

APPLICATION NOTE

AVR259: ATtiny40 QTouchADC Demonstration Kit

Atmel QTouch

Description

The reference design is to demonstrate capabilities of the Atmel
®
 ATtiny40, which

supports QTouchADC method. The technology requires only a single I/O pin per

touch channel. The reference design supports two analog output channels using

PWM, buzzer, and LEDs indicating touch, and TWI or SPI communication

interfaces. It also allows complete configurability, and supports off-board QTouch
®

sensors.

The application note includes firmware supporting eight keys, TWI slave interface

(I
2
C compatible), buzzer, and LED control.

Features

 Up to 12 Atmel QTouchADC channels

 Single I/O pin per channel

 TWI (Philips I
2
C Compatible) interface

 SPI interface

 Two analog outputs (PWM)

 Buzzer

 LEDs

 Supports QT
TM

 600 Touch Debug interface

 TPI programming interface

 Powered from USB or external supply

Figure 1. ATtiny40 QTouchADC Reference Design

Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
2

2

Table of Contents

1 Hardware … ... 4

1.1 QTouchADC .. 4

1.2 Analog Channels ... 6

1.2.1 PWM Input .. 7

1.2.2 Analog Output ... 7

1.3 Buzzer … .. 7

1.4 LEDs … .. 7

1.5 Communication Interface .. 7

1.6 Power Supply .. 7

1.6.1 Power Options .. 7

1.6.1.1 USB Connector ... 7

1.6.1.2 On-board Regulator .. 7

1.6.1.3 External Supply... 8

1.6.2 Power Supply Considerations ... 8

2 Programming and Debugging .. 9

2.1 TPI Programming .. 9

2.1.1 Programmers for TPI Programming .. 9

2.2 Debugging ... 9

3 Firmware ... 10

3.1 User Application Code ... 10

3.1.1 User Application Requirements .. 10

3.1.2 Application Code Flow .. 11

3.2 TWI Interface Operation .. 12

3.2.1 Data Read .. 13

3.2.2 SDA, SCL ... 13

3.2.3 IRQ Line ... 13

3.3 Analog Interface Operation ... 13

3.4 Buzzer and LED Operation ... 15

3.5 Pin Mapping .. 15

4 QT600 Touch Debug Interface .. 16

Appendix A ... 18

A.1 Atmel QTouch Library ... 18

A.2 Application Programming Interface ... 18

A.2.1 Manifest Constants ... 18

A.2.2 Type Definitions .. 18

A.2.3 Structs .. 19

A.2.4 Enumerations ... 19

A.2.5 Global Touch Sensing Status ... 20

A.2.6 Global touch Sensing Configuration ... 20

A.2.7 Touch Sensing Data ... 20

A.2.8 Hook for User Functions ... 20

A.2.9 Configuring Sensors ... 21

A.2.9.1 Configuration Functions .. 21

A.2.9.2 qt_enable_key() .. 21

A.2.10 Measuring and checking Touch Status ... 21

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

3

3

A.2.10.1 Touch Status Functions .. 21

A.2.10.2 Additional Sensing Commands ... 21

A.2.10.3 qt_init_sensing() ... 21

A.2.10.4 qt_measure_sensors() .. 22

A.2.10.5 qt_calibrate_sensing() .. 22

A.2.10.6 qt_reset_sensing() .. 22

A.3 Schematic ... 23

A.4 PCB .. 24

A.5 BOM .. 25

A.6 References .. 26

A.7 Revision History .. 27

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
4

4

1 Hardware

The reference design can support up to twelve QTouchADC Keys, and has provision to hook-up off-board touch

keys. The QTouchADC technology requires only one I/O pin per channel, and do not require any external

sampling capacitors. The sensor channels are on the ADC pins.

The two analog channels are controlled via PWM from Atmel ATtiny40. These channels provide analog values

when the corresponding key is touched. This is ideal to replace an existing tactile switch (resistive-ladder) TV

control keyboard, or for any other application which does not require a communication interface to indicate a key

touch or release. The buzzer and LEDs can be configured to provide an indication on power up or key

touched/released status.

Figure 1-1. System Block Diagram

1.1 QTouchADC

The QTouchADC method requires ADC for touch measurement. For the capacitive measurement, the touch

channels should be on the ADC pins. The ADC module should be released for touch library operation by the user

application. The library will internally back up the user setting of ADC, reconfigure it for touch measurement, and

once the measurements of all the channels are completed, restore the backed up registers.

The acquisition is very fast, typically in the range 100µs to 300µs per channel at 4MHz. The acquisition method is

single channel at a time.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

5

5

Because the capacitive acquisition is primarily integrated, unlike the traditional QTouch method, a sense

capacitor (Cs) is not required for each sensor channel. However, the series resistor (Rs) is required, for edge rate

control and for EMC/ESD reasons. The sensor design remains the same as for the traditional QTouch sensors.

Figure 1-2. QTouch Circuit Diagram

The QTouchADC method charges a sense electrode of unknown capacitance to a known potential. The

electrode is typically a copper area on a printed circuit board. The resulting charge is transferred into an internal

measurement circuit. By measuring the charge after one pair of charge-and-transfer cycles, the capacitance of

the sense plate can be determined. Placing a finger on the touch surface introduces an external capacitance

which affects the flow of charge at that point. This registers as a touch.

Signal processing in the decision logic makes QTouchADC robust and reliable. False triggering due to

electrostatic spikes, momentary unintentional touch, or proximity is eliminated. QTouchADC sensors can drive

single or multiple keys. Keys of different sizes and shapes can be used to meet both functional and aesthetic

requirements.

