
 Atmel QTouch Library

 QTouch Library Peripheral Touch Controller

 USER GUIDE

Description

Atmel® QTouch® Peripheral Touch Controller (PTC) offers built-in hardware
for capacitive touch measurement on sensors that function as buttons,
sliders, and wheels. The PTC supports both mutual and self-capacitance
measurement without the need for any external component. It offers superb
sensitivity and noise tolerance, as well as self-calibration, and minimizes the
sensitivity tuning effort by the user.

The PTC is intended for autonomously performing capacitive touch sensor
measurements. The external capacitive touch sensor is typically formed on a
PCB, and the sensor electrodes are connected to the analog charge
integrator of the PTC using the device I/O pins. The PTC supports mutual
capacitance sensors organized as capacitive touch matrices in different X-Y
configurations, including Indium Tin Oxide (ITO) sensor grids. In mutual
capacitance mode, the PTC requires one pin per X-line (drive line) and one
pin per Y-line (sense line). In self-capacitance mode, the PTC requires only
one pin with a Y-line driver for each self-capacitance sensor.

Features

• Implements low-power, high-sensitivity, environmentally robust
capacitive touch buttons, sliders, and wheels

• Supports mutual capacitance and self-capacitance sensing
• Up to 32 buttons in self-capacitance mode
• Up to 256 buttons in mutual capacitance mode
• Supports lumped mode configuration
• One pin per electrode - no external components
• Load compensating charge sensing
• Parasitic capacitance compensation for mutual capacitance mode
• Adjustable gain for superior sensitivity
• Zero drift over the temperature and VDD range
• No need for temperature or VDD compensation
• Hardware noise filtering and noise signal de-synchronization for high

conducted immunity
• Atmel provided QTouch Library firmware and QTouch Composer tool

Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

Product Support

For assistance related to QTouch capacitive touch sensing software libraries and related issues, contact
your local Atmel sales representative or log on to myAtmel Design Support portal to submit a support
request or access a comprehensive knowledge base.

If you do not have a myAtmel account, please visit http://www.atmel.com/design-support/ to create a new
account by clicking on Create Account in the myAtmel menu at the top of the page.

When logged in, you will be able to access the knowledge base, submit new support cases from the
myAtmel page or review status of your ongoing cases.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

2

http://www.atmel.com/design-support/

Table of Contents

Description...1

Features.. 1

1. Development Tools ... 5

2. Device Variants Supported.. 6

3. Capacitive Touch Technology.. 8
3.1. Capacitive Touch Sensors..8
3.2. Capacitance Measurement Methods..8
3.3. Self-capacitance Measurement Method...8
3.4. Mutual Capacitance Measurement Method..9
3.5. Capacitive Touch Lumped Sensors..9
3.6. Capacitive Touch Low Power Sensor... 11
3.7. PTC and its Benefits...13
3.8. PTC Block Diagram for Self-capacitance and Mutual Capacitance Method.............................. 13
3.9. Design Approach with PTC.. 15
3.10. Capacitive Touch Development Cycle..16

4. Touch Sensor Debug and Status Information..17
4.1. Signal..17
4.2. Reference...17
4.3. Delta... 18
4.4. Touch Status & Slider/Wheel Position.. 19

5. QTouch Library.. 20
5.1. Overview...20
5.2. Library Parameters...21
5.3. Moisture Tolerance... 42
5.4. Reading Sensor States...44
5.5. Application Flow... 44
5.6. API Sequence...46
5.7. State Machine...47
5.8. Operation Modes..50
5.9. Touch Library API Error.. 52

6. Tuning for Noise Performance...54
6.1. Noise Sources.. 54
6.2. Noise Counter Measures..54

7. Application Design...60
7.1. Touch Library and Associated Files..60
7.2. Code and Data Memory Considerations.. 60

8. Example Applications.. 63

8.1. Atmel Board Example Projects...63
8.2. User Board Example Projects.. 66
8.3. Using Atmel Software Framework (ASF) with the Example Projects... 67
8.4. Using Xplained Pro Kit to Program User Board... 67
8.5. Using QDebug Touch Data Debug Communication Interface.. 67
8.6. Using Xplained Pro Kit for QDebug Data Streaming from User Board...................................... 68
8.7. Using Atmel ICE for QDebug Data Streaming from User Board.. 70

9. Known Issues.. 71

10. FAQ on PTC Qtouch..73

11. Appendix..74
11.1. Macros..74
11.2. Typedef...76
11.3. Enumeration... 76
11.4. Datastructures.. 84
11.5. Global Variables... 92
11.6. API..93

12. Revision History...100

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

4

1. Development Tools
The following development tools are required for developing QTouch library using PTC:

• Development Environment for GCC Compiler:
– QTouch Composer 5.9.116 or later versions
– QTouch Library 5.9.211 or later versions

Note:  The QTouch Library and Composer extensions work only with Atmel Studio 7 which
can be downloaded from http://www.atmel.com/

– Dependent Atmel Studio Extensions
• Atmel Software Framework 3.30.1 or later versions
• Atmel Kit Extension 7.0.70 or later versions

• Development Environment for IAR Compiler:
– IAR Embedded Workbench® for ARM® 7.50.1.10273 or later
– IAR Embedded Workbench for Atmel AVR® 6.70.1 or later
– Atmel Software Framework 3.29.0 or later (optional)
– Atmel QTouch Library 5.9.211 IAR Installer (available at http://www.atmel.com/tools/

qtouchlibraryptc.aspx)

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

5

http://www.atmel.com/
http://www.atmel.com/tools/qtouchlibraryptc.aspx
http://www.atmel.com/tools/qtouchlibraryptc.aspx

2. Device Variants Supported
QTouch Library for SAM and ATmega devices are available for the following device variants:

Series Variant

SAM D20 J Series ATSAMD20J18, ATSAMD20J17, ATSAMD20J16, ATSAMD20J15,
ATSAMD20J14

SAM D20 G Series ATSAMD20G18, ATSAMD20G18U, ATSAMD20G17, ATSAMD20G17U,
ATSAMD20G16, ATSAMD20G15, ATSAMD20G14

SAM D20 E Series ATSAMD20E18, ATSAMD20E17, ATSAMD20E16, ATSAMD20E15,
ATSAMD20E14

SAM D21 J Series ATSAMD21J18A, ATSAMD21J17A, ATSAMD21J16A, ATSAMD21J15A,
ATSAMD21J16B, ATSAMD21J15B

SAM D21 G Series ATSAMD21G18A, ATSAMD21G17A, ATSAMD21G16A, ATSAMD21G15A,
ATSAMD21G15B, ATSAMD21G16B, ATSAMD21G17AU, ATSAMD21G18AU

SAM D21 E Series ATSAMD21E18A, ATSAMD21E17A, ATSAMD21E16A, ATSAMD21E15A,
ATSAMD21E15B, ATSAMD21E15BU, ATSAMD21E16B, ATSAMD21E16BU

SAM D10 C Series ATSAMD10C14A

SAM D10 D Series ATSAMD10D14AM, ATSAMD10D14AS, ATSAMD10D14AU

SAM D11 C Series ATSAMD11C14A

SAM D11 D Series ATSAMD11D14AM, ATSAMD11D14AS, ATSAMD11D14AU

SAM L21 E Series ATSAML21E15B, ATSAML21E16B, ATSAML21E17B, ATSAML21E18B

SAM L21 G Series ATSAML21G16B, ATSAML21G17B, ATSAML21G18B

SAM L21 J Series ATSAML21J16B, ATSAML21J17B, ATSAML21J18B

SAM R21 E Series ATSAMR21E16A, ATSAMR21E17A, ATSAMR21E18A, ATSAMR21E19A

SAM R21 G Series ATSAMR21G16A, ATSAMR21G17A, ATSAMR21G18A

SAM DA1 E Series ATSAMDA1E14A, ATSAMDA1E15A, ATSAMDA1E16A

SAM DA1 G Series ATSAMDA1G14A, ATSAMDA1G15A, ATSAMDA1G16A

SAM DA1 J Series ATSAMDA1J14A, ATSAMDA1J15A, ATSAMDA1J16A

SAM C21 E Series ATSAMC21E15A, ATSAMC21E16A, ATSAMC21E17A, ATSAMC21E18A

SAM C21 G Series ATSAMC21G15A, ATSAMC21G16A. ATSAMC21G17A, ATSAMC21G18A

SAM C21 J Series ATSAMC21J16A, ATSAMC21J17A, ATSAMC21J18A

SAM C20 E Series ATSAMC20E15A, ATSAMC20E16A, ATSAMC20E17A, ATSAMC20E18A

SAM C20 G Series ATSAMC20G15A, ATSAMC20G16A. ATSAMC20G17A, ATSAMC20G18A

SAM C20 J Series ATSAMC20J16A, ATSAMC20J17A, ATSAMC20J18A

SAM L22 G Series ATSAML22G16A, ATSAML22G17A, ATSAML22G18A

SAM L22 J Series ATSAML22J16A, ATSAML22J17A, ATSAML22J18A

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

6

Series Variant

SAM L22 N Series ATSAML22N16A, ATSAML22N17A, ATSAML22N18A

ATmega Series ATmega328PB, ATmega324PB

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

7

3. Capacitive Touch Technology

3.1. Capacitive Touch Sensors
Capacitive touch sensors replace conventional mechanical interfaces and operate with no mechanical
wear and are closed to the environment. They provide greater flexibility in industrial design and result in
differentiating end product design. For more information, refer Capacitive Touch Lumped Sensors and
Capacitive Touch Low Power Sensor.

Figure 3-1. Sensor Types

3.2. Capacitance Measurement Methods
Self-capacitance measurement method involves charging a sense electrode of unknown capacitance to a
known potential. The resulting charge is transferred into a measurement circuit. By measuring the charge
with one or more charge-and transfer cycles, the capacitance of the sense plate can be determined.

Figure 3-2. Capacitance Measurement Principle

Mutual capacitance measurement method uses a pair of sensing electrodes. One electrode acts as an
emitter into which a charge consisting of logic pulses is driven in burst mode. The other electrode acts as
a receiver that couples to the emitter using the overlying panel dielectric. When a finger touches the
panel, the field coupling is reduced, and touch is detected.

3.3. Self-capacitance Measurement Method
• Uses a single sense electrode (Y-line)

– Self-capacitance button can be formed using one channel
– Self-capacitance slider and wheel is formed using 3 channels

• Robust and easy to use, ideal for low sensors count

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

8

Figure 3-3. Self-capacitance Method

3.4. Mutual Capacitance Measurement Method
• Uses a pair of sense electrodes (X-Y lines)

– Mutual capacitance buttons use one X-Y channel
– Mutual capacitance sliders and wheels can be configured to use 3 to 8 X-Y channels,

depending on the sensor size
• Suitable for high sensor count
• Better moisture tolerance

Figure 3-4. Mutual Capacitance Method

3.5. Capacitive Touch Lumped Sensors
Lumped sensor configuration is a combination of multiple sense lines (Self-capacitance measurement) or
multiple drive and sense lines (Mutual capacitance measurement) to act as one single sensor. Lumped
mode acts as a tool for application developers to improve overall system performance.

Improved Power Efficiency

When multiple sensors are lumped together and treated as one single sensor the time taken to perform
scans is reduced. For battery powered applications using multiple buttons, a group of touch sensors can
be lumped to form a single lumped sensor and this sensor alone can be scanned, thereby resulting in
reduced power consumption. Upon user presence detection on the lumped sensor all configured sensors
in the system can then be scanned individually.

Improved Response Time

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

9

In high key-count applications, there can be a significant latency between touching a sensor and the
detection of a touch contact. This is due to the time taken to sequentially measure the capacitance of
each key on each measurement cycle.With a Lumped mode implementation this latency can be reduced
by arranging the sensors into groups. When one of those lumped groups shows touch detection, only the
keys within that group are individually measured to determine which is touched.

E.g. A keyboard consisting 64 keys may be divided into 8 lumped groups of 8.

Thus, each measurement cycle is reduced to measure only the 8 lumped sensors. When a touch contact
is applied, first the lump sensor shows touch delta, then the 8 component keys are scanned and the
location is resolved. Only 16 measurements are required to resolve the touch status of all keys, compared
to 64 measurements in the traditional sequential scan of all keys.

It offers an additional edge during low power acquisition as a group of keys [in lumped configuration] can
be scanned thus reducing the power consumed drastically. Each sensor has its own pre-scaled clock and
series resistor for improved noise immunity.

Figure 3-5. Self-capacitance Sensors connected to PTC

Figure 3-6. Lumped Self-capacitance Sensors connected to PTC

In the preceeding figures, individual buttons are shown along with the lumped equivalent for self-
capacitance arrangement.

Lumped Mode Pin and Sensor Configuration for Self-capacitance Method:

#define DEF_SELFCAP_LINES Y(5), Y(4), Y(11), Y(10), Y(13), Y(7), Y(12), Y(6), LUMP_Y(5,4)

touch_ret = touch_selfcap_sensor_config(SENSOR_TYPE_LUMP, CHANNEL_8, CHANNEL_8, NO_AKS_GROUP,
40u, HYST_6_25, RES_8_BIT, &sensor_id);

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

10

Figure 3-7. Lumped Sense Lines Mutual Capacitance Sensors connected to PTC

In the preceeding figure, mutual capacitance lumped sensor configuration is presented.

Lumped Mode Pin and Sensor Configuration for Mutual Capacitance Method:

#define DEF_MUTLCAP_NODES X(8), Y(10), X(9), Y(10), X(2), Y(12), X(3), Y(12), \X(8), Y(12),
X(9), Y(12), X(2), Y(13), X(3), Y(13), \X(8), Y(13), X(9), Y(13), LUMP_X(2,3,8,9),
LUMP_Y(10,13)

touch_ret = touch_mutlcap_sensor_config(SENSOR_TYPE_LUMP, CHANNEL_10, CHANNEL_10,
NO_AKS_GROUP, 20u, HYST_6_25, RES_8_BIT, 0, &sensor_id);

Limitations of Use

Lumped sensor capacitive load should not exceed the maximum sensor load for individual sensors in
either mutual or self-capacitance modes. Lumped mode treats the larger sensors as one single sensor
therefore the maximum lumped sensor load should also observe this specification, else this will result in
calibration error.

In mutual capacitance measurement mode the capacitive load of each sensor is normally much lower
than that of the self-capacitance method. It is therefore possible as a general rule to use more mutual
sensors together as a single lumped sensor.

The user can ensure that the lumped sensor does not result in a calibration error (value of 0x80) using
p_xxxxcap_measure_data->p_sensors[<SENSOR>].state variable.

3.6. Capacitive Touch Low Power Sensor
The QTouch Library may be configured to operate PTC touch sensing autonomously using the Event
System. In this mode, a single sensor is designated as the ‘Low Power’ key and may be periodically
measured for touch detection without any CPU action. The CPU may be held in deep sleep mode
throughout the operation, minimizing power consumption.

The low power key may be a discrete electrode with one Y (Sense) line for Self-capacitance or One X
(Drive) plus one Y (Sense) for mutual capacitance, or it may be a combination of multiple Drive and/or
Sense lines as a Lumped mode sensor.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

11

Figure 3-8. Low Power Flow

Active Measurement Mode

In the active measurement mode all configured sensors are measured at
DEF_TOUCH_MEASUREMENT_PERIOD_MS millisecond scan interval.

The user application arrangement could be designed such that when no touch activity is detected on any
of the configured sensors for NO_ACTIVITY_TRIGGER_TIME milliseconds, then the application switches
to low power measurement mode.

Low Power Measurement Mode

In the low power measurement mode, a designated sensor or a lumped sensor can be scanned as a
single sensor. In this mode, the system is in standby sleep mode, the CPU and other peripherals are in
sleep, excepting for the event system, the RTC and the PTC module / WDT and PTC module in SAM /
Mega devices. A user touch on the designated low power sensor will cause the CPU to wake up and
perform active measurement in order to resolve the touch. To keep reference tracking of the designated
low power sensor, the RTC/WDT is configured to periodically wake up the CPU every
DEF_LOWPOWER_SENSOR_DRIFT_PERIODICITY_MS millisecond to perform one active measurement.

Switching between Active Mode and Low Power Mode

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

12

When switching from active to low power mode, all sensors except the lumped sensor are disabled. So,
no reference tracking is performed on these sensors during the low power mode. When a touch is
detected on the lumped sensor, all disabled sensors shall now be re-enabled and measurement is
initiated on the sensors. If the device is in sleep for a very long time, then it is recommended to force
calibration on the re-enabled sensors to ensure proper reference values on these sensors.

3.7. PTC and its Benefits
• Mixed Hardware + Firmware solution, allows user to define sensor configuration

– Peripheral Touch Controller + QTouch library
• PTC runs data acquisition autonomously, resulting in low CPU utilization and power consumption

– User controlled power-performance trade-off
– CPU can sleep during acquisition to save power
– Alternatively, CPU can perform other time critical operations during touch acquisition

• Robust noise performance

Figure 3-9. User Application with PTC Device

3.8. PTC Block Diagram for Self-capacitance and Mutual Capacitance Method
The PTC block diagram for self-capacitance measurement is shown in the following figure. Only Y-lines
can be connected to self-capacitance sensors and are selected using the Input control. X-lines remain
unused and can be used for any other GPIO functionality. The acquisition module along with the
compensation circuit helps in measuring the change in capacitance due to user touch.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

13

Figure 3-10. PTC Self-capacitance Method - Block Diagram

The PTC block diagram for mutual capacitance measurement is as shown in the following figure. Both X-
lines and Y-lines should be connected to mutual capacitance sensors and are selected using the Input
control.

Figure 3-11. PTC Mutual Capacitance Method - Block Diagram

3.8.1. Compensation Circuit
The PTC has an internal compensation circuit which is used to compensate the sensor capacitance. Both
self-capacitance and mutual capacitance sensing modes have the same compensation range. But the
mutual capacitance mode can compensate more parasitic capacitance compared to self-capacitance
mode.
The tag_touch_measure_data_t structure contains the p_cc_calibration_vals parameter
which represents the current channel's compensation circuit value. For more information, refer Measure
Data Type (tag_touch_measure_data_t) .

Compensation circuit value used in pF = (p_cc_calibration_vals[channel_no]& 0x0F)*0.00675 +
((p_cc_calibration_vals[channel_no] >> 4) & 0x0F)*0.0675 +
((p_cc_calibration_vals[channel_no] >> 8) & 0x0F)*0.675 + ((p_cc_calibration_vals[channel_no]
>> 12) & 0x3) * 6.75

Also, the touch_xxxxcap_sensors_calibrate function helps the user to calibrate the compensation
circuit according to the sensors used. If the routine fails to calibrate the compensation circuit due to
saturation, the measurement will return TOUCH_CC_CALIB_ERROR. The compensation circuit could have

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

14

exceeded its limit. The specific sensor that has failed can be determined using
p_xxxxcap_measure_data->p_sensors[<sensor>].statewhen it contains the value of
SENSOR_CALIBRATION_ERROR(0x80u).

• Typical compensation circuit value for the self-capacitance mode ranges from 10 to 25 pF and for
the mutual capacitance mode it is around 2 pF.

• The compensation circuit value is affected by sensor size and the ground surrounding the sensor or
trace. The compensation ciruit value ranges from 0.00675 pF to 31.48 pF.

• If the compensation circuit value exceeds the limit, to reduce the value, use a mesh instead of a
solid plane in the sensor and ground plane.

• For detailed sensor design, refer http://www.atmel.com/images/doc10752.pdf.

3.9. Design Approach with PTC
Two design approaches are possible when using Atmel MCU along with PTC. The Atmel MCU could be
predominantly used as an MCU for touch measurement. Else, the Atmel MCU can function as a Host
MCU utilizing peripherals such as the USB, ADC, DAC, SERCOM, DMA and GPIO along with the PTC
used for "on-chip" touch functionality.

The design approaches are:
• Atmel MCU with PTC predominantly functioning as a touch MCU

– Used for touch sensor status and rotor/slider position detection
– Additionally used to indicate touch status using LED, buzzer etc
– Sends touch status and rotor/slider position information to a Host MCU

• Atmel MCU functions as a Host MCU with on-chip touch functionality
– Can be a cost saving design as a single chip solution with on-chip touch functionality
– Utilizes other on-chip peripheral for a desired user application

Figure 3-12. PTC Design Approach

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

15

http://www.atmel.com/images/doc10752.pdf

3.10. Capacitive Touch Development Cycle
The capacitive touch development cycle involves PCB board design to develop the user interface
hardware as well as firmware application development. The QTouch Composer PC software available as
part of Atmel Studio extension gallery allows for PTC QTouch Library projects to be generated
automatically with a desired user configuration for touch sensors. The QTouch Composer also allows for
touch sensor data analysis and performance tuning for sensitivity and noise.

Figure 3-13. Capacitive Touch Development Cycle

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

16

4. Touch Sensor Debug and Status Information
The touch sensor debug information necessary for tuning of the sensors are signal, reference, delta, and
compensation capacitance. While the signal, reference and delta help in sensitivity and noise tuning the
sensor parameters, the compensation capacitance is an indicator for extreme sensor design. The sensor
status and position information are parameters that must be judged by the user application to initate the
relevant touch action.

4.1. Signal
Signal value is the raw measurement data on a given touch channel. The value increases upon touch.

Figure 4-1. Channel Signal

4.2. Reference
Reference value of a touch channel is the long term average measurement on a specific channel.

It represents:
• Resting signal when there is no touch
• Initial value obtained during the calibration process
• Reference is adapted by Drift Compensation algorithm

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

17

Figure 4-2. Channel Reference

4.3. Delta
Delta value of a touch channel represents touch strength.

• Delta = (signal - reference)
• Deltas increase with touch

Figure 4-3. Sensor Delta

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

18

4.4. Touch Status & Slider/Wheel Position
The sensor touch status is the primary touch sensor information utilized by a user application. The sensor
state can either be ON or OFF. For sliders and wheel, additionally the touch position is of interest. For an
8-bit resolution, the touch position ranges from 0 to 255 end-to-end. It is possible to configure with a lower
resolution by configuring setting in the touch library. The sensor touch status and slider/wheel position
must always be used once the library completes the measurements.

