
Application Note

Unique Keys for ATSHA204
Features

 Use of the Atmel® ATSHA204 unique serial number and a Root Key to create a
Unique Key (Diversified Key)

 Configuring the ATSHA204 with Unique Keys
 Authenticating the Unique Key using a Host ATSHA204 containing the Root Key
 Description of the Diversified Key Calculator in ACES (Atmel Crypto Evaluation

Studio)
 Demonstration of Host validation using the DeriveKey command
 Demonstration of Host validation using the GenDig command
 Pseudo Code for Host validation — for systems that do not have a Host ATSHA204

Description

A unique key can be created for each Client based on its serial number and a Root
Key. This is referred to as key diversification. Since each Client device is programmed
with a unique secret, the Diversified Key is of less value to an attacker.

This walkthrough will configure the ATSHA204 device with a Diversified Key based on
cryptographically combining a Root Key with the ATSHA204 Serial Number which is
guaranteed to be unique. After configuring the Diversified Key, this walkthrough will
continue with a step by step to writing this Diversified Key to the Client device.

Once the Client is configured, an explanation of how a system can validate the
configured key by performing a MAC on the Client Diversified then comparing the
resulting digest to the digest generated by an equivalent cryptographic calculation
using the Client Serial Number and the Root Key.

A demonstration of how the GenDig command or the DeriveKey command can be
used by an ATSHA204 Host device to validate the ATSHA204 Client Diversified Key
will also be summarized.
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 2
1. Diversified Key Description
As shown in Figure 1-1, the Host authenticates a Client Diversified Key using the Root Key that was used to calculate the
Client Diversified Key. The Diversified Key calculation cryptographically combines the Client Serial Number with the Root
Key that is stored on the Host. Since Diversified Keys are based on a Root Key, the Host only needs knowledge of the
Client Serial Number to validate the Client Diversified Key.

Figure 1-1. Host Authenticates a Client Diversified Key Using the Root Key

Host Client

Embedded Microprocessor Hardware Security IC

Every Client has a Unique Key — Loss of One Does Not Compromise All

Secure
RootKey
Storage

Identification

Challenge

Response

Some
Crypto

Calculation
Random
Number

Diversified Key

SHA-256
Hash

Calculator

NO YES

Secure
Diversified

Key
Storage

Random
Number

Generator

Do They
Match?

Nonvolatile
S/N

Storage

SHA-256
Hash

Engine
4

32

8

6For optimal
system level

security,
implement Host

Hardware
Security IC.

5

7

1

Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

2. Walkthrough Steps
The steps in this section describe the process of configuring and authenticating diversified keys.

2.1 Device Configuration
For this walkthrough, start by setting up the Configuration zone within the ATSHA204 device. This configuration will act
as both a Host and Client ATSHA204. This configuration uses a single device to demonstrate the concepts; in an actual
system the Host device would be separate. Table 2-1 gives both the description and configuration bytes for each slot
used.

Table 2-1. Slot Configurations

1. Launch ACES Configuration Environment (CE) with an unlocked ATSHA204 device (use an AT88CK101 or an
AT88CK454 development kit).

2. Select Configuration Zone in the Device Navigator as shown in Figure 2-1.

Figure 2-1. Select Configuration Zone

3. Click on the SlotConfig00 memory location in the Memory map.

Slot Title Description Slot Configuration

00 Client Diversified Key Client Slot: This slot will be diversified using the Serial
Number and the Host Root Key.

Read – Is Secret
Write – Never
Bytes – 8F 8F

01 Host Target Host Slot: This is the target slot defined for the DeriveKey
command.

Read – Is Secret, CheckOnly
Write – DeriveKey (parent 2)
Bytes – 9F 32

02 Host Root Key
Root used for key diversification: Use the DeriveKey
Command to verify the Client Diversified Key. This key is to
be programmed on the Host ATSHA204.

Read – Is Secret
Write – Never
Bytes – 8F 8F

03 Host Root Key
Root used for key diversification: Use the GenDig
Command to verify the Client Diversified Key. This key is to
be programmed on the Host ATSHA204.

Read – Is Secret, CheckOnly
Write – Never
Bytes – 9F 8F
 3Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 4
4. The Write Bytes dialog box will be displayed as shown in Figure 2-2.

