

Dual Ringing Subscriber Line Interface Circuit VE950 Series

Introduction

The Le9540 Dual Ringing SLIC device is a dual-channel device optimized to provide battery feed, ringing, and supervision on voice loops found in short-loop VoIP applications. This device is optimized to interface to the Broadcom BCM3383/85 SoC, or equivalent. The SLIC operational control and status report for both channels are communicated through a serial interface with reset. The common protection reference output can trigger either a common protection device or per channel devices for both channels. The SLIC supports wide-band applications.

Figure 1. Block Diagram

One channel shown unless otherwise specified

Features

- · Dual architecture integrates two channels of SLIC functionality
- High voltage high bandwidth design supports 7 kHz wide band applications
 - Up to -145 V ringing battery Le9540D
 - Up to –100 V ringing battery Le9540C
- Common protection reference output
- Operation Ccontrol and status report through serial interface with reset
 - SLIC operation state/DC current limit/test load enable
 - DC loop closure/ring trip/thermal shutdown
- Channel independent eight operating states
 - Scan (minimal power dissipation)
 - Active forward (default power-up state)
 - Active forward ICV
 - Active reverse
 - Tip open
 - Wink
 - Ringing
 - Disconnect
 - Per channel ringing inputs for optimized interface to BRCM SoC devices
 - Accepts driving signals from per channel voice outputs as well as from PWM outputs
- DC current limited in active/scan/tip open states
- · Loop start, ring trip, and ring-ground detections with two thresholds
- Thermal shutdown protection with hysteresis
- Test load switch supports integrated test algorithms

Applications

- Optimized design to work with BCM3383/85 Broadcom SoCs
- Short loop residential gateways

Table of Contents

Intro	oductio	m	1			
	1.	Features	2			
	2.	Applications	2			
1.	Produ	ict Description	5			
	11	Power Supplies	5			
	1.2.	Operating States	5			
	1.3.	Communication Interface.	6			
	1.4.	Protection	6			
	1.5.	Thermal	6			
2	Pin D	escriptions	7			
	2.1	Pin Diagram	7			
	2.1.	Pin Details	<i>1</i> 8			
	2.2.		0			
3.	Absol	ute Maximum Ratings	. 10			
	3.1.	Thermal Resistance	. 10			
	3.2.	Package Assembly	.10			
4.	Opera	ating Ranges	. 11			
	4.1.	Environmental Ranges	. 11			
	4.2.	Electrical Ranges	11			
5.	Electr	ical Characteristics	.12			
•	5 1	Supply Currents	12			
	5.2	Power Dissipation	13			
	5.3.	l ine Characteristics	.13			
	5.4.	Serial Interface Characteristics.	. 17			
0	0	Interface Or antique and Definitions	40			
6.	Serial		.19			
	6.1.	Serial Interface Operations.	.19			
	0.Z.	Bit Assignments	20			
7.	Test C	Sircuit	. 22			
8.	Applic	cations	.25			
	8.1.	In-rush Control	.25			
	8.2.	Loop Closure and Ring Trip Detection Thresholds with Hysteresis	. 25			
	8.3.	Protection	. 26			
	8.4.	Design Examples	. 27			
	8.5.	Application Circuit Parts List	.29			
9.	Physi	cal Dimensions	. 30			
10.	Order	ing Information	. 32			
11.	11 Revision History					
ть -			24			
i ne	The Microcrip Website					

Product Change Notification Service	.34
Customer Support	. 34
Microchip Devices Code Protection Feature	. 34
Legal Notice	. 35
Trademarks	. 35
Quality Management System	. 36
Worldwide Sales and Service	.37

1. **Product Description**

The Le9540 device is a dual channel device optimized to provide battery feed, ringing, and supervision on short Plain Old Telephone Service (POTS) loops. This device is optimized to interface to Broadcom system-on-a-chip (SoC) device for cable modem applications.

1.1 **Power Supplies**

The Le9540 device is powered by a Vcc for analog circuits of both channels, a VDD for the serial logic circuits and a per channel VBAT for DC feed and power ringing. The maximum of VBAT is rated at -100 V for Le9540C and -145 V for Le9540D. The VBAT is expected to be a full tracking supply. The device depends on the tracking power supply to reduce the battery amplitude during off-hook conditions and by doing so may save overall operating power consumption. The VBAT should be no more negative than -100 V for Le9540D other than in ringing mode. Also, when -145 V is used for ringing special care should be taken to prevent certain faults from happening, such as tip to ring, tip or ring to ground, or similar alike.

1.2 Operating States

The Le9540 device uses a voltage-feed-current-sense architecture. Each channel of this device has active, scan, tip open, wink, and disconnect operation states. Power ringing is also provided to the subscriber loop through amplification of a low-voltage input. The active forward state with the low (ILL) DC current limit and the test switch turned off is the default power-up state.

1.2.1 Active

There are three active states: Active Forward, Active Reverse, and Active Forward ICV.

In the Active Forward state, the DC feed voltage on PT is positive with respect to the voltage on PR. In the Active Reverse state, the DC feed voltage on PT is negative with respect to the voltage on PR.

In the Active Forward ICV state, the PT voltage is forced to be near -20 V. The channel will be operating with an Increased Common mode Voltage (ICV).

The DC feed current is limited and can be programmed to either ILL or ILH. There is in the order of a 10 k Ω slope to the I/V characteristic in the current-limit region. Thus, once in current limit, the actual loop current will increase slightly as loop length decreases.