The touch sensor state for mutual capacitance or self-capacitance sensor can be obtained by reading the
following boolean variables.

bool sensor_state_self = GET_SELFCAP_SENSOR_STATE(SENSOR_NUMBER);
bool sensor_state_mutl = GET_MUTLCAP_SENSOR_STATE(SENSOR_NUMBER);

The touch sensor rotor or slider position information for mutual capacitance or self-capacitance sensor
can be obtained using the following parameters.

uint8_t rotor_slider_position_self = GET_SELFCAP_ROTOR_SLIDER_POSITION(ROTOR_SLIDER_NUMBER);
uint8_t rotor_slider_position_mutl = GET_MUTLCAP_ROTOR_SLIDER_POSITION(ROTOR_SLIDER_NUMBER);

The touch sensor noise status for mutual capacitance or self-capacitance sensor can be obtained using
the following parameters.

bool sensor_noise_state_self = GET_SELFCAP_SENSOR_NOISE_STATUS(SENSOR_NUMBER);
bool sensor_noise_state_mutl = GET_MUTLCAP_SENSOR_NOISE_STATUS(SENSOR_NUMBER);

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

19

5. QTouch Library
Atmel QTouch Library makes it simple for developers to embed capacitive touch button, slider, wheel
functionality into general purpose Atmel SMART | ARM and AVR® microcontroller applications. The
royalty- free QTouch Library provides several library files for each device and supports different numbers
of touch channels, enabling both flexibility and efficiency in touch applications.

QTouch Library can be used to develop single-chip solutions for many control applications, or to reduce
chip count in more complex applications. Developers have the latitude to implement buttons, sliders, and
wheels in a variety of combinations on a single interface.

Figure 5-1. QTouch Library

5.1. Overview
QTouch Library API for PTC can be used for touch sensor pin configuration, acquisition parameter setting
as well as periodic sensor data capture and status update operations. The QTouch Library in turn
interfaces with the PTC module to perform the necessary action. The PTC module interfaces with the
external capacitive touch sensors and is capable of performing self and mutual capacitance method
measurements. The library features low power and lumped mode configuration.

Figure 5-2. QTouch Library Overview

The QTouch Library API is arranged such that the user application can use standalone self-capacitance
or mutual capacitance method or both methods, simultaneously. The following table captures the APIs
available for each method. For normal operation, it is sufficient to use the set of Regular APIs for each
method. The Helper APIs provides additional flexibility to the user application.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

20

Method Regular API Helper API

Mutual capacitance touch_mutlcap_sensors_init
touch_mutlcap_sensor_config
touch_mutlcap_sensors_calibrate
touch_mutlcap_sensors_measure
touch_mutlcap_sensors_deinit
touch_mutlcap_lowpower_sensor_enable_event_measure

touch_mutlcap_sensor_get_delta
touch_mutlcap_sensor_update_config
touch_mutlcap_sensor_get_config
touch_mutlcap_update_global_param
touch_mutlcap_get_global_param
touch_mutlcap_update_acq_config
touch_mutlcap_get_acq_config
touch_mutlcap_sensor_disable
touch_mutlcap_sensor_reenable
touch_multcap_mois_tolrnce_enable
touch_multcap_mois_tolrnce_disable
touch_mutlcap_cnfg_mois_threshold
touch_mutlcap_cnfg_mois_mltchgrp
touch_mutlcap_mois_tolrnce_quick_reburst_enable
touch_mutlcap_mois_tolrnce_quick_reburst_disable
touch_mutlcap_get_libinfo
touch_library_get_version_info touch_resume_ptc
touch_suspend_ptc

Self-capacitance touch_selfcap_sensors_init
touch_selfcap_sensor_config
touch_selfcap_sensors_calibrate
touch_selfcap_sensors_measure
touch_selfcap_sensors_deinit
touch_selfcap_lowpower_sensor_enable_event_measure

touch_selfcap_sensor_get_delta
touch_selfcap_sensor_update_config
touch_selfcap_sensor_get_config
touch_selfcap_update_global_param
touch_selfcap_get_global_param
touch_selfcap_update_acq_config
touch_selfcap_get_acq_config
touch_selfcap_sensor_disable
touch_selfcap_sensor_reenable
touch_selfcap_mois_tolrnce_enable
touch_selfcap_mois_tolrnce_disable
touch_selfcap_cnfg_mois_threshold
touch_selfcap_cnfg_mois_mltchgrp
touch_selfcap_mois_tolrnce_quick_reburst_enable
touch_selfcap_mois_tolrnce_quick_reburst_disable
touch_selfcap_get_libinfo
touch_library_get_version_info touch_suspend_ptc
touch_resume_ptc

5.2. Library Parameters
The QTouch Library configuration parameters are listed in the following table:

Configuration Mutual capacitance Self-capacitance

Pin Configuration DEF_MUTLCAP_NODES DEF_SELFCAP_LINES

Sensor Configuration DEF_MUTLCAP_NUM_CHANNELS DEF_MUTLCAP_NUM_SENSORS
DEF_MUTLCAP_NUM_ROTORS_SLIDERS
DEF_MUTLCAP_PTC_GPIO_STATE
DEF_MUTLCAP_QUICK_REBURST_ENABLE

DEF_SELFCAP_NUM_CHANNELS DEF_SELFCAP_NUM_SENSORS
DEF_SELFCAP_NUM_ROTORS_SLIDERS
DEF_SELFCAP_PTC_GPIO_STATE
DEF_SELFCAP_QUICK_REBURST_ENABLE

Sensor Individual Parameters Detect Threshold
Detect Hysteresis
Position Resolution
Position Hysteresis
AKS group

Detect Threshold
Detect Hysteresis
Position Resolution
AKS group

Sensor Global Parameters DEF_MUTLCAP_DI DEF_MUTLCAP_TCH_DRIFT_RATE
DEF_MUTLCAP_ATCH_DRIFT_RATE
DEF_MUTLCAP_MAX_ON_DURATION
DEF_MUTLCAP_DRIFT_HOLD_TIME
DEF_MUTLCAP_ATCH_RECAL_DELAY
DEF_MUTLCAP_ATCH_RECAL_THRESHOLD
DEF_MUTLCAP_TOUCH_POSTPROCESS_MODE
DEF_MUTLCAP_AKS_ENABLE DEF_MUTLCAP_CSD
DEF_MUTLCAP_AUTO_OS_SIGNAL_STABILITY_LIMIT

DEF_SELFCAP_DI DEF_SELFCAP_TCH_DRIFT_RATE
DEF_SELFCAP_ATCH_DRIFT_RATE
DEF_SELFCAP_MAX_ON_DURATION
DEF_SELFCAP_DRIFT_HOLD_TIME
DEF_SELFCAP_ATCH_RECAL_DELAY
DEF_SELFCAP_ATCH_RECAL_THRESHOLD
DEF_SELFCAP_TOUCH_POSTPROCESS_MODE
DEF_SELFCAP_AKS_ENABLE DEF_SELFCAP_CSD
DEF_SELFCAP_AUTO_OS_SIGNAL_STABILITY_ LIMIT

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

21

Configuration Mutual capacitance Self-capacitance

Sensor Acquisition Parameters DEF_MUTLCAP_FILTER_LEVEL_PER_NODE
DEF_MUTLCAP_AUTO_OS_PER_NODE
DEF_MUTLCAP_GAIN_PER_NODE DEF_MUTLCAP_FREQ_MODE
DEF_MUTLCAP_HOP_FREQS
DEF_MUTLCAP_CLK_PRESCALE_PER_NODE
DEF_MUTLCAP_SENSE_RESISTOR_PER_NODE

DEF_SELFCAP_FILTER_LEVEL_PER_NODE
DEF_SELFCAP_AUTO_OS_PER_NODE
DEF_SELFCAP_GAIN_PER_NODE DEF_SELFCAP_FREQ_MODE
DEF_SELFCAP_HOP_FREQS
DEF_SELFCAP_CLK_PRESCALE_PER_NODE
DEF_SELFCAP_SENSE_RESISTOR_PER_NODE

Sensor Calibration Auto Tune
Setting

AUTO_TUNE_PRSC, AUTO_TUNE_RSEL, AUTO_TUNE_NONE AUTO_TUNE_PRSC, AUTO_TUNE_RSEL, AUTO_TUNE_NONE

Sensor Noise measurement and
Lockout Parameters

DEF_MUTLCAP_NOISE_MEAS_ENABLE
DEF_MUTLCAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT
DEF_MUTLCAP_NOISE_LIMIT
DEF_MUTLCAP_NOISE_MEAS_BUFFER_CNT
DEF_MUTLCAP_LOCKOUT_SEL
DEF_MUTLCAP_LOCKOUT_CNTDOWN

DEF_SELFCAP_NOISE_MEAS_ENABLE
DEF_SELFCAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT
DEF_SELFCAP_NOISE_LIMIT
DEF_SELFCAP_NOISE_MEAS_BUFFER_CNT
DEF_SELFCAP_LOCKOUT_SEL
DEF_SELFCAP_LOCKOUT_CNTDOWN

Sensor Acquisition Frequency
Auto-tuning Parameters

DEF_MUTLCAP_FREQ_AUTO_TUNE_ENABLE
DEF_MUTLCAP_FREQ_AUTO_TUNE_SIGNAL_STABILITY_LIMIT
DEF_MUTLCAP_FREQ_AUTO_TUNE_IN_CNT

DEF_SELFCAP_FREQ_AUTO_TUNE_ENABLE
DEF_SELFCAP_FREQ_AUTO_TUNE_SIGNAL_STABILITY_LIMIT
DEF_SELFCAP_FREQ_AUTO_TUNE_IN_CNT

Common Parameters DEF_TOUCH_MEASUREMENT_PERIOD_MS, DEF_TOUCH_PTC_ISR_LVL

Low Power Paramaters DEF_LOWPOWER_SENSOR_EVENT_PERIODICITY, DEF_LOWPOWER_SENSOR_DRIFT_PERIODICITY_MS,
DEF_LOWPOWER_SENSOR_ID

Moisture Parameters DEF_MUTLCAP_MOIS_TOLERANCE_ENABLE
DEF_MUTLCAP_NUM_MOIS_GROUPS
DEF_MUTLCAP_MOIS_QUICK_REBURST_ENABLE

DEF_SELFCAP_MOIS_TOLERANCE_ENABLE
DEF_SELFCAP_NUM_MOIS_GROUPS
DEF_SELFCAP_MOIS_QUICK_REBURST_ENABLE

5.2.1. Pin, Channel, and Sensor Parameters
Mutual capacitance method uses a pair of sensing electrodes for each touch channel. These electrodes
are denoted as X and Y lines. Capacitance measurement is performed sequentially in the order in which
touch (X-Y) nodes are specified in the DEF_MUTLCAP_NODES configuration parameter. A mutual
capacitance touch button sensor is formed using a single X-Y channel, while a touch rotor or slider sensor
is formed using three to eight X-Y channels.

Mutual Capacitance Channel (X-Y Sense Node)
• SAM D20J and SAM D21J (64 pins): up to 256 touch channels, 16 X and 16 Y-lines
• SAM D20G and SAM D21G (48 pins): up to 120 touch channels, 12 X and 10 Y-lines
• SAM D20E and SAM D21E (32 pins): up to 60 touch channels, 10 X and 6 Y-lines
• SAM R21E(32 pins): up to 12 touch channels, 6 X and 2 Y-lines
• SAM R21G(48 pins) up to 48 touch channels, 8 X and 6 Y-lines
• SAM DA1J (64 pins): up to 256 touch channels, 16 X and 16 Y-lines
• SAM DA1G (48 pins): up to 120 touch channels, 12 X and 10 Y-lines
• SAM DA1E (32 pins): up to 60 touch channels, 10 X and 6 Y-lines
• SAM D21G17AU and SAM D21G18AU (45 pins): up to 132 touch channels, 12 X and 11 Y-lines
• SAM D21E15BU and SAM D21E16BU (35 pins): up to 60 touch channels, 10 X and 6 Y-lines

The following devices have X and Y multiplexing option.
• SAM D10C14A and SAM D11C14A (14 pins): up to 12 touch channels, 4 X and 3 Y-lines
• SAM D10D14 AS/AU and SAM D11D14 AS/AU (20 pins): up to 42 touch channels, 7 X and 6 Y-

lines
• SAM D10D14AM and SAM D11D14AM (24 pins): up to 72 touch channels, 9 X and 8 Y-lines
• SAM L21E (32 pins): up to 42 touch channels, 7 X and 6 Y-lines
• SAM L21G (48 pins): up to 81 touch channels, 9 X and 9 Y-lines
• SAM L21J (64 pins): up to 169 touch channels, 13 X and 13 Y-lines

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

22

• SAM L22G (48 pins): up to 132 touch channels, 11 X and 12 Y-lines
• SAM L22J (64 pins): up to 182 touch channels, 13 X and 14 Y-lines
• SAM L22N (100 pins): up to 256 touch channels, 16 X and 16 Y-lines
• SAM C21E and SAM C20E(32 pins): up to 60 touch channels,10 X and 6 Y-lines
• SAM C21G and SAM C20G(48 pins): up to 120 touch channels,12 X and 10-Y lines
• SAM C21J and SAM C20J(64 pins): up to 256 touch channels,16 X and 16 Y-lines
• ATmega328PB (32 pins): up to 144 touch channels, 12 X and 12 Y-lines
• ATmega324PB (44 pins): up to 256 touch channels, 16 X and 16 Y-lines

A few pins can be used either as X-line or Y-line. The datasheets of individual devices provide more
information about this multiplexing option.

Figure 5-3. Mutual Capacitance Sensor Arrangement

Figure 5-4. Mutual Capacitance - Channel to Sensor Mapping

X-Y node pair can be specified using the configuration parameter DEF_MUTLCAP_NODES in a non-
sequential order. The channel numbering is done in the same order as the X-Y node pair specified in the
configuration parameter DEF_MUTLCAP_NODES.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

23

Setting Configuration Name Data Type Unit Min Max Typical

Mutual Cap
Touch
Channel
Nodes

DEF_MUTLCAP_NODES uint16_t
array

None 1 X-Y
node
pair

256 X-Y

nodepair

-

Mutual Cap
Number of
Channels

DEF_MUTLCAP_NUM_CHANNELS uint16_t None 1 256 X-Y

nodepair

-

Mutual Cap
Number of

Sensors

DEF_MUTLCAP_NUM_SENSORS uint16_t None 1 256 X-Y

nodepair

-

Mutual Cap
Number of

Rotors and
Sliders

DEF_MUTLCAP_NUM_ROTORS_SLIDERS uint8_t None 0 85 node
pair

-

Self-capacitance method uses a single sense electrode, denoted by a Y-line. Capacitance measurement
is performed sequentially in the order in which Y-lines are specified in the DEF_SELFCAP_LINES
configuration parameter. Self-capacitance touch button sensor is formed using a single - line channel,
while a touch rotor or slider sensor can be formed using three Y-line channels.

Self-capacitance Channel (Y-sense line)
• SAM D20J and SAM D21J (64 pins): up to 16 channels
• SAM D20G and SAM D21G (48 pins): up to 10 channels
• SAM D20E and SAM D21E (32 pins): up to 6 channels
• SAM D10C14A and SAMD 11C14A (14 pins): up to 7 touch channels
• SAM D10D14 AS/AU and SAMD 11D14 AS/AU (20 pins): up to 13 touch channels
• SAM D10D14AM and SAMD 11D14AM (24 pins): up to 16 touch channels
• SAM L21E (32 pins): up to 7 touch channels
• SAM L21G (48 pins): up to 10 touch channels
• SAM L21J (64 pins): up to 16 touch channels
• SAMR21E (32 pins): up to 2 touch channels
• SAMR21G (48 pins): up to 6 touch channels
• SAM DA1J (64 pins): up to 16 channels
• SAM DA1G (48 pins): up to 10 channels
• SAM DA1E (32 pins): up to 6 channels
• SAM C21E and SAM C20E (32 pins): up to 16 touch channels
• SAM C21G and SAM C20G (48 pins): up to 22 touch channels
• SAM C21J and SAM C20J (64 pins): up to 32 touch channels
• SAM L22G (48 pins): up to 15 touch channels
• SAM L22J (64 pins): up to 19 touch channels
• SAM L22N (100 pins): up to 24 touch channels
• ATmega328PB (32 pins): up to 24 touch channels

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

24

• ATmega324PB (44 pins): up to 32 touch channels

Figure 5-5. Self-capacitance Sensor Arrangement

Figure 5-6. Self-capacitance Channel to Sensor Mapping

Y sense line can be specified using the configuration parameter DEF_SELFCAP_LINES in non-sequential
order. The channel numbering is done in the same order as the Y sense line specified in the configuration
parameter DEF_SELFCAP_LINES.

Setting Configuration Name Data

Type
Unit Min Max Typical

Self Cap
touch
channel
nodes

DEF_SELFCAP_NODES uint16_t
array

None 1 Y-
line

32 Y-
line

-

Self Cap
number of
channels

DEF_SELFCAP_NUM_CHANNELS uint16_t None 1 Y-
line

32 Y-
line

-

Self Cap
number of
Sensors

DEF_SELFCAP_NUM_SENSORS uint16_t None 1 Y-
line

32 Y-
line

-

Self Cap
number of
Rotors and
Sliders

DEF_SELFCAP_NUM_ROTORS_SLIDERS uint8_t None 0 Y-
line

10 Y-
line

-

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

25

The touch sensors must be enabled in the sequential order of the channels specified using the
touch_xx_sensor_config() API. For improved EMC performance, a series resistor with value of 1
Kilo-ohm must be used on X and Y lines. For more information about designing the touch sensor, refer to
Buttons, Sliders and Wheels Touch Sensor Design Guide available at www.atmel.com.

5.2.2. Sensor Individual Parameters
This section explains the settings that are specific to the individual sensor.

Detect Threshold

A sensor's detect threshold defines how much its signal must increase above its reference level to qualify
as a potential touch detect. However, the final detection confirmation must satisfy the Detect Integrator
(DI) limit. Larger threshold values desensitize sensors since the signal must change more (i.e. requires
larger touch) to exceed the threshold level. Conversely, lower threshold levels make sensors more
sensitive.

Threshold setting depends on the amount of signal swing when a sensor is touched. Usually, thicker front
panels or smaller electrodes have smaller signal swing on touch, thus require lower threshold levels.
Typically, detect threshold isset to 50% of touch delta. Desired touch delta for a buttons is ~30 to 80
counts and for wheels or sliders is ~50 to 120 counts.

Setting Configuration

Name
Data Type Unit Min Max Typical

Threshold detect_threshold threshold_t Counts 3 255 20-50(For buttons)

30-80(For sliders and wheels

Detect Hysteresis

This setting is sensor detection hysteresis value. It is expressed as a percentage of the sensor detection
threshold setting. Once a sensor goes into detect its threshold level is reduced (by the hysteresis value)
in order to avoid the sensor dither in and out of detect if the signal level is close to original threshold level.

• Setting of 0 = 50% of detect threshold value (HYST_50)
• Setting of 1 = 25% of detect threshold value (HYST_25)
• Setting of 2 = 12.5% of detect threshold value (HYST_12_5)
• Setting of 3 = 6.25% of detect threshold value (HYST_6_25)

Setting Configuration

Name
Data Type Unit Min Max Typical

Hysteresis detect_threshold uint8_t
(2bits)

Enum HYST_6_25 HYST_50 HYST_6_25

Position Resolution

The rotor or slider needs the position resolution (angle resolution in case of rotor and linear resolution in
case of slider)to be set. Resolution is the number of bits needed to report the position of rotor or slider. It
can have values from 2 bits to 8 bits.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

26

http://www.atmel.com

Setting Configuration Name Data Type Unit Min Reported

Position

Max Reported

Position

Typical

Position

Resolution

position_resolution uint8_t
(3bits)

None 2bits 0-3 8bits 0-255 8

Position Hysteresis

In case of Mutual Cap, the rotor or slider needs the position hysteresis (angle hysteresis in case of rotor
and linear hysteresis in case of slider) to be set. It is the number of positions the user has to move back,
before touch position is reported when the direction of scrolling is changed and during the first scrolling
after user press.

Hysteresis can range from 0 (1 position) to 7 (8 positions). The hysteresis is carried out at 8 bits
resolution internally and scaled to desired resolution; therefore at resolutions lower than 8 bits there might
be a difference of 1 reported position from the hysteresis setting, depending on where the touch is
detected. At lower resolutions, where skipping of the reported positions is observed, hysteresis can be set
to 0 (1 position). At Higher resolutions (6 to 8bits), it would be recommended to have a hysteresis of at
least 2 positions or more.

Note:  It is not valid to have a hysteresis value more than the available bit positions in the resolution. For
instance, a hysteresis value of 5 positions with a resolution of 2 bits (4 positions) is invalid. Position
hysteresis is invalid (unused) in case of self-capacitance method sensors.

Setting Configuration Name Data Type Unit Min Max Typical

Position

Hysteresis

position_hysteresis uint8_t
(3bits)

- 0 7 8

Adjacent Key Suppression (AKS®)

In designs where the sensors are close together or configured for high sensitivity, multiple sensors might
report a detect simultaneously. To allow applications to determine the intended single touch, the touch
library provides the user the ability to configure a certain number of sensors in an AKS group.

When a group of sensors are in the same AKS group, only the first strongest sensor will report detection.
The sensor reporting detection will continue to report detection even if another sensor's delta becomes
stronger. The sensor stays indetect until its delta falls lower than its detection threshold. If any more
sensors in the AKS group are still in detect onlythe strongest will report detection. At a given time point,
only one sensor from each AKS group is reported to be indetect.

AKS feature can be enabled or disabled using a macro DEF_XXXXCAP_AKS_ENABLE
• 1u = AKS grouping functionality is enabled
• 0u = AKS grouping functionality is disabled

The library provides the ability to configure a sensor to belong to one of the Adjacent Key Suppression
Groups (AKS Group).

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

27

5.2.3. Sensor Global Parameters
This section explains the settings that are common all sensors. For instance, if recalibration threshold
(one of the global settings) of mutual cap sensors is set as RECAL_100, all mutual capacitance sensors
will be configured for a recalibration threshold of 100%.These sensor global parameter settings can be
independently set to self-capacitance and mutual capacitance sensors.

Detect Integration

The QTouch Library features a detect integration mechanism, which confirm detection in a robust
environment. The detect integrator (DI) acts as a simple signal filter to suppress false detections caused
by spurious events such as electrical noise.

A counter is incremented each time the sensor delta has exceeded its threshold and stayed there for a
specific numberof acquisitions, without going below the threshold levels. When this counter reaches a
preset limit (the DI value) the sensor is finally declared to be touched. If on any acquisition the delta is
below the threshold level, the counter is cleared and the process has to start from the beginning. The DI
process is applicable to a 'release' (going out of detect) event as well.

