
 TB3269
 The Differences Between MPLAB Harmony v3

Synchronous and Asynchronous Drivers and When to Use
Them

Introduction

MPLAB Harmony v3 drivers provide a simple and abstracted ‘C’ language interface to the peripherals and other
system resources. Some functions are similar across on all the device drivers, while other functions are unique to a
specific driver or peripheral. Driver interface functions are generally independent of the details of how a given
peripheral is implemented on any specific hardware, or how many instances of that peripheral exist in each system.
Applications can control and easily interact with the peripherals by calling the driver interface.

The following diagram represents the MPLAB Harmony v3 Driver Execution flow:

Figure 1. MPLAB Harmony v3 Driver Execution Flow Diagram

Harmony Driver

Application

Peripheral Library (PLIB)

System
main()

ISR()

State Machine

222

333

555

4

111

State Machine
4

1 2

34

1. System Initializes the device driver.
2. Application calls the driver APIs.

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 1

3. Driver starts its operation using peripheral libraries which is interacting with hardware.
4. The driver state machine is run from the interrupt context or through continuously polling the device. For

example, most of the MPLAB Harmony v3 peripheral drivers are interrupt driven, which means that the driver
state machine doesn't wait in a loop for an operation to complete. The driver is notified through an interrupt,
when the operation is complete. However, some drivers like the SD Card requires determining whether the SD
Card is inserted or not, and most middle-ware has a state machine that runs from a super-loop.

5. Driver finishes the operation and notifies the application.

MPLAB Harmony v3 allows users to configure the drivers in any one of these operating modes: Synchronous
(Blocking) or Asynchronous (Non-Blocking). This document describes Synchronous and Asynchronous operating
modes and how to use them.

 TB3269

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 2

1. MPLAB Harmony v3 Driver Features

Asynchronous and Synchronous Driver Modes
• Asynchronous Mode

– Non-blocking Application Program Interfaces (APIs).
– Allows queuing of multiple requests. Each instance of an Asynchronous driver has a dedicated queue.
– Works seamlessly in bare-metal and RTOS environment.
– Interrupt and thread-safe.

• Synchronous Mode
– Blocking APIs
– Support only RTOS environment
– Interrupt and thread-safe

Note:  For additional information on Asynchronous and Synchronous driver modes, refer to the section
Asynchronous and Synchronous Drivers.

Multiple Client Support
This feature seamlessly handle client-specific differences. Both Synchronous and Asynchronous drivers allow
multiple clients to a driver instance. For example, there can be multiple application clients to a SPI driver instance
having multiple SPI slaves. The SPI slave specific information, such as clock phase, clock polarity, clock speed, and
chip select are all handled by the SPI driver based on the client that submitted the request.

Multiple Instance Support
This feature seamlessly handles the multiple instances of a peripheral. For example, there may be three instances of
SPI: SPI0, SPI1, and SPI2. The SPI driver manages three peripheral instances by creating three driver instances and
attaching a client to each of them.

Cache Management
Drivers manage cache-related operations on parts (for example, on PIC32MZ, SAME70 and SAMV71) that have a
data cache, thereby simplifying the application development.

 TB3269
MPLAB Harmony v3 Driver Features

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 3

2. Key Concepts of MPLAB Harmony v3 Drivers

Atomicity
Once started, an operation (sequence of instructions) is considered atomic, if it is indivisible and non-interruptible. A
data item is considered atomic if it cannot be subdivided as it is read or written.

Atomicity is necessary for shared data or instructions that need to have exclusive access of the CPU. The sequence
of instructions that needs to be protected from shared access is called a critical code section, and the data that needs
to be protected from shared access is called critical data.

Atomicity is achieved by guarding the critical code or critical data. One of the approaches to guard the critical regions
is to use a lock, which is set before accessing the shared resource and then released when done.

Interrupt Safety
A sequence of code is said to be “interrupt-safe” when the occurrence of an interrupts does not alter the output or
functional behavior of the code. To be “interrupt-safe”, the sequence of code in consideration must be atomic
(indivisible and uninterruptible), and the relevant interrupts must be disabled before entering the sequence.

In MPLAB Harmony v3, interrupts can be disabled globally by using the Interrupt System Service API, that is,
SYS_INT_Disable() can be enabled by using the API, SYS_INT_Enable()and can restore the saved state by
using the API, SYS_INT_Restore(). However, MPLAB Harmony v3 libraries are modular and by convention they
respect the abstractions of other libraries, never attempting to directly access their internal resources. Due to this
convention, the only code in the system that should ever attempt to access the internal resources owned by a driver,
is the driver code itself.

