
 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 1

Introduction
The modern embedded systems are increasingly susceptible to software attacks, which are malicious activities
aimed at exploiting software vulnerabilities to gain unauthorized access, steal data, disrupt services, or inflict
other forms of damage. Concurrently, protecting intellectual property remains critically important.

This document provides guidelines on safeguarding the PIC32CM LS00 MCU against software attacks using
the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit. By leveraging the Boot ROM’s Secure Hash Algorithm
2 (SHA-256) Authentication, the PIC32CM LS00 can identify unauthorized code fragments in the non-secure
memory and replace them with an authentic copy of the same from the secure memory region.

Product Page Links

 Software Attack Protection on PIC32CM LS00 MCUs
 AN5880

https://microchip.com

 AN5880

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 2

Table of Contents
Introduction...1

1. Hardware and Software Requirements..3

1.1. PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit... 3
1.2. MPLAB® X Integrated Development Environment (IDE) and MPLAB XC Compilers...................................3
1.3. MPLAB Harmony v3... 3

2. Software Attack Protection Using PIC32CM LS00 MCUs.. 4

2.1. Boot ROM Features..4
2.2. Secure Hash Algorithm 2 (SHA-256) Authentication..4
2.3. Usage of SHA-256 APIs from Boot ROM..4
2.4. Prevention of Non-Secure Region against Software Attacks..5

3. Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit using
MPLAB Harmony v3 and MCC..9

3.1. Adding and Configuring MPLAB Harmony Components.. 12
3.2. Generate Code... 19

4. Adding Application Logic to the Non-Secure and Secure Projects..22

4.1. Adding the Non-Secure Application Logic.. 22
4.2. Adding the Secure Application Logic... 24

5. Building and Running the Application.. 29

6. Observe the Output on the MPLAB Data Visualizer..32

7. Resources...37

8. Revision History...38

Microchip Information... 39

Trademarks.. 39
Legal Notice..39
Microchip Devices Code Protection Feature..39

Product Page Links... 40

 AN5880
Hardware and Software Requirements

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 3

1. Hardware and Software Requirements
1.1. PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit

The PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit is ideal for evaluating and prototyping
with the secure and ultra-low power PIC32CM LS00 Arm® Cortex®-M23 microcontrollers. The MCU
integrates Arm TrustZone® technology and enhanced Peripheral Touch Controller (PTC) and smart
analog, such as Op Amps, ADC, DAC, and Analog Comparators.

The kit includes an on-board Nano Embedded Debugger (nEDBG), eliminating the need for external
tools to program or debug. The following are key features of the PIC32CM LS00 MCU:

• 48 MHz Arm Cortex-M23 Core
• 512 KB Flash and 64 KB SRAM
• Immutable Secure boot, Crypto accelerator, Anti-tamper detection

The PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit is available at Microchip Direct.

1.2. MPLAB® X Integrated Development Environment (IDE) and MPLAB XC
Compilers
The MPLAB X IDE is an expandable, highly configurable software program that incorporates
powerful tools to discover, configure, develop, debug, and qualify embedded designs for most of
the Microchip’s microcontrollers.

• The MPLAB X IDE is available on the Microchip Website. This document describes the MPLAB X
IDE version 6.20.

• The MPLAB XC Compilers are available on the Microchip Website. This document describes
MPLAB XC32 version 4.45.

1.3. MPLAB Harmony v3
MPLAB Harmony v3 is a fully integrated software development framework that provides flexible
and interoperable software modules that enable dedicating resources to create applications for
32-bit PIC® and SAM devices, rather than dealing with device details, complex protocols, and library
integration challenges.

It includes the MPLAB Code Configurator (MCC), an easy-to-use development tool with a graphical
user interface (GUI) that simplifies device setup, library selection, configuration, and application
development. The MCC is available as a plug-in that integrates with the MPLAB X IDE and has a
separate Java executable for stand-alone use with other development environments.

The application discussed in this document uses the following MPLAB Harmony v3 repositories.
These repositories can be downloaded from GitHub:

• csp v3.20.0 (MPLAB Harmony v3 Chip Support Package)
• bootloader v3.7.0

or
• Use the MCC Content Manager to download the above-mentioned repository

https://www.microchipdirect.com/dev-tools/EV41C56A?allDevTools=true
https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide
https://www.microchip.com/en-us/tools-resources/develop/mplab-xc-compilers/xc32
https://github.com/Microchip-MPLAB-Harmony/csp
https://github.com/Microchip-MPLAB-Harmony/bootloader
https://onlinedocs.microchip.com/pr/GUID-1F7007B8-9A46-4D03-AEED-650357BA760D-en-US-6/index.html?GUID-1154354B-2B16-4E74-8552-AD4977699E09

 AN5880
Software Attack Protection Using PIC32CM LS00 MCUs

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 4

2. Software Attack Protection Using PIC32CM LS00 MCUs
2.1. Boot ROM Features

The PIC32CM LS00/LS60 series incorporate a hardware or software cryptographic accelerator
(CRYA) that facilitates Advanced Encryption Standard (AES) encryption and decryption, Secure
Hash Algorithm 2 (SHA-256) authentication, and Galois Counter Mode (GCM) encryption and
authentication through a suite of APIs.

