
 

 

TRAINING MANUAL 

From Maker to Manufacture: Bridging the Gap from 

Arduino to AVR 

AN-12077 

 

 

 

Prerequisites 

 Hardware Prerequisites 

– ATmega328P Xplained Mini Board 

– IO1 Xplained Pro extension board 

– Arduino Xplained Pro board 

– Micro-USB cable 

 Software Prerequisites 

– Atmel® Studio version 6.2 or later 

– Arduino IDE 1.6.0 

– Arduino Extension for Atmel Studio 

– Terminal Window Extension 

 Estimated Completion Time 

– Two hours 

Introduction 

This hands-on will demonstrate how to develop Arduino using Atmel Studio 

along with the rich user interface and other great development tools that it 

provides. 

Arduino is an open-source electronics prototyping platform based on flexible, 

easy- to-use hardware and software. It’s intended for artists, designers, 

hobbyists, and anyone interested in creating interactive objects or 

environments. Key fact about Arduino is that these boards are based on the 

Atmel microcontroller family and underlying software is based on Atmel 

development tools. 

Answer for ‘Why should I switch from Arduino?’ is: 

The Arduino IDE: 

 quite limiting for experienced programmers capabilities 

 lack of compiler warnings and debugging capabilities 

 (Serial.println() after every statement doesn’t count), make life hard when 

working on advanced projects 

 Atmel Studio is a great choice for users that have outgrown the integrated 

Arduino IDE 

 some of those Arduino libraries are just so darn convenient 

 

Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2

 
2 

So why not have the best of both worlds? Arduino: a wrapper on top of C/C++ 

with debugging capabilities. It is possible to combine any Arduino sketch or 

library with your own custom code on advanced projects. 

Atmel has a unique, privileged position in Arduino and responsibility to the 

“going pro” community to provide a bridge, help transition from hobbyist to 

developer. 

The Atmel Xplained Mini family is a perfect “bridge” for easy transition to C and 

C++. It has very similar architecture to Arduino and offers most of the features 

of an Arduino board. It is possible to run Arduino sketches when the IDE is set 

up properly. On-board hardware debugger/programmer is also available. It uses 

the incredibly popular AVR® microcontroller family and it is relatively 

inexpensive. 

Figure 1. ATmega328P Xplained Mini Board 

 

The training material is composed of four assignments. 

In the first assignment we will see how to connect ATmega328P Xplained Mini 

to Arduino IDE. 

In the second assignment we will create Arduino sketches in Atmel Studio 

using Studio’s Arduino Extension. 

In the third assignment we will configure Atmel Studio to directly take in 

sketches. We will discuss how to transit to Atmel Studio with existing Arduino 

sketches. Also, we will check how to insert break points and how to debug in the 

Atmel studio. 

In the fourth assignment we will edit the file and create a simple application 

with peripherals: ADC, I2C, and SPI. The application is to read a light sensor 

through ADC, read a temperature sensor through an I2C interface, and store 

data in the SD card through a SPI interface. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3
 

3 

Table of Contents 

1 Training Module Architecture .....................................................6 

1.1 Atmel Studio Extension (.vsix) ............................................................. 6 

1.2 Atmel Training Executable (.exe) ......................................................... 6 

2 Assignment 1: How to connect the ATmega328P Xplained Mini to 

the Arduino IDE ..........................................................................7 

2.1 Arduino IDE .......................................................................................... 7 

2.2 mEDBG Firmware upgrade on the ATmega328P Xplained Mini......... 7 

2.3 Set the Bootloader Fuses in ATmega328P ......................................... 8 

2.4 Program the Bootloader ....................................................................... 9 

2.5 Configure Arduino IDE ....................................................................... 10 

2.6 Upload the Program ........................................................................... 12 

3 Assignment 2: Creating Arduino Sketches in Atmel Studio ...... 13 

3.1 Download Extension .......................................................................... 13 

3.2 Create Sketch .................................................................................... 14 

4 Transit to the Atmel Studio IDE with Existing Arduino Sketches17 

4.1 Project Creation ................................................................................. 17 

4.2 Configuring Compiler Symbols .......................................................... 19 

4.3 Configuring Compiler Directories ....................................................... 19 

4.4 Add Arduino Dependency Files ......................................................... 20 

4.5 Build Solution ..................................................................................... 21 

4.6 Plug in ATmega328P Xplained Mini Board........................................ 21 

4.7 Debugging .......................................................................................... 22 

5 ATmega328P Application ......................................................... 26 

5.1 Compiler Setup .................................................................................. 26 

5.2 Add Dependency Files ....................................................................... 27 

5.2.1 For Wire Library ................................................................................ 27 

5.2.2 For SD Library .................................................................................. 28 

5.3 Developing Application ...................................................................... 29 

5.4 Hardware Connection ........................................................................ 34 

5.4.1 Connection: IO1 Xplained Pro – Arduino Xplained Pro ................... 35 

5.4.2 Connection: ATmega328P Xplained Mini - Arduino Xplained Pro ... 35 

5.4.3 Connection: USB cable .................................................................... 36 

5.5 Debugging the Application ................................................................. 38 

Appendix A. Complete Solution to Assignment 4 ......................... 43 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4

 
4 

6 Conclusion ............................................................................... 46 

7 Revision History ....................................................................... 47 

  



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

5
 

5 

Icon Key Identifiers 

 Delivers contextual information about a specific topic. 