QTouchADC devices feature automatic drift compensation to account for slow changes due to ageing or

changing environmental conditions. They have a dynamic range of several decades and do not require coils,

oscillators, RF components, special cable, RC networks, or a lot of discrete parts. As an engineering solution,

QTouchADC is simple, robust, elegant, and affordable.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
6

6

Figure 1-3. Charge Transfer Waveform

For more information on the QTouchADC measurement method, refer application note “Atmel AVR
®
3001:

QTouchADC Measurement and Tuning”.

Where several touch keys are close together an approaching finger causes a change in capacitance around

more than one key. The Atmel patented Adjacent Key Suppression
®
 (AKS

®
) uses an iterative technique to

repeatedly measure the capacitance change on each key, compare the results, and determine which key the

user intended to touch. AKS then suppresses or ignores signals from all other keys, provided that the signal from

the selected key remains above the threshold value. This prevents false touch detections on adjacent keys. AKS

is selectable by the system designer.

Note: In this measurement method;

Touch: Signal > Reference

Anti-Touch: Signal < Reference

Delta: Signal – Reference

1.2 Analog Channels

The analog output is derived from PWM signals fed to a first order RC low-pass filter (LPF).

Figure 1-4. Analog Channels

http://www.atmel.com/images/doc8497.pdf
http://www.atmel.com/images/doc8497.pdf

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

7

7

1.2.1 PWM Input

PWM_IN1 and PWM_IN2 are default driven by the OC0A (PC0) and OC0B (PA5) pins of ATtiny40, respectively.

Optionally, they can be driven by any other ATtiny40 pin or an external source via connecting to the PWM_IN1 or

PWM_IN2 test points.

1.2.2 Analog Output

Test points are provided on the board to tap the analog output. It can be fed to an external buffer or voltage

follower to drive a low-impedance load.

1.3 Buzzer

The on-board buzzer can be used as a user alert such as for annunciation on any key touch/release event. The

board includes external driver circuit to drive a buzzer. The buzzer is driven by default by PB1 pin of ATtiny40.

Optionally it can be driven by any other ATtiny40 pin or external source via connecting to Pin3 on the J6 header.

1.4 LEDs

LED1 and LED2 are controlled by default by PB2 and PB3 of ATtiny40, respectively. But similar to the buzzer, it

can be driven by any other ATtiny40 pin or external source via connecting to Pin2 or Pin1 on the J6 header. The

on-board LED drive circuit will help in testing with high current LEDs such as some White LEDs.

1.5 Communication Interface

The communication interface has the TWI and SPI lines available on the J5 header. The header layout is

compatible with QT600 touch debug interface.

Figure 1-5. Communication Interface Header

1.6 Power Supply

1.6.1 Power Options

1.6.1.1 USB Connector

5V power can be conveniently provided to the board via the USB connector.

1.6.1.2 On-board Regulator

A linear drop-out regulator can be mounted on board (U1) to derive regulated power for the ATtiny40/Touch

Interface. The external loads, such as the LEDs and buzzer, are not powered by this regulated voltage.

1 2
3 4
5 6
7 8
9 10

J5

Header 5X2

GND
VDD

GND

SDA/MOSI SCL/SCK

SDA/MOSI
SCL/SCKMISO

GND

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
8

8

Suggested regulators are;

 Torex (XC6215 series) or

 Seiko (S817 series) or

 BCD Semi (AP2121 series)

1.6.1.3 External Supply

Test points are provided on board to supply external power in the range 1.8V - 5V.

1.6.2 Power Supply Considerations

If the power supply varies slowly with the temperature, the device will track and compensate for these changes

automatically with only minor changes in sensitivity. If the supply voltage fluctuates or shifts quickly, the drift

compensation mechanism will not be able to keep up, causing sensitivity anomalies or false detections.

As the device uses the power supply itself as an analog reference, the power should be very clean and come

from a separate regulator. A standard, inexpensive low- dropout (LDO) type regulator should be used, and

should not also be used to power other loads such as LEDs, relays, or other high-current devices. Load shifts on

the output of the LDO can cause VCC to fluctuate enough to cause false detection or sensitivity shifts.

 A regulator IC shared with other logic devices can result in erratic operation, and is not

advised.

A single ceramic 0.1µF bypass capacitor with short traces should be placed very close to the supply pins. It is

recommended that supply ripple and noise should not be more than ±25mV for a 5V supply.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

9

9

2 Programming and Debugging

2.1 TPI Programming

The device can be programmed through TPI interface. The on-board J4 header is the TPI programming

interface.

Note: TPI programming is only possible at 5V.

Figure 2-1. Programming Header

2.1.1 Programmers for TPI Programming

There are two programmers available which support TPI programming.

Figure 2-2. Supported Atmel Programmer for TPI Programming

Atmel ICE AVRISP mkII

2.2 Debugging

ATtiny40 does not support on-chip debugging, and the code can be debugged only by using the simulator in

Atmel Studio or IAR Embedded Workbench
®
.

VDD

1 2
3 4
5 6

J4

Header 3X2
GND

TPI_C
SDA/MOSI

RESET
GND

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
1

0

10

3 Firmware

The firmware of the touch board consists of two parts; the Atmel QTouch library and the user application code.

The touch functions can be invoked from the user application code. The Atmel QTouch library does only the

capacitive sensing and the post processing. The rest of the functions, such as driving GPIO, sleeping,

communication, etc., have to be carried out by the user application code.

Refer the Appendix section for the Atmel QTouch library user guide.

3.1 User Application Code

3.1.1 User Application Requirements

The library requires user application to meet the following requirements.

1. It must track the current time. This information is passed on to the code library as an argument to the

function “qt_measure_channels()”. This is used for time-based library operations such as drifting.

2. The GPIO internal pull-ups must be disabled when calling the library. In ATtiny40, the pull-ups are disabled

by default after reset.