The CRYA cryptographic accelerator is configured as a client on the IOBUS port and is controlled by
the CPU through assembly code stored in the Boot ROM.

Advanced Encryption Standard (AES) adheres to the American Federal Information Processing
Standard (FIPS) Publication 197 specification. AES processes data in 128-bit blocks. The key size
for an AES cipher determines the number of transformation rounds required to convert the input
plaintext into the final output, known as ciphertext. AES utilizes a symmetric-key algorithm, meaning
the same key is employed for both encryption and decryption.

SHA-256 is a cryptographic hash function that generates a 256-bit hash from a data block, which is
processed in 512-bit chunks.

Galois/Counter Mode (GCM) is an operational mode for AES that integrates the Counter (CTR) mode
with an authentication hash function.

2.2. Secure Hash Algorithm 2 (SHA-256) Authentication
The main purpose of a hash function is to create a distinct digital identifier for a specific set of
data, similar to a fingerprint. Unlike error detection codes, each data set must be linked to a unique
identifier.

In practical terms, a hash function takes input of varying lengths and produces an output of a fixed
size known as a message digest. It has several important attributes, including excellent diffusion,
which guarantees a significantly different output with even a small change in input.

Although the fixed output size theoretically limits the ability to generate a unique digest for every
possible piece of data, hash functions are designed to make it extremely difficult to find two
messages that produce the same digest, effectively creating the appearance of uniqueness for
practical purposes.

2.3. Usage of SHA-256 APIs from Boot ROM
The cryptographic accelerator (CRYA) APIs are located in a dedicated Boot ROM area. This area is
execute-only, meaning the CPU cannot do any loads but can call the APIs. The Boot ROM memory
space is a secure area, only the secure application can directly call these APIs.

Table 2-1. CRYA APIs Addresses
CRYA API Address

AES Encryption 0x02006804

AES Decryption 0x02006808

SHA256 Init 0x02006810

SHA256 Update 0x02006814

SHA256 Final 0x02006818

SHA256 Process (legacy API) 0x02006800

GCM Process 0x0200680C

The API is composed of the following functions which must be called in a specific order:

1. SHA-256 Init to initiate a SHA256_CTX structure.

 AN5880
Software Attack Protection Using PIC32CM LS00 MCUs

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 5

2. SHA-256 Update to add a message to be computed in the digest.
3. SHA-256 Final to compute the digest.

Note: SHA-256 Update can be called several times in the case several messages are to be included
in the digest computation.

The SHA-256 structure to define is called SHA56_CTX:

typedef struct
{
 /* Digest result of SHA256 */
 uint32_t digest[8];
 /* Length of the message */
 uint64_t length;
 /* Holds the size of the remaining part of data */
 uint32_t remain_size;
 /* Buffer of remaining part of data (512 bits data block) */
 uint8_t remain_ram[64];
 /* RAM buffer of 256 bytes used by crya_sha_process */
 uint32_t process_buf[64];

} SHA256_CTX;

The SHA-256 Init function entry point is located at the Boot ROM address 0x02006810:

typedef void (*crya_sha256_init_t) (SHA256_CTX *context);

#define crya_sha256_init ((crya_sha256_init_t) (0x02006810 | 0x1))

The SHA-256 Update function entry point is located at the Boot ROM address 0x02006814:

typedef void (*crya_sha256_update_t) (SHA256_CTX *context, const unsigned char *data, size_t
length);

#define crya_sha256_update ((crya_sha256_update_t) (0x02006814 | 0x1))

The SHA-256 Final function entry point is located at the Boot ROM address 0x02006818:

typedef void (*crya_sha256_final_t) (SHA256_CTX *context, unsigned char output[32]);

#define crya_sha256_final ((crya_sha256_final_t) (0x02006818 | 0x1))

2.4. Prevention of Non-Secure Region against Software Attacks
During device startup, the secure application calculates a unique identifier (digest) for the Non-
Secure firmware and stores it in secure memory (Secure Data Flash). A periodic verification is
necessary to ensure the integrity of the Non-Secure firmware. A timer will check the firmware
authenticity at specific time intervals.

If malware or unauthorized code is injected into the Non-Secure application, the calculated digest
of the updated firmware will not match the expected digest of the genuine Non-Secure application.
As a result, the secure application will restore the original copy from the secured memory to the
Non-Secure Flash region, preventing system downtime.