For example, if the DI value is 10, the device has to exceed its threshold and stay there for (10 + 2)
successive acquisitions without going below the threshold level, before the sensor is declared to be
touched.

Setting Configuration Name Data Type Unit Min Max Typical

DI DEF_MUTLCAP_DI, DEF_SELFCAP_DI uint8_t Cycles 0 255 4

Max-ON Duration

If an object unintentionally contacts a sensor resulting in a touch detection for a prolonged interval it is
usually desirable to recalibrate the sensor in order to restore its function, after a time delay of a few
seconds.

The Maximum ON duration timer monitors such detections; if detection exceeds the timer's settings, the
sensor is automatically recalibrated. After a recalibration has taken place, the affected sensor once again
functions normally even if it still in contact with the foreign object.

Max-ON duration can be disabled by setting it to zero (infinite timeout) in which case the channel never
recalibrates during a continuous detection (but the host could still command it).

Setting Configuration Name Data Type Unit Min Max Typical

Maximum ON
Duration

DEF_MUTLCAP_MAX_ON_DURATION,
DEF_SELFCAP_MAX_ON_DURATION

uint8_t 200ms 0 255 30(6s)

Away from Touch and Towards Touch Drift Rate

Drift in a general sense means adjusting reference level (of a sensor) to allow compensation for
temperature (or other factor) effect on physical sensor characteristics. Decreasing reference level for
such compensation is called Negative drift & increasing reference level is called Positive drift. Specifically,
the drift compensation should be set to compensate faster for increasing signals than for decreasing
signals.

Signals can drift because of changes in physical sensor characteristics over time and temperature. It is
crucial that such drift be compensated for; otherwise false detections and sensitivity shifts can occur.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

28

Drift compensation occurs only while there is no detection in effect. Once a finger is sensed, the drift
compensation mechanism ceases since the signal is legitimately detecting an object. Drift compensation
works only when the signal inquestion has not crossed the 'Detect threshold' level.

The drift compensation mechanism can be asymmetric. It can be made to occur in one direction faster
than it does in the other simply by changing the appropriate setup parameters.

Signal values of a sensor tend to increase when an object (touch) is approaching it or a characteristic
change of sensor over time and temperature. Increasing signals should not be compensated quickly, as
an approaching finger could be compensated for partially or entirely before even touching the channel
(towards touch drift).

However, an object over the channel which does not cause detection, and for which the sensor has
already made full allowance (over some period of time), could suddenly be removed leaving the sensor
with an artificially suppressed reference level and thus become insensitive to touch. In the latter case, the
sensor should compensate for the object's removal by raising the reference level relatively quickly (away
from touch drift).

Setting Configuration Name Data Type Unit Min Max Typical

Towards touch
Drift

DEF_MUTLCAP_TCH_DRIFT_RATE,
DEF_SELFCAP_TCH_DRIFT_RATE uint8_t 200ms 0 127 20(4s)

Away from touch
Drift

DEF_MUTLCAP_ATCH_DRIFT_RATE,
DEF_SELFCAP_ATCH_DRIFT_RATE uint8_t 200ms 0 127 5(1s)

Drift Hold Time

Drift Hold Time (DHT) is used to restrict drift on all sensors while one or more sensors are activated. It
defines the length of time the drift is halted after a key detection.This feature is useful in cases of high
density keypads where touching a key or floating a finger over the keypad would cause untouched keys
to drift, and therefore create a sensitivity shift, and ultimately inhibit any touch detection.

Setting Configuration Name Data Type Unit Min Max Typical

Drift Hold Time DEF_MUTLCAP_DRIFT_HOLD_TIME,
DEF_SELFCAP_DRIFT_HOLD_TIME uint8_t 200ms 0 255 20(4s)

Away From Touch Recalibration Threshold

Recalibration threshold is the level beyond which automatic recalibration occurs. Recalibration threshold
is expressed as a percentage of the detection threshold setting.

This setting is an enumerated value and its settings are as follows:
• Setting of 0 = 100% of detect threshold (RECAL_100)
• Setting of 1 = 50% of detect threshold (RECAL_50)
• Setting of 2 = 25% of detect threshold (RECAL_25)
• Setting of 3 = 12.5% of detect threshold (RECAL_12_5)
• Setting of 4 = 6.25% of detect threshold (RECAL_6_25)

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

29

However, an absolute value of 4 is the hard limit for this setting. For example, if the detection threshold is,
40 and the Recalibration threshold value is set to 4.

Although this implies an absolute value of 2 (40 * 6.25% = 2.5), it is hard limited to 4.

Setting Configuration Name Data Type Unit Min Max Typical

Recalibration
threshold

DEF_MUTLCAP_ATCH_RECAL_THRESHOLD,
DEF_SELFCAP_ATCH_RECAL_THRESHOLD uint8_t Enum RECAL_6_25 Detect

threshold
RECAL_100

Away From Touch Recalibration Delay

If any key is found to have a significant negative delta, it is deemed to be an error condition. If this
condition persists for more than the away from touch recalibration delay, i.e., qt_pos_recal_delay
period, then an automatic recalibration is carried out.

A counter is incremented each time the sensor delta is equal to the away from touch recalibration
threshold and stayed there for a specific number of acquisitions. When this counter reaches a preset limit
(the PRD value) the sensor is finally recalibrated. If on any acquisition the delta is seen to be greater than
the away from touch recalibration threshold level, the counter is cleared and the away from touch drifting
is performed.

For example, if the away from touch recalibration delay setting is 10, then the delta has to drop below the
recalibration threshold and stay there for 10 acquisitions in succession without going below the threshold
level, before the sensor is declared to be recalibrated. Away from touch recalibration can be disabled with
a setting of 0.

Setting Configuration Name Data Type Unit Min Max Typical

Away from touch
Recalibration
Delay

DEF_MUTLCAP_ATCH_RECAL_DELAY,
DEF_SELFCAP_ATCH_RECAL_DELAY

uint8_t Cycles 0 255 10

Sensor Post-Processing Mode

When TOUCH_LIBRARY_DRIVEN mode is selected, the library self-initiates repeated touch
measurements to resolve touch press, release and calibration. This mode is suited for best response
time.

When TOUCH_APPLN_DRIVEN mode is selected, the library does not initiate repeated touch
measurement to resolve touch press, release and calibration. This mode suits deterministic PTC interrupt
execution time for applications requiring stringent CPU time requirements. As repeated touch
measurements are delayed due to other critical application code being executed. This mode can
potentially affect the touch response time.

In order to improve the touch response time with the TOUCH_APPLN_DRIVEN mode, the
touch_xxxcap_sensors_measure API call should be modified as below to initiate touch
measurements periodically or when the burst again acquisition status flag has been set.

if ((touch_time.time_to_measure_touch == 1u) ||(p_mutlcap_measure_data->acq_status &
TOUCH_BURST_AGAIN)
 {
 /* Start a touch sensors measurement process. */
 touch_ret =
touch_mutlcap_sensors_measure(touch_time.current_time_ms,NORMAL_ACQ_MODE,touch_mutlcap_measure

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

30

_complete_callback);
 }

Setting Configuration Name Data Type Options Typical

Sensor
post-
processing
mode

DEF_MUTLCAP_TOUCH_POSTPROCESS_MODE,
DEF_SELFCAP_TOUCH_POSTPROCESS_MODE

uint16_t TOUCH_LIBRARY_DR
IVEN,
TOUCH_APPLN_DRIV
EN

TOUCH_LIBRARY_DRIVEN

Charge Share Delay

Charge share delay indicates the number of additional charge cycles that are inserted within a
capacitance measurement cycle to ensure that the touch sensor is fully charged. The CSD value is
dependent on the sensor capacitance along with the series resistor on the Y line.
Note:  Any increase in the charge share delay also increases the measurement time for a specific
configuration.

When manual tuning is performed, the CSD value for the sensor with largest combination of capacitance
along with series resistance should be considered.

Setting Configuration Name Data Type Options Min Max Typical

CSD (Charge
Share Delay)

DEF_MUTL_CAP_CSD_VALUE,
DEF_SELF_CAP_CSD_VALUE uint8_t PTC cycles 0 250 0

How to tune the CSD setting manually?

1. Initially, use an arbitrarily large value such as 64 and note the signal value. A large value ensures
that the charge time is enough for full charge transfer

2. Reduce the CSD and verify the signal value drop, until signal is approximately 97-98% of the value
used initially. This ensures a good charge transfer without any major loss in the signal.

3. Continue the same procedure [Step 1 and 2] for all the sensors available in the system. Use the
largest value of the CSD used in the system for the global setting.

Note:  For the same CSD setting, Mutual capacitance has a lower burst time than self-capacitance. A
unit increase in mutual capacitance CSD consumes around 12 PTC cycles. Whereas for the self-
capacitance an increase in CSD consumes approximately twice the mutual capacitance CSD time with
the same setting.

Auto-OS Signal Stability Limit

The parameter DEF_XXXXCAP_AUTO_OS_SIGNAL_STABILITY_LIMIT defines the stability limit of the
signals for performing over-samples. Stability limit is the variance in sensor signal value under noisy
environment. A high level of stability limit is set to auto trigger oversamples on large noise presence. It is
recommended to keep this setting close to the lowest sensor detect threshold of the system and tune it
further based on the noise.

Range: 1 to 1000

5.2.4. Sensor Acquisition Parameters
Filter Level

The filter level setting controls the number of samples taken to resolve each acquisition. A higher filter
level setting provides improved signal to noise ratio under noisy conditions, while increasing the total time

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

31

for measurement resulting in increased power consumption and response time. This setting is available
on per channel basis, allowing easy tuning.

Setting Configuration Name Data Type Options Min Max Typical

Filter level DEF_MUTLCAP_FILTER_LEVEL_PER_NODE,
DEF_SELFCAP_FILTER_LEVEL_PER_NODE

filter_level_t Number of samples 1 64 16

Auto Oversamples

Auto oversample controls the automatic oversampling of sensor channels when unstable signals are
detected with the default setting of 'Filter level'. Enabling Auto oversample results in 'Filter level' x 'Auto
Oversample' number of samples taken on the corresponding sensor channel when an unstable signal is
observed. In a case where 'Filter level' is set to FILTER_LEVEL_4 and 'Auto Oversample' is set to
AUTO_OS_4, 4 oversamples are taken with stable signal values and 16 oversamples are taken when
unstable signal is detected. This setting is available on per channel basis, allowing easy tuning.

A higher filter level setting provides improved signal to noise ratio under noisy conditions, while increasing
the total time for measurement resulting in increased power consumption and response time.

Figure 5-7. Auto oversamples

Auto oversamples can be disabled to obtain best power consumption.

Setting Configuration Name Data Type Options Min Max Typical

Auto Oversamples DEF_MUTLCAP_AUTO_OS_PER_NODE,
DEF_SELFCAP_AUTO_OS_PER_NODE

auto_os_t Sample
multiplier

2 128 AUTO_OS_NONE

Gain Setting

Gain setting is applied on a per-channel basis to allow a scaling-up of the touch delta upon contact. Gain
setting depends on the sensor design and touch panel thickness.

Setting Configuration Name Data Type Options Min Max Typical

Gain DEF_MUTLCAP_GAIN_PER_NODE,
DEF_SELFCAP_GAIN_PER_NODE

gain_t Gain multiplier 1 32 1 (For self-
capacitance) 4 (For
mutual
capacitance)

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

32

The figure shows the expected signal value for a given combination of gain setting and filter level setting.
The values provided are only indicative and the actual sensor signal values might be close to the
suggested levels.

Figure 5-8. Average Settling Signal Value for FILTER LEVEL and GAIN Combination

Prescalar Setting

The prescaler parameter denotes the clock divider for the particular channel. It can be set on per channel
basis and is independent to each sensor node/channel. This parameter is auto tuned based on the auto
tune settings. Tuning this parameter allows for improved noise performance.

Setting Configuration Name Data Type Options Min Max Typical

Prescalar DEF_MUTLCAP_CLK_PRESCALE_PER_NODE,
DEF_SELFCAP_CLK_PRESCALE_PER_NODE

prsc_div_sel_t PRSC_DIV_SEL_1,
PRSC_DIV_SEL_2,
PRSC_DIV_SEL_4,
PRSC_DIV_SEL_8

PRSC_DIV_SEL_1 PRSC_DIV_SEL_8 PRSC_DIV_SEL_1

Series Resistor Setting

The series resistor denotes the resistor used on the particular channel for the acquisition. The value is
tunable and allows both auto and manual tuning options. Tuning this parameter allows for improved noise
performance.

Settin
g

Configuration Name Data Type Options Min Max Typical

Series
Resist
or

DEF_MUTLCAP_SENSE_RESI
STOR_PER_NODE
DEF_SELFCAP_SENSE_RESI
STOR_PER_NODE

rsel_val_t RSEL_VAL_0,
RSEL_VAL_20,
RSEL_VAL_50,
RSEL_VAL_100

RSEL_VAL_0 RSEL_VAL_100 RSEL_VAL_100

Boot Prescalar Setting

The boot prescaler parameter denotes the clock divider for the particular channel. It can be set on per
channel basis and is independent to each sensor node/channel. This setting is used for calibrating the
sensors after a power-on. This parameter must be configured as the auto tune is not available.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

33

Setting Configuration Name Data Type Options Min Max Typical

Boot
Prescalar

DEF_MUTLCAP_CC_CAL_CLK_PRESCALE_PER_NODE,
DEF_SELFCAP_CC_CAL_CLK_PRESCALE_PER_NODE

prsc_div_sel_t PRSC_DIV_SEL_1,
PRSC_DIV_SEL_2,
PRSC_DIV_SEL_4,
PRSC_DIV_SEL_8

PRSC_DIV_SEL_1 PRSC_DIV_SEL_8 PRSC_DIV_SEL_1

Boot Series Resistor Setting

The boot series resistor denotes the resistor used on the particular channel on device power-on
calibration. This parameter must be configured as the auto tune is not available.

Setting Configuration Name Data Type Options Min Max Typical

Boot Series
Resistor

DEF_MUTLCAP_CC_CAL_SENSE_RESISTOR_PER_NODE
DEF_SELFCAP_CC_CAL_SENSE_RESISTOR_PER_NODE

rsel_val_t RSEL_VAL_0,
RSEL_VAL_20,
RSEL_VAL_50,
RSEL_VAL_100

RSEL_VAL_0 RSEL_VAL_100 RSEL_VAL_100

Frequency Mode

Frequency mode setting allows users to tune the PTC touch acquisition frequency characteristics to
counter environment noise.

FREQ_MODE_HOP

When frequency mode hopping option is selected, the PTC runs a frequency hopping cycle with
subsequent measurements done using the three PTC acquisition frequency delay settings as specified in
DEF_SELFCAP_HOP_FREQS. In this case, an additional software median filter is applied to the measured
signal values.

FREQ_MODE_SPREAD

When frequency mode spread spectrum option is selected, the PTC runs with spread spectrum enabled
for jittered delay based acquisition.

FREQ_MODE_SPREAD_MEDIAN

When frequency mode spread spectrum median option is selected, the PTC runs with spread spectrum
enabled. In this case, an additional software median filter is applied to the measured signal values.

FREQ_MODE_NONE

When frequency mode none option is selected, the PTC runs at constant speed. This mode is suited for
best power consumption.

Setting Configuration Name Data Type Options Min Max Typical

Frequency
mode

DEF_MUTLCAP_FREQ_MODE
,
DEF_SELFCAP_FREQ_MODE

freq_mode_sel_t FREQ_MODE_NONE,
FREQ_MODE_HOP,
FREQ_MODE_SPREAD,
FREQ_MODE_SPREAD_MEDIAN

FREQ_MODE_NONE FREQ_MODE_SPREAD_MEDIAN FREQ_MODE_NONE

Frequency Hop Delay

The frequency hop delay setting is used when the Frequency mode is set to FREQ_MODE_HOP. A set of
three frequency hop delay settings should be specified. This delay setting inserts n PTC clock cycles
between consecutive measurements on a given sensor, thereby changing the PTC acquisition frequency.
FREQ_HOP_SEL_1 setting inserts 0 PTC clock cycle between consecutive measurements.
FREQ_HOP_SEL_16 setting inserts 15 PTC clock cycles. Hence, higher delay setting will increase the
total time taken for capacitance measurement on a given sensor as compared to a lower delay setting. A
desired setting can be used to avoid noise around the same frequency as the acquisition frequency.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

34

Setting Configuration Name Data Type Unit Min Max Typical

Frequency
hop delay

DEF_MUTLCAP_HOP_FREQS,
DEF_SELFCAP_HOP_FREQS

freq_hop_sel_t nPTC_clock_cycles FREQ_HOP_SEL_1 FREQ_HOP_
SEL_16

FREQ_HOP_SEL_1,
FREQ_HOP_SEL_2,
FREQ_HOP_SEL_3

5.2.5. Sensor Calibration Auto Tune Setting
Auto tune parameter setting is passed to the touch_xx_sensors_calibrate API in order to allow
users to tune the PTC module for power consumption or noise performance.

AUTO_TUNE_PRSC

When Auto tuning of pre-scaler is selected, the PTC uses the user defined internal series resistor setting
(DEF_XXXXCAP_SENSE_RESISTOR_PER_NODE) and the pre-scaler is adjusted to slow down the PTC
operation to ensure full charge transfer. Auto tuning of pre-scaler with RSEL_VAL_100 as the series
resistor results in least power consumption while resulting in increased power consumption and touch
response time.

AUTO_TUNE_RSEL

When Auto tuning of the series resistor is selected, the PTC runs at user defined pre-scaler setting speed
(DEF_XXXXCAP_CLK_PRESCALE_PER_NODE) and the internal series resistor is tuned automatically to
the optimum value to allow for full charge transfer. Auto tuning of series resistor with PRSC_DIV_SEL_1
as the PTC pre-scale results in best case power consumption.

AUTO_TUNE_NONE

When manual tuning option is selected, the user defined values of PTC pre-scaler and series resistor is
used for PTC operation as given in DEF_XXXXCAP_CLK_PRESCALE_PER_NODE and
DEF_XXXXCAP_SENSE_RESISTOR_PER_NODE

Setting Configuration Name Data Type Unit Values Typical

Auto tune Provided to
touch_xxcap_sensors_calibrate API
input

auto_tune_type_t None AUTO_TUNE_NONE,
AUTO_TUNE_PRSC,AU
TO_TUNE_RSEL

AUTO_TUNE_NONE

5.2.6. Sensor Noise Measurement and Lockout Parameters
Noise is measured on a per-channel basis after each channel acquisition, using historical data on a rolling
window of successive measurements. Reported noise to exclude the instance of an applied or removed
touch contact, but the noise indication must react sufficiently fast that false touch detection before noise
lockout is prevented.

Signal change from sample to sample during the window buffer is compared to the stability limit. Noise is
reported only when two changes occur within the window period and both of which exceed the
DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT limit.

Noise is calculated using the following algorithm:

 if (swing count > 2)
 {
 Nk = ((|Sn – Sn-1| > DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY))?(0):(|Sn-Sn-1|-
DEF_XXXXCAP_NOISE_MEAS_SIGNAL_STABILITY))
 }
 else
 {
 Nk = 0
 }

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

35

The swing count is number of signal changes that exceed
DEF_MUTLCAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT limit during buffer window period.

When the measured noise exceeds DEF_MUTLCAP_NOISE_LIMIT, the touch library locks out sensors,
reports no touch detection and drifting is stopped. Noise measurement is provided for all the channels.
Each byte in p_xxxxcap_measure_data-> p_nm_ch_noise_val provides the noise level
associated with that channel. Noise indication is provided for all the sensors configured by the application.
A bit is available in p_xxxxcap_measure_data-> p_sensor_noise_status for each sensor to
determine whether the sensor is noisy or not. The following code snippet provides the sample code to
read the noise status of a particular sensor.

Figure 5-9. Noise Calculation

Noise Measurement Signal Stability Limit

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

36

The parameter DEF_XXXXAP_NOISE_MEAS_SIGNAL_STABILITY_LIMIT is the variance in sensor
signal value under noisy environment. Any noise level over and above the noise signal stability limit
contributes to the Noise limit.

It is recommended to keep this setting close to the lowest sensor detect threshold of the system and tune
it further based on the noise.

Signal values can change from sample to sample during a window buffer period. The difference between
adjacent buffer value is compared to the user configured stability limit.

Noise is reported only when two changes occur within the specified window period and only if both of
which exceed the stability limit.

Range: 1 to 1000

Noise Limit

The DEF_XXXXCAP_NOISE_LIMIT specifies the limit to the total noise accumulated over the noise buffer
count. If the accumulated noise exceeds the noise limit, then lockout is triggered. There are two purposes
for this parameter:

• If the noise level calculated during a running window exceeds DEF_XXXXCAP_NOISE_LIMIT, then
the corresponding sensor are declared noisy and sensor global noisy bit is set as '1'.

• If the noise level calculated during a running window exceeds DEF_XXXXCAP_NOISE_LIMIT, then
system triggers the sensor lockout functionality.

Range: 1 to 255

Noise Measurement Buffer Count

The DEF_XXXXCAP_NOISE_MEAS_BUFFER_CNT parameter is used to select the buffer count for noise
measurement buffer.

Range: 3 to 10 (If N number of samples differences have to be checked, define this parameter as "N + 1")
If N = 4 then set DEF_XXXXCAP_NOISE_MEAS_BUFFER_CNT as 5u.

Sensor Lockout Selection

This feature locks out the sensors when the measured noise exceeds DEF_XXXXCAP_NOISE_LIMIT and
does not report a touch. This prevents post-processing. So, the high level of noise cannot cause the
channel to report false touch drift or recalibrate incorrectly.

The DEF_XXXXCAP_LOCKOUT_SEL parameter is used to select the lockout functionality method.
• If DEF_XXXXCAP_LOCKOUT_SEL is set to SINGLE_SENSOR_LOCKOUT and a sensor's noise level is

greater than DEF_XXXXCAP_NOISE_LIMIT, then corresponding sensor is locked out from touch
detection and drifting is disabled.

• If DEF_XXXXCAP_LOCKOUT_SEL is set to GLOBAL_SENSOR_LOCKOUT and any sensor's noise level
is greater than DEF_XXXXCAP_NOISE_LIMIT, then all sensors are locked out from touch detection
and drifting is disabled.

