MICROCHIP Microchip Studio
Getting Started with Microchip Studio

Introduction

This Getting Started training for Microchip Studio will guide you through all the major features of the IDE. It is
designed as a video series with accompanying hands-on. Each section starts with a video, which covers that section.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 1

Microchip Studio

Table of Contents

[0 To [0 e (1] o TP P U PP P PTRPPRPPPROI 1
1. GettiNg STAMEA.o e n 3
1.1. Microchip Studio, START, and Software Content...............coooiiiiii i 4
1.2. AVR® and SAM HW To0ls and DEDUGGETS..........ccueviveeeeeeeeeeeeeeeeeeeeeeeeeeeeseneeees s e eneneneens 7
1.3. Data Visualizer and Power Debugging DEeMO..........ccuuiiiiiiiiiiiieie e 8
1.4. Installation and UPates.........cccuuuuiiiiiiiiieeeeee e a e e e 1"
1.5. Microchip Gallery and Studio EXIENSIONS...........cooiiiiiiiiiiiiie e 13
1.6, AtmMel START INt@Gration......ccoouiiiiiiieiiiie et et e b 14
1.7, Creating @ NEW PrOJECE.ottt e e e et eeneeeeenneeenn 19
1.8. Creating From ArduiNO® SKELCH..........cooiiiiieeeeeeeeeeeee ettt 24
1.9. In-System Programming and Kit CONNECION.coiiiiiiiiiii e 25
1.10. 1/O View and Other Bare-Metal Programming Referencescccocvviiiiiiiieeeiiieeiniee e 30
1.11. Editor: Writing and Re-Factoring Code (Visual ASSISt)........cccceiiiiiiiiiiiiieece e 43
1.12. AVR® SimUIGtor DEBUGGING.c.cvvveeeeeeeeeeeeeeeeeeeeeeeeee e eese s sene s nenenennnnenens 51
1.13. Debugging 1: Break Points, Stepping, and Call Stack...........cccceviiiiiiiiiiiec e 56
1.14. Debugging 2: Conditional- and Action-Breakpointsccocceeiiiiiiiiiii e 64
1.15. Debugging 3: I/0 View Memory View and WatCh...........ccccoooiiiiiiii e 70
2. REVISION HISTOTYttt ettt e e s bt e et e e et e e nanee s 77
The MiICrOChID WEDSITE. ...ttt e e e e et e e e e e e et eeaaaaaeaeeaeeesesaaaaannsssnsnennnnnns 78
Product Change NOtIfiCation SEIVICE.ii i e 78
(101 (o]0 a 1= g ST] o] o Lo i S PP USUURPR S 78
Microchip Devices Code ProtecCtion FEAtUIE............c.uuviiiiiiiiiie et 78
[ITo =l N o ot O OO PO PU PR PPPPPTPPOt 79
JLILEE Lo =T 1= PP PRRTR 79
Quality ManagemeEnt SYSTEM........coiiiiiii ettt st 80
Worldwide Sales @nd SEIVICE........cocuiiiiiiieeiie ettt e e nne e nnee s 81

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 2

Microchip Studio
Getting Started

Getting Started

Getting Started with Microchip Studio - playlist. Note that Atmel Studio has been renamed to Microchip Studio.

el AVR® & SAM Tools: Introduction

T AVR® & SAM HW Tools
ICROCHID

M

T Studio 7: Data Visualizer

MICROCHID

e [2255 [[[e |

el il Sl & Debuggers

'zn 8

& Power Debugging

!

| = T
a

uVideo ﬂ Description

< Installation & Updates

MiCROCHID

uVideo ﬁ Description

uVideo ﬁ Demo code

s Atmel START Integration

MICROCHID

uVideo ﬁ Hands-on

uVideo ﬁ Hands-on

uVideo ﬁ Hands-on

.0 Creating a New Project . Create from & Sketch wel In System Programming
= E— — T & Kit connection
£ o

L |
|-.Z .':_.._.. _1

| A Brrved 5T

uVideo ﬂ Hands-on

T /0 View & Bare-Metal Prog. Refs.

MicROCHID

uVideo ﬂ Hands-on

5 . Studio 7 Editor (Visual Assist)

M

uVideo ﬂ Hands-on

M&_ AVR® MCU Simulator Debugging

Peegram Counter QD002

sackPonter QWD

 Ragistar)

¥ Register P

I Register e

Status Raginte il=lleu] 2]

Cyele Counter

Frequency 00 ke [T ——
Stop Watch 200

B Mg B ke gk

uVideo ﬁ Hands-on

S Studio 7: Debugging - 2

MiCROCHIR

uVideo ﬁ Hands-on

S Studio 7: Debugging - 3

M

Memary View

uVideo ﬁ Hands-on

uVideo ﬁ Hands-on

© 2020 Microchip Technology Inc.

User Guide

DS50002712B-page 3

https://www.youtube.com/playlist?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/8HNG8EnAjfw?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/5iYGBPrje8w?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/_IT9flLMMqw?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://www.youtube.com/watch?v=Q2G5etc10s8&index=4&list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/JacebqdSBoA?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/j78ggh5wtgM?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://www.youtube.com/watch?v=ySwev9nLkBE&index=7&list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/7WnOe00dVu0?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/vG7Lh7Kg_sI?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/dATjhaSslO4?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/IhOYgq3xBtk?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/w-qQW0eZTtc?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/wQZKWgnmvQ8?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/wnHSgE8V5oM?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://youtu.be/CyQ7ZLw-7V0?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

1.1

Microchip Studio
Getting Started

Prerequisites
Much of the training could be completed by using the editor and simulator. However, to cover everything, the
following is recommended.

Hardware prerequisites:
« ATtiny817 Xplained Pro
» Standard-A to Micro-B USB cable

Software prerequisites:
* Microchip Studio for AVR and SAM Devices
» avr-gcc toolchain
+ Latest Part Pack for tinyAVR® devices

Microchip Studio plugins used:

* Atmel START 1.0.113.0 or later
« Data Visualizer Extension 2.14.709 or later

Icon Key ldentifiers
The following icons are used in this document to identify different assignment sections and to reduce complexity.

ﬂ Info: Delivers contextual information about a specific topic.
Tip: Highlights useful tips and techniques.
To do: Highlights objectives to be completed.

Result: Highlights the expected result of an assignment step.

/AWARNING Indicates important information.

a Execute: Highlights actions to be executed out of the target when necessary.

Microchip Studio, START, and Software Content

This section gives an overview of the various pieces in the AVR® and SAM Tools ecosystem and how they relate to
each other.

Getting Started Topics

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 4

http://alexandria.atmel.com/keyword/ATMEL.VSIDE.AVRSTUDIO.GETTINGSTARTED/redirect

Microchip Studio
Getting Started

A\ AVR® & SAM Tools: Intro & Overview

MicrocHIP

In this video:

Context in Microchip Tools Ecosystem

+ IDE, Compiler, MCU & SW configurator tools,
Firmware Libraries

START, Software Content and IDEs

» How these pieces fit together.

» START-based development
+ START user manual
» Getting Started projects in START

Atmel Studio 7

« Bare-metal- vs. START-based development
¢ Build from scratch (bare-metal):

+ Getting Started Atmel Studio 7

» Getting Started with AVR Tools

Video: AVR and SAM Tools ecosystem overview

111 Atmel START

Atmel START is a web-based software configuration tool for various software frameworks, which helps you get
started with MCU development. Starting from either a new project or an example project, Atmel START allows you to
select and configure software components (from ASF4 and AVR Code), such as drivers and middleware to tailor
your embedded application in a usable and optimized manner. Once an optimized software configuration is done, you
can download the generated code project and open it in the IDE of your choice, including Studio 7, IAR Embedded

Workbench®, Keil® pVision®, or simply generate a makefile.
Atmel START enables you to:

* Get help with selecting an MCU, based on both software and hardware requirements

* Find and develop examples for your board

» Configure drivers, middleware, and example projects
* Get help with setting up a valid PINMUX layout

» Configure system clock settings

© 2020 Microchip Technology Inc. User Guide

DS50002712B-page 5

https://youtu.be/8HNG8EnAjfw?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

Figure 1-1. Relation Between START, Software Content, and IDEs

Explore/Select: e S oo P e | START

| BDBOAACE CYARIDE CC
1 :-1'..";&1_‘.1."".’-“,-I'-L|-'r'_.-""'

Configure Device: JHL

ADC 0

AL firews

COMPONENT SETTINGS

O A Dl iR Sw

Develop in IDE:

Workbench®

g DIEL
/= i uVision'4

g%:ﬁ : Dot] 1P J00, il himrs, TOOE - DO) L it el
|

T st v b U e’ i e

1.1.2 Software Content (Drivers and Middlewares)

Advanced Software Framework (ASF)

ASF, the Advanced Software Framework, provides a rich set of proven drivers and code modules developed by
experts to reduce customer design-time. It simplifies the usage of microcontrollers by providing an abstraction to the
hardware through drivers and high-value middlewares. ASF is a free and open-source code library designed to be
used for evaluation, prototyping, design, and production phases.

ASF4, supporting the SAM product line, is the fourth major generation of ASF. It represents a complete re-design and
-implementation of the whole framework, to improve the memory footprint, code performance, and the integration with

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 6

1.2

Microchip Studio
Getting Started

the Atmel START web user interface. ASF4 must be used in conjunction with Atmel START, which replaces the ASF
Wizard of ASF2 and 3.

microchip.com: ASF Product Page

AVR® Code

AVR Code, supporting the AVR product line, is a simple firmware framework for AVR 8-bit MCUs, equivalent to
Foundation Services, which supports 8- and 16-bit PIC® MCUs. AVR Code is optimized for code-size and -speed, as
well as simplicity and readability of code. AVR Code is configured by Atmel START.

Integrated Development Environment (IDE)

An IDE (Integrated Development Environment) is used to develop an application (or further develop an example
application) based on the software components, such as drivers and middlewares, configured in and exported from
Atmel START. Atmel START supports a range of IDEs, including Microchip Stuido, IAR Embedded Workbench®,
Keil® pVision®.

Microchip Stuido is the integrated development platform (IDP) for developing and debugging all AVR and SAM
microcontroller applications. The Microchip Studio IDP gives you a seamless and easy-to-use environment to write,
build, and debug your applications written in C/C++ or assembly code. It also connects seamlessly to the debuggers,
programmers, and development kits that support AVR and SAM devices. The development experience between
Atmel START and Microchip Studio has been optimized. Iterative development of START-based projects in Mirochip
Studio is supported through re-configure and merge functionality.

This Getting Started training for Microchip Studio 7 will guide you through all the major features of the IDE. It is
designed as a video series with accompanying hands-on. Each section starts with a video, which covers that section.

AVR® and SAM HW Tools and Debuggers
This section describes the HW Tools ecosystem for AVR® and SAM MCUs.
Getting Started Topics

ﬁ'\ AVR® & SAM HW Tools & Debuggers

MiCROCHIP

In this video:
Debugging Platform & user interface
« Xplained Development kit platform
e Incircuitdebuggers i .
» Atmel ICE / Power Debugger : _/

o Data Visualizer
» User Interface for debugging platform
» Visualizes data to give insight to application
» Analyze and correlate power consumption to code

Visualize application/power

Data Visualizer . Sdb- Halk

EDE

Xplained Ultra Atmel ICE Power Debugger

Video: AVR & SAM HW Tools & Debuggers

Data Visualizer

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 7

http://www.microchip.com/mplab/avr-support/advanced-software-framework
http://alexandria.atmel.com/keyword/ATMEL.VSIDE.AVRSTUDIO.GETTINGSTARTED/redirect
https://youtu.be/5iYGBPrje8w?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

1.3

Microchip Studio
Getting Started

The Data Visualizer is a program to process and visualize data. The Data Visualizer is capable of receiving data from
various sources such as the Embedded Debugger Data Gateway Interface (DGI) and COM ports. Track your
application’s run-time using a terminal or graph, or analyze the power consumption of your application through
correlation of code execution and power consumption, when used together with a supported probe or board. Having
full control of your codes’ run-time behavior has never been easier.

Both a stand-alone and a plug-in version for Microchip Studio are available at the website link below.
Website: Data Visualizer.
Atmel-ICE

Atmel-ICE is a powerful development tool for debugging and programming AVR microcontrollers using UPDI, JTAG,
PDI, debugWIRE, aWire, TPI, or SPI target interfaces and Arm® Cortex®-M based SAM microcontrollers using JTAG
or SWD target interfaces.

Atmel-ICE is a powerful development tool for debugging and programming Arm Cortex-M based SAM and AVR
microcontrollers with on-chip debug capability.

Website: Atmel-ICE
Power Debugger:

Power Debugger is a powerful development tool for debugging and programming AVR microcontrollers using UPDI,
JTAG, PDI, debugWIRE, aWire, TPI, or SPI target interfaces and Arm Cortex-M based SAM microcontrollers using
JTAG or SWD target interfaces.

In addition, the Power Debugger has two independent current sensing channels for measuring and optimizing the
power consumption of a design.

Power Debugger also includes a CDC virtual COM port interface as well as Data Gateway Interface channels for
streaming application data to the host computer from an SPI, USART, TWI, or GPIO source.

The Power Debugger is a CMSIS-DAP compatible debugger which works with Microchip Studio, or other frontend
software capable of connecting to a generic CMSIS-DAP unit. The Power Debugger streams power measurements
and application debug data to the Data Visualizer for real-time analysis.

Website: Power Debugger

Data Visualizer and Power Debugging Demo
This section shows a demo using the Data Visualizer including Power Debugging.

Getting Started Topics

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 8

http://www.microchip.com/development-tools/atmel-studio-7/data-visualizer
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATATMEL-ICE
http://www.microchip.com/development-tools/atmel-studio-7/data-visualizer
http://www.microchip.com/developmenttools/productdetails.aspx?partno=atpowerdebugger

Microchip Studio
Getting Started

ﬁ\ Studio 7: Data Visualizer & Power Debugging

MICROCHIP

In this video: i
Studio 7: Data Visualizer & Power Debugging - S
Context L
Low-power demo: RTC periodic timer, starts ADC i
conversion, via event system. ADC result sent on USART. "
Features covered: . S ——
» MEDBG: ATtiny817 Xplained Mini m e ne ne s we mo ow w
+ Datainput: serial port rre——
+ Visualization: terminal, graph o C
+« EDBG: ATtiny817 Xplained Pro gi;"‘“‘g
« Datalnput: Serial + DGI (USART, SPI, I2C, GPIO) < u"‘m
« Visualization: Graph (serial + DGI GPIO) S
» Power Debugger Analog module: I S ————
ATtiny817 Xplained Pro me s w0 om0 wme e %o % wo om0
» Power measurement& DGI GPIO graphs Wodow e

53, B949.

o User-guide ...

» Tips forF1access

Video: Data Visualizer and Power Debugging Demo

/*

* Power Demo_ ADC_SleepWalking.c

* Device/board: ATtiny817 Xplained Pro
* Created: 8/6/2017 3:15:21 PM

/4

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>

#define F_CPU (20E6/2)

void sys_init(void)
{

_PROTECTED WRITE (CLKCTRL . MCLKCTRLB, CLKCTRL_PEN_bm | CLKCTRL_PDIV_2X_gc) 2
}

void rtc_pit_init(void)

RTC.CLKSEL = RTC_CLKSEL INT1K_gc;
RTC.PITCTRLA = RTC_PITEN bm | RTC_PERIOD_CYC256_gc;
}

//picoPower 4: Event system vs. IRQ. Compare to not using IRQ
void evsys init(void)
{
EVSYS.ASYNCCH3 = EVSYS_ASYNCCH3_PIT DIV128 gc;
EVSYS.ASYNCUSER1 = EVSYS_ASYNCUSER1_ASYNCCH3 gc;
}

//picoPower 3: Evaluate own sample, e.g. window mode.
// Significantly reduce awake time.

void adc_init(void)
{
ADCO .CTRLC
ADCO.CTRLA
ADCO . MUXPOS

ADC_PRESC_DIV8 gc | ADC_REFSEL_VDDREF gc;
ADC_ENABLE bm | ADC_RESSEL 8BIT gc;
ADC_MUXPOS_AIN6_gc;

ADCO.CTRLA |= ADC_RUNSTBY bm; //picoPower 1: So can run in sleep.
ADCO.CTRLE = ADC_WINCM OUTSIDE gc; //picoPower 3: So can evaluate own sample.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 9

https://youtu.be/_IT9flLMMqw?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

ADCO. INTCTRL = ADC_WCMP_bm;
ADCO .WINHT = 200;
ADCO .WINLT = 100;

ADCO.EVCTRL = ADC_STARTEI bm; //picoPower 4: So event can trigger conversion
}

uint8 t adc_get_ result (void)
{

return ADCO.RESL;
}

//picoPower 5: Send quickly, then back to sleep: compare 9600, 115200, 1250000 baud rates
//note only sending 1 byte
#define BAUD_RATE 57600
void usart init()
{
USARTO.CTRLB = USART_TXEN bm;
USARTO .BAUD = (F_CPU * 64.0) / (BAUD_RATE * 16.0) ;
}
void usart _put c(uint8_t c)
{
VPORTB.DIR |= PIN2 bm | PIN6 bm; //picoPower 2b: see Disable Tx below
USARTO.STATUS = USART_TXCIF bm;

VPORTB.OUT |= PIN6 bm;
USARTO . TXDATAL = c;
while (! (USARTO.STATUS & USART TXCIF bm)) ;
VPORTB.OUT &= ~PIN6 _bm;
VPORTB.DIR &= ~PIN2 bm | PIN6 bm;
//picoPower 2b: Disable Tx pin in-between transmissions

}

//picoPower 2: Disable unused GPIO
// compare: Nothing, PORT ISC_INPUT DISABLE gc, PORT_PULLUPEN bp

void io_init(void)
{
for (uint8_t pin=0; pin < 8, pin+t+)
{
(&PORTA . PINOCTRL) [pin]
(&PORTB . PINOCTRL) [pin]
(&PORTC . PINOCTRL) [pin]

PORT_ISC_INPUT DISABLE_gc;
PORT_ISC_INPUT DISABLE_ gc;
PORT_ISC_INPUT DISABLE gc;

}

int main(void)
{
sys_init();
rtc_pit init();
evsys_init();
adc init() ;
io init();
usart_init();
VPORTB.DIR |= PIN6 bm;
VPORTB.OUT &= ~PIN6_bm;
sei();

//picoPower 1: Go to sleep. Compare with no sleep, IDLE and STANDBY
set sleep mode (SLEEP_MODE_STANDBY) ;

while (1)
{

}

sleep mode() ;

}

ISR (ADCO_WCOMP_vect) //picoPower 3: Only called if relevant sample
{

ADCO . INTFLAGS = ADC_WCMP_bm;

usart _put c(adc_get result())

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 10

Microchip Studio
Getting Started

14 Installation and Updates

This section describes the process of installing Microchip Studio for AVR and SAM Devices, installing updates for
Studio or plugins, as well as adding support for new devices.