Figure 2-2. Write Bytes Dialog Box — SlotConfig00

5. Type the configuration for Slot 00 in the SlotConfig00 field from Table 2-1 (8F 8F).
○ Repeat for Slot 01 (9F 32).
○ Repeat for Slot 02 (8F 8F).
○ Repeat for Slot 03 (9F 8F).

6. Lock the Configuration zone.
○ Select Tools > Lock Zones from the menu.
○ The Lock Zone dialog box will be displayed as shown in Figure 2-3.
○ Select the Lock Configuration Zone check box and click on the Lock Zones button.
○ The Lock Successful message will be displayed.

Figure 2-3. Lock Zone Dialog Box
Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

7. Launch Diversified Key Calculation dialog box.
○ Select Tools > Calculate Diversified Keys from the menu.
○ The Diversified Key Calculation dialog box will be displayed as shown in Figure 2-4.

Note: This dialog box dynamically updates the calculated Diversified Key as inputs are modified.

○ The calculation used for this dialog box is defined by the DeriveKey command.

Figure 2-4. Diversified Key Calculation Dialog Box

8. Set the Diversified Key Inputs as per the configuration shown in Table 2-1.
○ Set the Host Target Slot to 1.
○ Set the Root Key Value to all threes (Use unique secret here if you have one).
○ The Device Serial Number will be read from the device and pre-loaded.
○ Set the Serial Number Pad to all sevens (Any pad is ok. Typically all zeros).

9. The Input Bytes refer to the bytes that will be passed to the Atmel ATSHA256 engine.
○ The bytes and byte order are defined in the GenDig command.
○ The TempKey is the SN + SnPad which can be initialized with the Nonce command.

10. The calculated Diversified Key is the result that should be written to the Client Diversified Key (Slot 00).

Note: This calculation cryptographically combines the Root Key and the Device Serial Number.

○ Leave the Diversified Key Calculation dialog box open for later use.
 5Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 6
11. Select Slot 00 in the Device Navigator as shown in Figure 2-5.

Figure 2-5. Slot 00 Showing Diversified Key Data

12. Client Configuration — Write the calculated Diversified Key into Slot 00 of the ATSHA204.
○ Triple-click on the calculated Diversified Key data in the Calculated Diversified Key dialog box to select all

the data.
○ Copy the data into the clipboard.
○ Click on any location in the Memory zone. The Write Zone dialog box will be displayed as shown in Figure

2-6.
○ Paste the Diversified Key data into the Data to Write field.
○ Click on the Write To Zone button.

13. Host Configuration — Write Root Key into Slot 02 and Slot 03 of the ATSHA204. Follow these steps to write the
Root Key (all threes or unique key) that was used to generate the Diversified Key.
○ Click on any location in the Slot 02 Memory zone. The Write Zone dialog box will display as shown in

Figure 2-6.
○ Paste the Root Key data (all threes or unique key) into the Data to Write field.
○ Click on the Write To Zone button.
○ Repeat these Write steps for Slot 03.
Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

Figure 2-6. Write Zone Dialog Box — Write Slot 00

14. Lock the OTP and Data zones.
○ Select the Tools > Lock Zones menu.
○ The Lock Zone dialog box will be displayed as shown in Figure 2-7.
○ Select the Lock OTP and Data Zones check box and click on the Lock Zones button.
○ The Lock Successful message will be displayed.

Figure 2-7. Diversified Key Calculation Dialog Box
 7Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 8
2.2 Validating the Diversified Key
The Diversified Key has now been configured into the Client (Slot 00).
Note: The Diversified Key uses the Root Key in the cryptographic calculation that generated it — the Client does not

need to have the RootKey programmed into it.

DiversifiedKey = SHA256(RootKey, SerialNumber, ...)

In addition to when the Host has knowledge of the RootKey, only the SerialNumber needs to be available to generate
the DiversifiedKey. Since the SerialNumber can be read from each ATSHA204 Client, the Host can validate the
Diversified Key in one of several different ways:
 Using the DeriveKey command on a ATSHA204 programmed with the Root Key (e.g. Slot 02).
 Using the GenDig command on a ATSHA204 programmed with the Root Key (e.g. Slot 03).
 Using the system code that has access to the Root Key. For most systems, this technique is not recommended.

Each of these validations of the Diversified Key will be demonstrated.