For AC operation, the SLIC supports off-hook talk mode and on-hook transmission mode as may be required during the quiet interval of ringing. The overhead is about 6 V to 8 V, allowing for on-hook transmission of an undistorted signal of 3.14 dBm into 900 Ω , or 500 mV of meter pulse.

1.2.2 Scan

Scan is a simple low-power operation state. It is designed primarily for on-hook operation. It provides forward DC feed with the voltage on PT positive with respect to the voltage on PR. The loop closure detector is active. The DC feed current is limited and fixed. The AC transmission path and on-hook transmission are not active.

1.2.3 Tip Open

The Tip Open state is the scan state with high impedance into PT.

1.2.4 Wink

The Wink state is an active state but the voltages on PT and PR are forced to be the same and near ground.

1.2.5 Disconnect

Both PT and PR are in high impedance.

1.2.6 Ringing

In the Ringing state, the signals on RINGP and RN are amplified and provided to the tip/ring pair as the power ringing signal. The signals on RINGP and RN may be a sine wave or a filtered square wave to produce a sine wave or trapezoidal output. A DC offset may also be applied.

The signals on RINGP and RN are desirable to be referenced to VREF or near VREF potential for maximum dynamic ranges on the inputs.

1.3 Communication Interface

A serial interface is used for device operational control and for device status reporting. For operational control through DIN, the operation state, DC current limit and test load switch operation can be set on a per channel basis. The upstream status reporting on DOUT are loop closure, ring trip, and thermal shutdown. There are two loop closure outputs related to two detection thresholds, two ring trip detection outputs related to two detection thresholds, and one thermal shutdown indication for each channel.

The serial interface has a RESET, which is active low. When the RESET pin is a logic 0 the device enters its default state of active forward with the low (ILL) DC current limit and the test switch turned off. This operation controls both channel simultaneously. The RESET pin has an internal pull down.

1.4 Protection

A Common Protection Reference (CPR) output is available. It provides the gate reference voltage for a common shared protector or independent per line protectors for both channels. The reference voltage will be the more negative of VBAT1 and VBAT2. When the circuit is activated, it will source at least 10 mA of gate trigger current.

1.5 Thermal

The device is packaged in a small 40-pin QFN (6 mm x 6 mm). The exposed pad must be connected to a ground plane on the printed circuit board for thermal conduction. Also, the internal analog grounds and battery grounds are connected to the exposed pad, as well as to the GND pin. The single GND pin may not be sufficient for peak current return. The ground plane to which the exposed pad connects is used as analog signal ground and battery ground.

In case of reaching the thermal shutdown temperature, the channel will automatically enter an all off state. Upon cooling, the device will re-enter the state contained in the serial interface control registers. Hysteresis is built-in to prevent fast oscillation. This is a self-protection operation. Thermal shutdown will not cause performance degradation once the device goes back to normal operation.

2. Pin Descriptions

The Le9540 device has 40 pins as described in this section.

2.1 Pin Diagram

The following figure shows the top view of the Le9540 device.

Figure 2-1. Le9540 Pin Diagram

Note: Exposed pad should be connected to the ground plane for electrical connection and thermal conduction.

2.2 Pin Details

The following table shows the functional pin descriptions for the Le9540 device. NAME_1 is for channel 1 and NAME_2 is for channel 2.

Table 2-1. Le9540 Pin Description

Pin Name	Туре	Description
VITR_1 VITR_2	Output	Transmit AC Output Voltage. Output of internal AAC amplifier. This output is a voltage that is directly proportional to the differential AC tip/ring current.
RCVP_1 RCVP_2	Input	Receive AC Signal Input (Non inverting). This high-impedance input controls the AC differential voltage on tip and ring, for voice in Active states. This node is a floating input.
RN_1 RN_2	Input	Receive AC Signal Input and Power Ringing Signal Input (Inverting). In Active States, this input with reduced gain and referenced to VREF, is paired with RCVP for voice transmission. In Ringing State, this input is paired with RINGP with the same gain as that of RINGP.
RINGP_1 RINGP_2	Input	Power Ring Signal Input (Non inverting). Couple to a sine wave or lower crest factor low-voltage ring signal. The input here is amplified to provide the full power ring signal at tip and ring. This signal may be applied continuously, even during non-ringing states.
DCF_1 DCF_2	Input	Filter Capacitor. Connect a capacitor from this node to ground.
RTFLT_1 RTFLT_2	Input	Ring Trip Filter. Connect a capacitor to ground to filter the ring trip circuit to prevent spurious responses. A single-pole filter is needed.
VREF_1 VREF_2	Output	SLIC Device Internal Reference Voltage. Output of internal 1.5 V reference voltage.
IREF	Input	SLIC Device Internal Reference Current. Connect a 49.9 k Ω resistor to low noise analog ground.
VCC	Power	Analog Power Supply. 3.3 V typical.
VDD	Power	Digital Power Supply. 3.3 V typical.
VBAT_1 VBAT_2	Power	Battery Supply. User adjusted supply per SLIC operation state and device grade.
PT_1 PT_2	Input/ Output	Protected Tip. The output drive of the tip amplifier and input to the loop-sensing circuit. Connect to loop through over-voltage and over-current protection.
PR_1 PR_2	Input/ Output	Protected Ring. The output drive of the ring amplifier and input to the loop sensing circuit. Connect to loop through over-voltage and over-current protection.
ITR_1 ITR_2	Input	Transmit Gain. Input to AX amplifier. Connect a 6.49 k Ω resistor from this node to VTX to set transmit gain of 205 V/A.
VTX_1 VTX_2	Output	DC and AC Output Voltage. Output of internal AX amplifier. The voltage at this pin is directly proportional to the differential tip/ring current.
TXI_1 TXI_2	Input	AC/DC Separation. Input to internal AAC amplifier. Connect a capacitor from this pin to VTX.
TLD_1 TLD_2	Input	Test Load. A test load may be connected to this pin.
CPR	Output	Common Protection Reference . This output may be used as the protector gate reference point.