Getting Started Topics

‘K\ Studio 7: Installation & Updates

MICROCHIP

In this video: REp—
Studio 7 installation experience

Y

Installation choices:

o AVR® 8-bit MCU, AVR 32-bit MCU, .
SAM MCU

e Atmel Software Framework and
example projects

Updating Studio 7:
» Update notifications Notifications =

I t ” r‘tf Motifications: 2
e Installing supportior T e

|atest de\,‘lc es (pac K ma nager) Updates available for ATAUTOMOTIVE_DFP, ATTINY_DFP, SAMC20_DFP, SAMC21_DFP,

SAMHAL_DFP, XMEGAE_DFP, XMEGAC_DFP, XMEGAD_DFP, XMEGAE_DFP

Mew device packs available

SAMDSL_DFP, SAMESL_DFP, SAMES4_DFP, UC3A_DFP, UC3E_DFP, UC3C_DFP, UC3D_DFP,
UC3L_DFP are available.

Video: Installation and Updates

141 Installation

Supported Operating Systems
* Windows 7 Service Pack 1 or higher
* Windows Server 2008 R2 Service Pack 1 or higher
* Windows 8/8.1
* Windows Server 2012 and Windows Server 2012 R2
* Windows 10

Supported Architectures
+ 32-bit (x86)
* 64-bit (x64)

Hardware Requirements

* A computer that has a 1.6 GHz or faster processor
* RAM

— 1 GB RAM for x86

— 2 GB RAM for x64

— An additional 512 MB RAM if running in a Virtual Machine
* 6 GB available hard disk space

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 11

https://youtu.be/Q2G5etc10s8?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

14.2

Microchip Studio
Getting Started

Downloading and Installing
» Download the latest Microchip Studio installer: Microchip Studio

— The web installer is a small file (<10 MB) and will download specified components as needed
— The offline installer has all components embedded

+ Microchip Studio can be run side-by-side with Atmel Studio 6.2 and older and AVR Studio®. Uninstallation of any
previous versions is not required. Microchip Studio can not run side-by-side with Atmel Studio 7.

» Verify the hardware and software requirements from the 'System Requirements' section

* Make sure your user has local administrator privileges

» Save all your work before starting. The installation might prompt you to restart if required.

» Disconnect all USB/Serial hardware devices

» Double-click the installer executable file and follow the installation wizard

» Once finished, the installer displays an option to Start Microchip Studio after completion. If you choose to
open, then note that Microchip Studio will launch with administrative privileges since the installer was either
launched as the administrator or with elevated privileges.

» If upgrading Microchip Studio from an earlier versions of Atmel Studio 7 or Microchip Studio and running the
application with a different user account the local application user cache may have to be cleared. The reason for
this is that the installer only clears the cache for the users it is installed with. This is done by deleting the folder:
Y%localappdata%\Atmel\AtmelStudio\7.0 from the Windows File Exporer.

« In Microchip Studio you may see an update notification (flag symbol) next to the Quick Launch field in the title
bar. Here you may select and install updated components or device support.

Downloading Offline Documentation

If you would like to work offline, it would be advisable to use the offline documentation for Microchip Studio.

To do this, from the Microchip Studio Start Page, click on Download documentation. When the help viewer pops up,
first click the Online button and search for documentation of interest, such as data sheets, user manuals, and
application notes (wait for the available documents to show up).

In the example below, we are choosing to download the Power Debugger user manual, the ATtiny817 Xplained Pro
user manual, as well as the ATtiny817 Complete data sheet. Clicking update will then initiate the download.

#;
| Start Page I

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 12

http://www.microchip.com/avr-support/atmel-studio-7

1.5

Microchip Studio
Getting Started

main.c”

lained Pro Pending Changes (master) ATtiny817 Xplained Pro - 0703

v
@

| S, |
Start Discover Atmel Studio
Mew Project...
New Example Project... Getting started with Atmel Studio

Open Project...
i Getting started with AVR development

et Open Atmel Start Configurator

g st . Download Atmel Studio Extensions

Geeapplicationl Download documentation

Ultrasonic Distance Measurement tiny817

0 Microsoft Help Viewer 2.2 - Atmel Studio Documentation - =]
= Lt e

Contents 2 Help Viewer Home Manage Content

Filter Contents 2

Add and Remove Content

Ay iowertiome Adding content will automatically refresh all local documentation with available updates
b ATmega328PB
b Data Visualizer

b megalZBPE Xplained Mini Installation source: Local store path:

b+ [VEST] ATimaga3z8P Distachest - Preliyi @ Online () Diske ! b t EC: ProgramData\Microsoft\He Mave...
pawer a Pending changes:
Name Action Status Add
ATLINYSLE [ATURYELS / ATUHIYELO / AL S0 ATtinyB17 Xplained Pro [X]
Altind]} 7 ATHWET] Compless Cancel ATtinyd17 / ATtiny817 Complete [%]
4 User Guides Power Debugger [X]
4 Evaluation Kits
UC3L Evaluation Kit Add
4 Programmers and Debuggers
Fower Debugger Cancel -
4 | 3 4 L3
Estimated download size: 15 Me
Free disk space: 158213 MB
Required disk space: 75 MB

(LN Index Favorites Search

returned from hitp://alexandria.atmel.com/catalogs/AtmelStuc

Microchip Gallery and Studio Extensions

This section describes how Microchip Studio can be extended and updated through the Microchip Gallery. Some of
the most useful and popular extensions are described.

Getting Started Topics

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 13

Microchip Studio
Getting Started

ﬁ\ Studio 7: Gallery & Extensions

MICROCHIP

In this video:

How to add extensions
o Tools -> Gallery Profile

Extensions:

+ Part of Studio 7: Visual Assist, Atmel
START, Data Visualizer, Toolchain

« Popular: Arduino® IDE for Studio 7,
LUFA Library, ASF (Naggy)

» Used in series: Doxygen integrator,
Git Source Control Provider,

Extension options/settings

¢ Tools < Options

ch the Gallery

Atmel Gallery ?
One Colaborative SILGo LR
<o &
; e T L E— 3 Sear

RECENTLY ADDED MOST POPULAR HIGHEST RATED

Video: Gallery, Studio Extensions, and Updates

This short video describes the process of adding extensions to Microchip Studio. It covers extensions included by
default, what these are used for. Popular extensions are also covered, as well as how to modify Extension Options

and Settings.
Website: Microchip Gallery.

1.6 Atmel START Integration

The development experience between Atmel START and Microchip Studio has been optimized. This section
demonstrates the iterative development process of START-based projects in Microchip Studio, through the re-

configure and merge functionality.

Getting Started Topics

© 2020 Microchip Technology Inc.

User Guide DS50002712B-page 14

https://youtu.be/JacebqdSBoA?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ
https://gallery.microchip.com/

Microchip Studio
Getting Started

e\

MICROCHIP

Studio 7: Atmel START Integration

In this video:

START-based dev. in Studio 7
Creating:
» New Atmel START project

« New Atmel START example project
» Open: Ultrasonic distance
measurement example

Iterative development
¢ Re-configure Atmel START project
» Handling Diff/Merge .
» AVR® code project documentation

EJ 4vRazms Uttrasonic Distance Measurement - AtmelStisdio
File

Edit View WAmWX A Pioject Builld Debug Tock Wind:

Mew

3 Project CleleShitaN
Open Yl R Cirie M
Add P As Atenel Start Project
Close A% Atmmel Start Example Project B
Clete Salut 8] Exenple Project - Cirls ShiftaE

@ b-fB A, =20
[y

&) Sohution ‘AVRAZTT Ultrssonic Distan | Rec0nfigure Atmel Start Pr

AVRAZTTS Ultrasonic Distance Measurement
w4l Dependencies

4l Cutput Files

= Libraries

4 Config

Video: Atmel START Integration

%

To do: Exporting the Project from Atmel START.

1. On the Atmel START website, create a new project (Example or Board).
2. Click on the Export Software Component button. Make sure the Microchip Studio check-box is checked.
3. Click on Download pack. An atmelstart.atzip pack file will be downloaded.

© 2020 Microchip Technology Inc. User Guide

DS50002712B-page 15

https://youtu.be/j78ggh5wtgM?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

Figure 1-2. Download Your Configured Project

DOWNLOAD YOUR CONFIGURED PROJECT

Download a generated pack containing all your configured software components.

Select which IDE or command line tool you want the pack to include support files for:

(E Atmel Studio:]

VY pvision from Keil:

@ IAR Embedded Workbench:
;';. Somnium DRT (Atmel Studio plugin):

&2 Makefile (standalone):

— KKK

Specify file name (optional): | My Project

+ DOWNLOAD PACK

|-|1" To do: Import the Atmel START Output into Microchip Studio.
E A

4. Launch Microchip Studio.
5. Select File > Import > Atmel START Project.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 16

Microchip Studio
Getting Started

Figure 1-3. Import Atmel START Project

AtmelStudio (Administrator)
File | Edit View ASF Project Debug Tools Window Help

ew SERENIEEY
Open e % | @i i
Close
Impaort b AVR32 Studio Project... Ctrl+3
Save Selected ltems Ctrl+5 AVR Studie 4 Project... Cirl+d
. Save Selected ltems As... Atmel Start Project
W Save Al Ctrl+Shift+5 Project Template... Ctrl+T

Export Template...

Page Setup...

Print... Ctrl+P

Recent Files]

Recent Projects and Solutions]
E Bt Alt+F4

6. Browse and select the downloaded atmelstart.atzip file.

7. The Atmel START Importer dialog box will open. Enter the project details as Project name, Location, and
Solution name. Click OK.
Figure 1-4. Atmel START Project Importer

Atrel Start Importer *
“J g - d
Import Atmel Start Project m

: L

Atmel Start Project].atzip): C\Users\m43934\Downloads\MyB17Pro.atzip
View project summary (CMSIS package information)
Project Name: MyEB17Prol
Lacation: C\Users\m43934\Documents\Atmel Studic\7.0
Solution: Create New Solution
Solution Name: My817Prol

View project import summary

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 17

Microchip Studio
Getting Started

8. A new Microchip Studio project will be created and the files will be imported.

EJ mye17pron - Atmelstudio

File Edit WView VAssist{ ASF Project Build Debug Tools Window Help
o < I ‘ | -2 HH| ¥ o | - " EJ“ P Ml Debug ~ Debug Browser ~ | & full
WG oE s be et kT e @

atmel_start.c &= X

Bt | i) Ji e ATtny817 T NoTool -

Solution Explorer

6o @ o-a@|F=|an

= atmel_start.c =
#include <atmel_start.h>

e
—+ B Search Solution Explorer (Ctrl+)
-
o] /%% i Solution 'My817Prol’ (1 praject)
* Initializes MCU, drivers and middleware in the project 4 My817Prol

= = Dependencies
Slvoid atmel start_init(void)

{
system_init();

}

=d| Output Files
«d] Libraries
3 Config

[[3 doxygen
3 examples
1 include

[src

3 utils

. atmel_start.c
hl atmel_start.h

© driver_isr.c

T T YT VT W w

< main.c

To do: Import the Atmel START Output into Microchip Studio.

9. Some projects contain documentation formatted for Doxygen.
Note: Doxygen must be downloaded from http://www.doxygen.org and installed. You will be asked to
configure Studio to locate Doxygen executable, this defaults to C:\Program Files\doxygen\bin \doxygen.exe.

10. Click on the Doxygen button to generate the documentation. Doxygen will run and the generated
documentation will open in a new window.

To do: Reconfigure the project using Atmel START.

11. Click on the Reconfigure button or right-click on the project node in the Solution Explorer, and, from the menu,
select Reconfigure Atmel START Project.

12. Atmel START will open in a window inside Microchip Studio.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 18

1.7

Microchip Studio
Getting Started

Figure 1-5. Reconfigure Atmel START Project and Doxygen Buttons

I Solution Explorer

@ o-adm| F =80

Search Solution Explorer (Ctrl+7) EF

ﬂ Solution 'My317Prol' (1 project)

p My817Pro0 Doxygen
=d| Dependencies

=d| Output Files Reconfigure
<2 Libraries

[Cenfig

[doxygen

[examples

[include

LA src

[utils

o atmel_start.c

h atmel_start.h

¢ driver_isr.c

R~

c main.c

13. Do the necessary changes to the project. Click the GENERATE PROJECT button at the bottom of the Atmel
START window.

Creating a New Project
This section will outline the process of creating a new Microchip Studio project.

Getting Started Topics

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 19

Microchip Studio
Getting Started

ﬁ\ Studio 7: Creating a New Project

MICROCHIP

In this video: e — . ==
Create new project: [—
Selecting the right project type

» GCC C/C++ Executable Project GxCesbuabiebrfont GG Ny
» GCC C/C++ Static Library Project eCChe e B e ‘
» Create project from Arduino® Sketch

ASF3 Projects - =
o GCC ASF Board Project |~ = ==
» ASF Example Project ATuiy&17 Xplsined Pro

ASF4/AVR® Code Projects: ¢
» Atmel START project

¢ Atmel START example project

AlS Atmel START example projects using this board.
Mew Atrnel START project using this board
Video: Create New Project
l-l} A To do: Create a new bare-metal GCC C Executable project for the ATtiny817 device.
A

1. Open Microchip Studio.
2. In Microchip Studio, go to File — New — Project as depicted in Figure 1-6.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 20

https://youtu.be/ySwev9nLkBE?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

Figure 1-6. Creating a New Project in Microchip Studio

E ATtiny817 Xplained Mini - 2870 - AtmelStudio (Administrator)
File | Edit View VAssistX ASF Project Debug Tools Window Help

New P83 Project. Ctrl+Shift+N I Deb
Open * | %3y File. Cirl+N
Close Atmel Start Project
Close Solution Atmel Start Example Project
Import * | & Example Project... Ctri+Shift+E
Save Selected Items Ctrl+S
Save Selected Items As,
W saveal Ctrl+Shift+5
Export Template...
Page Setup..
Print... Ctrl+P
ned Mini evaluation kit is a hardware
Recent Files * tmel ATtiny817 microcontroller. Supported
Recent Projects and Solutions » pted development platform, the kit
features of the Atmel ATtiny817 and
E Exit Alt+F4 he device in a customer design.

New ASF Example Project...

3. The project generation wizard will appear. This dialog provides the option to specify the programming
language and project template to be used. This project will use C, so make sure C/C++ is selected in the
upper left corner. Select the GCC C Executable Project option from the template list to generate a bare-
bones executable project. Give the project a Name and click OK. See Figure 1-7.

Figure 1-7. New Project Programming Language and Template Selection

New Project ? X
P Recent Sort by: | Default - ;; Search Installed Templates (Ctrl+E) L
4 |nstalled - .
nstalle AVR XC8 C Application Project C/Ch+ Type: C/C++
Creates an AVR 8-bit or AVR/ARM 32-bit
Assembler AVR XC8 C Library Project C/C++ C project
AtmelStudio Solution
. GCC C Executable Project C/C++ ‘
GCC C Static Library Project C/C++ . '__\
pa v,
int o, 1o.p,
GCC C++ Executable Project C/C++ (“ing oia)
;"-’7.'!(.
GCC C++ Static Library Project C/C++ “’:";‘:C.
43
48| SAM L11 Secure Solution v1.2 C/C++
L4 = I p—
Name: I MyFirstProject I
Location: c\users\Documents\Atmel Studic\7.0 - Browse...
Solution: Create new solution o
Solution name: MyFirstProject Create directory for solution
I OK Il Cancel

© 2020 Microchip Technology Inc.

User Guide DS50002712B-page 21

Microchip Studio
Getting Started

Tip: All Microchip Studio projects belong to a solution, and by default, Microchip Studio will use the
same name for both the newly created solution and the project. The solution name field can be
used to manually specify the solution name.

Tip: The create directory for solution check-box is checked by default. When this box is ticked,
Microchip Studio will generate a new folder with the specified solution name at the location specified
by the Location field.

About Project Types

Table 1-1. Project Types

Cc

C/C++

C/C++

C/C++

C/C++

C/C++

AVR XC8 C Appliction
Project

AVR XC8 Library Project

GCC C ASF Board
Project

GCC C Executable
Project

GCC C Static Library
Project

GCC C++ Executable
Project

GCC C++ Static Library
Project

Assembler Assembler Project

Category

Project Templates

Select this template to create an AVR 8-bit project configured to use the
MPLAB XC8 compiler.

Select this template to create an AVR 8-bit MPLAB XC8 static library(LIB)
project. This pre-compiled library (.a) can be used to link to other projects
(closed source) or referenced from applications that need the same
functionality (code reuse).

Select this template to create an AVR 8-bit or AVR/Arm 32-bit ASF3 Board
project. Choose between the different boards supported by ASF3.

