
AN2474
Migrating an Atmel Software Frameworks (ASF) Project

from ASFv3.3 to ASFv4
INTRODUCTION

This application note provides an introductory look
into the migration of an Atmel Start ASFv3 project to
an ASFv4 project.

Due to ASFv4 optimizations for code density and
added flexibility, the two frameworks are mutually
exclusive. Which means an ASF v3.3 project cannot
be built upon by ASF v4.0. This will require a “ground
up” approach to project migration.

ASFv3

The ASF 3 architecture was developed with code-
size, performance and low power optimizations as
primary goals. Peripheral drivers and middleware
have been developed to provide a reduced design
cycle when using ASF-enabled projects.

The intention of ASF is to provide a rich set of proven
drivers and code modules developed by Atmel
experts to reduce customer design time. It simplifies
the usage of microcontrollers, providing an abstraction
to the hardware and high-value middleware.

ASF consists of source code modules and
applications demonstrating the use of these.

• Drivers is composed of a driver.c and
driver.h file that provides low level register
interface functions to access a peripheral or device
specific feature. The services and components will
interface the drivers.

• Services is a module type which provides more
application oriented software such as a USB
classes, FAT file system, architecture optimized
DSP library, graphical library, etc.

• Components is a module type which provides
software drivers to access external hardware
components such as memory (e.g., Atmel
DataFlash®, SDRAM, SRAM, and NAND Flash),
displays, sensors, wireless, etc.

• Boards contains mapping of all digital and analog
peripheral to each I/O pin of Atmel's development
kits.

ASFv4

In Atmel Start, the drivers and software stacks are
provided as a part of the next iteration of Atmel
Software Framework (ASFv4). This version is built
from scratch and is a complete redesign and
implementation of the whole framework to resolve
issues reported by users and contributors of older
ASF versions and to better integrate with the Atmel
Start Web user interface. Still, it has been a goal to
keep ASFv4 feel familiar for experienced ASF users,
yet easy to get stated with for new users. Some
changes in ASFv4 have been necessary to meet the
requirements for this version, the most important
changes are listed in ASFv4 vs ASFv3 Benchmark of
the Atmel Start User Guide.

ASFv4 is tightly integrated into Atmel Start, which
means that the ASFv4 code can be much more
tailored to the user’s specification than before. For
instance, instead of using C preprocessor conditional
expressions to enabled/disable code blocks, disabled
code blocks can be removed entirely from the project
source which results in cleaner and easier to read
code. The integration into Atmel Start means that
software configuration is done in a much more user
friendly environment and the only configuration
information loaded on the device is the raw peripheral
register content which makes the firmware image
much more compact.

One important issue we have addressed is the
memory footprint and performance of ASF-based
code. Flash requirements for running ASFv3-based
code has been deemed too high by many users. This
has been addressed by using code generation and
changing the way peripherals are initialized.
Performance issues that has been reported is typically
high interrupt latency/slow code execution which has
been resolved by making the interrupt handlers
smaller and less complex.
 2017 Microchip Technology Inc. DS00002474A-page 1

http://start.atmel.com/static/help/GUID-FE431B1A-031A-48CC-98AF-6984DC79800E.html

AN2474
Migration

Unfortunately, there is not a way to directly migrate an
ASFv3 project to an ASFv4 project. With the new
Architecture and APIs, the only method of migration is
to rebuild the ASFv3 project from scratch with the
online Atmel Start tool (start.atmel.com). While this
may present a challenge now, future migrations will be
much easier between devices using an ASFv4 project
than a migration between devices using an ASFv3
project.

STARTING THE EXAMPLE PROJECT

To step through the migration process, an example
project will be used from the ASF v3.3 example
project list. The example project used will be selected
for use with the SAMD21 Xplained Pro Evaluation Kit
board.

1. In Atmel Studio, load the ASFv3 Project by
selecting File > New > Example Project.

2. In the Device Family menu, select the
SAMD21, as shown in Figure 1.

3. Click All Projects to display all Atmel Projects
and then select Quick Start for the SAM ADC
Driver (Callback) - SAM D21 Xplained Pro.