contin	continued							
Pin Name	Туре	Description						
RESET	Input	Reset. When low it resets the SLIC and both channels will be in default mode. It comes with internal 100 k Ω pull down.						
EN	Input	Enable. Activate the serial interface operations.						
CLK	Input	Clock for the Serial Data Transmission. Clock that runs the serial interface.						
DIN	Input	Data Input. Data inputs of the serial interface.						
DOUT	Output	Data Output. Data outputs of the serial interface.						
RSVD		Reserved. Leave it floating on PCB layout.						
GND	GND	Ground. Use together with the exposed pad as ground return.						
Exposed Pad		Thermal and Circuit Ground . Connect to a ground plane on the printed circuit board for thermal conduction and electrical connection for ground return.						

3. Absolute Maximum Ratings

If you stress values above than what is listed in the following table, it can cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. TA = $25 \,^{\circ}$ C

Table 3-1. Absolute	Maximum Ratings
---------------------	-----------------

Parameter	Symbol	Min.	Max.	Unit
DC Supply (V_{CC} , V_{DD})	V _{CC} , V _{DD}	-0.4	4.0	V
Battery Supply (V _{BAT}) (Le9540C, Le9540D Non-Ringing)	V _{BAT}	-110	GND	V
Battery Supply (V _{BAT}) (Le9540D Ringing)	V _{BAT}	–155 + V _{CC}	GND	V
Logic Input Voltage		-0.4	V _{DD} + 0.5	V
Logic Output Voltage		-0.4	V _{DD} + 0.5	V
CPR Voltage (10 x 1000 µs)		–155 + Vcc	min (VBAT1, VBAT2) + 1	V
Operating Temperature Range		-40	125	°C
Storage Temperature Range		-40	150	°C
Relative Humidity Range		5	95	%
PT or PR Fault Voltage (DC)	V _{PT} , V _{PR}	V _{BAT} – 5	3	V
PT or PR Fault Voltage (10 x 1000 μ s)	V _{PT} , V _{PR}	V _{BAT} – 15	15	V
ESD Immunity (Human Body Model)			JESD22 Class 1C compliant	

3.1 Thermal Resistance

The thermal performance of a thermally enhanced package is assured through optimized printed circuit board layout. Specified performance requires that the exposed thermal pad be soldered to an equally sized exposed copper surface, which, in turn, conducts heat through multiple vias to a large internal copper plane. Thermal performance depends on number of PCB layers and the size of copper area. Continuous operation above 145°C junction temperature may degrade device reliability.

The typical thermal protection shutdown (TjC) temperature is 190 °C, with minimum at 175 °C.

3.2 Package Assembly

Green package devices are assembled with enhanced environmental compatible lead-free, halogen-free, and antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board assembly processes or newer lead-free board assembly processes. The peak soldering temperature should not exceed 245 °C during printed circuit board assembly.

See IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile.

4. **Operating Ranges**

4.1 Environmental Ranges

Microchip guarantees the performance of this device over commercial (0 °C to 70 °C) and industrial (-40 °C to 85 °C) temperature ranges by conducting electrical characterization over each range and by conducting a production test with single insertion coupled to periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications Equipment.

Table 4-1. Environmental Ranges

Parameter	Value
Ambient Temperature	–40 ° C < T _A < 85 ° C
Ambient Relative Humidity	5 to 95%

4.2 Electrical Ranges

The following table shows the elctrical specifications of Le9540 device.

Table 4-2. Electrical Ranges

Parameter	Min.	Тур.	Max.	Unit
3.3 V DC Supplies (V _{CC} , V _{DD})	3.13	3.3	3.47	V
Office Battery Supply (V_{BAT}) (Le9540C)	-100 ¹	—	-12	V
Office Battery Supply (V_{BAT}) (Le9540D)	-100 ¹	—	-12	V
Office Battery Supply (V _{BAT}) (Le9540D) (during ringing only)	-145 ¹		-12	V

Note:

1. Full tracking supply is expected during off hook and ringing operations. These maximum values may be the maximum on hook voltage or the peak voltage during ringing.

5. Electrical Characteristics

5.1 Supply Currents

The values are per channel except I_{VDD} . On-hook, no loop current. Test switch off. VDD = VCC = 3.3V. Table 5-1. Supply Current Specifications

Parameter	Min.	Тур.	Max.	Unit
Scan state, V _{BAT} = –60 V:				
Ivcc	—	3.42	4.40	mA
I _{VBAT}	_	0.20	0.23	mA
Active state, Forward and Reverse, V_{BAT} = –60 V:				
Ivcc	—	4.45	5.40	mA
I _{VBAT}	—	1.25	1.40	mA
Active state, Forward ICV state, V_{BAT} = -60 V:				
Ivcc	—	4.60	5.60	mA
I _{VBAT}	—	1.33	1.50	mA
Active state, Forward and Reverse, V_{BAT} = -21 V:				
Ivcc	-	4.45	5.40	mA
I _{VBAT}	_	1.20	1.35	mA
Disconnect state, V _{BAT} = -60 V				
I _{VCC}	_	2.80	3.70	mA
I _{VBAT}	—	0.02	0.06	mA
Tip Open state, V _{BAT} = –60 V				
Ivcc	—	3.20	4.00	mA
I _{VBAT}	-	0.17	0.21	mA
Wink state, V_{BAT} = -60 V				
Ivcc	-	4.6	5.6	mA
I _{VBAT}	_	1.3	1.5	mA
Ring state, no load, V _{BAT} = -100 V (Le9540C)				
I _{VCC}	_	4.5	5.4	mA
I _{VBAT}	_	2.0	2.4	mA
Ring state, no load, VBAT= -145 V (Le9540D)				
Ivcc	—	4.5	5.4	mA
I _{VBAT}	—	2.1	2.5	mA
All operation states (for both channels), I_{VDD}	—	2.0	2.3	mA