3. The library must be called often enough to provide a reasonable response time to user touches. During a

call to the library functions, the main user application code is not running. There is thus a trade-off between

the processor time available to the user application, the power usage of the system, and the system

responsiveness.

4. A sufficient stack size for both itself and the library. The user application stack must be large enough for the

library, plus its own operation when calling library functions, plus any enabled interrupts that may be

serviced during a library function call.

The user application can use the unused sensing pins as GPIO. Sensors are numbered in the order in

which they are enabled. The library disables interrupts for time-critical periods during touch sensing. These

periods are generally only a few cycles long, and so user application interrupts should remain responsive

during touch sensing. However, any interrupt service routines (ISRs) during touch sensing should be as

short as possible to avoid affecting the touch measurements or the application responsiveness. As a rule

of thumb, the combined durations of any ISRs during a capacitive measurement should be less than 1ms.

This can be tested during system development by checking the burst duration on the touch channels on an

oscilloscope. If the burst duration varies by more than 1ms when the user is not touching any sensors, then

ISRs could adversely affect the measurements. When building a user application, library functions will only

be linked in if they are actually called.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

1
1

11

3.1.2 Application Code Flow

Figure 3-1. Flow Chart

 The system initialization consists of initializing the MCU ports by appropriately setting the data direction

registers, setting the initial PWM output to inactive high, initializing the global variables, and enabling the

TWI interface or the debug interface

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
1

2

12

 The Atmel QTouch Library is initialized by enabling keys on the appropriate channels by calling

“qt_enable_key()”, and setting the thresholds, hysteresis, and AKS groups. All the keys are in different

AKS groups.

 The user application calls “qt_measure_sensors()” to measure all the enabled channels

 If there is a change in the sensor states, then the IRQ line will be asserted low and the sensor state will be

copied to the TWI buffer

 When there is a change in the sensor state, the buzzer will be switched on for 30ms. The PWM output is

held at steady low, and the buzzer is turned on by generating a 4kHz square wave.

 After 30ms, the buzzer is turned off, and if the sensor is touched, a PWM signal is generated on the analog

output pin corresponding to the key touched, as long as the key is touched

 The LED is also switched on when the sensor is touched, and switched off when the sensor is released

 The respective ISRs will take care of TWI, PWM, and current time tracking

 If it is time to measure, continue from qt_measure_sensors()

3.2 TWI Interface Operation

The TWI interface is I
2
C and SMBUS compatible. The TWI module in ATtiny40 implements slave functionality

only. Lost arbitration, errors, collisions, and clock holds on the bus are detected in hardware and indicated. The

slave logic continues to operate in all sleep modes, including power down.

The code implemented in this application note is a custom TWI slave driver for this touch application.

The slave driver C code consists of two files:

 TWI_Slave.c

 TWI_Slave.h

The main.c file contains an example of how to use the driver. The TWI_Slave.h file must be included in the main

application, and contains all function declarations and defines for all TWI status codes. The TWI status code

defines can be used to evaluate error messages and take appropriate actions. The TWI_Slave.c file contains all

the driver functions.

Some devices have an additional TWI Address mask register (TWAMR) which enables a device to respond to

several TWI slave addresses. A customized version of the standard implementation described here is included in

the application note attachment.

Table 3-1. TWI Slave Driver Functions

Function Description

TWI_slave_initialise()

Call this function to set up the TWI slave to its initial standby state. All the TWI interrupts are

enabled. Remember to enable global interrupts from the main application after initializing the

TWI. The slave address is defined in the TWI_Slave.h file.

#define TWI_ADDR 0x10

TWI_touch_status()

Call this function to copy the touch sensor status to the TWI buffer to be sent out.

The IRQ line will be asserted low to intimate master a change in the status.

__interrupt void TWI_ISR()

This is the interrupt service routine (ISR) function, and is automatically called when the TWI

interrupt is triggered; that is, whenever a TWI event has occurred. This function should not be

called directly from the main application. The TWI ISR will take care of the TWI state ma-

chine’s sending the TWI buffer and receiving the address location from the master.

TWI_bus_error_check ()

Call this function to check when an illegal bus condition has occurred during a transfer and

rectify it.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

1
3

13

3.2.1 Data Read

The sequence of events to read data from the device is as shown in Table 3-2:

Table 3-2. TWI Byte Format

S SLA+W A MemAddress A Sr SLA+R A Data 1 A Data n /A P

MASTER; SLAVE;

The host initiates the transfer by sending the START condition, and follows this by sending the slave address of

the device together with the write bit. The device sends an ACK. The host then sends the memory address within

the device it wishes to read from. The device sends an ACK.

The host must then send a repeated START condition followed by the slave address again, but this time

accompanied by the read bit. The device will return either an ACK or NACK. If the host returns an ACK, the

device will subsequently transmit the data byte from the next address. Each time a data byte is transmitted, the

device automatically increments the internal address. The device will continue to return data bytes until the host

responds with a NACK. The host should terminate the transfer by issuing the STOP condition.

Table 3-3. Communication Bytes

Address Use Access

0 Board ID Read

1 Firmware version Read

2 Sensor status Read

3.2.2 SDA, SCL

The pins are open-drain, and so the devices can only pull these lines low or release them open. The termination

resistors pull the line up to VDD if no device is pulling it down.

The termination resistors commonly range from 1kΩ to 10kΩ.

3.2.3 IRQ Line

The IRQ line is an active-low line, and will be asserted low when there is a change in the sensor state. The IRQ

line will be reset when at least one byte is placed on the TWI bus to be transferred.

3.3 Analog Interface Operation

The board can communicate the touch status to the host controller via different analog steady state voltages for

respective keys. The analog output is RC filtered PWM signal generated from the MCU. Table 3-4 lists the

various analog output voltages for a supply voltage of 5V.