Select this template to create an AVR 8-bit or AVR/Arm 32-bit GCC project.

Select this template to create an AVR 8-bit or AVR/Arm 32-bit GCC static
library(LIB) project. This pre-compiled library (.a) can be used to link to other
projects (closed source) or referenced from applications that need the same
functionality (code reuse).

Select this template to create an AVR 8-bit or AVR/Arm 32-bit C++ project.

Select this template to create an AVR 8-bit or AVR/Arm 32-bit C++ static
library (LIB) project. This pre-compiled library (.a) can be used to link to
other projects (closed source) or referenced from applications that need the
same functionality (code reuse).

Select this template to create an AVR 8-bit Assembler project.

Description

Attention: This table only lists the default project types. Other project types may be added by

extensions.

4. Next, it is necessary to specify which device the project will be developed for. A list of devices will be
presented in the Device Selection dialog, which can be scrolled through, as depicted in Figure 1-8. Itis
possible to narrow the search by using the Device Family drop-down menu or by using the search box. This
project will be developed for the ATtiny817 AVR device, so enter '817" in the search box in the top right corner.
Select the ATtiny817 entry in the device list and confirm the device selection by clicking OK.

© 2020 Microchip Technology Inc.

User Guide DS50002712B-page 22

Microchip Studio
Getting Started

Figure 1-8. New Project Device Selection

a

Device Selection -:5
Device Family: |All . 817
Name App./Boot Memory (Kbytes) Data Memory (bytes)EEPROM (bytes) Device Info:
I ATtny817 2 512 128 I Device Name: ATtiny817
Speed: N/A
Vea: N/A
Family: ATtiny

Datasheet (Summary)

Device Page

m

Supported Tools
» Atmel-ICE

X EDBG

X EDBG MSD

= JTAGICE3

Ml mEDBG

- Power Debugaer
“= STK600

oc | Goree

Tip: A search for 'tiny' will provide a list of all supported ATtiny devices. A search for 'mega’ will
provide a list of all supported ATmega devices. Tools — Device Pack Manager can be used to
install support for additional devices.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 23

Microchip Studio
Getting Started

Result: A new GCC C Executable project has now been created for the ATtiny817 device. The Solution
Explorer will list the content of the newly generated solution, as depicted in Figure 1-9. If not already
open, it can be accessed through View — Solution Explorer or by pressing Ctrl+Alt+L.

Figure 1-9. Solution Explorer

‘Solution Explorer > o X
R o-F@| p =
Search Solution Explorer (Ctrl+") P~

‘@l Solution "MyFirstProject’ (1 project)
4 MyFirstProject
=d Dependencies
=d| Output Files
b [« Libraries
C. main.c

ASF Explorer VA View VA Outline [ELINIRS0-0

Available To...

1.8 Creating From Arduino® Sketch

This section will outline the process of creating a new Microchip Studio project from an Arduino® Sketch.

Getting Started Topics

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 24

Microchip Studio

Getting Started

e\

MICROCHIP

Studio 7: Create from @ Sketch

In this video:

Create project from Arduino®
sketch file

¢ Sketch project, with sketch file

¢ Arduino core project, core & library
files

GEC € ASF Board Preject
GCC C Exmcutable Preyect
GEC € Satic Library Preject Cicns
GCC Cvr Evecutable Project e

GEC e Static Library Prject s

O Craate progect hiom Ardans ikitch C/Ce+

Video: Create from Arduino Sketch

%

To do: Create a new project from an Arduino Sketch.

1.9 In-System Programming and Kit Connection

This video gives an overview of the Device Programming dialog box, to check the kit connection. The ATtiny817
Xplained Pro kit has an on-board embedded debugger (EDBG) which eliminates the need for a dedicated
programmer/debugger. This section will also go through the process of associating the EDBG with your project.

Getting Started Topics

© 2020 Microchip Technology Inc. User Guide

DS50002712B-page 25

https://youtu.be/7WnOe00dVu0?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

ﬁ\ Studio 7: In System Programming

MICROCHIP

In this video: ”A_:'“;u'mmm | ATtiny817 Xplained Pro

Kit Autodetection m s
« Xplained Pro MCU B -

& Extension Boards

The Atmel ATtirg817 Xplained Pro evakustion kit &s 3 hardwaee
Meim to evaluate the Smel ATtng17 microcontroller, Supported

[] Key links by the Stmel Szudio integrated development platfcm, the kit
provices aty access bo the features of the Abmel ATtiny817 and
explaing how 1o integrate the device in a customer design,

Device Programming Dialog e e e e
« Device signature & target voltage s <)
» Tool/device information

» Device silicon version w—-
* Memories
» Flash, EEPROM
¢ Fuses (Config bits equivalent)
+ Project output files
AVR, SAM and PIC Differences

¢ (in terms of) Memory programming

- (0= [appe] uamm Awd] 35y [hed| (O

ibas

Video: Kit Connection and In-System Programming

l-l}‘ To do: Associate the EDBG on your ATtiny817 Xplained Pro kit with your project.
A

1. Connect the ATtiny817 Xplained Pro board to the computer using the provided Micro-USB cable. The kit
page should be present in Microchip Studio as in the figure below.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 26

https://youtu.be/vG7Lh7Kg_sI?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

Figure 1-10. ATtiny817 Xplained Pro Start Page

ATting817 Xplained Pro -0150 -+ B A

MCU board . .
ATting&17 Xplained Pro ATtiny817 Xplained Pro

Extension

The Atmel ATtiny817 Xplained Pro evaluation kit is a hardware
platform to evaluate the Atrnel ATtiny817 microcontroller. Supported
by the Atrnel Studio integrated development platform, the kit
provides easy access to the features of the Atmel ATtiny817 and
explains how to integrate the device in a customer design,

AllS Atmel START example projects using this board...
Mew Atmel START project using this board...

. Launch Data Visualizer

External Links:

@ Technical Documentation
@ ATtiny817 Device Datasheet
@ Xplained Pro Hardware Development Kit (HDK) User Guide

| Kit Details
Serial number ATML2654041800000150
Board name ATtiny817 Xplained Pro
Manufacturer Atmel
Target name ATtiny817
Interfaces SPI TWI GPIO CDC
Show page on connect
Update board database
1.1. There are links to documentation for the board and data sheet for the device.
1.2. It is possible to create an Atmel START project for the board. Clicking on the Atmel START links

project links will bring you into Atmel START where you get options for this specific board.
Opening the Programming Dialog by Tools — Device Programming.

2.1. Select EDBG Tool and assure that Device = ATtiny817, then you may read Device Signature and
Target Voltage.

2.2. Interface settings: You may see and change the interface clock frequency.

2.3. Tool information: Shows information about the EDBG tool.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 27

Microchip Studio
Getting Started

2.4. Device information: Shows information about the device. Note that you can also see the silicon
revision of the device. This may be useful in customer support cases.

2.5. Memories: May program the flash, EEPROM, and user signature separately from the files.

2.6. Fuses: Read and set fuses, for instance, oscillator frequency (16 or 20 MHz), brown-out voltage
detection etc.

2.7. Lock bits: Lock memory.

2.8. Production file: Program the device using a production file to program flash, EEPROM, and user
signatures.

2.9. Note that AVR has flash in the HEX file and EEPROM in the EEP files, while PIC has everything,
even fuses, in a HEX file.

2.10. For instance, SAML21J devices don't have EEPROM (may be emulated in flash). It also has a
security bit option to lock the device.

3. Create a new project by selecting File — New project, select for instance C executable project, select the
device by filtering on the device name. Different project types are discussed in another Getting Started video.

4. If a project is selected, click the Tool button located in the top menu bar to open the tool dialog as indicated in
the figure below.

Figure 1-11. Tool Button

Window Help
], QU | p MI Debug ~ Debug Browser ~
i M| o o mATEn817 | T NoTool L

5. The Tool tab of the Project Properties will open. In the drop-down menu, select the EDBG tool, as indicated
in the figure below. The interface should automatically initiate to UPDI (Unified Programming Debugging
Interface).

Figure 1-12. Select Debugger/Programmer in Project Properties

MyFirstProject* = ATtiny817 Xplained Pro - 0806 main.c

Build

N/A N/A
Build Events

Toolchain
Selected debugger/programmer
Device

'

Components EDB
- 654041 800000806

Advanced Simulator

Al Custom Programming Tool

Erase entire chip ~

¥| Preserve EEPROM

Debug settings
¥| Keep timers running in stop mode

¥| Cache all flash memory except

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 28

Microchip Studio
Getting Started

Tip: The serial number of the tool will accompany its name in the drop-down menu. This serial
number is printed on the backside of each tool, allowing differentiation when more than one is
connected.

Tip: These steps can always be repeated if a different tool should be used for the next debug/program
session.

On the ATtiny817 Xplained Pro, the EDBG is permanently connected to the target MCU, but for a custom
hardware solution it is necessary to ensure the target device is powered and properly connected before a
debug session can be launched.

AWARNING

Result: The tool to be used by Microchip Studio when a debug/programming session is launched, has
now been specified.

1.9.1 Settings Verification

This section is a guide to verifying the tool and project configuration setup by compiling the empty project and writing
it to the ATtiny817.

To do: \Verify the tool and project configuration setup done in the previous sections.

1. Click the Start Without Debugging button located in the Debug menu, as shown in the figure below. This will
compile the project and write it to the specified target MCU using the configured tool.

Figure 1-13. Start Without Debugging

Build | Debug | Tools Window Help

| Windows ’
Hex Ml Start Debugging and Break Alt+F5
- [Attach to Target
alexand — i B - - irstPr
P Start Without Debugging Ctrl+F5 F

2. When Microchip Studio builds the project (automatically done when pressing Start Without Debugging),
several generated output files will show up in the Solution Explorer window. The following output files are

generated:

21. EEP file: EEPROM content written to the device.

2.2. ELF file: Contains everything written to the device, including program, EEPROM, and fuses.
2.3. HEX file: Flash content written to the device.

2.4. LSS file: Disassembled ELF file.
2.5. MAP file: Linker info, what did the linker do, decisions about where to put things.
2.6. SREC file: Same as HEX but in Motorola format.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 29

1.10

Microchip Studio

Getting Started

depicted in Figure 1-14. Click the Upgrade button to start the firmware upgrade.

ﬂ Info: If there is new firmware available for the selected tool, the Firmware Upgrade dialog will appear, as

Figure 1-14. Firmware Upgrade Dialog

e

Firmware Upgrade

On Tool
Firmware Version 3.1c

Firmware Upgrade

EDBG firmware must be updated before continuing

On Disk
3.1f

-~

X

Depending on the state of the connected tool and the actual firmware upgrade, the upgrade may fail on the
first attempt. This is normal and can be resolved by disconnecting and reconnecting the kit before clicking
Upgrade again. After the upgrade has completed, the dialog should say 'EDBG Firmware Successfully
Upgraded'. Close the dialog box and make a new attempt at programming the kit by clicking the Start

Without Debugging button again.

Result: By compiling the empty project and writing it to the ATtiny817 the following has been verified:

» The project is configured for the correct MCU
» The correct tool has been selected
» The tool's firmware is up-to-date

Under View > Available Tools you are able to see a list of available or recently used Tools. Here you can specifically

ask Microchip Studio to upgrade the firmware for a tool.
Figure 1-15. Microchip Studio Available Tools (on view menu)

Available Tools

Tools and Simulators

x EDEG (ATML26540418000006093)

Device Programming

Status

Dhsconnected

" onnected

pnnected

b Simulator Add Target...
Upgrade... |> |
Show Info Window

1/0 View and Other Bare-Metal Programming References

This section describes how you would typically write code in Microchip Studio, independent of a software
configuration tool or framework, i.e., bare-metal. This is covered both as video (linked below) and hands-on
document. The main focus is on each of the relevant programming references, how each is accessed, and what each

© 2020 Microchip Technology Inc. User Guide

DS50002712B-page 30

Microchip Studio
Getting Started

is used for. The project context is to turn ON an LED, then blink with a delay. Although the ATtiny817 Xplained Pro is
used the principles are general enough to use with any kit in Microchip Studio, though the principles apply to most
devices supported in Microchip Studio.

Getting Started Topics

Studio 7: 1/0 View & Bare-Metal Prog. Refs.

MicrocHIP
vo
. - = = | Fien ADC -
In this video: e
Context: B
o Turn on LED, then blink with delay. '“";1‘1[::; s n: i ace
Programming References: e = o’
(How to easily access & what to use each for) omcme [BETNUNNL, »coce@50
. s RCp pasedymeds by 0OODOCOO
« Device datasheet | e ol
. Datasheet (from IO V|eW) # B Mupos . 06 m] [mis]]
. : ; I
« |O view (debugging) . cgenm=o

» Kit user-guide & schematics
¢ Device headerfiles

« Editor (Visual Assist)

¢« AVR®LibC

* Atmel START

.

Video: I/0 View and Bare-metal programming references

The list below is an overview of the programming references which are typically used. Particular emphasis is placed
on I/O View, which provides a way to navigate data sheet register descriptions when editing or debugging, as well as
to understand the current configuration when debugging. This second use of I/O view when debugging is also used to
test new register configurations.

This topic is closely related to both 1.15 Debugging 3: /0 View Memory View and Watch as well as 1.11 Editor:
Writing and Re-Factoring Code (Visual Assist).

» Device data sheet

« Data sheet (from 1/O view)

» Kit user guide and schematics

» 1/O View (debugging)

» Editor (Visual Assist)

* Device header files

* AVR Libc (AVR specific)

* Atmel START: ATtiny817 project

In the process the following code is written. Although the code is simple, the decision process, using the list of
programming references above, is described.

#include <avr/io.h>
#define F_CPU 3333333
#include <util/delay.h>
int main (void)

PORTB.DIR = PIN4 bm;

while (1)
{

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 31

https://youtu.be/dATjhaSslO4?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

_delay ms (500
PORTB.OUTTGL = PIN4_bm

Be sure to keep the #include <avr/io.h> line at the top of main.c. This header file will include the
correct register map for the selected device, and without this statement, the compiler will not recognize any
of the macros referenced in the code above.

/AN\WARNING

Device Data Sheet (PDF)

Although /O View allows easy access to navigate the data sheet at a register level, the PDF version still has a role.
The device data sheet, in PDF format, tends to be used at least to get an understanding of the peripheral, through the
block diagram and functional description. For example, to understand the PORT peripheral of the ATtiny817, we
consulted the PORT Block Diagram and Functional Description > Principle of operation sections of the data sheet.
These two sections together, connecting the description to the diagram, give a basic understanding of the PORT
peripheral.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 32

Microchip Studio
Getting Started

Figure 1-16. PORT Block Diagram from the PDF Data Sheet

17.3. Block Diagram (ATtiny317 data sheet extract POR {0 Pin Controller chapter)
Figure 17-1. PORT Block Diagram
Pull Enable D’—q{
C
o Pull Keep
PINRCTRL n
——r U | pull Direction ;}l:)—{ g
r
Q
] T—
/l’”]| L
% Input Disabl
g nput Disable
! 1 Wired ANDIOR
c
Slew Rate Limit
Inverted W2
OUTn
Pxn
A
DIRn
Synchronizer
)‘_‘ _INn__
SR 1‘\|
R
Digital Input Pln
Analog Input/Cutput g !\‘M

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 33

Microchip Studio
Getting Started

Figure 1-17. Principle of Operation from the PDF Data Sheet of ATtiny817

17.6. Functional Description (ATuny317 data sheet extract PORT - /0 Pin Controller chapter)

17.6.1. Principle of Operation
The I/O pins of the device are controlled by PORT peripheral registers. Each of the port pins has a
corresponding bit in the Data Direction (PORT.DIR) and Data Output Value (PORT.OUT) registers to
enable that pin as an output and to define the output state. For example, pin PB3 is controlled by DIR[3]
and OUT[3] of the PORTB instance.

The direction (input or output) of each pin in a pin group is configured by the PORT.DIR register.

When the direction is set as output, the corresponding bit in the PORT.OUT register will select the level of
the pin. If bit n in PORT.OUT is written to '1", pin n is driven HIGH_ If bit n in PORT.OUT is written to "0,
pin n is driven LOW. Pin configuration can be set by writing to the Pin n Control registers
{PORT_PINnCTRL) with n=0..7 representing the bit position.

The Data Input Value (PORT.IN) is set as the input value of a PORT pin with resynchronization to the
Main Clock. To reduce power consumption, these input synchronizers are clocked only when the value of
the Input Sense Configuration bit field (ISC) in PORT.PINNCTRL is not INPUT_DISABLE. The value of
the pin can always be read, whether the pin is configured as input or output.

Note: We used the device data sheet for the peripheral block diagram, as well as a description of the PORT DIR
and OUT registers.

