
Programmable
SLI
AT40K
AT40KAL
AT94KAL
AT94SAL

Application
Note

Rev. 1449B–08//01
Replacement of a RAM with Atmel
FreeRAM™ in Verilog™-based Designs

Features
• Verilog Source Code for FreeRAM Implementation
• Examples for Converting Xilinx® RAM to Atmel FreeRAM

FreeRAM Features
Atmel’s FreeRAM is a versatile component. It can be configured to four different types:

Figure 1. Single-port RAM: Asynchronous or Synchronous

Figure 2. Dual-port RAM: Asynchronous or Synchronous

The routing resources connecting the RAM are optimized for each mode. For exam-
ple, the routing nets needed to route the DOUT signals on the dual-port RAM are not
used on the single-port RAMs. These unused resources can be used for other routing
schemes for another area in the design.

RAMSSYNC

D[3:0]

A[4:0]

WEN

OEN

CLK

RAMS

DIN[3:0]

A[4:0]

WEN

OEN

RAMDSYNC

DOUT[3:0]DIN[3:0]

AIN[4:0]

AOUT[4:0]

WEN

OEN

CLK

RAMD

DOUT[3:0]DIN[3:0]

AIN[4:0]

AOUT[4:0]

WEN

OEN
1

Architectural
Differences

Atmel has dedicated RAM blocks inside the FPGA devices. Within every 4 x 4 core cell
sector, there is a FreeRAM cell that can be used as 32 x 4 dual-port RAM. This frees up
the core cells to be used for logic. Xilinx RAM does not have any separate RAM and
must use its CLB to generate them.

Area consumption becomes a major drawback for Xilinx’s RAM. For example, a FIFO
design is created that requires the use of a 128 x 16 dual-port RAM. This design would
require 128 Xilinx CLBs alone just for the RAM; logic would increase that number. The
smallest device required would be a 4005E. If this same design was developed using
Atmel’s FreeRAM, the RAM would fit into an AT40K05, but the core cells are not
affected by the FreeRAM, allowing additional logic to fit into a small device.

Dual Port Capabilities Dual-port RAM capability is truly achieved in the Atmel architecture. Xilinx uses only one
signal (WE) for this write and output enable. Simultaneous read and write is not possi-
ble. By asserting WE high, the RAM can only perform a write operation; disabling WE
performs a read operation. Atmel RAM implements separate signals for the write and
output enables as well as the data input and output. This allows simultaneous read and
write operations.

Modifying Verilog
Codes to Implement
Atmel RAM

Figure 3 shows how a Xilinx RAM is implemented in Verilog. Figure 4 shows how that
same design is converted to implement Atmel RAM. It is very important to remember
that the polarity for the write enable in the Atmel RAM is active low. For designs where
the write signals were active high, an inverter is necessary to correct the polarity.

During synthesis, the front-end tool will generate a black box for the RAM component.
Creation of the RAM block will be generated by the Macro Generator in the IDS soft-
ware. The RAM will be stored inside a user-defined library. When the design netlist is
imported to IDS, the black box definition calls the RAM definition within the user library.
The design can be placed and routed after the successful import.

Replacing Xilinx
Components in
Verilog

It is possible to convert a design using Xilinx RAM into the Atmel architecture without
modifying the original Verilog code. A new file needs to be created. Inside this file is the
entity and architecture declaration of the Xilinx RAM. Under the architecture block sec-
tion, an Atmel component is called and port mapped to simulate the Xilinx RAM. Figure
5, Figure 6 and Figure 7 show how to implement an Atmel RAM underneath the Xilinx
component. Synthesis of the design follows the same procedure previously mentioned.

Importing design into
Figaro

Prior to importing the *.edf netlist, the RAM must be generated and stored within a user-
defined library. This is achieved by using the Macro Generator tool integrated with the
software. After generating the RAM, the macro will be called during the *.edf import.
2 Replacement of a RAM with Atmel FreeRAM in Verilog
1449B–08//01

Replacement of a RAM with Atmel FreeRAM in Verilog
Figure 3. Sample Verilog File Implementing Xilinx RAM

Note: 1. SPO is never used in the design. The user must create the dummy signal nullnode and connect it to the component so syn-
thesis will not complain.

module example (clk, wr, data_a, data_b);

input clk;

input wr;

input [31:0] data_a;

input [15:0] data_b;

wire [3:0] ptra;

wire [4:0] ptrb;

wire [15:0] nullnode;

wire wrblo;

wire wrbhi;

assign wrblo = wr & (~ ptrb[0]);

assign wrbhi = wr & ptrb[0];

dpr16x16 RAMLO(data_a[15:0], nullnode[15:0], data_b[15:0], ptrb[4:1], ptra[3:0], clk, wrblo);

dpr16x16 RAMHI(data_a[31:16], nullnode[15:0], data_b[15:0], ptrb[4:1], ptra[3:0], clk, wrbhi);

 .