 AN5880
Software Attack Protection Using PIC32CM LS00 MCUs

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 6

Figure 2-1. Software Attack Protection of Non-Secure Firmware

2.4.1. Simulation of Software Attack
The PIC32CM LS00/LS60 family of devices features tamper detection with a tamper erase security
function within the Real Time Clock (RTC) peripheral. To simulate a software attack, the tamper
erase option is employed to erase data stored in the secure memory region. Upon detecting any
tampering, the RTC peripheral within the secure application triggers a tamper-erase operation to
delete the contents (firmware digest) in the Secure Data Flash region.

Figure 2-2. Software Attack Simulation using Tamper Detection

2.4.2. Execution Flow
Secure Firmware Execution Flow

The following figure illustrates the system-level execution flow of Secure firmware in the Software
Attack Protection application.

 AN5880
Software Attack Protection Using PIC32CM LS00 MCUs

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 7

Figure 2-3. Secure Application Execution Flow

The Secure application executes in the following sequence:

1. After a system reset, the application initiates the Non-Secure firmware hashing process to
generate a firmware digest.

2. The calculated digest is stored in the data Flash memory within the Secure region.
3. The firmware digest of the Non-Secure application is verified against the genuine copy in the

Secure Flash memory.
4. Upon successful verification, the execution is jumped to the Non-Secure application.
5. If verification fails, the Non-Secure application is erased, and the genuine copy is loaded into the

Non-Secure Flash region.
6. Every 30 seconds, the firmware digest is regenerated and cross-verified with the genuine copy to

ensure authenticity.

Non-Secure Firmware Execution Flow

The following figure illustrates the system-level execution flow of Non-Secure firmware in the
Software Attack Protection application.

 AN5880
Software Attack Protection Using PIC32CM LS00 MCUs

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 8

Figure 2-4. Non-Secure Application Execution Flow

The Non-Secure application executes in the following sequence:

1. After a firmware jump from the Secure application, the Non-Secure firmware initializes the
Non-Secure peripherals.

2. Toggles the LED1 for every 500 millisecond on the PIC32CM LS00 Curiosity Nano+ Touch
Evaluation Kit.

Software Attack Simulation Execution Flow

The simulation of a software attack is conducted in the following sequence:

1. Pressing the SW1 button on the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit simulates a
software attack by triggering a tamper event.

2. Following the tamper event, the RTC initiates the data Flash content erasure process.
3. Within the RTC tamper handler, a message indicating the initiation of the software attack is sent

to the serial console.

Note: This execution happens inside the RTC interrupt handler of the Secure firmware.

The following figure illustrates the system-level execution flow of Software Attack in the Secure
firmware.

Figure 2-5. Software Attack Execution Flow

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 9

3. Implementing Software Attack Protection on The PIC32CM LS00
Curiosity Nano+ Touch Evaluation Kit using MPLAB Harmony v3 and
MCC
To create an MPLAB Harmony v3-based project, follow these steps or download pre-developed
demo project here.

1. From the Start Menu, launch MPLAB X IDE.
2. Once MPLAB X IDE is open, from the File Menu, click New Project or click on the New Project

icon.
3. In the New Project window, from the left Navigation pane, under Steps select Choose Project.
4. In the right Choose Project Properties Page:

a. For Categories, select Microchip Embedded.
b. For Projects, select Application Project.

Figure 3-1. New Project Creation

5. Click Next.
6. Under Steps select Select Device , and from the right Select Device Properties Page, for Device

select PIC32CM5164LS00048 to create the project on the PIC32CM LS00 Curiosity Nano+ Touch
Evaluation Kit (The device entry will be reflected under the device).

https://github.com/Microchip-MPLAB-Harmony/reference_apps/releases/latest/download/pic32cm_ls00_software_attack_protection.zip

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 10

Figure 3-2. Device Selection

7. Click Next.
8. Select Select Compiler, and from the right Select Compiler Properties Page click and expand

XC32 and then select XC32 Compiler.

Figure 3-3. XC32 Compiler Selection

9. Click Next.

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 11

10. Select Select Project Name and Folder and from the right Select Project Name and Folder
Properties Page enter these details:

– Project Name: Enter tz_pic32cm_ls00_cnano (Indicates the project name that will be shown in
MPLAB X IDE to set the project's name).

– Location Project: Enter D:\software_attack_protection\firmware (Indicates the path to the root
folder of the new project. All project files will be placed in this folder. The project location
can be any valid path).

– Project Folder: Read-only content (Automatically updates when users change the above
entries).