 Highlights useful tips and techniques. 

 Highlights objectives to be completed. 

 Highlights the expected result of an assignment step. 

 Indicates important information. 

 Highlights actions to be executed of the target when 
necessary. 

  



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

6

 
6 

1 Training Module Architecture 

This training material can be retrieved through different Atmel deliveries: 

 As an Atmel Studio Extension (.vsix file) usually found on the Atmel Gallery web site 

(http://gallery.atmel.com/) or using the Atmel Studio Extension manager 

 As an Atmel Training Executable (.exe file) usually provided during Atmel Training sessions 

Depending on the delivery type, the different resources needed by this training material (hands-on 

documentation, datasheets, application notes, software, and tools) can be found on different locations. 

1.1 Atmel Studio Extension (.vsix) 

Once the extension is installed, you can open and create the different projects using “New Example 

Project from ASF..." in Atmel Studio. 

 The projects installed from an extension are normally found under “Atmel 

Training > Atmel Corp. Extension Name”. 

There are different projects which can be available depending on the extension: 

 Hands-on Documentation: contains the documentation as required resources 

 Hands-on Assignment: contains the initial project that may be required to start 

 Hands-on Solution: contains the final application which is a solution for this hands-on 

 Each time a reference is made to some resources in the following pages, the 

user must refer to the Hands-on Documentation project folder. 

1.2 Atmel Training Executable (.exe) 

Depending on where the executable has been installed, you will find the following architecture which is 

composed by two main folders: 

 AN-12077_Hands-on: contains the initial project that may be required to start and a solution 

 Resources: contains required resources (datasheets, software, tools…) 

 

 Unless a specific location is specified, each time a reference is made to some 

resources in the following pages, the user must refer to this Resources folder. 

http://gallery.atmel.com/


 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

7
 

7 

2 Assignment 1: How to connect the ATmega328P Xplained Mini to the Arduino 

IDE 

2.1 Arduino IDE 

Download the Arduino IDE from www.arduino.cc. 

2.2 mEDBG Firmware upgrade on the ATmega328P Xplained Mini 

1. Go to Atmel spaces http://spaces.atmel.com/gf/project/avr_xp_mini/frs/ .From the package 

“medbgdebugger” select medbg_fw.zip and download. 

2. Overwrite the zip package medbg_fw.zip in the Atmel Studio installation folder (e.g.: C:\Program Files 

(x86)\Atmel\Atmel Studio 6.2\tools\mEDBG). 

3. Start Atmel Studio. 

4. Connect the ATmega328P Xplained Mini to the computer. 

5. In Atmel Studio, select Tools → Device programming (alt.: Ctrl+Shift+P). 

6. In the Device Programming window, set Tool to mEDBG and click “Apply”. 

 

 

http://www.arduino.cc/
http://spaces.atmel.com/gf/project/avr_xp_mini/frs/


 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

8

 
8 

 Atmel Studio will now ask you if you want to upgrade the firmware. 

 

7. Select Upgrade. 

 There is a bug in the serial number on some of the ATmega328P Xplained Mini 

boards making them not recognizable by Atmel Studio programming/debugging. If 

your board has an unknown character in the serial number there is a fix in the 

“Releases” folder. To see your board serial number, start Atmel Studio and go to 

Tools → Device programming → select tool, this will list the mEDBG with serial 

number, if some of the characters have a “?” on black background, download the 

package from serial number fix and follow the instruction from 

How_to_change_serial_Number.pdf. 

2.3 Set the Bootloader Fuses in ATmega328P 

1. Now In the ‘Device Programming’ window, select ‘Fuses’. 

2. Change value on EXTENDED, HIGH, and LOW as below and click Program. 

EXTENDED = 0xFF 

HIGH = 0xD8 

LOW= 0xE0 

http://spaces.atmel.com/gf/project/avr_xp_mini/frs/?action=FrsReleaseBrowse&frs_package_id=181


 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

9
 

9 

Figure 2-1. Device Programming: Fuses 

 

2.4 Program the Bootloader 

 The bootloader hex file is located in the Arduino IDE folder: C:\Program Files 

(x86)\Arduino\hardware\arduino\avr\bootloaders\atmega\*.hex. Bootloader can 

be selected according to board configurations as listed in Table 2-1. 