Table 3-4. Analog Values for each Key

State Analog Channel 1 – AN_OUT1 Analog Channel 2 – AN_OUT2

IDLE 5.0V 5.0V

KEY0 2.5V 0.0V

KEY1 2.0V 0.0V

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
1

4

14

State Analog Channel 1 – AN_OUT1 Analog Channel 2 – AN_OUT2

KEY2 1.5V 0.0V

KEY3 1.0V 0.0V

KEY4 0.0V 2.5V

KEY6 0.0V 2.0V

KEY7 0.0V 1.5V

KEY8 0.0V 1.0V

BUZZER ON 0.0V 0.0V

Notes: 1. KEY5 is not enabled, as it is used as a PWM channel.

2. KEY9, KEY10, and KEY11 are not enabled, as the corresponding GPIOs are used for LED, buzzer control.

3. Buzzer on period is 30ms; both PWM channels at 0V.

The waveforms observed at the analog output signal pin will be heralded by two untimely events of user

interaction, that is;

 touch control key being touched

 A touch control key being released (not touched)

At IDLE state, that is, when none of the touch control keys are touched/released, the PWM output will be held

high (continuous).

When touched or released the buzzer will be active for the duration of 30ms from the time any key is touched.

The PWM output will be held low for the buzzer active duration, that is, 30ms from the time any key is touched.

No touch measurement happens during this period. This helps to avoid touch measurement when driving heavy

loads from the same supply as the QTouchADC demo kit.

Per the specifications for the respective keys generating an analog level using a passive RC low-pass filter, the

PWM will be active from 30ms after any key is touched until the key is not touched (infinite max-on duration).

When the key is released, the buzzer will be active for 30ms, during which time the analog level will be null. After

the 30ms period, it will be VCC.

Figure 3-2. Key Press/Release-analog Output and Buzzer

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

1
5

15

Figure 3-3. PWM and Analog Output Level

3.4 Buzzer and LED Operation

The on-board buzzer is used for annunciation on any key touch/release. The buzzer is active for 30ms (4kHz) on

any key touch/release.

LED2 lights up when the chip is powered up, and LED1 lights up when any key is touched, remaining on until the

touch is released.

Table 3-5. Main Functions

Function Description

init_system() This function initializes the clock, different port direction and state

init_timer0_isr() This function initializes timer1 for PWM operation

init_timer1_isr() This function initializes timer0 for real time calculation

pwm_idle_state() This function configures the PWM pins for idle state

buzzer_pwm_control() This function controls the buzzer, LED, and PWM during a touch or release event

__interrupt void timer1_isr(void) Timer 1 interrupt service routine

3.5 Pin Mapping

Table 3-6. Pin Mapping

Function MCU pin Header - pin

Power LED PB3 -

Touch LED PB2 -

Buzzer PB1 -

PWM Output1 PC0 -

PWM Output2 PA5 -

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
1

6

16

Function MCU pin Header - pin

SDA PC4 J5-Pin1

SCL PC1 J5-Pin2

IRQ PC2 J5-Pin7

MOSI* PC4 J5-Pin6

SCK* PC1 J5-Pin8

Note: QT600 Touch Debug Interface. TWI disabled.

4 QT600 Touch Debug Interface

Figure 4-1. Block Diagram View of ATtiny40 Demo Kit Interface with Atmel QTouch Analyzer

ATtiny40 demo kit firmware supports QDebug protocol for analyzing touch data on the Atmel QTouch analyzer.

QDebug protocol is the communication protocol between ATtiny40 demo kit and QT600 interface board. QT600

interface board is the communication interface between ATtiny40 demo kit and the Atmel QTouch analyzer.

Refer to Figure 4-1 for block diagram view of the ATtiny40 demo kit interface with the QTouch analyzer.

The ATtiny40 demo kit sends touch data to QTouch analyzer through QT600 interface board using one way SPI

(Bit Bang) interface, and QDebug protocol. User can visualize the channel signal, reference and delta values on

the QTouch analyzer.

While analyzing touch data using QTouch analyzer and QT600 interface board, provide power to the ATtiny40

demo kit through QT600 interface board as shown in Figure 4-2. For interfacing with QTouch analyzer,

connections have to be made between ATtiny40 demo kit and QT600 interface board as shown in Table 4-1.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

1
7

17

Table 4-1. Connections between ATtiny40 Demo Kit and QT600 USB Interface Board

Interface

ATtiny40 Demonstration Kit

(J5 Connector)

QT600 Interface Board

(TOUCH DATA Connector)

One way SPI

(BitBang)

GND (TEST POINT) SS (PIN 5)

MOSI (PIN 6) MOSI (PIN 6)

SCK (PIN 8) SCK (PIN 8)

GND (PIN 9) GND(PIN 9)

VDD (PIN 10) VDD (PIN 10)

Note: In QT600 debug interface mode;

1. TWI is disabled in the firmware.

2. While analyzing touch data, power up the ATtiny40 demo kit using QT600 interface board.

Figure 4-2. ATtiny40 Demo Kit interfaced with QT600 Interface Board

Note: The firmware consists of two configuration modes. The first one is release mode and the second one is

debug mode.

Release mode supports both TWI interface operation and QT600 touch debug interface operation. By default

TWI interface operation is enabled. For enabling QT600 touch debug interface operation, “TWI_INTERFACE”

macro has to be disabled under C compiler - Preprocessor section of project options.

Debug mode supports both QT600 touch debug interface operation and the code debugging (using the simulator

in Atmel Studio). In Debug mode, TWI interface is disabled.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
1

8

18

Appendix A

A.1 Atmel QTouch Library

The Atmel QTouch library is available as a pre-compiled archive, and is a royalty free static library available for

use with the IAR™ compiler along with the C header files necessary for linking. The user applications can be

developed on top of the Atmel QTouch library for many of the supported capacitive MCUs, including ATtiny40.