• If DEF_XXXXCAP_LOCKOUT_SEL is set to NO_LOCKOUT, then lockout feature is disabled.

Note:  Global sensors noisy bit will be available for SINGLE_SENSOR_LOCKOUT and
GLOBAL_SENSOR_LOCKOUT. Global sensors noisy bit will not be available for NO_LOCK_OUT.

Range: 0 to 2

Sensor Lockout Countdown

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

37

If the sensor signal moves from noisy to a good condition and stays there for a DEF_XXXXCAP_
LOCKOUT_CNTDOWN number of measurements, the sensor is unlocked and sensors are ready for touch
detection and drifting is enabled.

Note:  This parameter is valid only for global lockout.

Range: 1 to 255

5.2.7. Sensor Acquisition Frequency Auto Tuning Parameters
The Frequency Auto Tune feature provides the best quality of signal data for touch detection by
automatically selecting acquisition frequencies showing the best SNR in FREQ_MODE_HOP mode. During
each measurement cycle, the signal change since the last acquisition at the same frequency is recorded
for each sensor. After the cycle, when all sensors have been measured at the present acquisition
frequency, the largest signal variation of all sensors is stored as the variance for that frequency stage.

The variance for each frequency stage is compared to the DEF_XXXXCAP_FREQ_AUTO_SIGNAL_
STABILITY_LIMIT limit, and if the limit is exceeded, a per-stage counter is incremented. If the
measured variance is lower than the limit, the counter is decremented, if it has not been set as zero. If all
frequencies display noise exceeding the stability limit, only the counter for the specific frequency stage
with the highest variance is incremented after its cycle.

When a frequency counter reaches the DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT (auto-tune count in
variable), that frequency stage is selected for auto-tuning. A new frequency selection is applied and the
counters and variances for all frequencies are reset. After a frequency has been selected for auto-tuning,
the count-in for that frequency stage is set to half the original count-in and the process is repeated until
either all frequencies have been measured or a frequency is selected which does not re-trigger auto-
tuning is determined.

If all frequencies have been tested, and the variation exceeds the
DEF_XXXXCAP_FREQ_AUTO_SIGNAL_STABILITY_LIMIT limit then the frequency with the lowest
variance is selected for the frequency stage currently under tuning. The auto-tune process is re-initialized
and further tuning does not take place until a frequency stage's high variance counter again reaches the
count in limit.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

38

Figure 5-10. Frequency Auto Tune

Frequency Auto Tune Signal Stability

The DEF_XXXXCAP_FREQ_AUTO_SIGNAL_STABILITY_LIMIT is the variance in sensor signal value
under noisy environment. A signal stability limit level is set to auto tune acquisition frequency on noise
presence. It is recommended to keep this setting close to the lowest sensor detect threshold of the
system and tune it further based on the noise.

Range: 1 to 1000

Frequency Auto Tune in Counter

The DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT parameter is used to trigger the frequency auto tune.If
sensor signal change at each frequency exceeds the value specified as
DEF_XXXXCAP_FREQ_AUTO_SIGNAL_STABILITY_LIMIT for
DEF_XXXXCAP_FREQ_AUTO_TUNE_IN_CNT, then frequency auto tune will be triggered at this frequency.

Range: 1 to 255

Note:  The Frequency Auto Tune feature and related parameters are available only in FREQ_MODE_HOP
mode.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

39

5.2.8. Quick Re-burst Parameter
Quick Reburst

This macro is used to enable or disable quick re-burst feature. When Quick re-burst is enabled, upon user
touch and release, only that touched sensor or channel is subsequently measured to resolve detect
integration (or debounce). Enabling this feature results in best touch response time.

When Quick re-burst is disabled, upon user touch and release, all sensors or channels are measured to
resolve detect integration (or debounce). This feature should only be disabled when developing any
special application involving all sensor measurements during user activity.

Within an AKS (Adjacent Key suppression) group, all the sensors within that group are measured during
user touch independent of this feature being enabled or disabled.

5.2.9. Common Parameters
Measurement Period

The measurement period setting is used to set the periodic interval for touch sensor measurement. The
minimum measurement period setting should be greater than the time taken to complete measurement
on all sensors. This can be simply determined by calling the touch_xx_sensors_measure API in a
while loop and then toggling a GPIO pin in the measurement complete callback.

main()
 {
 while(1)
 {
 touch_ret =
touch_mutlcap_sensors_measure(touch_time.current_time_ms,NORMAL_ACQ_MODE,touch_mutlcap_measure
_complete_callback);
 }
 }

void touch_mutlcap_measure_complete_callback(void)
 {
 if (!(p_mutlcap_measure_data->acq_status & TOUCH_BURST_AGAIN))
 {
 /* Set the Mutual Cap measurement done flag. */
 p_mutlcap_measure_data->measurement_done_touch = 1u;
 port_pin_toggle_output_level(PIN_PB00);
 }
 }

Setting Configuration Name Data Type Unit Values Max Typical

Sensor
measurement
interval

DEF_TOUCH_MEASUREMENT_PERIOD_MS uint16_t millisecond Should be
found
through
GPIO pin
toggle
procedure.

65535 20

PTC Interrupt Priority Level

The Nested Vectored Interrupt Controller (NVIC) in the SAM has four different priority levels. The priority
level of thePTC end of conversion ISR can be selected based on application requirements to
accommodate time critical operations. Setting the PTC interrupt priority level to lowest can have an
impact on the touch response time, depending on the execution time taken by other higher priority
interrupts.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

40

Setting Configuration Name Data Type Unit Min Max Typical

PTC interrupt
priority level

DEF_TOUCH_PTC_ISR_LVL uint8_t None 0 (Highest
Priority)

3 (Lowest
Priority)

3

To avoid stack overflow, ensure that adequate stack size has been set in the user application.This
configuration is applicable only for SAM devices.

touch_suspend_app_cb

Callback function pointer that must be initialized by the application before a touch library API is called.
Touch library would call the function pointed by this function when suspension operation has to be carry
on by the application.

Setting Configuration Name Data Type Returns

Suspend Callback touch_suspend_app_cb void(* volatile
touch_suspend_app_cb) (void)

void

Low power Sensor Event Periodicity

When the CPU returns to standby mode from active, the sensor configured as the low power sensor is
scanned at this interval. A high value for this parameter will reduce power consumption but increase
response time for a low power sensor.

The following macros are used for configuring the low power sensor event periodicity:
• The macro LOWPOWER_PER0_SCAN_3_P_9_MS sets the scan rate at 3.9ms
• The macro LOWPOWER_PER1_SCAN_7_P_8_MS sets the scan rate at 7.8ms
• The macro LOWPOWER_PER2_SCAN_15_P_625_MS sets the scan rate at 15.625ms
• The macro LOWPOWER_PER3_SCAN_31_P_25_MS sets the scan rate at 31.25ms
• The macro LOWPOWER_PER4_SCAN_62_P_5_MS sets the scan rate at 62.5ms
• The macro LOWPOWER_PER5_SCAN_125_MS sets the scan rate at 125ms
• The macro LOWPOWER_PER6_SCAN_250_MS sets the scan rate at 250ms
• The macro LOWPOWER_PER7_SCAN_500_MS sets the scan rate at 500ms

Low power Sensor Drift Periodicity

This parameter configures the scan interval for a single active measurement during low power mode. This
active measurement is required for reference tracking of low power sensor.

Setting Configuration Name Data Type Unit Min Max Typical

Low
power
sensor
drift
rate

DEF_LOWPOWER_SENSOR_DRIFT_PERIODICITY_MS uint16_t milliseconds 0 65535 2000

Low power sensor ID

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

41

The macro DEF_LOWPOWER_SENSOR_ID is used to configure a sensor as low power sensor. Only one
sensor can be configured as low power sensor. Low power sensor can be a normal sensor or a lumped
sensor.

5.2.10. Moisture Parameters

Moisture Tolerance Enable

The macro DEF_XXXXCAP_MOIS_TOLERANCE_ENABLE is used to Enable or disable Moisture detection
feature.

Moisture Quick Reburst

The macro DEF_XXXXCAP_MOIS_QUICK_REBURST_ENABLE is used to enable or disable quick re-burst
feature within a given moisture group. When enabled, if within a given moisture group, when any sensor
is touched, repeated measurements are done only that sensor to resolve detect integration or de-bounce.
When disabled, if within a given moisture group, when any sensor is touched, repeated measurements
are done on all sensors within the moisture group to resolve detect integration or de-bounce. It is
recommended to enable this feature for best touch response time.

Moisture groups

The macro DEF_XXXXCAP_NUM_MOIS_GROUPS specifies the total number of individual moisture group
present the system.

5.2.11. PTC Lines Ground Feature
PTC GPIO State

The macro DEF_XXXXCAP_PTC_GPIO_STATE is used to set the unmeasured self/mutual capacitance
PTC lines to Ground / Vcc in between PTC measurement cycle. Setting the PTC lines to
GND_WHEN_NOT_MEASURED will set the state of the pin to low whenever the pin is unmeasured. Setting
the PTC lines to PULLHIGH_WHEN_NOT_MEASURED will make the PTC lines to float in between sensor
measurement in a measurement cycle. It is recommended to set GND_WHEN_NOT_MEASURED
configuration to get low power.

5.3. Moisture Tolerance
Moisture tolerance check executes at the end of each measurement cycle and compares the sum of delta
of all sensors in a moisture tolerance group against pre-configured threshold. If delta sum is greater than
sensor moisture lock threshold and less than system moisture lock threshold, then the ON-state sensors
within moisture tolerance group will be considered as moisture affected.

If delta sum is greater than system moisture lock threshold, all sensors within the moisture tolerance
group will be considered as moisture affected. This condition is referred as moisture global lock out. The
library will come out of the moisture global lock out state when delta sum is less than threshold for 5
consecutive measurements. Self cap and mutual cap sensors cannot be configured in a single moisture
group, Self cap moisture tolerance and mutual cap Moisture tolerance features can be enabled or
disabled separately.

Note:  Lumped sensor and the sensor which is part of the specific lump should not be assigned to same
moisture group.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

42

Figure 5-11. Moisture Tolerance Algorithm

5.3.1. Moisture Tolerance Group
This feature enables the customer application to group a set of sensors in to single moisture tolerance
group. If moisture on one sensor might affect other sensors due to physical proximity, they must be
grouped together into one Moisture tolerance group.

Using this feature the application can disable moisture tolerance detection for a set of sensors, Multiple
Moisture tolerance groups can be formed by the customer application. The library supports up to a
maximum of 8 moisture groups.

Note:  Changing the moisture tolerance group configuration during runtime is not recommended.
However, muti-touch group configuration can be changed during runtime.

5.3.2. Multi-touch Group
If the user wants to touch multiple sensors within the moisture tolerance group simultaneously to indicate
a specificrequest, then the application should configure those sensors into single multi-touch group.
Multiple multi-touch groups can be formed by the customer application. The library supports a maximum
of 8 multi-touch groups within a single moisture tolerance group.

Moisture tolerance feature improves a system’s performance under the following scenarios:
• Droplets of water sprayed on the front panel surface
• Heavy water poured on the front panel surface
• Large water puddle on multiple sensors

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

43

• Trickling water on multiple sensors

Moisture tolerance feature is not expected to offer any significant performance improvement under the
following scenarios:

• Large isolated puddle on single sensor
• Direct water pour on single sensor

Within the same moisture group, user should not configure all the sensors to the single multi-touch group.

5.4. Reading Sensor States
When noise immunity and moisture tolerance features are enabled the validity of the sensor sate is based
on the moisture status and noise status. Refer Noise Counter Measures and Moisture Parameters for
information on noise immunity and moisture tolerance status of sensors. The state of a sensor is valid
only when the sensor is not affected by noise and moisture. If a sensor is noisy or affected by moisture,
then the state of sensor must be considered as OFF. The code snippet below depicts the same for
mutual-cap sensors.

When a sensor is touched or released during DI, library will burst on channels corresponding to sensors
whose state is other than OFF or DISABLED. If any sensor in an AKS group is in a state other than OFF
or DISABLED, the library will burst channels corresponding sensors belong to that AKS group. If a sensor
in any moisture group is in a state other than OFF or DISABLED, the library will burst on channels
corresponding to sensors belonging to that moisture group.

if(! (GET_MUTLCAP_SENSOR_NOISE_STATUS(SENSOR_NUMBER)))
 {
 if(! (GET_MUTLCAP_SENSOR_MOIS_STATUS (SENSOR_NUMBER)))
 {
 /*Sensor state is valid Read sensor state */
 }
 else
 {
 /* Sensor is Moisture affected*/
 }
 }
else
 {
 /* Sensor is noisy */
 }

5.5. Application Flow

5.5.1. Application Flow SAM
The application periodically initiates a touch measurement on either mutual capacitance or self-
capacitance sensors. At the end of each sensor measurement, the PTC module generates an end of
conversion (EOC) interrupt. The touch measurement is performed sequentially until all the sensors are
measured. Additional post-processing is performed on the measured sensor data to determine touch
status and rotor/slider position. An interrupt callback function is triggered to indicate completion of
measurement. The recommended sequence of operation facilitates the CPU to either sleep or perform
other functions during touch sensor measurement.

Before using the PTC, the generic clock generator for the PTC peripheral should be set up by the
Application. It is recommended to set the PTC generic clock to 4MHz.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

44

Figure 5-12. Application vs QTouch Library Flow

5.5.2. Application Flow - megaAVR
The application periodically initiates a touch measurement on either mutual capacitance or self-
capacitance sensors either in polled or interrupt mode. In polling mode, touch API's are blocking API's
and will consume more CPU time. In ISR mode, touch API's are non blocking and will generates an end
of conversion (EOC) interrupt at the end of each sensor measurement.Touch measurement is intiated on
first sensor by calling touch_xxxxcap_sensors_measure() API .The touch measurement is initiated
sequentially and additional post-processing is performed on the measured sensor data to determine
touch status and rotor/slider position by calling touch_ptc_process() API in application context
instead of interrupt context. A callback function is triggered to indicate completion of measurement .The
ISR mode sequence of operation facilitates the CPU to either sleep or perform other functions during
touch sensor measurement.

It is recommended to set the PTC clock to 4MHz.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

45

Figure 5-13. Application vs QTouch Library Flow

5.6. API Sequence
The touch_xx_sensors_init API initializes the QTouch Library as well as the PTC module. It also
initializes the mutual or self-capacitance method specific pin, register, and global sensor configuration.

The touch_xx_sensor_config API configures the individual sensor. The sensor specific
configuration parameters can be provided as input arguments to this API.

The touch_xx_sensors_calibrate API calibrates all the configured sensors and prepares the
sensors for normal operation. The touch_xx_sensors_measure API initiates a sensor measurement
on all the configured sensors.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

46

Figure 5-14. API Sequence with Combined self and Mutual Capacitance Sensors Enabled

5.7. State Machine
The PTC QTouch Library state machine that presents the various library States and Event transitions can
be found in the figure below. The state machine is maintained separately for each of the touch acquisition
method, which means the state of mutual capacitance sensor operation can be different from the state of
self-capacitance allowing them to co-exist.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

47

Figure 5-15. Library State Machine

The touch_xx_sensors_init API initializes the QTouch Library as well as the PTC module. It also
initializes the mutual or self-capacitance method specific pin, register, and global sensor configuration.

The touch_xx_sensor_config API configures the individual sensor. The sensor specific configuration
parameters can be provided as input arguments to this API.

The touch_xx_sensors_calibrate API calibrates all the configured sensors and prepares the
sensors for normal operation.

The touch_xx_sensors_measure API initiates a sensor measurement on all the configured sensors.

The touch_xx_sensors_deinit function is used to clear the initialized library state. Used for clearing
the internal library data and states. When called will modify the library state to TOUCH_STATE_NULL.

The touch_xxxx_lowpower_sensor_enable_event_measure API is used to start a event trigger
based low power sensor measurement.

Touch Library Suspend Resume Operation

The touch library provides touch_suspend_ptc, touch_resume_ptc API to suspend and resume
the PTC.

When suspend API is called, the touch library initiates the suspend operation and return to the
application. After completing the current PTC conversion, the touch library will initiate suspend operation
and call the application touch suspend callback function pointer. The suspend complete callback function
pointer has to be registered by the application.
Note:  If it is not registered, then the suspend call will return TOUCH_INVALID_INPUT_PARAM.

The application then should disable corresponding clock to reduce the power consumption. The following
flowchart depicts the suspend sequence.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

48

Figure 5-16. Suspend Sequence

Touch_suspend_ptc()

Is Callback Received?

Wait for touch_suspend_callback
if touch state is in

TOUCH_STATE_BUSY or perform
some other application code

without calling any Touch _lib APIs
Yes

disable PTC GCLK
disable APBCMASK

disable GCLK generator
disable GCLK source

SUSPENSION_COMPLETE

SUPENSION_START

No

If the touch state is not TOUCH_STATE_BUSY the user can disable the clock and proceed to complete the
suspend routine.

To resume the operations, perform the following sequence:
Figure 5-17. Resume Sequence

The SAM controllers may be configured to operate PTC touch sensing autonomously using the Event
System. In this mode, a single sensor channel is designated as the 'Low Power' key and may be
periodically measured for touch detection without any CPU action. The CPU may be held in STANDBY
throughout the operation, minimizing power consumption.

The low power key may be a discrete electrode with one Y (Sense) line for self-capacitance or one X
(Drive) plus one Y (Sense) for mutual capacitance, or it may be a combination of multiple Drive and/or
Sense lines as a lumped mode sensor as described.

With this method, a fast response may be achieved even in large key-count applications while operating
at an extremely low power level, drawing less than 10uA at 3.3V.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

49

5.8. Operation Modes
The QTouch Library can operate in the following sensor measurement modes.

• Periodic measurement
• Continuous measurement

5.8.1. Periodic Measurement
In the periodic measurement mode, sensor measurement is initiated by the application through a periodic
event such as timer interrupt. The periodic measurement mode scenario is when none of the sensors are
touched. While a long measurement period can be used to achieve lower device power consumption, a
short measurement period is required for better touch response time. Hence, the measurement period
should be tuned to suit a given application. Typical measurement period can range between 20
millisecond to 250 millisecond.

Figure 5-18. Periodic Measurement Mode

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

50

5.8.2. Continuous Measurement
In the continuous measurement mode, back to back sensor measurement can be initiated from the touch
library. This mode can be triggered to resolve user presence or resolve calibration under the following
scenario.

• Resolve user presence, when sensor is touched or released
• Resolve calibration, when

– Sensor is calibrated using the touch_xx_sensors_calibrate API
– Sensor is in Away from touch re-calibration condition
– Sensor is in Max-on duration condition

The TOUCH_BURST_AGAIN acquisition status data bit field in the measure data structure is set to indicate
continuous measurement mode.

 void touch_mutlcap_measure_complete_callback(void)
 {
 if (!(p_mutlcap_measure_data->acq_status & TOUCH_BURST_AGAIN))
 {
 /* Set the Mutual Cap measurement done flag. */
 p_mutlcap_measure_data->measurement_done_touch = 1u;
 }
 }

Touch Library Acquisition Status Flags

The touch library acquisition status information during continuous measurement mode is available using
the touch_acq_status_t acq_status element of the touch_measure_data_t touch measure
data structure.

Table 5-1. Touch Acquisition Status Bit Fields

Macro Bitfield Comment

TOUCH_NO_ACTIVITY 0x0000u No Touch activity

TOUCH_IN_DETECT 0x0001u Atleast one Touch channel is in detect

TOUCH_STATUS_CHANGE 0x0002u Change in Touch status of atleast one Touch
channel

TOUCH_ROTOR_SLIDER_POS_C
HANGE

0x0004u Change in Rotor or Slider position of atleast one
rotor or slider

TOUCH_CHANNEL_REF_CHANGE 0x0008u Change in Reference value of atleast one Touch
channel

TOUCH_BURST_AGAIN 0x0008u Indicates that reburst is required to resolve Filtering
or Calibration state

TOUCH_RESOLVE_CAL 0x0200u Indicates that reburst is needed to resolve
Calibration

TOUCH_RESOLVE_FILTERIN 0x0200u Indicates that reburst is needed to resolve Filtering

TOUCH_RESOLVE_DI 0x0800u Indicates that reburst is needed to resolve Detect
Integration

TOUCH_RESOLVE_POS_RECAL 0x1000u Indicates that reburst is needed to resolve
Recalibration

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

51

Macro Bitfield Comment

TOUCH_CC_CALIB_ERROR 0x2000u Indicates that CC calibration failed on at least one
channel

TOUCH_AUTO_OS_IN_PROGRES S 0x4000u Indicates that Auto OS in progress to get stable
channel signal

The acquisition status flags can be monitored within the measure complete callback as shown.

void touch_mutlcap_measure_complete_callback(void)
 {
 if ((p_mutlcap_measure_data->acq_status & TOUCH_BURST_AGAIN))
 {
 //Denotes acquisition is incomplete.
 }
 if ((p_mutlcap_measure_data->acq_status & TOUCH_RESOLVE_CAL))
 {
 //Denotes sensor calibration is on-going.
 }
 if (!(p_mutlcap_measure_data->acq_status & TOUCH_BURST_AGAIN))
 {
 //Denotes acquisition is completed.
 /* Set the Mutual Cap measurement done flag. */
 p_mutlcap_measure_data->measurement_done_touch = 1u;
 }
 }

Continuous Measurement Post Processing Mode

The sensor data post-processing mode for QTouch library can be selected using the
DEF_xxxxCAP_TOUCH_POSTPROCESS_MODE configuration item available as part of touch.h file.

When TOUCH_LIBRARY_DRIVEN mode is selected, the library self-initiates repeated touch
measurements to resolve touch press, release and calibration. This mode is suited for best response
time.

When TOUCH_APPLN_DRIVEN mode is selected, the library does not initiate repeated touch
measurement to resolve touch press, release and calibration. This mode suits deterministic PTC interrupt
execution time for applications requiring stringent CPU time requirements. As repeated touch
measurements are delayed due to other critical application code being executed. This mode can
potentially affect the touch response time.

