SAM D5x/E5x Family

SAM D5x/E5x Family Silicon Errata and Data Sheet Clarification

SAM D5x/E5x Family Errata

The SAM D5x/E5x family of devices that you have received conform functionally to the current device data sheet (DS60001507G), except for the anomalies described in this document.

The silicon issues discussed in the following pages are for silicon revisions with the device and revision IDs listed in Table 1, SAM D5x/E5x Family Silicon Device Identification. The silicon issues are summarized in the Table of Contents following this section.

The errata described in this document will be addressed in future revisions of the SAM D5x/E5x family silicon.

Note: This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. Data Sheet clarifications and corrections (if applicable) are located in the section Data Sheet Clarifications, following the discussion of silicon issues.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device Identification (DID[31:0])</th>
<th>Revision ID (DID.REVISION[3:0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATSAME54P19A</td>
<td>0x61840x01</td>
<td></td>
</tr>
<tr>
<td>ATSAME54P20A</td>
<td>0x61840x00</td>
<td></td>
</tr>
<tr>
<td>ATSAME54N19A</td>
<td>0x61840x03</td>
<td></td>
</tr>
<tr>
<td>ATSAME54N20A</td>
<td>0x61840x02</td>
<td></td>
</tr>
<tr>
<td>ATSAME53N20A</td>
<td>0x61830x02</td>
<td></td>
</tr>
<tr>
<td>ATSAME53N19A</td>
<td>0x61830x03</td>
<td></td>
</tr>
<tr>
<td>ATSAME53J18A</td>
<td>0x61830x06</td>
<td></td>
</tr>
<tr>
<td>ATSAME53J19A</td>
<td>0x61830x05</td>
<td></td>
</tr>
<tr>
<td>ATSAME53J20A</td>
<td>0x61830x04</td>
<td></td>
</tr>
<tr>
<td>ATSAME51N19A</td>
<td>0x61810x01</td>
<td></td>
</tr>
<tr>
<td>ATSAME51N20A</td>
<td>0x61810x00</td>
<td></td>
</tr>
<tr>
<td>ATSAME51J18A</td>
<td>0x61810x03</td>
<td></td>
</tr>
<tr>
<td>ATSAME51J19A</td>
<td>0x61810x02</td>
<td></td>
</tr>
<tr>
<td>ATSAME51J20A</td>
<td>0x61810x04</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51P20A</td>
<td>0x60060x00</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51P19A</td>
<td>0x60060x01</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51N19A</td>
<td>0x60060x03</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51N20A</td>
<td>0x60060x02</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51J18A</td>
<td>0x60060x06</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51J19A</td>
<td>0x60060x05</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51J20A</td>
<td>0x60060x04</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51G18A</td>
<td>0x60060x08</td>
<td></td>
</tr>
<tr>
<td>ATSAMD51G19A</td>
<td>0x60060x07</td>
<td></td>
</tr>
<tr>
<td>ATSAME51G18A</td>
<td>0x61810306</td>
<td></td>
</tr>
<tr>
<td>ATSAME51G19A</td>
<td>0x61810305</td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to the “Device Service Unit” chapter in the current device data sheet (DS60001507G) for a detailed information on Device Identification and Revision IDs for your specific device.
Table of Contents

SAM D5x/E5x Family Errata ... 1

1. Silicon Errata Summary ... 4

2. Silicon Errata Issues .. 10
 2.1. Analog-to-Digital Converter (ADC) ... 10
 2.2. Analog Comparator (AC) ... 11
 2.3. Configurable Custom Logic (CCL) ... 12
 2.4. Controller Area Network (CAN) .. 12
 2.5. Clock Failure Detector (CFD) ... 19
 2.6. Device ... 21
 2.7. Device Service Unit (DSU) .. 22
 2.8. 48 MHz Digital Frequency-Locked Loop (DFLL48M) ... 23
 2.9. Digital-to-Analog Converter (DAC) ... 24
 2.10. Direct Memory Access Controller (DMAC) .. 26
 2.11. Ethernet MAC (GMAC) .. 27
 2.12. External Interrupt Controller (EIC) .. 27
 2.13. Fractional Digital Phase-Locked Loop (FDPLL) ... 28
 2.14. Non-Volatile Memory Controller (NVMCTRL) .. 28
 2.15. Peripheral Access Controller (PAC) ... 29
 2.16. I/O Pin Controller (PORT) ... 29
 2.17. Real-Time Counter (RTC) .. 30
 2.18. Serial Communication Interface (SERCOM) .. 32
 2.19. Supply Controller (SUPC) ... 38
 2.20. Timer/Counter (TC) .. 38
 2.21. Timer/Counter for Control Applications (TCC) .. 39
 2.22. Position Decoder (PDEC) .. 41
 2.23. Voltage Reference System (VREF) .. 41
 2.24. Event System (EV SYS) .. 41
 2.25. True Random Number Generator (TRNG) .. 42

3. Data Sheet Clarifications ... 43

4. Appendix A: Revision History ... 44

The Microchip Web Site .. 48
Customer Change Notification Service ... 48
Customer Support ... 48
Microchip Devices Code Protection Feature ... 48
Legal Notice ... 49
Trademarks .. 49
Quality Management System Certified by DNV ... 49
Worldwide Sales and Service .. 50
Silicon Errata Summary