Table 2-1. Bootloader 

Xplained Mini Bootloader 

ATmega328P/5V/16MHz ATmegaBOOT_168_atmega328.hex  

ATmega168PB/5V/16MHz ATmegaBOOT_168_ng.hex 

ATmega168PB/3.3V/8MHz ATmegaBOOT_168_pro_8MHz.hex 

 

1. In the ‘Tools → Device Programming’ window, select tab ”Memories”. 

2. Browse for C:\Program Files (x86)\Arduino\hardware\arduino\avr\bootloaders\atmega\ 

ATmegaBOOT_168_atmega328.hex. 

3. Click program. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1

0

 

10 

Figure 2-2. Device Programming: Memories 

 

2.5 Configure Arduino IDE 

1. Start the Arduino IDE from the Windows® start menu, or the folder the Arduino IDE was installed in. 

2. From menu Tools → Port select the correct COM port for the mEDBG. (See tip below on how to verify 

the COM port used for the mEDBG.) 

Figure 2-3. Arduino IDE: Serial Port 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1
1
 

11 

 mEDBG com port can be viewed from Start → Control panel → Device Manager → Ports as 
below: 

 

3. Board can be selected according to Table 2-2. 

Table 2-2. Arduino IDE: Board 

Xplained Mini Board to select in Arduino IDE 

ATmega328P Xplained Mini Arduino Nano: ATmega328 

ATmega168PB Xplained Mini Arduino Nano: ATmega168 

Here, select: Tools → Boards → Arduino Nano. 

Select: Tools → Processor → ATmega328. 

Figure 2-4. Arduino IDE: Board and Processor 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1

2

 

12 

2.6 Upload the Program 

 ATmega328P Xplained Mini board will be connected to Arduino IDE and will start 
blinking LED. 

1. In Arduino IDE, select File → Examples → 01.Basics → Blink. 

Figure 2-5. Arduino IDE: Examples-Blink 

 

2. Upload the sketch by clicking “Upload” button in Arduino IDE. 

Figure 2-6. Arduino IDE: Upload 

 

 Messages will be appeared at the bottom of window ‘Compiling Sketch’, 
‘Uploading’, ’Done uploading’. 

3. Select File → Save As... and save the sketch ‘Blink’. You can select any path to save sketch. 

4. Observe the blinking LED in ATmega328P Xplained Mini board. 

We have successfully connected ATmega328P Xplained Mini board to the Arduino IDE. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1
3
 

13 

3 Assignment 2: Creating Arduino Sketches in Atmel Studio 

 Atmel Studio’s Arduino Extension allows any Arduino sketch to be written, 

compiled and uploaded to any Arduino while inside Atmel Studio with rich user 

interface and professional features that it provides. 

3.1 Download Extension 

1. Open Atmel Studio. 

2. Select Tools → Extension Manager. The Extension Manager Window opens and by default it shows the 

installed extensions. 

3. Click the “Available Downloads” option. 

Figure 3-1. Atmel Studio: Extension Manager 

 

4. Select “Arduino IDE for Atmel Studio” and click the “Download” icon. 

5. The “Sign in to Extension Manager Dashboard” window opens and asks you to sign-in/register. Then 

Sign-in using the email-id and password provided while registering. 

  If you have not registered already, kindly register. Then close the “Sign in to 

Extension Manager Dashboard” window. Atmel will send you a confirmation 

email to the email-id provided. Click the link to confirm your email-id. Repeat 

steps 2 to 4 and in the “Sign in to Extension Manager Dashboard” and Sign-in 

using the email-id and password provided while registering. 

6. The “Arduino IDE for Atmel Studio” extension will be downloaded, then install it. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1

4

 

14 

3.2 Create Sketch 

1. Open Atmel Studio. 

 Verify Arduino 1.6 is listed in Atmel Studio and select it. 

 

 If it is not listed, click <Configuration Manager>. Select Arduino 1.6. Add the 

Arduino installation directory path as shown in below figure. Select ‘OK’. 

Figure 3-2. Configure Visual Micro 

 

2. Select File → New → Sketch Project. 

3. Enter name for sketch project as shown in below figure and select ‘OK’. 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1
5
 

15 

 led_toggle.ino sketch will be created at location c:\Arduino as it is a default 

location as shown in Figure 3-2. 

4. Edit the code to toggle the LED. 

 

 

 

 

 

 

 

 

 

 

 

 

5. Select the board as Arduino Nano w/ATmega328. 

 

6. Select mEDBG COM port number. 

int led = 13; 
 
void setup() 
{ 
  /* add setup code here */ 
  pinMode(led, OUTPUT); 
} 
 
void loop() 
{ 
  /* add main program code here */ 
  digitalWrite(led,HIGH); 
  delay(500); 
  digitalWrite(led, LOW); 
  delay(500); 
} 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1

6

 

16 

 

7. Download program by clicking icon . 

 LED on ATmega328P Xplained Mini board will start toggling. 