In order to improve the response time with the TOUCH_APPLN_DRIVEN mode, the following condition
should be applied to initiate sensor measurement, so as to cater for additional measurements without any
delay. The same condition can also be applied to other application scenario such as sleep to check for
pending acquisitions to be completed before the system can go to sleep.

 if ((touch_time.time_to_measure_touch == 1u)||(p_mutlcap_measure_data->acq_status &
TOUCH_BURST_AGAIN))
 {
 /* Start a touch sensors measurement process periodically, or if there is a pending
measurement. */
 touch_ret =
touch_mutlcap_sensors_measure(touch_time.current_time_ms,NORMAL_ACQ_MODE,touch_mutlcap_meas
ure_complete_callback);
 }

5.9. Touch Library API Error
The following table provides the touch library API error code information. The API error code type is
touch_ret_t enum.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

52

ErrorCode Enumeration Comment

TOUCH_SUCCESS Successful completion of operation

TOUCH_ACQ_INCOMPLETE Touch Library is busy with pending previous touch
measurement

TOUCH_INVALID_INPUT_PARAM Invalid input parameter

TOUCH_INVALID_LIB_STATE Operation not allowed in the current Touch Library state

TOUCH_INVALID_SELFCAP_CONFIG_PARAM Invalid self-capacitance configuration input parameter

TOUCH_INVALID_MUTLCAP_CONFIG_PARAM Invalid mutual capacitance configuration input
parameter

TOUCH_INVALID_RECAL_THRESHOLD Invalid Recalibration threshold input value

TOUCH_INVALID_CHANNEL_NUM Channel number parameter exceeded total number of
channels configured

TOUCH_INVALID_SENSOR_TYPE Invalid sensor type. Sensor type can not be
SENSOR_TYPE_UNASSIGNED

TOUCH_INVALID_SENSOR_ID Invalid sensor number parameter

TOUCH_INVALID_RS_NUM Number of Rotor/Sliders set as 0, when trying to
configure a rotor/slider

The application error codes in touch projects can be enabled or disabled using a macro
DEF_TOUCH_APP_ERR_HANDLER. By default, the value of macro DEF_TOUCH_APP_ERR_HANDLER is
set to 0 in order to disable the application error handler. To enable the application error handler, set the
macro DEF_TOUCH_APP_ERR_HANDLER as 1. When it is enabled, while(1) is used to trap errors.

Refer Application Error Code (tag_touch_app_err_t) for further information.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

53

6. Tuning for Noise Performance
The PTC has been designed with great care making it easy to design a capacitive touch solution, while at
the same time maintaining high quality of touch and performance. Nevertheless in any touch sensing
application, the system designer must consider how electrical interference in the target environment may
affect the performance of the sensors.

Touch sensors with insufficient tuning can show failures in tests of either radiated or conducted noise,
which can occur in the environment or power domain of the appliance or may be generated by the
appliance itself during normal operation. In many applications there are quality standards which must be
met where EMC performance criteria are clearly defined. However meeting the standards cannot be
considered as proof that the system will never show EMC problems, as the standards include only the
most commonly occurring types and sources of noise.

Noise immunity comes at a cost of increased touch response time and power consumption. The system
designer must carry out proper tuning of the touch sensors in order to ensure least power consumption.
The PTC QTouch library has anumber of user configurable features which can be tuned to give the best
balance between touch response time, noise immunity and power consumption.

6.1. Noise Sources
Noise sources that affect touch sensor performance can be classified as follows.

Self-generated
• Motors
• Piezo buzzers
• PWM controls Radiated
• Fluorescent lamp
• Radio transmission
• Inductive cook top Conducted
• Power supply / charger
• Mains supply

Applicable EMC standards
• Conducted Immunity EN61000-4-6

6.2. Noise Counter Measures
The effects of noise are highly dependent on the amplitude of the noise signal induced or injected onto
the sensors, and the frequency profile of that noise signal.

Generally, this noise can be classified as -
• Broadband noise
• Narrow band noise

6.2.1. Broadband Noise Counter Measures
Broadband noise refers to noise signals whose frequency components are not harmonically related to the
capacitance measurement acquisition frequencies of the PTC.

Provided that the maximum and minimum voltage levels of the acquisition signal combined with noise
signals are within the input range of the PTC and a sufficiently large number of samples are taken,

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

54

broadband noise interference can be averaged out by setting a high value of Filter level
(DEF_MUTLCAP_FILTER_LEVEL_PER_NODE, DEF_SELFCAP_FILTER_LEVEL_PER_NODE) and Auto
oversample (DEF_MUTLCAP_AUTO_OS_PER_NODE, DEF_SELFCAP_AUTO_OS_PER_NODE) settings.

If the noise amplitude is excessive, then PTC components experience saturation of measurement. In this
case the acquisition signals combined with the noise signals are outside the input range of the PTC,
which results in clipping of the measurements.

Often the clipping is not observable in the resolved measurement, as it occurs only on a portion of the
measurement samples, but the presence of clipped samples prevents effective averaging of the sample
points.

In this case, averaging of samples will not result in a noise-free measurement even with large rates of
oversampling. The resolved signal will show a shift from its correct level due to asymmetry of signal
clipping.

Configuration Parameter Setting

DEF_MUTLCAP_FILTER_LEVEL_PER_NODE,
DEF_SELFCAP_FILTER_LEVEL_PER_NODE

FILTER_LEVEL_64

DEF_MUTLCAP_AUTO_OS_PER_NODE, DEF_SELFCAP_AUTO_OS_PER_NODE AUTO_OS_DISABLE
DEF_MUTLCAP_FREQ_MODE, DEF_SELFCAP_FREQ_MODE FREQ_MODE_NONE
DEF_MUTLCAP_CLK_PRESCALE_PER_NODE,
DEF_SELFCAP_CLK_PRESCALE_PER_NODE

PRSC_DIV_SEL_1

DEF_MUTLCAP_SENSE_RESISTOR_PER_NODE,
DEF_SELFCAP_SENSE_RESISTOR_PER_NODE

RSEL_VAL_100

Auto-tune input to touch_mutlcap_sensors_calibrate(),
touch_selfcap_sensors_calibrate API

AUTO_TUNE_PRSC

STEP 1: PREVENT CLIPPING

This requires the implementation of a hardware low pass filter in order to reduce the scale of the noise
combined with acquisition signal. The sensor capacitance is combined with a series resistor on the Y
(Sense) line, either the PTC internal resistor or externally mounted on the PCB. The external series
resistor should be mounted between the Y line of the device to the Sensor, closest to the device pin.

Note:  Always use an external series resistor for self-capacitance applications in order to prevent
clipping. The internal series resistor of the PTC is limited to 100K. Depending on the noise levels, external
series resistors up to1 megaohms can be evaluated.

STEP 2: CHARGE TRANSFER TEST

As an effect of adding a series resistor to form a low pass filter, the time constant for charging the sensors
is increased. It is essential to ensure that the sensor capacitance is fully charged and discharged during
each measurement sampling.

Insufficient charging can be observed as a reduced touch delta or it may be seen on an oscilloscope by
connecting to the sense electrode.

However, this problem may not be apparent in the touch sensor operation; the application may behave
perfectly well even in the presence of low-level noise, but show much worse performance during noise
tests with the addition of the resistor compared to a configuration which excludes the resistor.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

55

Charge transfer though Auto tuning setting:

The QTouch library Auto tune setting provides a mechanism which carries out a charge transfer test on
each enabled key and sets the prescalar to the fastest available setting ensuring full charge transfer.

The following combination of setting should be used.
• DEF_MUTLCAP_SENSE_RESISTOR_PER_NODE and

DEF_SELFCAP_SENSE_RESISTOR_PER_NODE should be set to RSEL_VAL_100.
• Auto tune pre-scaler AUTO_TUNE_PRSC should be provided as input parameter to

touch_mutlcap_sensors_calibrate(AUTO_TUNE_PRSC)and
touch_mutlcap_sensors_calibrate(AUTO_TUNE_PRSC)

Testing for Charge transfer by Manual tuning:
• If the AUTO_TUNE_NONE setting is provided as an input to the

touch_mutlcap_sensors_calibrate(AUTO_TUNE_NONE) and
touch_mutlcap_sensors_calibrate (AUTO_TUNE_NONE) calibration API, then the PTC
uses the user defined settings of the PTC Clock pre-scaler (DEF_MUTLCAP_CLK_PRESCALE,
DEF_SELFCAP_CLK_PRESCALE_PER_NODE) and internal series resistor
(DEF_MUTLCAP_SENSE_RESISTOR_PER_NODE,
DEF_SELFCAP_SENSE_RESISTOR_PER_NODE).

• Reference measurement: An acquisition measurement (Signal value) is taken with the prescalar set
to maximum, i.e. PRSC_DIV_SEL_8

Test measurement: A second measurement (Signal value) is taken with reduced prescalar:
PRSC_DIV_SEL_4
If the difference between the two measurements is less than ~3% (1/32) of the first value, the conclusion
is that fullcharge transfer is achieved with PRSC_DIV_SEL_4.

This measurement is repeated for PRSC_DIV_SEL_2 and PRSC_DIV_SEL_1 to find the fastest PTC
operating speed for which full charge transfer is achieved.

STEP 3: ADJUST OVERSAMPLING

Once clipping is prevented by hardware filtering and full charge transfer is ensured the next step is to find
the best settings for Filter level (DEF_MUTLCAP_FILTER_LEVEL_PER_NODE ,
DEF_SELFCAP_FILTER_LEVEL_PER_NODE) and Auto over samples
(DEF_MUTLCAP_AUTO_OS_PER_NODE , DEF_SELFCAP_AUTO_OS_PER_NODE).

Auto over samples feature provides the advantage that additional samples are only taken on a sensor
which has showna significant change. In the absence of such a change, the measurement cycle can be
much shorter compared to applying (* AUTO_OS) as the oversampling rate on every measurement.
Care should be taken when using AUTO_OS to ensure that it does not occur too frequently.

The measurement time for FILTER_LEVEL samples can be represented as:

A+ (B * FILTER_LEVEL)

Where A is the total time for PTC configuration and post-processing, and B is the oversampling period
(the per sample measurement time)

When AUTO_OS is applied, this time is increased to:

A + (B * FILTER_LEVEL*(1 + AUTO_OS))

FILTER_LEVEL should be sufficiently large to ensure that AUTO_OS is only applied during the worst-
case noise circumstances.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

56

6.2.2. Narrowband Noise Counter Measures
If the noise includes a frequency component which is related to the PTC capacitance measurement
acquisition frequency, then no amount of oversampling will average out the noise effects. Any batch of
measurement samples taken with the same sampling frequency will result in a measurement offset. The
actual offset resulting from each measurement depends on the relative phase of the noise component
and the sampling frequency.

This effect is illustrated in the following diagram, where the noise is represented by a sine wave.

STEP 4: SELECT FREQUENCY MODE

Note:  Step1, Step2 and Step3 provided in the previous section should be used in combination with this
step in a system which has both broadband noise and narrow band noise. Default settings provided
before STEP1 should be used as a starting point before starting noise tuning.

With FREQUENCY_MODE_NONE, a single acquisition frequency is used and samples are taken at the
fastest rate possible with the given pre-scalar setting. This gives the best response time, and with
sufficient oversampling excellent noise immunity at all noise frequencies which are not related to the
sampling frequency.

However in the case where the noise is at (or close to) a frequency which is harmonically related to the
sampling frequency then the noise issue becomes severe, as illustrated above.

This is particularly important in applications where a frequency sweep test is required, such as
EN61000-4-6.

FREQUENCY_MODE_SPREAD applies a modification to the sampling rate, such that the period between
successivesamples is modified in a saw-tooth fashion to apply a wider spectrum to the sampling
frequency. The sampling frequency F0 is thus spread across the range (F0/2, F0). With relatively low
noise amplitude, this can be effective atimproving performance with minimal cost in response time.

FREQUENCY_MODE_HOP utilizes 3 base frequencies and a median filter to avoid using measurements
taken at anaffected frequency. The frequencies should be selected to minimize the set of crossover
harmonics within the problemfrequency band.

Each of the 3 frequencies is used in sequence for each measurement cycle.i.e.
• Cycle 1: All sensors measured with Frequency 0
• Cycle 2: All sensors measured with Frequency 1
• Cycle 3: All sensors measured with Frequency 2
• Cycle 4: All sensors measured with Frequency 0
• Cycle 5: All sensors measured with Frequency 1

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

57

If Frequency 0 is related to the noise frequency, then the measurements taken with F0 will show high
variation. Using a median filter, this ensures that the outlying measurements will be rejected.

In some applications, self-generated noise may be present which affects one or more of the default HOP
frequencies. Insuch a case, the HOP frequencies should be changed to avoid this frequency.

Some noise frequencies can occur which are close to harmonics of two of the HOP frequencies, in which
case thesystem must be tuned with higher settings of FILTER_LEVEL or AUTO_OS to provide enough
samples to average the noise out of the measurement.

Determining PTC Acquisition Frequency

The PTC acquisition frequency is given by the following formula,

PTC Acquisition Frequency = (1/ PTC Acquisition Time)

The PTC acquisition time is given by the following formula,

PTC Acquisition Time = (Cycles per Acquisition + Hop Freq) * PTC IO Clock Period

Where, Cycles per Acquisition = Number of PTC clock cycles required for each acquisition. This is a fixed
value of 15. Hop Freq = PTC acquisition frequency delay setting

This parameter is represented in the touch.h file by the symbols DEF_MUTLCAP_HOP_FREQS and
DEF_SELFCAP_HOP_FREQS.

The PTC acquisition frequency is dependent on the Generic clock input to PTC and PTC clock pre- scaler
setting. This delay setting inserts n PTC clock cycles between consecutive measurements on a given
sensor, thereby changing the PTC acquisition frequency.

FREQ_HOP_SEL_1 setting inserts 0 PTC clock cycles between consecutive measurements.
FREQ_HOP_SEL_16 setting inserts 15 PTC clock cycles.

Hence, higher delay setting will increase the total time taken for capacitance measurement on a given
sensor as compared to a lower delay setting.A desired setting can be used to avoid noise around the
same frequency as the acquisition frequency.

Range: FREQ_HOP_SEL_1 to FREQ_HOP_SEL_16
Three frequency hop delay settings need to be specified when assigning values to this parameter.
Duration of each PTC clock period is given by the following formula,

Where,

CLKPTC = Generic clock input to the PTC

Refer touch_configure_ptc_clock() API in touch.c file for clock configuration.

Prescaler = PTC clock prescaler setting

This parameter is represented in the touch.h file by the symbols
DEF_MUTLCAP_CLK_PRESCALE_PER_NODE and DEF_SELFCAP_CLK_PRESCALE_PER_NODE.

Example: If Generic clock input to PTC = 4MHz, then:
• PRSC_DIV_SEL_1 sets PTC Clock to 4MHz
• PRSC_DIV_SEL_2 sets PTC Clock to 2MHz
• PRSC_DIV_SEL_4 sets PTC Clock to 1MHz
• PRSC_DIV_SEL_8 sets PTC Clock to 500KHz

Example:

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

58

When CLKPTC = 4MHz, Prescaler = PRSC_DIV_SEL_1, the PTC Acquisition Frequencies obtained are
as follows,

Hop Freq PTC Acquisition Frequency(kHz)

FREQ_HOP_SEL_1 66.67

FREQ_HOP_SEL_2 62.50

FREQ_HOP_SEL_3 58.82

FREQ_HOP_SEL_4 55.56

FREQ_HOP_SEL_5 52.63

FREQ_HOP_SEL_6 50.00

FREQ_HOP_SEL_7 47.62

FREQ_HOP_SEL_8 45.45

FREQ_HOP_SEL_9 43.48

FREQ_HOP_SEL_10 41.67

FREQ_HOP_SEL_11 40.00

FREQ_HOP_SEL_12 38.46

FREQ_HOP_SEL_13 37.04

FREQ_HOP_SEL_14 35.71

FREQ_HOP_SEL_15 34.48

FREQ_HOP_SEL_16 33.33

Note:  The acquisition frequencies may vary based on the tolerance of the clock source.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

59

7. Application Design

7.1. Touch Library and Associated Files
The table below provides the mandatory files required to use the QTouch library. In order to add QTouch
functionality into an existing user example project, these files and associated library based on the
compiler should be added to the user project.

Table 7-1. Touch Library Files

File Description

touch_api_ptc.h QTouch Library API header file, contains API and Data
structure used to interface with the library

touch.h QTouch library configuration header file

touch.c A helper file to demonstrate QTouch library initialization and
sensor configuration

libsamxxx_qtouch_iar.a or
libsamxxx_qtouch_gcc.a

QTouch library compiled for IAR or GCC compiler that supports
both self-capacitance and mutual capacitance sensors.

7.2. Code and Data Memory Considerations
The table below captures the typical code and data memory required for QTouch library. The typical
memory requirements provided in the table are arrived considering only Regular API usage in the
application. Usage of Helper API would consume additional code memory.

Each measurement method requires additional data memory from the application for storing the signals,
references, sensor configuration information, and touch status. This data memory is provided by the
application as 'data block' array. The size of this data block depends on the number of sensors
configured. The PRIV_xx_DATA_BLK_SIZE macro in touch_api_ptc.h calculates the size of this
data memory block.

Table 7-2. Mutual Capacitance Method

Series Code
Memory
Keys Only

Data
Memory
Keys Only

Code
Memory
Keys with
Rotor or
Slider

Data
Memory
Keys with
Rotor or
Slider

libsamd1x-qtouch-gcc.a 9602 845 11114 861

libsamd1x-qtouch-iar.a 9005 497 10377 513

libsamd2x-qtouch-gcc.a 9222 841 10734 857

libsamd2x-qtouch-iar.a 8881 497 10254 513

libsaml21-qtouch-gcc.a 9282 841 10794 857

libsaml21-qtouch-iar.a 9744 497 11115 513

libsamda1-qtouch-gcc.a 9222 841 10734 857

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

60

Series Code
Memory
Keys Only

Data
Memory
Keys Only

Code
Memory
Keys with
Rotor or
Slider

Data
Memory
Keys with
Rotor or
Slider

libsamda1-qtouch-iar.a 8881 497 10254 513

libsamc2x-qtouch-gcc.a 9752 841 11264 857

libsamc2x-qtouch-iar.a 9209 501 10567 517

libsamr21-qtouch-gcc.a 9246 841 10758 857

libsamr21-qtouch-iar.a 8905 497 10277 513

libsaml22-qtouch-gcc.a 9886 841 11078 857

libsaml22-qtouch-iar.a 9509 501 10981 517

libatmega328pb_qtouch_gcc.a 13338 503 15760 532

libMega328PB_qtouch.r90 10761 578 12391 607

libatmega324pb_qtouch_gcc.a 14082 482 16520 631

atmega324pb_qtouch_iar.r90 10646 441 12379 562

In case of ATmega328PB, for a single touch channel (mutual capacitance mode) without noise, moisture,
auto-tune and qdebug features, RAM usage is 503 bytes. RAM usage gets increased by 36 bytes for
each additional channel.

Table 7-3. Self-capacitance Method

Series Code
Memory
Keys Only

Data
Memory
Keys Only

Code
Memory
Keys with
Rotor or
Slider

Data
Memory
Keys with
Rotor or
Slider

libsamd1x-qtouch-gcc.a 9576 841 10884 849

libsamd1x-qtouch-iar.a 8952 497 10216 505

libsamd2x-qtouch-gcc.a 9198 845 10506 845

libsamd2x-qtouch-iar.a 8841 497 10101 505

libsam121-qtouch-gcc.a 9258 841 10566 845

libsaml21-qtouch-iar.a 9806 497 11070 505

libsamda1-qtouch-gcc.a 9198 845 10506 845

libsamda1-qtouch-iar.a 8841 497 10101 505

libsamc2x-qtouch-gcc.a 9716 841 11024 845

libsamc2x-qtouch-iar.a 9148 501 10400 509

libsamr21-qtouch-gcc.a 9542 841 10850 845

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

61

Series Code
Memory
Keys Only

Data
Memory
Keys Only

Code
Memory
Keys with
Rotor or
Slider

Data
Memory
Keys with
Rotor or
Slider

libsamr21-qtouch-iar.a 8851 497 10115 505

libsaml22-qtouch-gcc.a 9530 841 11158 845

libsaml22-qtouch-iar.a 9410 501 10733 509

libatmega328pb_qtouch_gcc.a 13274 500 15260 519

libMega328PB_qtouch.r90 10705 594 12041 613

libatmega324pb_qtouch_gcc.a 14026 478 16024 593

libMega328PB_qtouch.r90 10596 437 12329 558

In case of ATmega328PB, for a single touch channel (self-capacitance mode) without noise, moisture,
auto-tune and qdebug features, RAM usage is 500 bytes. RAM usage gets increased by 32 bytes for
each additional channel.

Note: 
1. The total number of sensors supported by a specific device variant is limited by the number of XY-

lines as well as code, data, and stack memory requirements.
2. To save the memory utilized for code and data, new lib-nano C library has been used for GCC

example projects.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

62

8. Example Applications

8.1. Atmel Board Example Projects
The GCC Xplained Pro example projects can be accessed through File>New Example Project menu
option in Atmel Studio.

The IAR Xplained Pro example projects can be accessed through Atmel QTouch Library PTC Partpack.

The following example projects are available for Xplained Pro kits:
• SAM D20 Xplained Pro and QT1 Xplained Pro Mutual Capacitance example application
• SAM D20 Xplained Pro and QT1 Xplained Pro Self Capacitance example application
• SAM D21 Xplained Pro and QT1 Xplained Pro Mutual Capacitance example application
• SAM D21 Xplained Pro and QT1 Xplained Pro Self Capacitance example application
• SAM D20 Xplained Pro and QT1 Xplained Pro Mutual Capacitance example application with Lump-

Low Power configuration
• SAM D20 Xplained Pro and QT1 Xplained Pro Self Capacitance example application with Lump-

Low Power configuration
• SAM D11 Xplained Pro Self Capacitance example application
• SAM D10 Xplained Mini Self Capacitance example application
• SAM D20 QTouch Robustness Demo Moisture Example Application (self + mutual)
• SAM C20 QTouch Robustness Demo Moisture Example Application
• SAM D20 Xplained Pro and QT3 Xplained Pro Mutual Capacitance example application with Lump-

Low Power configuration
• SAM L21 Xplained Pro and QT3 Xplained Pro Mutual Capacitance example application with Lump-

Low Power configuration
• SAM DA1 Xplained Pro and QT4 Xplained Pro Self Capacitance example application
• SAM C21 Xplained Pro and QT1 Xplained Pro Mutual Capacitance example application
• SAM C21 Xplained Pro and QT1 Xplained Pro Self Capacitance example application
• SAM C21 Xplained Pro Self Capacitance example application(on-board sensor)
• SAM C21 Xplained Pro and QT5 Xplained Pro Mutual Capacitance example application
• SAM L22 Xplained Pro and Touch Segment LCD Xplained Pro Mutual Capacitance example

application
• ATmega328PB Xplained Mini Self Capacitance example application
• ATmega324PB Xplained Pro and QT5 Xplained Pro Mutual Capacitance example application

Note:  For SAM L22, it is recommended to set the PTC Clock to 8MHz.