Table 1-1. Errata Summary

<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog -to-Digital Converter(ADC)</td>
<td>ADC SYNCBUSY.SWTRIG</td>
<td>2.1.1</td>
<td>The ADC SYNCBUSY.SWTRIG gets stuck to '1' after wake-up from Standby Sleep mode.</td>
<td>X X</td>
</tr>
</tbody>
</table>
| Analog -to-Digital Converter(ADC) | ADC TUE/INL/DNL | 2.1.2 | The ADC TUE/INL/DNL performance is not guaranteed in the following scenarios:
 - Sampling frequency is above 500 kbps
 - ADC VREF is different from VDDANA | X X |
<p>| Analog -to-Digital Converter(ADC) | Reference Buffer Offset Compensation | 2.1.3 | ADC converted data could be erroneous when using the Reference Buffer (REFCTRL.REFSEL =INTREF, INTVCC0, INTVCC1, VREFA or VREB) and when Reference Buffer Offset Compensation is enabled (REFCTRL.REFCOMP = 1). | X X |
| Analog -to-Digital Converter(ADC) | DMA Sequencing | 2.1.4 | ADC DMA Sequencing with prescaler=8 (ADC->CTRLA.bit.PRESCALER=2), does not produce the expected channel sequence. | X X |
| Analog -to-Digital Converter(ADC) | DMA Sequencing | 2.1.5 | ADC DMA Sequencing with averaging enabled (AVGCTRL.SAMPLENUM>1) without AVGCTRL bit set (DSEQCTRL.AVGCTRL=0) in the update sequence does not produce the expected channel sequence. | X X |
| Analog Comparator (AC) | AC Hysteresis | 2.2.1 | Enabling Hysteresis (COMPCTRLn.HYSTEN = 0x1) changes the threshold voltage (VTH-), which could result in unexpected behavior of the Analog Comparator. | X X |
| Analog Comparator (AC) | Output | 2.2.2 | In continuous mode the Comparator output may toggle during startup time before the Ready Status bit is set (STATUSB.READY = 1). | X X |
| Analog Comparator (AC) | Standby Sleep Mode | 2.2.3 | A comparison in single shot mode will not be completed when entering in Standby sleep mode with RUNSTDBY=0. | X X |
| Analog Comparator (AC) | Debug Mode | 2.2.4 | Continuous comparisons cannot be halted in Debug mode. | X X |
| Configurable Custom Logic (CCL) | Enable Protected Registers | 2.3.1 | The SEQCTRLx and LUCTRLx registers are enable-protected by the CTRL.ENABLE bit, whereas they should be enable-protected by the LUCTRLx.ENABLE bits. | X X |
| Configurable Custom Logic (CCL) | Sequential Logic | 2.3.2 | LUT output is corrupted after enabling CCL when sequential logic is used. | X X |
| Controller Area Network (CAN) | CAN Edge Filtering | 2.4.1 | When edge filtering is activated (CCCR.EFBI = 1) and when the end of the integration phase coincides with a falling edge at the Rx input pin, it may occur that the CAN synchronizes itself incorrectly and does not correctly receive the first bit of the frame. In this case, the CRC will detect the first bit that was received incorrectly, it will rate the received FD frame as faulty, and an error frame will be send. | X X |
| Controller Area Network (CAN) | Dominant Bit of Intermission | 2.4.2 | When NBTP.NTSEG2 is configured to zero (Phase_Seg2(N) = 1), and when there is a pending transmission request, a dominant third bit of Intermission may cause the CAN to wrongly transmit the first identifier bit dominant instead of recessive, even if this bit was configured as '1' in the Tx Buffer Element of the CAN module. | X X |
| Controller Area Network (CAN) | INTFLAG Status | 2.4.3 | Message transmitted with wrong arbitration and control fields. | X X |
| Controller Area Network (CAN) | DAR Mode | 2.4.4 | Retransmission in DAR mode due to lost arbitration. | X X |
| Controller Area Network (CAN) | High Priority Message (HPM) interrupt | 2.4.5 | Unexpected High Priority Message (HPM) interrupt | X X |</p>
<table>
<thead>
<tr>
<th>Module</th>
<th>Feature</th>
<th>Item Number</th>
<th>Issue Summary</th>
<th>Affected Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Area Network (CAN)</td>
<td>TxFIFO</td>
<td>2.4.6</td>
<td>Tx FIFO message sequence inversion</td>
<td>X X</td>
</tr>
<tr>
<td>Controller Area Network (CAN)</td>
<td>Debug Message</td>
<td>2.4.7</td>
<td>Debug message handling state machine not reset to Idle state when CCCR.INIT is set.</td>
<td>X X</td>
</tr>
<tr>
<td>Controller Area Network (CAN)</td>
<td>Bus Errors</td>
<td>2.4.8</td>
<td>When a CAN AHB master port access on system RAM leads to an AHB error, the CAN does not report this error and continues its normal operations.</td>
<td>X X</td>
</tr>
<tr>
<td>Controller Area Network (CAN)</td>
<td>On Demand</td>
<td>2.4.9</td>
<td>The CAN is not compatible with on-demand clock requests.</td>
<td>X X</td>
</tr>
<tr>
<td>Controller Area Network (CAN)</td>
<td>Debug Mode</td>
<td>2.4.10</td>
<td>ECR.CEL, PSR.PXE, PSR.RFDF, PSR.RBRS, PSR.RESI, PSR.DLEC and PSR.LEC bits can be corrupted by a debug access.</td>
<td>X X</td>
</tr>
<tr>
<td>Controller Area Network (CAN)</td>
<td>Debug Mode</td>
<td>2.4.11</td>
<td>An expected clear on read of ECR.CEL, PSR.PXE, PSR.RFDF, PSR.RBRS, PSR.RESI, PSR.DLEC and PSR.LEC bits can be unexpectedly filtered-out when the CPU is halted.</td>
<td>X X</td>
</tr>
<tr>
<td>Clock Failure Detector (CFD)</td>
<td>CFD with XOSC/XOSC32K Oscillator</td>
<td>2.5.1</td>
<td>When the CFD is enabled for the XOSC/XOSC32K oscillator and the oscillator input signal is stuck at 1, the clock failure detection works correctly but the switch to the safe clock will fail.</td>
<td>X</td>
</tr>
<tr>
<td>Clock Failure Detector (CFD)</td>
<td>XOSC Ready bit not cleared</td>
<td>2.5.2</td>
<td>When the XOSC Clock Failure Detector is enabled and a failure is detected, the XOSC Ready bit is not cleared.</td>
<td>X X</td>
</tr>
<tr>
<td>Clock Failure Detector (CFD)</td>
<td>False Clock Failure Detection</td>
<td>2.5.3</td>
<td>Re-enabling the Clock Failure Detector when the XOSC is enabled can lead to a false Clock Failure Detection.</td>
<td>X X</td>
</tr>
<tr>
<td>Clock Failure Detector (CFD)</td>
<td>False Clock Failure Detection</td>
<td>2.5.4</td>
<td>Re-enabling the Clock Failure Detector when the XOSC32K is enabled can lead to a false Clock Failure Detection.</td>
<td>X X</td>
</tr>
<tr>
<td>Device</td>
<td>Reverse Current in VDDIOB Domain</td>
<td>2.6.1</td>
<td>For the device with 100-pin, 120-pin, and 128-pin counts, when VDDIOB is supplied with the voltage less than VDDIO - 0.7V, reverse current in VDDIOB cluster is observed.</td>
<td>X</td>
</tr>
<tr>
<td>Device</td>
<td>Internal Pull-up on the RESET Pin</td>
<td>2.6.2</td>
<td>The internal pull-up of the RESET pin is not functional.</td>
<td>X</td>
</tr>
<tr>
<td>Device</td>
<td>Detection of a Debugger Probe</td>
<td>2.6.3</td>
<td>The detection of a debugger probe could fail if the "BOD33 Disable" fuse is cleared (i.e., BOD33 is enabled).</td>
<td>X X</td>
</tr>
<tr>
<td>Device</td>
<td>VBAT Mode</td>
<td>2.6.4</td>
<td>VBAT mode is not functional.</td>
<td>X</td>
</tr>
<tr>
<td>Device</td>
<td>Internal Reference</td>
<td>2.6.5</td>
<td>When the internal reference is used with the DAC and ADC, their outputs become non-linear when the operating temperature is less than 0°C.</td>
<td>X</td>
</tr>
<tr>
<td>Device</td>
<td>Device Operation for Temperature < -20°C</td>
<td>2.6.6</td>
<td>If the operating temperature is less than -20°C, the device does not start.</td>
<td>X X</td>
</tr>
<tr>
<td>Device Service Unit</td>
<td>CRC32</td>
<td>2.7.1</td>
<td>DSU CRC32 will not complete when targeting NVM memory space while the NVM cache is disabled.</td>
<td>X X</td>
</tr>
<tr>
<td>48 MHz Digital Frequency-Locked Loop (DFLL48M)</td>
<td>COARSE or FINE Calibration Values During the Locking Sequence</td>
<td>2.8.1</td>
<td>If the DFLL48M reaches the maximum or minimum COARSE or FINE calibration values during the locking sequence, an out of bounds interrupt will be generated.</td>
<td>X</td>
</tr>
<tr>
<td>48 MHz Digital Frequency-Locked Loop (DFLL48M)</td>
<td>STATUS.DFLLRDY Bit in Close Loop Mode</td>
<td>2.8.2</td>
<td>In Close Loop mode, the STATUS.DFLLRDY bit does not rise before lock fine occurs. Therefore, the information about DFLL ready to start Close Loop mode is not available.</td>
<td>X X</td>
</tr>
<tr>
<td>48 MHz Digital Frequency-Locked Loop (DFLL48M)</td>
<td>DFLLVAL.FINE Value When DFLL48M Re-enabled</td>
<td>2.8.3</td>
<td>If the DFLL is disabled and then re-enabled, the DFLLVAL.FINE value is ignored by the DFLL module, which will then start its lock fine process at another frequency.</td>
<td>X</td>
</tr>
<tr>
<td>Module</td>
<td>Feature</td>
<td>Item Number</td>
<td>Issue Summary</td>
<td>Affected Revisions</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>48 MHz Digital Frequency-Locked Loop (DFLL48M)</td>
<td>LLAW</td>
<td>2.8.4</td>
<td>When the Lose Lock After Wake (LLAW) is set, the DFLL may maintain lock (STATUS.DFLLLOCK = 1) after the DFLL is disabled. If the DFLL lock (STATUS.DFLLLOCK = 1) is maintained when the DFLL is reconfigured and then enabled, some bits may not be properly set.</td>
<td>X X</td>
</tr>
<tr>
<td>48 MHz Digital Frequency-Locked Loop (DFLL48M)</td>
<td>DFLL48M Status flags</td>
<td>2.8.5</td>
<td>The STATUS.DFLLCLKF and STATUS.DFLLCLKC status bits are not automatically cleared when disabling the DFLL while it is running in close loop mode.</td>
<td>X X</td>
</tr>
<tr>
<td>48 MHz Digital Frequency-Locked Loop (DFLL48M)</td>
<td>DFLL48M Status flags</td>
<td>2.8.6</td>
<td>DFLL48M Status flags may have unexpected values during DFLL48 registers (DFLLCTRLA, DFLLCTRLB, DFLLMUL, DFLLVAL) configuration.</td>
<td>X X</td>
</tr>
<tr>
<td>Digital-to-Analog Converter (DAC)</td>
<td>Differential Mode the Smoothing of the Output Signal</td>
<td>2.9.1</td>
<td>In Differential mode the smoothing of the output signal is not fully functional.</td>
<td>X X</td>
</tr>
<tr>
<td>Digital-to-Analog Converter (DAC)</td>
<td>VDDANA as the DAC Reference</td>
<td>2.9.2</td>
<td>The selection of VDDANA as the DAC reference in DAC.CTRLB.REFSEL is non-functional.</td>
<td>X</td>
</tr>
<tr>
<td>Digital-to-Analog Converter (DAC)</td>
<td>DAC on Negative Input AIN3</td>
<td>2.9.3</td>
<td>No analog compare will be done on Comparator 1 (AC1) when using the DAC on negative input AIN3.</td>
<td>X</td>
</tr>
<tr>
<td>Digital-to-Analog Converter (DAC)</td>
<td>Interpolation Mode</td>
<td>2.9.4</td>
<td>If the Interpolation mode is enabled (with filter integrated to the DAC), the last data from the filter is missing, hence the DAC final output value does not correspond to the DAC input value.</td>
<td>X X</td>
</tr>
<tr>
<td>Digital-to-Analog Converter (DAC)</td>
<td>Reference</td>
<td>2.9.5</td>
<td>The reference select of the DAC (CTRLB.REFSEL) will default to a ‘0’ if the DAC Software Reset (CTRLA.SWRST) is used to reset the module.</td>
<td>X X</td>
</tr>
<tr>
<td>Digital-to-Analog Converter (DAC)</td>
<td>First Conversion</td>
<td>2.9.6</td>
<td>When the internal bandgap reference is selected as reference voltage, the DAC Startup Ready bits value is not correct for the first DAC Conversion after device power-up or after wake-up from Standby Low-Power mode.</td>
<td>X X</td>
</tr>
<tr>
<td>Direct Memory Access Controller (DMAC)</td>
<td>Linked Descriptors</td>
<td>2.10.1</td>
<td>When at least one channel using linked descriptors is already active, a channel Fetch Error (FERR) could occur on enabling a channel with no linked descriptor or the second descriptor (index 1) of the channel being enabled could be fetched by one of the already active channels using linked descriptors.</td>
<td>X X</td>
</tr>
<tr>
<td>Direct Memory Access Controller (DMAC)</td>
<td>Channel Priority</td>
<td>2.10.2</td>
<td>When using channels with different priority levels, the highest priority channel could stall at the end of its current block.</td>
<td>X</td>
</tr>
<tr>
<td>Direct Memory Access Controller (DMAC)</td>
<td>DMAC in Debug Mode</td>
<td>2.10.3</td>
<td>In debug mode, DMAC does not restart after a debug halt when DBGCTRL.DBGRUN=0.</td>
<td>X</td>
</tr>
<tr>
<td>Ethernet MAC (GMAC)</td>
<td>Ethernet Functionality in 64-pin Packages</td>
<td>2.11.1</td>
<td>Ethernet functionality in 64-pin packages is not available.</td>
<td>X</td>
</tr>
<tr>
<td>External Interrupt Controller (EIC)</td>
<td>Edge Detection</td>
<td>2.12.1</td>
<td>When enabling EIC, SYNCCBUSY.ENABLE is released before EIC is fully enabled. Edge detection can be done only after three cycles of the selected GCLK (GCLK_EIC or CLK_ULP32K).</td>
<td>X X</td>
</tr>
<tr>
<td>External Interrupt Controller (EIC)</td>
<td>Asynchronous Edge Detection</td>
<td>2.12.2</td>
<td>When the asynchronous edge detection is enabled and the system is in Standby mode, only the first edge will be detected. The following edges are ignored until the system wakes up.</td>
<td>X X</td>
</tr>
<tr>
<td>Fractional Digital Phase-Locked Loop (FDPLL)</td>
<td>Low-Frequency Input Clock on FDPLLn</td>
<td>2.13.1</td>
<td>When using a low-frequency input clock (≤400kHz) on FDPLLn, several FDPLL unlocks could occur while the output frequency is stable.</td>
<td>X X</td>
</tr>
<tr>
<td>Fractional Digital Phase-Locked Loop (FDPLL)</td>
<td>FDPLL Ratio in DPLLnRATIO</td>
<td>2.13.2</td>
<td>When changing the FDPLL ratio in DPLLnRATIO register on-the-fly, STATUS.DPLLnLDRTO will not reset when the ratio update will be completed.</td>