Figure 3-4. Project Name and Folder Settings

11. Click Finish to launch the MCC.
12. The MCC plug-in will open in a new window, as shown in the following figure:

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 12

Figure 3-5. MPLAB Code Configurator Window

3.1. Adding and Configuring MPLAB Harmony Components
To add and configure MPLAB Harmony components using the MCC, follow these steps:

1. In the MCC window, from the Plugins drop-down list, select the required Configuration Window.

Figure 3-6. MPLAB Code Configurator – Plugins List

2. Select Clock Configuration to open the Clock Easy View window and verify that the Main Clock
is set to 48 MHz.

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 13

Figure 3-7. MPLAB Code Configurator - GCLK Generator 0

3. Click Project Graph and then select the System module. In the Configuration Options
Properties Page, configure it as follows to enable the SysTick timer for the Secure and Non-
Secure time delay.

Figure 3-8. MPLAB Code Configurator – SysTick Configuration

4. Select NVMCTRL Peripheral Library MEMORY and in the Configuration Options Properties
Page, configure it as follows to enable the Tamper Erase feature.

Figure 3-9. MPLAB Code Configurator – NVMCTRL Configuration

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 14

5. Click Resource Management (MCC) and under Device Resources, click and expand Harmony
> Peripherals > EIC. Click EIC and observe that the EIC Peripheral Library block is added in the
Project Graph Window.

Figure 3-10. MPLAB Code Configurator - Selection of EIC Peripheral

6. Select EIC Peripheral Library and in the right Configuration Options Property Page configure it
as follows to use the EIC channel 2 (SW1) as tamper input.

Figure 3-11. MPLAB Code Configurator - EIC Configuration

7. Under Device Resources, click and expand Harmony > Peripherals > RTC. Click RTC and observe
that the RTC Peripheral Library block is added in the Project Graph Window.

8. Select RTC Peripheral Library and in the Configurations Options Property page configure it as
follows to generate a compare interrupt every 30 seconds and enable the tamper interrupt and
events.

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 15

Figure 3-12. MPLAB Code Configurator - RTC Configuration

Notes: The Compare Value is set as 0x7800. This value generates an RTC compare interrupt
every 30 seconds.

– RTC clock = 1024 Hz
– RTC Prescaler = 1
– Required Interrupt rate = 30s

Therefore, Compare Value = 30 x 1024 = 30,720 (i.e., 0x7800).
9. Under Device Resources:

a. Click and expand Harmony > Peripherals > SERCOM. Click SERCOM3 and observe that the
SERCOM3 block is added in the Project Graph Window.

b. Click and expand Harmony > Peripherals > Tools. Click Secure STDIO and observe that the
Secure STDIO block is added in the Project Graph Window.

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 16

Figure 3-13. MPLAB Code Configurator – SERCOM and Secure STDIO Selection

10. Connect the SERCOM3 and Secure STDIO block by dragging the UART Yellow Diamond to the Red
Diamond in the Secure STDIO block.

Figure 3-14. MPLAB Code Configurator – SERCOM and Secure STDIO Selection

11. In the left pane, select SERCOM3 Peripheral Library. In the Configuration Options property
page, configure it as follows to print the data on the Serial Console at 115200 baud rate.

Figure 3-15. MPLAB Code Configurator – SERCOM3 Configuration

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 17

12. From the Plugins drop-down list, select Event Configurator. Add the Event Generator and Event
User for tamper input as shown in the following figure.

Figure 3-16. MPLAB Code Configurator – Event Configuration

13. From the Plugins drop-down list select Pin Configuration and then click Pin Settings tab.
Change the order to Ports. Make the pin configurations according to the application as indicated
below.

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 18

Figure 3-17. Pin Settings Window - Pin Configuration

Notes: 
– PB08, PB09: SERCOM3 TX and RX pins
– PA15: LED
– PA23: SWITCH

For additional information, refer to the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit User
Guide (DS70005567).

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 19

Figure 3-18. PIC32CM LS00 Curiosity Nano+ Touch Board Pinout

14. Select System in the Project graph. In the Configuration Options property page, configure it as
follows to set the Memory Configuration for the Non-Secure Callable Size to zero.

Figure 3-19. MPLAB Code Configurator – Memory Configuration

3.2. Generate Code
1. After configuring the peripherals, click Resource Management [MCC] and then click on the Generate

tab.

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 20

Figure 3-20. Generation of Code

2. The generated code will add files and folders to the 32-bit MCC Harmony v3 project. In
the generated code, notice the Peripheral Library files generated for SysTick, SERCOM, EIC,
NVMCTRL, RTC, Event System, and PORT peripherals.

 AN5880
Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation...

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 21

Figure 3-21. Generated Code on Non-Secure and Secure Projects

Notes: 
• MCC generates the separate main.c file in Secure and Non-Secure Projects.