Clock Configuration Changes in Projects:

• For SAM C20/C21 RevB devices, DPLL is used as the main clock and OSC32K is used as
reference clock for the DPLL clock source. For SAM C20/C21 RevC devices, OSC48MHz is used
as the main clock. This is demonstrated in the example projects by using the same project for both
SAM C20/C21 RevB and SAM C20/C21 RevC devices.

• The example projects which have DFLL as main clock source use scaled OSC8MHz/OSC16MHz
clock as the reference input clock.

• SAM L22 example project configures DFLL for 16MHZ (performance level - PL2) and utilizes it as
the main clock. This clock setting offers high performance.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

63

• SAM L22 low power user board project configures DFLL for 8MHZ (performance level - PL0) and
utilizes it as the main clock. This clock setting offers low power consumption.

• SAM L21/L22 low power example projects are configured in PL0 (Low power oriented mode) with
Buck regulator as the main regulator in standby sleep mode. This is the best suitable configuration
to achieve low power numbers.

The example projects make use of Xplained Pro boards and the extension kits for showcasing touch.
Those extension kits are explained in the following sections.

QT1 Xplained Pro kit:

The QT1 Xplained Pro self-capacitance and mutual capacitance extension boards are supported by SAM
D20, SAM D21, SAM DA1, SAM C21, and SAM L22 Xplained Pro Evaluation kits.

Figure 8-1. QT1 Xplained Pro Mutual Capacitance and Self-capacitance

Note:  SAM C21 Xplained Pro can operate at 3.3V and 5V Vcc, while the QT1 Xplained Pro can operate
at a maximum voltage of 3.6V. Please make sure to put the Vcc selection header on the SAM C21
Xplained Pro in the 3.3V position.

The QT1 Xplained Pro boards demonstrate the following combinations of buttons, slider, and wheels.
• 2 buttons + 2 yellow LED
• 1 slider + 8 yellow LED
• 1 wheel + 1 RGB LED

QT3 Xplained Pro kit:

The QT3 Xplained Pro extension board has 12 mutual capacitance buttons on it and it is supported by
SAM D20, SAM D21, SAM DA1, SAM L21, SAM L22 and SAM C21 Xplained Pro Evaluation kits.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

64

Figure 8-2. QT3 Xplained Pro

QT4 Xplained Pro kit:

The QT4 Xplained Pro boards demonstrate the following arrangement.
• Two self-capacitance buttons
• One unshielded proximity sensor
• One proximity sensor with driven shield with external op-amp driver
• One LED indicator for each self-capacitive button
• One LED indicator for each proximity sensor

Figure 8-3. QT4 Xplained Pro

QT5 Xplained Pro kit:

The QT5 Xplained Pro board demonstrates the following arrangement.
• One 4-channel (4X x 1Y) mutual capacitance curved slider
• Two mutual capacitance buttons
• 16 LEDs arranged as two 7-segment digits separated with a colon
• IS31FL3728 I2C LED matrix controller from ISSI

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

65

Figure 8-4. QT5 Xplained Pro

8.2. User Board Example Projects
Atmel Studio QTouch Composer can be used to create GCC projects based on the sensor and pin
configuration defined by the requirements of a user board. The generated example projects also allow for
QDebug data streaming to QTouch Analyzer.

The User board example project can be generated by accessing the QTouch Composer using the
following menu options in the Atmel Studio.

File > New Project > GCC C QTouch Executable Project > Create QTouch Library Project

The QTouch Project Builder wizard appears as shown in the screenshot. Selection of sensors, devices,
pins, debug interface and tuning of parameters can be done according to user preferences and project
can be generated. The figure shows one of the user board generated projects.

Figure 8-5. QTouch Project Builder

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

66

Figure 8-6. User Board Example Project

8.3. Using Atmel Software Framework (ASF) with the Example Projects
The example projects are based on Atmel Software Framework (ASF). For more information on ASF refer
to Atmel Software Framework User Guide http://www.atmel.com/.

The Atmel® Software Framework (ASF) is a MCU software library providing a large collection of
embedded software for Atmel flash MCUs: mega AVR, AVR XMEGA, AVR UC3 and SAM devices.

• It simplifies the usage of microcontrollers, providing an abstraction to the hardware and high- value
middleware

• ASF is designed to be used for evaluation, prototyping, design and production phases
• ASF is integrated in the Atmel Studio IDE with a graphical user interface or available as standalone

for GCC, IAR compilers
• ASF can be downloaded for free

8.4. Using Xplained Pro Kit to Program User Board
The SAM D20 Xplained Pro features a Cortex® Debug Connector (10-pin) for programming and
debugging an external target. The connector is limited to the SWD interface and is intended for in-system
programming and debugging of SAM D20 devices in the final product developed by the users. For more
information refer SAM D20 Xplained Pro User Guide (www.atmel.com).

8.5. Using QDebug Touch Data Debug Communication Interface
When using IAR and GCC example projects, QDebug touch data debug communication interface can be
enabled. This allows the communication between the touch device and QTouch Analyzer.

To enable or disable QDebug, configure DEF_TOUCH_QDEBUG_ENABLE in the touch.h file.

When QDebug is enabled and touch debug data is being updated in the QTouch Analyzer, touch
response time will be slower due to the debug communication data transfer which increases the delay in
the response time.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

67

http://www.atmel.com/

After tuning the touch sensors using QTouch Analyzer, disable the QDebug for optimized touch
performance.

Figure 8-7. Atmel DGI Interface for QDebug Data

Figure 8-8. QTouch Analyzer view

8.6. Using Xplained Pro Kit for QDebug Data Streaming from User Board
SAM D20 Xplained Pro contains Embedded Debugger (EDBG) that features an Atmel Data Gateway
Interface (DGI) over SPI and TWI. The DGI can be used to transmit a variety of data from the Xplained
Pro kit to the host PC. This arrangement can be used to send QDebug data from a user board to Atmel
Studio QTouch Analyzer for touch sensor data analysis and tuning.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

68

Figure 8-9. Using Xplained Pro for Data Streaming from User Board

The example project generated using QTouch composer makes use of SPI for data transfer. To stream
QDebug data from user board, a relay firmware should be flashed onto the SAM D20/D21 microcontroller
on the Xplained Pro kit. After connecting the SAM D20/D21 Xplained Pro to the PC, the device name
appears in the connected kits of QTouch Start Page. Right click the device name and choose Enable
User Board Analysis to flash the relay firmware.
Figure 8-10. Flash Relay Firmware

The following table indicates the SPI connection between SAM D20 Xplained Pro Kit and User Board:

Table 8-1. SPI Connection Information

SAMD20 Xplained Pro Extension header EXT3 UserBoard Pin

Pin on EXT3 Function

16 SPIMOSI (PB22) MOSI

17 SPIMISO (PB16) MISO

18 SPISCK(PB23) SCK

- SS-Connect to GND

19 GND GND

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

69

8.7. Using Atmel ICE for QDebug Data Streaming from User Board
Atmel ICE can be used to stream data from the user board.

Refer the following table and connect the mini squid cable from AVR header of Atmel ICE to user board.

Atmel-ICE AVR port pins Target pins Mini-squid pin

Pin 1 (TCK) SCK 1

Pin 2 (GND) GND 2

Pin 3 (TDO) MISO 3

Pin 4 (VTG) VCC 4

Pin 5 (TMS) SS 5

Pin 6 (nSRST) - 6

Pin 7 (Not Connected) - 7

Pin 8 (nTRST) - 8

Pin 9 (TDI) MOSI 9

Pin 10 (GND) - 0

While creating the project using QTouch composer project builder wizard, the pins SCK, MISO, SS and
MOSI can be chosen from the debug interface setup pane as shown in the figure.
Figure 8-11. Debug Interface Setup Pane

When the connections are made correctly and debug interface setup is also done in the project, flash the
project in the user board. Data can be streamed and visualized via QTouch Analyzer.
Note:  Atmel ICE would be listed in QTouch Analyzer as QDEBUG_DGI.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

70

9. Known Issues
1. PTC in Self-capacitance Mode

The following errata is applicable for SAM D20 (Revision B)

Description:

The two lowest gain settings are not selectable and an attempt by the QTouch Library to set enable of
these may result in a higher sensitivity than optimal for the sensor. The PTC will not detect all
touches.This errata does not affect mutual capacitance mode which operates as specified.

Fix/workaround:

Use SAM D20 revision C or later for self-capacitance capacitive touch sensing.

2. Touch acquisition may fail and stop working

The following errata is applicable for QTouch Library versions up to 5.0.7. This issue has been fixed in
QTouch Library version 5.0.8 or later.

Description:

In QTouch applications, where either a single interrupt or a chain of nested non-PTC interrupts has
duration longer than the total touch measurement time, the touch acquisition may fail and stop working.
This issue occurs most likely in applications with few touch channels (2-3 channels) and a low level of
noise handling (filter level 16 or lower and no frequency hopping).

In an application with single touch channel and filter level 16, the total measurement time is ~350µs. The
total measurement time doubles for two touch channels, and triples for 3 touch channels. It increases up
to 10 times or 3.5ms with 10 touch channels.

Fix/workaround:
• Recommended workaround:

– Use QTouch Library version 5.0.8 or later.
• Other alternatives:

1. Always ensure that the duration of a single interrupt or a chain of nested non-PTC interrupts
does not exceed the total touch measurement time. (or)

2. Add a critical section by disabling interrupts for the touch_xxxxcap_sensors_measure()
function as shown in the following code snippet.

 Disable_global_interrupt();
 touch_ret = touch_xxxxcap_sensors_measure(touch_time.current_time_ms, NORMAL_ACQ_MODE,
touch_xxxxcap_measure_complete_callback);
 Enable_global_interrupt();

The Interrupt Blocking Time while executing touch_xxxxcap_sensors_measure API for various CPU
frequencies are as follows.

CPU Frequency (in MHz) Interrupt Blocking Time (in μs)

48 ~77

24 ~124

16 ~176

12 ~223

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

71

The interrupt blocking time varies based on the PTC_GCLK frequency, CPU frequency, and the library
version. The actual blocking time can be measured by toggling a GPIO pin before and after the
touch_xxxxcap_sensors_measure function.

When IAR compiler is used, utilize the system_interrupt_enable_global() and
system_interrupt_disable_global() functions to enable and disable the global interrupts,
respectively. In case of AVR, use cli() and sei() instructions to disable and enable the global
interrupts.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

72

10. FAQ on PTC Qtouch
Table 10-1. Frequently Asked Questions

Query Answer

When can we change an
acquisition, sensor configuration or
global sensor parameter?

After changing an acquisition
parameter do we need to
recalibrate or reinitialize the
sensors and PTC?

Its best to call the helper APIs to update these parameter when
the measurement_done_touch flag (part of
touch_measure_data_t structure) is true, which means the
library is not in the middle of an (previously started) incomplete
acquisition. Changing Gain and Filter level settings can affect the
Signal value, so recalibration is mandatory by invoking the
touch_sensors_calibrate() API.

Can sensors be disabled and re-
enabled run time?

For example, scan 2 sensors while
sleeping and then scan all sensors
when the system wakes up.

Yes, this is possible using the
touch_xxxcap_sensor_disable() and
touch_xxxcap_sensor_reenable() API.

There is a low amplitude pulse prior
to the 16 acquisition samples and a
large amplitude pulse after the 16
acquisition samples.

These pulses are part of setting up the sense line's initial
conditions.

Is Detect integration calculated
inside the PTC or by QTouch
library?

This is done by QTouch library.

When Auto Oversampling is
enabled how can one determine
touch timing?

The absolute maximum cycle, is the case that auto oversamples is
applied to all channels: (Normal acquisition time) x (1 + auto_os).

This can only happen with a poorly tuned system, as
FILTER_LEVEL should be sufficient to prevent AUTO_OS
happening except on a touched key under noisy conditions.

Can sensor signal lines (Y or X
lines) be used to drive LEDs, etc.,
when not being used for sensor
acquisitions?

No. This is not recommended

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

73

11. Appendix

11.1. Macros

11.1.1. Touch Library Acquisition Status Bit Fields

Keyword Type Description

TOUCH_NO_ACTIVITY 0x0000u No touch activity.

TOUCH_IN_DETECT 0x0001u Atleast one touch channel is in detect.

TOUCH_STATUS_CHANGE 0x0002u Change in touch status of at least one Touch
channel.

TOUCH_ROTOR_SLIDER_POS_CHANGE 0x0004u Change in the position of at least one rotor or slider.

TOUCH_CHANNEL_REF_CHANGE 0x0008u Changein the reference value of at least one touch
channel.

TOUCH_BURST_AGAIN 0x0100u Indicates that re-burst is required to resolve filtering
or calibration state.

TOUCH_RESOLVE_CAL 0X0200u Indicates that re-burst is required to resolve
calibration.

TOUCH_RESOLVE_FILTERIN 0x0400u Indicates that re-burst is required to resolve
calibration.

TOUCH_RESOLVE_DI 0x0800u Indicates that re-burst is needed to resolve Detect
Integration.

TOUCH_RESOLVE_POS_RECAL 0x1000u Indicates that re-burst is needed to resolve
recalibration.

TOUCH_CC_CALIB_ERROR 0X2000u Indicates that CC calibration failed on at least one
channel.

TOUCH_AUTO_OS_IN_PROGRESS 0X4000u Indicates that Auto-os in progress to get stable
channel signal.

11.1.2. Sensor State Configurations
GET_SENSOR_STATE (SENSOR_NUMBER)

To get the sensor state (whether detect or not) for parameter that corresponds to the sensor specified
using the SENSOR_NUMBER.

The macro returns either 0 or 1. If the bit value is 0, the sensor is not in detect. If the bit value is 1, the
sensor is in detect.

#define GET_XXXXCAP_SENSOR_STATE(SENSOR_NUMBER) p_xxxxcap_measure_data-
>p_sensor_states
[(SENSOR_NUMBER / 8)] & (1 << (SENSOR_NUMBER % 8))) >> (SENSOR_NUMBER %8)

GET_XXXXCAP_SENSOR_MOIS_STATUS (SNSR_NUM)

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

74

To get the moisture status of a particular sensor. The return value is 1 in case of sensor is affected by
moisture and returns 0 if sensor is affected by moisture.

#define GET_XXXXCAP_SENSOR_MOIS_STATUS(SNSR_NUM) ((p_xxxxcap_measure_data-
>p_sensor_mois_status
[(SNSR_NUM)/8] & (1<<((SNSR_NUM)%8))) >>(SNSR_NUM %8))

GET_XXXXCAP_MOIS_GRP_SUM_DELTA (GRP_ID)

To get the xxxxcap moisture group sum delta.

The return value is 32 bit integer indicating the sum delta of moisture group.

#define GET_XXXXCAP_MOIS_GRP_SUM_DELTA(GRP_ID)(mois_XXXX_grp_delta_arr[(GRP_ID)-1])

GET_XXXXCAP_MOIS_GRP_ADJ_DELTA (GRP_ID)

To get the xxxxcap moisture group Adjacent delta .The return value is 32 bit integer indicating the
adjacent delta of moisture group.

#define GET_MUTLCAP_MOIS_GRP_ADJ_DELTA(GRP_ID)(mois_mutl_grp_adj_delta_arr[(GRP_ID)-1])

GET_MOIS_XXXX_GLOB_LOCK_STATE

To get the moisture lock status of xxxxcap moisture groups. The return value is 1 if any moisture group is
in moisture global lockout and 0 if no moisture group is in moisture global lockout.

#define GET_MOIS_MUT_GLOB_LOCK_STATE(mois_lock_global_mutl)

GET_XXXXCAP_SENSOR_NOISE_STATUS (SENSOR_NUMBER)

To get the noise status of a particular sensor. The return value is 1 in case of sensor is noisy and returns
0 if sensor is not noisy.

#define GET_XXXXCAP_SENSOR_NOISE_STATUS (SENSOR_NUMBER)(p_xxxxcap_measure_data-
>p_sensor_noise_status
[(SENSOR_NUMBER / 8)] & (1 <<(SENSOR_NUMBER % 8))) >> (SENSOR_NUMBER % 8)

GET_ROTOR_SLIDER_POSITION (ROTOR_SLIDER_NUMBER)

To get the rotor angle or slider position. These values are valid only when the sensor state for
corresponding rotor or slider state is in detect.

ROTOR_SLIDER_NUMBER is the parameter for which the position is being obtained.

The macro returns rotor angle or sensor position.

#define
GET_XXXXCAP_ROTOR_SLIDER_POSITION(ROTOR_SLIDER_NUMBER)p_xxxxcap_measure_data-
>p_rotor_slider_values
 [ROTOR_SLIDER_NUMBER]

DEF_TOUCH_MUTLCAP must be set to 1 in the application to enable the Mutual capacitance touch
acquisition method.

DEF_TOUCH_SELFCAP must be set to 1 in the application to enable the Self-capacitance touch
acquisition method.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

75

11.2. Typedef

Field Unit Description

threshold_t uint8_t An unsigned 8-bit number setting a sensor detection
threshold.

sensor_id_t uint8_t Sensor number type.

touch_current_time_t uint16_t Current time type.

touch_delta_t int16_t Touch sensor delta value type.

touch_acq_status_t uint16_t Status of touch measurement.

mois_snsr_threshold_t int32_t Moisture threshold for individual sensor.

mois_system_threshold_t int32_t Moisture threshold for the entire system.

11.3. Enumeration

11.3.1. Gain Setting (tag_gain_t)
Gain per touch channel.

Gain is applied on a per-channel basis to allow a scaling-up of the touch sensitivity on contact.

Range: GAIN_1 (no scaling) to GAIN_32 (scale-up by32)

Data Fields
• GAIN_1
• GAIN_2
• GAIN_4
• GAIN_8
• GAIN_16
• GAIN_32

11.3.2. Filter Level Setting (tag_filter_level_t)
Touch library FILTER LEVEL setting.

The filter level setting controls the number of samples acquired to resolve each acquisition. A higher filter
level setting provides improved signal to noise ratio under noisy conditions, while increasing the total time
for measurement which results in increased power consumption. Refer filter_level_t in
touch_api_ptc.h
Range: FILTER_LEVEL_1 (one sample) to FILTER_LEVEL_64 (64 samples).

Data Fields
• FILTER_LEVEL_1
• FILTER_LEVEL_2
• FILTER_LEVEL_4
• FILTER_LEVEL_8
• FILTER_LEVEL_16
• FILTER_LEVEL_32

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

76

• FILTER_LEVEL_64

11.3.3. Auto Oversample Setting (tag_auto_os_t)
Auto oversample controls the automatic oversampling of sensor channels when unstable signals are
detected with the default setting of 'Filter level'. Enabling Auto oversample results in 'Filter level' x 'Auto
Oversample' number of samples taken on the corresponding sensor channel when an unstable signal is
observed. In a case where 'Filter level' is set to FILTER_LEVEL_4 and 'Auto Oversample' is set to
AUTO_OS_4, 4 oversamples are taken with stable signal values and 4+16 oversamples are taken when
unstable signal is detected.

Range: AUTO_OS_DISABLE (oversample disabled) to AUTO_OS_128 (128 oversamples).

Data Fields
• AUTO_OS_DISABLE
• AUTO_OS_2
• AUTO_OS_4
• AUTO_OS_8
• AUTO_OS_16
• AUTO_OS_32
• AUTO_OS_64
• AUTO_OS_128

11.3.4. Low Power Sensor Scan Rate (tag_lowpower_scan_int_t)
When the CPU returns to standby mode from active, the sensor configured as the low power sensor is
scanned at this interval. A high value for this parameter will reduce power consumption but increase
response time for a low power sensor.
Note:  This enum is applicable only for ATmega devices.

Range: LOWPOWER_PER0_SCAN_3_P_9_MS to LOWPOWER_PER7_SCAN_250_MS
Data Fields

• LOWPOWER_PER0_SCAN_3_P_9_MS
• LOWPOWER_PER1_SCAN_7_P_8_MS
• LOWPOWER_PER2_SCAN_15_P_625_MS
• LOWPOWER_PER3_SCAN_31_P_25_MS
• LOWPOWER_PER4_SCAN_62_P_5_MS
• LOWPOWER_PER5_SCAN_125_MS
• LOWPOWER_PER6_SCAN_250_MS

11.3.5. Library Error Code (tag_touch_ret_t)
Touch Library error codes.

Data Fields

• TOUCH_SUCCESS Successful completion of touch operation.
• TOUCH_ACQ_INCOMPLETE Library is busy with pending previous touch measurement.
• TOUCH_INVALID_INPUT_PARAM Invalid input parameter.
• TOUCH_INVALID_LIB_STATE Operation not allowed in the current touch library state.
• TOUCH_INVALID_SELFCAP_CONFIG_PARAM Invalid self-capacitance configuration input

parameter.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

77

• TOUCH_INVALID_MUTLCAP_CONFIG_PARAM Invalid mutual capacitance configuration input
parameter.

• TOUCH_INVALID_RECAL_THRESHOLD Invalid recalibration threshold input value.
• TOUCH_INVALID_CHANNEL_NUM Channel number parameter exceeded total number of channels

configured.
• TOUCH_INVALID_SENSOR_TYPE Invalid sensor type. Sensor type must NOT be

SENSOR_TYPE_UNASSIGNED.
• TOUCH_INVALID_SENSOR_ID Invalid sensor number parameter.
• TOUCH_INVALID_RS_NUM Number of rotor/sliders set as 0, while trying to configure a rotor/slider.

11.3.6. Application Error Code (tag_touch_app_err_t)
The application error codes are listed below.

Data Fields

• TOUCH_INIT_CONFIG_ERR The touch_xxxxcap_sensors_init is fed with an incompatible /
incomplete parameter.

• TOUCH_SENSOR_CONFIG_ERR The touch_xxxxcap_sensor_config is fed with an
incompatible parameter / Touch Library state is not in TOUCH_STATE_INIT.