  



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1
7
 

17 

4 Transit to the Atmel Studio IDE with Existing Arduino Sketches 

4.1 Project Creation 

1. Open Atmel Studio and create a new “GCC C++ Executable Project give the Project”, give the project a 

reasonable name and select the ATmega328P as the device. 

2. Make sure to make a note of the folder where the project is created. 

 

3. In the resulting solution, right click and remove the project cpp file (here ATmega328P_1.cpp) as shown 

in below figure. 

 

4. In Windows Explorer: 

a. Copy your sketch (earlier saved Arduino sketch Blink/Blink.ino) and place it to your new Atmel 

Studio project subdirectory, where ATmega328P_1.cpp is (still there in Explorer, even though it 

was removed from the Atmel Studio project). 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1

8

 

18 

b. Rename your sketch extension to .cpp: Blink.ino → Blink.cpp. See below figure. 

 

5. In the Atmel Studio select Project → Show All Files. 

 

6. In the Solution Explorer window ,right click Blink.cpp file and select “Include In Project” as shown in 

figure below: 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

1
9
 

19 

4.2 Configuring Compiler Symbols 

1. In the Solution Explorer right click the project and select Properties or go to Project → [project name] 

Properties… in the file menu (Alt+F7). 

2. Under Toolchain → AVR/GNU C Compiler → Symbols , add: 

F_CPU=16000000L 

USB_VID=null 

USB_PID=null 

ARDUINO=160 

 These are Arduino Specific Symbols. 

3. Repeat for Toolchain → AVR/GNU C++ Compiler → Symbols. 

 

4.3 Configuring Compiler Directories 

1. Under Toolchain → AVR/GNU C Compiler → Directories add. 

2. C:\Program Files (x86)\Arduino\hardware\arduino\avr\cores\arduino. 

3. C:\Program Files (x86)\Arduino\hardware\arduino\avr\variants\standard. 

4. C:\Program Files (x86)\Arduino\hardware\arduino\avr\variants\eightanaloginputs. 

5. Repeat for Toolchain → AVR/GNU C++ Compiler → Directories. 

 Make sure you deselect “Relative Path” while adding these paths. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2

0

 

20 

 

4.4 Add Arduino Dependency Files 

1. Right click the project; go to “Add → Existing Item…” 

2. In the dialog box that opens, aim the browser at C:\Program Files 

(x86)\Arduino\hardware\arduino\avr\cores\arduino 

a. In the “File Name” box, type *.c* <enter> 

b. Multi-select all files and select “Add as Link” 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2
1
 

21 

4.5 Build Solution 

1. Add # include "arduino.h" at the top of Blink.cpp 

 

 Now all the Arduino dependencies have been added and project can be 

compiled and loaded into the target. 

2. In the file menu, select Build → Build Solution. The build should finish successfully with no errors. 

 

4.6 Plug in ATmega328P Xplained Mini Board 

1. In the Solution Explorer right click the project and select Properties or go to Project→ [project name] 

Properties… in the file menu (Alt=F7). 

2. Under Tools, select mEDBG and debugWIRE as interfaces. 

 

 At some point the system may want to update the debugger. Let it update. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2

2

 

22 

3. Under Toolchain → AVR/GNU C Compiler → Optimization. Select Optimization level ‘Optimize for 

size(-Os)’. 

4. Under Toolchain → AVR/GNU C++ Compiler → Optimization. Select Optimization level ‘Optimize for 

size(-Os)’. 

 

4.7 Debugging 

1. Select debug and click ‘Start Debugging and Break’. 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2
3
 

23 

 If the DWEN fuse is not enabled and error message is displayed. Click ‘Yes’ and 
Studio will use the ISP to set the fuse as shown below. 

 

 The Debugger is started and breaks in main. You are now ready to start 
debugging. 

 

 Different debug options are available in the debug menu. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2

4

 

24 

 

2. (In the ‘Solution Explorer’ file Blink.cpp) Go to the line in the source code where you want to insert a 

breakpoint, right click and select Breakpoint → Insert Breakpoint. 

 

 Breakpoint is inserted. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2
5
 

25 

 

3. Run to Breakpoint by clicking “continue”. You can pause and continue the execution as per 

requirement. 

 

4. Exit debug mode: Select Debug → Disable debugWIRE and Close. 

 

 It is important to disable debugWIRE. 

 Disabling debugWIRE resets the target and the DWEN fuse is reset, you will be 

able to use the ISP interface again. Having the DWEN fuse programmed enables 

some parts of the clock system to be running in all sleep modes. This will 

increase the power consumption of the AVR while in sleep modes. The DWEN 

Fuse should therefore always be disabled when debugWIRE is not used. 