This means it is not necessary to globally disable interrupts in most cases to guarantee correct and reliable operation
of a MPLAB Harmony v3 driver. While performing a non-atomic access to data structures or peripheral hardware, a
driver temporarily masks the interrupts of the peripheral it owns. This prevents the driver’s own interrupt-driven tasks
functions from potentially corrupting data that is also accessed by the driver’s interface functions.

This can be done using the interrupt system service and it is efficient than globally disabling all the interrupts because
it allows higher priority interrupts (which do not affect the driver) to occur, protecting their response time latency. This
can be done using the Interrupt System Service, as shown in the following example.

// Disables the interrupt for SPI0.
Bool spiIntStatus; = false;
spiIntStatus = SYS_INT_SourceDisable(SPI0_IRQn);

// Restore the interrupt for SPI0.
SYS_INT_SourceRestore(spiIntStatus, SPI0_IRQn);

These functions can also be used to guard non-atomic accesses by the driver’s interface functions to resources that
are shared with the driver’s ISR. This method works to ensure safe access to a shared resource without disabling
interrupts globally when using an Asynchronous driver with bare-metal configuration.

If a section of code must be truly atomic (uninterruptible), interrupts can be globally disabled for a short period of time
using the Interrupt System Service functions, as shown in the following example.

Bool interruptState;

// Save global interrupt state and disable interrupt
interruptState = SYS_INT_Disable();
// Critical Section

// Restore interrupt state
SYS_INT_Restore(interruptState);

Thread Safety
In an RTOS-based environment, it is possible that a driver and its clients may each run in its own RTOS thread. If the
RTOS is preemptive, it is possible that the scheduler may interrupt any of these threads at any time and switch to
another. If the other thread happens to access the same shared resource or execute the same critical section of the

 TB3269
Key Concepts of MPLAB Harmony v3 Drivers

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 4

code, that section of the code must be guarded and made atomic. The sequence of code with such guards is known
as “thread-safe” code. In the MPLAB Harmony v3 framework, thread safety is achieved by using the methods
provided by the MPLAB Harmony Operating System Abstraction Layer (OSAL).

MPLAB Harmony v3 drivers run efficiently in an interrupt driven system. For an interrupt driven system running in an
RTOS-based environment, it is common for the driver’s task functions to be called from an interrupt context. A mutex
can be used to guard against simultaneous access to shared resources by different threads. However, this will not
prevent an ISR from accessing the shared resources or critical code. If a mutex is used to accomplish thread safety, it
must be augmented by temporarily disabling (masking) the associated interrupt source as described for a bare-metal
environment in the Interrupt Safety section above.

Callback Functions
In the Non-Blocking method, instead of status polling, the callback mechanism can also be used to check the transfer
status. For example, the application registers a callback function with a driver and makes the transfer request. The
driver calls back the registered function on the completion of the request submitted by the driver client.

MPLAB Harmony v3 provides driver specific APIs to register the callback functions. For example, the Asynchronous
SPI driver provides API, DRV_SPI_TransferEventHandlerSet(), this allows a client to set a transfer event
handling function for the driver to call back when a queued transfer has finished.

Notes:  Because callbacks are called from the interrupt context, the following guidelines must be followed while
implementing a callback function:

• Must be treated like an ISR
• Must be short
• Do not call application functions that are not interrupt safe
• Do not call other driver’s interface functions

Blocking API
A blocking API hangs up execution flow until it has performed its function and returns a result.

For example, the following code shows the I2C driver Synchronous mode API, DRV_I2C_WriteTransfer.

DRV_I2C_WriteTransfer(app_eepromData.i2cHandle, APP_EEPROM_I2C_SLAVE_ADDR, (void
*)app_eepromData.i2cTxBuffer, 2);

The execution flow blocks when the API, DRV_I2C_WriteTransfer() is called until the requested bytes are
transferred to the EEPROM.

Non-Blocking API
A non-blocking API receives the application request and returns immediately without providing the result. The result
of the non-blocking API call is provided separately through an Asynchronous event. The application verifies the event
to take further action.