1/0 View Data Sheet
Microchip Studio allows to easily access the data sheet register descriptions by clicking F1 on the relevant register
description. The HTML version of the data sheet opens online (by default). The data sheet will open in the context of
the relevant register description.
Notes: In this way we use the Data sheet from 1/0O View to understand that:

1. Wiriting a '1' to PORT.DIR[n] configures and enables pin n as an output pin.

2. If OUT[n] is written to '0', pin n is driven low.

Figure 1-18. Opening an Online Data Sheet from I/O View

ATtingd17 [ATtmyE147 3 YORAN

“ € | @ atmel-studio-docs3-website-us-east-1.amazonaws.com/wet

SRreESD-
| vo
ATtiny417 | ATtiny814 [ATtiny816 [ATtiny817 4+ |
e 6o)| 52 Faer - |
«[PORT . 4O Pr Conkroter - Data Direction + N ik
[Feamures Mame: DIR “f = 8:s-enr.m. Type B (TCBY)
Offset: 0x00 8) 16-bit Timed Gownter Types
*E oweniew Reset: 0x00 # Bl Analeg Comparstor (ACT)
] Funcsonsi Desergtion hccass: - % B Anslog ba Digital Comrerte..
LT —— ; 7 5] — interface (EC0)
- - - L = . 2 = L centrolier [CLKCTRL)
=[] Fiegahes Descripton: . Poris [DIR[7:0]] e Custen Logi
e Acoess ROW RW R RAW R RW W RiwW
= Reset o [o @ o a L] L & [l CROSCAN (CRCSCAN)
B R B Digialto Analog Comverte.
B owcur Bits 7:0 - DIR[7:0]: Data Direction o la Event System (VS
B BerraL i e @) Fuses [FUSE)
2 “This bit fleld selects the data direction for the indhidual pins n of the Port. [Geners! Purpose 10 (GPIO)
B our Writing a 1’ to PORT.DIR[n] configures and enables pin n as output pin. # B 0 Ports (PORTA)
P M Writing a ' to PORT.DIR[n] configures pin n as input pin. It can be configured by writing to the 1SC bkt in # M 'O Ports (PORTC)
B outar PORTPINNCTRL. 16 Interrupt Comtrelles (CPUL
B ouTTaL 3 I Lockbit (L OCEEITI 1 - -
2w wre e Click register.
x . i o L ?
B INTFLAGS B Digkr e =
[PINCTRLD. FINCTRL1. FINCTRLZ FIN b oowc :'::mm F a F1 O penS
= Bowr o e d
7 Reghter Sumesary - \PORT B oyr Address o0 [=
B, Do e s o o o datasheet
+ [BOD - Brownost Delecioe gg*::g: ‘;:g Ol : -
UTTGH -
e Rr— aome w4 register
VI WO~ wachasg Teer @ ENTFAcs o oo @ —
(8 i . description
v TCB. 1508 TmerCounter Type B h

T

v TED- 128 TaeeCourse Type O

v RATC. Feal Tme Cousler

W% -

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 34

Microchip Studio
Getting Started

1/0 View (Debugging)
This functionality can directly be tested by starting a debug session, using Start Debugging and Break. So we are
now able to begin testing functionality, as shown in the image below.
I/O View is covered in more detail in 1.15 Debugging 3: I/0 View Memory View and Watch.
Notes: 1/0O View when debugging is used to:
1. Verify that writing a '1' to PORT.DIR4, sets pin as OUTPUT, LOW by default to LED turns ON.

2. Verify that writing a '1' to PORT.OUT4, turns OFF the LED.

Table 1-2. Microchip Studio Button Functionality (Programming and Launching Debug Sessions)

Buton | Functionaliy Keyboard Shortout

Ml Start Debugging and Break Alt + F5

é Attach to Target

» Start Debugging F5

n Break All Ctrl + Alt + Break
p Start Without Debugging Ctrl + F5

Figure 1-19. Turning ON/OFF Kit LEDs Through Manipulating I/O View Registers when Debugging
i

081/ Ports (PORTC)
W Intermupd Conircdler {CPUL
B Lockbit {LOCKET)

Clicking PORT.DIR4 sets PB4 B Mk sl Mg e

Hlarrs Addreni Walug By

to OUTPUT -—-m_EI:IIEIII
MoREr oan G OO

« LED on since LOW is default I BORCLR o
_ B DIRTGL Sl =10 ODOWMOOO0

LITTETERE Bour an &0 00000000

Bouser oAl w00 OOO0O0O000
Boutcle o a0 OOOO00000
i outreL G bl OOOO0DOO0O
Bm i i BEEDBEED

i LAINTFLAGE el) OOO0OOOOO

0 MOCTRL w0 00 [o000
RrmacTE o 0 O o000
& @ procTRL a3z 0 O Qoo
[FracTRL 033 o [oooo
& @ PrOCTRL OudM 0 O oooo
o 0 PPSCTRL Gelds G [0 oooo
RPPSCTRL 0eids 00 [o000
% [l MNPCTRL Oed3T w0 [oo

Procevia: Seabun QU8 Sohdion Explorer Fropestio

Downloading Microchip Studio Documentation
The data sheet can also be downloaded by using the Microchip Studio help system. In this case, a similar
functionality will work offline. This is described here: 1.4.2 Downloading Offline Documentation.

Microchip Studio Editor (Visual Assist)

The Microchip Studio Editor, powered by Visual Assist has powerful features to help you write and refactor code, as
well as easily navigate large projects. Suggestion functionality is shown in Figure 1-20, while an overview of the code
navigation is shown in Figure 1-21. In the next section, 1.11 Editor: Writing and Re-Factoring Code (Visual Assist),
the editor features are covered in more detail.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 35

https://www.wholetomato.com/

Microchip Studio
Getting Started

Figure 1-20. Suggestion Functionality in the Microchip Studio Editor for Writing Code

int main{void)

{
PORTE.DIRSET = PIN4 bm;
PORTE.PINSCTRL = PORT
=" PORT_ISC2_bm —
/* Replace wit» PORT_ISC2 bp
while (1} Ivl" PORT_ISC_gm
{ ¥l PORT_ISC_gp
} il PORT_PULLUPEN_bm
} M PORT_PULLUPEN_bp #define PORT_PULLUPEN_bp 3
|¥l! PORTA_DIR S /* Pullup enable bit position. */
"I PORTA_DIRCLR Accept with: <TAB> or <ENTER>
Iel' PORTA_DIRSET
=" PORTA_DIRTGL -

3 RARCINCH 0 Bl

Figure 1-21. Microchip Studio Editor Navigation Overview

0 o] P main.c € X Pro
{% PIN5_bm = ¥ registerS_t PINSCTRL u{'Gu
: e '
Context Definition Goto -
field field Definition

T{PORTE.IN & FINI D)L
¥

int main{vaid)

PORTE.DIRSET = PIN4 bm;
PORTB.PINSCTRL = PORT_PULLUPEN_ bm;

L) 1
L TAIt+G

(" Goto Definition

1
else

Specifically in the video related to this section, the editor is used for the following.

Device Header Files

Through the Goto Definition functionality of the editor, it is easy to access the MCU device header files, i.e., by
clicking on any register and then clicking on the goto button, or typing Alt+G. Writing PORTB. gives a suggestion list
of potential registers, from the PORT structure, shown in figure Suggestion lists and the MCU device header files. For
more information about how the AVR header files are structured, see AVR1000 for more information.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 36

http://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en591581

Microchip Studio
Getting Started

Figure 1-22. Suggestion Lists and the MCU Device Header Files

Chilel et ATE € & 3 = T

<+ PORT BC_enum typedel enum PORT_ISC_enum

/0 Ports ™

= typedef struct POAT struct

{ = - : "
registerB_t DIR; /* Data Direction */

regizterE t DIRSET;/* Deta Direction Set */
registerd t DIRCLR;/* Data Direction Clear

“A

DIRTGL; /™ Data Direction Toggle®™d @' DIRCLR
oUT; /* Output Value */
t OUTSET; ™ Output Value Set */ - DIRS’ET
t OUTCLR;/* Output Value Clear @' DIRTGL
1 _t OUTTGEL; /™ Output Value Toggle ™/
. t reserved Bodd} ﬂ {N
Bt reserved SwdB;
"t reverved b o [NTFLAGS
3t reserved BwbD;
it reserved_BwdE @ ouT
£ reserved SwolF;
£ PINGCTRL; /* Pin @ Centrel ° @ OUTCLR
t PINICTRL} 1 y
t PIMZCTRL; @ QUTSET
t PIN3CTRL;
t PINACTRL; @ QUTTGL

+ PINSCTRL;
t PINGCTEL;
t PINFCTRL; i
t reserved BwlBp
I £ reserved Bxl9;
t reserved_Bxlds
t reserved BxlB;
t reserved BlC;
t resereed_Bxll;
reserved BwlEy
t reserved_8wlfp

T e

* Input/Sense Conflguration select */f

= typedef onam PORT 150 enum

{ o
PORT_ISC_INTDISABLE gc = (@wB@<<8), /" Itercupt disabled but Imput buffer enabled =
PORT_ISC_BOTHEDGES ge = (Bwdl<cd), : th &
PORT I5C RISING ge = (@xB2coB), /° Semie
PORT_I FALLING g& = (@w@3ccl], " Senze F
PORT I NPUT_DISABLE pc = (@xBd4<<@), /" Digita ut Buffer dissbled =/
PORT_ISC_LEVEL g = (db<eB), /* Sende low Level *

} PORT_ISC_t;

Kit Schematics and User Guide

=G0
» pinSckd Mow g w o +
A Af o Comvent Decument
e
- uf

Typing PORTB.
o References PORT _struct
(device header file)

The kit schematics and user guide are useful to understand the MCU pin connections on the kit. Full schematics and
kit design files, such as Gerbers, are available on www.microchip.com, on the kit's product page.

© 2020 Microchip Technology Inc. User Guide

DS50002712B-page 37

http://www.microchip.com

Microchip Studio
Getting Started

Figure 1-23. How to Find Schematics for a Particular Development Board

A%\ MicrocHip

LICATIONS SAMPLE ANDBUY | ABOUTUS | CONTACT US

Mame

oller ATtiny817_Xplained_Pro_CAD_source_revd
e BOM

Crystal_test_report
. ExportSTEP

Gerber
Documentation & Software MNC Drill

= 0oDB

Pick Place
Test Points

schematics

'11 ATtiny817_Xplained_Pro_design_documentation_release_revd.pdf
L ATtiny817_Xplained_Pro_layer_plots_release_revd.pdf

& Readmetd

©

ev <it
cor ATHRYy AT

¥ = roc L 1. The evaluation kit comes
with a fully integrated debugger that provi

with Atmel Studio

YR S —

Figure 1-1. ATtiny817 Xplained Pro Evaluation Kit Overview
CURRENT MEASUREMENT

SWo0 USER BUTTON

HEADER SW1 USER BUTTON
r DEBUG USB
A~
11
ES
; £ =
[y S el & -y B
A i gy B CcIRETL —
USER LEDO V- {1800 S0V N GND 1 [POWER
1 —E—
SOV VEC 3@ HEADER
UPDI DEBUG
MCUCURRENT : .] FOR EXTERNAL
MEASUREMENT CURREN y amm DEBUGGER
SELECT JUMPER o owopel

" Fo |
O CURRENT : 3 e Doy
MEASUREMENT G CATTINYS17 X PL7 e ATTINYS17

SELECT JUMPER [
| \J

OTETH2

& EXTENSION 1

e HEADER
QTOUCH BUTTONS

32kHz CRYSTAL

3 + : PAT PAT

EXTENSION 3
HEADER

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 38

Microchip Studio
Getting Started

The LED and button are connected to the pins as per the table below, from the ATtiny817 Xplained Pro User Guide.
Table 1-3. ATtiny817 Xplained Pro GPIO Connections

Silkscreen Text ATtiny817 GPIO Pin

LEDO PB4
SWo PB5

The ATtiny817 Xplained Pro design documentation schematic shows the connections for the LED and button, as in
the figure below.

Figure 1-24. ATtiny827 Xplained Pro GPIO Connection Schematics

PB4 GPIO2
PB5 GPIO

USER LED USER BUTTON

VCC _TEREET_PBVB

it]
= S
24 =
]
™ -t
= B =
- an —
A £ o i &
= oY - -1
\!E = ot
= : =
™~ o o
GND

From the schematics, it is concluded that:
* The LED can be turned ON by driving PB4 low
» SWO is connected directly to GND and to PB5 through a current limiting resistor
* SWO0 does not have an external pull-up resistor
» SWO will be read as '0' when pushed and as '1' when released, if the ATtiny817 internal pull-up is enabled

AVR® Libc

All the references covered to this point are just as relevant for SAM as for AVR, however, as the name suggests, this
one is specific to AVR. AVR Libc is a Free Software project whose goal is to provide a high-quality C library for use
with GCC on AVR microcontrollers. Together, avr-binutils, avr-gcc, and avr-libc form the heart of the Free Software
toolchain for the AVR microcontrollers. Further, they are accompanied by projects for in-system programming
software (avrdude), simulation (simulavr), and debugging (avr-gdb, AVaRICE).

The library reference is usually a quick interface into AVR Libc, as shown in Figure 1-25. One can quickly search the
page for a relevant library. Relevant header files, which should be added to the project, are indicated in the module
name. For example searching for 'interrupts’, the relevant include will be #include <avr/interrupt.h>. Clicking into the
module, a list of available functions and relevant interrupt callbacks can be found, as shown in Figure 1-26.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 39

http://ww1.microchip.com/downloads/en/DeviceDoc/50002684A.pdf
http://www.nongnu.org/avr-libc/
http://savannah.nongnu.org/projects/avrdude
http://savannah.nongnu.org/projects/simulavr/
http://sourceforge.net/projects/avarice/
http://www.nongnu.org/avr-libc/user-manual/modules.html

Microchip Studio
Getting Started

Figure 1-25. AVR® Libc Library Reference

_Ji(0 awr-libe Modules x

€« C | @ wwa.nongraong/

AVR Libc Home
Page

Main Page

Modules

Hene B 3 S of 2l modukes

<alloca.h>: Allecate space in the stack
<assertnz: Diagnostics

<g¢lype.hi>: Character Operations

<grmo.h>: System Errors

<inttypes.h>. Integer Type conversions
<math.h>; Mathematics

<getjmp.h>: Non-local gote

<stdint_hz: Standard integer Types
<stdio.h>: Standard 10 facilities

<stdlip.h>: General utilities

<string.h=>: Strings

<time.h>; Time

<IVABOGLA>: Bootlaader SUpport Utilmes
<avricputunc.h>: Special AVR CPU functions
<avrigeprom.h>: EEPROM handling
<avrifuse.h> Fuse Support
<avrintermupt.n>:

<avriio.hz: AVR device-specific 10 definitions
<avrflock.h>; Lockbit Support
<ayripgmspace.h>; Program Space Utilities
<aVFipoWer.n>: Power Reduction Management

#2 Apps [Treehouse LearmWe [Home - Atrsel Tech

User Manual

W Trweng hn () npistrd/ASF . Gitkub Ll WebHome < Custor

ibrary Reference FAQ

Figure 1-26. Using Interrupts with AVR® Libc

AVR Libc Home P *
g S |

“ C | ® www.nongnu.org/avr-libg/

<avrfinterrupt.h>: Interrupts

Global manipulation of the interrupt flag

The giobal interrupt flag is maintained in the | bt of the status register (SREG)

e, 08, < 0N

[Apps Program Revie - Cher bokmanes
interupts A v X5
TEVETUDIIIETT
Pages
Example Projects
[detad leval 1 2]

Handiing interrupts frequently requires atlention regarding atomic access 1o objects that could be altered by code runming within an interrupl context,

see =utilatomic.h=

Frequenily, interrupls are being disabled for periods of lime in onder to perform cerain operations without being disturbed, see Problems with
reardering code for things to be taken into account with respect to compier optimizations

fdefine sei() |Enables interrupts by setting the global interrupt mask.

=defing elif)

Macros for writing interrupt handler functions

#define 13R|vector. atirbutes)
2defingé SIGNAL (vacior)
#define EMPTY _INTERRUPT{vector)

#defing |SR_ALIAS(veCton 1argel_vector)

wdefine reti()
Zdefine BADISR_vect

- Add header file,
Relevant IRQ Vector L—- %SR(AD't_vect)

= #include <avr/interrupt.h>

// user code here

© 2020 Microchip Technology Inc.

User Guide

DS50002712B-page 40

Microchip Studio
Getting Started

Atmel START

Atmel START is a web-based software configuration tool, for various software frameworks, which helps you getting
started with MCU development. Starting from either a new project or an example project, Atmel START allows you to
select and configure software components (from ASF4 and AVR Code), such as drivers and middleware to tailor
your embedded application in a usable and optimized manner. Once an optimized software configuration is done, you
can download the generated code project and open it in the IDE of your choice, including Microchip Studio, MPLAB
X, IAR Embedded Workbench, Keil yVision, or simply generate a make-file.

Although Atmel START is a tool for MCU and software configuration, it can still be useful even in bare-metal
development, i.e., writing code from scratch using the list of programming references described in this section.
Creating a new project for the kit you are using, can be a useful alternative to the board schematic, using the
PINMUX view. In addition, the CLOCKS view can be useful to check the default clocks of a device. Furthermore,
viewing the configuration code, useful pieces can be pasted back into your project. For example, the AVR Libc delay
functions require that the clock frequency is defined, as shown in Figure 1-29. For the ATtiny817 this default value
would be: #define F_CPU 3333333.

Figure 1-27. Using START to Creating a New Project for a Relevant Board
j —___
C | @ startatmel.com, project e EII:I 0! & :

‘ S Apos [N Treencuse LearnWe [Home - Al Techn ' Traiueg dea @ roi-volASF GitHub Gl WebHome < Cust T Aaps Bragram Rey Mhir backmarks

Atmet START 4 Return To Front Page | About |

CREATE NEW PROJECT

Sefect device or board before creating a new project. You can filter devices and boards by what software you need and also with hardware requirements such as memory
slzes.