5. Reset the board and observe that the LED blinking. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2

6

 

26 

5 ATmega328P Application 

We are going to create a simple application to read a light sensor using the ADC, read a temperature sensor 

using the I2C interface and store data in the SD card using the SPI interface. Also the light sensor value and 

temperature value is transmitted through the EDBG COM port. 

For the I2C the “Wire” library from Arduino is required and for SD card the “SD library” is required to be 

included. 

5.1 Compiler Setup 

1. Right Click Project (here ATmega328P_1) and select Properties. 

2. Under Toolchain → AVR/GNU C Compiler → Directories add (note that the previously added 

directories should still be in the list) 

C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\Wire 

C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\Wire\utility 

C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\SPI 

C:\Program Files (x86)\Arduino\libraries\SD\src 

C:\Program Files (x86)\Arduino\libraries\SD\src\utility 

3. Repeat for Toolchain → AVR/GNU C++ Compiler → Directories. 

 Make sure you uncheck “Relative Path” while adding these paths. 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2
7
 

27 

Figure 5-1. Atmel Studio: Compiler Setup 

 

5.2 Add Dependency Files 

 Add the .cpp source files from libraries to your actual Atmel Studio project. 

5.2.1 For Wire Library 

1. Right click the project; go to “Add → Existing Item…” 

2. In the dialog box that opens, aim the browser at 

a. C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\Wire 

b. Select Wire.cpp file and add ‘As a link’ 

c. Repeat the same for “wire\utility” subdirectory, select twi.c file and add ‘As a link’ 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2

8

 

28 

 

5.2.2 For SD Library 

1. Right click the project; go to “Add → Existing Item…” 

2. In the dialog box that opens, aim the browser at 

a. C:\Program Files (x86)\Arduino\hardware\arduino\avr\libraries\SPI 

3. Select SPI.cpp file and add ‘As a link’ 

4. Repeat the same for C:\Program Files (x86)\Arduino\libraries\SD\src 

a. Multiple Select SD.cpp, File.cpp file. 

b. Repeat the same for same for “SD\utility” subdirectory, multiple select SdVolume.cpp, 

Sd2Card.cpp, SdFile.cpp, and add ‘As a link’. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

2
9
 

29 

 

5.3 Developing Application 

 Rename current Blink.cpp file to sensors.cpp file and delete LED blinking code. 
(I.e. delete setup() and loop().) 

 Include header files for SD and Wire library at the top in sensors.cpp file. 

 

 

 Add definitions regarding temperature sensors. 

 

 

 

 

 

 

 

 

 

 

#include <Wire.h> 
#include <SD.h> 

#define AT30TSE_TEMPERATURE_TWI_ADDR 0x4F 
#define AT30TSE_TEMPERATURE_REG  0x00 
#define AT30TSE_TEMPERATURE_REG_SIZE 2 
#define AT30TSE_NON_VOLATILE_REG  0x00 
 
#define AT30TSE_CONFIG_RES_9_bit  0 
#define AT30TSE_CONFIG_RES_10_bit  1 
#define AT30TSE_CONFIG_RES_11_bit  2 
#define AT30TSE_CONFIG_RES_12_bit  3 
uint16_t resolution = AT30TSE_CONFIG_RES_12_bit; 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3

0

 

30 

 Define constants for used pins. 

 

 

 

 Define variable to use the SD library. 

 

 

 

 Define variables to store ADC result and temperature. 

 

 

 

 Add functions to read temperature sensor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

const int analogInPin = A0;  // Analog input pin 
const int chipSelect = 10;    //SPI slave select pin 
 

 

File myFile; 

double temp_result; 
int sensorValue = 0;        // value read from ADC A0 

uint16_t at30tse_read_register(uint8_t reg, uint8_t reg_type, uint8_t reg_size) 
{ 
 uint8_t buffer[2],i=0; 
 buffer[0] = reg | reg_type; 
 buffer[1] = 0; 
  
 /* Internal register pointer in AT30TSE */ 
 Wire.beginTransmission(AT30TSE_TEMPERATURE_TWI_ADDR); 
 Wire.write(buffer[0]); 
 Wire.endTransmission(); 
  
  
 Wire.requestFrom(AT30TSE_TEMPERATURE_TWI_ADDR, reg_size); 
 
 while(Wire.available()) 
 { 
  buffer[i] = Wire.read(); // receive a byte as character 
  i++; 
 } 
  
 return (buffer[0] << 8) | buffer[1]; 
} 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3
1
 

31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Add initializing function setup(). 