The following code example shows the usage of the I2C driver Asynchronous mode API,
DRV_I2C_WriteReadTransferAdd(), which is a non-blocking API.

void APP_EEPROM_I2CEventHandler (DRV_I2C_TRANSFER_EVENT event, DRV_I2C_TRANSFER_HANDLE
transferHandle, uintptr_t context)
{
 switch(event)
 {
 case DRV_I2C_TRANSFER_EVENT_COMPLETE:
 /* I2C Transfer Complete. */
 app_eepromData.reqStatus = APP_EEPROM_REQ_STATUS_DONE;
 break;

 case DRV_I2C_TRANSFER_EVENT_ERROR:
 app_eepromData.reqStatus = APP_EEPROM_REQ_STATUS_ERROR;
 break;

 default:
 break;

 TB3269
Key Concepts of MPLAB Harmony v3 Drivers

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 5

 }
}

int main (void)
{
 /* Initialize all modules */
 ……

 /* Open the I2C Driver */
 app_eepromData.i2cHandle = DRV_I2C_Open(DRV_I2C_INDEX_0, DRV_IO_INTENT_READWRITE);
 if(app_eepromData.i2cHandle == DRV_HANDLE_INVALID)
 {
 app_eepromData.state = APP_STATE_ERROR;
 }
 else
 {
 /* Register I2C transfer complete Event Handler for EEPROM. */
 DRV_I2C_TransferEventHandlerSet(app_eepromData.i2cHandle, APP_EEPROM_I2CEventHandler,
0);

 /* Submit I2C transfer to read stored temperature values from EEPROM. */
 DRV_I2C_WriteReadTransferAdd(app_eepromData.i2cHandle,
 APP_EEPROM_I2C_SLAVE_ADDR, app_eepromData.i2cTxBuffer, 1,
 app_eepromData.i2cRxBuffer, 5, &app_eepromData.transferHandle);

 /* Display the read temperature on console */
 }

 ……
}

In the main function, the application registers a callback function (event handler
“APP_EEPROM_I2CEventHandler”) with the I2C driver. The control immediately returns after the submission of the
I2C request, calling the API DRV_I2C_WriteReadTransferAdd(). The application is notified by the driver on the
completion of the request through an event to the callback function (event handler).

Synchronization
MPLAB Harmony v3 provides driver interface functions having both a blocked and non-blocking usage model. There
are situations when developers expect a blocking model. For example, the file system style read and write functions
block and not return until the entire transfer has completed.

The requirement to block is challenging to accomplish in a bare-metal environment. The RTOS-based design
provides flexibility to implement the blocking requirement. MPLAB Harmony v3 provides the synchronous drivers to
implement the blocking requirement of application. The Synchronous drivers are blocking in nature. Although the
APIs are blocking, the data transfer still takes place from the interrupt context.
Note:  MPLAB Harmony v3 OSAL provides a consistent interface to MPLAB Harmony v3 framework components
(drivers, middleware, and so on). It takes care of the underlying differences between the available or supported
RTOS Kernels, and ensures correct operation in the bare-metal and RTOS environment.

 TB3269
Key Concepts of MPLAB Harmony v3 Drivers

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 6

3. Asynchronous and Synchronous Drivers

Configuration
MPLAB Harmony v3 allows the user to configure the drivers in Synchronous or Asynchronous mode using the
MPLAB Harmony v3 Configurator (MHC) Project Graph driver configuration. For example, the following figure shows
how to configure the SPI Driver Operating mode.

Figure 3-1. MPLAB Harmony v3 SPI Driver Mode Configuration

Note:  To configure a driver in Synchronous or Asynchronous mode, in the MHC project graph, the user should click
on the driver block. For example, in the figure above, clicking on the highlighted SPI block shows the driver
configuration modes.

Differences
The following table provides the SPI Synchronous and Asynchronous driver APIs to perform the Read and Write
operations.

Table 3-1. MPLAB Harmony v3 SPI Asynchronous and Synchronous Driver APIs and SPI PLIB APIs

SPI Asynchronous Driver APIs SPI Synchronous Driver APIs SPI PLIB APIs

DRV_SPI_WriteTransferAdd DRV_SPI_WriteTransfer SPI0_Write (…)
SPI1_Write (…)

DRV_SPI_ReadTransferAdd DRV_SPI_ReadTransfer SPI0_Read (…)
SPI1_Read (…)

Note:  It does not matter which driver mode is selected (Synchronous or Asynchronous), the SPI driver uses the
same underlying PLIB APIs.

The following table provides the differences in the SPI driver APIs that are generated based on the driver mode
selection.