5.2 **Power Dissipation**

The following table shows the power dissipation details of the Le9540 device. The values are per channel. On-hook with no loop current. V_{DD} = V_{CC} = 3.3 V and the test switch is off.

Table 5-2. Power Dissipation Details

Parameter	Min.	Тур.	Max.	Unit
Scan state, V _{BAT} = –60 V	—	27	33	mW
Active state, Forward/Reverse, V_{BAT} = -60 V	—	93	106	mW
Active state, Forward ICV V_{BAT} = -60 V	_	99	113	mW
Active state, Forward/Reverse, V_{BAT} = -21 V	—	44	50	mW
Disconnect state, V _{BAT} = -60 V	_	14	20	mW
Tip Open state, V _{BAT} = –60 V	—	24	_	mW
Wink state, V_{BAT} = -60 V	_	97	_	mW
Ring state, no load, V _{BAT} = -100 V (Le9540C)	—	219	262	mW
Ring state, no load, V _{BAT} = -145 V (Le9540D)	_	322	384	mW

5.3 Line Characteristics

Figure 7-1 shows the test condition, unless otherwise specified.

Typical values are characteristic of the device and are the result of engineering evaluations. Typical values are for information purposes only and are not a part of the testing requirements. Minimum and maximum values apply across the operating temperature range and the entire battery range unless otherwise specified. Typical is defined as $T_A=25$ ° C, $V_{DD} = V_{CC} = 3.3$ V, $V_{BAT} = -60$ V for scan and disconnect state, -30 V for active states, -100 V/-145 V for ringing state (for Le9540C/D). Test Switch is off.

Table 5-3. Two-Wire Port Details

Parameter	Min.	Тур.	Max.	Unit
Tip or Ring Drive Current = DC + Longitudinal + Signal Currents, Active states ¹	105	-	—	mApk
Tip or Ring Drive Current = Ringing + Longitudinal, Ring state ¹	65	_	_	-
Signal Current, Active states ¹	10	_	—	mArms
Longitudinal Current Capability per Wire (Longitudinal current is independent of DC loop current.) ¹	8.5	15		
Ringing Current (Tip-Ring Ringing Load 1386 Ω + 40 $\mu F)^1$	29	_	—	_
DC Loop Current Limit, Active States (Tip-Ring DC Load 300 Ω):				
ILL	22.5	23.5	24.5	mA
ILH	38	40	42	mA
DC Loop Current Limit, Scan State (Tip-Ring DC Load 300 Ω)	—	30	—	mA
DC Loop Current Limit, Tip Open State (300 Ω Ring to ground)	—	30	_	mA
DC Feed Resistance (at PT-PR, Active states, non-current limit)	—	40	—	Ω
Open Loop Overhead Voltages:				
Scan state: (VTIP – VRING) – VBAT	2	3.6	4.5	V

continued						
Parameter	Min.	Тур.	Max.	Unit		
Active state: (VTIP – VRING) – VBAT	5.75	7.4	8.5	V		
Wink state: VTIP , VRING		0.7	1.0	V		
Ring state: VTIP , VRING – VBAT	—	3.0	—	V		
Open Loop Voltage:						
Active Forward ICV state: PT	-23.0	-21.6	-20.0	V		
Loop Closure Detection Threshold:						
Active/Scan states (LCL)	10	11	12	mA		
Active/Scan states (LCH)	14	15	16	mA		
Tip Open state (LCL)	8.5	11	12.5	mA		
Tip Open state (LCH)	12.5	15	16.5	mA		
Loop Closure Detection Threshold Hysteresis ² :						
Active/Scan/Tip Open states	<u> </u>	2.2	_	mA		
Longitudinal to Metallic Balance at Tip/Ring: Test Method: Q552 (11/96) Section 2.1.2 and IEEE [®] 455:						
200 Hz to 3.4 kHz ³	52		_	dB		
Metallic to Longitudinal (HARM) Balance ⁴ :						
100 Hz to 4000 Hz	40		_	dB		
PSRR 500 Hz to 3000 Hz (Active Forward/Reverse) ¹ :						
VBAT	45		—	dB		
Vcc	25	30	—	dB		
VDD	25	30	—	dB		

Note: 1: This parameter is not tested in production. It is guaranteed by design and device characterization. 2: See "Loop Closure and Ring Trip Detection Thresholds with Hysteresis".

3: Tested at 1 kHz.

4: Tested with DC signals.