• MCC provides an option to change the generated file name, and if this option is not used, by
default, the file name main.c is generated.

 AN5880
Adding Application Logic to the Non-Secure and Secure Projects

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 22

4. Adding Application Logic to the Non-Secure and Secure Projects
4.1. Adding the Non-Secure Application Logic

To develop and run the application, follow these steps:

1. Open the main.c file of the Non-Secure project (tz_pic32cm_ls00_cnano.X) and add the following
code after the SYS_Initialize():
SYSTICK_TimerStart();

2. Inside the while loop, add the following code to toggle the LED at a default rate of 500 ms:
LED_Toggle();
SYSTICK_DelayMs(500);

3. Go to the Non-Secure Project Properties, and enter the post-build command for generating a
Non-Secure firmware genuine copy:
a. In the MPLAB X IDE Project Properties window perform these actions.
b. Under the left Categories section, select Building and in the right Configuration properties

page, select the Execute this line after build check box.
c. Enter the following post command below the check box.

rm -rf ${ProjectDir}/../../hex && mkdir ${ProjectDir}/../../hex&& cp
${ProjectDir}/${ImageDir}/*.hex ${ProjectDir}/../../hex &&
${MP_CC_DIR}"/xc32-objcopy" -I ihex -O binary
${DISTDIR}/${PROJECTNAME}.${IMAGE_TYPE}.hex
${DISTDIR}/${PROJECTNAME}.${IMAGE_TYPE}.bin && cp
${ProjectDir}/${ImageDir}/*.bin ${ProjectDir}/../../hex

Figure 4-1. Generating The Non-Secure Firmware Genuine Copy

4. Click Apply, and then click OK.

 AN5880
Adding Application Logic to the Non-Secure and Secure Projects

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 23

5. Under Projects, right-click on the tz_pic32cm_ls00_cnano and then select Set as Main Project.

Figure 4-2. Make the Non-Secure Project as Main Project

6. Build the project by clicking the Clean and Build icon or by selecting Clean and Build Main
Project from the drop-down list and verify that the project builds successfully.

Figure 4-3. Clean and Build

 AN5880
Adding Application Logic to the Non-Secure and Secure Projects

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 24

7. Check if the binary file of the Non-Secure project is available in the hex folder location (path:
D:/software_attack_protection/hex).

Figure 4-4. Location of Generated Binary File

8. Open the command prompt and navigate to the following location.
Path: <Harmony folder path>/ bootloader/tools
Note: If the bootloader folder is not found inside the Harmony folder, download the bootloader
package (v3.7.0 or above) using the MPLAB Content Manager.

9. Run the python script btl_bin_to_c_array.py to convert the Non-Secure application binary
file to a C-style array containing Hex output.
python btl_bin_to_c_array.py -b
D:\software_attack_protection\hex\tz_pic32cm_ls00_cnano.X.production.bin -o
D:\software_attack_protection\firmware_secure\src\non_secure_app_image_pic32cm_ls00_cnano.h
 -d PIC32CM

Figure 4-5. Running the Python Script

10. Once the script is successfully executed, a header file of the Non-Secure Application Image
(Genuine Copy) is found in the source folder of the Secure Project.

Figure 4-6. Genuine Copy of the Non-Secure Application Image

4.2. Adding the Secure Application Logic
To develop and run the application, follow these steps:

1. Declare the following variables and macros used by the secure application in the main.c file.
#include <string.h>
#include "non_secure_app_image_pic32cm_ls00_cnano.h"

#define APP_IMAGE_SIZE sizeof(image_pattern)

 AN5880
Adding Application Logic to the Non-Secure and Secure Projects

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 25

#define APP_IMAGE_END_ADDR (APP_IMAGE_START_ADDR + APP_IMAGE_SIZE)
#define NON_SECURE_APP_ADDR (TZ_START_NS)

static uint8_t *appStart = (uint8_t *)NON_SECURE_APP_ADDR;
static uint8_t *dataStart = (uint8_t *)NVMCTRL_DATAFLASH_START_ADDRESS;

uint8_t firmware_digest_0[64];
uint8_t firmware_digest_1[32];

Figure 4-7. Declaration of Variables and Macros

2. Add the Boot ROM APIs in the main.c file to access them as follows.
typedef struct
{
 /* Digest result of SHA256 */
 uint32_t digest[8];
 /* Length of the message */
 uint64_t length;
 /* Holds the size of the remaining part of data */
 uint32_t remain_size;
 /* Buffer of remaining part of data (512 bits data block) */
 uint8_t remain_ram[64];
 /* RAM buffer of 256 bytes used by crya_sha_process */
 uint32_t process_buf[64];

} SHA256_CTX;