Table 3-2. Differences in SPI Asynchronous and Synchronous Driver APIs

SPI Asynchronous Driver APIs SPI Synchronous Driver APIs

DRV_SPI_WriteTransferAdd DRV_SPI_WriteTransfer
DRV_SPI_ReadTransferAdd DRV_SPI_ReadTransfer

 TB3269
Asynchronous and Synchronous Drivers

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 7

...........continued
SPI Asynchronous Driver APIs SPI Synchronous Driver APIs

DRV_SPI_WriteReadTransferAdd DRV_SPI_WriteReadTransfer
DRV_SPI_TransferEventHandlerSet N/A

DRV_SPI_TransferStatusGet N/A

The following table provides the common SPI driver APIs that are generated regardless of the driver mode selected.

Table 3-3. Common SPI Asynchronous and Synchronous Driver APIs

SPI Driver APIs

DRV_SPI_Initialize
DRV_SPI_Status
DRV_SPI_Open
DRV_SPI_Close

DRV_SPI_TransferSetup

The following table shows the summary of differences between Synchronous and Asynchronous drivers.

Table 3-4. Summary of the Differences Between Synchronous and Asynchronous Drivers

Asynchronous Drivers Synchronous Drivers

Non-Blocking APIs Blocking APIs

Works seamlessly in bare-metal and supports in an RTOS environment Suitable to use in RTOS
environment

Each instance of a driver has a dedicated queue. The driver allows queuing of
multiple requests.

A request to driver blocks the
application until the submitted
request is serviced. Therefore a
queue is not needed.

A transfer request is identified through a transfer handle. The client can get a
transfer request status using a polling or callback mechanism by passing the
transfer handle to the APIs. For example:
Polling Mechanism: The API, DRV_SPI_TransferStatusGet(), can be used
to poll the status of the queued transfer request.

Callback Mechanism: The API, DRV_SPI_TransferEventHandlerSet(), is
called to register the callback function with the driver to notify with an event when
the transfer request is completed.

Because the API is blocking,
and the return value of the API
indicates the transfer status,
there is no need for the transfer
handle.

Interrupt and Thread Safe Interrupt and Thread Safe

Note:  The MPLAB Harmony v3 Configurator (MHC) takes care of generating the PLIB APIs regardless of the driver
mode selected.
Both Synchronous (only in RTOS environment) and Asynchronous drivers are supported for UART, I2C, SPI, SDSPI,
and memory device (MX25L, AT25DF, NVM, and SST26) peripherals.

Only the Asynchronous driver is supported for SDMMC, external EEPROM (AT24 and AT25), SPI Flash (AT25DF),
SQI Flash (MX25L and SST26).

 TB3269
Asynchronous and Synchronous Drivers

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 8

4. Usage Recommendation of Asynchronous and Synchronous Drivers
Synchronous drivers are suitable for use in an RTOS environment, whereas Asynchronous drivers are suitable in a
Bare-metal environment.

Asynchronous drivers (Non-Blocking API) are suitable for an application which runs in a Bare-metal or non-RTOS
based environment. In a Bare-metal environment, the suggested way to implement an application is by implementing
the state machine programming model. In a state machine programming model, an application avoids busy waiting
loops so as to not waste CPU bandwidth. Therefore, the module’s functions must not block waiting for an external
operation to complete (especially on anything that has any possibility of never completing) or it may block the entire
system. If the function must wait for an external operation, the module must break up the operation into smaller tasks
to be performed later. The multiple smaller tasks run in the super loop. The task running in the super loop includes
application tasks and driver tasks. The application task checks the completion of the driver operations through status
flags.

MPLAB Harmony v3 drivers running in asynchronous mode provide the ability to acquire the driver task completion
status through the implementation of asynchronous callback events (as discussed in Callback Functions) that the
application registers with the driver. In addition to the callback mechanism the MPLAB Harmony v3 drivers running in
asynchronous mode provide status functions for the application task to check the driver task completion status. For
example, the SPI driver provides the status check API,DRV_SPI_TransferStatusGet().

Synchronous driver (Blocking API) is suitable in an RTOS-based application environment. In an RTOS-based
application environment, the blocking interface is acceptable and desirable. When the synchronous driver API in a
thread blocks waiting for the completion of a task (for example, the I2C driver API, DRV_I2C_WriteTransfer(),
blocks for the transfer of bytes), the RTOS scheduler ensures that the thread in contention does not block the control
flow indefinitely. The RTOS, particularly with preemptive scheduling, ensures that the next high-priority thread runs
immediately when the current thread has blocked. Refer to Interrupt Safety, Thread Safety, Synchronization and
Blocking API for additional information on blocking behavior and the implementation using MPLAB Harmony v3
Synchronous drivers.