T FILTERS RESLULTS
B HARDWARE - 817 @ Shiow all ".::J Show only boards) Show only devices
SEARCH FOR SOFTWARE Name Architecture Package Pins Flash SRAM &
S R T ATtiny817-MNRES AVR VOFN24 24 aKE 5i2@
l ATTIRYE17-MNR AR VOFN24 24 KB 5128
= MIDDLEWARE ATuny817-MFR AVR WOFM24 24 8 KB 5128
+ Bootloader m Tiny817 QTouch Moisture Demo
+ Cryplo B ATURYE1 T Xplained Pro
B ATinyRE17 Xplained Min
 DRIVERS
AC 0
ADC o
CRC a
DAC 0)

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 41

http://start.atmel.com

Microchip Studio
Getting Started

Figure 1-28. Showing Board Labels in START as an Alternative to the Kit Schematic

Atmet_ START ATHny817 # Return To Front Page | Help And Support
. { } VIEW CODE E SAVE CONFIGURATION
PINMUX CONFIGURATOR @
Pin label Board label Signa Show labels. Hl Toom in foomout Auto fit
- Pad Use Pin Label Instance name . =
PAG ADCL=],... - Cemponent name = J_
g PAF ADCHL.. signal label 2 :
] PET GRION Board header : -
10 FEE EXT3 |RQVERIO Board label & - o &8 8
11 PEE (2] S S5 B a 5 EE B
12 PB4 EXT! GPIOZAL
E K] PEZ EXTI,EX.. LSARTR.
14 PB2 EXT1.EX... WSART_T..
15 PRI EXT1 WML 2 . ®
15 PO ExT1 PRI+ __ £
17 PCO EXT1.E.. SPI_SCK...
12 281 EXT1,EX SRI_MIS ¥ ' e el
19 PCZ EXT1LEX.. SPI_MO5. - .
20 pra BT PS54
21 PCa Dl 571 Dial 55
22 PCE EXT3 GPIO
3 PAD = &3 = 5
4 Pl BT1EX.. [2CSDA.. - e gl

Figure 1-29. Checking Default Clock Configuration and Using VIEW CODE to Find F_CPU Define

. {} wvewcooe] save conriuration [©xporTPrOjECT

CLOCK CONFIGURATOR
Zoomout % Reset
OSCILLATORS SOURCES
External Clock Main Clock CPU
(EXTCLK) (CLK_MAIN) _.\ o ‘
| 3.333 MHz
4 RAM
0 Hz it 3333 MHz & [o ‘
3.333 MHz
20MHz Internal Oscillator 32KHz divided by 32
(OSC20M) NVM o
—] o 3,333 MHz
20 MHz {:} 1.024 kM2 {:'L
COMPONENTS (%
X302 bnberm Uiera Low Powar Ducillatar TCDO Clock
(DSCULFIN (CLK_TCDO)
S {:} PREVIEW - CLOCK_CONFIG.H
-2 config - i o e "y
D 32 768kHz External Crystal Oseillatar E . e _ _ Au ;encratei"g.fnrlig file clock_config.h */
+- O doxygen -. g iy
+- 0 include 5 ff <¢< Use Configuration Wizard in Context Menu >>»
+- 0 modules ; .
+0 src B deﬁne F_CPU 3333333

dendif

+- 3 utils 1
atmel_start.c jl. /1 ¢<¢ end of configuration section »>>

atmel_starth

£ [/ CLOCK_CONFIG_H

driver_isr.c

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 42

1.1

Microchip Studio
Getting Started

Editor: Writing and Re-Factoring Code (Visual Assist)

The Microchip Studio Editor is powered by an extension called Visual Assist, a productivity tool for re-factoring,
reading, writing, and navigating C and C++ code.

Getting Started Topics

‘K\ Studio 7: Editor (Visual Assist)

MICROCHIP

int main{void)

In this video: {

" " PORTE.DIR = PIN4 bm;
Studio 7 Editor... PORT;.PIHSCTRL =_p;
Context: L PORT PULLUPEN bm #define PORT_PULLUPEN_bm 0x08

- I*' PORT_PULLUPEN bp ™ /* Pullup enable bit mask. */
e Turn on LED, when switch pressed 9 PORTA_PINSCTRL Accept with: <TAB> or <ENTER>
» Polled, then with pin change IRQ ¥ PORTE_PINSCTRL
. Il PORTC_PINSCTRL

Writing Code A

» Suggestion lists, enhanced list boxes

s Visual assist code snippets ASF Project Build Debug Tools Window

5 Open File in Sclution... Shift+Alt«0
Refactori ng Code e Ozen Corresponding File (h/cpp, aspx/cs) Alt+ 0
» Extract method &3 List Methods in Current File Alt=M
» Introduce variable E* Find Symbol... & ShiftAlts5
+ Contextual rename a® Find References Shift+Alt+F
Header File Navigation « [iiememp
» Finding enumerators to configure bit groups a® Find Previous by Context
25 Find Next by Context
P Goto Implementation Alt+ G
P Goto Related Shift+Alt+G

Video: Microchip Studio Editor (Visual Assist)

1. Starting with the basic functionality from 1.10 1/O View and Other Bare-Metal Programming References ,
main.c has the following code:

#include <avr/io.h>

int main (void)

{
PORTB.DIR = PIN4_bm;
while (1)
{
}
}

The ATtiny817 Xplained Pro design documentation schematic shows the connections for the LED and button, as in
the figure below.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 43

https://youtu.be/IhOYgq3xBtk?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

Figure 1-30. ATtiny827 Xplained Pro GPIO Connection Schematics

PB4 GPIO2

USER LED

USER BUTTON

FB3 GPIO

VCC _TEREET_PER’E

R303
1k
3

=]

E

™ -

= g

e B
= h 4 = =
Fa \.. [=
fam i =
\"E =
o o

o

SKEAAKEQNID

GHND

From the schematics, it is concluded that:
* The LED can be turned ON by driving PB4 low.

« SWO is connected directly to GND and to PB5 through a current limiting resistor.

» SWO does not have an external pull-up resistor.

» SWO will be read as '0' when pushed and as '1' when released, if the ATtiny817 internal pull-up is enabled.

1. Enable the pull-up on PORTBS, using suggestion list and enhanced list box. Note that suggestion lists
support acronyms, so typing 'pp' PORT_PULLUPEN is the top suggestion.

int main{void)
{
PORTE.DIR = PIN4 bm;
PORTB.PINSCTRL = pp
Bl PORT PULLUPEN bm
=" PORT_PULLUPEN_bp k
el PORTA_PINSCTRL
el PORTE_PIMNSCTRL
Ikt PORTC_PINSCTRL
A.?.!|

Edefine PORT_PULLUPEN_bm 0x08

* Pullup enable bit mask, */
Accept with: <TAB> or <EMTER=

2. However, before hitting enter, first type 'POR’, then hit CTRL+SPACE. This will bring up the Enhanced Listbox

with all possible options.

Now it is possible to filter suggestions by type, as indicated in the picture below.

© 2020 Microchip Technology Inc. User Guide

DS50002712B-page 44

Microchip Studio
Getting Started

int main{wvoid)

{
PORTE.DIR = PIN4 bm;
PORTB.PINSCTRL = por]

I PORT_PULLUPEN_bm - #define PORT_PULLUPEN_brn 0x08

" PORT_PULLUPEM_bp /* Pullup enable bit mask, */

s PORT struct Accept with: <TAB> or <ENTER>
== PORT_t

[PORTA

[w" PORTA_DIR

I+ PORTA_DIRCLR
I¥" PORTA_DIRSET
I+" PORTA_DIRTGL
PORTA_IM -

*1' E':' 2 Ikl @ ni
1]

ENUM or #Define Typedef

typedef structure

Parameter in Extern

Enum/typedef (Global
variables)

3. Testif SWO is pressed, using if(){...}else{...} visual assist code snippet.
Simply typing 'if' will bring up the option. Or, you could R-click and choose Surround With (VA), which gives a
full list of snippets. This is an editable list, so you can add your own snippets.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 45

Microchip Studio
Getting Started

int main{void)

{
PORTE.DIR = PIN4_bm;

PORTE.PINSCTRL = PORT_PULLUPEN_bm;

if]
g i

¥ BT LTI 0 VA Snippet [Edit]
h: Accept with: <TAB> or <ENTER>

|
int main{wvoid)

{
PORTB.DIR = PIN4_ bm;

PORTE.PINSCTRL = PORT_PULLUPEN_bm;

Goto Implernentation Alt+G
Refactor (VA)
Surround With (V4]
171 Insert Snippet... Ctrl+ K, Ctrl+X
11 Surround With... Ctrl+K, Ctrl+S
Breakpoint
k RunTo Cursor Ctrl+F10
Run Flagged Threads To Cursor
3% Cut Ctrl+X
m) Copy Ctrl+C
Paste Ctrl+V
Outlining
& View Help

Fifdef ... #Fendif

#if 0 ... #Fendif
#ifndef ... #Fendif
switch (] { Sselecteds }

Q-

if Jf..}elsef}

if Jf}elsef..} h
while ({ ... }

for 01 ...}
do{..}while (]

try { ... } catch {}
Zifdef guard in a header

namespace (VA)
#ifdef (VA)
Fregion (VA)
.

(o]

4. Test if the switch is pressed, as the if(){...}else{...} condition, turn the LED ON if pressed and OFF if not.

main.c should now look as follows:

#include<avr/io.h>

int main (void)

{
PORTB.DIRSET
PORTB . PINSCTRL

PIN4_bm; /* Configure LED Pin as output */
PORT PULLUPEN bm; /* Enable pull-up for SWO pin */

© 2020 Microchip Technology Inc. User Guide

DS50002712B-page 46

Microchip Studio
Getting Started

while (1

if (! (PORTB.IN &

PORTB.OUTCLR

else

PORTB.OUTSET

PIN5 bm /* Check switch state */

PIN4 bm; /* Turn LED off */

PIN4 bm; /* Turn LED on */

5. Verify that LEDO lights up when pushing SW0. Run the code by clicking Start Without Debugging b (Ctrl
+Alt+F5), to verify that LEDO lights up when pushing SWO0 on the ATtiny817 Xplained Pro kit.
Now that the basic functionality is in place, let's refactor the code to make it more readable.

6. Create functions LED_on() and LED_off() using Refactor — Extract Method The line of code to turn the
LED ON is executed when SWO is pressed. Highlight this line of code, right-click and go to it, as indicated in

the figure below.
Figure 1-31. Extract Method
{

PORTE.OUTCLR = PIN4 bm; /* Turn LED o

45

i |

5]
al

o

Goto Implementation Alt=G
Refactor (VA) b
Surround With (VA) "
Insert Snippet.. Ctri+ K, Ctri+X
Surround With... Ctri+K, Ctrl+5S
Breakpoint ¥
Run To Cursor Ciri+F10
Cut Ctrl+X
Copy Ctrd+C
Paste Ctri+V
Outlining ¥
Extract Method..
View Help

A Extract Method dialog will appear. Name the function 'LED_on', as indicated in the following figure.
Figure 1-32. Extract Method Dialog

-

@ Extract Method

Mew method name:

[7 menl

LED _on

wvoid LED_on()

Preview of method signature:

QK Cancel

Click OK, and the code should change. A new function called LED on () should appear at the top of the file,
with a function call where the line of code used to be. Use the same method to implement LED off ().

© 2020 Microchip Technology Inc.

User Guide DS50002712B-page 47

Microchip Studio
Getting Started

7. Create a variable for SWO0 state, using Refactor — Introduce Variable. Next, it is necessary to create a
variable for the SWO state. Highlight the condition inside the if () inthe main () while (1) loop. Right-click
and go to it, as indicated in the figure below.

Figure 1-33. Introduce Variable
while(1)

if (!(PORTE.IN & PINS bm)) /* Check switch state */

{ Goto Implementation Alt+G
LED_on(); :
Refactor (VA) 4 Rename... Shift+Alt+R
T else { Surround With (VA) r Change Signature...
i i capsula ield
LED_off(); 1] Insert Snippet... Ctrl+ K, Crl+X Encapsulate Field
11 Surround With... Ctrl+K, Ctrl+5 Create From Usage... Shift+Alt+C
} ¥ Breakpoint L] Create Declaration
&k RunTe Cursor Ctrl+F10 Create Implementation
Run Flagged Threads To Cursor Add Missing Case Statements
M cut Chrl+X Add Member...
5l Copy Chrl+C Add Similar Member...
51 Paste Chrl+V Add Include
1 o Add/Remove Braces
Extract Method...
In Cd Add Data Plot rae °
- Introduce Variable...

Remove Data Plot
_ Implement Interface
€ View Help
Document Method

Create File...
Move Selection to New File...
Mowe Implementation to Source File
Rename Files...
Edit Refactoring Snippets...
a® Find References Shift+Alt+F

The Introduce Variable dialog will appear, as depicted in Figure 1-34. Name the variable 'uint8_t SWO0_state'.
Figure 1-34. Introduce Variable Dialog

P "

@ Introduce Variable @

Variable signature:

uintd_t SW0_state

0] 4 Cancel

Tip: Change the automatically generated boo1l return value to uint8_t to avoid having to include
an extra header to deal with Boolean values.

Click OK and the code should change. The condition inside the i £ () statement should now reference a
variable assigned to the variable on the line above it, as shown in the code block below.

while (1)
{
uint8 t SW0 state = ! (PORTB.IN & PIN5 bm);
if (SWO0_state)
{
LED on();
}
else
{

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 48

Microchip Studio
Getting Started

LED off () ;

}

Create a function SW_get_state, using Refactor — Extract Method. Select the right side of the

SW0_state assignment and extract a method for SW_get state.

detect the argument SWO_state, as indicated
Figure 1-35. Extract Method with Argument

28

38 while(1)
i
wint8 t SWe_state = SW_get_state();
if (Swe_state) /* Check switch state */

m

LED_on();

Wow

} else {

m
DB oo

B Ly

LED off();

Implement a function void LED_set_state (uint8_t state). Extract the method. Microchip Studio will

in Figure 1-35.

PURIB.PLN5UCIRL = PURI_FULLUFEN _bm; /= Enable pull-up Tor SW¢ pin =/

@ Extract Method

MNew method name:

LED_set_state

Preview of method signature:

void LED_set_state(uint8_t SWO0_state)

oK Cancel

Click OK and the code should change. Now, there is a separate method for setting the LED state.

10.

In function void LED_set_state(uint8_t state) rename SWO0_state to state using Refactor — Rename. In

a larger application, this function may be used for setting the LED state in a context that is irrelevant to the
SWO state. Microchip Studio is capable of contextual renaming, so this feature can be used to easily rename
the argument and avoid confusion. Inside the LED set state () function, right-click on the SW0_state
variable and go to Refactor — Rename, as indicated in Figure 1-36.

Figure 1-36. Contextual Rename

—wvoid LED_set_state(uwint8 t SW@_state)
‘ if (5wWe state) /* Check switch state */
{ Goto Implementation
LED o Refactor (VA)
- Surround With (VA)
Fetse 1 %1 Insert Snippet...
LED o "."I Surround With...
} Breakpoint
1 &k Run To Cursor

The Rename dialog will appear, as depicted in

Alt+G

Shift+Alt+R

Chrl+ K, Ctrl+X
Ctrl+K, Ctrl+5

_reate Implementation

Ctrl+F10

Figure 1-37. Rename the swW0_state variable to 'state’.

Microchip Studio will detect all occurrences of the variable with the same context as the one which has been

selected, and which are presented in a list and

able to be individually selected or deselected.

© 2020 Microchip Technology Inc.

User Guide DS50002712B-page 49

Microchip Studio
Getting Started

Figure 1-37. Contextual Renaming Dialog

@& Rename @

Rename SWO_state (in file) to:

state Rename Cancel

Display inherited and overridden references [] Display uses in comments and strings
[] Search all projects

4 [J]*+ chusersielizabeth.roy\Documents\Atmel Studio\7. 0hdebugging_in_atmel_studio\debugging_in_atmel_studic'\main.c
[Vl@ LED_zet_state (20): wvoid LED_set_state(uintB_t SWO_state)
O LED_set_state (22): if (SWO0_state) /* Check switch state */

Click Rename and the code should change. Observe that the argument of LED set state () and all of its
references inside the function have been renamed, but the references to SW0_state inmain () have
remained the same.

11. Create function definitions, moving created functions below main ().
main.c should now look as follows:

#include <avr/io.h>

void LED_on (void) ;

void LED_ off (void) ;

void LED_set state (uint8_t state)
uint8 t SW_get_state(void) ;

int main (void)

{
PORTB .DIRSET
PORTB . PINSCTRL

PIN4 bm; /* Configure LED Pin as output */
PORT PULLUPEN bm; /* Enable pull-up for SWO pin */

while (1)

{
uint8 t SWO_state = SW_get state(); /* Read switch state */
LED set state (SWO_state) ; /* Set LED state */

}

uint8 t SW_get_ state(void)
{
return ! (PORTB.IN & PIN5 bm); /* Read switch state */

}

void LED off (void)
{

}

PORTB.OUTSET = PIN4_bm; /* Turn LED off */

void LED_ on (void)
{

}

PORTB.OUTCLR = PIN4 bm; /* Turn LED on */

void LED set state(uint8 t state)
{

if (state)

{

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 50

1.12

Microchip Studio
Getting Started

LED on() ;
}

else

{
}

LED off () ;

AVR® Simulator Debugging

This section will demonstrate the use of the AVR Simulator key features, such as: Cycle Counter, Stopwatch (only
available in the simulator), and basic debugging (setting breakpoints and stepping through code). We will also show

how to simulate interrupts.

Getting Started Topics

@ Studio 7: AVR® MCU Simulator Debugging

MICROCHIP

In this video:

Studio 7: AVR MCU Simulator
Project Setup:
Modify project from Studio 7 Editor video
» Basic debugging: set breakpoint, step, ...
« Processor view: Demonstrate use of
cycle counter & stop watch
+ Dissassembly view: difference how
code compiled

+ Simulate IRQ (IO view) 1)
2
Context:)
» Set up 3 options to clear, then set register 3)
bit
» LED on when switch pressed (using pin
change IRQ).

Program Counter (00000028
Stack Pointer 0x3FFD
X Register 00000
¥ Register (3FFF
Z Register 00000

Status Register DEUEE0

Cycle Counter

Frequency 000 MHz
Stop Watch 2.00 ps
= Registers

#include <avriio.h>

int main(void)

{
Use read-modify-write in code —— noara orn Tf iy st
HW read-modify-write registers —— /72575 22055

Bit-accessible virtual port /O

while (1)

}

Video: AVR Simulator Debugging

The code used in the video above was written in the video: 1.11
Assist).

To associate the simulator with the project, click on the Tool icon

Editor: Writing and Re-Factoring Code (Visual

i

, then select Simulator.