Table 5-4. Analog Pin Characteristics

Parameter	Min.	Тур.	Max.	Unit
TXI				
Input Impedance	_	100	—	kΩ
VTX and VITR				
Output Offset (VTX)	-10	0	10	mV
Output Offset (VITR)	_	_	100	mV
Output Drive Current (VTX) (sinking or sourcing)	300	_	_	μA
Output Drive Current (VITR) (sinking or sourcing)	10	_	—	μA
Output Voltage Swing:				

continued	_		_	
Parameter	Min.	Тур.	Max.	Unit
Maximum (VTX, VITR)	0	—	V _{CC}	V
Minimum (VTX)	0.25	_	V _{CC} – 0.5	V
Minimum (VITR)	0.35	_	V _{CC} – 0.4	V
Output Short-circuit Current (sinking or sourcing)	_	_	50	mA
Output Load Resistance ¹	10	_	_	kΩ
Output Load Capacitance ¹	_	20	_	pF
RN and RCVP (Active States):				
Input Voltage (V_{cc} = 3.3 V)				
• RCVP	0	2	$V_{CC} - 0.3$	V
• RN	0	V _{REF}	V _{CC} – 0.3	v
Input Bias Current				
RCVP (sinking)	_	0.12	_	μA
 RN (sinking³ or sourcing⁵) 	_	04	35	μA
Differential PT/PR Current Sense (RTFLT) ³ :				
Gain (PT/PR to RTFLT)	_	30	_	V/A
Total Harmonic Distortion (200 Hz—4 kHz) ¹ :				
Off-hook	_	_	0.3	%
On-hook	_	_	1.0	%
Transmit Gain (f = 1004 Hz, 1020 Hz) ⁶				
PT/PR Current to VITR	-211	-205	-199	V/A
Receive Gain, f = 1004 Hz, 1020 Hz Open Loop				
RCVP to PT/PR	7.76	8.00	8.24	V/V
RN to PT/PR	3.34	3.44	3.54	V/V
Gain vs. Frequency (transmit and receive), 600 $\boldsymbol{\Omega}$				
Termination, 1004 Hz, 1020 Hz Reference ¹ :				
200 Hz to 300 Hz	-0.3	0	0.05	
300 Hz to 3.4 kHz	-0.05	0	0.05	dB
3.4 kHz to 20 kHz	-3.0	0	0.05	
20 kHz to 266 kHz	—	_	2.0	
Gain vs. Level, (transmit and receive), 0 dBV Reference ¹ :				
–55 dB to +3.0 dB	-0.05	0	0.05	dB
Idle-channel Noise (Tip/Ring), 600 Ω Termination:				
C-Message	_	8	13	dBrnC
Psophometric ¹	_	-82	-77	dBrnp

continued							
Parameter	Min.	Тур.	Max.	Unit			
3 kHz Flat ¹	—		20	dBrn			
Crosstalk between channels ¹ (Tip-Ring, 0d Bm/600 $\Omega)$							
Single frequency signal 1000 Hz	—		-80	dB			
Single frequency signals 12 kHz, 16 kHz	_		-60	dB			
CPR							
Output current (sourcing)							
min (VBAT1, VBAT2) - V_CPR = 2.5 V	10		—	mA			
Output Voltage							
min(VBAT1, VBAT2) - V_CPR	-0.5 ⁷		2.0 ⁸	V			

Note: 1: This parameter is not tested in production. It is guaranteed by design and device characterization. 2: The RCVP input is floating. However, referencing it to VREF is recommended since RN is internally referenced to VREF.

3: RN = 0 V

4: RN = VREF

5: RN = VCC-0.3 V

6: VITR transconductance depends on the resistor from ITR to VTX. This gain assumes an ideal 6.49 k Ω , (the recommended value). Positive current is defined as the differential current flowing from PT to PR.

7: Steady state no current.

8: When output current is 1 mA.

Table 5-5. Ringing Parameters

Parameter	Min.	Тур.	Max.	Unit
RINGP/RN (Ringing State):				
Input Voltage Swing	0	—	V _{CC}	V
Ring Signal Isolation:				
PT/PR to VITR	_	60	_	dB
Ringing state				
Ring Signal Isolation:				
RINGP to PT/PR	_	80	_	dB
Non-ringing state				
Ring Signal Distortion ¹ :				
For Le9540C				
V_{BAT} = –100 V, RINGP/RN = 0.6 Vpp, Open Loop or 5 REN (1386 Ω + 40 $\mu F)$ with DC loop 0 to 100 Ω	_	3	_	%
For Le9540D				
V_{BAT} = –145 V, RINGP/RN = 0.9 Vpp, Open Loop or 5 REN (1386 Ω + 40 $\mu F)$ with DC loop 0 to 100 Ω	—	3	-	%

continued				
Parameter	Min.	Тур.	Max.	Unit
Differential Gain RINGP/RN to PT/PR				
For Le9540C				
V _{BAT} = -100 V, RINGP/RN = 0.6 Vpp, Open Loop	124	130	136	V/V
For Le9540D				
V _{BAT} = –145 V, RINGP/RN = 0.9 Vpp, Open Loop	124	130	136	V/V
Note: 1: This parameter is not tested in production. It is guaranteed by desire	n and de	vico char	otorizatio	

Note: 1: This parameter is not tested in production. It is guaranteed by design and device characterization.

Table 5-6. Ring Trip Parameters

Parameter	Min.	Тур.	Max.	Unit
Ring Trip (RTL):	50.5	52.5	54.5	mA
Ring Trip (RTH):	59.5	62.0	64.5	mA
Trip Time (f = 20 Hz) 1			100	ms
Hysteresis (Relative to RTL or RTH) ^{1, 2}		1/3		

Note: 1: This parameter is not tested in production. It is guaranteed by design and device characterization. 2: See "Loop Closure and Ring Trip Detection Thresholds with Hysteresis".