 .

 .

endmodule

module dpr16x16 (DPO, SPO, DI, A, DPRA, WR_CLK, WR_EN);

output [15:0] DPO;

output [15:0] SPO;

input [15:0] DI;

input [3:0] A;

input [3:0] DPRA;

input WR_CLK;

input WR_EN;

endmodule

dpr16x16

SPO[15:0](1)D[15:0]

A[3:0]

DPRA[3:0]

WR_EN

16

WR_CLK

16

4

4

DPO[15:0] 16
3
1449B–08//01

Figure 4. Sample Verilog File Implementing Atmel RAM with HDLPlanner(1)(2)

Notes: 1. This component will be created using the Macro Generator in IDS within the HDLPlanner. For this example, the following
information will be entered:

– Section: Memory, RAM Dual-port Address Width: 8
– Width: 32Ram Type: Synchronous

2. Xilinx RAM uses one signal to control the write and output enables of their RAM. Atmel has separate ports for these control-
lers. The simplest solution is to always assert the output enable. Xilinx RAM can only perform a write or read but not both.
It’s assumed that the data coming out of DOUT will only be sampled when the write enable is disabled. The original design
assumes that the write enable is active high. Atmel RAM defines its write enable to be active LOW. Therefore, inverters are
needed to correct the signal interface.

‘define Clockedge posedge

‘define setOrReset ’b0

‘define setOrResetOn negedge

‘define setOrResetLevel ’b0

module SDPR32x8 (AIN, AOUT, DIN, DOUT, WEN, OEN, CLK);

// synopsys template

parameter addr_width = 16;

parameter width = 32;

input [addr_width-1 : 0] AIN;

input [addr_width-1 : 0] AOUT;

input [width-1 : 0] DIN;

output [width-1 : 0] DOUT;

input WEN, OEN, CLK;

endmodule

module RAMBLOCK (wen, clk, din, dout, ain, aout);

input wen, clk;

input [31:0] din;

output [31:0] dout;

input [15:0] ain, aout;

wire oen;

assign oen = ’b0;

// HDLPlanner Instance sdpram_prl

// Do not **DELETE** previous line

parameter InstName_addr_width = 8;

parameter InstName_width = 32;

SDRP32x8 #(InstName_addr_width, InstName_width) RAMLow (.AIN(ain[7:0]), .AOUT(aout[7:0]), .DIN(din),
.DOUT(dout), .WEN(wen), .OEN(oen), .CLK(clk));

SDPR32x8 #(InstName_addr_width, InstName_width) RAMHigh (.AIN(ain[15:8]), .AOUT(aout[15:8]), .DIN(din),
.DOUT(dout), .WEN(wen), .OEN(oen), .CLK(clk));

// Do not **DELETE** next line

// HDLPlanner End Instance sdpram_prl

endmodule

RAMDSYNC

DOUT[3:0]DIN[3:0]

AIN[4:0]

AOUT[4:0]

WEN

OEN

CLK
4 Replacement of a RAM with Atmel FreeRAM in Verilog
1449B–08//01

Replacement of a RAM with Atmel FreeRAM in Verilog
Figure 5. Xilinx Component with Buried Atmel Component – Example 1

module ram32x4 (D, A, WE, O);

input [3:0] D;

input [4:0] A;

input WE;

output [3:0] O;

dpr32x4 U1(.WEN(~WE), .OEN(WE), .AIN(A), .AOUT(A), .DIN(D), .DOUT(O));

endmodule

module dpr32x4 (WEN, OEN, AIN, AOUT, DIN, DOUT);

input WEN, OEN;

input [4:0] AIN;

input [4:0] AOUT;

input [3:0] DIN;

output [3:0] DOUT;

endmodule

ATMEL RAMD

DOUT[3:0]DIN[3:0]