 As soon as we start writing a function name in Atmel Studio possible function 

names are listed as shown below. 

double at30tse_read_temperature() 
{ 
 /* Read the 16-bit temperature register. */ 
 uint16_t data = at30tse_read_register(AT30TSE_TEMPERATURE_REG, 
 AT30TSE_NON_VOLATILE_REG, 
 AT30TSE_TEMPERATURE_REG_SIZE); 
  
 double temperature = 0; 
 int8_t sign = 1; 
  
 /*Check if negative and clear sign bit. */ 
 if (data & (1 << 15)){ 
  sign *= -1; 
  data &= ~(1 << 15); 
 } 
  
 /* Convert to temperature  */ 
 switch (resolution){ 
  case AT30TSE_CONFIG_RES_9_bit: 
  data = (data >> 7); 
  temperature = data * sign * 0.5; 
  break; 
  case AT30TSE_CONFIG_RES_10_bit: 
  data = (data >> 6); 
  temperature = data * sign * 0.25; 
  break; 
  case AT30TSE_CONFIG_RES_11_bit: 
  data = (data >> 5); 
  temperature = data * sign * 0.125; 
  break; 
  case AT30TSE_CONFIG_RES_12_bit: 
  data = (data >> 4); 
  temperature = data * sign * 0.0625; 
  break; 
  default: 
  break; 
 } 
 return temperature; 
} 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3

2

 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void setup() 
{ 
 Serial.begin(9600);  // Open serial communications 
  
  if (!SD.begin(chipSelect)) { 
   Serial.println("SD Card initialization failed!"); 
   return; 
  } 
  Serial.println("SD Card initialization done."); 
  
  
 SD.remove("data.txt"); 
 
  Wire.begin(); 
} 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3
3
 

33 

 Add a variable and function loop(). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Save the file and build the solution by selecting tab ’Build’ or press F7 key on 
keyboard. 

bool sensor_flg=0; 
 
void loop() { 
   
 sensorValue = analogRead(analogInPin);   // read the ADC: 
 temp_result = at30tse_read_temperature();  // read temperature 
  
 if (sensorValue>=500) 
 { 
  sensor_flg=1; 
 } 
 
 if (sensor_flg==1)   // write data in file on particular sensor vale 
 { 
  sensor_flg=0; 
 
   myFile = SD.open("data.txt", FILE_WRITE); 
 
   if (myFile)  // if the file opened okay, write to it: 
   { 
    myFile.print("sensor = " ); 
    myFile.print(sensorValue); 
    
    myFile.print("    temp = "); 
    myFile.print(temp_result); 
    myFile.print("\n"); 
     
    myFile.close(); // close the file: 
 
   } 
   else  
   { 
    // if the file didn't open, print an error: 
    Serial.println("error opening data.txt"); 
   } 
 
   // re-open the file for reading: 
   myFile = SD.open("data.txt"); 
   if (myFile)  
   { 
    // read from the file until there's nothing else in it: 
    while (myFile.available()) { 
     Serial.write(myFile.read()); 
    } 
    // close the file: 
    myFile.close(); 
    } else { 
    // if the file didn't open, print an error: 
    Serial.println("error opening data.txt"); 
   } 
  } 
 delay(500); 
} 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3

4

 

34 

 

 The build should finish successfully with zero errors. 

5.4 Hardware Connection 

Light sensor and temperature senor are present on IO1 Xplained Pro board. 

IO1 Xplained Pro is an extension board to the Atmel Xplained Pro evaluation platform. It is designed to give a 

wide variety of functionality to Xplained Pro MCU boards, including a microSD card, a temperature sensor, a 

light sensor and more. The IO1 extension board is shown in Figure 5-2. 

Figure 5-2. IO1 Xplained Pro 

 

Actual connections of IO1 Xplained Pro board to ATmega328P Xplained Mini are as shown in Table 5-1. 

http://www.atmel.com/tools/ATIO1-XPRO.aspx


 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3
5
 

35 

Table 5-1. Connection: IO1 Xplained Pro- ATmega328P Xplained Mini 

IO1 Xplained Pro ATmega328P Xplained Mini 

Pin number Name Pin MCU pin 

3 ADC PC0 A0 

11 TWI_SDA PC4 SDA 

12 TWI_SCL PC5 SCL 

2 GND GND  

20 VCC 3V3  

15 SPI_SS_A PB2 SPI_SS(D10) 

16 SPI_MOSI PB3 SPI_MOSI 

17 SPI_MISO PB4 SPI_MISO 

18 SPI_SCK PB5 SPI_SCK 

 

5.4.1 Connection: IO1 Xplained Pro – Arduino Xplained Pro 

Connect the IO1 Xplained Pro board to Arduino Xplained Pro board as shown in below figure. 