4. Click OK to create the project in the default
Studio workspace.

5. Compile and run the example project.

FIGURE 1: IMPORT ASFv3 EXAMPLE PROJECT
DS00002474A-page 2  2017 Microchip Technology Inc.

http://start.atmel.com

AN2474
6. Application Description

The example ADC program flowchart is shown in
Figure 2. The example application will start the ADC
to collect a set of samples and then wait forever once
the data collection is complete.

The application is very simple, but will need to be
broken into two steps for the migration. Step one,
outlined in red, will be to extract the needed
information from the System and ADC initialization in
ASFv3 for later use in Atmel Start. Step 2, outlined in
green, will be the functional verification of the API's
needed in the application and will be completed after
the Atmel Start project is imported into Atmel Studio.

7. Application Components.

The function of the Application will require an
understanding of the System (clock, etc.), as well as
the ADC peripheral. The red block of Figure 2
includes system drivers required for any project.
Some configuration will be required to ensure the
system can provide the necessary clocks and
configurations to the peripherals. The ADC is also
included in this block, and will require evaluation to
transfer the needed configuration for the application.

FIGURE 2: EXAMPLE ADC PROGRAM
FLOWCHART
 2017 Microchip Technology Inc. DS00002474A-page 3

AN2474
EXTRACT ASFv3 CONFIGURATION OF
SYSTEM AND ADC

1. Capture the Clock configuration

The system clock settings for ASFv3 can be located in
the conf_clocks.h file of the example project. From
here it can be seen the Main Clock (GCLK_0) is
sourced by the internal 8 MHz oscillator.

Figure 3 shows that GCLK_0 is not prescaled and is
running the SAMD21 Core at 8 MHz. These settings
will be used in Atmel Start to configure the clock tree
of the ADC project. For the ADC peripheral in this
project, GCLK_0 will be used as the clock source.
These values can also be found in the I/O window at
run-time under Generic Clock Generator (GCLK) and
System Control (SYSCTRL).

2. Capture the Peripheral configuration.

Peripheral modules in ASFv3 use a configuration
structure to initialize the peripheral for the application.
ASFv3 contains default values that are written to the
peripheral for initialization. It is important to note the
peripheral configuration structures are populated at
run time. ASFv4 has taken a different approach and
handles all application configuration with preprocessor
macros.

In this example application the adc_config structure
is used to initialize the ADC in the
configure_adc() function. Using a Watch window
during the execution of the project, the initialization
parameters are captured in Figure 4. An effort has
been made in ASFv4 development to maintain the
configuration value naming convention. With that said,
the values in the middle column of Figure 4 will be
used to set up the ADC in Atmel Start.

The ADC register Figure 5 displays the register values
after initialization with ASFv3 and will be used to verify
ADC initialization with Atmel Start.

FIGURE 3: SYSTEM CLOCK CONFIGURATION
DS00002474A-page 4  2017 Microchip Technology Inc.

AN2474
FIGURE 4: ASFv3 ADC CONFIGURATION PARAMETERS

FIGURE 5: ASFv3 ADC REGISTER VALUES
 2017 Microchip Technology Inc. DS00002474A-page 5

AN2474
3. Capture the pin configuration.

The example project chosen is only using one ADC
channel for the application. In this case, the pin
assignments are easy to find and are located in the
config_adc structure referenced earlier or the
configure_adc() function. ASFv3 example
projects using Atmel hardware, like the Xplained Pro,
may have this information where the hardware is
initialized in the system_board_init() function.

ATMEL START - SYSTEM INITIALIZATION

1. Create a new Atmel Start project by browsing
to start.atmel.com and then click the Create
New Project tab, as shown in Figure 6.

2. In the Create New Projects window, under
Results section, search for SAM D21 Xplained
Pro and select SAM D21 Xplained Pro, and
then Click Create New Project, see Figure 7.

3. The New Project Dashboard will be displayed
as shown in Figure 8.

FIGURE 6: ATMEL START HOME PAGE

FIGURE 7: ATMEL START CREATE NEW PROJECT
DS00002474A-page 6  2017 Microchip Technology Inc.

http://start.atmel.com

AN2474
FIGURE 8: DASHBOARD OF NEW PROJECT

Please note, as in ASFv3, several system drivers are
included in every ASFv4 project. These drivers are
initially hidden in the Start setup. To see the
automatically included system drivers, click the Show
system drivers indicator. The four components
(SYSCTRL, DMAC, PM, and GCLK) will allow for
clock, bus, NVM, and DMA settings to be configured
in the Dashboard screen, as shown in Figure 9.