2.2.1 Validation Pseudo Code

The first validation technique that will be examined is the Pseudo Code Host. This technique is not recommended since
most systems, the Root Key must be used in the clear and cannot be stored securely in firmware. This section is useful
for secure microprocessors and to illustrate the calculations that are performed internally in the ATSHA204.

Diversified Key Validation Pseudo Code — System Code with RootKey

// Initialize the communication

sha204p_init();

// Set the Client device

sha204p_set_device_id(CLIENT_ID);

// Wake up the ATSHA204

sha204c_wakeup();

// Function Prototype: resultBuf = sha204m_execute(command, param1, param2,

data)

// Read the first 32 bytes from the config zone to get the Client Serial Number

snRead = sha204m_execute(SHA204_READ, 0x80, 0x00, 0x00);

// Parse the Client SerialNumber

serialNumber = snRead[0:3] + snRead[8:12];

// Generate a random number on the Host for the 32 byte challenge

randChal = sha204m_execute(SHA204_RANDOM, 0x00, 0x0000, null);

// Execute a MAC Command on the ATSHA204 & save the digest

param1Mac = 0x00;

param2Mac = [00, 00];

deviceDigest = sha204m_execute(SHA204_MAC, param1Mac, param2Mac, randChal);
Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

// Calculate the Diversified Key using the DeriveKey calculation & a soft SHA-

256

rootKey = ... // 32 byte secret here

opCodeDk = 0x1C;

param1 = 0x04;

param2 = ... // 2 byte slot ID here (LSB byte order 0x0X 00)

sn8 = ... // 1 byte SN[8] here

sn01 = ... // 2 bytes SN[0:1] here

zeros = ... // 25 bytes of 0’s here

snPad = ... // 23 bytes of pad here

divKey =

sha256(rootKey+opCode+param1+param2+sn8+sn01+zeros+serialNumber+snPad);

// Execute a MAC on the calculated Diversified Key

// using the calculation of ATSHA204 MAC Command & a soft SHA-256

opCodeMac = 0x08;

otpZeros = [00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00]; // 13 bytes of

zeros

sn23 = [00, 00]; // 2 bytes SN[2:3], use zeros

sn47 = [00, 00, 00, 00]; // 4 bytes SN[4:7], use zeros

macBytes =

divKey+randChal+opCodeMac+param1Mac+param2Mac+otpZeros+sn8+sn47+sn01+sn23;

softDigest = sha256(macBytes);

// Compare the resulting digests from the ATSHA204 & the soft MAC

match = deviceDigest == softDigest;
 9Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 10
2.2.2 Read Client Serial Number and Execute the MAC Command

The next two methods involve using ACES with Step 1.; read the SerialNumber and Step 2.; execute the MAC Command
on the Diversified Key slot.

1. Execute Read — Read the Serial Number
○ Select the Tools > Command Builder menu.
○ The Command Builder dialog box will be displayed as shown in Figure 2-8.
○ In the OpCode drop down list, select the Read command.
○ Set the Zone to 80 (= 00 and 80) which indicates 32 byte read from the Configuration zone.
○ Set the Address to 0000.
○ Click on the Execute Command button.
○ The Response Packet field will contain the bytes that were read.

2. Isolate the SerialNumber.
○ The nine byte serial number are bytes [0:3] and [8:12].
○ For this example: 0123375205975AEEEE.

Figure 2-8. Read SerialNumber — Command Builder
Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

3. Execute MAC — Obtain the Digest for the Diversified Key slot.
○ Leave the Command Builder dialog box open.
○ In the OpCode drop down list, select the MAC command.
○ Set the Mode to 00.
○ Set the KeyID to 0000.
○ Set the Data to the input challenge (all ones here).
○ Click on the Execute Command button.
○ The Response Packet field will contain the digest.

Figure 2-9. MAC — Command Builder
 11Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 12
2.3 Validate Using the GenDig Command
To validate the Client, follow the following steps using the GenDig Command. This sequence represents the Host
sequence that will be performed to validate the Client.

1. Execute Nonce — Initialize TempKey with SerialNumber + SnPad.
○ Select the Tools > Command Builder menu.
○ The Command Builder dialog box will be displayed as shown in Figure 2-10.
○ In the OpCode drop down list, select the Nonce command.
○ Set the Mode to 03 which indicates the pass-through mode.
○ Set the Data to SerialNumber + SnPad.
○ Click on the Execute Command button.
○ The Response Packet field will contain 00, indicating success.