 TB3269
Usage Recommendation of Asynchronous and Synchrono...

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 9

5. References
1. MPLAB Harmony GitHub: github.com/Microchip-MPLAB-Harmony

2. SAM E70 Xplained Ultra User’s Guide:ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-Xplained-Ultra-
User-Guide-70005389A.pdf

3. SAM E70/S70/V70/V71 Family Data Sheet: ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-
V71-Family-Data-Sheet-DS60001527D.pdf

4. Getting Started with Harmony v3 Drivers on SAM E70/S70/V70/V71 MCUs Using FreeRTOS:
microchipdeveloper.com/harmony3:same70-getting-started-tm-drivers-freertos

5. Getting Started with Harmony v3 Drivers and Middleware on PIC32MZ EF MCUs using FreeRTOS:
microchipdeveloper.com/harmony3:pic32mz-get-start-tm-drvr-middlware-freertos

6. MPLAB Harmony v3 Application Development Guide for MPLAB Harmony v2 Users: ww1.microchip.com/
downloads/en/Appnotes/MPLAB_Harmonyv3_Application_Development_%20Guide_for_
%20MPLAB_Harmonyv2_Users_DS00003388A.pdf

7. MPLAB Harmony Core Help: microchip-mplab-harmony.github.io/core/frames.html?
frmname=topic&frmfile=index.html

8. How to Setup MPLAB Harmony v3 Software Development Framework: ww1.microchip.com/downloads/en/
DeviceDoc/How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf

9. Creating a "Hello World" Application on SAM Microcontrollers Using Harmony 3 MPLAB Harmony Configurator
(MHC): ww1.microchip.com/downloads/en/DeviceDoc/Creating_Hello_World_
%20Application_on_SAM_Using_MHC_DS90003231A.pdf

10. Creating a Hello World Application on PIC32 Microcontrollers Using the MPLAB Harmony v3’s MPLAB Harmony
Configurator (MHC): ww1.microchip.com/downloads/en/DeviceDoc/Creating_Hello_World_Applicatio_
%20on_PIC32_Microcontrollers_Using_MPLAB_Harmonyv3_MHC_DS90003259A.pdf

 TB3269
References

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 10

http://github.com/Microchip-MPLAB-Harmony
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-Xplained-Ultra-User-Guide-70005389A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-Xplained-Ultra-User-Guide-70005389A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
https://microchipdeveloper.com/harmony3:same70-getting-started-tm-drivers-freertos
https://microchipdeveloper.com/harmony3:pic32mz-get-start-tm-drvr-middlware-freertos
http://ww1.microchip.com/downloads/en/Appnotes/MPLAB_Harmonyv3_Application_Development_%20Guide_for_%20MPLAB_Harmonyv2_Users_DS00003388A.pdf
http://ww1.microchip.com/downloads/en/Appnotes/MPLAB_Harmonyv3_Application_Development_%20Guide_for_%20MPLAB_Harmonyv2_Users_DS00003388A.pdf
http://ww1.microchip.com/downloads/en/Appnotes/MPLAB_Harmonyv3_Application_Development_%20Guide_for_%20MPLAB_Harmonyv2_Users_DS00003388A.pdf
https://microchip-mplab-harmony.github.io/core/frames.html?frmname=topic&frmfile=index.html
https://microchip-mplab-harmony.github.io/core/frames.html?frmname=topic&frmfile=index.html
http://ww1.microchip.com/downloads/en/DeviceDoc/How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Creating_Hello_World_%20Application_on_SAM_Using_MHC_DS90003231A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Creating_Hello_World_%20Application_on_SAM_Using_MHC_DS90003231A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Creating_Hello_World_Applicatio_%20on_PIC32_Microcontrollers_Using_MPLAB_Harmonyv3_MHC_DS90003259A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Creating_Hello_World_Applicatio_%20on_PIC32_Microcontrollers_Using_MPLAB_Harmonyv3_MHC_DS90003259A.pdf

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 TB3269

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 11

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6375-7

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3269

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 12

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Technical Brief DS90003269A-page 13

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	1. MPLAB Harmony v3 Driver Features
	2. Key Concepts of MPLAB Harmony v3 Drivers
	3. Asynchronous and Synchronous Drivers
	4. Usage Recommendation of Asynchronous and Synchronous Drivers
	5. References
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