<td>X X</td>
</tr>
<tr>
<td>Non-Volatile Memory Controller (NVMCTRL)</td>
<td>NVM Read Corruption</td>
<td>2.14.1</td>
<td>NVM reads could be corrupted when mixing NVM reads with Page Buffer writes.</td>
<td>X X</td>
</tr>
<tr>
<td>Peripheral Access Controller (PAC)</td>
<td>PAC Protection Error in FREQM</td>
<td>2.15.1</td>
<td>FREQM reads on the Control B register (FREQM_CTRLB) generate a PAC protection error.</td>
<td>X X</td>
</tr>
<tr>
<td>Module</td>
<td>Feature</td>
<td>Item Number</td>
<td>Issue Summary</td>
<td>Affected Revisions</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Peripheral Access Controller (PAC)</td>
<td>PAC Protection Error in CCL</td>
<td>2.15.2</td>
<td>Writing the Software Reset bit in the Control A register (CTRLASWRST) will trigger a PAC protection error.</td>
<td>X</td>
</tr>
<tr>
<td>I/O Pin Controller (PORT)</td>
<td>PORT Read/Write Attempts on Non-Implemented Registers</td>
<td>2.16.1</td>
<td>PORT read/write attempts on non-implemented registers, including addresses beyond the last implemented register group (PA, PB,…), do not generate a PAC protection error.</td>
<td>X</td>
</tr>
<tr>
<td>I/O Pin Controller (PORT)</td>
<td>PORT Pull-Up/Pull-Down Resistor</td>
<td>2.16.2</td>
<td>The pull-down on PA24/PA25 are activated during power-up and when Sleep mode is OFF. On all other pins, except those in the VSWOUT cluster, the pull-up is activated during power-up and when Sleep mode is OFF.</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>Write Corruption</td>
<td>2.17.1</td>
<td>A 8-bit or 16-bit write access for a 32-bit register, or 8-bit write access for a 16-bit register can fail for the following registers: • The COUNT register in COUNT32 mode • The COUNT register in COUNT16 mode • The CLOCK register in CLOCK mode</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>Count Read Sync Enable Synchronization Busy</td>
<td>2.17.2</td>
<td>When CTRLA.COUNTSYNC is enabled, the first COUNT value is not correctly synchronized and therefore it is a wrong value.</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>Tamper Input Filter</td>
<td>2.17.3</td>
<td>Majority debouncing, as part of RTC tamper detection, does not work, when enabled by setting Debouncer Majority Enable bit CTRLB.DEBMAJ.</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>Tamper Detection</td>
<td>2.17.4</td>
<td>Upon enabling the RTC, a false tamper detection could be reported by the RTC.</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>Tamper Detection Timestamp</td>
<td>2.17.5</td>
<td>If an external reset occurs during a tamper detection, the TIMESTAMP register will not be updated when next tamper detection is triggered.</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>PRESCALER</td>
<td>2.17.6</td>
<td>When the tamper or debouncing features (TAMPCTRL) are enabled, periodic interrupts and events are generated when the prescaler is OFF (CTRLA.PRESCALER=0).</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>Tamper Detection Timestamp</td>
<td>2.17.7</td>
<td>The INTFLAG.TAMPER bit is not reset by reading the TIMESTAMP register.</td>
<td>X</td>
</tr>
<tr>
<td>Real-Time Counter (RTC)</td>
<td>General Purpose Registers</td>
<td>2.17.8</td>
<td>General Purpose Registers n (GPn) are reset on tamper detection even if GPTRST = 0.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-USART: USART Auto-Baud Mode</td>
<td>2.18.1</td>
<td>In USART Auto-Baud mode, missing stop bits are not recognized as inconsistent sync (ISF) or framing (FERR) errors.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-USART: Collision Detection</td>
<td>2.18.2</td>
<td>In USART operating mode with Collision Detection enabled (CTRLB.COLDEN=1), the SERCOM will not abort the current transfer as expected if a collision is detected and if the SERCOM APB Clock is lower than the SERCOM Generic Clock.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-USART: Debug Mode</td>
<td>2.18.3</td>
<td>In USART operating mode, if DBGCTRLDBGSTOP=1, data transmission is not halted after entering Debug mode.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-SPI: 32-bit Extension Mode</td>
<td>2.18.4</td>
<td>When 32-bit Extension mode is enabled and data to be sent is not in multiples of 4 bytes (which means the length counter must be enabled), additional bytes will be sent over the line.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-UART: TXINV and RXINV Bits</td>
<td>2.18.5</td>
<td>The TXINV and RXINV bits in the CTRLA register have inverted functionality.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-\textcircled{2C}: SDAHOLD Timing</td>
<td>2.18.6</td>
<td>SDAHOLD timing of the SERCOM-\textcircled{2C} does not match the value shown in the current device data sheet.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-\textcircled{2C}: Repeated Start in High-Speed Master Write Operation</td>
<td>2.18.7</td>
<td>For High-Speed Master Write operations, writing CTRLB.CMD = 0x1 issues a STOP command instead of a Repeated Start making repeated start not possible in that mode.</td>
<td>X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-\textcircled{2C}: Repeated Start in High-Speed Master Read Operation</td>
<td>2.18.8</td>
<td>For High-Speed Master Read operations, sending a NACK (CTRLB.CMD = 0x2) forces a STOP to be issued making repeated start not possible in that mode.</td>
<td>X</td>
</tr>
<tr>
<td>Module</td>
<td>Feature</td>
<td>Item Number</td>
<td>Issue Summary</td>
<td>Affected Revisions</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-(\text{i}^2\text{C}): STATUS.CLKHold Bit in Master and Slave Modes</td>
<td>2.18.9</td>
<td>The STATUS.CLKHold bit in master and slave modes can be written whereas it is a read-only status bit.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-(\text{i}^2\text{C}): (\text{i}^2\text{C}) in Slave Mode</td>
<td>2.18.10</td>
<td>In (\text{i}^2\text{C}) mode, LENERR, SEXTOUT, LOWTOUT, COLL and BUSERR bits are not cleared when INTFLAG.AMATCH is cleared.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-(\text{i}^2\text{C}): Slave Mode with DMA</td>
<td>2.18.11</td>
<td>In (\text{i}^2\text{C}) Slave Transmitter mode, at the reception of a NACK, if there is still data to be sent in the DMA buffer, the DMA will push a data to the DATA register.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-(\text{i}^2\text{C}): (\text{i}^2\text{C}) Slave in DATA32B Mode</td>
<td>2.18.12</td>
<td>When SERCOM is configured as an (\text{i}^2\text{C}) slave in 32-bit Data Mode (DATA32B=1) and the (\text{i}^2\text{C}) master reads from the (\text{i}^2\text{C}) slave (slave transmitter) and outputs its NACK (indicating no more data is needed), the (\text{i}^2\text{C}) slave still receives a DRDY interrupt.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-(\text{i}^2\text{C}): 10-bit Addressing Mode</td>
<td>2.18.13</td>
<td>10-bit addressing in (\text{i}^2\text{C}) Slave mode is not functional.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-(\text{i}^2\text{C}): Repeated Start</td>
<td>2.18.14</td>
<td>When the Quick command is enabled (CTRLB.QCEN=1), software can issue a repeated Start by writing either CTRLB.CMD or ADDR.ADDR bit fields.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-SPi: Data Preload</td>
<td>2.18.15</td>
<td>In SPI Slave mode with Slave Data Preload Enabled, the slave transmitter may discard some data if the master cannot keep the Slave Select pin low until the end of transmission.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>Repeated Start</td>
<td>2.18.16</td>
<td>For Master Write operations (excluding High-Speed mode), in 10-bit addressing mode, writing CTRLB.CMD = 0x1 does not issue correctly a Repeated Start command.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-USART: Wakeup</td>
<td>2.18.17</td>
<td>The USART does not wake-up the device on Error (INTFLAG.ERROR=1) interrupt.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-USART: LENGTH</td>
<td>2.18.18</td>
<td>When the USART is used in 32-bit mode with hardware handshaking (CTS/RTS) the TXC interrupt flag (INTFLAG.TXC) may be set before transmission has completed. The TXC interrupt flag may incorrectly be set regardless of Data Length Enable (LENGTH.LENEN) is set to ‘0’ or ‘1’.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>SERCOM-USART: Overconsumption in Standby mode</td>
<td>2.18.19</td>
<td>Unexpected over-consumption in standby mode</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>Wake-up Interrupt</td>
<td>2.18.20</td>
<td>The Data Register Empty (DRE) wake-up interrupt is not de-asserted when the register interrupt is cleared (INTFLAG.DRE=0).</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>Slave Data Preload</td>
<td>2.18.21</td>
<td>Preloading a new SPI data before going into Standby Sleep mode, may lead to extra power consumption.</td>
<td>X X</td>
</tr>
<tr>
<td>Serial Communication Interface (SERCOM)</td>
<td>Hardware Slave Select Control</td>
<td>2.18.22</td>
<td>When Hardware Slave Select Control is enabled, the Slave Select (SS) pin goes high after each byte transfer.</td>
<td>X X</td>
</tr>
<tr>
<td>Supply Controller (SUPC)</td>
<td>Buck Converter Mode</td>
<td>2.19.1</td>
<td>Digital Phase-Locked Loop (FDPLL200Mx2) and Digital Frequency-Locked Loop (DFLL48M) PLL’s cannot be used with main voltage regulator in Buck converter mode.</td>
<td>X X</td>
</tr>
<tr>
<td>Supply Controller (SUPC)</td>
<td>BOD33 Hysteresis</td>
<td>2.19.2</td>
<td>The hysteresis feature of the 3.3V BOD is not functional while the device is in STANDBY sleep mode.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter (TC)</td>
<td>PERBUF/CCBUFx Register</td>
<td>2.20.1</td>
<td>When clearing the STATUS.PERBUFV/STATUS.CCBUFx flag, the SYNCBUSY flag is released before the PERBUF/CCBUFx register is restored to its appropriate value.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter (TC)</td>
<td>Retrigger</td>
<td>2.20.2</td>
<td>If a Retrigger event occurs at the Channel Compare Match [n] time, the next Waveform Output [n] is missing or disturbed.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>TCC with EVSYS in SYNC/RESYNC Mode</td>
<td>2.21.1</td>
<td>TCC peripheral is not compatible with an EVSYS channel in SYNC or RESYNC mode.</td>
<td>X X</td>
</tr>
<tr>
<td>Module</td>
<td>Feature</td>
<td>Item Number</td>
<td>Issue Summary</td>
<td>Affected Revisions</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>Dithering Mode with External Retrigger Events</td>
<td>2.21.2</td>
<td>Using TCC in Dithering mode with external retrigger events can lead to an unexpected stretch of right aligned pulses, or shrink of left-aligned pulses.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>ALOCK Feature</td>
<td>2.21.3</td>
<td>ALOCK feature is not functional.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>LUPD feature in Down-Counting mode</td>
<td>2.21.4</td>
<td>In down-counting mode, the Lock Update bit (CTRLB.LUPD) does not protect against a PER register update from the PERBUF register.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>Re-trigger in RAMP2 Operations</td>
<td>2.21.5</td>
<td>Re-trigger in RAMP2 operations is not supported if a prescaler is used and the re-trig of the counter is done on the next GCLK.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>Re-trigger</td>
<td>2.21.6</td>
<td>If a Retrigger event occurs at the Channel Compare Match [n] time, the next Waveform Output [n] is missing or disturbed.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>RAMP2 operations</td>
<td>2.21.7</td>
<td>Timer/Counter counting down mode (CTRLBCLR.DIR = CTRLBSET.DIR = 1) is not supported in RAMP2 operations.</td>
<td>X X</td>
</tr>
<tr>
<td>Timer/Counter for Control Applications (TCC)</td>
<td>Dithering Mode</td>
<td>2.21.8</td>
<td>Retrigger in RAMP2 operations is not supported in Dithering Mode.</td>
<td>X X</td>
</tr>
<tr>
<td>PDEC</td>
<td>Reserved</td>
<td>2.22.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>PDEC</td>
<td>Angular and Revolution Counters</td>
<td>2.22.2</td>
<td>With index input enabled i.e., EVCTRL.EVEI[2] and operating in X4/X2 mode, angular and revolution counters are incremented/decremented by two separate and unsynchronized sources.</td>
<td>X X</td>
</tr>
<tr>
<td>Voltage Reference System</td>
<td>Temperature sensor</td>
<td>2.23.1</td>
<td>Temperature sensors are not supported.</td>
<td>X X</td>
</tr>
<tr>
<td>EVSYS</td>
<td>Synchronous Mode</td>
<td>2.24.1</td>
<td>Spurious Overrun Interrupt when the generic clock for a channel is always on.</td>
<td>X X</td>
</tr>
<tr>
<td>EVSYS</td>
<td>Software Events</td>
<td>2.24.2</td>
<td>Software Events are not supported in Synchronous and Resynchronized modes.</td>
<td>X X</td>
</tr>
<tr>
<td>TRNG</td>
<td>Over Consumption</td>
<td>2.25.1</td>
<td>When TRNG is disabled, some internal logic could continue to operate causing an over consumption.</td>
<td>X X</td>
</tr>
</tbody>
</table>