SHA256_CTX sha256_ctx;

typedef void (*crya_sha256_init_t) (SHA256_CTX *context);
typedef void (*crya_sha256_update_t) (SHA256_CTX *context, const unsigned char *data,
size_t length);
typedef void (*crya_sha256_final_t) (SHA256_CTX *context, unsigned char output[32]);

#define crya_sha256_init ((crya_sha256_init_t) (0x02006810 | 0x1))
#define crya_sha256_update ((crya_sha256_update_t) (0x02006814 | 0x1))
#define crya_sha256_final ((crya_sha256_final_t) (0x02006818 | 0x1))

3. Include the flash_write API in the main.c file to program the Non-Secure firmware in the Non-
Secure Flash region and write the firmware digest in the Secure Data Flash.
static void flash_write(uint32_t addr, uint8_t *buf, uint32_t size)
{
 uint32_t end_addr = addr + size;

 AN5880
Adding Application Logic to the Non-Secure and Secure Projects

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 26

 if((addr & NVMCTRL_DATAFLASH_START_ADDRESS) == NVMCTRL_DATAFLASH_START_ADDRESS)
 {
 /* Unlock the Secure Data Flash region */
 NVMCTRL_RegionUnlock(NVMCTRL_SECURE_MEMORY_REGION_DATA);
 while(NVMCTRL_IsBusy());
 }

 else
 {
 /* Unlock the Non-Secure Flash region */
 NVMCTRL_RegionUnlock(NVMCTRL_MEMORY_REGION_APPLICATION);
 while(NVMCTRL_IsBusy());
 }

 do
 {
 if(addr % NVMCTRL_FLASH_ROWSIZE == 0)
 {
 /* Erase the row */
 NVMCTRL_RowErase(addr);
 while(NVMCTRL_IsBusy());
 }

 /* Program 64 byte page */
 NVMCTRL_PageWrite((uint32_t *)(buf), addr);
 while(NVMCTRL_IsBusy());

 addr += NVMCTRL_FLASH_PAGESIZE;
 buf += NVMCTRL_FLASH_PAGESIZE;

 }while (addr < end_addr);
}

4. Add the SHA-256 Hash and Non-Secure firmware verification API to the main.c file for
calculating the Non-Secure firmware digest.
static void sha256_hash(SHA256_CTX *ctx, const uint8_t *message, uint32_t length,
 unsigned char digest[32])
{
 uint8_t dataBuf[64];

 uint32_t bufIdx = 0;

 crya_sha256_init(ctx);

 do
 {
 memcpy(dataBuf, &message[bufIdx], 64);

 crya_sha256_update(ctx, dataBuf, sizeof(dataBuf));
 bufIdx += 64;

 }while (bufIdx < APP_IMAGE_SIZE);

 crya_sha256_final(ctx, digest);
}

static bool non_secure_app_verify(void)
{
 sha256_hash(&sha256_ctx, appStart, APP_IMAGE_SIZE, firmware_digest_1);

 if(memcmp(dataStart, firmware_digest_1, 32) != 0)
 {
 printf("Firmware is Corrupted....!");
 printf("\n\r\n\r");

 printf("Firmware Digest after tamper detection:");
 printf("\n\r\n\r");

 for(int i=0; i<32; i++)
 {
 printf("0x%X ", dataStart[i]);

 if((i%8 == 0) && (i != 0))
 {
 printf("\n\r");

 AN5880
Adding Application Logic to the Non-Secure and Secure Projects

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 27

 }
 }
 flash_write(TZ_START_NS, (uint8_t *)&image_pattern, sizeof(image_pattern));

 sha256_hash(&sha256_ctx, image_pattern, APP_IMAGE_SIZE, firmware_digest_1);

 printf("\n\r\n\r");
 printf("Restored Firmware Digest:");
 printf("\n\r\n\r");

 for(int i=0; i<32; i++)
 {
 printf("0x%X ", firmware_digest_1[i]);

 if((i%8 == 0) && (i != 0))
 {
 printf("\n\r");
 }
 }
 printf("\n\r\n\r");
 printf("Genuine Firmware is restored");

 }
 else
 {
 return false;
 }

 return true;
}

5. Include the RTC Callback in the main.c for the tamper interrupt and 30-second timeout.
void timeout_handler(RTC_TIMER32_INT_MASK intCause, uintptr_t context)
{
 if(RTC_TIMER32_INT_MASK_CMP0 == (RTC_TIMER32_INT_MASK_CMP0 & intCause))
 {
 if(non_secure_app_verify() == true)
 {
 SYSTICK_DelayMs(2000);

 NVIC_SystemReset();
 }
 }

 if (RTC_TIMER32_INT_MASK_TAMPER == (intCause & RTC_TIMER32_INT_MASK_TAMPER))
 {
 RTC_REGS->MODE2.RTC_TAMPID = RTC_TAMPID_Msk;

 printf("Software Attack Detected");
 printf("\n\r\n\r");
 }
}

6. Add the following code snippets after the SYS_Initialize API in the main.c.
sha256_hash(&sha256_ctx, image_pattern, APP_IMAGE_SIZE, firmware_digest_0);

flash_write(NVMCTRL_DATAFLASH_START_ADDRESS, firmware_digest_0, sizeof(firmware_digest_0));

Notes: 
– sha256_hash: Calculates the digest of the Non-Secure Firmware.