The library uses no timers, interrupts or other chip resources except ADC, RAM, ROM, some register variables,

and GPIO. The library provides only touch sensing, and the user application must provide any other functionality

required. The Atmel QTouch library used for the existing firmware is libtiny40_12qt_k_0rs.r90.

The general flow for using the Atmel QTouch library can be described as follows.

 The user application (optionally) calls “qt_reset_sensing()” to reset all channels and touch sensing

parameters to their default states. This step is only required if the user wants to dynamically reconfigure

the library at runtime

 The user application calls “qt_enable_key()”, “qt_enable_rotor()” and/or “qt_enable_slider()” as required to

configure the touch sensors

 The user application calls “qt_init_sensing()” to initialize the library

 Thereafter, the user application periodically calls “qt_measure_sensors()” to make capacitive

measurements. After each call, it can check the global variable “qt_touch_status” to see if any sensors are

in detect, and the angle or position of any enabled rotors or sliders

A.2 Application Programming Interface

A.2.1 Manifest Constants

The API defines the manifest constants listed in Table 1 that document the library. The library has been built

using these values, and they should not be changed.

Table 1. Manifest Constants

Manifest constants Notes

QT_NUM_CHANNELS The number of touch channels supported by the library

QT_PORT_TOUCH The GPIO port which is assigned for touch channels

A.2.2 Type Definitions

The API defines the typedefs listed in Table 2.

Table 2. Typedefs

Typedef Notes

uint8_t An unsigned 8-bit number

uint16_t An unsigned 16-bit number

int16_t A signed 16-bit number

threshold_t An unsigned 8-bit number setting a sensor detection threshold

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

1
9

19

A.2.3 Structs

The API uses the struct listed in Table 3. The global variable “qt_touch_status” of this type is declared, and

shows the current state of all enabled sensors.

Table 3. Struct

Struct Field Notes

qt_touch_status_t sensor_states

The state (on/off) of the library sensors.

Bit “n” = state of sensor “n”:

0 = not in detect, 1 = in detect.

A.2.4 Enumerations

The API uses the enumerations listed in Table 4.

Table 4. Enumerations

Name Values Notes

aks_group_t

NO_AKS_GROUP

AKS_GROUP_1

AKS_GROUP_2

AKS_GROUP_3

AKS_GROUP_4

AKS_GROUP_5

AKS_GROUP_6

AKS_GROUP_7

Which AKS group, if any, a sensor is in.

NO_AKS_GROUP = sensor is not in an AKS group, and cannot be sup-

pressed.

AKS_GROUP_x = sensor is in AKS group x.

channel_t

CHANNEL_0

CHANNEL_1

CHANNEL_2

CHANNEL_3

CHANNEL_4

CHANNEL_5

CHANNEL_6

CHANNEL_7

The channel(s) in a sensor

hysteresis_t

HYST_50

HYST_25

HYST_12_5

HYST_6_25

A sensor detection hysteresis value. This is expressed as a percentage of the

sensor detection threshold.

HYST_x = hysteresis value is x percent of detection threshold value (rounded

down).

Note that a minimum value of 2 is used as a hard limit.

Example: if detection threshold = 20, then:

HYST_50 = 10 (50 percent of 20)

HYST_25 = 5 (25 percent of 20)

HYST_12_5 = 2 (12.5 percent of 20)

HYST_6_25 = 2 (6.25 percent of 20 = 1, but set to the hard limit of 2)

recal_threshold_t

RECAL_100

RECAL_50

RECAL_25

RECAL_12_5

RECAL_6_25

A sensor recalibration threshold. This is expressed as a percentage of the

sensor detection threshold.

RECAL_x = recalibration threshold is x percent of detection threshold value

(rounded down).

Note: a minimum value of 4 is used.

Example: if detection threshold = 40, then:

RECAL_100 = 40 (100 percent of 40)

RECAL_50 = 20 (50 percent of 40)

RECAL_25 = 10 (25 percent of 40)

RECAL_12_5 = 5 (12.5 percent of 40)

RECAL_6_25 = 4 (6.25 percent of 40 = 2, but value is limited to 4)

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
2

0

20

A.2.5 Global Touch Sensing Status

The global touch sensing status is available to the user application through the variable listed in Table 5.

Table 5. Global Touch Sensing Status

Variable Type Notes

qt_touch_status qt_touch_status_t The state of the library sensors

A.2.6 Global touch Sensing Configuration

Touch sensing is configured globally with the parameters listed in Table 6.

Table 6. Global Touch Sensing Configuration

Variable Type Notes

qt_di uint8_t Sensor detect integration (DI) limit. Default value: 4

qt_drift_hold_time uint8_t

Sensor drift hold time in units of 200ms.

Default value: 20 (20 × 200ms = 4s), that is hold off drifting for four seconds

after touch is released

qt_max_on_duration uint8_t

Sensor maximum on duration in units of 200ms.

For example: 150 = recalibrate after 30s (150 × 200ms).

0 = recalibration disabled

Default value: 0 (recalibration disabled)

qt_neg_drift_rate uint8_t
Sensor negative drift rate in units of 200ms.

Default value: 20 (20 × 200ms = 4s per LSB)

qt_pos_drift_rate uint8_t
Sensor positive drift rate in units of 200ms.

Default value: 5 (5 × 200ms = 1s per LSB)

qt_recal_threshold recal_threshold_t

Sensor recalibration threshold.

Default: RECAL_50 (recalibration threshold = 50 percent of detection thresh-

old)

A.2.7 Touch Sensing Data

The data arrays listed in Table 7 are available within the API. These are useful during system development to

check that touch sensing is operating as expected.