Notes:
- Cells with 'X' indicates the issue is present in this revision of the silicon.
- Cells with '-' indicates this silicon revision does not exist for this issue.
- The blank cell indicates the issue has been corrected or does not exist in this revision of the silicon.
2. Silicon Errata Issues
The following errata issues apply to the SAM D5x/E5x family of devices.

Note: Cells with an 'X' indicates the issue is present in this revision of the silicon. Cells with a dash ('-') indicate this silicon revision does not exist for this issue. Blank cells indicate the issue has been corrected or does not exist in this revision of the silicon.

2.1 Analog-to-Digital Converter (ADC)

2.1.1 ADC SYNCHBUSY.SWTRIG
The ADC SYNCHBUSY.SWTRIG gets stuck to '1' after wake-up from Standby Sleep mode.

Workaround
Ignore the ADC SYNCHBUSY.SWTRIG status when waking up from Sleep mode.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.1.2 ADC TUE/INL/DNL Performance
The ADC TUE/INL/DNL performance is not guaranteed in the following scenarios:
- Sampling frequency is above 500 ksp/s AND
- ADC V_{REF} is different from VDDANA

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.1.3 Reference Buffer Offset Compensation
ADC converted data could be erroneous when using the Reference Buffer (REFCTRL.REFSEL = INTREF, INTVCC0, INTVCC1, VREFA or VREB) and when Reference Buffer Offset Compensation is enabled (REFCTRL.REFCOMP = 1).

Workaround
The first five conversions must be ignored. All further ADC module conversions are accurate.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.1.4 DMA Sequencing
ADC DMA Sequencing with prescaler > 8 (ADC->CTRLA.bit.PRESCALER>2) does not produce the expected channel sequence.
2.1.5 DMA Sequencing

ADC DMA sequencing with averaging enabled (AVGCTRL.SAMPLENUM>1) without the AVGCTRL bit set (DSEQCTRL.AVGCTRL= 0) in the update sequence does not produce the expected channel sequence.

Workaround
Add the AVGCTRL register in the register update list (DSEQCTRL.AVGCTRL= 1) and set the desired value in this list.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.2 Analog Comparator (AC)

2.2.1 AC Hysteresis

Enabling Hysteresis (COMPCTRLn.HYSTEN = 0x1) changes the threshold voltage (VTH-), which could result in unexpected behavior of the Analog Comparator.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.2.2 Output

In Continuous mode the comparator output may toggle during startup time before the Ready Status bit is set (STATUSB.READY = 1).

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.2.3 Standby Sleep Mode

A comparison in single shot mode will not be completed when entering in Standby Sleep mode with RUNSTDBY = 0.
Workaround
Set RUNSTBDY = 1 before entering in Standby mode or wait for Standby exit to start a new comparison.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.4 Debug Mode
Continuous comparisons cannot be halted in Debug mode.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Configurable Custom Logic (CCL)

2.3.1 Enable Protected Registers
The SEQCTRLx and LUCTRLx registers are enable-protected by the CTRL.ENABLE bit, whereas they must be enable-protected by the LUTCTRLx.ENABLE bits.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.2 Sequential Logic Reference
LUT Output is corrupted after enabling CCL when sequential logic is used.

Workaround
Write the CTRL register twice when enabling the CCL.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4 Controller Area Network (CAN)

2.4.1 CAN Edge Filtering
When edge filtering is activated (CCCR.EFBI = 1) and when the end of the integration phase coincides with a falling edge at the Rx input pin, it may occur that the CAN synchronizes itself incorrectly and does not correctly receive the
first bit of the frame. In this case, the CRC will detect the first bit that was received incorrectly, it will rate the received FD frame as faulty, and an error frame will be send.

The issue only occurs when there is a falling edge at the Rx input pin (CAN_RX) within the last time quantum (tq) before the end of the integration phase. The last time quantum of the integration phase is at the sample point of the 11th recessive bit of the integration phase. When edge filtering is enabled, the bit timing logic of the CAN sees the Rx input signal delayed by the edge filtering. When the integration phase ends, edge filtering is automatically disabled. This affects the reset of the FD CRC registers at the beginning of the frame. The Classical CRC register is not affected, hence this issue does not affect the reception of Classical frames.

In CAN communication, the CAN module may enter an integrating state (either by resetting the CCCR.INIT or by protocol exception event) while a frame is active on the bus. In this case, the 11 recessive bits are counted between the acknowledge bit and the following start of frame. All nodes have synchronized at the beginning of the dominant acknowledge bit. This means that the edge of the following start of frame bit cannot fall on the sample point, therefore the issue does not occur. The issue occurs only when the CAN is by local errors, mis-synchronized with regard to the other nodes.

Glitch filtering as specified in ISO 11898-1:2015 is fully functional.

Edge filtering was introduced for applications where the data bit time is at least 2-tq (of nominal bit time) long. In that case, edge filtering requires at least two consecutive dominant time quanta before the counter counting the 11 recessive bits for idle detection is restarted. This means edge filtering covers the theoretical case of occasional 1-tq long dominant spikes on the CAN bus that would delay idle detection. Repeated dominant spikes on the CAN bus would disturb all CAN communication, so the filtering to speed up idle detection would not help network performance.

When this rare event occurs, the CAN sends an error frame and the sender of the affected frame retransmits the frame. When the retransmitted frame is received, the CAN has left the integration phase and the frame will be received correctly. Edge filtering is only applied during the integration phase and it is never used during normal operation. Because the integration phase is very short with respect to "active communication time", the impact on total error frame rate is negligible. The issue has no impact on data integrity.

The CAN enters the integration phase under the following conditions:

- When CCCR.INIT is set to '0' after start-up
- After a protocol exception event (only when CCCR.PXHD = 0)

Scope:
The erratum is limited to FD frame reception when edge filtering is active (CCCR.EFBI = 1) and when the end of the integration phase coincides with a falling edge at the Rx input pin.

Effects:
The calculated CRC value does not match the CRC value of the received FD frame and the CAN module sends an error frame. After retransmission the frame is received correctly.

Workaround:
Disable edge filtering or wait on retransmission in the event that this rare event occurs.

Affected Silicon Revisions

| A | D | X | X |

2.4.2 Dominant Bit of Intermission

When NBTP.NTSEG2 is configured to zero (Phase_Seg2(N) = 1), and when there is a pending transmission request, a dominant third bit of intermission may cause the CAN to wrongly transmit the first identifier bit dominant instead of recessive, even if this bit was configured as ‘1’ in the Tx Buffer Element of the CAN module.

Workaround
A phase buffer segment 2 of length ‘1’ (Phase_Seg2(N) = 1) is not sufficient to switch to the first identifier bit after the sample point in intermission where the dominant bit was detected.
The CAN protocol according to ISO 11898-1 defines that a dominant third bit of intermission causes a pending transmission to be started immediately. The received dominant bit is handled as if the CAN has transmitted a Start-of-Frame (SoF) bit.

The ISO 11898-1 specifies the minimum configuration range for Phase_Seg2(N) to be 2..8 tq. Therefore, excluding a Phase_Seg2(N) of '1' will not affect CAN conformance.

Effects:

If NBTP:NTSEG2 = 0, it may occur that the CAN transmits the first identifier bit dominant instead of recessive.

Update configuration range of NBTP:NTSEG2 from 0..127 tq to 1..127 tq in the CAN documentation.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.4.3 Message Transmitted with Wrong Arbitration and Control Fields

Description:

Under the following conditions a message with wrong ID, format, and DLC is transmitted:

- The CAN is in the "Receiver" (PSR.ACT ≠ 0b10) state, hence no pending transmission
- A new transmission is requested before the third bit of intermission is reached
- The CAN bus is sampled dominant at the third bit of intermission which is treated as SoF (See ISO11898-1:2015, "Section 10.4.2.2")

Under the conditions above, the following might happen:

- The shift register is not loaded with ID, format, and DLC of the requested message
- The CAN will start arbitration with wrong ID, format, and DLC on the next bit
- If the ID wins arbitration, a CAN message with a valid CRC is transmitted
- If this message is acknowledged, the ID stored in the Tx event FIFO is the ID of the requested Tx message and not the ID of the message transmitted on the CAN bus, hence no error is detected by the transmitting CAN

Scope:

The erratum is limited when CAN is in the "Receiver" (PSR.ACT = 0b10) state with no pending transmission (register TXBRP == 0) and a new transmission is requested before the third bit of intermission is reached and this third bit of intermission is seen dominant.

When a transmission is requested by the CPU by writing to TXBAR, the Tx message handler performs an internal arbitration and loads the pending transmit message with the highest priority into its output buffer and then sets the transmission request for the CAN Protocol Controller. The problem occurs only when the transmission request for the CAN Protocol Controller is activated in the critical time window between the sample points of the second and third bit of intermission and if that third bit of intermission is seen dominant.

This dominant level at the third bit of intermission may result from an external disturbance or may be transmitted by another node with a significantly faster clock.

Effects:

In the described case it may happen that the shift register is not loaded with arbitration and control field of the message to be transmitted. The frame is transmitted with wrong ID, format, and DLC but with the data field of the requested message. The message is transmitted in correct CAN (FD) frame format with a valid CRC.

If the message loses arbitration or is disturbed by an error, it is retransmitted with correct arbitration and control fields.

Workarounds

- **Workaround 1:** Request a new transmission only if another transmission is already pending (that is, register TXBRP ≠ 0) or when the CAN is not in the "Receiver" (when PSR.ACT ≠ 0b10) state. To avoid activating the transmission request in the critical time window between the sample points of the second and third bit of
intermission, the application software can evaluate the Rx interrupt flags, such as IR.DRX, IR.RF0N, and IR.RF1N, which are set at the last bit of EoF when a received and accepted message becomes valid. The last bit of EoF is followed by third bits of intermission. Therefore the critical time window has safely terminated three bit times after the Rx interrupt. Now a transmission may be requested by writing to TXBAR. After the interrupt, the application has to take care that the transmission request for the CAN Protocol Controller is activated before the critical window of the following reception is reached.

- **Workaround 2:** If a transmission is to be requested while no other transmission request is already pending and the CAN bus is not idle, set the CCCR.INIT bit (which stops the CAN protocol controller), set the transmission request and clear the CCCR.INIT bit. The message currently being received when the CCCR.INIT bit is set will be lost, but no errors (or error frames) will be generated and the CAN protocol controller will re-integrate into the CAN communication immediately at the 11 recessive bits of the next End-of-Frame including intermission.

- **Workaround 3:** It is also possible to keep the number of pending transmissions always at > 0 by frequently requesting a message, then the condition "no pending transmission" is never met. The frequently requested message may be given a low priority, losing arbitration to all other messages.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4.4 DAR Mode

When the CAN is configured in DAR mode (CCCR.DAR = 1) the automatic retransmission for transmitted messages that have been disturbed by an error or have lost arbitration is disabled. When the transmission attempt is not successful, the Tx Buffer’s Transmission Request bit (TXBRP.TRPn) will be cleared and the Tx Buffer’s Cancellation Finished bit (TXBCF.CFn) will be set.

When the transmitted message loses arbitration at one of the first two identifier bits, chances are that instead of the bits of the actually transmitted Tx Buffer, the TXBRP.TRPn and TXBCF.CFn bits of the previously started Tx Buffer (or Tx Buffer 0 if there is no previous transmission attempt) are written (TXBRP.TRPn = 0, TXBCF.CFn = 1).

If in this case the TXBRP.TRPn bit of the Tx Buffer that lost arbitration at the first two identifier bits are not cleared, retransmission is attempted. When the CAN loses arbitration again at the immediately following retransmission, then actually and previously transmitted Tx Buffer are the same and this Tx Buffer’s TXBRP.TRPn bit is cleared and its TXBCF.CFn bit is set.

Scope:

The erratum is limited to the case when the CAN loses arbitration at one of the first two transmitted identifier bits while in DAR mode. The problem does not occur when the transmitted message is disturbed by an error.

Effects:

In this case, it might happen that the TXBRP.TRPn bit is cleared after the second transmission attempt instead of the first. Additionally it may happen that the TXBRP.TRPn bit of the previously started Tx Buffer is cleared, if it has been set again. As in this case the previously started Tx Buffer has lost CAN internal arbitration against the active Tx Buffer, its message has a lower identifier priority. It would also have lost arbitration on the CAN bus at the same position.