FIGURE 9: INCLUDED SYSTEM DRIVERS
 2017 Microchip Technology Inc. DS00002474A-page 7

AN2474
4. From the Dashboard tab, Click Add software
component to add Peripheral modules to the
project. The Add Software Components dialog
will display available drivers for the SAMD21,
as shown in Figure 10.

5. Click “+” to display all the Drivers, and then
select ADC by clicking the “+” symbol. The
ADC module will be displayed under the
Selected Components section.

6. Click Add Component(s) to add selected
components to the project.

FIGURE 10: ATMEL START ADD SOFTWARE COMPONENTS
DS00002474A-page 8  2017 Microchip Technology Inc.

AN2474
7. Configure the peripheral modules. Once the
ADC module is added, it will be displayed
under the My Project tab, as shown in
Figure 11.

FIGURE 11: CONFIGURE THE PERIPHERAL MODULE

8. Click the ADC_0 tab, and then use the
information collected from the adc_config
structure in the ASFv3 example project to
populate the configuration options, and then
enable PA06 (AIN/6) for the ADC input, as
shown in Figure 12,

FIGURE 12: CONFIGURE ADC PERIPHERAL (1 OF 2)
 2017 Microchip Technology Inc. DS00002474A-page 9

AN2474
FIGURE 13: CONFIGURE ADC PERIPHERAL (2 OF 2)

9. Configure the pinout.

When collecting the information from the ASFv3
project, the ADC will only use one pin in this
project and that is configured in the ADC config-
uration on the Dashboard. However, GPIO or
the naming of pins is done in the Pinmux Config-
urator, see Figure 14. By selecting the pin you
would like to modify in the Pinmux Configurator,
a user window will open near the bottom of the
screen to set the parameters.

10. Configure the clock tree.

The Clock Tree can be configured in two places
in the Start tool. The Dashboard, through the
System Driver modules, and the Clock Configu-
rator. The Clock Configurator provides a graphi-
cal representation of the clock tree and provides
the same configuration capabilities as the Dash-
board. The Clock Configurator will be used for
this example.

FIGURE 14: ATMEL START - PIN MUX
DS00002474A-page 10  2017 Microchip Technology Inc.

AN2474
11. Export the project by clicking the Export Project
tab at the top right portion of the Atmel Start
screen to export the project, as shown in
Figure 15. Only Atmel Studio should be
selected, as this is the only IDE intended on
using this exported project. The output from
Atmel Start will be a atzip file.

FIGURE 15: ATMEL START - EXPORT PROJECT
 2017 Microchip Technology Inc. DS00002474A-page 11

AN2474
VERIFICATION OF SYSTEM CONFIGURATION

1. From Atmel Studio, import the atzip file
exported from Atmel Start by selecting File >
Import > Atmel Start Project.

FIGURE 16: ATMEL START - IMPORT PROJECT

The parameters set in Start are conveniently
located in the Config folder for the system ini-
tialization, atmel_start_pins.h for the pin
assignments, and driver_init.c/
driver_init.h for the peripheral initializa-
tions, see Figure 17.

- Config - contains register settings from Start
used for preprocessor device configuration

- atmel_start.c - Initializes MCU, drivers
and middleware

- atmel_start_pins.h - holds the MCU pin
assignments and naming from Start configu-
ration

- driver_init.c - contains initialization
functions for peripherals

- main.c - calls atmel_start_init() to
initialize the system
DS00002474A-page 12  2017 Microchip Technology Inc.

AN2474
FIGURE 17: ASFV4 FILE STRUCTURE

2. Build and run the project.

As the new project will not contain any applica-
tion code, Start does output initialization code for
the defined peripherals in system_init().
Run the project and stop after the initialization
sequence to view the register settings in the I/O
Window.

The I/O Window is available to open in Atmel
Studio by clicking the I/O icon.
 2017 Microchip Technology Inc. DS00002474A-page 13

AN2474
3. Compare the register settings between ASFv3
and ASFv4 by opening the I/O window and
selecting the Analog-to-Digital Converter and
comparing the results to those collected from
ASFv3 (see Figure 18).