 

5.4.2 Connection: ATmega328P Xplained Mini - Arduino Xplained Pro 

Now we need to connect ATmega328P Xplained Mini to the Arduino Xplained Pro board. Connect so that 

PC5 from column 1 on the Xplained Mini board goes in A5 of the Arduino Xplained Pro (red colored 

connection) and PC5 from column 11 on the Xplained Mini goes in SCL of to the Arduino Xplained Pro (green 

colored connection). 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3

6

 

36 

 

 

Connection would be as below. 

 

5.4.3 Connection: USB cable 

Connect the USB cable to the ATmega328P Xplained Mini board and place the board as shown below. 

 Make sure SD card is properly inserted in the socket. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3
7
 

37 

Figure 5-3. Visual Representation of Hardware Connection for Assignment 4 

 

 Board is placed in this way that the light sensor wouldn’t be in dark. 

 Alternative way of connection: User can also connect IO1 Xplained Pro board 

using nine male to female connectors without using Arduino Xplained Pro 

board as shown in figure below. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3

8

 

38 

 

5.5 Debugging the Application 

Now we will debug the application. Code has been written such that at particular condition (when sensor 

value > 500) the light sensor value and temperature value will be stored in the SD card. We will place a 

breakpoint at this condition and check that the breakpoint is hit. 

 Select Debug and click ‘Start Debugging and Break’. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

3
9
 

39 

 

 If the DWEN fuse is not enabled and error message is displayed. Click ‘Yes’ and 
Studio will use the ISP to set the fuse as shown below. 

 

 The Debugger is started and breaks in main. You are now ready to start 
debugging. 

 In Atmel Studio select View → Terminal Window. Select the mEDBG COM Port, 
Baud: 9600 and select “Connect”. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4

0

 

40 

 

 Sensor data will be received through the mEDBG COM port. 

 Open sensors.cpp file from the Solution Explorer and place the breakpoint as 
shown in the figure below: 

 

 Now start debugging by selecting symbol  or by pressing F5 key on 
keyboard. 

 In the Terminal window a message will appear: ’SD Card initialization done’. 

 A light sensor is present on the IO1 Xplained Pro and sensor value increases when 

it is dark and decreases when it is bright. 

 Cover the sensor with your finger to increase the sensor value. 

As the sensor value is increased the condition if (sensorValue ≥500) will be true 
and program execution will hit the breakpoint as shown below. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4
1
 

41 

 

 To view the sensor value while debugging, select Debug → QuickWatch… Enter 
the expression ‘sensorValue’ and select button ‘Add Watch’. 

 In Watch1 window value of variable ’sensorValue’ will be displayed. 

 

 Close the ‘Watch1’ window and ‘QuickWatch’ window. 

 Continue the execution by pressing F5 on keyboard. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4

2

 

42 

 Sensor value and temperature value will be stored in SD card also transmitted 
through EDBG COM port. Terminal window will show sensor values and 
temperature values. 

Figure 5-4. Atmel Studio: Terminal Window 

 

 Exit the debug mode by selecting Debug → Disable debugWIRE. 

 It is important to disable debugWIRE. 

We have successfully added Arduino project on an ATmega328P Xplained Mini with the Atmel Studio. 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4
3
 

43 

Appendix A. Complete Solution to Assignment 4 

Sensors.cpp file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include "arduino.h" 
#include <Wire.h> 
#include <SD.h> 
 
#define AT30TSE_TEMPERATURE_TWI_ADDR 0x4F 
#define AT30TSE_TEMPERATURE_REG  0x00 
#define AT30TSE_TEMPERATURE_REG_SIZE 2 
#define AT30TSE_NON_VOLATILE_REG  0x00 
 
#define AT30TSE_CONFIG_RES_9_bit  0 
#define AT30TSE_CONFIG_RES_10_bit  1 
#define AT30TSE_CONFIG_RES_11_bit  2 
#define AT30TSE_CONFIG_RES_12_bit  3 
 
uint16_t resolution = AT30TSE_CONFIG_RES_10_bit; 
double temp_result; 
int sensorValue = 0;        // value read from ADC A0 
 
 
const int analogInPin = A0;  // Analog input pin  
const int chipSelect = 10; 
 
 
// set up variable to use SD utility library functions: 
File myFile; 
 
 
 
void setup() 
{ 
 Serial.begin(9600);  // Open serial communications 
  
  if (!SD.begin(chipSelect)) { 
   Serial.println("SD Card initialization failed!"); 
   return; 
  } 
  Serial.println("SD Card initialization done."); 
  
  
 SD.remove("data.txt"); 
   
  Wire.begin(); 
} 
 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4

4

 

44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uint16_t at30tse_read_register(uint8_t reg, uint8_t reg_type, uint8_t reg_size) 
{ 
 uint8_t buffer[2],i=0; 
 buffer[0] = reg | reg_type; 
 buffer[1] = 0; 
  