Workaround

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4.5 High-Priority Message (HPM) interrupt

There are two configurations where the issue occurs:
Configuration A:

- At least one Standard Message ID Filter Element is configured with priority flag set (S0.SFEC = 0b100/0b101/0b110)
- No Extended Message ID Filter Element configured
- Non-matching extended frames are accepted (GFC.ANFE = 0b00/0b01)

The HPM interrupt flag IR.HPM is set erroneously on reception of a non-high-priority extended message under the following conditions:

1. A standard HPM frame is received and accepted by a filter with priority flag set (that is, Interrupt flag IR.HPM is set as expected).
2. An extended frame is received and accepted because of the GFC.ANFE configuration (that is, Interrupt flag IR.HPM is set erroneously).

Configuration B:

- At least one Extended Message ID filter element is configured with priority flag set (F0.EFEC = 0b100/0b101/0b110)
- No Standard Message ID filter element is configured
- Non matching standard frames are accepted (GFC.ANFS = 0b00/0b01)

The HPM interrupt flag IR.HPM is set erroneously on reception of a non high-priority standard message under the following conditions:

1. An extended HPM frame is received and accepted by a filter with priority flag set (that is, Interrupt flag IR.HPM is set as expected).
2. A standard frame is received and accepted because of the GFC.ANFS configuration (that is, Interrupt flag IR.HPM is set erroneously).

Scope:

The erratum is limited to the following configurations:

Configuration A:
No Extended Message ID filter element is configured and non matching extended frames are accepted due to Global Filter Configuration (GFC.ANFE = 0b00/0b01).

Configuration B:
No Standard Message ID Filter Element configured and non-matching standard frames are accepted due to Global Filter Configuration (GFC.ANFS = 0b00/0b01).

Effects:

Interrupt flag IR.HPM is set erroneously at the reception of a frame with:

- Configuration A: Extended Message ID
- Configuration B: Standard Message ID

Workaround

Configuration A:
Setup an Extended Message ID filter element with the following configuration:

- F0.EFEC = 001/010: Select Rx FIFO for storage of extended frames
- F0.EFID1 = any value: The value is not relevant as all ID bits are masked out by F1.EFID2
- F1.EFT = 10: Classic filter, F0.EFID1 = filter, F1.EFID2 = mask
- F1.EFID2 = 0: All bits of the received extended ID are masked out

Now all extended frames are stored in Rx FIFO ‘0’ or Rx FIFO ‘1’ depending on the configuration of F0.EFEC.

Configuration B:
Setup an Standard Message ID filter element with the following configuration:

- S0.SFEC = 001/010: Select Rx FIFO for storage of standard frames
• S0.SFID1 = any value: The value is not relevant as all ID bits are masked out by S0.SFID2
• S0.SFT = 10: Classic filter, S0.SFID1 = filter, S0.SFID2 = mask
• S0.SFID2 = 0: All bits of the received standard ID are masked out

Now all standard frames are stored in Rx FIFO ‘0’ or Rx FIFO ‘1’ depending on the configuration of S0.SFEC.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.4.6 Tx FIFO message sequence inversion

Assuming that there are two Tx FIFO messages in the output pipeline of the Tx Message Handler. Transmission of Tx FIFO message 1 is started:

Position 1: Tx FIFO message 1 (transmission ongoing)

Position 2: Tx FIFO message 2

Position 3: Free FIFO bugger

During the transmission of Tx FIFO message 1, a non Tx FIFO message with a higher CAN priority is requested. Due to its priority it will be inserted into the output pipeline. The TxMH performs "message scans" to keep the output pipeline up to date with the highest priority messages from the message RAM.

After the following two message scans, the output pipeline has the following content:

Position 1: Tx FIFO message 1 (transmission ongoing)

Position 2: non Tx FIFO message with higher CAN priority

Position 3: Tx FIFO message 2

If the transmission of Tx FIFO message 1 is not successful (lost arbitration or CAN bus error) it is pushed from the output pipeline by the non Tx FIFO message with higher CAN priority. The following scan again inserts Tx FIFO message 1 into the output pipeline at position 3:

Position 1: non Tx FIFO message with higher CAN priority (transmission ongoing)

Position 2: Tx FIFO message 2

Position 3: Tx FIFO message 1

This results in Tx FIFO message 2 being in the output pipeline in front of Tx FIFO message 1 and they are transmitted in that order, resulting in a message sequence inversion.

Scope:

The erratum describes the case when the CAN uses both, dedicated Tx Buffers and a Tx FIFO (TXBC.TFQM = 0) and the messages in the Tx FIFO do not have the highest internal CAN priority. The described sequence inversion may also happen between two non Tx FIFO messages (Tx Queue or dedicated Tx Buffers) that have the same CAN identifier and that should be transmitted in the order of their buffer numbers (not the intended use).

Effects:

In the described case it may happen that two consecutive messages from the Tx FIFO exchange their positions in the transmit sequence.

Workarounds

When transmitting messages from a dedicated Tx Buffer with higher priority than the messages in the Tx FIFO, choose one of the following workarounds:

Workaround 1

Use two dedicated Tx Buffers, for example, use Tx Buffers 4 and 5 instead of the Tx FIFO.

The Transmit Loop below replaces the function that fills the Tx FIFO.
Write the message to Tx Buffer 4

Transmit Loop:

- Request Tx Buffer 4 - write TXBAR.A4
- Write message to Tx Buffer 5
- Wait until transmission of Tx Buffer 4 completed - IR.TC, read TXBTO.TO4
- Request Tx Buffer 5 - write TXBAR.A5
- Write message to Tx Buffer 4
- Wait until transmission of Tx Buffer 5 completed - IR.TC, read TXBTO.TO5

Workaround 2

Ensure that only one Tx FIFO element is pending for transmission at any time.

The Tx FIFO elements may be filled at any time with messages to be transmitted, but their transmission requests are handled separately. Each time a Tx FIFO transmission has completed and the Tx FIFO becomes empty (IR.TFE = 1), the next Tx FIFO element is requested.

Workaround 3

Use only a Tx FIFO. Send the message with the higher priority also from Tx FIFO.

Drawback: The higher priority message has to wait until the preceding messages in the Tx FIFO are sent.

Affected Silicon Revisions

| A | D | X | X |

2.4.7 Debug Message

In case the CCCR.INIT bit is set by the Host by writing to the CCCR register or when the M_CAN enters BusOff state, the debug message handling state machine stays in its current state instead of being reset to Idle state. Setting CCCR.CCE does not change RXF1S.DMS.

Scope:

The erratum is limited to the case when the Debug on CAN Support feature is active. Regular operation is not affected. In regular operation the debug message handling state machine always remains in Idle state.

Effects:

In the described case the debug message handling state machine is stopped and remains in the current state signaled by RXF1S.DMS. In case the RXF1S.DMS = 11, the output m_can_dma_req remains active.

Workaround

In case the debug message handling state machine has stopped while RXF1S.DMS = 01 or RXF1S.DMS = 10, it can be reset to Idle state by hardware reset or by reception of debug messages after CCCR.INIT is reset to ‘0’.

In case the debug message handling state machine has stopped while RXF1S.DMS = 11 with m_can_dma_req active, it can be reset to Idle state by hardware reset or by activating input m_can_dma_ack.

Affected Silicon Revisions

| A | D | X | X |

2.4.8 Bus Errors

When a CAN AHB master port access on system RAM leads to an AHB error, the CAN does not report this error and continues its normal operations.
Workaround
None.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.4.9 On Demand
The CAN is not compatible with on-demand clock requests.

Workaround
Clear the ONDEMAND bit to zero for the oscillator source that provides the GCLK to the CAN.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.4.10 Debug Mode
The ECR.CEL, PSR.PXE, PSR.RFDF, PSR.RBRS, PSR.RESI, PSR.DLEC and PSR.LEC bits can be corrupted by a debug access.

Workaround
Do not read the ECR, PSR registers with a debugger when the CPU is not halted in debug, otherwise debug access will clear those bits.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.4.11 Debug Mode
An expected clear on read of the ECR.CEL, PSR.PXE, PSR.RFDF, PSR.RBRS, PSR.RESI, PSR.DLEC and PSR.LEC bits can be unexpectedly filtered-out when the CPU is halted.

Workaround
Do not halt the CPU if other masters in the application are accessing the ECR or PSR registers.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.5 Clock Failure Detector (CFD)

2.5.1 CFD with XOSC/XOSC32K Oscillator
When the CFD is enabled for the XOSC/XOSC32K oscillator and the oscillator input signal is stuck at 1, the clock failure detection works correctly but the switch to the safe clock will fail.
Workaround

Two possible workarounds are as follows:

1. If the main clock source comes from the XOSC/XOSC32K oscillator, the only workaround is indirect (i.e., using the WDT in firmware and switch to safe clock source in firmware at WDT reset).
2. Because the clock failure detection is functional, once the STATUS.CLKFAIL is set, and if the STATUS.CLKSW is not set, manually switch to safe clock from firmware by changing the configurations of the Generic Clock Generators that use the XOSC/XOSC32K oscillator as a clock source to use another source clock instead.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.5.2 XOSC Ready Bit not Cleared

When the XOSC Clock Failure Detector is enabled (XOSCCCTRL.CFDEN = 1) and a failure is detected (STATUS.XOSCFAIL = 1), the XOSC Ready bit is not cleared (STATUS.XOSCRDY = 1).

Workaround

STATUS.XOSCFAIL must always be checked before STATUS.XOSCRDY, and STATUS.XOSCRDY must always be ignored when STATUS.XOSCFAIL = 1.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.5.3 False Clock Failure Detection

Disabling the Clock Failure Detector (XOSCCCTRL.CFDEN = 0) and re-enabling it (XOSCCCTRL.CFDEN = 1) when the XOSC is enabled (XOSCCCTRL.ENABLE = 1), can lead to a false Clock Failure Detection.

Workaround

Follow these steps to re-enable the Clock Failure Detector:

1. Disable the XOSC (XOSCCCTRL.ENABLE = 0).
2. Disable the Clock Failure Detector (XOSCCCTRL.CFDEN = 0).
3. Re-enable the Clock Failure Detector (XOSCCCTRL.CFDEN = 1).
4. Re-enable the XOSC (XOSCCCTRL.ENABLE = 1).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.5.4 False Clock Failure Detection

Disabling the Clock Failure Detector (CFDCTRL.CFDEN = 0) and re-enabling it (CFDCTRL.CFDEN = 1) when the XOSC32K is enabled (XOSC32K.ENABLE = 1), can lead to a false Clock Failure Detection.

Workaround

Follow these steps to re-enable the Clock Failure Detector:

1. Disable the XOSC32K (XOSC32K.ENABLE = 0).
2. Disable the Clock Failure Detector (CFDCTRL.CFDEN = 0).
3. Re-enable the Clock Failure Detector (CFDCTRL.CFDEN = 1).
4. Re-enable the XOSC32K (XOSC32K.ENABLE = 1).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.6 Device

2.6.1 Reverse Current in VDDIOB Domain
For the device with 100-pin, 120-pin, and 128-pin counts, when VDDIOB is supplied with the voltage less than VDDIO - 0.7V, reverse current in VDDIOB cluster is observed.

Workaround
None. Pin PB13 must be tied to ground.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.6.2 Internal Pull-up on the RESET Pin
The internal pull-up of the RESET pin is not functional.

Workaround
An external 100K pull-up must be added on the RESET pin.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.6.3 Detection of a Debugger Probe
The detection of a debugger probe could fail if the "BOD33 Disable" fuse is cleared (i.e., BOD33 is enabled).