Figure 2-10. Nonce — Command Builder
Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

2. Execute GenDig — Initialize TempKey with the Diversified Key.
○ Leave the Command Builder dialog box open.
○ In the OpCode drop down list, select the GenDig command.
○ Set the MemZone to 02 which indicates the Data zone.
○ Set the KeyID to 0300 (LSB). This is the Host slot configured for GenDig validation of the Diversified Key.
○ Set the Data to 1C040100. This is OtherData for GenDig that makes the crypto calculation the same as

DeriveKey.
○ Click on the Execute Command button.
○ The Response Packet field will contain 00, indicating success.

Figure 2-11. GenDig — Command Builder
 13Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 14
3. Execute CheckMac — Compare Client Digest with the MAC of the calculated Diversified Key (now in TempKey).
○ Leave the Command Builder dialog box open.
○ In the OpCode drop down list, select the CheckMac command.
○ Set the Mode to 06 (= 04 and 02). Use TempKey and match TempKey source flag.
○ Set the KeyID to 0100. This value is ignored by CheckMac when using TempKey.
○ Set the Data to Challenge + Response + OtherData.

 Challenge = All ones.
 Response = Digest result from the client MAC command.
 OtherData = 08 (MAC OpCode) + 00 00 00 00 00 00 00 00 00 00 00 00 (12 bytes of 00).

○ Click on the Execute Command button.
○ The Response Packet field will contain 00, indicating that the digests match.

Figure 2-12. CheckMac — Command Builder
Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

2.4 Validate Using the DeriveKey Command
1. Execute Nonce — Initialize TempKey with SerialNumber + SnPad.

○ Select the Tools > Command Builder menu.
○ The Command Builder dialog box will be displayed as shown in Figure 2-13.
○ In the OpCode drop down list, select the Nonce command.
○ Set the Mode to 03, which indicates the pass-through mode.
○ Set the Data to SerialNumber + SnPad.
○ Click on the Execute Command button.
○ The Response Packet field will contain 00, indicating success.

Figure 2-13. Nonce — Command Builder
 15Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

 16
2. Execute DeriveKey — Write the Client Diversified Key into a Slot on the Host.
○ In the OpCode drop down list, select the DeriveKey command.
○ Set the Random to 04. This matches the TempKey source flag of pass-through mode.
○ Set the TargetKey to 0100 (LSB). This Host slot is configured for a DeriveKey target.
○ Click on the Execute Command button.
○ The Response Packet field will contain 00, indicating success.

Figure 2-14. DeriveKey — Command Builder
Unique Keys for ATSHA204 [Datasheet]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

3. Execute CheckMac — Compare Client Digest with the MAC of the derived Diversified Key (now in Slot 01).
○ Leave the Command Builder dialog box open.
○ In the OpCode drop down list, select the CheckMac command.
○ Set the Mode to 06 (= 04 and 02). Use TempKey and match TempKey source flag.
○ Set the KeyID to 0100. This value is ignored by CheckMac when using TempKey.
○ Set the Data to Challenge + Response + OtherData.

 Challenge = All ones.
 Response = Digest result from the client MAC command.
 OtherData = 08 (MAC OpCode) + 00 00 00 00 00 00 00 00 00 00 00 00 (12 bytes of 00).

○ Click on the Execute Command button.
○ The Response Packet field will contain 00, indicating that the digests match.

Figure 2-15. CheckMac — Command Builder

3. Revision History

Doc. No. Date Comments

8841A 04/2013 Initial document release.
 17Unique Keys for ATSHA204 [DATASHEET]
Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2013 Atmel Corporation. All rights reserved. / Rev.: Atmel-8841A-CryptoAuth-ATSHA204-Unique-Keys-ApplicationNote_042013

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

XX X X

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, CryptoAuthentication™, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

www.atmel.com
https://twitter.com/Atmel
https://www.facebook.com/AtmelCorporation
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation

	Features
	Description
	1. Diversified Key Description
	2. Walkthrough Steps
	2.1 Device Configuration
	2.2 Validating the Diversified Key
	2.2.1 Validation Pseudo Code
	2.2.2 Read Client Serial Number and Execute the MAC Command

	2.3 Validate Using the GenDig Command
	2.4 Validate Using the DeriveKey Command

	3. Revision History