Table 5-7. Test Switch Details

ltem	Condition	Min.	Тур.	Max.	Unit.					
Test Switch	ON-Resistance, (V(25 mA) – V(20 mA))/5 mA	10	19	30	Ω					
	On-Voltage drop at ±20 mA ¹	-3	_	3	V					
	Off-state Leakage Current (sinking or sourcing)	_	_	5	μA					
Note: 1: Additio	Note: 1: Additional 10% variations to the minimum and maximum limits at -40 ° C.									

5.4 Serial Interface Characteristics

The following table shows the electrical characteristics of the serial interface.

Table 5-8. Serial Interface Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input Voltages (DIN, CLK, EN)					
Low Level	V _{IL}			0.8	V
High Level	V _{IH}	2.0		VDD	V
Input Current (DIN, CLK, EN)					
Low Level (ground) (sourcing)	I _{IL}			60	μA
High Level (VDD) (sinking)	I _{IH}			1	μA
Output Voltages (DOUT) (Interfacing to a 2.5 V input)					
Low Level	V _{OL}			0.55	V
High Level	V _{OH}	2.0		2.6 ¹	V

continued					
Parameter	Symbol	Min.	Тур.	Max.	Unit
Rising/Falling Time (DOUT) (20% to 80%) with 20 pF load	T _R , T _F			100 ²	ns
RESET High Current (at 2.5 V) (sinking)	I _{IH}			40	μA

Note: 1: Depending on the characteristic of the input that DOUT will be driving an external pull down resistor may be required to keep DOUT below the specified voltage for speedy operation.

2: This parameter is not tested in production. It is guaranteed by design and device characterization.

Figure 5-1 shows the serial interface timing characteristics as listed in the following table.

Table 3-3. Serial interface finning characteristic	Table 5	9. Serial	Interface	Timing	Characteristic
--	---------	-----------	-----------	--------	----------------

Symbol	Description	Min.	Тур.	Max.	Unit
1	CLK Period	1			μs
2	CLK falling to ENable going high	0			ns
3	ENable going high to CLK rising	300			ns
4	CLK falling to ENable going low	0			ns
5	ENable going low to CLK rising	170			ns
6	Data ready	200			ns
7	Data hold	200			ns
8	Enable rising to DOUT0 data available			420	ns
9	CLK rising to DOUT1+ data available			350	ns
10	CLK, EN rising time (20% to 80%)			25	ns
11	CLK, EN falling time (20% to 80%)			25	ns

Note: The parameters in the above table are not tested in production. They are guaranteed by design and device characterization.

6. Serial Interface Operations and Definitions

The serial interface has a 10-bit serial shift register and a 10-bit parallel data latch register that controls the SLIC operations. Figure 6-1 shows the logic diagram.

6.1 Serial Interface Operations

The operation of the serial interface can be described in the following four modes, RESET High Enable No Transition, RESET High Enable Going High, RESET High Enable Going Low and RESET Low.

6.1.1 RESET High Enable No Transition

When RESET is high and there is no recent low-to-high transition on Enable, the content in the shift register is continuously moving from DIN to DOUT by CLK. DOUT is continuously repeating DIN delayed by 10 CLK cycles.

Regardless of the CLK status, device state changes are not loaded with the Enable state held static. Data already loaded to the shift register may be reloaded without disrupting the SLIC channel line state.

6.1.2 RESET High Enable Going High

When RESET is high, a low-to-high transition on Enable loads the parallel 10 status bits into the shift register, overwriting the previous 10 bit content in the shift register. The first LSB of the 10-bit device status word will immediately appear on the DOUT pin. Subsequent clock edges will continue to shift the status word out until all 10 bits have been presented, as which time the DOUT will return to repeat DIN delayed by 10 CLK cycles.

The second rising edge of CLK after Enable goes high CLK will clock in (new) data from DIN.

6.1.3 RESET High Enable Going Low

When RESET is high a high-to-low transition on Enable latches control bits from the serial shift register (with the content at that instant) into the SLIC parallel control register and immediately take effect.

New control data transactions are only triggered by such a transition on the Enable pin.

6.1.4 RESET Low

When RESET is low it over-writes the content in the SLIC parallel control register and set the control register to "0000 000". Both channels of the SLIC are put into a default mode of active forward with ILL current limit and the test switch off. When RESET is low, the operation of Enable is frozen such that the contents in the serial shift register will not be loaded into the SLIC parallel control registers and the status bits will not be loaded into the serial shift register. Asserting RESET does not clear the contents of the shift register. The content in the serial shift register will move from DIN to DOUT by CLK when RESET is low and Enable is low. If Enable is high during the period when RESET is low, the content in the shift register will not move from DIN to DOUT by CLK. The content in the shift register will not change.

The RESET function is not included in the following figure.

6.2 Bit Assignments

Table 6-1 shows the bit assignments for DIN and Table 6-2 shows the bit assignments for DOUT. "1" stands for channel 1 and "2" stands for channel 2.