Workaround
To secure the detection of debugger probes, enable BOD33 using the SUPC.BOD33 register instead of the "BOD33 Disable" fuse. The "BOD33 Disable" fuse must be kept set.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.6.4 VBAT Mode
V_{BAT} mode is not functional.

Workaround
None.
2.6.5 Internal Reference

When the internal reference is used with the DAC and ADC, their outputs become non-linear when the operating temperature is less than 0°C.

Workaround
The internal reference must be used only for positive temperatures (i.e., above 0°C).

2.6.6 Device Operation for Temperature < -20°C

If the operating temperature is less than -20°C, the device does not start.

Workaround
Apply an external reset pulse at power-up when \(V_{DD}\) is higher than 2V, or keep reset line low while \(V_{DD}\) is lower than 2V.

Device Service Unit (DSU)

2.7.1 CRC32

The DSU CRC32 will not complete when targeting NVM memory space while the NVM cache is disabled.

Workaround
Be sure to always enable the NVM cache when performing a DSU CRC32 request targeting the NVM memory space.
2.8 48 MHz Digital Frequency-Locked Loop (DFLL48M)

2.8.1 COARSE or FINE Calibration Values During the Locking Sequence
If the DFLL48M reaches the maximum or minimum COARSE or FINE calibration values during the locking sequence, an out of bounds interrupt will be generated. These interrupts will be generated even if the final calibration values at DFLL48M lock are not at maximum or minimum, and might therefore be false out of bounds interrupts.

Workaround
Check that lock bits, DFLLLCKC and DFLLLCKF, in the OSCCTRL Interrupt Flag Status and Clear register (INTFLAG) are both set before enabling the DFLOOB interrupt.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.8.2 STATUS.DFLLRDY Bit in Close Loop Mode
In Close Loop mode, the STATUS.DFLLRDY bit does not rise before lock fine occurs. Therefore, the information about DFLL ready to start Close Loop mode is not available.

Workaround
None.

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.8.3 DFLLVAL.FINE Value When DFLL48M Re-enabled
If the DFLL is disabled and then re-enabled, the DFLLVAL.FINE value is ignored by the DFLL module, which will then start its lock fine process at another frequency.

Workaround
Before writing the final configuration in the DFLLCTRLB register, the DFLL module must be re-enabled in Open Loop mode to read and rewrite the DFLLVAL register.

1. OSCCTRL->DFLLMUL.reg = X; // Write new DFLLMULL configuration
2. OSCCTRL.DFLLCTRLB.reg = 0; // Select Open loop configuration
3. OSCCTRL.DFLLCTRLA.bit.ENABLE = 1; // Enable DFLL
4. OSCCTRL.DFLLVAL.reg = OSCCTRL->DFLLVAL.reg; // Reload DFLLVAL register
5. OSCCTRL.DFLLCTRLB.reg = X; // Write final DFLL configuration

Affected Silicon Revisions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.8.4 LLAW
When the Lose Lock After Wake (LLAW) is set, the DFLL may maintain lock (STATUS.DFLLLOCK = 1) after the DFLL is disabled. If the DFLL lock (STATUS.DFLLLOCK = 1) is maintained when the DFLL is reconfigured and then enabled, some bits may not be properly set.
Workaround
When reconfiguring the DFLL wait for the lock status to set to ‘0’ (STATUS.DFLLLLOCK = 0) after disabling the DFLL (DFLLCTRLA.ENABLE = 0).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.8.5 DFLL48M Status Flags
The STATUS.DFLLLCKF and STATUS.DFLLLCKC status bits are not automatically cleared when disabling the DFLL while it is running in Close Loop mode.

Workaround
Once the DFLL is disabled, clear the OSCCTRL.DFLLCTRLB.MODE bit to reset the lock bits of the DFLLSTATUS register.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.8.6 DFLL48M Status Flags
DFLL48M Status flags may have unexpected values during the DFLL48 registers (DFLLCTRLA, DFLLCTRLB, DFLLMUL, DFLLVAL) configuration.

Workaround
Clear DFLL48M Status before and after enabling the DFLL48M (DFLLCTRLA.ENABLE = 1).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9 Digital-to-Analog Converter (DAC)

2.9.1 Smoothing of the Output Signal in differential Mode
In Differential mode the smoothing of the output signal is not fully functional. Smoothing works normally in Differential mode as long as the value of two consecutive data are both positive or negative. The behavior is incorrect when the data changes from positive to negative or vice versa.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9.2 VDDANA as the DAC Reference
The selection of VDDANA as the DAC reference in DAC.CTRLB.REFSEL is non-functional.
Workaround
The VDDANA must be connected externally to a V_{REF} pin and DAC.CTRLB.VREFAU must be selected.

Affected Silicon Revisions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9.3 DAC on Negative Input AIN3

No analog compare will be done on Comparator 1 (AC1) when using the DAC on negative input AIN3.

Workaround

Use the internal VDD scaler.

Affected Silicon Revisions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9.4 Interpolation Mode

If the Interpolation mode is enabled (with filter integrated to the DAC), the last data from the filter is missing, and therefore, the DAC final output value does not correspond to the DAC input value.

Although interrupt events are generated at the end of conversion (EOC), the EOC occurs before the final value from the filter and is of no use in the application.

Workaround

None.

Affected Silicon Revisions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9.5 Reference

The reference select of the DAC (CTRLB.REFSEL) will default to a ‘0’ if the DAC Software Reset (CTRLA.SWRST) is used to reset the module.

Workaround

None.

Affected Silicon Revisions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.9.6 First Conversion

When the internal bandgap reference (INTREF) is selected as reference voltage (CTRLB.REFSEL = 0x3), the DAC Startup Ready bits value (STATUS.READY0, STATUS.READY1) is not correct for the first DAC Conversion after device power-up or after wake-up from Standby Low-Power mode.
Workaround
Disregard STATUS.READY0 and STATUS.READY1 bits for the first DAC conversion and check instead that the Data Buffer 0/1 Empty bits are set (INTFLAG.EMPTY0 = 1, INTFLAG.EMPTY1 = 1), as this process also checks the DAC readiness exhaustively. It will ensure the DAC is ready for the first conversion after device power-up or after wake-up from Standby Low-Power mode.

Affected Silicon Revisions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.10 Direct Memory Access Controller (DMAC)

2.10.1 Linked Descriptors

When at least one channel using linked descriptors is already active, a channel Fetch Error (FERR) could occur on enabling a channel with no linked descriptor or the second descriptor (index 1) of the channel being enabled could be fetched by one of the already active channels using linked descriptors. These errors can occur when a channel is being enabled during the link request of another channel and if the channel number of the channel being enabled is lower than the channel already active.

Workaround
When enabling a channel while other channels using linked descriptors are already active, the channel number of the new channel to enable must be greater than the other channel numbers.

Affected Silicon Revisions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.10.2 Channel Priority

When using channels with different priority levels, the highest priority channel could stall at the end of its current block.

When this occurs, the channel is seen as active with BTCNT = 0 in the ACTIVE register with Busy and Pending flag set in the CHSTATUSn register. This condition also prevents the other channels from executing.

Workaround
None.

Affected Silicon Revisions

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.10.3 DMAC in Debug Mode

In Debug mode, DMAC does not restart after a debug halt when DBGCTRL.DBGRUN = 0.

Workaround
Set DBGCTRL.DBGRUN to 1 so that the DMAC continues normal operation when the CPU is halted by an external debugger.
Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.11 Ethernet MAC (GMAC)

2.11.1 Ethernet Functionality in 64-pin Packages

Ethernet functionality in 64-pin packages is not available.

Workaround

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.12 External Interrupt Controller (EIC)

2.12.1 Edge Detection

When enabling EIC, SYNCBUSY.ENABLE is released before EIC is fully enabled. Edge detection can be done only after three cycles of the selected GCLK (GCLK_EIC or CLK_ULP32K).

Workaround

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.12.2 Asynchronous Edge Detection

When the asynchronous edge detection is enabled and the system is in Standby mode, only the first edge will be detected. The following edges are ignored until the system wakes up.

Workaround

Use the asynchronous edge detection with debouncer enabled. It is recommended to set the DPRESCALER.PRESCALER and DPRESCALER.TICKON to have the lowest frequency possible. To reduce the power consumption, set the EIC GCLK frequency as low as possible or select the ULP32K clock (EIC CTRLA.CKSEL set).

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
2.13 Fractional Digital Phase-Locked Loop (FDPLL)

2.13.1 Low-Frequency Input Clock on FDPLL

When using a low-frequency input clock (≤ 400 kHz) for input to FDPLL, several FDPLL false unlock status indications may occur while the FDPLL output frequency is actually stable.

Workaround

When using a low-frequency input clock (≤ 400 kHz) on FDPLL, enable the lock bypass (OSCCTRL.DPLLCTRLB.LBYPASS = 1) and wake up fast (OSCCTRL.DPLLCTRLB.WUF = 1) to avoid losing FDPLL clock output during a false unlock status. The workaround does not avoid false unlock indications but it disables the gating of the FDPLL clock output by the lock status; therefore, the clock is issued even if the FDPLL status shows unlocked. The Clock Ready bit (OSCCTRL.DPLLSTATUS.CLKRDY) can be monitored by the application to ensure activity is present on the FDPLL output, but clock ready does not provide any indication of FDPLL Lock or frequency. A 10 ms delay is also suggested after the clock ready bit is set to allow the DPLL to achieve the target frequency.

Pseudo Code

Set OSCCTRL.DPLLCTRLB.WUF = 1 and OSCCTRL.DPLLCTRLB.LBYPASS = 1
Set DPLLCTRLA.ENABLE = 1
Wait (OSCCTRL.DPLLSTATUS.CLKRDY == 1)
Delay (10ms)
Set Source for GCLK with DPLL

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.13.2 FDPLL Ratio in DPLLnRATIO

When changing the FDPLL ratio in DPLLnRATIO register on-the-fly, STATUS.DPLLnLDRTO will not be set when the ratio update will be completed.

Workaround

Wait for the interruption flag INTFLAG.DPLLnLDRTO instead.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.14 Non-Volatile Memory Controller (NVMCTRL)

2.14.1 NVM Read Corruption

NVM reads could be corrupted when mixing NVM reads with Page Buffer writes.

Workaround

Disable cache lines before writing to the Page Buffer when executing from NVM or reading data from NVM while writing to the Page Buffer. Cache lines are disabled by writing a one to CTRLA.CACHEDIS0 and CTRLA.CACHEDIS1.
2.15 Peripheral Access Controller (PAC)

2.15.1 PAC Protection Error in FREQM
FREQM reads on the Control B register (FREQM.CTRLB) generate a PAC protection error.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.15.2 PAC Protection Error in CCL
Writing the Software Reset bit in the Control A register (CTRLASWRST) will trigger a PAC protection error.

Workaround
Clear the CCL PAC error each time a CCL software reset is executed.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.16 I/O Pin Controller (PORT)

2.16.1 PORT Read/Write Attempts on Non-Implemented Registers
PORT read/write attempts on non-implemented registers, including addresses beyond the last implemented register group (PA, PB,...), do not generate a PAC protection error.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.16.2 PORT Pull-Up/Pull-Down Resistor
The pull-down on PA24/PA25 are activated during power-up and when Sleep mode is OFF. On all other pins, except those in the VSWOUT cluster, the pull-up is activated during power-up and when Sleep mode is OFF.