FIGURE 18: ASFv3 AND ASFv4 ADC REGISTER COMPARISON

Two differences immediately become clear when the
above comparison is made. The location at which the
ADC interrupts are enabled and the calibration setting
of the ADC.

In ASFv3, the interrupts are enabled within the ADC
job function while ASFv4 enables interrupts at the
time the callback function is assigned.

Additionally, ASFv4 ADC driver does not import the
factory calibration settings for the ADC. This will have
to be done by the user. The calibration provides bias
and linearity settings for more precise ADC readings.
For additional information refer to the Section 9.3.2
“NVM Software Calibration Area Mapping” of the
SAM D21 Family Data Sheet (DS40001882). To
import the calibration into the ASFv4 project refer to
Appendix A: “Application Code Examples”.
DS00002474A-page 14  2017 Microchip Technology Inc.

http://ww1.microchip.com/downloads/en/devicedoc/40001882a.pdf

AN2474
APPLICATION CONVERSION

1. Application description.

The ADC will be started after initialization and
collect 128 12-bit samples and store the data in
a buffer. When the samples have been
collected, the ADC callback will be entered and
a flag set indicating completion of sampling.

2. Compare API.

The use of the ADC module does not require
any additional configuration other than that pro-
vided from the Start setup. ASFv3 is very similar
in that a set of defaults are provided, but
requires the developer to create the initialization
function and modify the defaults directly.

The example program uses
adc_read_buffer_job to fill a buffer with a
defined number of samples. This functionality
does not have a direct match in ASFv4. The
closest to adc_read_buffer_job in ASFv4
would be adc_async_start_conversion.
However, these two functions will produce very
different results. In ASFv3, the ADC
_adc_interrupt_handler is configured to
complete a job and populate the assigned buffer
with the number of requested samples. The
ASFv4 ADC Handler is designed to take a more
general approach and requires the developer to
handle the additional sampling in the callback.
To match the functionality of ASFv3, the ADC
callback in ASFv4 will place ADC results into an
array and start the next ADC transaction.

Refer to Appendix A: “Application Code
Examples” for complete setup code.

3. Callback setup.

For a general application, the example folder in
the main project tree contains code that will set
up the peripherals enabled for the project. In this
case, the example folder contains everything
needed to enable the callback for the applica-
tion.

The ADC callback is set up similarly in ASFv3
and ASFv4. The difference is in the way the
ADC interrupt handler functions when an inter-
rupt is signaled. Search _adc_inter-
rupt_handler to view the differences
between ASFv3 and ASFv4. ASFv4 provides
less overhead and allows the developer to han-
dle special functionality in the callback.

Refer to Appendix A: “Application Code
Examples” for complete setup code.

Project Expansion

Add the Timer Control module to the ASFv3 Project,
as follows.

1. Application description.

The updated application will use the callback of
the ADC to update the duty cycle of a PWM
channel connected to a LED. The Duty Cycle
will be calculated using the value read from the
ADC. Additionally, rather than have a single job
collecting a block of ADC values, the ADC will
be started in a continuous loop to update the
duty cycle of the PWM channel every 100 ms.

FIGURE 19: EXPANDED PROJECT
FLOWCHART

2. Application components.

To achieve the new functionality of the project,
the Delay services and the TCC0 Driver mod-
ules will have to be added from the ASF Wizard.

3. Open the ASFv3 project and add the Timer
Control module.

In Atmel Studio, under Project, select the ASF
Wizard. Once the window is open, make sure
the project drop down menu is populated with
the Example project to be modified.

In the Available Modules menu, select the TC -
Timer Counter (driver), with the callback option
selected, and the Delay Services module. Apply
the added modules to the project by clicking
Apply located at the bottom of the window. Both
the TC driver and Delay Services will be
displayed in the Select Modules menu.
 2017 Microchip Technology Inc. DS00002474A-page 15

AN2474
Once the TCC has been added to the project by
the ASF Wizard the tcc driver folder can be
found in the project, as shown in Figure 20 and
the appropriate header files are added to asf.h
for use in the application.

FIGURE 20: ADDED TCC0 DRIVER
DS00002474A-page 16  2017 Microchip Technology Inc.