– flash_write: Stores the firmware digest in the Secure Data Flash region.

SYSTICK_TimerStart();

 RTC_Timer32CallbackRegister(timeout_handler,0);
 RTC_Timer32Start();
 printf("\n\r---");
 printf("\n\r Software Attack Protection Demo ");
 printf("\n\r---\n\r");

 if(non_secure_app_verify() != true)
 {

 AN5880
Adding Application Logic to the Non-Secure and Secure Projects

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 28

 printf("\n\rFirmware is Genuine");
 printf("\n\r\n\r");
 }

Note: 
– non_secure_app_verify: Verify the Non-Secure firmware and program the genuine copy

in the Non-Secure Flash region if the verification fails.

 AN5880
Building and Running the Application

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 29

5. Building and Running the Application
Follow these steps to program the Software Attack Protection Application on the PIC32CM LS00
Curiosity Nano+ Touch Evaluation Kit.

1. Set the tz_pic32cm_ls00_cnano project as the main project by right-clicking the project and
selecting Set as Main Project.

Figure 5-1. Make the Non-Secure Project as Main Project

2. The PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit supports debugging using a Nano
Embedded Debugger (nEDBG). Connect the Type-A male to micro-B USB cable to the micro-B
USB port on the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit to power and debug the
PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit.

 AN5880
Building and Running the Application

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 30

Figure 5-2. PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit Hardware Setup

3. Go to the Project Properties, and select the Hardware Tool and Compiler:
a. In the MPLAB X IDE Project Properties window perform these actions.
b. Under the left Categories section, select Conf: [default], and in the right Configuration

properties sheet, select the Connected Hardware Tool and Compiler Toolchain.

Figure 5-3. Project Properties - PIC32CM LS00 Curiosity Nano+Touch Evaluation Kit

4. Click Apply, and then click OK.
5. Build the project by clicking on the Clean and Build icon or selecting Clean and Build Main

Project from the drop-down item list and verify that the project builds successfully.

 AN5880
Building and Running the Application

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 31

Figure 5-4. Clean and Build

6. Program the application by clicking the highlighted icon below.

Figure 5-5. Program the Device

 AN5880
Observe the Output on the MPLAB Data Visualizer

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 32

6. Observe the Output on the MPLAB Data Visualizer
1. After building the application and completing the programming, open the MPLAB Data Visualizer

by clicking the highlighted icon below.

Figure 6-1. Launch the MPLAB Data Visualizer

2. Configure the serial port setup of the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit by
clicking the Gear icon shown below.

Figure 6-2. Serial Port Setup

3. Set the 115200 as baud rate in the COM setting.

Figure 6-3. Baud Rate Configuration

4. Open the Serial Port of the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit by clicking the
Play icon as shown below.

 AN5880
Observe the Output on the MPLAB Data Visualizer

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 33

Figure 6-4. Opening the Serial COM Port

5. Click Send to Terminal to view the serial console message, and then click Close.

Figure 6-5. Select the Terminal Option

6. Open the command prompt and navigate to the following location: C:\Program
Files\Microchip\MPLABX\v6.20\mplab_platform\mplab_ipe.
Note: The PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit has no Reset button to reset the
MCU. To reboot the board, the reset command is sent to the nEDBG to reset the MCU with the
help of MPLAB IPECMD.

7. Run the following command to reset the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit.
ipecmd.exe -P32CM5164LS00048 -TPNEDBG -OK

 AN5880
Observe the Output on the MPLAB Data Visualizer

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 34

Figure 6-6. Resetting the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit

8. Observe the startup console message on the MPLAB Data Visualizer and the LED1 will toggle on
the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit.

Figure 6-7. Startup Console Message

Figure 6-8. LED1 Toggling on PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit

9. Press the SW1 button on the PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit to simulate a
software attack.

 AN5880
Observe the Output on the MPLAB Data Visualizer

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 35

Figure 6-9. Simulation of Software Attack

10. Observe the console message of software attack initiation on the MPLAB Data Visualizer.

Figure 6-10. Software Attack Initiation

11. Once the RTC timeout is reached, Secure Application starts the verification of Non-Secure
firmware. If the verification fails, the genuine copy of the Non-Secure firmware will be
programmed on the Non-Secure Flash region.