Workaround
None.
2.17 Real-Time Counter (RTC)

2.17.1 Write Corruption
A 8-bit or 16-bit write access for a 32-bit register, or 8-bit write access for a 16-bit register can fail for the following registers:
- COUNT register in COUNT32 mode
- COUNT register in COUNT16 mode
- CLOCK register in CLOCK mode

Workaround
Write the registers with:
- A 32-bit write access for COUNT register in COUNT32 mode, CLOCK register in CLOCK mode
- A 16-bit write access for the COUNT register in COUNT16 mode

2.17.2 COUNTSYNC
When CTRLA.COUNTSYNC is enabled, the first COUNT value is not correctly synchronized and thus it is a wrong value.

Workaround
After enabling COUNTSYNC, read the COUNT register until its value is changed when compared to its first value read. After this, all consequent value read from the COUNT register is valid.

2.17.3 Tamper Input Filter
Majority debouncing, as part of RTC tamper detection, does not work when enabled by setting the Debouncer Majority Enable bit, CTRLB.DEBMAJ.

Workaround
None.

2.17.4 Tamper Detection
Upon enabling the RTC tamper detection feature, a false tamper detection can be reported by the RTC.
Workarounds

Use any one of the following workarounds:

- **Workaround 1**: Configure TAMPER detection as ONLY falling edge.
- **Workaround 2**: If the user software has to use TAMPER detection as rising edge, it must ignore the first tamper interrupt generated immediately after enabling the RTC tamper detection.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.17.5 Tamper Detection Timestamp

If an external reset occurs during a tamper detection, the TIMESTAMP register will not be updated when next tamper detection is triggered.

Workarounds

Enable RTC tamper interrupt and copy the timestamp from the RTC CLOCK register to one of the following destinations:

- SRAM
- GPx register in RTC
- BKUPx register in RTC

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.17.6 Prescaler

When the tamper or debouncing features (TAMPCTRL) are enabled, periodic interrupts and events are generated when the prescaler is OFF (CTRLA.PRESCALER = 0).

Workarounds

When the prescaler is OFF (CTRLA.PRESCALER = 0), clear the Periodic Interval n Event Output Enable bits (EVCTRL.PEREn = 0 [n = 7...0]) and respective Periodic Interval n Interrupt Enable (INTENCLR.PERn = 1 [n = 7...0]) bits.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.17.7 Tamper Detection Timestamp

The INTFLAG.TAMPER bit is not reset by reading the TIMESTAMP register.

Workarounds

Clear the INTFLAG.TAMPER bit by writing a ‘1’ to this bit when the Timestamp value has been read from the TIMESTAMP register.
2.17.8 General Purpose Registers

General Purpose Registers \(n \) (GP\(n \)) are reset on tamper detection even if GP\(\text{TST} \) = 0.

Workarounds
None.

Affected Silicon Revisions

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.18 Serial Communication Interface (SERCOM)

2.18.1 SERCOM-USART: Auto-Baud Mode

In USART Auto-Baud mode, missing stop bits are not recognized as inconsistent sync (ISF) or framing (FERR) errors.

Workaround
None.

Affected Silicon Revisions

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.18.2 SERCOM-USART: Collision Detection

In USART operating mode with Collision Detection enabled (CTRLB.COLDEN = 1), the SERCOM will not abort the current transfer as expected if a collision is detected and if the SERCOM APB Clock is lower than the SERCOM Generic Clock.

Workaround
The SERCOM APB clock must always be higher than the SERCOM Generic Clock to support collision detection.

Affected Silicon Revisions

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.18.3 SERCOM-USART: Debug Mode

In USART operating mode, if DBGCTRL.DBGSTOP = 1, data transmission is not halted after entering Debug mode.

Workaround
None.
2.18.4 SERCOM-SPI: 32-bit Extension Mode
When 32-bit Extension mode is enabled and data to be sent is not in multiples of 4 bytes, which means the length counter must be enabled, and additional bytes will be sent over the line.

Workarounds
Use any one of the following workarounds:
1. Write the Inter-Character Spacing bits (CTRLC.ICSPACE) to a non-zero-value.
2. Do not use length counter in firmware by keeping the data to be sent is in multiples of 4 bytes.

2.18.5 SERCOM-UART: TXINV and RXINV Bits
The TXINV and RXINV bits in the CTRLA register have inverted functionality.

Workaround
In software interpret the TXINV bit as a functionality of RXINV, and conversely, interpret the RXINV bit as a functionality of TXINV.

2.18.6 SERCOM-I2C: SDAHOLD Timing
SDAHOLD timing of the SERCOM-I2C does not match the value shown in the current device data sheet. The following table shows the specified and real values of SDA Hold timing.

<table>
<thead>
<tr>
<th>SDA Hold Time Value</th>
<th>Specified SDA Hold Time</th>
<th>Real SDA Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>0x1</td>
<td>50 ns to 100 ns</td>
<td>20 ns to 40 ns</td>
</tr>
<tr>
<td>0x2</td>
<td>300 ns to 600 ns</td>
<td>100 ns to 250 ns</td>
</tr>
<tr>
<td>0x3</td>
<td>400 ns to 800 ns</td>
<td>150 ns to 350 ns</td>
</tr>
</tbody>
</table>

Workaround
None.
2.18.7 **SERCOM-\textsuperscript{I\textsubscript{2}C}: Repeated Start in High-Speed Master Write Operation**

For High-Speed Master Write operations, writing CTRLB.CMD = 0x1 issues a STOP command instead of a Repeated Start making repeated start not possible in that mode.

Workaround

None.

Affected Silicon Revisions

| A | D | X | X |

2.18.8 **SERCOM-\textsuperscript{I\textsubscript{2}C}: Repeated Start in High-Speed Master Read Operation**

For High-Speed Master Read operations, sending a NACK (CTRLB.CMD = 0x2) forces a STOP to be issued making repeated start not possible in that mode.

Workaround

None.

Affected Silicon Revisions

| A | D | X | X |

2.18.9 **SERCOM-\textsuperscript{I\textsubscript{2}C}: STATUS.CLKHold Bit in Master and Slave Modes**

The STATUS.CLKHold bit in master and slave modes can be written whereas it is a read-only status bit.

Workaround

Do not clear STATUS.CLKHold bit to preserve the current clock hold state.

Affected Silicon Revisions

| A | D | X | X |

2.18.10 **SERCOM-\textsuperscript{I\textsubscript{2}C}: \textsuperscript{I\textsubscript{2}C} in Slave Mode**

In \textsuperscript{I\textsubscript{2}C} mode, LENERR, SEXTOUT, LOWTOUT, COLL and BUSERR bits are not cleared when INTFLAG.AMATCH is cleared.

Workaround

Manually clear status bits LENERR, SEXTOUT, LOWTOUT, COLL and BUSERR by writing these bits to 1 when set.

Affected Silicon Revisions

| A | D | X | X |

2.18.11 **SERCOM-\textsuperscript{I\textsubscript{2}C}: Slave Mode with DMA**

In \textsuperscript{I\textsubscript{2}C} Slave Transmitter mode, at the reception of a NACK, if there is still data to be sent in the DMA buffer, the DMA will push a data to the DATA register. Because a NACK was received, the transfer on the \textsuperscript{I\textsubscript{2}C} bus will not occur causing the loss of this data.
Workaround
Configure the DMA transfer size to the number of data to be received by the I²C master. DMA cannot be used if the number of data to be received by the master is not known.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.18.12 SERCOM-I²C: I²C Slave in DATA32B Mode
When SERCOM is configured as an I²C slave in 32-bit Data Mode (DATA32B = 1) and the I²C master reads from the I²C slave (slave transmitter) and outputs its NACK (indicating no more data is needed), the I²C slave still receives a DRDY interrupt.

If the CPU does not write a new data to the I²C slave DATA register, I²C slave will pull SDA line, which will result in stalling the bus permanently.

Workarounds

1. Write a dummy data to data register when a NACK is received from the master.
2. Use command #2 (SERCOMx->I2CS.CTRLB.bit.CMD = 2) when a NACK is received from the master.

Important: Because STATUS.RXNACK always indicates the last received ACK, to determine when a NACK is received from the I²C master, the I²C slave software needs to consider I2CS.STATUS.RXNACK only on the second DRDY interrupt after receiving the AMATCH interrupt.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.18.13 SERCOM-I²C: 10-bit Addressing Mode
10-bit addressing in I²C Slave mode is not functional.

Workaround

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.18.14 SERCOM-I²C: Repeated Start
When the Quick command is enabled (CTRLB.QCEN = 1), software can issue a repeated Start by writing either CTRLB.CMD or ADDR.ADDR bit fields. If in these conditions, SCL Stretch Mode is CTRLA.SCLSM = 1, a bus error will be generated.

Workaround

Use Quick Command mode (CTRLB.QCEN = 1) only if SCL Stretch Mode is CTRLA.SCLSM = 0.
2.18.15 SERCOM-SPI: Data Preload
In SPI Slave mode with Slave Data Preload Enabled (CTRLB.PLOADEN = 1), the slave transmitter may discard
some data if the master cannot keep the Slave Select pin low until the end of transmission.

Workarounds
In SPI Slave mode, the Slave Select pin (SS) must be kept low by the master until the end of the transmission if the
Slave Data Preload feature is used (CTRLB.PLOADEN = 1).

2.18.16 SERCOM I2C: Repeated Start
For Master Write operations (excluding High-Speed mode), in 10-bit addressing mode, writing CTRLB.CMD = 0x1
does not issue a Repeated Start command correctly.

Workarounds
Write the same 10-bit address with the same direction bit to the ADDR.ADDR register to generate properly a
Repeated Start.

2.18.17 SERCOM-USART: Wakeup
The USART does not wake-up the device on Error Interrupt (INTFLAG.ERROR = 1).

Workarounds
Configure the USART to wake-up the device on the RX Complete Interrupt (INTENSET.RXC = 1) in order to check
the PERR/FERR status (STATUS.PERR = 1 or STATUS.FERR = 1).

2.18.18 SERCOM-USART: LENGTH
When the USART is used in 32-bit mode with hardware handshaking (CTS/RTS), the TXC interrupt flag
(INTFLAG.TXC) may be set before transmission has completed. The TXC interrupt flag may incorrectly be set
regardless of Data Length Enable (LENGTH.LENEN) is set to '0' or '1'.

Workarounds
None.
2.18.19 SERCOM-USART: Overconsumption in Standby mode

When SERCOM USART CTRLA.RUNSTDBY= 0 and the Receiver is disabled (CTRLB.RXEN= 0), the clock request to the GCLK generator feeding the SERCOM will stay asserted during Standby mode, leading to unexpected over-consumption.

Workaround
Configure CTRLA.RXPO and CTRLA.TXPO in order to use the same SERCOM PAD for RX and TX or add an external pull-up on the RX pin.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.18.20 SERCOM-USART, SERCOM-SPI: Wake-up Interrupt

The Data Register Empty (DRE) wake-up interrupt is not de-asserted when the register interrupt is cleared (INTFLAG.DRE = 0).

The issue occurs if the DRE interrupt is enabled (INTSET.DRE = 1) when the device enters in Standby Sleep mode.

Workaround
Do not enable DRE interrupt (INTSET.DRE = 1) before entering in Standby Sleep mode.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.18.21 SERCOM-SPI: Slave Data Preload

Preloading a new SPI data (CTRLB.PLOADEN = 1) before going into Standby Sleep mode, may lead to extra power consumption.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.18.22 SERCOM-SPI: Hardware Slave Select Control

When Hardware Slave Select Control is enabled (CTRLB.MSSEN = 1), the Slave Select (SS) pin goes high after each byte transfer even if a new data is ready to be sent.

Workaround
Set CTRLB.MSSEN = 0 and handle the Slave Select (SS) pin by software.
2.19 Supply Controller (SUPC)

2.19.1 Buck Converter Mode
Buck Converter mode is not supported when using PLLs. As a result, the information given in Table 54-9 “Active Current Consumption - Active Mode” data for Buck converter mode with FDPLL and DFLL configurations is not valid and must be disregarded.