© 2020 Microchip Technology Inc.

User Guide DS50002712B-page 51

https://youtu.be/w-qQW0eZTtc?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

‘o ot |Hex % @5 M| o maATtngIrCT No Tool)

GecApplicationl® + X iETRe ATtinyB17 Xplained Pro - 0703 Pending Changes

Build

Build Events

Teolchain
Selected debugger/programmer

Device

Toal*

Components

EDBG
| ATML2654041800000703
P

Advanced

| Custom Programming Tool

Erase entire chip =
[+ Preserve EEPROM
Debug settings

[+ Keep timers running in stop mode
[+ Cache all flash memory except

The Cycle Counter and Stopwatch is only available with the simulator. To use these, first, click Start Debugging and

Break Wil to start a debug session and then open the Processor Status window by typing 'Processor' into the quick-
launch bar and hitting enter (or this can be found under Debug > Windows > Processor Status). Similarly, the
Disassembly window can also be opened.

Standard Mode W1 pro b
Most Recently Used (2]

Debug — Windows — Processor Status

Standard Mode W1 dis >-<
Most Recently Used (2)
L= Debug — Windows — Disasserbly (Alt+8)
The AVR Simulator is using models based on the same RTL code used to make the real device. This makes the

Cycle Counter both bug and delay accurately. Note that the Stop Watch is related to the Frequency, which you can
set by double-clicking on the value and entering the clock frequency you would like to use.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 52

Microchip Studio
Getting Started

Processor
Name Value [

Program Counter _ 0x00000380 +— address of the instruction being executed
Stack Pointer 0x00003821 «— current stack pointer value
X Register 0x0002
Y Register OX3FF1
Z Register 0x3834

statusRegster (DJOHEVNGZO

Cyde Counter 8186 «— cycles elapsed from the simulation’s start
Frequency 1,000 MHz
Stop Watch 8 186,00 us [« time elapsed based on cycles and frequency

* Registers

The Cycle Counter can be reset by clicking on the value and entering 0. Values in the Processor Status window are
updated every time the program breaks, similar to the 1/0 view. Then running to a breakpoint.

E3 Reod-modity-wite Debugging - dtmelitudi

Efe Edt Yew WAasiE A Propect Budd Debug Jeck Wedow Help

&= " e RSP D =1L | eeraprasgm—"e - RreBEsO-,
sl r| Rt 2t N T e - FEmN@E, &k .

Dasisembly « o |TPCRT T man.c Read moddy write b
Fragram Caumter
#include cavr/io.hs o mabaaaiets o | ecxpoeta
& 1950 Document s A tue! O\ @\ Read-mod fy-wr | te'Read-modi fy-write\Debugy ../, fmadn.c A:"""’
18] =4nt main{woid) { L
1 { I Regate
PORTE.DIR &= ~PIN4 bm;
(=] 13 PORTE.OIR &= «~PINS_bm; 3 hGEIBGCIM LDI R3@,0x28 Load immediate
PORTE.DIR |- PIN4_bm; 22620427 LDI R31,ex0d Load immediate
PO0R0a2E LDD R24,Z+8 Load indirect with displacement
B9920829 ANDI R24,@xEF Logical AND with immediate
eoeaaaza STD I+8,R24 Store indirect with displacement
PORTB.DIR |= PING bm; Frequency 1.000 MHz
5 ; 80000925 LDD R24,Z+ Load indirect with displacement Stop Watch 0.00 ps
e 2000002C ORI R24,0x10 Logical OR with immediate - v
y 20000820 STD I:8,R24 Store indirect with displacemsnt ey e
'i"“l‘) asm("nep"); - 10
i @ 800B002E NOP No operation i i
} BOBOOE2F RIMP PC-ex888 Relative jump B2)
- o] (2]
s PR 7O wndefined - na ey

Note the difference in generated assembly code between the SW read-modify-write (above) and the virtual port
registers (see below).

B Reotmosity

fle Bt Wee WAmimE ASF P Buld Debuy Took Wiow Hep

(- - -2 EP T = e o B erasie_seep made SlRACEBESE-
s b BETt YT e P, EENEdE 1 1 o

Dnaisembly = x [0

Hame Nlun,

Address main -

: #include <awr/fic.h» v Viwi O Program Counter 000000028
10]int moin(veid) e Ot ST Sedb\7: ¥ipmt bt Fog\mnad - wodb ekt - ol Stack Pointer O3FFD
11 (f B X Register 00000
i //PORTE,.DIR &= ~PIN4 bm; ' Register 0x3FFF
" DIR &= ~PINS bem; //PORTE.DIR |= PINA bm; Z Register 00000

JDIR |= PING_bm;

/ /PORTE.DIRSET = PINA_bm; Status Register NEANEEOG0

Fosil b R //PORTE.DIRCLR = PIN4 bm; Cycle Counter
i i o Frequency 000 MHz
VPORTB.DIR &= ~PIN4_bay VPORTB.DIR &= ~PIN4_bm; Stop Watch 200 ps
2 VPORTB.DIR |= PINS ba; BpeeRe2E CBI 8wdd, 4 Clear bit in I/0 register | = 5
1 VPORTB.DIR |= PIN&_bam; L ng's*-_ﬂfsw o
° i 20000027 SBI Bxbd, 4 Set bit in I/0 register i by
7 asm("nop”}; i o
2 while (1) O posssaza NoP No operation . it
e { 80800829 RIMP PC-BxBE0D Relative jump f0 s
i F Ll 0
} ®2)
T 0
© 2020 Microchip Technology Inc. User Guide DS50002712B-page 53

Microchip Studio
Getting Started

The result of comparing these three methods are summarized in the table below:

SW read-modify-write 10
HW read-modify-write reg. 5 Atomic instruction (IRQ safe)
Bit-accessible virtual port /O 2 Atomic instruction (IRQ safe), really fast

Next, we would like to simulate a pin change IRQ. We can do this by setting the relevant IRQ flag in the I/O view
when debugging.

Vo
=] = | Filter: porTB - ||
Mame Yalue
o
12 Virtual Ports (VPORTE)
Mame Address Value Bits
DIR 020 000 DO0O00000
DIRSET a1l 00 OOODOOoOoO
DIRCLR 422 000 00000000
DIRTGL 023 000 JOO00O0000
ouT 0424 000 OOO0000O0
OUTSET 025 000 DO000000
OUTCLR 026 000 DOO0O0O0000
OUTTGL 027 000 DO000000g
ERL 028 00 OO0O0O0000
= 3 2 @8 Seeen
EdINT 620 JOROO000O
PIMOCTRL 0x430 000 [aEFEE
PIN1CTRL i3l 000 O BT)op0o
PIN2CTRL 032 000 [EEEE

As shown below the ISR is hit. Note that the INTERRUPT still needs to be enabled, as shown in the write to
PORTB.PIN5CTRL in the code below.

76 EISR(PORTE_PORT vect) = 4) B8 Eeeas
77 { LAINT 20 DO@00000
© 72 |[_ uint8 t intflags - PORTB.INTFLAGS) ® [PINOCTRL 0d30 0:00 O 0000
79 PORTE.INTFLAGS - intflags; i[5 PINLCTRL 0ill 000 O 0000
e ® B PINZCTRL 0132 000 (O ooao
T] = B PIN3CTRL 0433 000 (O ooao
81 bool SW_state = SW_get state(); = B PINACTRL 034 000 [0000
82 LED_set_state(SW_state); = B PINSCTRL 0435 000 (] "alal |
e INVEN 000 0O
24 3 B sc 0:01 @e]
a5 PULLUPEN 001 []
® B PINGCTRL 0436 00 (O ooao
® B PINTCTRL 0137 000 (O ooao

The pin change IRQ could also have been triggered by writing to the Port Input register in the 1/0 view. Writing a bit in
the Port Input register is the same as applying that value to the physical pin of the device package. The internal Port
logic will then trigger the interrupt if it is configured accordingly.

Most of the standard debugging features of Microchip Studio are available when using the simulator, and those
features will also be available on devices that lack on-chip debugging capabilities and cannot be debugged using
hardware debuggers. See the debugging sections of this Getting Started guide.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 54

Microchip Studio
Getting Started

Code Used to Demonstrate AVR® Simulator (Written for ATtiny187)

#include <avr/io.h>
#include <stdbool.h>
#include <avr/interrupt.h>

void LED on{();

void LED off ();

bool SW _get state();

void LED set state(bool SW state);

int main (void)

{
PORTB.DIR &= ~PIN4_bm;
PORTB.DIR |= PIN4_bm;

PORTB.DIRCLR = PIN4 bm;
PORTB.DIRSET = PIN4 bm;

VPORTB.DIR &= ~PIN4 bm;

VPORTB.DIR |= PIN4_bm;
PORTB.PINSCTRL |= PORT_PULLUPEN_bm | PORT_ISC_BOTHEDGES gc;
sei();
while (1)

{
}
}

#pragma region LED functions
void LED_on ()
{
PORTB.OUTCLR = PIN4 bm; //LED on
}

void LED off ()
{

PORTB.OUTSET = PIN4 bm; //LED off
}

void LED set state(bool SW_state)
{
if (SW_state)
{
LED on();

}

else

{
LED_off () ;

}
}

#pragma endregion LED functions

bool SW _get state()
{

return ! (PORTB.IN & PIN5 bm);
}

ISR (PORTB_PORT vect)

{
uint8 t intflags = PORTB.INTFLAGS;
PORTB.INTFLAGS = intflags;

bool SW state = SW get state():;
LED set state(SW_state);

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 55

1.13

Microchip Studio
Getting Started

Debugging 1: Break Points, Stepping, and Call Stack

This section will introduce the debugging capabilities of Microchip Studio, both as video (linked below) and hands-on
document. The main topics are breakpoints, basic code stepping using the Breakpoint, and Callstack-Windows, as
well as adjusting project compiler optimization settings.

Getting Started Topics

Studio 7: Debugging — 1

MicrocHIP
. . % 68 [bool SW_get_state()
In this video: & T
StUdiO 7: Debugglng 1 =] ;..- |} return !(PORTB.IN & PINS_bm);
Context: 65 [EISR(PORTB_PORT vect)
Debug project from Studio 7 Editor video 66 | {
67 uint8 t intflags = PORTB.INTFLAGS;
Features Covered: PORTB. INTFLAGS = intflags;
» Basic break points B &
» Code stepping 71 r @ SWstate 0 = |
[EE”I] E] E] 72 LED_set_state(SW_state);
» Breakpoints window 78 |3
» Call stack
» Project compiler optimization Name
o Attach totarget - B > © Getting Started.elf! LED_on Line: 39
Getting Started.elf! LED_set_state Line: 57
Getting Started.elf! _vector_4 Line: 74

Launch a debug session on the selected target
without RESET or uploading a new application.

Video: Microchip Studio Debugging-1

The same code as the one created in section 1.11 Editor: Writing and Re-Factoring Code (Visual Assist), is used.

l-lb‘ To do: Place a breakpoint and inspect a list of all breakpoints in the project.
E '

1. Set a breakpoint on the line getting the switch state, as indicated in Figure 1-38.
Figure 1-38. Placing a Breakpoint

65 SISR(PORTE_PORT vect)

66 {

67 uint8 t intflags = PORTE.INTFLAGS;
68 PORTB.INTFLAGS = intflags;

o
e,

78

bool SW state = SW pet state();

Location: main.c, line 70 character 1 tate(SW_state);

e

Lt P
et

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 56

https://youtu.be/wQZKWgnmvQ8?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

Info: A breakpoint can be placed at a line of code by:
» Clicking the gray bar on the left edge of the editor window.
* In the top menu bar, go to Debug — Toggle Breakpoint.
* By pressing F9 on the keyboard.

2. Launch a debug session > . The breakpoint will be hit when the switch (SWO0) on the Xplained Pro kit is
pressed. Observe that execution is halted when the breakpoint is hit, and the execution arrow indicates that
the line of code where the breakpoint is placed is about to execute. See Figure 1-39.

Figure 1-39. Execution Halting when a Breakpoint is Hit

65 [EIISR(PORTB_PORT vect)
67 uint8_t intflags = PORTB.INTFLAGS;
638 PORTB.INTFLAGS = intflags;

® 7o | bool SW_state = SW_get_state();|
71 LED set state(SW state);
72
73 I

Tip: If a breakpoint is hit in a file that is not currently open, Microchip Studio will open the file in a
temporary pane. A file containing a breakpoint that is hit in a debug session will always be brought
to focus.

3. Since most of the logic of the program is handled only when an ISR is processed, it is now possible to check
the logical flow of the program. If the switch is pressed and then released when the ISR is hit - what will be the
state of the switch that the function returns? The assumption is that since pressing the switch triggered the
interrupt, that switch will be set as pressed, and the LED will thus be turned ON.

Code stepping can be used to check this assumption. The key buttons used for code stepping are illustrated in
the table below, found in the top menu bar or in the Debug menu. The corresponding functionality and
keyboard shortcuts are outlined in the figure below.

Figure 1-40. Microchip Studio Buttons for Code Stepping

"> 0> e [ERIEME]

Table 1-4. Microchip Studio Button Functionality (Code Stepping)

_ Functionality Keyboard Shortcut

t Step Into Function Call F11

@ Step Over F10

? Step Out of Function Call Shift + F11
k Run to Cursor Ctrl + F10
T

Issue System Reset

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 57

Microchip Studio
Getting Started

%

To do: Find out what state is returned if the switch is pressed and then released when the ISR is
hit. Is our assumption correct that since pressing the switch triggered the interrupt, it will be set as

pressed, and the LED will thus be turned ON?

¥
The Step Into Function Call "#= can be used first. To go into the SW_get_state() function, the Step Out of Function

Call ? can be used to move to the next line after returning from the function. Pressing Step Over > from the
breakpoint would land us at this same point directly. Note that we could step further into the function
LED_set_state(SW_state) to determine if the LED is turned ON or not. However, we could simply hover the mouse
pointer over the SW_state variable to see that it is now set to 0, i.e. the LED will be turned OFF. Verify this by

stepping further.

Figure 1-41. Checking Value of SW_state Using Mouse Hover

71
= 72

74

-b
1

|
}

=)
{

ool SW get state()

return ! (PORTB.IN & PINS bm);

SR(PORTB_PORT vect)

uint8 t
PORTB.INTFLAGS = intflags;

bool SW state = SW get state();
. |@ SW_state 0

LED set_state(SW_state);

intflags = PORTB.INTFLAGS;

Info: Although the breakpoint was triggered by the falling edge by pressing the switch, only when calling the
SW_get_state() function the switch state is recorded. Verify that SW_state will read 1 if the switch is held down when

stepping over = this line.

1. A window or view to keep track of the breakpoints in a program is needed. The Quick Launch bar performs a
search of the Microchip Studio user interface menus. This is demonstrated below, by comparing the two
figures Figure 1-42 and Figure 1-43. Note that each of the hits in the Quick Launch bar is from 'break’ related
entries in the Debug menu.

© 2020 Microchip Technology Inc.

User Guide

DS50002712B-page 58

Microchip Studio
Getting Started

Figure 1-42. 'Break’ Search in the Quick Launch Bar
Standard Mode W1 break b

Most Recently Used (1]
@ Debug — Windows — Breakpoints (Alt+F3) I}
Menus (7]

-
Debug — Windows — Breakpoints (Alt+F3)
@] Debug — Windows — Breakpoints (Alt+F3) |

Debug — Windows — Data Breakpoints

Debug — Toggle Breakpoint (F9)
Debug — Mew Breakpoint — Mew Data Breakpoint (Ctrl+Shift+D, E)
Debug — Mew Breakpeoint — Function Breakpoint... (Ctrl+E)
&® Debug — Delete All Breakpoints (Ctrl+Shift+F3)
Debug — Disable All Ereakpoints

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 59

Microchip Studio
Getting Started

Figure 1-43. 'Break’ Hits in Debug Menu

Debug | Tools

o

HI.".-}-Q.{-&

0
y

Windows

Start Debugging and Break

Stop Debugging

Start Without Debugging

Disable debugWIRE and Close

Continue

Execute Stimulifile
Set Stimulifile
Restart

Break All
QuickWatch...
Step Into

Step Over

Step Out

Run To Cursor

Reset

Toggle Breakpoint
MNew Breakpoint

Delete All Breakpoints
Disable All Breakpoints

Clear All DataTips
Export DataTips ...
Import DataTips ...
Save Dump As...

Options...

Getting Started Properties...

Wind_ow

Ctrl+Shift+F5

Ctrl+Alt+F5

F5

Ctrl+F5
Shift+F2
F1i

F10
Shift+F11
Ctrl+F10
Shift+F5
Fa

Ctrl+Shift+F9

v | @l Breakpoints Alt+F3
ﬁ Data Breakpoints
; Processor Status

Gd Mew Data Breakpoint Ctrl+5hift+D, B
Function Breakpoint... Ctrl+B

Open the Breakpoints Window by clicking on the top result (Debug — Windows — Breakpoints). The
Breakpoints Window lists all the breakpoints in the project, along with the current hit count, as depicted in
Figure 1-44.

Tip: A breakpoint can temporarily be disabled by unchecking the checkbox next to a breakpoint in

the list.

© 2020 Microchip Technology Inc.

User Guide

DS50002712B-page 60

Microchip Studio
Getting Started

Tip: The Disassembly view can be conveniently displayed alongside the source code, as
demonstrated in the Figure 1-45 section.