• TOUCH_INIT_CALIB_ERR The touch_xxxxcap_sensors_calibrate is fed with an invalid
parameter / Touch Library state is TOUCH_STATE_NULL/ TOUCH_STATE_BUSY.

• TOUCH_MEASURE_INCOMPLETE The touch_measure api has error due to an invalid input
param / it was on an invalid Touch Library state.

• TOUCH_MEASURE_CC_CAL_FAILED Hardware calibration error; check the hardware and ensure it
is proper. If the error persists, check the user manual for sensor design guidelines.

11.3.7. Touch Channel (tag_channel_t)
Sensor start and end channel type of a Sensor. Channel number starts with value 0.

Data Fields

CHANNEL_0 to CHANNEL_255

11.3.8. Touch Library State (tag_touch_lib_state_t)
Touch library state.

Data Fields
• TOUCH_STATE_NULL Touch library is un-initialized. All sensors are disabled.
• TOUCH_STATE_INIT Touch library has been initialized
• TOUCH_STATE_READY Touch library is ready to start a new capacitance measurement on enabled

sensors.
• TOUCH_STATE_CALIBRATE Touch library is performing calibration on all sensors.
• TOUCH_STATE_BUSY Touch library is busy with on-going capacitance measurement.

11.3.9. Sensor Type (tag_touch_lib_state_t)
Sensor types available.

Data Fields
• SENSOR_TYPE_UNASSIGNED Sensor is not configured yet
• SENSOR_TYPE_KEY Sensor type key

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

78

• SENSOR_TYPE_ROTOR Sensor type rotor
• SENSOR_TYPE_LUMP Sensor type lump
• SENSOR_TYPE_SLIDER Sensor type slider
• MAX_SENSOR_TYPE Max value of enum type for testing

11.3.10. Touch Sensing Type (tag_touch_acq_t)
Based on the two types of charge transfer technology, the capacitive touch sensing may be either mutual
capacitance sensing or self-capacitance sensing.

Data Fields

• TOUCH_MUTUAL Mutual capacitance sensing
• TOUCH_SELF Self-capacitance sensing
• MAX_TOUCH_ACQ Max value of enum

11.3.11. Touch Library Acquisition Mode (tag_touch_acq_mode_t)
Touch library acquisition mode.

Data Fields

RAW_ACQ_MODE
When raw acquisition mode is used, the measure_complete_callback function is called immediately
once a fresh value of signals are available. In this mode, the Touch Library does not perform any post
processing. So, the references, sensor states or rotor/slider position values are not updated in this mode.

NORMAL_ACQ_MODE
When normal acquisition mode is used, the measure_complete_callback function is called only after
the Touch Library completes processing of the signal values obtained. The references, sensor states and
rotor/slider position values are updated in this mode.

11.3.12. Calibration Auto tune Setting (tag_auto_tune_type_t)
Touch library PTC prescaler clock and series resistor auto tuning setting

Data Fields

• AUTO_TUNE_NONE Auto tuning mode disabled. This mode uses the user defined PTC prescaler
and series resistor values.

• AUTO_TUNE_PRSC Auto tune PTC prescaler for best noise performance . This mode uses the user
defined series resistor value.

• AUTO_TUNE_RSEL Auto tune series resistor for least power consumption. This mode uses the user
defined PTC prescaler value.

11.3.13. PTC Acquisition Frequency Mode Setting (tag_freq_mode_sel_t)
The frequency mode setting option enables the PTC acquisition to be configured for the following modes.

• Frequency hopping and spread spectrum disabled.
• Frequency hopping enabled with median filter.
• Frequency spread spectrum enabled without median filter.
• Frequency spread spectrum enabled with median filter.

Range: FREQ_MODE_NONE (no frequency hopping & spread spectrum) to FREQ_MODE_SPREAD_MEDIAN
(spread spectrum with median filter)

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

79

Data Fields

• FREQ_MODE_NONE 0u
• FREQ_MODE_HOP 1u
• FREQ_MODE_SPREAD 2u
• FREQ_MODE_SPREAD_MEDIAN 3u

11.3.14. PTC Clock Pre-scaler Setting (tag_prsc_div_sel_t)
Refer touch_configure_ptc_clock() API in touch.c
Example:

If generic clock input to PTC = 4 MHz,
• PRSC_DIV_SEL_1 sets PTC Clock to 4 MHz.
• PRSC_DIV_SEL_2 sets PTC Clock to 2 MHz.
• PRSC_DIV_SEL_4 sets PTC Clock to 1 MHz.
• PRSC_DIV_SEL_8 sets PTC Clock to 500 kHz.

Data Fields
• PRSC_DIV_SEL_1
• PRSC_DIV_SEL_2
• PRSC_DIV_SEL_4
• PRSC_DIV_SEL_8

11.3.15. PTC Series Resistor Setting (tag_rsel_val_t)
For mutual capacitance mode, this series resistor is switched internally on the Y-pin. For self-capacitance
mode, the series resistor is switched internally on the sensor pin.

Example:
• RSEL_VAL_0 sets internal series resistor to 0 Ohms.
• RSEL_VAL_20 sets internal series resistor to 20 Kohms.
• RSEL_VAL_50 sets internal series resistor to 50 Kohms.
• RSEL_VAL_100 sets internal series resistor to 100 Kohms.

Data Fields
• RSEL_VAL_0
• RSEL_VAL_20
• RSEL_VAL_50
• RSEL_VAL_100

11.3.16. PTC Acquisition Frequency Delay Setting (tag_rsel_val_t)
The PTC acquisition frequency is dependent on the generic clock input to PTC and PTC clock prescaler
setting. This delay setting inserts n PTC clock cycles between consecutive measurements on a given
sensor, thereby changing the PTC acquisition frequency. FREQ_HOP_SEL_1 setting inserts 0 PTC clock
cycle between consecutive measurements. FREQ_HOP_SEL_16 setting inserts 15 PTC clock cycles.
Hence, higher delay setting will increase the total time required for capacitance measurement on a given
sensor as compared to a lower delay setting.

A desired setting avoids noise in the same frequency as the acquisition frequency.

Data Fields

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

80

• FREQ_HOP_SEL_1
• FREQ_HOP_SEL_2
• FREQ_HOP_SEL_3
• FREQ_HOP_SEL_4
• FREQ_HOP_SEL_5
• FREQ_HOP_SEL_6
• FREQ_HOP_SEL_7
• FREQ_HOP_SEL_8
• FREQ_HOP_SEL_9
• FREQ_HOP_SEL_10
• FREQ_HOP_SEL_11
• FREQ_HOP_SEL_12
• FREQ_HOP_SEL_13
• FREQ_HOP_SEL_14
• FREQ_HOP_SEL_15
• FREQ_HOP_SEL_16

11.3.17. AKS Group (tag_aks_group_t)
It provides information about the sensors that belong to specific AKS group. NO_AKS_GROUP indicates
that the sensor does not belong to any AKS group and cannot be suppressed. AKS_GROUP_x indicates
that the sensor belongs to the AKS group x.

Data Fields

• NO_AKS_GROUP
• AKS_GROUP_1
• AKS_GROUP_2
• AKS_GROUP_3
• AKS_GROUP_4
• AKS_GROUP_5
• AKS_GROUP_6
• AKS_GROUP_7
• MAX_AKS_GROUP Max value of enum type for testing.

11.3.18. Sensor Hysteresis Setting (tag_hysteresis_t)
A sensor detection hysteresis value. This is expressed as a percentage of the sensor detection threshold.
HYST_x = hysteresis value is x% of detection threshold value (rounded down).

Note:  A minimum value of 2 is used.

Example: If detection threshold = 20,
• HYST_50 = 10 (50% of 20)
• HYST_25 = 5 (25% of 20)
• HYST_12_5 = 2 (12.5% of 20)
• HYST_6_25 = 2 (6.25% of 20 = 1, but value is hard limited to 2)

Data Fields
• HYST_50

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

81

• HYST_25
• HYST_12_5
• HYST_6_25
• MAX_HYST Max value of enum type for testing.

11.3.19. Sensor Recalibration Threshold (tag_recal_threshold_t)
This is expressed as a percentage of the sensor detection threshold. RECAL_x = recalibration threshold
is x% of detection threshold value (rounded down).

Note:  A minimum value of 4 is used.

Example: If detection threshold = 40,
• RECAL_100 = 40 (100% of 40)
• RECAL_50 = 20 (50% of 40)
• RECAL_25 = 10 (25% of 40)
• RECAL_12_5 = 5 (12.5% of 40)
• RECAL_6_25 = 4 (6.25% of 40 = 2, but value is hard limited to 4)

Data Fields
• RECAL_100
• RECAL_50
• RECAL_25
• RECAL_12_5
• RECAL_6_25
• MAX_RECAL Max value of enum type for testing.

11.3.20. Rotor Slider Resolution (tag_resolution_t)
For rotors and sliders, the resolution of the reported angle or position.

• RES_x_BIT = rotor/slider reports x-bit values.

Example: If slider resolution is RES_7_BIT, then reported positions are in the range 0..127.

Data Fields

• RES_1_BIT
• RES_2_BIT
• RES_3_BIT
• RES_4_BIT
• RES_5_BIT
• RES_6_BIT
• RES_7_BIT
• RES_8_BIT
• MAX_RES Max value of enum type for testing.

11.3.21. PTC Sensor Noise Lockout setting (nm_sensor_lockout_t)
The sensor lockout setting option allows the system to be configured in the following modes.

• SINGLE_SENSOR_LOCKOUT Single sensor can be locked out.
• GLOBAL_SENSOR_LOCKOUT All the sensors are locked out for touch detection.
• NO_LOCK_OUT All the sensors are available for touch detection.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

82

Range: SINGLE_SENSOR_LOCKOUT to NO_LOCK_OUT.

Data Fields
• SINGLE_SENSOR_LOCKOUT 0u
• GLOBAL_SENSOR_LOCKOUT 1u
• NO_LOCK_OUT 2u

11.3.22. 11_3_21_PTC_GPIO_STATE(ptc_gpio_state_t)
Detailed Description

PTC lines state in unmeasured condition can be set using this enum
• PULLHIGH_WHEN_NOT_MEASURED Indicates that default state of PTC lines are at vcc.
• GND_WHEN_NOT_MEASURED Indicates that default state PTC lines are grounded.

Range: PULLHIGH_WHEN_NOT_MEASURED=0 and GND_WHEN_NOT_MEASURED.

Data Fields
• PULLHIGH_WHEN_NOT_MEASURED
• GND_WHEN_NOT_MEASURED

11.3.23. Moisture Group Setting (moisture_grp_t)
Detailed Description

Sensor can be configured in the moisture group using this type.
• MOIS_DISABLED Indicates that the sensor does not belong to any moisture group.
• MOIS_GROUP_X Indicates that the sensor belongs to the moisture group x.

Range: MOIS_DISABLED = 0 to MOIS_GROUP_7.

Data Fields

• MOIS_DISABLED=0
• MOIS_GROUP_0
• MOIS_GROUP_1
• MOIS_GROUP_2
• MOIS_GROUP_3
• MOIS_GROUP_4
• MOIS_GROUP_5
• MOIS_GROUP_6
• MOIS_GROUP_7
• MOIS_GROUPN

11.3.24. Multi-touch Group Setting (mltch_grp_t)
Detailed Description

Sensor can be configured in the multi-touch group using this type
• MLTCH_NONE Indicates that the sensor does not belong to any multi-touch group.
• MLTCH_GROUP_X Indicates that the sensor belongs to the multi-touch group x.

Range: MLTCH_NONE=0 to MOIS_GROUP_7.

Data Fields

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

83

• MLTCH_NONE=0
• MLTCH_GROUP_0
• MLTCH_GROUP_1
• MLTCH_GROUP_2
• MLTCH_GROUP_3
• MLTCH_GROUP_4
• MLTCH_GROUP_5
• MLTCH_GROUP_6
• MLTCH_GROUP_7
• MLTCH_GROUPN

11.3.25. Touch Mode Configuration (tag_tch_mode)
Touch mode can be configured.
Note:  This is applicable only for ATmega devices.

Data Fields
• TCH_MODE_POLLED Polled mode
• TCH_MODE_ISR Interrupt mode
• TCH_MODE_NONE Touch mode is null.

11.3.26. Trigger Mode (tag_trigger_mode)
Trigger source for continuous hardware PTC acquisition. It is n clock cycles of internal 128Khz clock.
Note:  This is applicable only for ATmega devices.

Data Fields
• TCH_TRIGGER_128KHZ_4MS
• TCH_TRIGGER_128KHZ_8MS
• TCH_TRIGGER_128KHZ_16MS
• TCH_TRIGGER_128KHZ_32MS
• TCH_TRIGGER_128KHZ_64MS
• TCH_TRIGGER_128KHZ_128MS
• TCH_TRIGGER_128KHZ_256MS

11.4. Datastructures

11.4.1. Touch Library Timing Info (tag_touch_time_t)
Touch library time parameter.

Data Fields

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

84

Field Unit Description

measurement_period_ms uint16_t Touch measurement period in milliseconds. This
variable determines how often a new touch
measurement must be done.

current_time_ms volatile
uint16_t

Current time set by timer ISR.

time_to_measure_touch volatile
uint8_t

Flag set by timer ISR when it is time to measure
touch.

11.4.2. Sensor Info (tag_sensor_t)
Sensor structure for storing sensor related information.

Data Fields

Keyword Type Description

state uint8_t Sensor state (calibrate, on, off, filter-in, filter-out, disable, pos-recal)

general_counter uint8_t General purpose counter used for calibrating, drifting, etc

ndil_counter uint8_t Counter used for detect integration

type_aks_pos_hyst uint8_t bits 7..6: sensor type: {00: key,01: rotor,10: slider,11: reserved} bits
5..3: AKS group (0..7): 0 = no AKS group bit 2 : positive recal flag
bits 1..0: hysteresis

threshold uint8_t Sensor detection threshold

from_channel uint8_t Sensor from channel for keys: from channel = to channel. Rotors:
Top channel. Sliders : Left most channel
Note:  We need to_channel for rotors/sliders only

to_channel uint8_t For keys, this is unused. For rotors: Bottom left channel. For sliders:
Middle channel

index uint8_t Index into array of rotor/slider values

11.4.3. Global Sensor Configuration Info (tag_touch_global_param_t)
Touch library global parameter.

Data Fields

Field Unit Description

di uint8_t Detect Integration (DI) limit.

atch_drift_rate uint8_t Sensor away from touch drift rate.

tch_drift_rate uint8_t Sensor towards touch drift rate.

max_on_duration uint8_t MaximumON time duration.

drift_hold_time uint8_t Sensor drift hold time.

atch_recal_delay uint8_t Sensor away from touch
recalibration delay.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

85

Field Unit Description

cal_seq_1_count uint8_t Sensor calibration dummy burst
count.

cal_seq_2_count uint8_t Sensor calibration settling burst
count.

recal_threshold recal_threshold_t Sensor away from touch
recalibration threshold.

touch_postprocess_mode Uint16_t Sensor post-processing mode.

auto_os_sig_stability_limit uint8_t Stability limit for Auto Oversample
feature.

auto_tune_sig_stability_limit uint16_t Stability limit for frequency auto
tune feature.

auto_freq_tune_in_cnt uint8_t Frequency auto tune In counter.

nm_sig_stability_limit uint16_t Stability limit for noise
measurement.

nm_noise_limit uint8_t Noise limit.

nm_enable_sensor_lock_out nm_sensor_lockout_t Sensor lockout feature variable.

nm_lockout_countdown uint8_t Lockout countdown for noise
measurement.

Charge_share_delay uint8_t Charge share delay value;
applicable only for SAM C20, SAM
C21, SAM L22 and ATmega
devices.

11.4.4. Filter Callback Data Type (tag_touch_filter_data_t)
Touch library filter callback data type.

Data Fields

Field Unit Description

num_channel_signals uint16_t Length of the measured signal values list.

p_channel_signals uint16_t Pointer to measured signal values for each channel.

11.4.5. Measure Data Type (tag_touch_measure_data_t)
Touch library measure data type.

Data Fields

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

86

Field Unit Description

measurement_done_t
ouch

volatile uint8_t Flag set by
touch_xxxxcap_measure_complete_callba
ck() function when a latest Touch status is
available.

acq_status touch_acq_status_t Status of touch measurement.

num_channel_signal
s

uint16_t Length of the measured signal values list.

*p_channel_signals uint16_t Pointer to measured signal values for each
channel.

num_channel_refere
nces

uint16_t Length of the measured reference values list.

*p_channel_referen
ces

uint16_t Pointer to measured reference values for each
channel.

num_sensor_states uint8_t Number of sensor state bytes.

*p_sensor_states uint8_t Pointer to touch status of each sensor.

num_rotor_slider_v
alues

uint8_t Length of the rotor and slider position values list.

*p_rotor_slider_va
lues

uint8_t Pointer to rotor and slider position values.

num_sensors uint16_t Length of the sensors data list.

*p_cc_calibration_
vals

uint16_t Pointer to calibrated compensation values for a
given sensor channel.

*p_sensors sensor_t Pointer to sensor data.

*p_sensor_noise_st
atus

uint8_t Pointer to noise status of the sensors.

*p_nm_ch_noise_val uint16_t Pointer to noise level value of each channel.

*p_sensor_mois_sta
tus

uint8_t Pointer to moisture status

*p_auto_os_status uint8_t Pointer to auto-oversamples status

cc_calib_status_fl
ag

uint8_t Flag is set when CC-calibration is ongoing.

11.4.6. Sensor Configuration Parameter
(tag_touch_selfcap_param_t,tag_touch_mutlcap_param_t)
Touch library self-capacitance and mutual capacitance sensor parameter.

Data Fields

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

87

Field Unit Description

aks_group aks_group_t Which AKS group, the sensor belongs to.

detect_threshold threshold_t An unsigned 8-bit number setting a sensor detection
threshold.

detect_hysteresis hysteresis_t A sensor detection hysteresis value. This is expressed as
a percentage of the sensor detection threshold. HYST_x =
hysteresis value is x% of detection threshold value
(rounded down). A minimum value of 2 is used. Example: If
detection threshold = 20,
HYST_50= 10 (50% of 20)

HYST_25= 5 (25% of 20)

HYST_12_5 = 2 (12.5% of 20)

HYST_6_25 = 2 (6.25% of 20 = 1, but value is hard limited
to 2)

position_resolution resolution_t For rotors and sliders, the resolution of the reported angle
or position. RES_x_BIT = rotor/slider reports x-bit values.
Example: If slider resolution is RES_7_BIT, then reported
positions are in the range 0..127

position_hysteresis uint8_t Sensor position hysteresis. This is valid only for a rotor or
slider. bits 1..0: hysteresis.
Note:  This parameter is valid only for mutual capacitance
method.

11.4.7. Sensor Acquisition Parameter
(tag_touch_selfcap_acq_param_t,_tag_touch_mutlcap_acq_param_t)
Sensor acquisition parameter.

Data Fields

Field Unit Description

*p_xxxxcap_gain_per_node gain_t Pointer to gain per node.

touch_xxxxcap_freq_mode Freq_mode_sel_t Set-up acquisition frequency mode.

*xxxxcap_ptc_prsc prsc_div_sel_t Pointer to PTC clock pre-scaler value.

*xxxxcap_resistor_value rsel_val_t Pointer to PTC series resistor value.

p_xxxxcap_hop_freqs *freq_hop_sel_t Pointer to acquisition frequency
settings.

*p_xxxxcap_filter_level filter_level_t Pointer to filter level.

*p_xxxxcap_auto_os auto_os_t Pointer to auto oversampling.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

88

Field Unit Description

*xxxxcap_ptc_prsc_cc_cal prsc_div_sel_t Pointer to PTC clock prescale value
during CC calibration.

*xxxxcap_resistor_value_cc_cal rsel_val_t Pointer to PTC sense resistor value
during CC calibration.

11.4.8. Self-capacitance Sensor Configuration (touch_selfcap_config_t)
Touch Library self-capacitance configuration input type.

Data Fields

Field Unit Description

num_channels uint16_t Number of channels.

num_sensors uint16_t Number of sensors.

num_rotors_and_sliders uint8_t Number of rotors/
sliders.

global_param touch_global_param_t Global sensor
configuration
information.

touch_selfcap_acq_param touch_selfcap_acq_param_t Sensor acquisition
parameter information.

*p_data_blk uint8_t Pointer to data block
buffer.

buffer_size uint16_t Size of data block
buffer.

*p_selfcap_y_nodes uint16_t Pointer to self-
capacitance nodes.

self_quick_reburst_enable uint8_t Quick re-burst enable.

(touch_filter_data_t
*p_filter_data)

void(*filter_callback) Self-capacitance filter
callback.

enable_freq_auto_tune uint8_t Frequency auto tune
enable.

enable_noise_measurement uint8_t Noise measurement
enable.

nm_buffer_cnt uint8_t Memory allocation
buffer.

self_mois_tlrnce_enable uint8_t Self-capacitance
moisture tolerance
enable flag.

self_mois_groups uint8_t Number of self-
capacitance moisture
groups.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

89

Field Unit Description

self_mois_quick_reburst_enable uint8_t Moisture Quick re-burst
enable.

self_ptc_gpio_state ptc_gpio_state_t GPIO state for Self-
capacitance PTC pins

tlib_feature_list tlib_init_fn_ptr Library feature list.

11.4.9. Mutual Capacitance Sensor Configuration (touch_mutlcap_config_t)
Touch Library mutual capacitance configuration input type.

Data Fields

Field Unit Description

num_channels uint16_t Number of channels.

num_sensors uint16_t Number of sensors.

num_rotors_and_sliders uint8_t Number of rotors/
sliders.

global_param touch_global_param_t Noise measurement
enable/disable.

touch_xxxxcap_acq_param touch_xxxxcap_acq_param_t Sensor acquisition
parameter info.

*p_data_blk uint8_t Pointer to data block
buffer.

*buffer_size uint16_t Size of data block
buffer.

*p_mutlcap_xy_nodes uint16_t Pointer to xy-nodes.

mutl_quick_reburst_enable uint8_t Quick re-burst enable.

(touch_filter_data_t
*p_filter_data)

void(* filter_callback) Mutual capacitance
filter callback.

enable_freq_auto_tune uint8_t Frequency auto tune
enable.

enable_noise_measurement uint8_t Noise measurement
enable.

nm_buffer_cnt uint8_t Memory allocation
buffer.

mutl_mois_tlrnce_enable uint8_t Mutual capacitance
moisture tolerance
enable flag.

mutl_mois_groups uint8_t Number of mutual
capacitance moisture
groups.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

90

Field Unit Description

mutl_mois_quick_reburst_enable uint8_t Moisture Quick re-burst
enable.

mutl_ptc_gpio_state ptc_gpio_state_t GPIO state for mutual
capacitance PTC pins

tlib_feature_list tlib_init_fn_ptr Library feature list.