Table 7. Touch Sensing Data Arrays

Array Element type Notes

channel_signals[] uint16_t The measured signal on each channel

channel_references[] uint16_t The reference signal for each channel

A.2.8 Hook for User Functions

The function pointer “qt_filter_callback” is provided as a hook for user-supplied filter function. This function is

called after the library has made capacitive measurements, but before it has processed them. The user can use

this hook to apply filter function to the measured signal values.

By default the pointer is NULL, and no function is called.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

2
1

21

A.2.9 Configuring Sensors

A.2.9.1 Configuration Functions

The functions listed in Table 8 are used to assign channels to sensors, and to configure the sensor parameters.

Table 8. Typedefs

Function Notes

qt_enable_key() Enable a key sensor

A.2.9.2 qt_enable_key()

This function enables a key sensor.

void qt_enable_key (

channel_t channel,

aks_group_t aks_group,

threshold_t detect_threshold,

hysteresis_t detect_hysteresis);

The parameters are as follows:

 channel = which touch channel the key sensor uses

 aks_group = which AKS group (if any) the sensor is in

 detect_threshold = the sensor detection threshold

 detect_hysteresis = the sensor detection hysteresis value

The sensor number corresponding to the key depends on the order in which sensors are enabled. The first

sensor enabled is sensor 0, the second is sensor 1, and so on. The current state of the key (on or off) can be

checked in “qt_touch_status.sensor_states”.

A.2.10 Measuring and checking Touch Status

A.2.10.1 Touch Status Functions

Once all required channels have been configured as keys, rotors, or sliders, touch sensing is initialized by calling

the function "qt_init_sensing()". The user application can then perform a touch measurement by calling the

function “qt_measure_sensors()”, passing in as a parameter the current time in milliseconds. The library uses

this information for timed events such as calculating how long a sensor has been in detect.

After calling “qt_measure_sensors()”, the user application can check the state of the enabled sensors by reading

the “qt_touch_status” variable. The user application should call “qt_measure_sensors()” on a regular basis so

that any user touches are promptly detected, and any environmental changes are drifted out.

A.2.10.2 Additional Sensing Commands

In addition to the “qt_init_sensing()” and “qt_measure_sensors()” functions, there are two additional touch

sensing commands available to the user application. These are the “qt_calibrate_sensing()” and

“qt_reset_sensing()” functions.

A.2.10.3 qt_init_sensing()

This function initializes touch sensing.

void qt_init_sensing(void);

Any sensors required must be enabled (using the appropriate “qt_enable_xxx()” function) before calling this

function. This function initializes internal library variables and configures the touch channels, and must be called

before calling “qt_measure_sensors()”.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
2

2

22

A.2.10.4 qt_measure_sensors()

This function performs a capacitive measurement on all enabled sensors. The measured signals for each sensor

are then processed to check for user touches, releases, changes in rotor angle, changes in slider position, etc.

void qt_measure_sensors(uint16_t current_time_ms);

The parameter is as follows:

 current_time_ms = the current time, in ms

The current state of all enabled sensors is reported in the “qt_touch_status” struct. Before calling this function,

one or more sensors must have been enabled (using the appropriate “qt_enable_xxx()” function), and

“qt_init_sensing()” must have been called.

A.2.10.5 qt_calibrate_sensing()

This function forces a recalibration of all enabled sensors. This may be useful if, for example, it is desired to

globally recalibrate all sensors on a change in application operating mode.

void qt_calibrate_sensing(void);

A.2.10.6 qt_reset_sensing()

This function disables all sensors and resets all library variables (for example, “qt_di”) to their default values. This

may be useful if it is desired to dynamically reconfigure sensing. After calling this function, any required sensors

must be re-enabled, and “qt_init_sensing()” must be called before “qt_measure_sensors()” is called again.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

2
3

23

A.3 Schematic

Figure A-1. Schematic

2 1

D
1

K
E

Y
5

C
S5

1K
R

6

2 1

D
2

K
E

Y
6

C
S6

K
E

Y
7

C
S7

K
E

Y
8

C
S8

1K
R

10
1K

R
11

1K
R

12

: 10
0n

F
C

5

15
0R

R
20

15
0R

R
21

5V
0

V
D

D

:

1n
F

C
11

:

1n
F

C
10

L
E

D
1

L
E

D
2

T
P

I
P

ro
gr

am
m

in
g

@
 5

V

T
ou

ch
 I

nt
er

fa
ce

C
om

m
s

In
te

rf
ac

e

L
E

D
 C

on
tr

ol

N
ot

e:
 S

er
ie

s
R

es
is

to
rs

 to
 b

e
pl

ac
ed

 n
ea

r
th

e
IC

 p
in

.

N
ot

e:
 C

5
C

ap
ac

ito
r

to
 b

e
pl

ac
ed

 n
ea

r
th

e
U

2
V

C
C

 p
in

.

B
C

84
7W

Q
2

N
PN

 B
E

C
B

C
84

7W

Q
1

N
PN

 B
E

C
10

K

R
23

10
K

R
24

G
N

D
G

N
D

5V
0

10
K

R
8

V
D

D

R
E

SE
T

4K
7

R
7

4K
7

R
9

SC
L

/S
C

K

SD
A

/M
O

SI

2u
2F

C
4

4u
7F

C
2

G
N

D

5V
0

:

10
0n

F
C

3

3V
3

P
ow

er
 B

lo
ck

K
E

Y
4

C
S4

K
E

Y
3

C
S3

K
E

Y
9

C
S9

K
E

Y
10

C
S1

0

1K
R

5
1K

R
4

1K
R

13
1K

R
14

PA
6

(A
D

C
6)

1

PA
5

(A
D

C
5/

O
C

0B
)

2

PA
3

(A
D

C
3)

