency Mode Setting (tag_freq_mode_sel_t)
	3.3.18. PTC Sensor Lockout Setting (nm_sensor_lockout_t)
	3.3.19. Moisture Group Setting (moisture_grp_t)
	3.3.20. Multi Touch Group Setting (mltch_grp_t)

	3.4. Data Structures
	3.4.1. Touch Library Configuration Type
	3.4.2. Touch Library Safety Type
	3.4.3. Touch Library Double Inverse Type
	3.4.4. Touch Library Parameter Type
	3.4.5. Touch Library Measurement Data Type
	3.4.6. Touch Library Filter Data Type
	3.4.7. Touch Library Time Type
	3.4.8. Touch Library Info Type
	3.4.9. Touch Library Version

	3.5. Global Variables.
	3.5.1. touch_lib_fault_test_status
	3.5.2. touch_error_app_cb
	3.5.3. touch_suspend_app_cb
	3.5.4. low_power_mode
	3.5.5. wake_up_touch
	3.5.6. touch_low_power_stop_complete_app_cb

	3.6. Functions
	3.6.1. Touch Library Initialization
	3.6.2. Touch Library Sensor Configuration
	3.6.3. Touch Library Sensor Calibration
	3.6.4. Touch Library Sensor Measurement
	3.6.5. Touch Library Sensor Specific Touch Delta Read
	3.6.6. Touch Library Sensor Specific Parameter Configuration Read-write
	3.6.7. Touch Library Sensor Specific Acquisition Configuration Read-write
	3.6.8. Touch Library Sensor Global Parameter Configuration Read-write
	3.6.9. Touch Library Info Read
	3.6.10. Touch Library Program Counter
	3.6.11. Touch Library CRC Configuration Check
	3.6.12. Touch Library Double Inverse check
	3.6.13. Touch Library Enable Disable Sensor
	3.6.14. Touch Library Version Information
	3.6.15. Touch Library Moisture Tolerance
	3.6.16. Touch PTC Peripheral Enable Disable
	3.6.17. Touch Library Suspend Resume
	3.6.18. Touch Library Re-Initialization
	3.6.19. Touch Library Low Power

	4. FMEA
	4.1. Double Inverse Memory Check
	4.1.1. Application to FMEA
	4.1.2. FMEA to Application

	4.2. Memory Requirement
	4.2.1. Memory Requirement for IAR Library
	4.2.1.1. Memory Requirement for Mutual Capacitance
	4.2.1.2. Memory Requirement Self Capacitance
	4.2.1.3. Memory Requirement Self Capacitance + Mutual Capacitance

	4.3. API Execution Time
	4.3.1. Mutual Capacitance API Execution Time
	4.3.2. Self Capacitance API Execution Time

	4.4. Error Interpretation
	4.5. Data and Function Protection
	4.6. FMEA Considerations

	5. FMEA API
	5.1. Typedefs
	5.2. Enumerations
	5.2.1. sf_fmea_faults_t

	5.3. Data Structures
	5.3.1. sf_xxxxcap_fmea_open_test_config_t
	5.3.2. sf_xxxxcap_fmea_input_config_t
	5.3.3. sf_mutlcap_fmea_fault_report_t
	5.3.4. sf_selfcap_fmea_fault_report_t

	5.4. Global Variables
	5.4.1. sf_xxxxcap_fmea_fault_report_var

	5.5. Functions
	5.5.1. sf_xxxxcap_fmea_init
	5.5.2. sf_xxxxcap_fmea_test
	5.5.3. sf_xxxcap_fmea_test_open_pins_per_channel
	5.5.4. sf_xxxxcap_fmea_stop

	5.6. Macros

	6. System
	6.1. Relocating Touch Library and FMEA RAM Area
	6.1.1. Modifying the IAR Linker File
	6.1.2. Modifying GCC Linker File

	6.2. API Rules
	6.3. Safety Firmware Action Upon Fault Detection
	6.4. System Action Upon Fault Detection
	6.5. Touch Library and FMEA Synchronization
	6.6. Safety Firmware Package
	6.7. SAM Safety Firmware Certification Scope
	6.8. Hazard Time
	6.9. ASF Dependency
	6.10. Robustness and Tuning
	6.11. Standards compliance
	6.12. Safety Certification

	7. Known Issues
	8. References
	9. Revision History