Workaround
Use the LDO Regulator mode when using FDPLL and DFLL configurations.

2.19.2 BOD33 Hysteresis
The hysteresis feature of the 3.3V BOD is not functional while the device is in STANDBY sleep mode.

Workaround
None.

2.20 Timer/Counter (TC)

2.20.1 PERBUF/CCBUFx Register
When clearing the STATUS.PERBUFV/STATUS.CCBUFx flag, the SYNCBUSY flag is released before the PERBUF/CCBUFx register is restored to its appropriate value.

Workaround
Successively clear the STATUS.PERBUFV/STATUS.CCBUFx flag twice to ensure that the PERBUF/CCBUFx register value is restored before updating it.

2.20.2 Retrigger
If a Retrigger event (EVCTRL.EVACTn = 0x1, RETRIGGER) occurs at the Channel Compare Match [n] time, the next Waveform Output [n] is corrupted.
Workaround
Use two channels to store their two successive (n and n+1) CC register values and combine their related waveform outputs to make signal redundancy.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.21 Timer/Counter for Control Applications (TCC)

2.21.1 TCC with EVSYS in SYNC/RESYNC Mode

TCC peripheral is not compatible with an EVSYS channel in SYNC or RESYNC mode.

Workaround
Use TCC with an EVSYS channel in ASYNC mode.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.21.2 Dithering Mode with External Retrigger Events

Using TCC in Dithering mode with external retrigger events can lead to an unexpected stretch of right-aligned pulses, or shrink of left-aligned pulses.

Workaround
Do not use retrigger events or actions when the TCC module is configured in Dithering mode.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.21.3 ALOCK Feature

ALOCK feature is not functional.

Workaround
None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.21.4 LUPD feature in Down-Counting Mode

In down-counting mode, the Lock Update bit (CTRLB.LUPD) does not protect against a PER register update from the PERBUF register.

Workaround
None.
2.21.5 Re-trigger in RAMP2 Operations
Re-trigger in RAMP2 operations (RAMP2, RAMP2A, RAMP2C, RAMP2CS) is not supported if a prescaler is used (CTRLA.PRESCALER \(!= 0\)) and the re-trig of the counter is done on the next GCLK (CTRLA.PRESCSYNC = GCLK or CTRLA.PRESCSYNC = RESYNC).

Workaround
Configure the re-trigger of the counter on the next prescaler clock (CTRLA.PRESCSYNC = PRESC).

2.21.6 Re-trigger
If a Re-trigger event (EVCTRL.EVACTn = 0x1, RETRIGGER) occurs at the Channel Compare Match \([n]\) time, the next Waveform Output \([n]\) is corrupted.

Workaround
Use two channels to store their two successive \((n \text{ and } n+1)\) CC register values and combine their related waveform outputs to make signal redundancy.

2.21.7 RAMP2 Operations
Timer/Counter Counting-down mode (CTRLCLR.DIR = CTRLSET.DIR = 1) is not supported in RAMP2 operations (RAMP2, RAMP2A, RAMP2C, RAMP2CS).

Workaround
Use Timer/Counter Counting-up mode (CTRLCLR.DIR = CTRLSET.DIR = 0).

2.21.8 Dithering Mode
Retrigger in RAMP2 operations is not supported in Dithering mode.

Workaround
None.
2.22 Position Decoder (PDEC)

2.22.1 Reserved

2.22.2 Angular and Revolution Counters

With index input enabled, that is EVCTRL.EVEI[2] and operating in X4/X2 mode, angular and revolution counters are incremented/decremented by two separate and unsynchronized sources (phases and index). This can lead to generating erroneous MC0 and MC1 events.

Workaround

If the application use case permits, operate PDEC in X4S/X2S mode by setting CTRLA.CONF[2:0] = 0b001/0b011.

In this mode, the revolution counter is incremented/decremented by a single source, that is angular counter overflow/underflow.

If the application use case restricts operation in X4S/X2S mode, then disable index input event, that is EVCTRL.EVEI[2] = 0. This ensures that revolution counter is incremented/decremented by a single source, that is angular counter overflow/underflow. First occurrence of the index pulse can be detected using an external interrupt input and angular counter value can be reset in the corresponding interrupt service routine.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.23 Voltage Reference System (VREF)

2.23.1 Temperature Sensor

Both internal temperature sensors, TSENSP and TSENSC, are not supported and should not be used.

Workaround

None.

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.24 Event System (EVSYS)

2.24.1 Synchronous Mode

In Synchronous mode, spurious overrun interrupts can be generated when the generic clock for a channel is always ON (CHANNEL.ONDEMAND = 0).

Workaround

Set Generic Clock on Demand feature by setting CHANNEL.ONDEMAND = 1.
2.24.2 Software
Software Events are not supported in Synchronous and Resynchronized modes.

Workaround
Use software events in Asynchronous mode.

2.25 True Random Number Generator (TRNG)

2.25.1 Over Consumption
When TRNG is disabled, some internal logic could continue to operate causing an over consumption.

Workaround
Disable the TRNG module twice:

- CTRLA.ENABLE = 0;
- CTRLA.ENABLE = 0;

Affected Silicon Revisions

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
3. Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the device data sheet (DS60001507G), and are showed in **BOLD** type:

There are currently no Data Sheet Clarifications to report.
4. Appendix A: Revision History

Rev. L (01/2021)
The following errata had updates to their titles for clarification:

- 2.18.7 SERCOM-I2C: Repeated Start in High-Speed Master Write Operation
- 2.18.8 SERCOM-I2C: Repeated Start in High-Speed Master Read Operation
- 2.18.9 SERCOM-I2C: STATUS.CLK HOLD Bit in Master and Slave Modes
- 2.18.17 SERCOM-USART: Wakeup
- 2.18.18 SERCOM-USART: LENGTH
- 2.18.19 SERCOM-USART: Overconsumption in Standby mode

The following Errata were added in this revision:

- 2.2.3 AC: Standby Sleep Mode
- 2.2.4 AC: Debug Mode
- 2.4.7 CAN: Debug Message
- 2.4.8 CAN: Bus Errors
- 2.4.9 CAN: On Demand
- 2.4.10 CAN: Debug Mode
- 2.4.11 CAN: Debug Mode
- 2.5.2 CFD: Ready Bit Not Cleared
- 2.5.3 CFD: False Clock Failure Detection
- 2.5.4 CFD: False Clock Failure Detection
- 2.8.5 DFLL48M: DFLL48M Status Flags
- 2.8.6 DFLL48M: DFLL48M Status Flags
- 2.9.6 DAC: First Conversion
- 2.17.7 RTC: Tamper Detection Timestamp
- 2.17.8 RTC: General Purpose Registers
- 2.18.20 SERCOM: Wake-up Interrupt
- 2.18.21 SERCOM-SPI: Slave Data Preload
- 2.18.22 SERCOM-SPI: Hardware Slave Select Control
- 2.20.2 TC: Retrigger
- 2.21.5 TCC: Re-trigger in RAMP2 Operations
- 2.21.6 TCC: Re-Trigger
- 2.21.7 TCC: RAMP2 Operations
- 2.21.8 TCC: Dithering Mode
- 2.22.2 PDEC: Angular and Revolution Counters
- 2.24.1 EVSYS: Synchronous Mode
- 2.24.2 EVSYS: Software
- 2.25.1 TRNG: Over consumption

Rev. K (05/2020)
The following Silicon Errata was removed as the issue does not exist:

- 2.22.1 X2 Mode

The following silicon errata were updated:

- 2.6.6 Device Operation for Temperature was updated with a table denoting those packages affected by the issue

The following silicon errata was added:

- 2.18.19 USART

Obsolete Data Sheet Clarifications were removed.
Rev. J (11/2019)
Added new silicon errata for 2.23.1 Temperature Sensor.

Rev. H (7/2019)
The Silicon errata for Device Operation for Temperature was updated with text denoting which silicon versions it applies to.

Rev. G (6/2019)
The Errata Summary Table and The affected silicon revision tables in 2. Silicon Errata Issues have been updated to reflect the addition of EFP and Non-EFP silicon revisions. The following Silicon issues were added:

- 2.1 Analog-to-Digital Converter (ADC):
 - DMA Sequencing
 - DMA Sequencing
- 2.2 Analog Comparator (AC): Output
- 2.8 48 MHz Digital Frequency-Locked Loop (DFLL48M): LLAW
- 2.9 Digital-to-Analog Converter (DAC): Reference
- 2.17 Real-Time Counter (RTC): Prescaler
- 2.18 Serial Communication Interface (SERCOM):
 - SERCOM-USART: Wakeup
 - SERCOM-USART: Length

Rev. F. (2/2019)
The following Silicon Issues were updated:

- FDPLL: Low-Frequency Input Clock on FDPLLn

The following Data Sheet Clarifications were added:

- Update to Initialization, Enabling, Disabling, and Resetting
- Update to Loop Divider Ratio Updates

Rev. E (11/2018)
The following silicon issues were added:

- SERCOM I²C
 - SEERCOM I2C: Repeated Start
- CAN-FD
 - Messages Transmitted with Wrong Arbitration and Control Fields
 - DAR Mode
 - High-Priority Message (HPM) Interrupt
 - TX FIFO Message Sequence Inversion
- DMAC
 - Channel Priority
 - DMAC in Debug Mode
- RTC
 - COUNTSYNC
 - Tamper Input Filter
 - Tamper Detection
 - Tamper Detection Timestamp
- SUPC
 - BOD33 Hysteresis
- TCC
– ALOCK Feature
– LUPD Feature in Down-Counting Mode

The following Data Sheet Clarifications were added:
• Table 54-35 Flash Timing Characteristics was updated.
• BOD12 Register Information was updated.

Rev. D (08/2018)
The current device data sheet revision letter was updated.
The following silicon issues were added:
• Configurable Custom Logic (CCL):
 – Enable Protected Registers
 – Sequential Logic Reference
• Device:
 – Reverse Current in VDDIOB Domain
• SERCOM:
 – Repeated Start in High-Speed Master Write Operation
 – Repeated Start in High-Speed Master Read Operation
 – STATUS.CLKHold Bit in Master and Slave Modes
• Supply Controller (SUPC):
 – Buck Converter Mode
• TCC:
 – TCC with EVSYS in SYNC/RESYNC Mode

Rev. C (04/2018)
The current device data sheet revision letter was updated.
The following silicon issues were added:
• Analog-to-Digital Converter (ADC):
 – Reference Buffer Offset Compensation
• Peripheral Access Controller (PAC):
 – PAC Protection
• Real-Time Counter (RTC):
 – Write Corruption
• SERCOM-I2C:
 – Slave Mode with DMA
 – I²C Slave in DATA32B Mode
 – I²C Slave Mode in 10-bit Address
 – Repeated Start
• SERCOM-SPI
 – Data Preload
• SERCOM-UART:
 – Collision Detection

All Data Sheet Clarifications were removed.

Rev. B (10/2017)
This revision includes the following additions:
Silicon Issues
• Ethernet Functionality in 64-pin Packages
Data Sheet Clarifications

- ADC Operating Conditions
- GMAC IEEE 802.3AZ Energy Efficient Support
- SERCOM Baud Rate Equations
- SERCOM in SPI Mode Timing
- TQFP 64-pin Package
- DAC Operating Conditions

Rev. A (7/2017)
Initial release of this document.
The Microchip Web Site

Microchip provides online support via our web site at www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com/. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBloxx, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestiIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7429-6

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
</table>
| Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com | Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-6-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040 | India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-40-2141-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-2943-2100 | Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7269-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5909-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820 |