Table 6-1. Serial Interface Input Arrangements

d0	d1	d2	d3	d4	d5	d6	d7	d8	d9
	LS_1			LS_2		IL_1	IL_2	TLEN_1	TLEN_2

Table 6-2. Serial Interface Output Arrangements

d0	d1	d2	d3	d4	d5	d6	d7	d8	d9
LCL_1	LCH_1	RTL_1	RTH_1	TSD_1	LCL_2	LCH_2	RTL_2	RTH_2	TSD_2

6.2.1 Line State (LS)

000: Active Forward (Normal)

001: Active Forward ICV (Increased Common mode Voltage)

010: Active Reverse (Normal)

011: Wink

110: Tip Open

100: Scan

101: Ringing

111: Disconnect

(In the sequence of d0/d1/d2 and d3/d4/d5 so scan state d0=1 or d3=1)

6.2.2 DC Current Limit (IL)

0: DC current limit is set to be ILL

1: DC current limit is set to be ILH

6.2.3 Test Load ENable (TLEN)

0: Test load switch disabled and the test load is not turned on

1: Test load switch enabled and the test load is turned on

6.2.4 Thermal ShutDown (TSD)

0: Thermal shutdown

1: No thermal shutdown

6.2.5 Loop Closure with Low Detection Threshold (LCL)

0: DC loop current is greater than LCL threshold¹

1: DC loop current is smaller than LCL threshold¹

6.2.6 Loop Closure with High Detection Threshold (LCH)

0: DC loop current is greater than LCH threshold¹

1: DC loop current is smaller than LCH threshold¹

6.2.7 Ring Trip with Low Detection Threshold (RTL)

0: Rectified and filtered loop current is greater than RTL threshold¹

1: Rectified and filtered loop current is smaller than RTL threshold¹

6.2.8 Ring Trip with High Detection Threshold (RTH)

0: Rectified and filtered loop current is greater than RTH threshold¹

1: Rectified and filtered loop current is smaller than RTH threshold¹

Note: See "Loop Closure and Ring Trip Detection Thresholds with Hysteresis" for additional details.

7. Test Circuit

The following figures show the test circuit diagrams of Le9540 device. Figure 7-1. Le9540 Basic Test Circuit Diagram

Figure 7-2. Metallic PSRR

Figure 7-3. Longitudinal PSRR

Figure 7-4. Longitudinal Balance

Figure 7-5. AC Gains

8. Applications

8.1 In-rush Control

In the Active or Scan states there will be a transient response of the current-limit circuit upon an on- to off-hook transition as described in the following table.

Table 8-1. Typical Active or Scan state On-Hook to Off-Hook Tip/Ring Current-Limit Transient Response

Parameter	Value	Unit
DC Loop Current: R_{LOOP} = 100 Ω , On- to Off-hook Transition time < 5 ms	ILIM + 60	mA
DC Loop Current: R_{LOOP} = 100 Ω , On- to Off-hook Transition time < 50 ms	ILIM + 20	mA
DC Loop Current: R_{LOOP} = 100 Ω , On- to Off-hook Transition time < 300 ms	ILIM	mA

8.2 Loop Closure and Ring Trip Detection Thresholds with Hysteresis

Both loop closure and ring trip detections have a programmable threshold and hysteresis. The detection threshold is the point where the current is large enough for loop closure or ring trip to be detected. Once loop closure or ring trip is detected lowering the current will not immediately clear the detection until the current is below the programmed threshold minus the hysteresis.

For loop closure detection the "current" is the rectified loop current. For ring trip detection the "current" is the rectified and filtered loop current. The following figure shows the characteristic graphically.

Figure 8-1. Detection Thresholds with Hysteresis

All detectors are active regardless of the operational state.

8.3 Protection

The SLIC can be protected by using voltage referenced protectors, as shown in Figure 8-2 and Figure 8-3. The protector can be a dual or two singles. In Figure 8-2, the gate references to VBAT. In Figure 8-3, the two gates reference to the same CPR pin. A shared protection scheme is shown in Figure 8-4 where one SCR is used alone with steering diodes.

Figure 8-2. Protection Device Referenced to VBAT

Figure 8-4. Shared Protection Device Referenced to CPR

8.4 Design Examples

The following circuit shows the SLIC interface to the Broadcom BCM3383/85. One channel of the SLIC device is shown. Components with i being 1 are for channel 1 and with i being 2 are for channel 2. This circuit has a natural 703 Ω AC termination impedance. The Broadcom IC has programmable registers to modify the external 703 Ω termination to any other real or complex terminations, as well as to set transmit and receive gains, and other AC parameters, such as parameters for 7 kHz wide-band applications. The Broadcom IC also drives ringing inputs, sets SLIC operation states, and monitors line status. The voltage of the battery supply to the SLIC V_{BAT} is expected to be properly set and may vary depending upon SLIC operational states. The ringing maybe driven by the same voice outputs. The details of the protection are not shown. A complete reference design is available from Broadcom.

Contact your Microchip account representative for assistance with other applications.

Figure 8-5. Reference Schematic Interfacing Broadcom Codec

8.5 Application Circuit Parts List

The following parts list is for the Microchip Le9540 SLIC device and Broadcom BCM3383/85 fully programmable codec. Components ends with "i" are channel independent (i = 1 will for channel 1 and i = 2 will for channel 2).