AN2474
SET UP THE ASFv3 TIMER CONFIGURATION

1. Set up the Timer configuration.

Since the project is built on the Xplained Pro,
some definitions have been assigned to the on-
board LED for use as a PWM output. The
definitions are contained in the
samd21_xplained_pro.h file of the project,
see Figure 21.

Create a configure_tcc function, as shown in
Figure 22, using the macros defined in
samd21_xplained_pro.h. Create an
instance of the tcc_module structure called
tcc_instance. Notice one of the first lines in

the configure_tcc function is a function call
to get a set of values for configuration of a
default TCC module. ASFv3 contains a set of
default settings for each peripheral. These
defaults will be used as a basis for this project
and modified only where needed.

2. Capture the TCC0 register settings.

Once the TCC module has been configured
compile and run the code in Atmel Studio. Cap-
ture the register settings as was done previously
for the ADC using the I/O window. These values
will be used to compare to the output from Atmel
Start.

FIGURE 21: XPLAINED PRO DEFINITIONS

FIGURE 22: XPLAINED PRO DEFINITIONS
 2017 Microchip Technology Inc. DS00002474A-page 17

AN2474
ATMEL START - ADD TIMER

1. Import the Atmel Start project by browsing to
the Atmel Start home page and select the
option to load an existing project. Then, browse
to the downloaded atzip file and click Open
Selected File.

FIGURE 23: ATMEL START - LOAD PROJECT

2. Add the peripheral module to the project by
clicking Add Software Components, and then
selecting the PWM component in the window.
Note that the PWM component is different from
the TCC component, even though both would
use the TCC module.

FIGURE 24: ATMEL START - ADD SOFTWARE COMPONENTS
DS00002474A-page 18  2017 Microchip Technology Inc.

AN2474
3. Configure the peripheral module by selecting
the newly added PWM_0 module and using the
values collected from the ASFv3 project to
configure, as shown in Figure 25 and
Figure 26.

FIGURE 25: ATMEL START - PWM CONFIGURATION (1 OF 2)

FIGURE 26: ATMEL START - PWM CONFIGURATION (2 OF 2)
 2017 Microchip Technology Inc. DS00002474A-page 19

AN2474
4. Configure the clock tree.

The initial version of this project had 8 MHz
going to the Generic Clock Generator 0
(GCLK_0). Make sure both ADC_0 and PWM_0
are supplied a clock signal by GCLK_0. If the
PWM_0 component is not sourced by GCLK_0,
click the settings icon on the component block
and set the TCC clock source to GCLK_0.

FIGURE 27: ATMEL START - TCC0 CLOCK CONFIGURATOR
DS00002474A-page 20  2017 Microchip Technology Inc.

AN2474
VERIFICATION OF SYSTEM CONFIGURATION

1. Compare the register settings between ASFv3
and ASFv4 by importing and building the
project as previously described.

2. Run the project until the TCC0 peripheral has
been initialized and enabled. Figure 28
displays the initialization differences between
ASFv3 and ASFv4. From the comparison in
Figure 28, the initialization of the TCC0 module
is configured in ASFv4.

FIGURE 28: ATMEL START - TCC0 REGISTER COMPARISON
 2017 Microchip Technology Inc. DS00002474A-page 21

AN2474
APPLICATION UPDATE

1. Application description.

To provide the input for the PWM Duty Cycle cal-
culation, only the algorithm in the ADC callback
needs to be implemented. The ADC is set up to
collect a single 12-bit sample, and then trigger
the callback. In the ADC callback, the ADC
RESULT register will be read directly and shifted
to provide an 8-bit value. This 8-bit value will be
written to the Duty Cycle of the PWM. The PWM
was configured to have an 8-bit period so the
Duty Cycle will scale appropriately.

2. Compare API.

The use of the TCC0 module does not require
any additional configuration other than that pro-
vided from the Start setup. ASFv3 is very similar
in that a set of defaults are provided, but
requires the developer to create the initialization
function and modify the defaults directly.