11.4.10. Moisture Structure (tag_snsr_mois_t)
Structure for storing moisture and multi-touch group information.

Data Fields

Field Unit Description

mois_grp uint8_t Moisture group member

multch_grp uint8_t Multi-touch group member

11.4.11. Touch Library Input Configuration (touch_config_t)
Touch Library Input Configuration Structure.

Data Fields

Field Unit Description

p_mutlcap_config touch_mutlcap_config_t Pointer to mutual capacitance configuration
structure.

p_selfcap_config touch_selfcap_config_t Pointer to self-capacitance configuration
structure.

ptc_isr_lvl uint8_t PTC ISR priority level.
Note:  This is applicable only for SAM devices.

tch_mode tch_mode_t Touch mode configuration.
Note:  This is applicable only for ATmega
devices.

11.4.12. Library Function List (tag_tlib_init_fn_ptr_t)
Touch Library support functions initializer.

Data Fields

Field Unit Description

auto_tune_init void(*auto_tune_init) Auto-tune function initializer

auto_os_init uint32_t (*auto_os_init) Auto-OS function initializer

lk_chk void(*lk_chk) Sensor lock-out function initializer

enable_aks void enable_aks(void) AKS function initializer

11.4.13. Touch Library Information (tag_touch_info_t)
Touch Library information structure.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

91

Data Fields

Field Unit Description

tlib_state touch_tlib_state_t Touch library state is specified

num_channels_in_use unit16_t Number of channels in use;
irrespective of the corresponding
sensor being disabled or enabled

num_sensors_in_use uint16_t Number of sensors in use;
irrespective of the sensor being
disabled or enabled

num_rotors_sliders_in_use uint8_t Number of rotor sliders in use;
irrespective of the Rotor/Slider being
disabled or enabled

max_channels_per_rotor_slider uint8_t Max possible number of channels
per rotor or slider

11.4.14. Touch Library Version Information (touch_libver_info_t)
Touch Library version information structure.

Data Fields

Field Unit Description

chip_id unit32_t Chip ID

product_id uint16_t Product ID

fw_version uint16_t Touch Library Version

Bits[12:15] Reserved

Bits[8:11] TLIB_MAJOR_VERSION
Bits[4:7] TLIB_MINOR_VERSION
Bits[0:3] TLIB_PATCH_VERSION

11.5. Global Variables

Field Unit Description

touch_time touch_time_t This holds the library timing info

touch_acq_status touch_acq_status_t This holds the Touch Library acquisition
status

cc_cal_max_signal_limit uint16_t CC calibration maximum signal limit
variable

cc_cal_min_signal_limit uint16_t CC calibration minimum signal limit
variable

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

92

Field Unit Description

*p_selfcap_measure_data touch_measure_data_t This holds the self-capacitance method
measure data pointer

*p_mutlcap_measure_data touch_measure_data_t This holds the mutual capacitance method
measure data pointer

wake_up_touch uint8_t Wake up touch status from Library to
Application

low_power_mode uint8_t Low power mode status from Library to
Application

mois_lock_global_mutl uint8_t Moisture global lock variable for mutual
capacitance method

mois_lock_global_self uint8_t Moisture global lock variable for self-
capacitance method

11.6. API

11.6.1. Sensor Init and De-init

touch_ret_t touch_mutlcap_sensors_init (touch_config_t * p_touch_config)

touch_ret_t touch_selfcap_sensors_init (touch_config_t * p_touch_config)

This API is used to initialize the Touch Library with Mutual cap or Self cap method pin, register and sensor
configuration provided by the user.

Parameters:p_touch_config Pointer to Touch configuration structure.

Returns:touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_sensors_deinit(void)

touch_ret_t touch_selfcap_sensors_deinit(void);

This API can be used to de-initialize the sensor for specific sensing group.

Parameters:

void.

Returns:

touch_ret_t: Touch Library Error status.

11.6.2. Sensor Setup and Configuration

touch_ret_t touch_mutlcap_sensor_config (sensor_type_t sensor_type, channel_t from_channel,
channel_t to_channel, aks_group_t aks_group, threshold_t detect_threshold, hysteresis_t
detect_hysteresis, resolution_tposition_resolution, uint8_t position_hysteresis, sensor_id_t
* p_sensor_id)

touch_ret_t touch_selfcap_sensor_config (sensor_type_t sensor_type, channel_t from_channel,
channel_t to_channel, aks_group_t aks_group, threshold_t detect_threshold, hysteresis_t
detect_hysteresis, resolution_tposition_resolution, sensor_id_t * p_sensor_id)

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

93

This API can be used to configure a sensor of type key, rotor or slider.

Data Fields:

Field Description

sensor_type can be of type key, lump, rotor, or slider.

from_channel the first channel in the slider sensor.

to_channel the last channel in the slider sensor.

aks_group which AKS group (if any) the sensor is in.

detect_threshold the sensor detection threshold.

detect_hysteresis the sensor detection hysteresis value.

position_resolution the resolution of the reported position value.

position_hysteresis the hysteresis for position value (available only for mutual capacitance
mode).

p_sensor_id the sensor id value of the configured sensor is updated by the Touch Library.

Returns: touch_ret_t: Touch Library Error status.

11.6.3. Sensor Calibration
touch_ret_t touch_mutlcap_sensors_calibrate (auto_tune_type_t)

touch_ret_t touch_selfcap_sensors_calibrate (auto_tune_type_t)

This API is used to calibrate the sensors for the first time before starting a Touch measurement. This API
can also beused to force calibration of sensors when any of the Touch sensor parameters are changed
during runtime.

Returns:touch_ret_t: Touch Library Error status.

11.6.4. Sensor Measure
touch_ret_t touch_mutlcap_sensors_measure (touch_current_time_t current_time_ms,
touch_acq_mode_tmutlcap_acq_mode, void(*)(void) measure_complete_callback)

 touch_ret_t touch_selfcap_sensors_measure (touch_current_time_t current_time_ms,
touch_acq_mode_tselfcap_acq_mode, void(*)(void) measure_complete_callback)

This API can be used to start a Touch measurement.

Parameters:

current_time_ms Current time in millisecond.

measure_complete_callback Interrupt callback to indicate measurement completion.

Returns:

touch_ret_t: Touch Library Error status.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

94

11.6.5. Sensor Suspend and Resume
touch_ret_t touch_suspend_ptc(void)

touch_ret_t touch_resume_ptc(void)

The touch_suspend_ptc function suspends the PTC library's current measurement cycle. The
completion of the operation is indicated through callback pointer that must be initialized by the application.
Refer Sensor Global Parameters.

The touch_resume_ptc function resumes the PTC library's current measurement which was
suspended using touch_suspend_ptc. After the touch_resume_ptc function is called by the
application, the touch_xxxxcap_sensors_measure API should be called only after the measurement
complete callback function is received.

Parameters:

void.

Returns:

touch_ret_t: Touch Library Error status.

11.6.6. Sensor Disable and Re-enable
touch_ret_t touch_mutlcap_sensor_disable (sensor_id_t sensor_id)

 touch_ret_t touch_selfcap_sensor_disable (sensor_id_t sensor_id)

This API can be used to disable any sensor.

Parameters:

sensor_id Sensor number which needs to be disabled

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_sensor_reenable (sensor_id_t sensor_id, uint8_t no_calib)

 touch_ret_t touch_selfcap_sensor_reenable (sensor_id_t sensor_id, uint8_t no_calib)

This API can be used to re-enable a disabled sensor.

Parameters:

sensor_id Sensor number which needs to be reenabled

no_calib When value is set to 1, force calibration is not applicable. When value is set to 0, force
calibration is applied

Returns:

touch_ret_t: Touch Library Error status.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

95

11.6.7. Read-back Sensor Configuration
touch_ret_t touch_mutlcap_sensor_get_acq_config (touch_mutlcap_acq_param_t *
p_touch_mutlcap_acq_param)

touch_ret_t touch_selfcap_sensor_get_acq_config (touch_selfcap_acq_param_t *
p_touch_selfcap_acq_param)

This API can be used to read back the sensor acquisition parameters.

Parameters:

p_touch_mutlcap_acq_param The acquisition parameters for the mutual capacitance.

p_touch_selfcap_acq_param The acquisition parameters for the self-capacitance.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_sensor_get_config (sensor_id_t sensor_id, touch_mutlcap_param_t
*p_touch_sensor_param)

touch_ret_t touch_selfcap_sensor_get_config (sensor_id_t sensor_id, touch_selfcap_param_t
*p_touch_sensor_param)

This API can be used to read back the sensor configuration parameters.

Parameters:

sensor_id The sensor id for which the parameters has to be read-back.

p_touch_sensor_param The sensor parameters for the mutual or self-capacitance.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_sensor_get_delta (sensor_id_t sensor_id, touch_delta_t * p_delta)

 touch_ret_t touch_selfcap_sensor_get_delta (sensor_id_t sensor_id, touch_delta_t * p_delta)

This API can be used to retrieve the delta value corresponding to a given sensor.

Parameters:

sensor_id The sensor id for which delta value is being seeked.

p_delta Pointer to the delta variable to be updated by the Touch Library.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_get_global_param (touch_global_param_t * p_global_param)

touch_ret_t touch_selfcap_get_global_param (touch_global_param_t * p_global_param)

This API can be used to read back the global parameter.

Parameters:

p_global_param The pointer to global sensor configuration.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

96

Returns:

touch_ret_t: Touch Library Error status.

11.6.8. Update Sensor Configuration

touch_ret_t touch_mutlcap_sensor_update_acq_config (touch_mutlcap_acq_param_t
*p_touch_mutlcap_acq_param)

touch_ret_t touch_selfcap_sensor_update_acq_config (touch_selfcap_acq_param_t *
p_touch_selfcap_acq_param)

This API can be used to update the sensor acquisition parameters.

Parameters:

p_touch_mutlcap_acq_param The acquisition parameters for the mutual capacitance.

p_touch_selfcap_acq_param The acquisition parameters for the self-capacitance.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_sensor_update_config (sensor_id_t sensor_id, touch_mutlcap_param_t
*p_touch_sensor_param)

touch_ret_t touch_selfcap_sensor_update_config (sensor_id_t sensor_id, touch_selfcap_param_t
*p_touch_sensor_param

This API can be used to update the sensor configuration parameters.

Parameters:

sensor_id The sensor id whose configuration parameters has to be changed.

p_touch_sensor_param The touch sensor parameter structure that will be used by the Touch Library
to update.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_update_global_param (touch_global_param_t * p_global_param)

touch_ret_t touch_selfcap_update_global_param (touch_global_param_t * p_global_param)

This API can be used to update the global parameter.

Parameters:

p_global_param The pointer to global sensor configuration.

Returns:

touch_ret_t: Touch Library Error status.

11.6.9. Get Library Information and Version

touch_ret_t touch_mutlcap_get_libinfo (touch_info_t * p_touch_info)

touch_ret_t touch_selfcap_get_libinfo (touch_info_t * p_touch_info)

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

97

This API can be used to get the Touch Library configuration.

Parameters:

p_touch_info Pointer to the Touch info data structure that will be updated by the Touch Library.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_library_get_version_info (touch_libver_info_t * p_touch_libver_info)

This API can be used to get the Touch Library version information.

Parameters:

p_touch_libver_info Pointer to the Touch Library Version info data structure that will be updated by
the Touch Library.

11.6.10. Moisture Tolerance API
touch_ret_t touch_mutlcap_cnfg_mois_mltchgrp(sensor_id_t snsr_id, moisture_grp_t mois_grpid,
mltch_grp_t mltch_grpid)

touch_ret_t touch_selfcap_cnfg_mois_mltchgrp(sensor_id_t snsr_id, moisture_grp_t mois_grpid,
mltch_grp_t mltch_grpid)

This API can be used to assign moisture group and multi touch group for a sensor.

Parameters:

snsr_id - sensor ID

mois_grpid - moisture group ID

mltch_grp_t - multi-touch group

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_cnfg_mois_threshold(moisture_grp_t mois_grpid,
mois_snsr_threshold_t snsr_threshold, mois_system_threshold_t system_threshold)

touch_ret_t touch_selfcap_cnfg_mois_threshold(moisture_grp_t mois_grpid,
mois_snsr_threshold_t snsr_threshold, mois_system_threshold_t system_threshold)

This API is used to assign moisture sensor threshold and moisture system threshold to a moisture group
ID

Parameters:

mois_grpid - moisture group ID

snsr_threshold - moisture sensor threshold

system_threshold - moisture system threshold

Returns:

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

98

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_mois_tolrnce_enable(void)

touch_ret_t touch_selfcap_mois_tolrnce_enable(void)

This API is used to enable moisture tolerance check during run time.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_mois_tolrnce_quick_reburst_enable(void)

touch_ret_t touch_selfcap_mois_tolrnce_quick_reburst_enable(void)

This API is used to enable moisture tolerance quick re- burst feature during run time.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_mois_tolrnce_disable(void)

touch_ret_t touch_selfcap_mois_tolrnce_disable(void)

This API is used to disable moisture tolerance check during run time.

Returns:

touch_ret_t: Touch Library Error status.

touch_ret_t touch_mutlcap_mois_tolrnce_quick_reburst_disable(void)

touch_ret_t touch_selfcap_mois_tolrnce_quick_reburst_disable(void)

This API is used to disable moisture tolerance quick re- burst feature during run time.

Returns:

touch_ret_t: Touch Library Error status.

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

99

12. Revision History
Doc. Rev. Date Comments

Rev.M 07/2016 1. Updated the latest software version numbers in Section 1
2. Added a new errata in Section 9

Rev.L 04/2016 Updated Sections 1, 5, and 8 with reference to the latest extension
release

Rev.K 02/2016 Added ATmega324PB support.
Updated Sections 1, 5 and 8 with reference to the latest extension
release

Rev.J 01/2016 Included the following new sections:
1. Compensation Circuit
2. Using Atmel ICE for Qdebug Data Streaming
3. Application flow for megaAVR

Updated Sections 5 and 8 with reference to the latest extension release

Rev.I 09/2015 Included Charge share delay

Updated Section 5 .2.8 and 5.2.10 - Library parameters for quick re-burst
and moisture parameters added

Updated Section 11.6.8 - Moisture API's Added

Updated section 8 - Example projects updated

Rev.H 06/2015 Revised Section 2 - Device Variants Supported and included information
on device multiplexing option

Updated Section 7.2 - Code and data memory considerations

Updated Section 5.2.1 - Pin, Channel, and Sensor Parameters

Rev.G 04/2015 Updated Section 2 - Device Variants Supported and included information
on device multiplexing option

Rev.F 02/2015 Included relevant information regarding low-power and lumped mode
support

Rev.E 11/2014 Included Section 5.2.6 and 5.2.7 regarding noise counter measures.
Included Section 3 regarding overview of capacitive touch technology.

Rev.D 02/2014 Global updates across the document related to QTouch Library and
QTouch Composer 5.3

Rev.C 10/2013 Included Section 3.3.4, Using QDebug Touch Data Debug
Communication

Included a note on interrupt handler for IAR example project in Section
3.3.3

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

100

Doc. Rev. Date Comments

Rev.B 10/2013 Updated errata in Section 4, Known Issues

Rev.A 09/2013 Initial document release

Atmel QTouch Library Peripheral Touch Controller [USER GUIDE]
Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

101

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42195M-Peripheral-Touch-Controller_User Guide-07/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR ® QTouch®, AKS® and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. ARM® and Cortex® are registered trademarks of ARM Limited. Other terms and product names may be trademarks of
others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Description
	Features
	Table of Contents
	1. Development Tools
	2. Device Variants Supported
	3. Capacitive Touch Technology
	3.1. Capacitive Touch Sensors
	3.2. Capacitance Measurement Methods
	3.3. Self-capacitance Measurement Method
	3.4. Mutual Capacitance Measurement Method
	3.5. Capacitive Touch Lumped Sensors
	3.6. Capacitive Touch Low Power Sensor
	3.7. PTC and its Benefits
	3.8. PTC Block Diagram for Self-capacitance and Mutual Capacitance Method
	3.8.1. Compensation Circuit

	3.9. Design Approach with PTC
	3.10. Capacitive Touch Development Cycle

	4. Touch Sensor Debug and Status Information
	4.1. Signal
	4.2. Reference
	4.3. Delta
	4.4. Touch Status & Slider/Wheel Position

	5. QTouch Library
	5.1. Overview
	5.2. Library Parameters
	5.2.1. Pin, Channel, and Sensor Parameters
	5.2.2. Sensor Individual Parameters
	5.2.3. Sensor Global Parameters
	5.2.4. Sensor Acquisition Parameters
	5.2.5. Sensor Calibration Auto Tune Setting
	5.2.6. Sensor Noise Measurement and Lockout Parameters
	5.2.7. Sensor Acquisition Frequency Auto Tuning Parameters
	5.2.8. Quick Re-burst Parameter
	5.2.9. Common Parameters
	5.2.10. Moisture Parameters
	5.2.11. PTC Lines Ground Feature

	5.3. Moisture Tolerance
	5.3.1. Moisture Tolerance Group
	5.3.2. Multi-touch Group

	5.4. Reading Sensor States
	5.5. Application Flow
	5.5.1. Application Flow SAM
	5.5.2. Application Flow - megaAVR

	5.6. API Sequence
	5.7. State Machine
	5.8. Operation Modes
	5.8.1. Periodic Measurement
	5.8.2. Continuous Measurement

	5.9. Touch Library API Error

	6. Tuning for Noise Performance
	6.1. Noise Sources
	6.2. Noise Counter Measures
	6.2.1. Broadband Noise Counter Measures
	6.2.2. Narrowband Noise Counter Measures

	7. Application Design
	7.1. Touch Library and Associated Files
	7.2. Code and Data Memory Considerations

	8. Example Applications
	8.1. Atmel Board Example Projects
	8.2. User Board Example Projects
	8.3. Using Atmel Software Framework (ASF) with the Example Projects
	8.4. Using Xplained Pro Kit to Program User Board
	8.5. Using QDebug Touch Data Debug Communication Interface
	8.6. Using Xplained Pro Kit for QDebug Data Streaming from User Board
	8.7. Using Atmel ICE for QDebug Data Streaming from User Board

	9. Known Issues
	10. FAQ on PTC Qtouch
	11. Appendix
	11.1. Macros
	11.1.1. Touch Library Acquisition Status Bit Fields
	11.1.2. Sensor State Configurations

	11.2. Typedef
	11.3. Enumeration
	11.3.1. Gain Setting (tag_gain_t)
	11.3.2. Filter Level Setting (tag_filter_level_t)
	11.3.3. Auto Oversample Setting (tag_auto_os_t)
	11.3.4. Low Power Sensor Scan Rate (tag_lowpower_scan_int_t)
	11.3.5. Library Error Code (tag_touch_ret_t)
	11.3.6. Application Error Code (tag_touch_app_err_t)
	11.3.7. Touch Channel (tag_channel_t)
	11.3.8. Touch Library State (tag_touch_lib_state_t)
	11.3.9. Sensor Type (tag_touch_lib_state_t)
	11.3.10. Touch Sensing Type (tag_touch_acq_t)
	11.3.11. Touch Library Acquisition Mode (tag_touch_acq_mode_t)
	11.3.12. Calibration Auto tune Setting (tag_auto_tune_type_t)
	11.3.13. PTC Acquisition Frequency Mode Setting (tag_freq_mode_sel_t)
	11.3.14. PTC Clock Pre-scaler Setting (tag_prsc_div_sel_t)
	11.3.15. PTC Series Resistor Setting (tag_rsel_val_t)
	11.3.16. PTC Acquisition Frequency Delay Setting (tag_rsel_val_t)
	11.3.17. AKS Group (tag_aks_group_t)
	11.3.18. Sensor Hysteresis Setting (tag_hysteresis_t)
	11.3.19. Sensor Recalibration Threshold (tag_recal_threshold_t)
	11.3.20. Rotor Slider Resolution (tag_resolution_t)
	11.3.21. PTC Sensor Noise Lockout setting (nm_sensor_lockout_t)
	11.3.22. 11_3_21_PTC_GPIO_STATE(ptc_gpio_state_t)
	11.3.23. Moisture Group Setting (moisture_grp_t)
	11.3.24. Multi-touch Group Setting (mltch_grp_t)
	11.3.25. Touch Mode Configuration (tag_tch_mode)
	11.3.26. Trigger Mode (tag_trigger_mode)

	11.4. Datastructures
	11.4.1. Touch Library Timing Info (tag_touch_time_t)
	11.4.2. Sensor Info (tag_sensor_t)
	11.4.3. Global Sensor Configuration Info (tag_touch_global_param_t)
	11.4.4. Filter Callback Data Type (tag_touch_filter_data_t)
	11.4.5. Measure Data Type (tag_touch_measure_data_t)
	11.4.6. Sensor Configuration Parameter (tag_touch_selfcap_param_t,tag_touch_mutlcap_param_t)
	11.4.7. Sensor Acquisition Parameter (tag_touch_selfcap_acq_param_t,_tag_touch_mutlcap_acq_param_t)
	11.4.8. Self-capacitance Sensor Configuration (touch_selfcap_config_t)
	11.4.9. Mutual Capacitance Sensor Configuration (touch_mutlcap_config_t)
	11.4.10. Moisture Structure (tag_snsr_mois_t)
	11.4.11. Touch Library Input Configuration (touch_config_t)
	11.4.12. Library Function List (tag_tlib_init_fn_ptr_t)
	11.4.13. Touch Library Information (tag_touch_info_t)
	11.4.14. Touch Library Version Information (touch_libver_info_t)

	11.5. Global Variables
	11.6. API
	11.6.1. Sensor Init and De-init
	11.6.2. Sensor Setup and Configuration
	11.6.3. Sensor Calibration
	11.6.4. Sensor Measure
	11.6.5. Sensor Suspend and Resume
	11.6.6. Sensor Disable and Re-enable
	11.6.7. Read-back Sensor Configuration
	11.6.8. Update Sensor Configuration
	11.6.9. Get Library Information and Version
	11.6.10. Moisture Tolerance API

	12. Revision History