ltem	Туре	Value	Tolerance	Rating	Comments
Following Components Are For Both Channels					
Protection					Consult Microchip for a recommendation. May contain one or two capacitors
RCPR	Resistor	1 kΩ	1%	0402	Use with CPR pin
CVCC	Capacitor	0.1 µF	20%	10 V	Ceramic bypass capacitor
L		600 Ω, Murata [®] BLM11A601SPB	—	—	Ferrite Bead for filtering
RREF	Resistor	49.9 kΩ	1%	1/16 W	Sets internal reference current
Le9540	SLIC	_	—	_	Dual-channel SLIC device
		Following Com	ponents Are Per	Channel	
RPTi	Resistor	50 Ω ¹	20% absolute 1% mismatch	Fusible or PTC	Protection resistor
RPRi	Resistor	50 Ω ¹		Fusible or PTC	Protection resistor
CRTFi	Capacitor	0.1 µF	20%	10 V	Ring trip filter capacitor
CFi	Capacitor	0.1 µF	20%	100 V	DC feed filter capacitor
RGXi	Resistor	6.49 kΩ	1%	1/16 W	Sets trans-impedance
CTXi	Capacitor	0.47 μF	20%	10 V	AC/DC separation
CVITRi	Capacitor	0.1 µF	20%	10 V	DC blocking capacitor
RVITRi	Resistor	54.9 kΩ	1%	1/16 W	AC interface
RCIPi	Resistor	44.2 kΩ	1%	1/16 W	AC interface
RRCVPi	Resistor	84.5 kΩ	1%	1/16 W	AC interface
CRCVPi	Capacitor	220 pF	20%	10 V	AC interface
CVTXPi	Capacitor	0.1 µF	20%	10 V	AC interface
СРТі	Capacitor	3.3 nF ²	20%	200 V	EMC
CPRi	Capacitor	3.3 nF ²	20%	200 V	EMC

Table 8-2. Application Circuit Parts List

Note: 1: Minimum 40 Ω is required for loop stability.

2: Consult Microchip for further enhanced performance.

9. Physical Dimensions

40-Lead Very Thin Plastic Quad Flat, No Lead Package (M7C) - 6x6x1 mm Body [VQFN] With 4.4 mm Exposed Pad; Microsemi Legacy Package

Note: For the most current package drawings, see the Microchip Packaging Specification located at www.microchip.com/packaging.

Figure 9-1. 40-Pin QFN Package Diagram

Units		Millimeters			
Dimension Lir	nits	MIN	NOM	MAX	
Number of Terminals	Ν	40			
Pitch	e	0.50 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.30	4.40	4.50	
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	4.30	4.40	4.50	
Terminal Width	b	0.15	0.20	0.25	
Terminal Length	L	0.35	0.40	0.45	
Terminal-to-Exposed-Pad	к	0.40 REF			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

10. Ordering Information

The following section describes the ordering information of the Le9540 device.

Table 10-1. Ordering Information

Part Number	Package	Packaging Type
Le9540CUQC	40-pin QFN	Тгау
Le9540DUQC	40-pin QFN	Тгау
Le9540CUQCT	40-pin QFN	Tape and Reel
Le9540DUQCT	40-pin QFN	Tape and Reel

Note:

All devices are in green packages. The green package is Halogen free and meets RoHS directive 2002/95/EC of the European Council to minimize the environmental impact of electrical equipment.

11. Revision History

Revision	Date	Description
A	09/2020	 Document updated as per Microchip format. Updated Loop Closure Detection Threshold for Tip Open state (LCH) in Table 5-3. The specification for the minimum value is changed from 13.5 mA to12.5 mA. Updated V_{BAT} 5.1 Supply Currents, I_{VBAT}, in Ring State of Electrical Characteristics. The typical values are increasedby 0.1 mA. The maximum values are 1.2 times that of the typical values. The values for 5.2 Power Dissipation in Ring State are also updated accordingly.
7	05/2019	 Updated Loop Closure Detection Threshold for Tip Open state (LCL) in Table 1 on page 13. The specification for the minimum value is changed from 9.5 mA to 8.5 mA.
6	10/2018	 Updated the document logo. Updated the document number with DMS Document Code on page1. Table 2 on page 16, Gain vs. Level, updated "0 dBV Reference" to "Transmit +3 dBm and Receive 0 dBm Reference".
5	08/2013	 Updated descriptions regarding OPN on page 1. Tabe 6 on page 18, digital signals are referenced to VDD instead of VCC. Updated notes for the table "Application Circuit Parts List" on page 29.
4	10/2012	Data sheet status to final "Data Sheet".Added Microsemi Logo.
3	06/2011	 Data sheet status to "Advanced". Added comments that the SLIC is good for wide-band applications on page1.
2	04/2011	 Added a note in Table 6 on page 18. Added RCPR in Figure 14 on page 28 and the table on page 29. Updated ring trip thresholds in Table 4 on page 17. Updated descriptions to PSRR in Table 1 on page 14.
1	12/2010	Initial Revision

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- · Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

[©] 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6752-6

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongging	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokvo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth. GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin. TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malavsia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Naniing	Malavsia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Eax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca II	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Eax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison TX	China - Shenzhen	Taiwan - Kaobsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 072-818-2024	China - Suzbou	Taiwan - Tainai	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-604-1351	Italy - Padoya
Houston TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 30-040-7625286
Tel: 281_894_5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen	101. 04-20-0440-2100	Tel: 31-416-690399
Noblesville IN	Tel: 86-592-2388138		Eax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 17-72881388
Tel: 317-536-2380	161. 00-7 30-32 100+0		Poland - Warsaw
			Tel: 48-22-3325737
			Romania - Bucharest
Tel: 040_462_0523			Tel: 40-21-407-87-50
Fax. 010-162-0608			Spain - Madrid
Tal. 051-273-7800			Tel: 31-01-708-08 00
Paleigh NC			Fax: 34-91-708-09 01
Tal: 010-8/1-7510			Sweden - Gotherborg
Now York NY			Tal: 46 31 704 60 40
Tal: 631 435 6000			Swodon Stockholm
San Joan CA			
Jan JUSE, CA			161. 40-0-3090-4054
101. 400-7 30-9110 Tal: 409 426 4270			UN - WOKINGNAM
1ei: 408-430-4270			Tel: 44-118-921-5800
			Fax: 44-118-921-5820
Iel: 905-695-1980			
Fax: 905-695-2078			