ASFv4 has a more use case driven model
throughout the entire framework. This can be
seen from when the TCC component was added
in ASFv3 and a PWM component was added in
Start. The API for the PWM component in
ASFv4 displays this as well in
pwm_set_parameters. ASFv3 uses
tcc_set_compare_value to achieve the
same function. The parameters passed in these
functions do not differ dramatically, but drilling
down into the functions a much thinner, use
case-driven approach is achieved in ASFv4.

3. Callback Setup.

The TCC0 module in this project is not using a
callback, but the Duty Cycle is changed in the
ADC callback function.

CONCLUSION

ASFv4 is a new framework containing improvements
in code size and driver efficiency with an application
driven use case approach. While the architecture of
ASFv4 is different to that of ASFv3, naming
conventions and fundamental aspects pertaining to
the devices have remained.

There is not a canned solution to approach a
conversion from ASFv3 to ASFv4. The migration will
have to occur from the ground up. While this
document has only covered a couple of the functional
differences, a basic principal is provided to achieve a
functional migration.
DS00002474A-page 22  2017 Microchip Technology Inc.

AN2474
APPENDIX A: APPLICATION CODE EXAMPLES

EXAMPLE 1: ASFv3 PROJECT EXPANSION - ADC AND PWM
#define ADC_SAMPLES 1
uint16_t adc_result_buffer[ADC_SAMPLES];

struct adc_module adc_instance;
struct tcc_module tcc_instance;

volatile bool adc_read_done = false;

void adc_complete_callback(struct adc_module *const module)
{

uint32_t duty;

duty = (adc_result_buffer[0] >> 4) & 0xFFFF;

tcc_set_compare_value(&tcc_instance, (enum tcc_match_capture_channel)(CONF_PWM_CHANNEL),
duty);
}

void configure_adc(void)
{

struct adc_config config_adc;

adc_get_config_defaults(&config_adc);

config_adc.clock_prescaler = ADC_CLOCK_PRESCALER_DIV8;
config_adc.reference = ADC_REFERENCE_INTVCC1;
config_adc.positive_input = ADC_POSITIVE_INPUT_PIN18;
config_adc.resolution = ADC_RESOLUTION_12BIT;

adc_init(&adc_instance, ADC, &config_adc);
adc_enable(&adc_instance);

}

static void configure_tcc(void)
{

struct tcc_config config_tcc;

tcc_get_config_defaults(&config_tcc, LED_0_PWM4CTRL_MODULE);

config_tcc.counter.clock_prescaler = TCC_CLOCK_PRESCALER_DIV8;
config_tcc.counter.period = 0xFE;
config_tcc.compare.wave_generation = TCC_WAVE_GENERATION_SINGLE_SLOPE_PWM;
config_tcc.compare.match[LED_0_PWM4CTRL_CHANNEL] = 0x7F;

config_tcc.pins.enable_wave_out_pin[LED_0_PWM4CTRL_OUTPUT] = true;
config_tcc.pins.wave_out_pin[LED_0_PWM4CTRL_OUTPUT] = LED_0_PWM4CTRL_PIN;
config_tcc.pins.wave_out_pin_mux[LED_0_PWM4CTRL_OUTPUT] = LED_0_PWM4CTRL_MUX;

tcc_init(&tcc_instance, LED_0_PWM4CTRL_MODULE, &config_tcc);

tcc_enable(&tcc_instance);
}

void configure_adc_callbacks(void)
{

adc_register_callback(&adc_instance, adc_complete_callback, ADC_CALLBACK_READ_BUFFER);
adc_enable_callback(&adc_instance, ADC_CALLBACK_READ_BUFFER);

}

int main(void)
{

system_init();
delay_init();

configure_adc();
configure_adc_callbacks();
configure_tcc();

system_interrupt_enable_global();

while (1) {
adc_read_buffer_job(&adc_instance, adc_result_buffer, ADC_SAMPLES);
delay_cycles_ms(100);

}
}

 2017 Microchip Technology Inc. DS00002474A-page 23

AN2474
EXAMPLE 2: ASFv3 MIGRATION - ADC ONLY

EXAMPLE 3: PROJECT EXPANSION - ADC AND PWM

void adc_complete_callback(const struct adc_async_descriptor *const descr, const uint8_t
channel)
{

static uint8_t i = 0;

if (i < ADC_SAMPLES)
{

adc_result_buffer[i++] = ADC->RESULT.reg;
adc_async_start_conversion(&ADC_0);