AIN[4:0]

AOUT[4:0]

WEN

OEN

5

4 4

D3
D2
D1
D0

A4
A3
A2
A1
A0

WE

O3
O2
O1
O0

XILINX RAM32X4
5
1449B–08//01

Figure 6. Xilinx Component with Buried Atmel Component – Example 2

module ram32x4s (D, A, WE, WCLK, O);

input [3:0] D;

input [4:0] A;

input WE;

input WCLK;

output [3:0] O;

sdpr32x4 U1(.WEN(~WE), .OEN(WE), .CLK(WCLK), .AIN(A), .AOUT(A), .DIN(D), .DOUT(O));

endmodule

module sdpr32x4 (WEN, OEN, CLK, AIN, AOUT, DIN, DOUT);

 input WEN, OEN, CLK;

 input [4:0] AIN;

 input [4:0] AOUT;

 input [3:0] DIN;

 output [3:0] DOUT;

endmodule

ATMEL RAMDSYNC

DOUT[3:0]DIN[3:0]

AIN[4:0]

AOUT[4:0]

WEN

OEN

5

4 4

D3
D2
D1
D0

A4
A3
A2
A1
A0

WE

O3
O2
O1
O0

XILINX RAM32X4S

CLKWCLK
6 Replacement of a RAM with Atmel FreeRAM in Verilog
1449B–08//01

Replacement of a RAM with Atmel FreeRAM in Verilog
Figure 7. Xilinx Component with Buried Atmel Component – Example 3

module ram16x4d (D, A, DPRA, WE, WCLK, SPO, DPO);

input [3:0] D;

input [4:0] A;

input [3:0] DPRA;

input WE;

input WCLK;

output [3:0] SPO;

output [3:0] DPO;

wire OE;

assign OE = ’b0;

sdpr16x4 U1(.WEN(~WE), .OEN(OE), .CLK(WCLK), .AIN(A), .AOUT(A), .DIN(D), .DOUT(SPO));

sdpr16x4 U2(.WEN(~WE), .OEN(WE), .CLK(WCLK), .AIN(A), .AOUT(DPRA), .DIN(D), .DOUT(DPO));

endmodule

module sdpr16x4 (WEN, OEN, CLK, AIN, AOUT, DIN, DOUT);

input WEN, OEN, CLK;

input [4:0] AIN;

input [4:0} AOUT;

input [3:0] DIN;

output [3:0] DOUT;

endmodule
7
1449B–08//01

Figure 7. Xilinx Component with Buried Atmel Component – Example 3 (Continued)

4

4

4

D3
D2
D1
D0

DPRA3
DPRA2
DPRA1
DPRA0

WE

DPO3
DPO2
DPO1
DPO0

XILINX RAM16X4D

WCLK

ATMEL RAMDSYNC

DOUT[3:0]DIN[3:0]

AIN[3:0]

AOUT[3:0]

WEN

OEN

CLK

ATMEL RAMDSYNC

DOUT[3:0]DIN[3:0]

AIN[3:0]

AOUT[3:0]

WEN

OEN

CLK

4

SPO3
SPO2
SPO1
SPO0

A3
A2
A1
A0

4

8 Replacement of a RAM with Atmel FreeRAM in Verilog
1449B–08//01

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Product Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn
Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 71 31 67 25 94
FAX (49) 71 31 67 24 23

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0 2 40 18 18 18
FAX (33) 0 2 40 18 19 60

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

Atmel Programmable SLI Hotline
(408) 436-4119

Atmel Programmable SLI e-mail
fpga@atmel.com – fpslic@atmel.com

FAQ
Available on web site

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

1449B–08//01/xM

Atmel® is the registered trademark of Atmel. HDLPlanner™ and FreeRAM™ are the trademarks of Atmel.

Verilog™ is the trademark of Gateway Design Automation Corporation; Xilinx® is the registered trademark of
Xilinx, Inc. Other terms and product names may be the trademarks of others.

	Features
	FreeRAM Features
	Architectural Differences
	Dual Port Capabilities
	Modifying Verilog Codes to Implement Atmel RAM
	Replacing Xilinx Components in Verilog
	Importing design into Figaro