4

PA0 (ADC0)
7

GND
8

VCC
9

PC5 (TPICLK/CLKI)
10

(M
O

SI
/S

D
A

/T
PI

D
A

T
A

)
PC

4
11

(R
E

SE
T

)
PC

3
12

(I
N

T
0/

C
L

K
O

/M
IS

O
)

PC
2

13
(S

C
K

/S
C

L
/I

C
P1

/T
1)

 P
C

1
14

PA
2

(A
D

C
2/

A
IN

1)
5

PA1 (ADC1/AIN0)
6

(ADC10) PB2
17

(ADC9) PB1
18

(ADC8) PB0
19

(ADC7) PA7
20

PA
4

(A
D

C
4/

T
0)

3

(O
C

0A
/S

S)
 P

C
0

15

(ADC11) PB3
16

GND_PAD
21

U
2

A
T

tin
y4

0_
M

L
F

G
N

D

1K
R

3
1K

R
2

1K
R

15

K
E

Y
2

C
S2

K
E

Y
1

C
S1

K
E

Y
11

C
S1

1

G
N

D
1

V
O

U
T

3

N
C

4

V
IN

2
U

1

Se
ik

o
S-

81
7

M
IS

O

O
C

0A
/S

S

TPI_C

K
E

Y
0

K
E

Y
1

K
E

Y
2

K
E

Y
3

K
E

Y
4

K
E

Y
5

K
E

Y
6

K
E

Y
7

K
E

Y
8

K
E

Y
9

K
E

Y
10

KEY0
KEY1

K
E

Y
2

K
E

Y
3

K
E

Y
4

K
E

Y
5

K
E

Y
6

KEY7
KEY8
KEY9
KEY10

1 2 3

J2 H
ea

de
r

3

V
D

D
5V

0
3V

3
V

D
D

N
ot

e:
 T

PI
 P

ro
gr

am
m

in
g

-
Se

le
ct

 5
V

0

L
S1

B
PT

14
03

H
5

L
F

B
uz

ze
r

U
ni

t

5V
0

G
N

D

B
U

Z
Z

E
R

B
C

84
7W

Q
3

N
PN

 B
E

C
10

K

R
25

47
R

R
22

G
N

D

V
D

D

1
2

3
4

5
6

J4 H
ea

de
r

3X
2

G
N

D

T
PI

_C
SD

A
/M

O
SI

R
E

SE
T

1 2 3

J6 H
ea

de
r

3

B
U

Z
Z

E
R

L
E

D
2

L
E

D
1

1
2

3
4

5
6

7
8

9
10

J5 H
ea

de
r

5X
2

G
N

D
V

D
D

G
N

D

SD
A

/M
O

SI
SC

L
/S

C
K

SD
A

/M
O

SI
SC

L
/S

C
K

M
IS

O

2u
2F

C
6

: 33
0n

F
C

7

2u
2F

C
8

: 33
0n

F
C

9
4K

7

R
19

4K
7

R
17

A
N

_O
U

T
1

A
N

_O
U

T
2

K
E

Y
5

O
C

0A
/S

S

G
N

D

G
N

D

A
na

lo
g

O
ut

pu
t

5V
0

3V
3

V
D

D

G
N

D

0RR
18

0RR
16

PW
M

_I
N

1

PW
M

_I
N

2

G
N

D

M
H

2
M

H
1

2 3 4 51

M
H

3
M

H
4

J3 04
81

90
00

01

U
SB

_C
O

N
N

_5
V

5V
0

G
N

D

0RR
26

0RR
27

0RR
28

K
E

Y
11

K
E

Y
10

K
E

Y
9

D
N

I
C

om
po

ne
nt

s:
R

1,
 R

6,
 R

13
, R

14
, R

15
, C

1,
 C

3,
 C

6,
 C

8,
 C

10
, C

11
, U

1,
 J

1

N
ot

e:
 C

3
C

ap
ac

ito
r

to
 b

e
pl

ac
ed

 n
ea

r
th

e
U

1
V

O
U

T
 p

in
.

N
ot

e:
 D

ef
au

lt
: V

D
D

=5
V

0

N
ot

e:
 U

SB
 P

ow
er

 O
nl

y

2 7 83 4 9 101 5 11 126

J1

H
E

A
D

E
R

 1
x1

2

KEY11

K
E

Y
0

C
S0

1k
R

1

K
E

Y
11

0R
L

K
1

0R
L

K
2

0R
L

K
3

0R
L

K
4

0R
L

K
5

0R
L

K
6

0R
L

K
7

0R
L

K
8

0R
L

K
9

0R
L

K
10

0R
L

K
11

0R
L

K
0

L
K

0,
 L

K
1,

 L
K

2,
 L

K
3,

 L
K

4,
 L

K
5,

 L
K

6,
 L

K
7,

 L
K

8,
 L

K
9,

 L
K

10
, L

K
11

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
2

4

24

A.4 PCB

Figure A-2. PCB Top View

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

2
5

25

A.5 BOM

Table 9. Install Components

SL NO Description Vendor Vendor part no. Designator Qty.

1 CAP CER 4µ7F 20% 0805 X5R 16V C2 1

2 CAP CER 2µ2F 20% 0805 X5R 16V C4 1

3 CAP CER 0µ1F 5% 0603 X7R 16V C5 1

4 CAP CER 330nF 5% 0603 X7R 16V C7, C9 2

5 CON HDR 3×1 3-pins 2.54mm J2 1

6 CON HDR 3×2 6-pins 2.54mm J4 1

7 CON HDR 5×2 10-pins 2.54mm J5 1

8 CON USB MINI B SMD Würth Elektronik 65100516121 J3 1

9 LED SMD RED 1206 Everlight 15-21SURC/S530-A2/TR8 D1, D2 2

10 BUZ 4kHz ±0.5 3.3Vp-p Bestar Acoustic BPT1403H5 LF LS1 1

11 BJT BC847B NPN SOT23 NXP BC847B Q1, Q2, Q3 3

12 RES SIN 0R 5% 0603 50V
R16, R18, R26,

R27, R28
5

13 RES SIN 47R 5% 0603 50V R22 1

14 RES SIN 150R 5% 0603 50V R20, R21 2

15 RES SIN 1K 5% 0603 50V
R2, R3, R4, R5,

R10, R11, R12
7

16 RES SIN 4K7 5% 0603 50V R7, R9, R17, R19 4

17 RES SIN 10K 5% 0603 50V R8, R23, R24, R25 4

18 IC ATtiny40 20-pin MLF Atmel ATtiny40-MMH U2 1

Table 10. Do not install Components

SL NO Description Vendor Vendor part no. Designator Qty.