 /* Internal register pointer in AT30TSE */ 
 Wire.beginTransmission(AT30TSE_TEMPERATURE_TWI_ADDR); 
 Wire.write(buffer[0]); 
 Wire.endTransmission(); 
 
 Wire.requestFrom(AT30TSE_TEMPERATURE_TWI_ADDR, reg_size); 
 
 while(Wire.available()) 
 { 
  buffer[i] = Wire.read(); 
  i++; 
 } 
  
 return (buffer[0] << 8) | buffer[1]; 
} 
 
double at30tse_read_temperature() 
{ 
 /* Read the 16-bit temperature register. */ 
 uint16_t data = at30tse_read_register(AT30TSE_TEMPERATURE_REG, 
 AT30TSE_NON_VOLATILE_REG, 
 AT30TSE_TEMPERATURE_REG_SIZE); 
  
 double temperature = 0; 
 int8_t sign = 1; 
  
 /*Check if negative and clear sign bit. */ 
 if (data & (1 << 15)){ 
  sign *= -1; 
  data &= ~(1 << 15); 
 } 
  
 /* Convert to temperature */ 
 switch (resolution){ 
  case AT30TSE_CONFIG_RES_9_bit: 
  data = (data >> 7); 
  temperature = data * sign * 0.5; 
  break; 
  case AT30TSE_CONFIG_RES_10_bit: 
  data = (data >> 6); 
  temperature = data * sign * 0.25; 
  break; 
  case AT30TSE_CONFIG_RES_11_bit: 
  data = (data >> 5); 
  temperature = data * sign * 0.125; 
  break; 
  case AT30TSE_CONFIG_RES_12_bit: 
  data = (data >> 4); 
  temperature = data * sign * 0.0625; 
  break; 
  default: 
  break; 
 } 
 return temperature; 
} 
 

 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4
5
 

45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

bool sensor_flg=0; 
 
void loop() { 
 
 sensorValue = analogRead(analogInPin);   // read the ADC: 
 temp_result = at30tse_read_temperature();  // read temperature 
 
 if (sensorValue>=500) 
 { 
  sensor_flg=1; 
 } 
 
 if (sensor_flg==1)   // write data in file on particular sensor vale 
 { 
  sensor_flg=0; 
 
   myFile = SD.open("data.txt", FILE_WRITE); 
 
   if (myFile)  // if the file opened okay, write to it: 
   { 
    myFile.print("sensor = " ); 
    myFile.print(sensorValue); 
 
    myFile.print("    temp = "); 
    myFile.print(temp_result); 
    myFile.print("\n"); 
     
    myFile.close(); // close the file: 
 
   } 
   else  
   { 
    // if the file didn't open, print an error: 
    Serial.println("error opening data.txt"); 
   } 
 
   // re-open the file for reading: 
   myFile = SD.open("data.txt"); 
   if (myFile)  
   { 
    // read from the file until there's nothing else in it: 
    while (myFile.available()) { 
     Serial.write(myFile.read()); 
    } 
    // close the file: 
    myFile.close(); 
    } else { 
    // if the file didn't open, print an error: 
    Serial.println("error opening data.txt"); 
   } 
  } 
 delay(500); 
} 



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4

6

 

46 

6 Conclusion 

In this hands-on training we have accomplished the following tasks: 

 added support form Arduino style coding to Atmel studio 

 added debugging capability to Arduino project 

 based an Arduino project on Atmel Xplained Mini and Atmel Studio without changing any code 

 added the ability to write more complex and complicated programs 

  



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4
7
 

47 

7 Revision History 

Doc. Rev. Date Comments 

42439A 08/2015 Initial document release 

 

  



 

From Maker to Manufacture: Bridging the Gap from Arduino to AVR [TRAINING MANUAL] 
Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015 

4

8

 

48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 
 

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com 

 
© 2015 Atmel Corporation. / Rev.: Atmel-42439A-From-Maker-to-Manufacture-Bridging-the Gap-from-Arduino-to-AVR_TrainingManual_082015. 
 
Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. 
and other countries. Windows® is a registered trademark of Microsoft Corporation in U.S. and or other countries. Other terms and product names may be trademarks of 
others. 
 
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express  or implied, by estoppel or otherwise, to any intellectual property right is 
granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITI ONS OF SALES LOCATED ON THE ATMEL 
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, 

BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE 
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAG ES FOR LOSS AND 
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCU MENT, EVEN IF ATMEL HAS BEEN ADVISED 

OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness  of the contents of this document and reserves 
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained here in. Unless 
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications . Atmel products are not intended, authorized, or warranted for use as 

components in applications intended to support or sustain life. 

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be us ed in connection with any applications where 
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety -Critical Applications”) without an Atmel officer's specific written consent. 
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products 

are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor 

intended for use in automotive applications unless specifically designated by Atmel as automotive -grade. 

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