Figure 1-44. Breakpoints Window

Mew = | X | # .’:' | G | ']lE [ﬂ}| Columns = | Search:

Mame Lab| Go To Disassembly iHit Count
----- [@ main.c, line 70 character 1 ino condition] break always (currently 2)

Figure 1-45. Disassembly View

Pending main.c & X
- main.c - =2 C\Users\W43959\ Documentsl, - '(’Go Address: _vector_4 -
o] EIISRFPURTD_FURT_VELL) s
66 [£ « | Viewing Options
67 uintg t intflags = BBBEEE:?B ii]D_FIEjé;HQ. = Load indirect with displ a
. : = intflags;
PORIE RIEDAGS: y : @e888855 STD I+9,R24 Store indirect with disp
68 PORTB.INTFLAGS = intflags; el ——- C:\Users\M43959\Documents\Atmel Studio\7.8\Getti
69 b bool Suw_state = SW _get_state();
7@ bool SW_state = SW_pget state(); 777 J@ @8epessc CALL @xpepsensg Call subroutine
71 e LED set_state(SW_state);
72 LED_set_state(SW_state); =] iBBQBBSS CALL 9x@e000082F Call subroutine
73 i 22088854 POP R31 Pop register from stack
74 H — BEBEERSE POP R30 Pop register from stack

ToDo: Examine the Call Stack and the effect on it when optimizations are disabled.

1. Following from the previous section, set a breakpoint on the LED on () function, then trigger the breakpoint so
that it is hit.

2. Open the Call Stack window by typing 'Call' in the Quick Launch bar, selecting Debug — Windows — Call
Stack, as represented in Figure 1-46.
Note: A debug session needs to be active to open this window.

Figure 1-46. Open the Call Stack Window
Standard Mode Y1 call X
. Mast Recently Used (2)
f= Debug — Windows — Call Stack (Alt+7)
L} Text Editor — All Languages — General (Apply Cut or Copy to blank lines, T...
Menus (1)
= Debug — Windows — Call Stack (Alt+7)

:) lag
Options (3] | Debug — Windows — Call Stack (Alt+7))

3. It would be expected that the Call Stack shows LED set state () as the caller of LED on (), since that's
how the code is written. However, in the Call Stack window, _vector_4 is listed as the caller (as in Figure 1-47);
this is because of compiler optimization.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 61

Microchip Studio
Getting Started

Figure 1-47. Call Stack with Optimization

Call 5tack

Marme

()] Getting Started.elf! LED on Line: 39

Getting Started.elf! _ vector 4 Line: 74

&R 143 Breakpoints Command Window Immediate Windo

Stopped

Info: The call order is different because of the compiler optimization. This code is relatively simple to follow
and it is possible to understand what is going on even though the compiler has optimized and made subtle
changes to what is expected. In a more complex project, it can sometimes be helpful to disable the compiler

optimization to track down a bug.

Note: To see why the Call Stack shows that it comes from _vector_4 initially, click on PORTB_PORT_vect
and look in the context field for the definition, as shown in Figure 1-48.

Figure 1-48. __ vector_4 Is the PORTB ISR Vector

2 PORTB_PORT vect

- :Im #define PORTB_PORT _vect VECTOR()

4. Stop debugging by clicking the Stop Debugging button

64
65 EISR(PORTB_PORT| vect)

66 |{

67 uint8 t intflags = PORTB.INTFLAGS;
68 PORTB.INTFLAGS = intflags;

or pressing Shift + F5.

5. Open the project settings by going to Project — <project_name> properties or pressing Alt + F7. Go to the
Toolchain tab on the left menu, as in Figure 1-49.
6. Under AVR/IGNU C Compiler — Optimization, set the Optimization Level to None (-O0) using the drop-

down menu.

Figure 1-49. Disabling Compiler Optimizations

N —
Build)
Configuration: | Active (Debug) v| Platform: |Active (AVR) -
Build Events
I Taclchain® ’ Configuration Manager...
Device
= "
Tool 4 | AVR/GNU Comman AVR/GNU C Compiler = Optimization il
o General =
Components & Qutput Files Optimization Level: Optimize (-O1)
4 =] AVR/GNU C Compiler
Advanced 7 1
Genera Other optimization flags:
EPmprucesmr Optirnize more (-02)
& Symbols | Prepare functions for gart Opt! : rt O;
% Directories . ity t ; !
|#| Prepare data for garbage | Optimize for size (-Os)
- Qpti]
o Debugging || Pack Structure members tog
[Warnings s
= | Allocate only as many bytes neede enum types (-fshort-enums
7 Miscellaneous ¥| Allocate only y byt ded by types (~fshort)
a [AVR/GNU Linker | Use rjmpy/reall (limited range) an »EK devices (-mshart-calls)
¥]]
o General
= Libraries
' Optimization

© 2020 Microchip Technology Inc.

User Guide DS50002712B-page 62

Microchip Studio
Getting Started

Disabling compiler optimization will result in increased memory consumption and can result in
changes in execution timing. This can be important to consider when debugging time is a critical
code.

A\WARNING

7. Launch a new debug session and break code execution inside LED on ().

8. Observe the Call Stack. It should now adhere to how the code is actually written and list LED set state ()
as the caller of LED on (), as shown in Figure 1-50.

Figure 1-50. Call Stack Without Optimization

Mame

& Getting Started.elf! LED_on Line: 39
Getting Started.elf! LED_set_state Line: 57
Getting Started.elf! _vector 4 Line: 74

Tip: Microchip Studio will try to link the compiled code to the source-code as best it can, but the compiler
optimization can make this challenging. Disabling compiler optimization can help if breakpoints seem to be
ignored during debugging, or if the execution flow is hard to follow during code stepping.

Result: The call stack has now been examined both with and without optimization enabled.

Code Used for Debugging 1
/*

LED is turned on when switch is pressed, LED is turned on (via a pin change interrupt).
MY mistake() written to demonstrate Attach to Target, is commented out, to avoid hanging
project unintentionally.

From the schematics, it is concluded that:

The LED can be turned on by driving PB4 low.

SWO is connected directly to GND and to PB5 through a current limiting resistor.

SWO0 does not have an external pull-up resistor.

SWO0 will be read as '0O' when pushed and as 'l' when released, if the ATtiny817 internal pull-
up is enabled.

*/

#include <avr/io.h>
#include <stdbool.h>
#include <avr/interrupt.h>

void LED on() ;

void LED off() ;

bool SW_get state() ;

void LED set state (bool SW_state) ;

int main (void)
{
PORTB.DIRSET PIN4_bm;
PORTB . OUTSET PIN4 bm;
PORTB.PIN5CTRL |= PORT_PULLUPEN bm | PORT_ISC_BOTHEDGES_gc;
sei();

while (1)
{
}

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 63

1.14

Microchip Studio
Getting Started

#pragma region LED_ functions
void LED_on

PORTB.OUTCLR = PIN4 bm; //LED on

void LED off

PORTB.OUTSET = PIN4_bm //LED off

void LED_set state(bool SW_state
if (SW_state
LED_on
else

LED off

#pragma endregion LED functions
bool SW_get_state

return ! (PORTB.IN & PIN5 bm
/*
void My mistake ()

while (1)
{

}

asm("nop") ;

}
*/

ISR (PORTB_PORT vect
uint8_t intflags = PORTB.INTFLAGS
PORTB. INTFLAGS = intflags
//My mistake() ;
bool SW_state = SW _get state

LED_set state(SW_state

Debugging 2: Conditional- and Action-Breakpoints

This section covers more advanced debugging topics with Microchip Studio both as video (linked below) and hands-
on document. The main topics are how to modify variables in the code, conditional- and action-breakpoints, as well
as memory view.

Getting Started Topics

© 2020 Microchip Technology Inc.

User Guide

DS50002712B-page 64

Microchip Studio
Getting Started

ﬁ'\ Studio 7: Debugging — 2

MicrocHIP
i . yint8_t SW_get_states_logic(void)
In this video: {
N : static vint8 t SWe_prv_state = 8]
Studio 7: Debugging 2 static uints t SWe_edge_count = ©;
2
contEXt * Read the current SWé state
Project from Studio 7 Editor video (polled), ;r; a BME curtstates-e!("ﬁﬂTi-IH & P”Scmi o
. Il st != S ™ t /* Check for edges */
added logic to SW_get_state(): e SR e = e
o SW_get_state() -> SW_get_states_logic() SWe_edge_counts+;
[+] return SW8_cur state || !(5We_edge count X 3);
Brwakpoint Settings X
Features Covered: TR il
» Watch: view & modify variables
ks tus dge ==0) 88 ul 3
» Conditional Breakpoints
To do: In SW _get states logic() Output
_—¢ break only every 5th edge count, && Show cutput from: Detug - E
—_— if edge was rising: Prv sta Cur_state:®, Edge count:@
i : N Soas: i e o
» Action Breakpoints S Rl it e i
a Todo: LDgVariOuS state VF_T'iF]h“.::S Prv state:®, Cur_state:0, Edge count:0
'_:v to output window.
— Autos Locals Watchl Call Stack Breakpoints ESEENY Error List

Video: Debugging - 2
ToDo: Use Microchip Studio to inspect and modify the contents of variables in the code.

1. The code (see below) used is the same as the one developed in section 1.11 Editor: Writing and Re-Factoring
Code (Visual Assist). The sw_get state () function has just been replaced with the following code (note
also the change in return value type):

uint8 t SW get state(void)
{

static uint8 t SWO prv state = 0;

static uint8 t SWO edge count = 0;

uint8 t SWO_cur state = ! (PORTB.IN & PIN5 bm); /* Read the current SWO state */
if (SWO0 cur state != SWO prv_state) /* Check for edges v
{

SWO_edge count++;
}
SWO_prv_state = SWO_cur state; /* Keep track of previous state */

/*
* Report the switch as pushed when it is pushed or the edge counter is a
* multiple of 3
“f

return SWO cur state || ! (SWO_edge count % 3);

}

Info: This code will count how many times the SWO0 push button has been pressed or released. The return
statement has also been modified to always report the button as pushed if the SW0_edge count variable is a
multiple of three.

2. Go to Debug — Disable All Breakpoints to disable all breakpoints. This should be reflected by all the
checkboxes becoming unchecked in the Breakpoints window.

3. Launch a new debug session by clicking the Start Debugging button > .

4. Push SWO on the kit several times and observe how the changes to the code have affected the LED's
behavior.

5. Break execution by placing a breakpoint at the return line of the SWw_get state function.
6. Hover overthe SWO_edge count variable to observe the current value, as indicated in Figure 1-51.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 65

https://youtu.be/wnHSgE8V5oM?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

Figure 1-51. Hover Over Variable to See Current Value

* Report the switch as pushed when it is pushed or the edge counter is a
* multiple of 3
o || return Swe_cur_state || !(swe_edge_g¢ount X 3); -
1 B IO SWO0_edge_count| 26 =

Info: When the cursor hovers over a variable that is in scope at the point where execution is halted,
Microchip Studio will present the content of the variable in a pop-up.

7. Right-click the SWO_edge count variable and select Add Watch from the context menu to add the variable to
the data Watch window. The Watch window should appear, with the SWO_edge count variable listed, with the
variable value, data type, and memory address, as in Figure 1-52.

Figure 1-52. Add Variable to Watch Window

main.c® H X

{S SW_get_state SW0_edge cc ~| -
* multiple of 2
*f

o | return swe_cur_state || !(Swe_edge count X 3);]

S

@ ctatic uint8_t SW0_edge_count = 0

Watch 1
Mame Type
@ SWO_edge_count 26 uintd_t{data}@0x3e0l

Walue

Autos Locals RUESWM Call Stack Breakpoints Output Error List

Stopped
8. Modify the contents of a Watch Window variable, using the process described below. Assign the value '3' to
the SWO_edge count variable. The value will reflect as updated by turning red, as indicated in Figure 1-53.
— Double-click a variable value in the Watch window
— Type in the desired new value of the variable
— Press Enter to confirm

Figure 1-53. Newly Updated Variable Value in the Watch Window

Watch 1
Mame Value Type
@ 5W0_edge_count 3 uintd_t{data}@0x3e0l

Info: The Value column in the Watch window can be displayed in hex by right-clicking in the Watch window
and selecting Hexadecimal Display from the context menu.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 66

1.14.1

Microchip Studio
Getting Started

9. To have the device evaluate the new value of SWO_edge count, disable all breakpoints and continue the

debug session by clicking > or pressing F5. Observe how the LED stays ON as a result of the change made
to SWO_edge count.

Info:

A variable can also be added to the Watch window by clicking on an empty field name and typing the variable name.
This way, it is even possible to cast a variable to a different data type for better readability in the Watch window. This
is especially useful if it is required to look at an array that is passed to a function as a pointer.

For example, if an array is passed to a function, it will be passed to the function as a pointer. This makes it impossible
for Microchip Studio to know the length of the array. If the length of the array is known, and it needs to be examined
in the Watch window, the pointer can be cast to an array using the following cast:

(uint8 t () [<n>])<name of array pointer>

Where <n> is the number of elements in the array and <name of array pointer> is the name of the array to be
examined.

This can be tested on the SWO_edge count variable by entering the following in an empty name field in the Watch
window:

(uint8 t () [5]) &SWO_edge count

Note that the '&' symbol must be used in this case to obtain a pointer to the variable.

Result: Microchip Studio has now been used to inspect and modify the contents of variables in the code.

Conditional Breakpoints
This section is a guide to using Microchip Studio to place conditional breakpoints.
Conditional breakpoints are those which will only halt code execution if a specified condition is met, and can be useful
if it is required to break if certain variables have given values. Conditional breakpoints can also be used to halt code
execution according to the number of times a breakpoint has been hit.
ToDo: Place a conditional breakpoint inside SW_get state () to halt execution for debugging at every 5" edge
count, but only if the edge was rising, and check its functionality.

1. Clear all breakpoints from the project using the Breakpoints window.

2. Place a breakpoint at the return line of SW_get state (), as in Figure 1-54.

3. Right-click the breakpoint and select Conditions... from the context menu.

4. Enter the following in the condition textbox:

((SWO0_edge count % 5) == 0) && SWO cur state

Figure 1-54. Conditional Breakpoint Expression Example

@ | |[return Swa_cur_state || [{SWo_edge_count ¥ 3)j|) "
Breakpoint Settings X
Location: main.c, Line: 68, Character: 1, Must match source
E Conditions
Conditional Expression - [stue - ([SWO_cdge_count % 5) == 0) &8 SWI_cur_state| Cance
[Actions
[Close

5. Press Enter to confirm the break condition.

6. Continue/Start a new debug session by clicking the > button or pressing F5.
Push SWO on the kit several times and observe how code execution is halted when the condition is fulfilled.
8. Verify that the condition is met by double-checking the variable values in the Watch window.

N

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 67

1.14.2

Microchip Studio
Getting Started

A\WARNING

Even though code execution is completely halted only if the specified break condition is met, Microchip
Studio temporarily breaks code execution each time the breakpoint is hit to read the variable content and

determine if the break condition is met. Conditional breakpoints will, therefore, have an impact on
execution timing, even if the actual break condition is never met.

Tip: Use the Hit Count condition if execution needs to break based on how many times a breakpoint has
been hit.

Result: Microchip Studio has been used to halt execution when the specified break condition is satisfied.

Action Breakpoints
This section is a guide to using Microchip Studio to place action breakpoints.

Action breakpoints can be useful if variable contents or execution flow needs to be logged without having to halt code
execution and manually record the required data.

ToDo: Place an action breakpoint to log SWO_cur_ state, SWO_prv_state and SWO_edge count, and check
the output for the relevant variable states.

1.

2.
3.
4

Stop the ongoing debug session and clear all the breakpoints from the Breakpoints window.
Place a breakpoint at the SWO_prv_state = SWO_cur state; line, as in Figure 1-55.
Right-click the breakpoint and select Actions... from the context menu.

Enter the following in the output message text box:

Prv state:{SWO prv state}, Cur_state:{SW0 cur state}, Edge count:{SWO edge count}

Figure 1-55. Action Breakpoint Example

J

S SWe_prv_state = SW@ cur_state; /* Keep track of previous state #/|
Breakpoint Settings X
Locaticn: main.c, Line: 80, Character: 1, Must match source
l:‘ Conditions
Actions
Log a message to Output Window: Prv state:{SW0_prv_state}, Cur_state:{SWO_cur_state}, Edge count:{SWO_edge_countH (D Cancel

Continue execution

Close

Press Enter to confirm.
Start a debug session.

Open the Debug Output window by going to Debug — Windows — Output. It should list the variable contents
as in Figure 1-56. If SWO is pushed on the kit, the content is updated.

Figure 1-56. Debug Output Window Showing Variable Contents

Output
Show output from: Debug = | | | =1
Prv state:8, Cur_state:®, Edge count:8&
Prv state:8, Cur_state:8®, Edge count:8
Prv state:®, Cur_state:®, Edge count:@
Prv state:®, Cur_state:®, Edge count:@
Prv state:®, Cur_state:®, Edge count:@

Autos Locals Watchl Call Stack Breakpoints JIha:I0@ Error List

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 68

Microchip Studio
Getting Started

A\WARNING

When using action breakpoints, Microchip Studio will temporarily halt code execution to read out variable
content. As a result, execution timing will be affected. A less intrusive approach would be to place the
action breakpoint at the SWO_edge count++ line, which is only executed upon SWO0 edge detection. This
will cause a temporary halt only when SWO is pressed, but will also cause the debug window output to be
delayed by one line of code.

Tip: Action and Conditional breakpoints can be used together to log data only if a condition is satisfied.

Result: Microchip Studio has been used to log variable data using an action breakpoint.