}
else
{

adc_read_done = true;
}

}

int main(void)
{

system_init();

adc_async_register_callback(&ADC_0, 0, ADC_ASYNC_CONVERT_CB, adc_complete_callback);
adc_async_enable_channel(&ADC_0, 0);

adc_async_start_conversion(&ADC_0);

while (adc_read_done == false)
{

/* Wait for asynchronous ADC reads to complete */
}

while(1)
{

asm("nop");
}

}

#define PWM_PERIOD 254
static uint32_t pwm_duty;
static uint16_t adc_value;

static void adc_cb(const struct adc_async_descriptor *const descr, const uint8_t channel)
{
 adc_value = ADC->RESULT.reg;

 pwm_duty = (adc_value >> 4) & 0xFF;

 pwm_set_parameters(&PWM_0, PWM_PERIOD, pwm_duty);
}

int main(void)
{
 atmel_start_init();

 adc_async_register_callback(&ADC_0, 0, ADC_ASYNC_CONVERT_CB, adc_cb);

 ADC->CALIB.reg = ADC_CALIB_BIAS_CAL((*(uint32_t *)ADC_FUSES_BIASCAL_ADDR >>
ADC_FUSES_BIASCAL_Pos)) |

ADC_CALIB_LINEARITY_CAL((*(uint64_t *)ADC_FUSES_LINEARITY_0_ADDR >>
ADC_FUSES_LINEARITY_0_Pos));

 adc_async_enable_channel(&ADC_0, 0);
 pwm_enable(&PWM_0);

 while(1)
 {

adc_async_start_conversion(&ADC_0);
delay_ms(100);

 }
}

DS00002474A-page 24  2017 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2017 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-1864-1
DS00002474A-page 25

DS00002474A-page 26  2017 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud
Tel: 33-1-30-60-70-00

Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

11/07/16

http://support.microchip.com
http://www.microchip.com

	Introduction
	ASFv3
	ASFv4
	Migration
	Starting the Example Project
	FIGURE 1: Import ASFv3 Example Project
	FIGURE 2: Example ADC Program Flowchart

	Extract ASFv3 configuration of System and ADC
	FIGURE 3: System Clock Configuration
	FIGURE 4: ASFv3 ADC Configuration Parameters
	FIGURE 5: ASFv3 ADC Register Values

	Atmel Start - System Initialization
	FIGURE 6: Atmel Start Home Page
	FIGURE 7: Atmel Start Create New Project
	FIGURE 8: Dashboard of New Project
	FIGURE 9: Included System Drivers
	FIGURE 10: Atmel Start Add Software Components
	FIGURE 11: Configure the Peripheral Module
	FIGURE 12: Configure ADC Peripheral (1 of 2)
	FIGURE 13: Configure ADC Peripheral (2 of 2)
	FIGURE 14: Atmel Start - Pin Mux
	FIGURE 15: Atmel Start - Export Project

	Verification of System Configuration
	FIGURE 16: Atmel Start - Import Project
	FIGURE 17: ASFv4 File Structure
	FIGURE 18: ASFv3 and ASFv4 ADC Register Comparison

	Application Conversion

	Project Expansion
	FIGURE 19: Expanded Project Flowchart
	FIGURE 20: Added TCC0 Driver
	Set Up the ASFv3 Timer Configuration
	FIGURE 21: Xplained Pro Definitions
	FIGURE 22: Xplained Pro Definitions

	Atmel Start - Add Timer
	FIGURE 23: Atmel Start - Load Project
	FIGURE 24: Atmel Start - Add Software Components
	FIGURE 25: Atmel Start - PWM Configuration (1 of 2)
	FIGURE 26: Atmel Start - PWM Configuration (2 of 2)
	FIGURE 27: Atmel Start - TCC0 Clock Configurator

	Verification of System Configuration
	FIGURE 28: Atmel Start - TCC0 Register Comparison

	Application Update

	Conclusion
	Appendix A: Application Code Examples
	EXAMPLE 1: ASFv3 Project Expansion - ADC and PWM
	EXAMPLE 2: ASFv3 Migration - ADC Only
	EXAMPLE 3: Project Expansion - ADC and PWM