 AN5880
Observe the Output on the MPLAB Data Visualizer

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 36

Figure 6-11. Non-Secure Firmware Verification

Note: After successfully programming a genuine copy, the secure application initiates a
software reset.

 AN5880
Resources

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 37

7. Resources
• The following documents are available for download from the Microchip web site

(www.microchip.com):
– PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit User Guide (DS70005567)
– PIC32CM LS00/LS60 Security Reference Guide (DS00003992)

• PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit
• Secure Boot on PIC32CM LS60 Curiosity Pro Evaluation Kit Using MPLAB® Harmony v3 Software

Framework
• For additional information on MPLAB® Harmony v3, refer to the Microchip web site:

developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
• For more information on various applications, refer to: https://github.com/Microchip-MPLAB-

Harmony/reference_apps
• For additional info about 32-bit Microcontroller Collaterals and Solutions, refer to 32-bit

Microcontroller Collateral and Solutions Reference Guide (DS70005534)

http://www.microchip.com
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/UserGuides/PIC32CM-LS00-Curiosity-Nano%2B-Touch-Evaluation-Kit-User-Guide-DS70005567.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ApplicationNotes/ApplicationNotes/00003992B.pdf
https://www.microchip.com/en-us/development-tool/EV41C56A
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/secure-boot-app-pic32cm-ls60/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/secure-boot-app-pic32cm-ls60/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/harmony/
https://github.com/Microchip-MPLAB-Harmony/reference_apps
https://github.com/Microchip-MPLAB-Harmony/reference_apps
http://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/ReferenceManuals/32-bit-Microcontroller-Collateral-and-Solutions-Reference-Guide-DS70005534.pdf
http://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/ReferenceManuals/32-bit-Microcontroller-Collateral-and-Solutions-Reference-Guide-DS70005534.pdf

 AN5880
Revision History

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 38

8. Revision History
Revision A - April 2025
This is the initial release of this document.

 AN5880

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 39

Microchip Information
Trademarks
The “Microchip” name and logo, the “M” logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks”). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-1010-3

Legal Notice
This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information
in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within

operating specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the

code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

 AN5880

 Application Note
© 2025 Microchip Technology Inc. and its subsidiaries

DS00005880A - 40

Product Page Links
PIC32CM2532LS00048, PIC32CM2532LS00064, PIC32CM2532LS00100, PIC32CM2532LS60048,
PIC32CM2532LS60064, PIC32CM2532LS60100, PIC32CM5164LS00048, PIC32CM5164LS00064,
PIC32CM5164LS00100, PIC32CM5164LS60048, PIC32CM5164LS60064, PIC32CM5164LS60100

https://www.microchip.com/en-us/product/PIC32CM2532LS00048
https://www.microchip.com/en-us/product/PIC32CM2532LS00064
https://www.microchip.com/en-us/product/PIC32CM2532LS00100
https://www.microchip.com/en-us/product/PIC32CM2532LS60048
https://www.microchip.com/en-us/product/PIC32CM2532LS60064
https://www.microchip.com/en-us/product/PIC32CM2532LS60100
https://www.microchip.com/en-us/product/PIC32CM5164LS00048
https://www.microchip.com/en-us/product/PIC32CM5164LS00064
https://www.microchip.com/en-us/product/PIC32CM5164LS00100
https://www.microchip.com/en-us/product/PIC32CM5164LS60048
https://www.microchip.com/en-us/product/PIC32CM5164LS60064
https://www.microchip.com/en-us/product/PIC32CM5164LS60100

	Introduction
	Table of Contents
	1. Hardware and Software Requirements
	1.1. PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit
	1.2. MPLAB® X Integrated Development Environment (IDE) and MPLAB XC Compilers
	1.3. MPLAB Harmony v3

	2. Software Attack Protection Using PIC32CM LS00 MCUs
	2.1. Boot ROM Features
	2.2. Secure Hash Algorithm 2 (SHA-256) Authentication
	2.3. Usage of SHA-256 APIs from Boot ROM
	2.4. Prevention of Non-Secure Region against Software Attacks
	2.4.1. Simulation of Software Attack
	2.4.2. Execution Flow

	3. Implementing Software Attack Protection on The PIC32CM LS00 Curiosity Nano+ Touch Evaluation Kit using MPLAB Harmony v3 and MCC
	3.1. Adding and Configuring MPLAB Harmony Components
	3.2. Generate Code

	4. Adding Application Logic to the Non-Secure and Secure Projects
	4.1. Adding the Non-Secure Application Logic
	4.2. Adding the Secure Application Logic

	5. Building and Running the Application
	6. Observe the Output on the MPLAB Data Visualizer
	7. Resources
	8. Revision History
	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

	Product Page Links