1.14.3 Code Used (for ATtiny817 Xplained Pro)
Code used for conditional- and action-breakpoints.

#include <avr/io.h>
#include <avr/interrupt.h>

void LED_on

void LED off

uint8 t SW_get state

void LED set state(uint8_t SW_state

int main (void

PORTB.DIRSET = PIN4_bm
PORTB.OUTSET = PIN4_bm
PORTB. PINSCTRL |= PORT PULLUPEN bm | PORT ISC_BOTHEDGES_ gc

sel

while

1

#pragma region LED_ functions
void LED_ on

PORTB.OUTCLR = PIN4_bm //LED on

void LED off

PORTB.OUTSET = PIN4_bm //LED off

void LED set state(uint8_t SW_state

if (SW_state

LED_on

else

LED off

#pragma endregion LED functions

uint8 t SW_get state(void

static uint8_t SWO_prv_state = 0
static uint8_t SWO_edge count = 0
uint8 t SWO_cur_ state = ! (PORTB.IN & PIN5 bm /* Read the current SWO state */
if (SWO_cur_state != SWO_prv_state /* Check for edges */

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 69

Microchip Studio
Getting Started

SWO0_edge_count++;
}
SWO0_prv_state = SWO_cur_state; /* Keep track of previous state */

/*

* Report the switch as pushed when it is pushed or the edge counter is a
* multiple of 3

*/

return SWO_cur_ state || ! (SWO_edge count % 3);

}

ISR (PORTB_PORT vect)

: uint8 t intflags = PORTB.INTFLAGS;
PORTB. INTFLAGS = intflags;
uint8 t SW_state = SW get state();

LED_set state (SW_state) ;

1.15 Debugging 3: I/0 View Memory View and Watch

This section covers more advanced debugging topics with Microchip Studio both as video (linked below) and hands-
on document. The main topics are using 1/0 View to work with Configuration Change Protected (CCP) registers,
Memory View to validate EEPROM writes, as well as using the Watch window to cast pointers as an array.

Getting Started Topics

ﬁ\ Studio 7: Debugging - 3

MicRocCHIP
I th' H d . /O View = @ Clock mr«mllerN:LT:ukL: -
n IS VI eo- &) clock select (MCLECTRLA) (2., O =
, - . [[Prescaler division (MCLKCTRLE) [+ 00 - | |
Studio 7: Debugging 3 ~Name Adiress Vel o
Context: SErEs = o= e IenTE
Project from Debugging 2, add function to save B cesccsem
data to eeprom. Change clock freq to 10 MHz. R e e R e o R N e | S e S e
Features Covered:
e /O View:

» Configuration Change Protect (CCP) registers
e Memory view:

» EEPROM Write (AVR® LibC)
« Watch:

» Cast pointer to array of specified size,
so can view in Watch Window

£ FF FF £F FF FF FF FFOFF PR FF 6F

Value
5.8 (713000 seve el

0

Video: Debugging - 3

1.15.1 /O View

The 1/O view provides a graphical view of the I/O memory map of the device associated with the active project. This
debug tool will display the actual register content when debugging, allowing verification of peripheral configurations. It
can also be used to modify the content of a register without having to recompile.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 70

https://youtu.be/CyQ7ZLw-7V0?list=PL9B4edd-p2ajbkbFpi47P9PfMtQuV0OwQ

Microchip Studio
Getting Started

ToDo: Use I/O view to:
* Get an overview of the device memory map.
» Check current peripheral configurations.
* Modify peripheral configurations.
» Validate configuration changes.

1. Remove all breakpoints and start a new debug session.

2. Break code execution by pressing the Break All button n

3. Open the I/O view from the top menu bar by going to Debug — Windows — 1/O.

4. Scroll through the list of peripherals and select I/0 Ports (PORTB). Find the OUT register and click on Bit 4 in
the Bits column, so the corresponding square changes color, as depicted in Figure 1-57. Observe that clicking
Bit 4 in the PORTB.OUT register toggles the output level on GPIO pin PB4, which controls the LED on the
ATtiny817 Xplained Pro.

Figure 1-57. Manipulate Bit Value in Register Using I/O View

o
=] = | Filter: -
Name Value
i+ [E Fuses (FUSE)
40 General Purpose 10 (GPIO)
* MO /0 Ports (PORTA)

Ik

MO 1/0 Ports (PORTC)

Name Address Value Bits

DIR 0420 00 OO0O@O000
[DIRSET 0d21 00 OO00O®O000
B DIRCLR 022 00 QOO0O@0O000
B DIRTGL 0423 0d0 00080000
0600 EEEEEEEN
B ouTsET 0d25 000 OO000000
B ouTCLR 0d26 000 OOO00O0O000
B ouTTGL 0427 000 O0O000O000
BN 0422 0xEC BE@@OBB00
LJINTFLAGS 0420 000 OO000000

B PINOCTRL 0x430 000 (O e
B PINICTRL 0x431 000 (O O00oo
@ PIN2CTRL 0432 000 (O O0oo
B PIN3CTRL 0xd33 000 (O O00oo
B PINACTRL 0x434 000 (O EEEE
BPINSCTRL 0435 008 (O 8000
+ PINGCTRL 0436 000 (O O0o0oo
B PIN7CTRL 0x437 000 (O O00oo

Info: The I/O view is refreshed after any register has been modified, and all detected changes are highlighted
in red.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 71

Microchip Studio
Getting Started

10.

1.

Tip: Multiple bits can be modified simultaneously by double-clicking the value field and typing in
the desired value to be assigned to the register.

Expand the Clock controller (CLKCTRL) in the 1/O view, and answer the following questions:
— What is the currently selected clock source (Clock select)?
— What is the configured prescaler value (Prescaler division)?
— Is the main clock prescaler enabled (MCLKCTRLB.PEN)?

Result: The Clock controller should be configured with the ATtiny817 default clock settings; the main clock is
running from the internal RC oscillator with prescaler enabled and a division factor of six.

Info: The default clock configuration ensure that the device will execute code reliably over the entire
supported operating voltage range, 1.8V to 5.5V. The Xplained Pro kit powers the ATtiny817 at 3.3V.
According to the 'General Operating Ratings' section in the device data sheet, the device can be safely run at
10 MHz with a 3.3V supply.

The code will now be changed to run the ATtiny817 at 10 MHz. Modify the start of main () as below:
int main(void)
{
/*
* Set the Main clock division factor to 2X,
* and keep the Main clock prescaler enabled.
o/
CLKCTRL.MCLKCTRLB = CLKCTRL_PDIV_ZX_gc | CLKCTRL_PEN_ bm;

Start a new debug session to recompile the project and program the device.

Halt code execution by clicking n . Examine the clock settings in 1/0 view, depicted in Figure 1-58.
Figure 1-58. Clock Settings in I1/0 View Remain Unchanged
= @) Clock controller (CLKCTRL)

I © S MCEKCTRE N 20V reimo cscior_G:00 = 1]

Prescaler divition (MCLECTELE) 6% 008 = |
Crystal startup time (XOSC32KCTR.. (1K cycles 000 ~ |
Result: There is a problem! The prescaler remains unchanged.
Select the MCLKCTRLB register in 1/0 view, as indicated in Figure 1-59.
Figure 1-59. Select MCLKCTRLB in I/O View

Mame Address Value Bits
® B MCLKCTRLA 00 000 [0 -
PDIV 0x08 B0
PEN 001
® B MCLKLOCK 062 0x00 OJ
® B MCLKSTATUS 62 a0 (JOO OJ
= B OSC20MCTRLA 070 000 O
RUNSTDBY 0500]
= B OSC20MCALIBA ot e OO0
CALSEL20M 02 B0

CALZOM 01 C] | | [mm

Push F1 on the keyboard to bring up a web-based register description.
Info: Internet access is required to use the web-based register description. Refer to an offline version of the
ATtiny817 data sheet if internet access is not available.

Find out if any access restrictions apply to the MCLKCTRLB register.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 72

Microchip Studio
Getting Started

12.

13.
14.

Result: The register is protected by the Configuration Change Protection (CCP) mechanism. Ciritical
registers are configuration change protected to prevent unintended changes. These registers can only be
modified if the correct unlock sequence is followed, as described in the data sheet.

Replace the line of code, which was just added, with the following:

_PROTECTED WRITE (CLKCTRL.MCLKCTRLB, CLKCTRL PDIV_2X gc | CLKCTRL PEN bm) ;

Info: PROTECTED WRITE () is an assembly macro that ensure timing requirements for unlocking protected
registers are met. It is recommended to use this macro when modifying protected registers.

Tip: Right-click the macro name in the code and select Goto Implementation to navigate to the
implementation of the macro. This is also possible by placing the cursor at the macro name in the
code and pressing Alt+G on the keyboard. The same process can also be used for variable
declarations and function implementations.

Stop the previous debug session and launch a new session to program the device with the changes.

Break code execution and use the I/O view to verify that the prescaler is now successfully set to 2X, as
indicated in Figure 1-60.

Figure 1-60. Clock Settings in I/O View Changed Successfully
= @) Clock controller (CLKCTRL)

&) 20MHz internal oscillator 000 =
Prescaler divition (MCLKCTRLE) 2K 00+ |

Crystal startup time ({OSC32KCTR... (1K cycles 000 |

Tip: The Processor Status window is the register view tool for the AVR Core. This tool can be opened
from the top menu bar by going to Debug — Windows — Processor Status. This window will provide a
detailed view of the status of the internal AVR Core registers. This view can be used to check if global
interrupts are enabled; look for the I-bit in the status register.

Result: The capabilities of the 1/O view have been used to find and fix a bug in the project.

1.15.2 Memory View

ToDo: Write two strings to the beginning of the ATtiny817 EEPROM and use Memory view to verify the EEPROM
contents.

1.
2.

3.

Add #include <avr/eeprom.h> after the #include <avr/io.h> line.
Add the following code before the while (1) loop inmain ():

uint8_t hello[] = "Hello World";
eeprom write block(hello, (void *)0, sizeof (hello));
uint8 t hi[] = "AVR says hi";

eeprom write block(hi, (void *)0, sizeof (hi));

Place a breakpoint next to the first call to eeprom write block () asin Figure 1-61.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 73

1.15.3

Microchip Studio
Getting Started

Figure 1-61. Breakpoint to Halt for Checking EEPROM

uintg t hello[] = "Hello World”;

[] eeprom_write block(hello, (void *)8, sizeof{hello}};

uintg t hi[] = "AVR says hi";
eeprom_write_block(hi, {wvoid *)@, sizecf(hi});

| while(1)
i
uintg t SWwe_state = SW_get_state(); /* Read switch state */
LED set_state(cwa_state); /* Set LED state *J
1
4. Start a new debug session to program the device with the updated code.
5. After the breakpoint has been hit, open the memory window from the top menu bar by going to Debug —
Windows — Memory — Memory 1. Look at the current content of the EEPROM.
6. Push F10 on the keyboard to step over the eeprom write block () call and verify the EEPROM write.
7. Allow the ATtiny817 to execute the next EEPROM write before verifying the write using the Memory view. The
view should appear as in Figure 1-62 at each interval respectively.

Figure 1-62. Memory View Updating After EEPROM Writes

Memory: data EEPROM ~ | Address: 0x1400,data * & | Columns: Auto -

data @x14€ 48 65 6c 6c 6f 20 77 6f 72 6c 64 21 @@ Tf ff ff ff ff ff ff ff ff ff ff ff ff Hello world!
141A Ff f Tf Ff f ff ff £f ff £f ff F £f £Ff fFf £Ff FF F £Ff Ff FF FFf £Ff ff ¥F £F §
x1434 ff #f ff £f £Ff Ff ¥f ff ¥f £ €Ff £Ff £f £f £Ff £Ff £F £F £F £f £Ff £Ff £Ff £ fF F

iE £ FF FF £f £f £f £ £f £f £f £f £f £f ff £f £f £f £f £f £F £f £f £F £F FF £F Gyy999999y9y
1468 FF FF FF £f £f £f £f £f £f £f £Ff £Ff £F £F £F £F £Ff Ff £f £F £F £F £F £F 22 2} Gy9yyyiyyvyyvyIvyyvvyyy. -
: NP2 NN
data ©x149C 22 12 N

Memory: data EEPROM - | Address (1400, data
lat)x1408 41 56 52 20 53 61 79 73 20 68 59 21 @@ ff ff ff £f ff £ff ff ff
T rITIITTITIIITII I TP AIT T TT PITIP AT
w2l ff £F £ Ff £f £F £f £Ff £Ff £f £Ff fFf £F 4f £f £F £F £ £F F £F
data Ox44E F FF ff Ff £ F FF ¥F 1F f FF F FF iF FF FF ¥F £ FF FF ¥F
"
Fid

data Ox1468 i ff f ff ¥Ff ¥f If 1f 71 #f ff fFf if 17 ff T ¥1 £ ¥F 1T
data @x1482 i .t dr ¥ dr v R rd R P2 ¥ @ X X2 X2 B AT XX

Tip: The Memory view tool can also be used to investigate the contents of other AVR memory
sections, including the program memory. This can be useful when debugging bootloaders.

Result: The content of the EEPROM is updated after each call to eeprom write block (). The updated content
is highlighted in red, and the ASCII interpretation of the EEPROM content matches the written strings. Therefore, the
contents of EEPROM after writing to it have been verified using Memory view.

Watch Window

This is covered in more detail in section 1.14 Debugging 2: Conditional- and Action-Breakpoints , however, the note
on how to cast pointers as an array in the Watch window is repeated here.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 74

Microchip Studio
Getting Started

Info: A variable can also be added to the Watch window by clicking on an empty field name and typing the variable
name. This way, it is even possible to cast a variable to a different data type for better readability in the Watch
window. This is especially useful if it is required to look at an array that is passed to a function as a pointer.

For example, if an array is passed to a function, it will be passed to the function as a pointer. This makes it impossible
for Microchip Studio to know the length of the array. If the length of the array is known, and it needs to be examined
in the Watch window, the pointer can be cast to an array using the following cast:

(uint8 t () [<n>])<name of array pointer>

Where <n> is the number of elements in the array and <name of array pointer> is the name of the array to be
examined.

This can be tested on the SWO _edge count variable by entering the following in an empty name field in the Watch
window:

(uint8 t () [5]) &SW0_edge count

Note that the 's&' symbol must be used in this case to obtain a pointer to the variable.

Result: Microchip Studio has now been used to inspect and modify the contents of variables in the code.

Code Used for Debugging 3

#include <avr/io.h>
#include <avr/eeprom.h>

void LED_on (void) ;

void LED off (void) ;

void LED_set state (uint8_t state) ;
uint8_t SW_get state(void) ;
uint8 t SW_get state_logic(void) ;

int main(void)

{
PORTB.DIRSET
PORTB . PINS5CTRL

PIN4_bm; /* Configure LED Pin as output */
PORT_PULLUPEN bm; /* Enable pull-up for SWO pin */

_PROTECTED WRITE (CLKCTRL.MCLKCTRLB, CLKCTRL PDIV_2X gc | CLKCTRL PEN bm);

uint8_t Hello[] = "Hello World!";
save (Hello,sizeof (Hello)) ;
uint8 t Hi[] = "AVR says hi!";
save (Hi,sizeof (Hi)) ;

while (1)
{
uint8_t SWO_state = SW_get state logic(); /* Read switch state */
LED set state (SWO_state) ; /* Set LED state */

}

void save (const uint8_ t* to_save, uint8 t size)

{

eeprom write block (to_save, (void*)0,size) ;

}

uint8 t SW_get_ state()

{
return ! (PORTB.IN & PIN5 bm) ;

}

uint8 t SW_get_ state logic(void)
{

static uint8_t SWO_prv_state = 0;

static uint8_t SWO_edge_count = 0;

uint8_t SWO_cur_state = ! (PORTB.IN & PIN5 bm); /* Read the current SW0O state */
if (SWO_cur_state !'= SWO_prv_state) /* Check for edges */
{

SWO_edge_count++;
}
SWO0_prv_state = SWO_cur_state; /* Keep track of previous state */

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 75

Microchip Studio
Getting Started

/*

* Report the switch as pushed when it is pushed or the edge counter is a
* multiple of 3

*/

return SWO_cur_ state || ! (SWO_edge count % 3);

}
void LED off (void)

PORTB.OUTSET = PIN4 bm; /* Turn LED off */
}

void LED_ on (void)

PORTB.OUTCLR = PIN4 bm; /* Turn LED on */
}

void LED_set state(uint8_t state)
{

if (state)
{
LED on() ;
}
else
{
LED_off();

}

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 76

2,

Microchip Studio

Revision History

Revision History

Doe e o comens

B 01/2021 Renaming to Microchip Studio

A 2018 Initial version

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 77

Microchip Studio

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

» Microchip believes that its family of products is secure when used in the intended manner and under normal
conditions.

* There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

» Microchip is willing to work with any customer who is concerned about the integrity of its code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 78

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Microchip Studio

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS 1S”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-
Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQl, SuperSwitcher, SuperSwitcher Il, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-7362-6

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 79

Microchip Studio

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, pVision, Versatile are trademarks or registered
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. User Guide DS50002712B-page 80

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC B

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2020 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

User Guide

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS50002712B-page 81

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Getting Started
	1.1. Microchip Studio, START, and Software Content
	1.1.1. Atmel START
	1.1.2. Software Content (Drivers and Middlewares)
	1.1.3. Integrated Development Environment (IDE)

	1.2. AVR® and SAM HW Tools and Debuggers
	1.3. Data Visualizer and Power Debugging Demo
	1.4. Installation and Updates
	1.4.1. Installation
	1.4.2. Downloading Offline Documentation

	1.5. Microchip Gallery and Studio Extensions
	1.6. Atmel START Integration
	1.7. Creating a New Project
	1.8. Creating From Arduino® Sketch
	1.9. In-System Programming and Kit Connection
	1.9.1. Settings Verification

	1.10. I/O View and Other Bare-Metal Programming References
	1.11. Editor: Writing and Re-Factoring Code (Visual Assist)
	1.12. AVR® Simulator Debugging
	1.13. Debugging 1: Break Points, Stepping, and Call Stack
	1.14. Debugging 2: Conditional- and Action-Breakpoints
	1.14.1. Conditional Breakpoints
	1.14.2. Action Breakpoints
	1.14.3. Code Used (for ATtiny817 Xplained Pro)

	1.15. Debugging 3: I/O View Memory View and Watch
	1.15.1. I/O View
	1.15.2. Memory View
	1.15.3. Watch Window

	2. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