1 CAP CER 2µ2F 20% 0805 X5R 16V C6, C8 2

2 CAP CER 0µ1F 5% 0603 X7R C3 1

3 CAP CER 1nF 5% 0603 X7R 16V C10, C11 2

4 RES SIN 0R 5% 0603 50V R1 1

5 RES SIN 1K 5% 0603 50V R6, R13, R14, R15 4

6 CON HDR 11-pins 2.54mm J1 1

7 IC CMOS VOLT REG Seiko S-817A33ANB-CUW-T2 U1 1

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
2

6

26

A.6 References
1. ATtiny40 Datasheet

http://www.atmel.com/Images/Atmel-8263-8-bit-AVR-Microcontroller-tinyAVR-ATtiny40_Datasheet.pdf

2. Atmel QTouch Library
http://www.atmel.com/tools/QTOUCHLIBRARY.aspx

3. BSW Sensor Design Guide
http://www.atmel.com/Images/doc10752.pdf

4. Atmel AVR042: AVR Hardware Design Considerations
http://www.atmel.com/images/atmel-2521-avr-hardware-design-considerations_application-note_avr042.pdf

5. AVR130: Setup and Use the AVR Timers
http://www.atmel.com/Images/doc2505.pdf

http://www.atmel.com/Images/Atmel-8263-8-bit-AVR-Microcontroller-tinyAVR-ATtiny40_Datasheet.pdf
http://www.atmel.com/tools/QTOUCHLIBRARY.aspx
http://www.atmel.com/Images/doc10752.pdf
http://www.atmel.com/images/atmel-2521-avr-hardware-design-considerations_application-note_avr042.pdf
http://www.atmel.com/Images/doc2505.pdf

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014

2
7

27

A.7 Revision History

Doc Rev. Date Comments

Rev. C 08/2014

Migrated document to new template.

Hardware section is modified to support 12-QTouchADC keys.

Schematic and BOM are changed to support 12-QTouchADC keys.

Updated firmware to support 12-QTouchADC channels.

Rev. B 03/2012 Added QDebug Interface.

Rev. A 10/2010 Initial document release.

AVR259: ATtiny40 QTouchADC Demonstration Kit [APPLICATION NOTE]
Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014
2

8

28

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2014 Atmel Corporation. / Rev.:Atmel-8332C-ATtiny40-QTouchADC-Demonstration-Kit-ApplicationNote_AVR259_082014.

Atmel

®
, Atmel logo and combinations thereof, Adjacent Key Suppression

®
, AKS

®
, AVR

®
, Enabling Unlimited Possibilities

®
, QTouch

®
, tinyAVR

®
, and others are

registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right

is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODU CTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON -INFRINGEMENT. IN NO EVENT SHALL ATMEL BE

LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAG ES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves

the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where

the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety -Critical Applications”) without an Atmel officer's specific wri tten consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation o f nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor

intended for use in automotive applications unless specifically designated by Atmel as automotive -grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation

	Description
	Features
	Table of Contents
	1 Hardware
	1.1 QTouchADC
	1.2 Analog Channels
	1.2.1 PWM Input
	1.2.2 Analog Output

	1.3 Buzzer
	1.4 LEDs
	1.5 Communication Interface
	1.6 Power Supply
	1.6.1 Power Options
	1.6.1.1 USB Connector
	1.6.1.2 On-board Regulator
	1.6.1.3 External Supply

	1.6.2 Power Supply Considerations

	2 Programming and Debugging
	2.1 TPI Programming
	2.1.1 Programmers for TPI Programming

	2.2 Debugging

	3 Firmware
	3.1 User Application Code
	3.1.1 User Application Requirements
	3.1.2 Application Code Flow

	3.2 TWI Interface Operation
	3.2.1 Data Read
	3.2.2 SDA, SCL
	3.2.3 IRQ Line

	3.3 Analog Interface Operation
	3.4 Buzzer and LED Operation
	3.5 Pin Mapping

	4 QT600 Touch Debug Interface
	Appendix A
	A.1 Atmel QTouch Library
	A.2 Application Programming Interface
	A.2.1 Manifest Constants
	A.2.2 Type Definitions
	A.2.3 Structs
	A.2.4 Enumerations
	A.2.5 Global Touch Sensing Status
	A.2.6 Global touch Sensing Configuration
	A.2.7 Touch Sensing Data
	A.2.8 Hook for User Functions
	A.2.9 Configuring Sensors
	A.2.9.1 Configuration Functions
	A.2.9.2 qt_enable_key()

	A.2.10 Measuring and checking Touch Status
	A.2.10.1 Touch Status Functions
	A.2.10.2 Additional Sensing Commands
	A.2.10.3 qt_init_sensing()
	A.2.10.4 qt_measure_sensors()
	A.2.10.5 qt_calibrate_sensing()
	A.2.10.6 qt_reset_sensing()

	A.3 Schematic
	A.4 PCB
	A.5 BOM
	A.6 References
	A.7 Revision History

