

MICROCHIP

A Leading Provider of Microcontroller, Security, Mixed-Signal, Analog & Flash-IP Solutions

Achieve More Computing Throughput in Space

- Satellite operators demanding more information from space assets
- Sensor resolution increasing faster than available downlink bandwidth
- Faster frame rates, more channels in multi-spectral imaging
- Needs bigger, faster FPGAs with more DSP, more memory and higher I/O bandwidth
- Allows transmission of processed information, instead of raw data
- Enables autonomous decision-making on orbit

RT PolarFire[®] Next-Generation Space-Qualified FPGA

RT PolarFire

- Absence of configuration upsets
- Lowest power consumption in class
- Path to QML qualification

Microchip advantages

- 60+ years of space-flight heritage
- Expertise in radiation, quality, reliability
- Long-standing commitment to space

Microchip FPGA Space Flight Heritage

• Microchip FPGAs in Space

- First FPGAs screened for space in 1992 (A1020 with "Extended Flow" screening)
- First FPGAs with radiation hardening by process in 1996 (RH1280)
- First FPGAs with radiation hardening by design in 2001 (RTSX-S)
- First Flash FPGAs with radiation hardening by design in 2015 (RTG4)

RTSX-SU, Introduced 2004 Mars Reconnaissance Orbiter RTSX-SU On Board (2005)

RTAX, Introduced 2005 Curiosity (Mars Science Lab) RTAX On Board (2011) RT ProASIC3, Introduced 2008 NASA IRIS RT ProASIC3 On Board (2013) RTG4, Introduced 2015 Mission Extension Vehicle 1 RTG4 On Board (2019)

Source: Northing Grumman Web Site

Space Forum 2019

RT PolarFire[®] **Plan**

• Commercial 28nm SONOS non-volatile and reprogrammable PolarFire die

- Metal layer change facilitates ceramic package integration (wider C4 bump spacing)
- Radiation behavior characterized and reported, first report available today
- Synthesized TMR, deploy where needed, *available today* in Libero SoC 12.0 and later
- Commercial PolarFire devices and development kits *available today* for prototyping
- Hermetically sealed, ceramic column grid array package
 - 1509 solder columns (Six Sigma copper spiral columns)
 - Planning for QML qualification to class Q and ultimately class V
- In development today
 - Silicon roll out begins with engineering models in 2020, culminating in QML class V in 2023

RT FPGA Families

RT PolarFire Details

Microchip RT PolarFire FPGA	RTPF500T		
DFF (TMR)	0 (Instantiate Synthesized TMR Where Needed)		
DFF (Non-TMR)	481K		
4LUT	481K		
Mathblocks (18x18 MACC)	1480		
Total RAM Mbits	33 Mbits		
uPROM Kbits	513 Kbits		
250 Mbps - ~ 10.0 Gbps SERDES Lanes	24		
I/O (HSIO/GPIO)	584 (324/260)		
On Orbit Reprogrammability	To Be Characterized, TBD cycles		
Radiation - TID (krad)	> 100		
Budinting SELLET throughold (Mar) (and (mar)	2.5V I/O > 60,		
Radiation - SEL LET threshold (Nev-cm2/mg)	1.8V I/O > 80		
Radiation - Config SEU (events/FPGA/year; GEO solar min)	None		
Package	1509 CCGA		
Prototyping	MPF500T		
	RTPF500T PROTO		
	Mil Std 883B planned		
Qualification	QML class Q planned		
	QML class V planned		

RT PolarFire FPGA Architecture

Lowest Total Power: Save up to 50%

•

RT PolarFire Radiation (1)

0.5 0.4 0.4 0.3

Propagation 0 1.0

20

- Measuring total dose effects in RT PolarFire
 - Retention effects in SONOS are considered
 - TM1019 testing is combined with retention tests
 - Initial experiments determined that retention test followed by TID test causes more severe degradation in SONOS than TID test followed by retention test

Total dose results

- TID effects mitigated by complementary push-pull SONOS configuration cell, similar to RTG4
- RT PolarFire capable of 100 krad TID at constant 110°C for 10 years

RT PolarFire Radiation (2)

- Single Event Configuration Upsets
 - In multiple tests, with total fluence > 5E7 ions/cm² up to LET > 80 MeV-cm²/mg, no configuration upsets have been detected

• Single Event Latch-Up

- SEL in I/Os
 - When running at 3.465V (3.3V +5%), 100°C, onset LET threshold between 25 and 48 MeV-cm²/mg
 - When running at 2.625V (2.5V +5%), 100°C, onset LET threshold between 63 and 68.5 MeV-cm²/mg
 - When running at 1.890V (1.8V +5%), 100°C, onset LET threshold higher than 80 MeV-cm²/mg

• Single Event Functional Interrupt

- SEFI causes part to enter reset state and recover
- Orbital rate is once per 40 years, GEO solar min

RT PolarFire Radiation (3)

	1.26V I/O	1.575V I/O	1.89V I/O	2.625V I/O
LET 60				No SEL >1E7 ionscm ²
LET 65				SEL Detected ~9E6 ions/cm ²
LET 70			No SEL >1E7 ions/cm ²	SEL Detected ~4.4E5 ions/cm ²
LET 75	No SEL >1E7 ions/cm ²		No SEL >1E7 ions/cm ²	
LET 80			No SEL >1E7 ions/cm ²	SEL Detected <1.2E6 ions/cm ²

RT PolarFire Radiation (4)

• Single Event Upset Rates

- Unprotected flip-flops (no synthesized TMR)
 - All-1 and All-0 data patterns upset at ~ 4.1E-8 errors/bit-day, GEO Solar Min, 0.1" Al
 - Checkerboard data pattern upsets at ~ 2.3E-7 errors/bit-day, GEO Solar Min, 0.1" Al

RT PolarFire Radiation (5)

• Single Event Upset Rates

- Unprotected SRAM (no EDAC, no scrubbing)
 - LSRAM blocks (20kbit) upset at ~ 4.4E-8 errors/bit-day, GEO Solar Min, 0.1" Al
 - uSRAM blocks (768bit) upset at ~ 9.2E-8 errors/bit-day, GEO Solar Min, 0.1" Al

- Next Steps
 - Planning to test Mathblocks, SERDES, PLL, protected flip-flops and SRAM, clock networks, SETs, reprogramming in radiation . . .

Start Designing Today

• PolarFire commercial FPGAs

• Shipping in volume today, use MPF300 or MPF500 to start RTPF500 designs

Features	PolarFire FPGA			
	MPF100	MPF200	MPF300	MPF500
Logic Elements (4LUT + DFF)	109K	192K	300K	481K
Math Blocks (18x18 MACC)	336	588	924	1480
Total RAM (Mbits)	7.6 Mbits	13.3 Mbits	20.6 Mbits	33 Mbits
Available	Now	Now	Now	Now

• PolarFire development kits

 Development kits available today which can be used to develop RT PolarFire designs

• Libero development software

 Libero SoC 12.0 and later supports synthesized triple modular redundancy (TMR) for SEU protection in flip-flops

Summary

• RT PolarFire next generation space-qualified FPGA

- Higher density and performance for high speed on-board processing
- Significant power savings relative to other FPGAs at this density level
- Free of configuration upsets, single chip implementation, no scrubbing
- Path to full QML class Q and class V qualification

RT PolarFire Schedule:

 Silicon roll out begins with engineering models in 2020, culminating in QML class V in 2023

Available Today:

- Libero synthesis support for TMR
- Commercial PolarFire evaluation kit (MPF300)
- MPF300 and MPF500 FPGAs for prototyping
- Power calculator